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Abstract The next-generation nuclear power plants are designed to have inherent
safety features and passive safety systems and use advanced digital instrumentation
and control (IC) systems to achieve required operational performance and tomeet the
safety goals. Digital IC systems often perform complex tasks while interacting with
process dynamics. Static reliability methodologies have been shown to be inadequate
for modeling and accurately estimating the reliability of such systems due to the lack
of close correspondence between the model and the system. Though a number of
new dynamic methods have been developed for the reliability evaluation of such
systems, they have not reached a stage of maturity, like that of the traditional event
tree/fault tree methods. Therefore, an effort is made to review the diverse and recent
development in the field,with a view to identify suitable attributes andmethodswhich
are necessary for it to be widely adopted and for which a general-purpose software
tool could be developed. The qualitative analysis is performed for the attributes
among the reviewed methods for comparison and identifying the best method. A
qualitative comparison is given for the major attributes. The paper recommends and
outlines the development of smart component methodology (SCM) for reliability
modeling of dynamic safety systems.
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1 Introduction

Real systems are complex interacting entities, where the performance requirements,
system configuration and failure parameters may change with time. With the advent
in digital instrumentation and control (IC) technologies, the next-generation nuclear
power plants are expected to be built with inherent safety features, passive perfor-
mance and self-diagnostics. Static reliability methods, though widely used, do not
adequately model such systems exactly using its pure combinatorics. This gap be-
tween the reliability model and the system is claimed in the literature, will be reduced
if we carry out dynamic reliability evaluation for the system, and will get the results
of our interest. While doing dynamic reliability evaluation of the system, physical
process, hardware, software, human performance, etc., can be considered precise-
ly in the system model for failure analysis; a methodology is followed for system
structuring and for quantifying it, which is called dynamic reliability method. In this
section, we summarize some of the reported definitions of dynamic reliability and
then mention some of the challenges to be checked for reviewing the methods. Some
views on the definition of dynamic reliability and dynamic reliability methodologies
found in the literature are presented below.
Devooght, J. [1]: Dynamic reliability accounts the dynamic nature of system, i.e.,
the evolution of the system, change in dynamics due to failures, repairs, maintenance,
etc., and hence, change in failure rates due to new dynamics.
Labeau, P. E. et al. [2]: Dynamic reliability methods provide a framework for ex-
plicitly capturing the influence of time and process dynamics on scenarios.
Aldemir, T. [3]: Dynamic methodologies for PSA defined as a time-dependent phe-
nomenological model of system evolution along with its stochastic behavior to ac-
count for possible dependencies between failure events.
Babykina, G. et al. [4]: In the context of safety analysis, dynamic reliability can be
seen as an extension of system reliability assessment methods to the case in which
the structure function changes in time with a discrete evolution (e.g., in the case of a
phased mission system) and with a continuous evolution (e.g., in the case of depen-
dency between the reliability of components and continuous physical variables). The
structure function is meant to be a function describing the link between the states of
system components, usually represented by their failures and repairs, and the state of
the system itself. The dynamic reliability accounts for the following phenomena: (1)
dynamic behavior of system components (aging and fatigue of different types), (2)
importance of the order of occurring events (ordered sequences of events are con-
sidered in place of cut sets) and (3) multiple natures (stochastic and deterministic)
of events driving the transitions between states.

To summarize the definitions, dynamic reliability methods must be able to model

1. Time dependence of system structure function.
2. Time ordering of basic events.
3. Time dependence of the reliability parameters (failure rate, mission time, test

interval).



A Review of Recent Dynamic Reliability Analysis Methods … 269

Fig. 1 Possible interaction
between entities

4. Interaction effects: inter-dependence between process variables, hardware states,
software function and human performance.

Hence, dynamic reliability methods give detailed modeling capability for the
dynamic systems having interactions as described in Fig. 1, where the dotted and
strong arrows indicateweak and strong interactions between the entities, respectively.
In contrary to the benefits offered by the dynamic reliabilitymethods of taking care of
the interactions and other dynamic aspects in the method rather than the dependency
on the analyst, which is for his careful approximation in static reliability analysis,
the dynamic reliability analysis is challenged with the handling of complexity of
the system, computational intensive nature and easiness of usage of the method.
Various dynamic reliability methods have been developed in the last three decades
and applied to many dynamic scenarios. In the literature, there is no consensus on
the acceptance of a method for dynamic reliability assessment; the newly developed
methods have not reached thematurity of application, like that of the traditional event
tree/fault tree methods.

Therefore, the methods available in the literature are reviewed and compared with
a view to identify suitability with respect to the attributes of accuracy, simplicity,
scalability, fidelity and generality of modeling. However, we declare that the review
does not aim to be exhaustive and complete but to find out a learned recommendation
which would be a promising step toward a solution for all the above-mentioned
problems. Based on the review, the paper recommends and outlines the peculiar
qualities of smart component-basedmethodology alongwithMonteCarlo simulation
for addressing the problems of dynamic reliability.

The paper is organized as follows. Section2 presents the review of some of
well-known dynamic reliability methods and approaches. Section3 proposes a s-
mart component methodology. Section4 presents a comparative evaluation of the
various methods presented in Sect. 2. The paper is concluded in Sect. 5.
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2 Existing Methods, Approaches and Tools
for Dynamic Reliability

A number of dynamic methodologies have been developed for application ranging
from small- to large-scale systems. A large number of review papers have been pub-
lished in the recent past on the subject of dynamic reliability and its methodologies
[1–3, 5]. In the last decade, significant reports have been published by USNRC on
the reliability analysis of digital I&C systems. The report Ref. [6] presents a study of
a number of methods for reliability modeling of digital I&C systems and its incorpo-
ration into existing probabilistic risk assessment (PRA) models. The study identifies
two types of dynamic interactions that need to be considered while modeling digi-
tal I&C system reliability: Type I—interactions between the reactor protection and
control systems and the controlled plant process and Type II—interaction between
the components of the reactor protection and control systems itself. According to
the report, the required minimum criteria for acceptance of dynamic methodologies
(only seven major requirements are reproduced out of eleven) are [6]:

1. The methodology should account for both Type I and Type II interactions.
2. Themodel must be able to predict encountered and future failures well and cannot

be purely based on previous experience.
3. The model must make valid and plausible assumptions, and the consequences of

violating these assumptions need to be identified.
4. The data used in the quantification processmust be credible to a significant portion

of the technical community.
5. The model must be able to differentiate between a state that fails one safety check

and those that fail multiple ones.
6. Themodel must be able to differentiate between faults that cause function failures

and intermittent failures.
7. The model must have the ability to provide uncertainties associated with the

results.

From the qualitative analysis provided for some of the methods against the eleven
criteria in Ref. [6], it is concluded that none of the methods meet all the criteria;
however, each of the different methods may be better suited for specific problems.
USNRC-6901 has ranked Markov/cell-to-cell mapping technique (CCMT) method
and dynamic flowgraphmethodology (DFM), as the top twomethods, withmost pos-
itive features and least negative or uncertain features (using subjective criteria based
on reported experience) for dynamic probabilistic safety assessment. The report al-
so mentions that there is no regulatory requirement for a single methodology to be
applicable to all digital I&C systems. However, availability of such a methodology
will be a convenience [6].

Subsequent reportUSNRC-6942 (2007) [7] and 6985 (2009) [8] proof checked the
two identified methods. The study also applied the methods to benchmark systems
and demonstrated the incorporation of the methods into PRA procedures. Report
USNRC-6962 (2008) [9] presented the limitations of traditional reliability methods
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for digital system reliability evaluations. However, we observe a state explosion
problem for Markov/CCMTmethod and doubt the solvability of dynamic flowgraph
methodology when applied to industrial-scale systems.

The following section briefly reviews some of the significant methods with a
view to assess its suitability for general applicability to dynamic reliability analysis,
flexibility for deriving static reliability analysis and suitability for industrial-scale
problems.

2.1 Methods Based on Chapman–Kolmogorov Equation

2.1.1 Chapman–Kolmogorov Equation

A number of methods are based on the general mathematical description of the
time evolution of the joint probability of hardware state and process variables. The
Chapman–Kolmogorov equation (C-K equation) for probability mass transport is
described in several Refs. [1, 10–13], but first introduced in Refs. [14] as a dy-
namic approach for modeling failure in process control systems using Markovian
assumption. Then, the duo of probabilistic and deterministic behavior of the reactor
dynamics is mathematically supported by Ref. [11, 12] as a theory of probabilistic
dynamics (PD)/continuous event tree. Briefly, the C-K equation is described; here-
in, integro-differential form and its more useful integral forms for reliability and
availability problems for application to dynamic PSA are found in Refs. [11, 15].

Let, the reactor process variables be denoted by X = [x1, x2, x3, . . . xp], where p
is the number of process variables under consideration which are functions of time.
The system hardware (H/W) logic state is determined from the component states of
the system. Let us denote the hardware states by i, i = 1, 2, . . . q, then the evolution
of the process variables of the system is given by the following differential equation:

dX (t)

dt
= fi(X ), with X (0) = X0, and X ∈ Rp (1)

This is a complex nonlinear functional equation, the solution of which is given by

X = gi(t,X0),X0 = gi(0,X0) (2)

In the equation, function fi(X ) describes the dynamic evolution of the process vari-
ables for a given H/W state i, which may have differential dependence on X . Hence,
the overall state of the reactor dynamics is represented by (X , i). The system evolves
either due to the change in state of the components (stochastic) or due to automated
control action (deterministic). Generally, the probability of transition from one state
to another depends mainly on X . Hence, P(i → j|X ) is the conditional probability
of transition from H/W state i to the H/W state j per unit time. Let �(X , i, t) be the
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probability density that the system is in state (X , i) at time t. Then, the C-K equation
can be written as follows:

∂�(X , i, t)

∂t
=

∑

j �=i

P(j → i|X )�(X , j, t)

−
∑

j �=i

P(i → j|X )�(X , i, t) − ∇X .fi(X )�(X , i, t) (3)

Or

∂�(X , i, t)

∂t
=

∑

j �=i

P(j → i|X )�(X , j, t) − λi�(X , i, t) − ∇X .fi(X )�(X , i, t)

(4)

where λi(X ) = ∑
j �=i P(i → j|X ) is defined as the total probability of outgoing tran-

sition from state i. It is assumed here that the probability � and function fi are well
behaved, so that the divergence operation exists. There are situations when con-
sidering nonlinear systems, where the divergence may not exist and such special
conditions are addressed in [16]. The special issues are not addressed in this paper
as the focus here is on the development of an overall framework.

The integral version of the above equation is as follows [15]:

�(X , i, t) =
∫

�(u, i, 0)δ(X − gi(t, u))e
− ∫ t

0 λi(gi(s,u))dsdu

+
∑

j �=i

∫
P(j → i|u)du

∫ t

0
δ(X − gi(t − τ, u))e− ∫ (t−τ)

0 λi(gi(s,u))ds�(u, j, τ )dτ

(5)

The integral equation describes that the probability density that the system is in
state (X , i) at time t is the sum of two probabilities [15]: The first term represents the
evolution of system in the same state i for all the time t without any transition, while
the process variables are changing deterministically according to the dynamics. The
second term describes all the transition into state i taking place before time t.

The C-K equation takes as input, transition probabilities (failure rates, repair
rates), a set of process variables and related dynamics, domain of safe working of the
system and initial distribution of probability density. The dynamicmethodologies can
further be classified according to input representation and solution methods for C-K
equation. Numerical treatment of the C-K equation invokes inevitable discretization
schemes. To reduce the complexity in solving the complete C-K equation, the process
variables are divided into discrete cells and the most famous method applying this
technique is the cell-to-cell mapping technique method. Some of the well-known
solution schemes to the C-K equation are Monte Carlo algorithms [12], cell-to-cell
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mapping technique [17] and dynamic event tree techniques, which are reviewed in
forthcoming sections. Dynamic event trees and classical event trees are also derived
from continuous event tree which are essentially discrete time versions of continuous
event tree [10] and are compared with each other in Refs. [15, 18].

2.1.2 Cell-to-cell Mapping Technique (CCMT) Methods

The cell-to-cell mapping technique (CCMT) for reliability and safety studies was first
developed by Aldemir et al. [14, 17, 19, 20]. In the CCMT, the continuous process
variables, present in the C-K equation, are divided into cells of smaller intervals. The
representative C-K equation for CCMT is obtained from the general C-K equation by
integrating over each of the cells. The probability density is assumed to be uniform in
these cells. The discrete hardware states and the discretized process variables form a
discrete state space. The interval boundaries of cells are preferentially placed at the
limit values of the control action which will subsequently be useful for considering
non-temporal distribution. The resulting Markov chain coupled with dynamic evo-
lution equations is solved with time step �t assuming that system will not change
its state during the time step. The method can be used both in inductive mode, to
identify system evolution with given initial conditions, and in deductive mode, to
identify sequence of paths that lead to the top event/undesired system states [19,
21–23].

The Markov/CCMT method is attributed to have some inherent limitations from
memory and computational time requirements. For storing and handling of the tran-
sition matrix, large memory is required. The required memory space is proportional
to the number of process variables times the number of cells (intowhich each variable
is discretized) times the number of states. Reducing the number of cells partitioning
the safety domain will reduce the matrix size, but consequently accuracy will be re-
duced. Therefore, attempts have been made to reduce memory requirements for this
method in [17, 24] by using the vectorization method and sparse matrix technique.
Hassan [19] has provided improvements to the method for storage requirements by
using database for storing process evolution. The limitation of the number of ac-
ceptable process variables for tractable treatment of the dynamics remains unsolved
till now [2]. Next is the treatment of the transition rates which are dependent on
the values of the process variables and the choice of the time step. The time step in
Markov/CCMT should be so small that not more than one cell crossing should occur
in that step. But, keeping a small time step will, first, underestimate the transition
probability due to the small probability of leaving the cell boundary and, second,
slow down the computations [25]. Reference [25] describes the process-dependent
time step limitation as a modeling problem of CCMT; i.e., the dynamics underlying
the whole process is incorrectly represented if the size of the cells is not reduced in
correspondence to the value of the time step. Reference [26] has addressed the time
step problem of CCMT by treating time as a continuous variable in continuous time
cell-to-cell mapping technique (CCMT). Reference [27] treats the stiffness of the
transition matrix which arises due to the difference in scales of the time constants
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of the process dynamics. Recently, Ref. [23] addresses the limitations of computa-
tional time and storage using backtracking algorithm with pruning mechanism. The
reference also mentions that accuracy can be maintained by more sampling in the
cells, and computational time can be managed by going for parallel computation.
The Markov/CCMT is applied for modeling of BWR/6 SBLOCA [19, 28] and a
benchmark system of digital feedwater control system of a PWR [29, 30], and hence
it is a strong candidate for large-scale application [23].

2.2 Monte Carlo Simulation

2.2.1 Direct Monte Carlo Simulation

The first paper on theMonte Carlo method (MCmethod)was published in 1949 byN.
Metropolis and S. Ulam. The MC method was initially applied to neutron transport
calculations, and then the usage of the term Monte Carlo became synonymous with
the term simulation, i.e., Monte Carlo simulation (MCS), while its applications in
particle physics, communication network traffic, models of conflicts, computation
of multiple integral, etc., have been explored in a wide range of the literature. For
use in probabilistic dynamics, three slightly different MCS approaches, viz. discrete
event simulation [5], dynamicMonte Carlo availability model (DYMCAM) [31] and
analog MC [12], are used. The analog MC is the first application of Markov MC
[32]. The analog MCS algorithm described in Ref. [12] is as follows:

Step-1 The initial configuration i and a value of the process variables X are sampled
from �(X , i, 0).

Step-2 The next transition time t out of i is sampled.
Step-3 The evolution of X in state i is computed up to t; if a border of ‘working’

domain is crossed, or if the end of the accident duration is reached, the current
history is stopped.

Step-4 A new state j is sampled; if j is an unacceptable configuration, the history is
stopped.

Step-5 This procedure is repeated from Step-2, j being the new value of i.

The well-known advantages of MC method over other methods for application to
probabilistic dynamics include: The method is insensitive to the dimensionality of
the problem, MCS can treat all types of distributions for modeling the system, and
MCS directly estimates the safety and reliability characteristics.

In contrast to the advantages, (i) the accuracy of results from the MCS method
depends on the number of simulations performed, which may lead to large com-
putational cost when it applies to PD, because after each sampling of the sequence
of events the simulation calls the evolution function of the system according to the
new configuration; (ii) in case of very low probability of failure events, most of the
histories will not result in failures; hence, the number of histories required for good
results could be huge. Consequently, increasing the number of simulations increases
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the computational time due to repeated calculations of deterministic evolutions, and
decreasing the number of simulations decreases accuracy; hence, strong solution
schemes are required.

2.2.2 Methods for Improving MCS

To improve the computational efficiency of MCS, two aspects need to be addressed:
(i) reducing the number of samples required for a given accuracy and (ii) reducing
the simulation time for each sample. Several methods have been developed for in-
creasing the efficiency of statistical sampling for rare event simulation and improving
deterministic simulation efficiency for repeated calculations. In the reliability esti-
mation domain for reduction of variance of the result, importance sampling, subset
simulation, biased simulation, forced transition, memorization are some of the ac-
celeration techniques used Refs. [33–37]. The first time use of extreme value theory
for rare event probability estimate is presented recently in Ref. [38]. The general-
ized extreme value distribution can be used to estimate the probability of crossing
the safety boundary. Since there are only three asymptotic forms for extreme value
distributions, they can be determined from limited simulations and can be used to
extrapolate the estimate of reliability and failure frequency.

For reducing the process simulation time per sample, pre-simulation memoriza-
tion-based schemes introduced in Refs. [39–42] are used. Cell-to-boundary (CTB)
and most probable evolution (MPE)-based methods provide significant acceleration
to the simulation. In CTB-based memorization method, the safety domain, D, is di-
vided into cells and the evolution of system from all nodes is performed for all system
configurations up to the closest boundary of the safety domain. The characteristics
of these system evolutions are memorized. The characteristics include time and the
value of X at the intersection with the closest boundary, the type of event encountered
(control action/failure) at the boundary and ameasure of the probability of the system
to stay in the current state i up to the boundary. During the simulation, the time to
the next transition is sampled from the current point in the process variable space.
From the memorized time to the closest boundary from the neighboring nodes, since
probability of reaching to the boundary is high, the dynamic calculations utilizing the
memorization are brought to the boundary through an interpolation procedure [43].
The drawback of the memorization-based method is that if the size of the problem is
large then memory requirements increase and the memorization becomes difficult.

InMPE, one defines amost probable set of initiating events; then for each of them,
the dynamics of the system is integrated andmain characteristics are stored till the end
of the event sequence. Thememory required to store is less compared to CTBmethod
as least probable evolution paths are not calculated in MPE method [40]. Moreover,
the use of a combination of CTB andMPE seems to be a more advantageous scheme.
In a way, MPE is used to know the most probable evolution path, and cell in the
neighborhood of the MPE paths is evaluated for CTB characteristics. The advantage
of both the methods is brought together in Ref. [39]. In addition to these techniques,
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there is also the possibility of using response surfaces and metamodels for reducing
the process evolution computation time [44].

The development of software tools based on MC method for dynamic reliability
is based on hybridization of the MCS technique with other techniques which solve
the problems highlighted in the previous paragraph. For example, the combination
of CTB and MPE is described in Ref. [39].

Piecewise deterministic Markov process (PDMP)was first introduced by Davis in
1984 for Markov processes consisting of deterministic processes and random jumps.
PDMP can be used for treating multiple failures [45] and preventive maintenance.
The advantage of PDMP is that it is applicable to most types of dynamic reliability
problems. However, PDMP is not easy to manipulate. It is difficult both to specify
and to solve by methods other than MCS. The general PDMP algorithm for MCS is
presented in Ref. [46] for dependability analysis of the famous heated tank system
benchmark [14].

2.3 Dynamic Event Tree (DET)

In comparisonwith conventional event tree, dynamic event tree synthesizes branching
at different time points and physical process evolution. It is often called as discrete
dynamic event tree (DDET) to distinguish DET and CET. The first ever dynamic
method introduced in 1981 for probabilistic transient analysis for PRA is called:
event sequence and consequence spectrum using logical analytical methodology in
Ref. [47], the first version of dynamic logical analyticalmethodology (DYLAM) [48].
Subsequently, many variants of DET-type methodologies and software tools that use
DETs have been developed in USA and Europe, such as DYLAM-3 [48], dynamic
event tree analysis method (DETAM) [49], accident dynamic simulator (ADS) [50],
integrated safety assessment (ISA) [10], Monte Carlo dynamic event tree (MCDE-
T) [51], analysis of dynamic accident progression tree (ADAPT) [21] and recently
reactor analysis and virtual control environment (RAVEN) by INL [52–54]. All the
methods differ in treatment of branching rules, stopping rules, branching genera-
tions (automatic), interfacing with existing deterministic dynamic code for physical
parameters for an accident sequence, model of operator behavior. In other words,
treatment of aleatory and epistemic uncertainties is different in all the methods.

DET is an event tree model in which branchings are allowed to occur at different
points in time and each system can have more than two states. Initially, a fixed time
intervalwas used for branching and thenRef. [55] introduced probabilistic branching.
Reference [49] defines DETAM with five characteristic sets that define the dynamic
event tree approach. These are: (i) Set of variables included in the ‘branching set.’
(ii) Set of variables defining the ‘plant state.’ (iii) Set of ‘branching rules.’ (iv) Set
of sequence expansion rules. (v) Quantification tools. The ‘branching set’ is the
set of variables that determine the space of possible branches. The plant state at
any node in the tree is defined by the value of the variables in the branching set.
The ‘branching rules’ are the rules used to determine when a branching should take
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place. Most straightforward branching rule could be a constant time step or based
on hardware failure time, etc. The ‘sequence expansion rules’ are the rules used to
limit the number of sequences, hence tree expansion. Sequence termination could be
based on simulation time or reaching user-defined absorbing states or on sequence
frequency falling below a user-specified lower limit. The quantitative tools are those
used to compute the process variables as well as the branching frequencies.

There were various challenges in the use of DET [2, 3], but later it has been
tackled in recently developed DET-based tools: first, the explosion of number of
branches while allowing all possible branches in simulation, second the computa-
tional resource-intensive nature of the tools based on DET and third processing of
the amount of data produced for a single initiating event. The first and second prob-
lems can be solved by increasing the time step, decreasing the probability threshold,
limiting branches according to the probability cut-off or terminating the branches
which exceed the user-defined number of failures or grouping of similar scenarios.
The second problem can also be solved by using parallel processing [54, 56]. The
main advantage of DET, which makes it a well-developed method, includes its capa-
bility to provide complete investigation of the possible accident scenarios. There is
no assumption on the type of the distribution for branching, and the method provides
readable results to the risk analyst. Because analysis of all the scenarios at once is
difficult, many developments have been carried out in the literature for classification
of similar scenarios, called scenario clustering, for more understanding of the DET
results, and hence addressed the third problem of processing of the data generated
for a single initiating event [57].

2.4 Dynamic Flowgraph Methodology (DFM)

Themethodwas introduced by S. Guarro andD. Okrent, for process failuremodeling
in 1984. DFM accounts for the interaction between hardware and software within
embedded digital system. DFM is a digraph-based technique, and it uses graphical
symbols like (i) process variable node (circle), (ii) condition edge (dotted arrow), (iii)
causality edge (continuous arrow), (iv) condition node (square box), (v) transition
box and (vi) transfer box [2, 3, 6, 58]. A brief description of the elements of DFM is
as follows. A process variable node represents a process variable which is discretized
into a finite number of states. There is no criterion for discretization of the process
variable, but boundary/threshold crossing and logic of the system is preferentially
used for discretization. The system dynamics is represented by a cause-and-effect
relationship between these states, and states are connected by causality edges. Con-
dition edges are used to connect condition node and transfer box. The transfer box
selects the transfer function according to the value present in the condition node. The
transition box allows system to evolve in time by providing time lag between input
and output parameters.

DFM can be used for both deductive (top to bottom) and inductive (bottom to
top) tracing of fault propagation. DFM yields the prime implicants for the system.
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The advantages of DFM are that it has ability to change system configuration in
discrete time. This can be used for acquiring information for the possible accident
sequence leading to top event. In addition to that, DFM models the system and
top event separately, which is useful in case where various top event probabilities
ought to be determined. Reference [6] mentions DFMmethod as the most preferable
methodology for the reliability modeling of digital l&C systems. Application of
DFM includes: control software in advanced reactors [59, 60], modeling human
performance and team effects [59] and PSA modeling of a digital feedwater control
system similar to an operating PWR [29].

In DFM due to the discretization of process variable, there exists inevitable dis-
cretization error. Proper discretization of each variable can be achieved by progres-
sively refining the discretization. Hence, there is a trade-off between the accuracy of
the model and the size and complexity of the model [2]. Reference [61] suggested
DFM and Markov/CCMT can be used in a complementary manner, finding prime
implicants in DFM, i.e., the combination of basic events necessary and sufficient
to cause top event, and quantifying the prime implicants using Markov/CCMT, to
achieve comprehensive modeling and evaluation of digital I&C systems. The meth-
ods to find prime implicants from the DFM include the transformation of DFM
into FT [62] or into binary decision diagram (BDD) [63]. In Yadrat code, the later
approach is used to evaluate DFM [58]. The other computer program based on DFM
is Dymonda [61].

2.5 Event Sequence Diagram (ESD)

This is a self-explanatory diagram mainly used for understanding of accident se-
quences. The ESD method with dynamic capabilities is the extension of continuous
event tree methodology with visual graphics. The ESD uses 6-tuple of events, con-
ditions, gates, process parameter set, constraint and dependency rules to represent
dynamic scenarios like conditions, competitions, concurrent processes (output AND
gate), mutually exclusive outcomes (output OR gate), synchronization processes (in-
put AND gate) and physical process (physical variable condition). The objective of
the method is to find failure frequency and availability of the system to be in a partic-
ular state at a particular time. The ESDmodels the time implicitly, in a way branching
in ESD occurs based on the crossing of a boundary by a process variable. Themethod
can be utilized to predict future failure, cut sets, etc. For availability of a system in
some states, all the possible states of the systemneed to be declared and, of course, the
transition rates between them. The drawbacks of ESD include: The methodology is
not a component-based approach but a scenario modeling framework. The sequence
identification is analyst dependent as the sequence delineation has to be performed
by the analyst and not performed automatically. In a highly dynamic system, the
ESD could become very large [2]. The application of ESD includes Refs. [64, 65]
for Cassini mission and transient analysis of europa reactor.
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A semi-analytical solution is possible using the ESD approach [2]. The procedure
is summarized as follows [2]: first, constructing the ESD using the symbolic ESD
language, second deriving mathematical representation for all components in the
ESD using the governing equations, third obtaining analytical approximations to the
relevant process variables and finally solving the integrals analytically or numerically
to obtain end-state probabilities. The job of the analytical approximations could be
laborious. The semi-analytical approach reduces the problem of dimensionality of
the system evolution by solving a sequence of multidimensional integral equations.

2.6 Dynamic Fault Tree (DFT)

This is the extension of the traditional fault tree with the time element. DFT was
first developed by Dugan et al. [66]. One type of dynamic fault tree uses generalized
dynamic gates for representing interaction of the basic events in time [66, 67]. For
instance [67] uses the following gates: functional dependency gate (FDEP), spare
gates (CSP: cold spare gate, HSP: hot spare gate, WSP: warm spare gate), priority
AND gate (PAND) and sequence enforcing gate (SEQ). If c = a PAND b, then c
becomes true when a and b are true but only if a becomes true before b. The SEQ
gate is an expression of a constraint that components can only fail in the specified
order and the top event occurs when all basic events have occurred. The FDEP
gate represents the generation of dependent events once the trigger event (a failure)
occurs. The dependent events are multiple inputs to this gate and can be connected to
inputs of other gates. This gate does not have an output. The SPARE gate is used to
model different types of redundancy, i.e., cold, warm and hot. CSP means the spare
component does not fail, HSP means the spare component may fail at its full rate,
and warm SPARE means the spare component may fail at a rate equal to the full rate
reduced by dormancy factor. However, it is not clear as to how many of these gate
types are essential to model the real systems and there is no systematic analysis to
our knowledge that these gates are complete to model dynamic situations.

The other type of dynamic fault tree uses house events with a house event matrix
handling the multiple operation mode changes in time and the configuration changes
with time [68]. In a house event matrix, columns describe system configuration at
the time periods and rows describe the number of the house events present in the
model, which timely switch on and off in accordance with the status of the modeled
system. The dynamic fault tree and static FT have common disadvantages: com-
plexity in modeling and simultaneously handling the sequential dependent failure
and multiple operation mode evolution of the system. Adversely, there is no model
for process evolution in these DFTs. Intuitive and convenient reliability graph with
generalized gate (RGGG) has been improved to account for these challenges using
dynamic generalized gates [69] and reliability matrix [70], respectively, where dy-
namic generalized gates solve problem of sequence-dependent failure and reliability
matrix able to account for the limitation of multiple operation modes of dynamic
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fault trees. The quantification of the dynamic fault tree can be performed either by
time-dependent Boolean logic, Markov models, Bayesian network [71, 72], MCS
[67] or numerical integration [73].

2.7 GO-FLOW Methodology

The GO-FLOW [74] methodology was developed as a success-oriented methodol-
ogy; however, failure states were later included in the methodology by introducing
NOT gates in the method. In this method, an analyst needs to make a chart of the
physical layout of the system. The chart has all possible operational states of the
system. Signal lines and operators are used to make the system chart. The operators
are connected by signal lines. The operator presents the functioning or failure of the
component or a logical gate or a signal generator. The operator also represents transi-
tion or any Boolean logic (AND, OR, NOT). The input/output signal lines represent
the process variable or time or any other information.

Using GO-FLOW method, reliability and availability can be evaluated for the
complex systems. The assumptions in the modelling include constant failure rate
models, two state components and the time of failure of various components are
independent. The GO-FLOW methodology is useful for phased mission analysis as
it provides compactness of the representation of the phased mission situation in com-
parison with event trees. The GO-FLOW methodology can be used as quantitative
reliability evaluation of process systems after utilizing static methods (such as fail-
ure mode and effect analysis (FMEA)) for qualitative analysis for identifying failure
modes [75].

There are some drawbacks in the method. The method cannot model redundant
systems easily [2]. The method possesses the state space explosion problem in the
case of a large number of system components. Also, the concept of the method may
be hard to learn and implement for the analyst [6]. The available computer program
for GO-FLOW methodology includes in Ref. [74]. The GO-FLOW methodology
has been applied to nuclear systems and control system of bullet trains in Ref. [2],
and passive safety system of AP1000 reactor for dynamic reliability evaluation [75].

2.8 Stochastic Hybrid Automaton (SHA)

Though a component failure can occur gradually, it is often treated as a discrete
event. Following this approximation, a system under consideration can be treated as
a discrete event system (DES), i.e., a systemwhose behavior is not controlled by time
but by the occurrences of events. The SHA theory is an extension of the theory of
FSA, considering stochastic events such as failure of components and deterministic
evolution of the process variables [76, 77].
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Here, the procedure for dynamic risk assessment is a two-step process involving
the development of an SHAmodel of the studied system and thenMCS of the system
modeled by SHA for either a predefined mission time or a stopping criterion. The
SHA method is able to work with different continuous modes of the operation of
the system which are generated due to control action upon threshold crossing and
the deterministic or stochastic transition events due to component failure. The later
events are incorporated through probability distributions, and the former is defined
by ordinary differential equations in the method. The SHA model does not require
preliminary simplifying hypotheses, and thus it is able to consider all types of events
such as failure, repairs, maintenance, aging, control actions, demand-dependent ag-
ing and future behavior dependent on the past [4]. The SHA method shows to be a
suitable tool to model large complex systems operating in a dynamic environment.
The method is implemented in Scilab/Scicos environment in Ref. [77] and is applied
to test cases of the heated tank system and an oven with a temperature control sys-
tem. In the validation study of the SHA method for the two systems, the features of
the SHA method were tested for the following cases: (1) dependencies/interaction
between stochastic events and continuous variables, (2) multiple aging modes ac-
cording to repairable/reconfigurable components and (3) treatment of non-temporal
behavior of components such as failure on demand. References [4, 78, 79] address
the application of the SHA for the dynamic scenarios of a controlled steam generator,
a feedwater control system of steam generator and a decanter unit of a chemical plant,
respectively. The only disadvantage of the SHA method is the size of the model and
consequently the simulation time.

The available computer programs which are based on SHA are Dynamic Relia-
bility and Assessment (DyRelA) [80], PythoniC-Object-Oriented Hybrid Stochastic
Automata (PyCATSHOO) [81] and Stochastic Hybrid and Non-repairable Dynamic
Fault Tree Automaton (SHyFTA) [79]. The SHA is used as input representation for
PDMP in the PyCATSHOO [81] tool. Recently, PyCATSHOO has been applied to a
DHR system of sodium fast reactor in Ref. [82] for dynamic PRA-informed design.
The SHyFTA, is a stochastic model of dynamic reliability uses Hybrid Basic Event
(HBE), and it is a combination of SHA and non-repairable dynamic FT. HBE is de-
fined as the evolution of the basic events; i.e., basic event is not simply characterized
by a static cumulative distribution function of probability, but also depends on the
deterministic evolution of the system. The approach of SHyFTA is based on the sep-
aration of two mutually dependent processes, the deterministic and the stochastic.
Compared to DyRelA and PyCATSHOO, SHyFTA includes reliability, availability,
maintainability and safety (RAMS) formalism and also additional feature of MAT-
LAB framework since it has been developed in Simulink. The Simulink architecture
provided in Ref. [79] is generalized and can be used for any other dynamic reliability
problems.
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2.9 Petri Net (PN)

This is a graphical modeling method introduced by C. A. Petri in 1966 for system
modeling. PN is similar to finite state machine. PN explicitly models time using a set
of elements like nodes/places, tokens, arcs and transition. The nodes, represented by
circles, are used to describe system state or process variables; transition is represented
by a rectangular box, describe events; and arcs are used to connect nodes/places to
transition or transition to nodes/places. The token, represented by a dot in the circle,
describes the current state of the system. When PNs are executed, the tokens are
consumed by transition in each of the places where it is connected from and tokens
are produced by transition in each of the places where it is connected to provided that
while triggering all the places that are connected from are having at least one token
each. Initially, firing of timed transition was having only exponential distribution
or deterministic times. The times derived from constant failure rate model can be
used as mapping between PN and Markov model. Then, Ref. [83] has extended the
stochastic PN (SPN) to generalized stochastic Petri net (GSPN) which represents a
semi-Markov process (allowing any probability density function for time sampling).
TheoverviewofPN theory andSPN is presented inRef. [84]. In interpreted stochastic
PN, messages (Boolean variables (0/1, true/false)) are passed along with firing of the
PN. Interpreted stochastic PNs cannot be proof checked, and hence the verification
process is non-intuitive and time consuming [2]. Other extensions of PNs include
fuzzy PN, colored PN, timed PN, stochastic PN [85, 86].

For quantitative evaluation of dynamic system reliability using PN, process vari-
able models can be coupled with PN and the resulting MCS can be used to perform
quantitative analysis [61]. Also, PNs can be used to simulate FTs directly and hence
can be readily included in PRA [87]. A standard PNwith inhibitor arcs and condition
places can be used to determine missing safety requirements, uncertainties in safety
requirements and inconsistencies in safety requirements.

The stochastic reward Petri net (SRPN) has been developed for reliability analysis
of communication networks by [88]. Reference [89] presented a generalization of
PN to mode automata. A mode automaton is an input/output automaton with a finite
number of states called modes. The mode automata can be compiled into fault trees.
Mode automata are a superset of PNs with inhibitor arcs and can model everything
a computer can compute [6].

PN allows explicit representation of time and is able to simulate concurrent ac-
tivities, dynamic activities and time delay. It also allows studying systems that are
characterized as being asynchronous, distributed, parallel, non-deterministic and/or,
stochastic. The major limitation of PN is combinatorial explosion when modeling
large systems.
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2.10 Dynamic Bayesian Network (DBN)

As mentioned earlier, in a dynamic system, system configuration can change, which,
in turn, can change the failure rate of the corresponding components. That describes
the conditional dependence of failure probability on dynamics or system configura-
tions. In these situations, Bayesian updating of conditional probability can be directly
utilized. The Bayesian network (BN) is a probabilistic approach, and it explicitly rep-
resents the relationships/interactions between the system components. For graphical
representation of the interactions between components and process variables of a
system, BN uses nodes for describing variables/events/system components and arc-
s/edges connecting to nodes for describing relationships (child and parent) between
the nodes. BN graphs are directed acyclic graphs. The nodes having only incoming
arcs are called leaf nodes. The nodes with only outgoing arcs are independent nodes
(root nodes). The root nodes are defined with marginal prior probabilities. The prior
conditional probabilities are stored in conditional probability table (CPT) for each
node with success and failure instantiations except root nodes. The probabilities of
each node are updated using Bayes formula. In a complex system having n number
of components, a component may not depend on all other components but only on
m of them, the number of parent nodes. Hence, there are 2m entries instead of 2n in
the conditional probability table. This reduces computational workload substantially
[90]. The drawbacks of BN model include the following: BN models require pri-
or knowledge of probability of the interactions. Further, the BN model developed is
strongly expert dependent. These disadvantages can be addressed by the development
of suitable algorithms for automatic construction of BN [90].

Explicit representation of time in BN is referred to as timed Bayesian network
(TBN). Two approaches are presented in modeling time in BN, i.e., time-sliced
approach and event-based approach. Early work on the application of BNs to
dynamic domains has led to formalisms known as temporal Bayesian networks
[91], dynamic Bayesian networks (DBNs) [92], network of ‘dates,’ and modifiable
temporal belief networks (MTBNs) are based on the time-sliced approach. The tem-
poral node Bayesian network (TNBN) and net of irreversible events in discrete time
(NIEDT) are based on the event-based approach.

The dynamic extension of BN model, i.e., DBN, is a powerful and flexible tool
to model dynamic system behavior and update reliability and uncertainty analysis
with life cycle data [93]. In DBN, the BN is defined at n number of time steps called
n-time-sliced BN and the nodes representing component/event/variables of each time
step are connected to each other using edges. The relationships between time steps
are described by interconnecting edges. The state of the variables at time step n de-
pends on time step n − 1, time step n − 2 and so on. Generally, two time slices are
considered to model the system time evolution, hence the model called 2-TBN or
2-time slice temporal BN. As the state variables depend only on previous time step
variables, the 2-TBNmodel is Markovian model. For quantification, DFTs are trans-
lated into DBNs in Refs. [71, 72]. References [90, 94–97] show recent developments
in the DBN based reliability analysis.
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3 Proposal of a Combination of Smart Component
Methodology and Monte Carlo Simulation

In this section, we propose and briefly describe a smart component methodology
(SCM) in combination withMCS as a dynamic reliability analysis method. However,
the quantitative validation and any theoretical development are out of the scope of
the paper. One of the requirements for a dynamic reliability modeling is a system
representation. In SCM, the system representation is done through object-oriented
architecture. Here, the components of a system and their interrelationship (between
entities that are presented in Fig. 1) are described using abstract objects (drawn from
the paradigmof object-oriented analysis and design of software systems). The objects
will have attributes and rules. The attributes capture all information of the individual
component, for example, the functional and reliability variables. The rules capture the
behavior of the object in the system, and it will be responsible for object evolution in
time. The interrelationship between components is defined in the connector, and they
capture the dependencies among them. This way of representing each component
or subsystem for reliability analysis by an abstract software object (with attributes,
interrelation and rules) is termed smart components (SCs). Next, after the system
structuring using the SC model, the SC model of the system is operated with a
suitable reliability quantification algorithm. Component-based MCS is selected for
reliability analysis, where MC sampling of the component states and transition time
is carried out to explore the system state space and then, along with deterministic
system simulation, calculate reliability measures based on the number of visits to the
system failed state. This representation is perhaps the most foolproof [2]. However,
the challenge lies in the development of suitable MCS algorithms or methods that
translate the object-oriented representation to, for example, a DFM.

To implement the SCM, a relational database architecture is selected for represent-
ing a given system which contains all the component-as-an-object. The components
would include all entities of Fig. 1, i.e., process, hardware, software and human per-
formance. The objects contain the information of the components with the following
attributes:

1. Input parameters.
2. Output parameters.
3. Parameters describing the state of the component (hardware, software, etc.).
4. Reliability parameters (failure rate, repair rate, an indicator of the reliability mod-

el, the probability of failure).

In addition to the components, the database file must contain the ‘connector’ object
describing the connections between the components’ attributes which defines the
hardware wiring of the system. The function of each component, manifested by
the rules, may represent its functional dependence on other components or input
variables. The process variables of an object are treated as a functional dependence
through rules of the component. Using all this information about the system, MCS
can be performed using the procedure described elsewhere.
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In SCM, the analyst makes the SCmodel of the system and uses SC simulators for
quantification. The building of the SC model is intuitive and user-friendly. Hence,
the proof-of-correctness of the method is transferred to the simulation algorithm
rather than the analyst. MCS handles the continuous time, multiple failure modes
and aging separately, and the unification of all in one MCS algorithm for SCM
is a challenge. The scalability of SCM depends on MCS algorithm, and it is not
addressed here, but the presence of parallel computers and advanced computing
techniques would alleviate the problem of computational intensive nature of the
MC method. An advantage of SCM is that the same SC system model can be used
for static reliability evaluation because the system represented using the connector
and component objects can be translated to a reliability block diagram (RBD). For
instance, static reliability evaluation can be done by carrying out a reachability check
on the SCmodel. Hence, themethodwould be considered as amethodwith backward
compatibility, which is expected from any dynamic reliability method.

In the next section, the dynamic reliability methods are qualitatively compared.

4 Qualitative Comparison of Various Methods

The qualitative attributes considered for this study are listed below. A ‘Yes’ implies
the method is suitable for use in dynamic reliability assessment concerning that
attribute, and ‘No’ implies otherwise.

A. The method provides improved accuracy compared to static reliability methods.
The method takes care of the timing of occurrence of events, process variable
evolution, control action, multiple failure modes, more importantly dependence
of failure rate on both process parameters and time.

I. Time declaration (continuous = Y/discrete = N).
II. Treatment of process variable (Y/N).
III. Multiple failure modes and aging (Y/N).

B. Burden of Proof: Equivalence of reliability model to the system model (fideli-
ty), requirement of skillful analyst and level of approximations in the method
(Y=burden of proof requirement is less).

S. Whether the method is scalable to large problems, including complexity of rep-
resentation (memory) solution time (time) as a function of problem size (less
than exponential growth or there is a way to handle exponential growth within
the method = Y/exponential growth = N).

F. Whether the method is user-friendly or intuitive for modeling of system (Y/N).
G. Whether general-purpose software is available based on the method or suitable

for being developed into one (Y/N).
I. Possibility of interfacing of the results of the analysis with FT/ET (Y/N).
H. Whether the method is able to incorporate software and human reliability model

(Y/N).
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Table 1 Qualitative comparison

Methods A.I A.II A.III B S F G I H

Dynamic fault tree Y N N N N Y Y Y N

Cell-to-cell mapping technique Y Y Y Y N N N N N

Dynamic event tree Y Y Y Y Y Y Y Y Y

Dynamic flowgraph methodology Y Y Y N N N Y Y Y

GO-FLOW methodology Y N Y N N N N N Y

Petri nets Y N Y Y Y N Y N Y

Stochastic hybrid automaton Y Y Y Y Y N Y N Y

Event sequence diagram Y Y N N N Y N Y Y

Dynamic Bayesian network Y N Y N N Y Y N Y

Piecewise deterministic Markov
processes

Y Y Y Y N N N N N

Smart component methodology Y Y Y Y Y Y Y Y Y

Direct Monte Carlo simulation Y Y Y Y N N N Y Y

From Table 1, the most favorable method is the method with the most Y’s. That
includes DET, SHA, SCM and directMCS. In DET, the deductive analysis is difficult
(top event to basic event). SHA theory is then the second best method in the list with
two disadvantages of not being able to interface the result with fault treemethodology
and being less user-friendly and intuitive. Though the direct MC method is scalable
and in principle canmodel anything, it lacks a system-to-simulationmodel translation
mechanism. Hence, it is not readily usable by non-experts. This problem is precisely
addressed in the SCM and hence is promising regarding most of the attributes.

We believe that one of the principal reasons for non-availability of a general-
purpose tool for dynamic reliability assessment is the disconnect between represen-
tation schemes and simulation power. Many of the easy and intuitive methods do
not scale up. Similarly, MCS which in principle can solve any problem requires a
general-purpose representation scheme and interface.With this perspective, when the
methods are evaluated for the attributes B, S, F, G and I, smart component method
emerges as a very likely candidate for a general-purpose dynamic reliability analysis
method.

5 Conclusion

We have presented a brief review of some available dynamic reliability methods
with a view of selecting and developing the best among them for use in reliability
analysis of dynamic systems. The attributes required for an ideal dynamicmethod are
elucidated, and the reviewed methods are inter-compared. In the inter-comparison,
we emphasize the general applicability and suitability of the methods for generic tool
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development, as these attributesmainly have contributed to the lack ofwidespread use
of dynamic reliability methodology. Based on the current review, SCM is identified
to have excellent potential for the widespread application, while capable of faithfully
modeling dynamic scenarios including software and human reliability aspects. The
framework provides the structure for the dynamic system representation, while MCS
is the key computational method.

6 Future Developments

A framework for the implementation of the SCM, utilizing object-oriented design
and relational database concepts, is in progress. The MCS algorithms need to be
explored for unifying variousMC reliabilitymodels and at the same time acceleration
of results. Completeness of MC state space exploration is to be studied for verifying
the completeness of results since the size of state space in dynamic systems is huge.
Demonstration of application of the SCM for small- to an industrial-scale system is
to be studied.
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