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Abstract
Coronary artery disease (CAD) remains the leading global public health burden 
in cardiovascular diseases. Atherosclerosis is a primary mechanism to cause 
CAD with the contribution of epidemiological, traditional, genetic, and epigen-
etic risk factors. Statins, prescribed drugs for lowering of cholesterol levels, also 
have pleiotropic effect on oxidative stress, inflammation, apoptosis, etc. Reactive 
oxygen species (ROS)-induced oxidative stress associates with risk factors and 
participates in initiation and progression of disease. ROS molecules generated as 
superoxides (O2

•ˉ), singlet/triplet oxygen, peroxides (H2O2, ONOO−), and 
hydroxyl radicals (HO•) via reactions catalyzed by endothelial nitric oxide syn-
thase, myeloperoxidase, NADPH oxidase, and xanthine oxidase enzyme are 
encoded by eNOS, MPO, NOX, and XO genes, respectively. Polymorphisms in 
eNOS, MPO, NOX, and XO genes influence the expression and attributes to 
interindividual variation in response to statin drugs. Differential response to 
statin drug insights into emerging of pharmacogenetic studies to understand the 
genetic makeup and treat the patient with suitable drug and dose. In clinical prac-
tice, pharmacogenetic approach toward oxidative stress is a future emerging 
trend in personalized medicine development.
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26.1	 �Introduction

Coronary artery disease (CAD) is the foremost leading cause of cardiovascular dis-
eases (CVD), and it is estimated that the CVD annual deaths may rise from 17.5 mil-
lion to 22.2  million from 2012 to 2030 [1]. In India, CAD is the second rising 
burden among the noncommunicable diseases, and the occurrence of ischemic heart 
disease is increased to 8.7% from 3.7% since 1990 to 2016 [2].

Coronary atherosclerosis is the chief underlying mechanism of the coronary 
artery disease. Atherosclerosis is preceded by fatty streak formation, accumulation 
of lipids and lymphocytes, inflammation, and thrombosis. Atherosclerotic plaque 
narrows the lumen of coronary artery and diminishes blood flow to the myocardium 
[3, 4]. CAD is a multifactorial disease influenced by epidemiological, traditional, 
and novel risk factors for its initiation and development [5–7]. Recent studies also 
implicate the importance of genetic and epigenetic factors in the pathophysiology of 
coronary artery disease. Evidences suggest oxidative stress (OS) is a key contributor 
to the initiation and exacerbation of atherosclerosis [8, 9] (Fig. 26.1).

Reactive oxygen species (ROS) are generated endogenously by mitochondria, 
peroxisomes, endoplasmic reticulum, and phagocytes and exogenously by cigarette 
smoking, ultraviolet rays, radiation, pesticides, alcohol, and metals as superoxides 
(O2

•ˉ), singlet/triplet oxygen, peroxides (H2O2, ONOO−), hydroxyl radicals (HO•), 
etc. [10]. Increased levels of ROS have various effects including endothelial dys-
function by loss of nitric oxide (NO) activity, increased lipid peroxidation by regu-
lation of oxidized low-density lipoprotein (oxLDL) production, inflammation by 
NF-kβ activation, and thrombosis by vascular smooth muscle cell apoptosis [8]. 

Fig. 26.1  Risk factors for 
coronary artery disease
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Regulation of ROS production is a potential mechanism to control CAD initiation 
and progression.

Statins (hydroxymethylglutaryl coenzyme A reductase inhibitors) are common 
drugs used for the treatment of coronary artery disease [11]. These drugs signifi-
cantly reduce the cholesterol levels by competitively inhibiting hydroxymethylglu-
taryl coenzyme A reductase (HMGCR) enzyme in hepatic cholesterol biosynthetic 
(mevalonate) pathway [12]. In clinical practice, statins show primarily cholesterol-
dependent and additionally cholesterol-independent (pleiotropic) beneficial effects 
in CAD patients [13]. Cholesterol-independent beneficial effects include antioxi-
dant, anti-inflammatory, anti-angiogenic, and anti-apoptotic activities [14, 15].

However, pharmacogenetic studies revealed that there is a variability in clinical 
response to statin treatment in CAD patients depending upon their genetic varia-
tions and expression of genes involved in absorption, transportation, and metabolic 
pathways. Genetic variations in CYP, ABC, Apo, IL family genes, HMGCR, 
PCSK9, LDLR, SLCO1B1, ACE, CETP, SREBP1, MMP, eNOS, NOX, XO, MPO, 
etc. genes are significantly affecting pharmacokinetics and dynamic properties of 
statins [14, 15]. Pharmacogenetic investigation insights into response to statin drug 
and doses and novel treatment strategies in CAD patients based on the genetic 
makeup of an individual. The present chapter is focused to discuss the impact of 
oxidative stress-associated candidate gene polymorphisms and their relative expres-
sion on efficacy of statin drugs in the treatment of coronary artery disease.

26.2	 �Oxidative Stress in Atherosclerosis

Oxidative stress is a form of imbalance between oxidants (ROS) and antioxidants of 
cells. Oxygen (O2) is a major molecule for all the metabolic processes and generates 
as free radical by reduction. Enzymatic and non-enzymatic reactions, auto-oxidation, 
electron transport chain, etc. are the major sources for superoxide generation by 
transferring an electron to molecular oxygen [16].

Enzymatic and non-enzymatic reaction

	 O e O superoxide2 2+ → ( )− −• 	

Auto-oxidation

	 O Fe Fe O superoxide2
2 3

2+ → + ( )+ + −• 	

Accumulating evidence suggests that various metabolic pathways including 
enzymes like endothelial nitric oxide synthase (eNOS), myeloperoxidase (MPO), 

26  Pharmacogenetic Implications of Statin Therapy on Oxidative Stress in Coronary…



632

NOX family enzymes (NOXs), xanthine oxidase (XO), etc are involved in the ROS 
production and imbalance between oxidants and antioxidants resulting in oxidative 
stress [10, 17–20].

Increased ROS has a vital role in initiation and progression of lesions at coronary 
arteries, for example, superoxide radical reacts with NO• forming peroxynitrite 
(ONOO−) which consequently reduces the bioavailability of nitric oxide (NO). In 
addition to superoxides, NO• reacts with hydroxyl (HO•) and lipid radicals (LO• and 
LOO•) forming OLNO and LOONO, respectively [10]. Peroxynitrite inactivates 
metal-centric eNOS enzymes, mitochondrial enzymes, and creatinine kinase and 
activates MMPs, NF-kβ, PARP, etc. by cysteine oxidation attributing to the pathol-
ogy of CAD [21].

Initially, ROS modifies phospholipids by lipid peroxidation and results in the 
formation of oxidized LDL (oxLDL). Further OxLDL activates immune cells such 
as T cells, dendritic cells, monocytes, and macrophages and evokes the synthesis of 
inflammatory cytokines like IL-1, 6, TNFα, etc. These OxLDL molecules are taken 
up by macrophage receptors CD36, scavenger receptor class A, and lectin-like 
oxLDL receptor-1 and develop into foam cells and further trigger the formation of 
thrombus in the arterial layers as plaque [22, 23]. The plaque fibrous cap made up 
of VSMCs, collagen, proteoglycans, and elastin. Apoptosis of VSMCs and macro-
phages ruptures the fibrous cap and releases thrombosis into the blood stream and 
obstructs the blood flow to the myocardium [3, 8, 24].

26.3	 �Statins (Hydroxymethylglutaryl Coenzyme A (HMGCoA) 
Reductase Inhibitors)

Statin drugs are commercially approved in 1987 by the Food and Drug Administration, 
USA; these drugs act as HMGCoA analogues to inhibit the HMGCoA reductase 
enzyme at mevalonate pathway and regulate the cholesterol biosynthesis in hepato-
cytes. As per the 2013 ACC/AHA Guidelines, statin therapy is the most predomi-
nant treatment to patients with increased CAD risk [25]. Lovastatin is the first 
commercialized statin in the market. Based on the synthesis, statins are synthetic 
and semisynthetic statins. Synthetic statins include fluvastatin, atorvastatin, rosuv-
astatin, and pitavastatin, whereas semisynthetic statins include mevastatin, lovas-
tatin, simvastatin, and pravastatin (Fig. 26.2) [26]. Among these, atorvastatin and 
rosuvastatin are worldwide chief drugs to treat CAD patients to reduce cholesterol 
levels.
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Fig. 26.2  Chemical structures of synthetic and semisynthetic statins
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26.3.1	 �Cholesterol Biosynthesis and Its Inhibition by Statins

Cholesterol biosynthesis by mevalonate pathway includes mevalonate, isopentyl 
phosphate, squalene, and lanosterol synthetic reactions. Mevalonate pathway con-
verts acetyl coenzyme A to sterol (squalene) and non-sterol (farnesylated pyrophos-
phate and geranylgeranyl pyrophosphate) isoprenoids. Sterol isoprenoids participate 
in cholesterol synthesis while non-sterol in Rho, Ras, Rab, and nuclear laminin 
synthesis [27]. HMGCoA to mevalonate reduction is a rate-limiting step, catalyzed 
by HMGCR enzyme (Fig. 26.3). Statins are class of drugs designed to bind active 
site of HMGCoA reductase (HMGCR) and inhibit the enzyme activity in choles-
terol biosynthetic pathway. Three decades of research and clinical studies estab-
lished that statins have also antioxidant, anti-inflammatory, anti-angiogenic, and 
anti-apoptotic activities as pleiotropic effects [28].

26.4	 �Statins and Oxidative Stress

Statins apart from lowering the LDL also have other pleiotropic effects like regula-
tion of genes involved in ROS production and their expression by inhibiting various 
pathways [28–30]. Endothelial nitric oxide synthase (eNOS), myeloperoxidase 
(MPO), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), 
and xanthine oxidase (XO) genes are associated with reactive oxygen intermediate 
production. Studies show that genetic variations in these genes and their expression 
attribute to the interindividual differences in the efficacy of statins [31, 32]. The 
pharmacogenetic implications of statins on regulation of genes involved in oxida-
tive stress are summarized as below:

26.4.1	 �Endothelial Nitric Oxide Synthase (eNOS) Gene

Endothelial nitric oxide synthase (NOS3/eNOS) gene located on chromosome 
7q36.1 with 28 exons encodes endothelial nitric oxide synthase enzyme. eNOS 
enzyme couples with cofactors tetrahydrobiopterin (BH4) and oxygen to produce 
nitric oxide (NO) by oxidizing L-arginine to L-citrulline (Fig. 26.4). Coupled eNOS 
inhibits endothelial leukocyte adhesion, platelet aggregation, and VSMC migration 
and proliferation to prevent atherogenesis [33, 34]. Previous reports suggested that 
uncoupled eNOS generates superoxides (O2

•ˉ) which react with NO and form per-
oxynitrite (ONOO−) and inactivates NO [35, 36]. Endothelial dysfunction is also 
due to downregulation of eNOS expression in endothelial cells [37].

Studies evidenced that the statins attribute to upregulate the expression of endo-
thelium nitric oxide synthase gene by extending half-life of mRNA [38], inhibiting 
mevalonate pathway and Rho kinase activity [39–41]. In addition, statins activate 
phosphatidylinositol 3-kinase signal (PI3K)-Akt pathway to enhance the bioavail-
ability of nitric oxide [28].
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In our earlier study, we have reported significantly higher levels of nitric oxide 
and malondialdehyde (MDA) levels in CAD patients [37, 42]. Further when CAD 
patients were treated with ATV 40 mg/day for 6 months, there was a significant 
reduction in NOx and MDA levels in both men and women (unpublished data). 
Another study by Kureishi et al. suggested that simvastatin and pravastatin increase 
Akt serine 473 phosphorylation in endothelial cells to produce NO, which leads to 
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the improvement of endothelium function [43]. Besides cholesterol biosynthesis 
inhibition, statins also inhibit GTP binding proteins Rho/Rho kinase, Ras, and Rac 
synthesis in mevalonate pathway. Inhibition of these proteins decrease VSMC con-
traction and oxidative stress and increases NO bioavailability, which are favorable 
factors for the efficacy of statins in treatment [44].

Pharmacogenetic studies suggested that fluvastatin and atorvastatin are signifi-
cantly increasing eNOS gene expression in endothelial cells by regulating transcrip-
tional activity and mRNA stability. It has been reported that RPA1 binds to the 
promoter of eNOS to repress the expression and this activity of RPA1 is regulated 
by statin drugs [45]. Studies reporting functional implications of eNOS gene pro-
moter -786T>C polymorphism have been found that the individual with CC geno-
type has lower NO levels compared to TT genotype [29, 45].

Abe et al. treated human umbilical vein endothelial cells (HUVECs) with fluvas-
tatin and observed that the cells with eNOS -786CC genotype have improved eNOS 
mRNA levels [31]. Nagassaki et al. treated eNOS -786TT and -786CC genotype sub-
jects with 10 mg/day atorvastatin and placebo for 14 days. Interestingly they found 
that individuals with CC genotype have significantly reduced nitrite levels compared 
to TT genotype in subjects treated with ATV. Consequently nitrite level reduction in 
subjects with CC genotype implies the importance of genotype in modulating the 
response to drug [32]. These in vitro and clinical studies reported fluvastatin and ator-
vastatin to be associated with reduction of elevated levels of plasma nitrite concentra-
tions in CC genotype individuals. These results indicate statins have capacity to 
restore diminished nitric oxide production in those carrying CC genotype of -786T>C 
polymorphism and are good responders for statin drug treatment [31, 32].

26.4.2	 �Myeloperoxidase (MPO) Gene

Myeloperoxidase (MPO) gene localized at 17q22 with 12 exons translates as myelo-
peroxidase enzyme. It is synthesized as translational product with 80 kDa, subse-
quently converts into Apopro MPO (90 kDa) and proMPO (90 kDa), and undergoes 
proteolytic processing to produce homodimeric matured MPO (74 kDa) [46]. MPO 
enzyme is present in neutrophils, monocytes, macrophages, etc. and a key contribu-
tor for inflammation in cardiovascular diseases. MPO catalyzes various reactions in 

Fig. 26.4  Generation of NO• radical and peroxynitrite
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biological system and generates reactive oxygen species, cytotoxic hypochlorous 
acid, tyrosyl radical (Fig. 26.5) [6, 47, 48].

Studies on MPO gene polymorphisms have shown association with the risk of 
coronary artery disease. MPO promoter polymorphic variants potentially influence 
transcription factors binding and MPO levels. Yan Wang et al., in their meta-analysis 
study, have observed that the MPO -463G/A and -129G/A polymorphisms regulate 
the gene expression and A allele of -463G/A and A allele of -129G/A polymor-
phisms are associated with the lower levels of MPO [49].

Evidences suggest that the different concentrations of lovastatin, simvastatin, 
atorvastatin, and pravastatin are significantly downregulating the expression of 
MPO mRNA. Kumar et al. reported that 50 μM of lovastatin and simvastatin are 
showing greatest effect with 194 ± 8-fold and 45 ± 5-fold reduction in MPO mRNA 
expression, respectively, in peripheral blood monocytes [47]. Ndrepepa et  al. 
reported that the statins are significantly (p < 0.005) reducing the MPO levels by 
regulating expression of MPO gene in acute coronary syndrome patients [50]. 
Sygitowicz et  al. treated acute myocardial infarction (MI) patients with ATV 
40 mg/40 days and found significantly decreased MPO gene expression in 60.5% of 
MI patients. The differences in the efficacy of ATV might be due to the promoter 
polymorphism of MPO gene [51].

26.4.3	 �NADH/NADPH Oxidase (NOX) Gene

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX 1) gene, 
located at Xq22.1 with 14 exons, encodes NADPH family of enzymes. NOX enzyme 
is involved in the production of reactive oxygen species, i.e., superoxide, in the 
vascular system (Fig. 26.6).

NOX isoforms and component subunits are shown in Table 26.1. Among NOX 
isoforms, NOX1, 2, 4, and 5 isoforms catalyze to release superoxide/hydrogen per-
oxide influencing proliferation, differentiation, endothelial impairment, and vascu-
lar structure in coronary atherosclerosis [52, 53].

NOX enzyme has complex, membrane-bound subunits gp91phox and p22phox; 
cytosolic subunits p40phox, p47phox, and p67phox; and small GTP binding protein 
Rac to form complexes and transfer electrons in biological system as represented in 

Fig. 26.5  Generation of ROS by myeloperoxidase
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Fig.  26.7 [54]. NOX1, 2, and 5 are expressed in endothelial cells, VSMCs, and 
NOX4 in vascular cell walls [20, 55].

Guzik et  al. measured the NOX-produced superoxide in blood vessels, which 
reacts with nitric oxide and forms peroxynitrite, and found a proportionately deficit 
NO bioavailability leading to endothelial impairment in atherosclerosis [56]. Zhang 

Fig. 26.6  Superoxide generation by NADPH oxidase

Table 26.1  Isoforms of 
NADPH oxidase enzyme

NOX isoforms Component subunits
NOX1 Rac1, NOXA1, p22phox, 

NOXO1, p47phox
NOX2 Rac1 and 2, p40phox, 

p67phox, p22phox, p47phox
NOX3 NOXA1, p22phox, NOXO1
NOX4 p22phox, POLDIP2
NOX5 4 EF hands

NOX nicotinamide adenine dinucleotide phos-
phate oxidase

Fig. 26.7  Structure of NADPH oxidase
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et  al. evidenced that the mRNA expression of NOX subunits was significantly 
higher in endothelial progenitor cells in CAD. Out of all subunits, p47phox and 
p22phox regulate the activity of NADPH for production of superoxide radicals and 
hydrogen peroxide. Activation of p47phox occurs when it is translocated from cyto-
sol to plasma membrane of endothelial cells, and it was observed that the activation 
rate is enhanced in CAD patients (p < 0.05) [53, 57]. The genes encoding NOX 
enzyme subunits are shown in Table 26.2.

Genetic variations in genes encoding NOX subunits influence the activity of 
enzyme and generation of reactive oxygen species. One of the chief components of 
NOX is p22phox, encoded by CYBA/p22phox gene located at 16q24.2 with seven 
exons. Cahilly et  al. suggested that the  T-allele of C242T polymorphism in 
p22phox gene is significantly associated with 3- to 5-fold loss in minimum lumen 
diameter and disease progression [58]. Ito et  al. observed a high frequency of T 
allele of C242T polymorphism in CVD patients than the controls in Japanese popu-
lation [59].

Meta-analysis conducted by Xu et  al. included functional studies which sug-
gested the association of p22phox 640G allele with mRNA stability and processing 
in CAD patients and also found significant decrease in ROS formation. Further it 
has been suggested that the individuals with 640G allele might show protection 
against CAD [60, 61]. Antioxidant capacity of statins includes the regulation of 
ROS production in cells participating in coronary atherosclerotic process. A number 
of studies evidenced that the statins are reducing the ROS production by inhibiting 
the NOX enzyme and Rac. Hamilton et  al. evidenced 10/20 mg/day atorvastatin 
(ATV) reduces the Rac GTPases on membranes of platelet in hyperlipidemia 
patients, which may reduce the activity of NOX [62].

Antoniades et  al. treated preoperative coronary artery bypass-grafted patients 
with 40 mg/day atorvastatin for 3 days to find the redox rate in vein graft and found 
significant reduction in basal and vascular NOX stimulating O2

•ˉ and Rac1 activation 
in vein grafts. ATV treatment has no impact on NOX1/2/4 protein levels but signifi-
cantly reduced Rac1 and p67phox of NOX [63]. Studies have indicated that atorvas-
tatin and simvastatin were involved in downregulating the expression of Rac1 gene 
[30]. Furthermore, evidences by Inoue et al. have shown that HUVECs treated with 
different concentrations of fluvastatin, simvastatin, pravastatin, and cerivastatin 
showed a significantly downregulated expression of p22phox mRNA and decreased 
p47phox protein levels in response to fluvastatin and simvastatin [64].

Table 26.2  Genes encoding 
NOX enzyme subunits

NOX subunit Encoding genes
p22phox Cytochrome b-245 alpha chain (CYBA)
p40phox Neutrophil cytosolic factor (NCF) 4
p47phox Neutrophil cytosolic factor (NCF) 1
p67phox Neutrophil cytosolic factor (NCF) 2
gp91PHOX Cytochrome b-245 beta chain (CYBB)
Rac Rac family small GTPase
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26.4.4	 �Xanthine Oxidase (XO) Gene

Xanthine oxidase (XO)/xanthine dehydrogenase (XDH) gene located at 2p23.1 
with 37 exons, encodes xanthine oxidase enzyme. It exists as a homodimer with 
approximately 290 kDa molecular mass [65]. Xanthine oxidase catalyzes the oxida-
tion of hypoxanthine to xanthine, followed by xanthine to uric acid in purine metab-
olism (Fig. 26.8). In the process of oxidation, XO reduces molecular oxygen (O2) to 
superoxide radical (O2

•ˉ) and peroxides (H2O2). Chung et al. reported that XO is 
highly expressed in endothelial, epithelial, and polymorphonuclear cells [66]. 
Previous studies evidenced that superoxides and peroxides were involved in a vari-
ety of clinicopathological conditions including endothelial dysfunction, elevated 
uric acid levels, and chemoattractant for neutrophils in coronary artery disease [66, 
67]. Landmesser et al. evidenced an enhanced expression of XO protein and subse-
quent XO-dependent endothelial superoxide production in response to the stimulus 
of angiotensin II hormone in bovine aortic endothelial cells [68].

Kudo et al. functionally characterized various polymorphisms in XO gene and 
observed the loss of enzyme activity for subjects with 445C>T (Arg149Cys) and 
2729C>A (Thr910Lys) variations and decreased enzyme activity for 1663C>T 
(Pro555Ser), 1820G>A (Arg607Gln), 1868C>T (Thr623Ile), 2727C>A 
(Asn909Lys), 3449C>G (Pro1150Arg), and 3953G>A (Cys1318Tyr) [65].

Recent study on rs2073316 (g.31583C>T), rs1054889 (g.85304C>T) and 
rs1042039 (g.84306A>G) polymorphisms of XDH gene revealed an association 
with hypertension. Frequency of C allele for rs1042039 is higher, while C allele of 
rs1054889 and A allele of rs2073316 are significantly lower in hypertensives com-
pared to controls. These polymorphisms may regulate the expression of XDH gene 
and might be associated with hypertension in Chinese population [69]. CAD patients 
had higher levels of XO protein and activity [68]; several studies evidenced that XO 
inhibition improved the endothelial function and decreased the free radical and uric 
acid production levels [70].

Greig et al. reported that 4 weeks of atorvastatin 20 mg/day treatment indepen-
dently decreased the levels of MDA, uric acid and flow-dependent endothelial-
mediated vasodilation in heart failure patients. Possibly statins might have decreased 
the expression of endothelial XO by inhibiting Rac1 or NOX and transcription of 

Fig. 26.8  Superoxide generation by xanthine oxidase
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XO gene [70]. In addition, simvastatin prevented 50% superoxide anion production 
by angiotensin II-dependent ROS production in rats, which plays a pivotal role in 
XO activity and endothelial dysfunction [71]. The above reports suggest that 
increased expression of XO and angiotensin II genes might be key factors for the 
stimulation of enhanced ROS production to initiate the atherosclerotic plaque and 
inhibition of these genes may be additional therapeutic targets of statins.

26.5	 �Conclusion and Future Directions

Coronary artery disease is a devastating disease, and oxidative stress plays a crucial 
role in initiation and progression of disease. Statins, the prescribed drugs for lower-
ing of cholesterol levels, have also other pleiotropic effects on oxidative stress, 
inflammation, apoptosis, etc. The generation of oxidative stress is influenced by the 
genetic variations in eNOS, MPO, XO, NOX, etc. Differential response to statin 
drug insights into emerging of pharmacogenetic studies to understand the genetic 
makeup and treat the patient with suitable drug and dose. In clinical practice, phar-
macogenetic approach toward oxidative stress is a future emerging trend in person-
alized medicine development.
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