
Sajal Chakraborti · Naranjan S. Dhalla   
Madhu Dikshit · Nirmal K. Ganguly   
 Editors 

Modulation 
of Oxidative 
Stress in 
Heart Disease



Modulation of Oxidative Stress in Heart 
Disease



Sajal Chakraborti • Naranjan S. Dhalla 
Madhu Dikshit • Nirmal K. Ganguly
Editors

Modulation of Oxidative 
Stress in Heart Disease



Editors
Sajal Chakraborti
Department of Biochemistry and Biophysics
University of Kalyani
Kalyani, West Bengal, India

Madhu Dikshit
Translational Health Science and 
Technology Institute
Faridabad, Haryana, India

Naranjan S. Dhalla
Institute of Cardiovascular Science
St. Boniface Hospital Research Centre
Winnipeg, MB, Canada

Nirmal K. Ganguly
Translational Health Science and 
Technology Institute
Faridabad, Haryana, India

ISBN 978-981-13-8945-0    ISBN 978-981-13-8946-7 (eBook)
https://doi.org/10.1007/978-981-13-8946-7

© Springer Nature Singapore Pte Ltd. 2019, 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

corrected publication 2019

https://doi.org/10.1007/978-981-13-8946-7


     Prof. Sibaji Raha Prof. Dipak Kumar Kar

This book is dedicated to Prof. Sibaji Raha 
(Coordinator of the participation of India at the 
International Facility for Antiproton and Ion 
Research, Germany, and Former Director, Bose 
Institute, Kolkata, India) and Prof. Dipak Kumar Kar 
(Vice Chancellor, Sidho Kanho Birsha University, 
West Bengal, and Former Pro-vice Chancellor, 
Calcutta University, Kolkata, India) for their 
exceptional contributions and outstanding leadership 
in scientific administration and management in India. 
We wish them good health and success in their long 
fruitful activities.



vii

Preface

“Day by day thou art making me worthy of the
simple great gifts that thou gaveast to me unasked-
This sky and the lights, this body and the life and the mind-
saving me from perils of overmuch desire ……
day by day thou art making me worthy of thy full acceptance
…...saving me from perils of weak uncertain desire”

Rabindranath Tagore (Gitanjali: Songs of Offering)

This book describes multidisciplinary approach and demonstrates biochemical 
mechanisms associated with dysregulation of redox signaling that leads to manifes-
tation of heart diseases. It bridges the gap between fundamental and translational 
research on the modulatory role of oxidants in different types of heart diseases. It 
also discusses the spatial and temporal aspects of oxidative stress in cardiovascular 
system, which are immensely important for development of better strategies for 
treating heart diseases.

This book contains 28 chapters, which are divided into three subsections. Dr. 
Craig McLachlan, Dr. Ruhul Abid, Dr. Hasan Sayyad, Dr. Nitish Mahapatra, Dr. 
Sagartirtha Sarkar, and Dr. Angsuman Bagchi narrate different aspects of ROS-
mediated heart diseases in general; while Dr. Sachin Kumar summarizes modula-
tion of ROS by nitric oxide in neutrophils. Dr. Parimala Narne, Dr. Vijay Kutala, and 
Dr. Sudhiranjan Gupta in their chapters enumerate novel insights on the impact of 
epigenetic factors and miRNA in oxidative stress-induced heart diseases. In the sub-
section on the pathophysiology of oxidative stress, Dr. Bodh Jugdutt, Dr. Nevena 
Jeremic, Dr. Suvro Chatterjee, and Dr. Shyamal Goswami provide notable informa-
tion on oxidative stress-induced heart failure and cardiac remodeling in oxidant-
induced heart diseases; while Dr. Vinu Wilson discusses about the role of oxidative 
stress in pulmonary hypertension. Dr. Maria Baez eloquently states oxidative stress-
induced biomarkers, while Dr. Antonio Bernad describes the role of oxidative stress 
in cardiac progenitor cell fate determinations. To address therapeutic interventions 
and pertaining issues in oxidative stress-induced heart diseases, Dr. Gemma Figtree, 
Dr. Parames Sil, Dr. Mark Ziolo, Dr. Emmanual Douzinas, Dr. Yiannakoulou, Dr. 
Srinivas Gopala, Dr. Surekha Rani, and Dr. Biaus Samanta made extraordinary 
effort. They focused on different therapeutic implications in modulating oxidative 
stress-induced heart diseases. Each chapter of this book is profoundly useful for the 
researchers to identify targets for drug development and to address different types 
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of heart diseases. In fact, these are the flowers of the spring. So, let “hundreds of 
flowers blossom and hundreds schools of thought contend.”

The goal of this book is to provide some glimpses of the role of oxidative stress 
in heart diseases along with the current understanding of their prevention and thera-
peutics. We have tried to keep this book concise, informative, and readable. Putting 
together all the articles, we believe that the book will be helpful to the postgraduate 
students and biomedical researchers.

Our sincere gratitude goes to all contributors for their considerable energy, time, 
and effort to accomplish a complete chapter, which generates no quid pro quo ben-
efit. We are thankful to Mr. G.  Senthil Kumar, Dr. Madhurima Kahali, and Mr. 
Daniel Ignatius Jagadisan (Springer Nature) for their cooperation and support dur-
ing the preparation of this book.

Kalyani, West Bengal, India Sajal Chakraborti

Preface
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1Modulation of Oxidative Stress in Heart 
Disease by Uncoupling Proteins

Zakaria A. Almsherqi, Bernita Yeo Hui Li, Yuling Zhou, 
and Craig S. McLachlan

Abstract
According to “free-radical theory” of disease, Reactive Oxygen Species (ROS) 
play a key role in the pathogenesis of several diseases including cardiovascular 
disease. When the balance between production of free radicals and antioxidant 
capacity of the cardiac cells is altered due to pathophysiological conditions, oxi-
dative stress is induced. Oxidative stress has been linked to the development of 
ischemic heart disease, atherosclerosis, congestive heart failure, ischemic- 
reperfusion injury, and vascular endothelial dysfunction. In this context, antioxi-
dant supplementation would have a positive effect on cardiovascular diseases. 
However, several clinical trials over the past decades employed different strate-
gies of antioxidant therapies which have failed to achieve favorable results in 
ameliorating or preventing cardiovascular diseases. Much less attention has been 
paid to the modulation of ROS production, despite the fact that prevention, rather 
than cure, would appear to be a logic approach to attenuate the oxidative damage. 
This chapter intends to highlight the mechanisms of oxidative stress modulation – 
by Natural or induced mitochondrial uncoupling respiration – in regulating ROS 
production and its significance in cardiovascular pathophysiological conditions.

Zakaria A. Almsherqi and Bernita Yeo Hui Li have been equally contributed to this chapter
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1.1  Introduction

1.1.1  Mitochondrial Oxidative and Uncoupling Metabolism

Myocardial function depends on the energy that it is able to synthesize and transfer 
in the form of energy-rich phosphate bonds to fuel excitation-contraction coupling. 
More than 90% of cardiac cell energy is produced in the mitochondria from oxida-
tive phosphorylation activity [1]. Oxidative phosphorylation is the process by which 
energy from fuel oxidation is converted to the high-energy phosphate bonds of ade-
nosine triphosphate (ATP). During this process, energy from the oxidation of the 
tricarboxylic acid cycle is conserved in the form of reduced electron-accepting 
coenzymes, NADH and FADH2. They are passed through the electron transport 
chain and the electrons released. These electrons are in turn donated to oxygen, 
which is reduced to water. The energy released from the reduction of oxygen is used 
for the phosphorylation of adenosine diphosphate (ADP) to ATP, catalyzed by the 
enzyme ATP synthase (Fig. 1.1). Thereafter, the hydrolysis of ATP releases energy 
that can be used for cardiac cell contraction and other essential cellular functions.

Fig. 1.1 The chemiosmotic proton cycle across the inner mitochondrial membrane. The coupling 
cycle, consisting of substrate oxidation (NADH, FADH2) and the enzymes of ATP production 
(ATP synthase), results in coupled oxidative phosphorylation and superoxide (O−·

2) generation as 
a by-product. The uncoupling cycle, consisting of substrate oxidation and proton conductance 
pathway through the uncoupling proteins (UCPs), results in uncoupled respiration and low levels 
of superoxide generated

Z. A. Almsherqi et al.
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The chemiosmotic hypothesis suggests that the energy for ATP synthesis is pro-
vided by the electrochemical gradient across the inner mitochondrial membrane. 
This electrochemical gradient is maintained by constituents of the electron transport 
chain (ETC), which acts to pump protons from the mitochondrial matrix to the 
intermembrane space of the mitochondria as they accept and donate electrons in a 
prescribed manner. These processes of electron transport and oxidative metabolism 
in cardiac cells are accompanied by the reduction of oxygen to superoxide and other 
ROS which are considered as a by-product of mitochondrial respiration.

An appreciation of the ETC and its role in oxidative phosphorylation is essential 
in the understanding of the significance of uncoupling proteins (UCPs). As one 
might expect, the rate of ATP synthesis driven by the transmembrane electrochemi-
cal gradient is coupled to the rate of the ETC. As the energy demands of the cardiac 
cell increases and ATP is being utilized, the levels of ADP increases. Proton influx 
through ATP synthase causes an increase in ATP production which subsequently 
activates the ETC to restore the electrochemical gradient across the mitochondria 
inner membrane. In the uncoupling process, as the name suggests, the electrochemi-
cal gradient is restored independently of the activity of ATP synthase (Fig. 1.1). The 
action of uncoupling proteins is based on two main factors: the higher concentration 
of protons in the intermembrane space than the mitochondrial matrix and the lipid- 
soluble nature of UCPs. Being lipid-soluble, they are able to traverse the inner mito-
chondrial membrane, pick up protons, and transport them to the mitochondrial 
matrix [2]. In this way, the electrochemical gradient across the mitochondrial inner 
membrane is dissipated, and ATP synthesis disrupted. As a result, ATP is not pro-
duced and the energy is released as heat (Fig. 1.1).

A considerable level of basal proton leak, also known as global proton leak, 
occurs across the inner mitochondrial membrane all the time [3]. While some of this 
leak is attributed to the action of uncoupling proteins, the permeability of the mito-
chondrial membrane due to the proteins embedded in its lipid bilayer also contrib-
utes to the membrane’s leakiness. Approximately 20% of the body’s resting 
metabolic rate is used to maintain the electrochemical gradient that is dissipated by 
this basal proton leak [4]. This significant mitochondrial proton leak should serve an 
important function or functions in view of the high energetic cost utilized to main-
tain it.

1.1.2  Redox Status of Cardiac Cells: The “Uncoupling” Link

ROS are generated as by-products of cellular metabolism and mainly as a part of 
mitochondrial respiration. Free radicals have a single, unpaired electron, rendering 
them highly unstable and thus reactive. In cells, they readily react with and oxidize 
cellular components such as lipids (unsaturated fatty acids), proteins, and DNA. While 
some ROS are physiologic products of oxidases in peroxisomes, most are produced 
as part of the mitochondrial oxidative phosphorylation process. Due to their highly 

1 Modulation of Oxidative Stress in Heart Disease by Uncoupling Proteins
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reactive nature, these free radicals formed can decay spontaneously. Therefore, under 
normal physiologic conditions, there are several protective mechanisms in place to 
neutralize these free radicals and prevent cell injury. Regulation of the mitochondria 
ROS generation is another cellular mechanism to control ROS levels. When the oxi-
dative load caused by increased ROS production exceeds the antioxidant capacity of 
these mechanisms, ROS accumulate, resulting in oxidative stress.

At this point, it is important to note that apart from ROS toxicity, ROS also has a 
physiologic role in cellular signaling. While the mechanisms by which ROS exert 
their effects are still unclear, it is known that ROS-mediated cellular signaling is 
achieved by changes in the intracellular redox state as well as the oxidative modifi-
cation of proteins. Under normal conditions, the enzyme superoxide dismutase 
(SOD) and glutathione (GSH) peroxidase catalyze the breakdown of free radicals 
(i.e., H2O2 + 2GSH → 2H2O + GSSG) to reduce intracellular oxidative stress. The 
cytosol is usually in a “reduced” state with respect to the extracellular environment. 
Therefore, the ratio of GSSG (oxidized glutathione) to GSH (reduced glutathione) 
is an indicator of the oxidative state and hence the oxidative capacity of the cell. By 
altering this ratio, GSH has been found to play a role in redox signaling. On another 
hand, agents that increase the mitochondrial respiratory rate, such as ADP (activate 
ATP synthase) or uncouplers (activate UCPs), are well known to reduce ROS pro-
duction. An experimental study has shown that UCP3 expression in muscle cells 
resulted in a decrease in mitochondrial ROS production and may hence be an impor-
tant factor in ROS regulation [5].

ROS are of interest in clinical research as they have been implicated in many 
diseases including cardiac pathology [6]. ROS react with a wide variety of com-
pounds such as DNA, proteins, carbohydrates, and lipids in the cardiac cells, caus-
ing cellular damage. ROS can also cause a conformational change in proteins via 
the modification of certain amino acid residues in the functional domain of proteins 
[7]. Moreover, UCPs seem to play a role in the cellular protective system in tandem 
with GSH, SOD, and other enzymatic antioxidants.

1.1.3  Types of Uncoupling Proteins and Their Roles in ROS 
Modulation

UCPs refer to a class of proteins located on the inner mitochondrial membrane. As 
mentioned previously, UCPs allow protons to cross the inner mitochondrial mem-
brane without the concomitant activation of ATP synthase. There are several types 
of UCPs observed in different tissues. UCP1, also known as thermogenin, is found 
in brown adipose tissue and has a role in heat production [8]. UCP2 is rather ubiq-
uitous and found in most cells, while UCP3 is found mainly in skeletal and cardiac 
muscles. UCP4 and UCP5 have been found in the brain. Table 1.1 summarizes the 
distribution of the UCPs.

Of clinical significance are UCP2 and UCP3 located in the heart. There is 
increasing evidence to show that these UCP proteins, by mitochondrial uncoupling, 
protect the heart by reducing ROS generated by the mitochondria. As a result, 

Z. A. Almsherqi et al.
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cardiomyocyte could be protected from stress-induced apoptosis [9]. UCP3, in par-
ticular, has been associated with cellular fatty acid metabolism, with its distribution 
being most pronounced in muscles with high-fat oxidative capacity (such as cardiac 
cells) [10]. In physiological or pathological conditions where plasma fatty acid lev-
els increase, UCP3 is upregulated. On the contrary, a decrease in plasma fatty acid 
levels causes a downregulation of UCP3. These seem to support the hypothesis that 
UCP3 plays an important role in exporting fatty acids that cannot be oxidized from 
the mitochondrial matrix, thereby inhibiting the accumulation of fatty acids inside 
the matrix. In this way, UCP3 provides protection from lipid-induced mitochondrial 
damage and mitochondria-dependent apoptosis [10].

UCP expression is altered in response to external stressors by a host of transcrip-
tion factors, in particular, peroxisome proliferator-activated receptor alpha (PPAR-α) 
and peroxisome proliferator-activated receptor gamma coactivator 1 alpha 
(PGC1-α). Both transcription factors play an essential role in the response to exter-
nal environmental stress, such as fasting and physical stress (Fig 1.2).

Table 1.1 Distribution of 
uncoupling proteins

Uncoupling Protein Distribution
UCP1 Brown adipose tissue
UCP2 Most cells
UCP3 Skeletal muscles
UCP4 Brain
Ucp5 Brain

Fig. 1.2 Schematic diagram summarizes the effect of ROS, UCP2, and UCP3 in the major cardiac 
pathologies. Activation and/or overexpression of UCPs is associated with a lower mitochondrial 
generation of ROS, ATP production, and consequently potential myocardial contractile dysfunc-
tion. Whether these are an adaptive or maladaptive response to stress conditions needs further 
investigations. Refer to the text for details

1 Modulation of Oxidative Stress in Heart Disease by Uncoupling Proteins
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1.2  UCP Regulation in Cardiac Cell

Activation and/or expression of UCPs is closely monitored by intra- and extracel-
lular factors. Regulation may be achieved by enzymes such as AMP-activated pro-
tein kinase (AMPK), proteins such as sterol-responsive element-binding protein 
(SREBP), and nuclear transcription factors such as PPARα.

1.2.1  UCP Expression and Activation of AMP-Activated Protein 
Kinase (AMPK)

5′-Adenosine monophosphate-activated protein kinase (AMPK) is an enzyme that 
plays a key role in the maintenance of cellular energy homeostasis and is dysregu-
lated in many chronic diseases. In particular, AMPK is activated by adiponectin 
secreted by adipocytes. Activated AMPK leads to increased oxidation of fatty acids 
and promotes glucose uptake by muscle cells, resulting in an overall reduction of 
plasma levels of triglycerides, fatty acids, and glucose. ROS have been implicated 
in inducing AMPK activity, resulting in cell autophagy and apoptosis [11].

Since UCP expression is closely linked to the level of oxidative stress in a cell, 
AMPK activation – which can be induced in response to an increased oxidative 
burden – will induce an upregulation of UCP. In one particular study, an activator of 
AMPK, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), was 
given intravenously to rats for 28 days, and the levels of UCP3 measured. As com-
pared to the untreated control group, AICAR-treated rats were observed to have an 
increased UCP3 expression at the mRNA level as well as an increased UCP3 pro-
tein content [12].

AMPK-induced upregulation of UCPs is of clinical relevance, especially since 
many disease states are a result of an increased oxidative burden. Oxidants activate 
AMPK, which in turn increases the expression of UCP2. This can be seen as a com-
pensatory mechanism which counteracts the increased intracellular oxidative stress 
via the production of UCP2. In AMPK knockout mice, UCP2 was expressed only 
weakly in endothelial cells and associated with an endothelial dysfunction. This 
suggests that AMPK activation is, to a large extent, critical to the transcription of the 
UCP2 gene [13].

1.2.2  UCP Expression, Sterol-Responsive Element-Binding 
Protein (SREBP), and Cyclic AMP Response Element- 
Binding Protein

HMG-CoA reductase is the enzyme that catalyzes the rate-determining step of cho-
lesterol synthesis. Its own production is regulated by a family of sterol regulatory 
element-binding proteins (SREBPs). The SREBPs are transcription factors that 
bind to the sterol regulatory element (SRE) upstream of the HMG CoA reductase 
gene. This binding increases the rate of transcription of HMG CoA reductase when 

Z. A. Almsherqi et al.
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intracellular cholesterol levels are low. When intracellular cholesterol levels are 
elevated, SREBP binds to SREBP cleavage-activating protein (SCAP) in the mem-
brane of the endoplasmic reticulum. On the other hand, when cholesterol levels fall, 
SREBP is translocated to the Golgi apparatus where it undergoes proteolytic cleav-
age, releasing the N-terminal transcription factor domain. This then travels to the 
nucleus and binds to the SRE. In this way, the level of HMG CoA reductase and 
hence the level of cholesterol are regulated.

An increase in SREBP expression has been observed to correlate with UCP 
expression levels. When SREBP-1c was overexpressed, fatty acid synthase, PPARγ, 
and UCP2 were all upregulated, with a marked decrease in glucose-induced insulin 
secretion [14]. On the other hand, it has been shown that insulin inhibits cardiac 
UCP3 expression through activation of the lipogenic factor SREBP-1. Sustained 
downregulation of cardiac UCP3 by hyperinsulinemia may partly explain the poor 
prognosis of type 2 diabetic patients after myocardial infarction [5].

Another transcription factor worth mentioning is the cAMP response element- 
binding protein (CREB). Upon stimulation by adrenaline, cAMP-dependent protein 
kinase phosphorylates and hence activates CREB.  CREB then binds to cAMP 
response element (CRE) in the promoter regions in genes, thereby activating the 
synthesis of enzymes involved in gluconeogenesis, for instance. It has been found 
that although multiple CREs have been associated with many genes, the effect is 
pronounced in the UCP gene. Some of these CREs are critical for enhancing func-
tion, as well as those located near the TATA box promoter perform a regulatory 
function and control UCP gene expression [15]. In this way, CREB’s action is two-
fold – it causes the synthesis of gluconeogenic enzymes as well as an upregulation 
of UCP.

1.2.3  UCP Expression and Peroxisome Proliferator-Activated 
Receptors (PPARs)

PPARs are a subset of nuclear receptors. As their name suggests, these receptors, 
when activated, are able to cause a proliferation of peroxisomes. A variety of ago-
nists are known to induce peroxisomal proliferation such as nonsteroidal anti- 
inflammatory agents, hypolipidemic agents, and environmental toxins [16, 17].

Three major isoforms of PPARs are characterized – α, β/δ, and γ. All isoforms of 
PPARs are expressed in cardiovascular system such as endothelial cells and vascu-
lar smooth muscle cells; however, their roles in cardiac function and the outcomes 
of respective agonists vary significantly. Fatty acids are the endogenous ligands for 
the α isoform of PPAR (PPARα). When circulating level of fatty acids in the blood 
increases, PPARα is activated, resulting in the upregulation of genes involved in 
fatty acid metabolism. Experiments performed on mice cardiomyocytes have shown 
that the expression of UCP3 is regulated by PPARα [18]. Indeed, cardiomyocytes 
exposed to PPARα exhibited an increased rate of fatty acid oxidation [19]. A similar 
increase in UCP3 was also seen in rats treated with a PPARα agonist. In PPARα-
deficient rats, a 20-fold decrease in UCP3 expression was observed when compared 
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to their wild-type counterparts. Taken together, this highlights the role of PPARα in 
regulating cardiac UCP3 expression [18]. PPARβ/δ have also been found to play a 
role in the regulation of cardiac lipid metabolism and have been implicated to be 
involved in the pathophysiology of acquired cardiac diseases such as coronary 
artery disease and rheumatic heart disease [20].

While the expression of UCP3 is PPARα-dependent, UCP2 expression has been 
found to be PPARα-independent. In the human heart, a positive correlation between 
levels of free fatty acids (FFA) and levels of UCP2 and UCP3 has been previously 
observed [21].

It is well known that the heart has virtually no glycogen reserves. Fatty acids are 
the heart’s main source of fuel, although ketone bodies as well as lactate can serve 
as fuel for the heart muscle. In fact, the heart muscle consumes acetoacetate in pref-
erence to glucose [22]. Furthermore, FFA  are the natural ligands for PPARα. 
Therefore, conditions that cause an increase in FFA levels (e.g., diabetes) would be 
expected to increase levels of UCPs via the PPARα-mediated pathway. However, in 
rats with streptozotocin-induced diabetes, the level of UCP3 increases without an 
accompanying increase in cardiac UCP2 [23]. Indeed, post streptozotocin treatment 
(that induces diabetes), cardiac UCP2 levels remained unchanged in both wild-type 
and PPARα-deficient rats, while cardiac UCP3 levels increased by 50% only in 
wild-type rats [23]. Therefore, UCP3 is more responsive to PPARα-mediated upreg-
ulation as compared to UCP2.

1.2.4  TNFα and UCP2 Expression and Vascular Damage

Cell-signaling molecules released from the immune system are collectively termed 
cytokines. They are released in response to a specific stimulus and travel to target 
cells where they bind to receptors and elicit a response. One of the main cytokines 
involved in the inflammatory response of the immune system is tumor necrosis 
factor- alpha (TNFα). It is secreted mainly by macrophages, as well as monocytes, 
neutrophils, endothelial cells, smooth muscle cells, activated lymphocytes, adipo-
cytes, and astrocytes. TNFα plays a crucial role in the regulation of the cytokine 
cascade in various inflammatory diseases, and its dysregulation has been implicated 
in the pathogenesis of diseases such as atherosclerosis, Crohn’s disease, sepsis, and 
diabetes, among many others [24].

Interestingly, a study which involved the administration of a single intravenous 
dose of TNFα into rats caused a corresponding increase in the expression of UCP2 
and UCP3 [25]. The direct relationship between TNFα levels and UCP2 and UCP3 
expression is highly suggestive of the role these uncoupling proteins have in the 
inflammatory response. Indeed, UCP2 and UCP3 may have a role to play in contrib-
uting to energetic inefficiency in cardiac cells when the cytokine TNFα is overpro-
duced. Other studies have also shown that TNFα causes an increase in UCP2 mRNA 
levels in cultured cells, suggesting that UCP2 is a cytokine-inducible gene [26]. 
This may explain the unsatisfactory results of using TNF inhibitors in cardiac trials 
[27].
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1.3  ROS and UCP Role in Cardiovascular Pathology

Cardiovascular disease (CVD) is common in the general population, and it was 
estimated to result in more than 17 million deaths worldwide on an annual basis. 
Identifying factors that play important roles in a person’s chances of developing 
heart disease (risk factors) is therefore essential for preventing and treating CVD. 
“Classical” cardiovascular risk factors can be classified in different ways, control-
lable (e.g., lack of physical exercise, high-fat diet) or uncontrollable (age and sex) 
and major (e.g., high blood pressure, obesity) or minor risk factors (e.g., ECG 
abnormalities). However, recent advances in our understanding of the molecular 
mechanisms involved in CVD may change our view on CVD risk factors. 
Physiological or pathological conditions that are associated with high levels of 
ROS, cytokines, and UCP regulators could be regarded as new risk factors of 
CVD. Table 1.2 summarizes some of these biomolecules associated with high risk 
of CVD.

1.3.1  Atherosclerosis

Atherosclerosis is a type of vascular pathology characterized by endothelial dys-
function and reduced vascular wall compliance and narrowing. Vascular pathology 
is predominately characterized by the buildup of cholesterol deposits on the inner 
walls of blood vessels. These raised lesions are known as atherosclerotic plaques or 
atheromas and protrude into the vessel lumen, causing a decrease in lumen diameter 
and thereby reducing or obstructing the blood flow. The media underlying the 

Table 1.2 Biomolecules 
associated with high risk of 
CVD

Oxidized LDL
Oxidized LDL autoantibodies
LDL immune complex
HDL lipoprotein
Lipoprotein A
Lysophosphatidylcholine
Plasminogen activator inhibitor 
1
Tissue plasminogen activator 
inhibitor 1
Fibrinogen
C-reactive protein
Asymmetric dimethylarginine
Nitrites
Serum amyloid A
Homocysteine
Glycosylation
Cytokines
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atherosclerotic plaque is weakened, and the plaque itself can rupture, leading to 
thrombus/embolic formation and arterial occlusion [28].

The pathogenesis of atherosclerosis begins with injury to the endothelial cells of 
the arterial wall. Chronic endothelial cell injury leads to the thickening of the intima 
of the vessel wall with an accumulation of lipids such as cholesterol. Macrophages 
and lymphocytes are recruited to the site of damage and ROS are generated [28]. 
Following ROS being generated, the ROS will then oxidize low-density lipoprotein 
(LDL) followed by cholesterol deposition in the plaque, which in turn further stimu-
lates macrophages and causes the endothelial cells to release chemokines, cyto-
kines, and growth factors, all resulting in monocyte recruitment to the lesion [28]. 
Oxidized LDL produced by ROS is cytotoxic to smooth muscle cells and endothe-
lial cells of the blood vessel wall, contributing to endothelial cell dysfunction. In 
this way, oxidative stress plays a key role in the progression of atherosclerosis. 
Since UCP2 has been found to be an important regulator of intracellular ROS pro-
duction, it has been implicated in the pathophysiology of the development of athero-
sclerosis. The UCP2-mediated decrease in ROS generation in endothelial cells is a 
key mechanism by which the progression of atherosclerosis may be interrupted.

Pro-atherogenic factors (e.g., oxidized LDL) associated with an increased oxida-
tive burden can cause endothelial cell apoptosis and initiate the process of athero-
genesis. In particular, the toxicity of the oxidized LDL, lysophosphatidylcholine 
(LPC), on endothelial cells has been established [29]. LPC stimulates ROS genera-
tion and promotes inflammation, resulting in injury to endothelial cells. In cultured 
human aortic endothelial cells, it was observed that an increase in LPC levels caused 
a concomitant increase in UCP2 expression [29]. This resulted in a suppression of 
ROS generation and the inhibition of caspase activation, effectively preventing 
LPC-induced endothelial cell apoptosis. Conversely, when the endogenous expres-
sion of UCP2 was suppressed, LPC-induced caspase activation and apoptosis were 
augmented [30]. Therefore, increasing UCP2 levels in vascular cells may be benefi-
cial in delaying the progression of atherogenesis.

Furthermore, studies have shown that the absence of UCP2 in blood cells pro-
moted the development of atherosclerotic plaques which were collagen-poor and 
macrophage-rich [31]. Although once thought of as due to plaque quantity, the vul-
nerability of a plaque to rupture has now been found to be more closely related to its 
content than its absolute size [32]. Plaques with a high level of vascular smooth 
muscle cells incorporated into them are less prone to rupture than those with a high 
level of inflammatory cells such as macrophages and lipids within. This can be 
attributed to the collagen-synthesizing ability of vascular smooth muscle cells 
which contribute to the structural integrity of the plaque. On the other hand, matrix 
metalloproteinases released by inflammatory cells have the opposite effect of 
degrading collagen and extracellular matrix, causing the destabilization of the 
plaque [32]. Hence, the significance of UCP in the formation of a collagen-rich 
plaque can be appreciated as it delays the progression of atherosclerosis.
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1.3.2  Ischemic Heart Disease and Myocardial Infarction

Ischemic heart disease (IHD) is characterized by an imbalance between coronary 
blood supply and cardiac oxygen demand. IHD can progress to cause myocardial 
infarction (MI). MI is most commonly caused by acute coronary artery thrombosis 
on the background of a disruption of an atherosclerotic plaque. The disruption of an 
atherosclerotic plaque via rupture or fissuring results in the formation of a thrombus 
which can occlude a coronary artery. The occlusive thrombus impedes the coronary 
flow to the myocardium. A functional consequence that occurs within a minute or 
so from the onset of ischemia is the loss of myocyte contractility. Changes at the 
microscopic level include mitochondrial and cell swelling, glycogen depletion, and 
myofibrillar relaxation [33]. This results in cardiac dysfunction (reduced cardiac 
wall motion) and decreased cardiac output. As part of the body’s compensatory 
mechanism to maintain cardiac output during an acute infarction, the nonischemic 
myocardial wall responds by an initial hypercontractility state [34]. However, this 
might be associated with an “inevitable” increase in mitochondrial ROS 
generation.

In a study that induced an anterior MI in dogs by ligation of the left anterior 
descending coronary artery, it was shown that the expression of UCP3 was upregu-
lated in the mitochondria isolated from the posterior, nonischemic myocardium. 
UCP3 expression levels were also found to be inversely related to ROS levels. This 
suggests that UCP3 might have a protective effect against ROS production from an 
ischemic event [35]. However, as the mitochondria become increasingly bioenerget-
ically inefficient, there is a decrease in respiratory coupling and ATP production. 
Whether this decrease in energy supply affects the contractile function of the non-
ischemic myocardium warrants further investigation. In support of this observation, 
upregulation of UCP2 and UCP3 have been found to be associated with increased 
levels of plasma FFA in patients undergoing coronary arteries bypass surgery [21]. 
The increased levels of cardiac UCPs are associated with a subsequent energy defi-
ciency characteristic of a failing heart [21]. This association between increased lev-
els of cardiac UCP and a reduction in cardiac efficiency due to the decline in the rate 
of ATP synthesis has been further observed experimentally in chronically infarcted 
rat heart [36].

1.3.3  Reperfusion and Its Associated Effects on Mitochondria 
ROS and Uncoupling

The early cellular changes due to MI are potentially reversible and do not necessar-
ily lead to cell death if prompt reperfusion intervention is carried out. It is only with 
severe ischemia lasting for more than 20–40 min will irreversible myocyte injury 
and death ensue. Therefore, the critical window between the onset of ischemia and 
its progression to cell death is of clinical relevance. In ideal situations where early 
clinical detection of acute MI is made and subsequent coronary vascular interven-
tion carried out, ischemic myocardium can be salvaged and cell death averted. 

1 Modulation of Oxidative Stress in Heart Disease by Uncoupling Proteins



14

Interventional strategies, such as thrombolysis or angioplasty or a coronary artery 
bypass graft, have the aim of restoring blood and hence oxygen flow to the ischemic 
myocardium and the ischemic zone close to the infarcted area. However, as straight-
forward as it sounds, such reperfusion does come at a cost and might, unfortunately, 
do more harm than good. Myocardial ischemia-reperfusion injury (IRI) occurs 
when reperfusion of cardiac tissue after an episode of ischemia actually causes 
damage to the tissues rather than the restoration of normal function [37]. This is 
because the inflammation associated with ischemia may be exacerbated with reper-
fusion, mediated in part by the influx of leukocytes and plasma proteins. Activated 
leukocytes produce, among other substances, reactive oxygen and nitrogen species 
which worsen tissue injury. Oxidases present in endothelial and parenchymal cells 
also contribute to the production of ROS as damaged mitochondria cause the incom-
plete reduction of oxygen. The cell’s natural antioxidant defense mechanism is also 
rendered dysfunctional due to the ischemic insult, favoring the accumulation of free 
radicals. Moreover, IRI has also been observed with cardiac manipulations resem-
bling beating coronary bypass surgery of the coronary arteries at the posterior wall 
of the heart with a significant prompt increase in cardiac ROS generation [38].

Ischemic preconditioning (IPC) is a phenomenon first identified by Murry and 
associate in 1986 [39]. It was observed that repetitive, short, and nonlethal episodes 
of ischemia actually protected the myocardium from subsequent ischemic insults. 
Since then, many studies have been done on the usefulness of induced IPC in the 
clinical setting. Indeed, IPC has been reported to cause a reduction in infarct size as 
well as the preservation of endothelial cell function.

A reduction in oxygen supply to cardiomyocytes during an ischemic event acti-
vates the mitochondrial pathway of apoptosis. Cytochrome c is released and the 
caspase cascade is activated, leading to nuclear fragmentation and ultimately cell 
death. This series of events is believed to be caused by an elevation of mitochondrial 
ROS.  In preconditioned cardiomyocytes, the resistance to ischemia is conferred 
through the action of uncoupling proteins which act to decrease the production of 
ROS by uncoupling respiration. By reducing the release of cytochrome c from the 
mitochondria, IPC helps in decreasing IRI-induced apoptosis [40]. Despite the 
scarce of experimental work on UCP role in IRI, it can be concluded that UCP- 
mediated proton leak and concomitant mitochondrial uncoupling can protect against 
myocardial IRI by reducing ROS generation [41] (Fig. 1.3).

1.3.4  Heart Failure

Heart failure  (HF), the common endpoint of many cardiac diseases, remains the 
leading cause of morbidity and death worldwide [42]. HF is associated with an 
increased production of ROS. Specifically, it has been found that situations such as 
pressure overload can substantially increase ROS generation in the heart [43]. 
Under normal conditions, the heart has an antioxidant defense system to combat the 
rise in ROS. However, when the increase in ROS exceeds the antioxidant capacity 
of the heart, heart injury ensues. Cardiac UCP2 and UCP3, through their action as 
uncouplers, allow proton leak across the inner mitochondrial membrane. This 
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results in a reduction in ROS produced by the mitochondria and subsequent cardio-
myocyte apoptosis [9].

The importance of UCPs in regulating mitochondrial ROS production and hence 
cardiac function is demonstrated by the action of doxorubicin, a chemotherapy drug 
also known as Adriamycin. Doxorubicin is a highly effective chemotherapeutic 
agent, but its use has been limited by its dose-dependent cardiotoxicity [44]. This is 
because doxorubicin decreases cardiac UCP2 and UCP3 expression, causing a sub-
sequent increase in oxidant stress in the setting of a failing heart [45]. Again, this 
points to the close relationship between UCPs and ROS-induced apoptosis in heart 
failure.

Furthermore, the increased levels of FFA frequently observed in the early stage 
of HF are directly associated with UCPs. Cardiac UCP2 and UCP3, in particular, 
are upregulated when FFA levels rise and have been observed to have a greater 
affinity for unsaturated FAs such as linoleic, arachidonic, and oleic acids as com-
pared to saturated FAs [46]. Several factors associated with an increased metabolic 
or oxidative stress in cardiac cells and increased FFAs can induce an overexpression 
of UCP2 and UCP3 in a failing heart. These factors include fasting (with an increase 
in FA mobilization from adipose tissue), diabetes, and thyroid hormone treatment. 
UCP3 overexpression may play an important role in exporting fatty acids that can-
not be oxidized from the mitochondrial matrix, thereby inhibiting the accumulation 
of fatty acids inside the matrix and prevents lipid-induced mitochondrial damage 
and mitochondria-dependent apoptosis [10]. Several experimental studies have 
established a role of UCP2 and UCP3 in downregulation of programmed cell death 
and to slow down the progression to heart failure [47, 48].

Fig. 1.3  Summary of the main activators of UCPs and their proposed regulatory functions in the 
cell

1 Modulation of Oxidative Stress in Heart Disease by Uncoupling Proteins



16

While overexpression of UCP3 seems to be protective in early stages of HF, in 
the later stages, however, FA oxidation decreases, along with mitochondrial oxida-
tive activity due to UCP activation and overexpression, causing a decrease in car-
diac ATP levels [9] and myocardial dysfunction (Fig. 1.3).

1.3.5  Myocardial Hypertrophy

Myocardial hypertrophy is often a compensatory mechanism in response to 
increased cardiac workload. Conditions such as the stenosis of aortic valves or 
chronic hypertension can increase the afterload against which the left ventricle has 
to pump. This causes an increase in left ventricular wall stress which stimulates the 
deposition of extracellular matrix and myocardial hypertrophy. Compensatory myo-
cardial hypertrophy can take on two main forms, depending on whether it is devel-
oped in response to chronic pressure or volume overload. Chronic pressure overload 
such as in the case of hypertension or aortic stenosis results in new sarcomeres 
being added in parallel to existing ones, causing the ventricular wall to thicken with-
out an accompanying increase in chamber size. This is known as concentric hyper-
trophy. Chronic volume overload such as in the case of mitral or aortic valve 
incompetence leading to regurgitation results in new sarcomeres being added in 
series to existing ones, causing an increase in the size of the ventricular chamber in 
proportion to the increase in wall thickness. This is known as eccentric hypertrophy. 
Other than pathological cardiac hypertrophy, physiological hypertrophy can also 
result from exercise without an impairment of cardiac function.

The expression of UCP2 was found to be upregulated in pathological hypertro-
phy [49] but downregulated in physiological hypertrophy, possibly to promote effi-
cient energy production in the latter condition. In particular, there is evidence that 
UCP2 levels are increased in response to pressure overload in an attempt to avert 
apoptosis of cardiomyocytes [50]. Furthermore, a knockout of the UCP2 gene or its 
inhibition by genipin produced the same effect (in mice) – an attenuation of cardiac 
hypertrophy caused by pressure overload in part by increasing mitochondrial ATP 
production and decreasing myocyte apoptosis [51]. The expression of UPC2 has 
been found to be normalized by the use of two common pharmacological treatments 
for heart failure, namely, beta-blockers [49] and angiotensin-converting enzyme 
inhibitors (ACE inhibitors) [52]. Therefore, it has been proposed that blocking 
UCP2 expression in chronic pathological myocardial hypertrophy may improve 
cardiac performance and overall myocardial energy production efficiency.

1.3.6  Myocarditis

ROS are produced at high levels in myocarditis. ROS are produced by mitochon-
drial respiratory chain reactions and enzymes including NADPH oxidases, cyclo-
oxygenase, and xanthine oxidase in the inflammatory cells such as macrophages. 
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Other systems involved in inflammation and stress response, such as NF-κB, and 
other cytokine factors also induce oxidative stress in myocarditis.

An elevated ROS production generated in severe inflammation with subsequent 
ROS-mediated damage beyond what the cellular antioxidant defense system can 
handle causes heart injury and further exacerbates inflammation. Long-lasting oxi-
dative stress could be one of the pathological mechanisms of cardiac alteration and 
transformation leading to inflammatory cardiomyopathy and cardiac remodeling. 
This is where the role of UCPs comes to the fore. They have been seen to regulate 
ROS production in both cardiac and the inflammatory cells as well. Experimental 
evidence shows macrophages from UCP2-deficient mice exhibiting a marked 
increase in ROS generation as compared to their wild-type counterparts [36]. 
Furthermore, a high level of TNFα caused a corresponding increase in the expres-
sion of UCP2 and UCP3 in the rat muscle [25]. This could be regarded as an adap-
tive response in the setting of myocarditis, which remains open to debate. When 
ROS levels increased, cardiac function was impaired to a greater extent in UCP3- 
deficient mice as compared to their wild-type counterparts. The delay in the pro-
gression of cardiac dysfunction in the wild-type mice can be attributed to the fivefold 
increase in UCP3 levels observed [36]. However, this decrease in ROS production 
via mitochondrial uncoupling comes at a cost of decreased efficiency in ATP syn-
thesis and energy reserve. The observed myocardial dysfunction during myocarditis 
and HF could be attributed (at least partly) to mitochondrial reduced efficiency. 
Therefore, it cannot be conclusively determined if upregulation of UCP3 is an adap-
tive or maladaptive response in myocarditis (Fig. 1.3).

1.4  Modulation of Oxidative Stress as a Potential 
Therapeutic Target

Overexpression of UCPs have  beneficial effects on cardiac energetics regulation, 
mitochondrial ROS production, calcium handling, and cardiomyocyte apoptosis 
[53]. Increased UCP expression could also have a positive effect on the cell function 
in some pathological conditions (e.g., endothelial dysfunction); however, it may have 
an opposite effects on other CVDs. The associated decrease in ATP synthesis with 
overexpression of UCP may have deleterious consequences on cardiac function and 
may worsen the clinical outcomes. Thus, modulation of oxidative stress through 
UCP regulation in CVD as a therapeutic option should be considered carefully.

Downregulation of UCP in heart failure and subsequent inability of the cell to 
combat the oxidative burden caused by the failing heart have led to potential thera-
peutic role of UCP to compact the pathogenesis of the disease. As suggested above, 
the pathogenesis of heart failure has been characterized by an increase in ROS pro-
duction and ROS-mediated damage. UCPs are known to prevent ROS accumulation 
and hence decrease the oxidative burden by limiting ROS production. Furthermore, 
UCPs may be involved in the detoxification of exogenously produced ROS. In the 
setting of heart failure, there is an increase in the concentration of circulat-
ing  FFA.  This is positively correlated with an increase in cardiac mitochondrial 
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UCPs. The metabolic effects of UCPs are cardioprotective in nature and are in fact 
an adaptive response to the rise in lipid concentration in the mitochondria [54]. 
Therefore, upregulating UCP expression in heart failure could be of therapeutic 
benefit.

One of the key regulators of UCP expression in the heart is PPARα. Hence, to 
upregulate UCP expression, agonists of PPARα could theoretically be used. 
Currently, there is an ongoing study in the use of such agonists in the treatment of 
diabetes which can be extended to the study of their use in heart failure.

AMPK has been implicated to have a protective role (antiapoptotic) as it enhances 
the survival of cardiomyocytes in response to ischemia and reperfusion. Loss of 
AMPK activity results in an inability to increase glucose uptake and glycolysis by 
the cardiomyocytes [55]. Taken together, as a result of AMPK role in mediating the 
survival of cardiomyocytes during ischemia, is it also a potential target for augment-
ing the expression of UCP in heart failure.

Another translational approach would be the development of drugs that would 
induce UCP expression and hence slow the progression of atherosclerosis and endo-
thelial dysfunction. The effects of sitagliptin, a fibrate vegetable extract, have been 
shown to increase the expression of UCP2 with an associated improvement in mito-
chondrial biogenesis and function [56]. As such, development of a therapeutic agent 
that modulates oxidative stress could exert a significant vascular protection.

1.5  Conclusion

Oxidative stress has a crucial role in the initiation and progress of cardiac diseases. 
Cardiac cells are equipped with powerful antioxidant defense systems and have the 
ability to mitigate damage by ROS.  Clinically, most of the attention has been 
focused on the potential protective role of antioxidants in CVD. Much less attention 
has been paid to the mechanisms that regulate ROS production. UCPs seem to be a 
good candidate to regulate the endogenous ROS; however, activation of UCPs in 
highly energy-demanding cells such as cardiomyocytes may have a negative effect 
on the cardiac cell function. Whether these are an adaptive or maladaptive response 
to stress conditions needs further mechanistic understanding. UCPs play a double- 
edged sword with favorable and unfavorable consequences. On one hand, activation 
of UCPs would reduce the mitochondrial ROS generation and, thus, protects the cell 
from the oxidative damage and improves cell function. On the other hand, activated 
UCPs would reduce the mitochondrial efficiency to produce ATP and consequently 
limit the energy supply needed to sustain efficient contraction.
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Abstract

Depending on their levels, source of generation, and subcellular locations, reac-
tive oxygen species (ROS) are known to have paradoxical effects on coronary 
vascular endothelium. At low concentrations, ROS contribute to physiological 
signaling pathways that regulate vascular endothelial cell (EC) growth and sur-
vival. At higher concentrations, or with prolonged exposure, ROS can exacerbate 
endothelial cell injury and trigger apoptosis. In this chapter, oxidant-dependent 
and oxidant-independent angiogenic and vasomotor signaling pathways will be 
discussed in-depth, including the structures of oxidant-producing enzymes, their 
agonists, and their related signaling pathways in EC. Vascular endothelial growth 
factor (VEGF), a major growth factor involved in the maintenance of EC health, 
vasomotor tone, and angiogenesis, will also be discussed. VEGF utilizes both 
reactive oxygen species (ROS)-dependent and ROS-independent arms of EC 
signaling.

In this chapter, NADPH oxidase (NOX)-induced oxidant-dependent angio-
genesis will be discussed in-depth, including the structures of all NADPH oxi-
dase isoforms, agonists, and transcription factors that are involved in 
proangiogenic signaling pathways. We will also discuss vascular endothelial 
growth factor (VEGF) signaling pathways that are affected by the upregulation 
of ROS generation.

Previously, increased levels of ROS were believed to be purely associated 
with pathological conditions as seen in cardiovascular diseases (CVD). Indeed, 
ROS are produced in higher levels at sites of inflammation and injury by the 
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mitochondria and enzymes, such as NADPH oxidases. Recent findings, as to be 
discussed in this chapter, have contradicted this notion that ROS are purely a part 
of pathophysiological pathways. Studies have shown that experimentally reduc-
ing global ROS levels does not improve vascular function and recovery as 
expected. Reducing ROS levels instead results in inhibition of endothelial nitric 
oxide synthase (eNOS) activation and decreased nitric oxide (NO) synthesis in 
endothelial cells. Rather than improving vascular function, a global decrease in 
ROS hinders endothelial function, reduces coronary vasodilation, and inhibits 
angiogenic signaling. Several recent reports suggest that homeostatic and even 
above physiological levels of subcellular ROS may contribute to optimal endo-
thelial cell and vascular functions. These studies suggested that the beneficial 
versus detrimental effects of higher levels of ROS are time-, location- and 
concentration-dependent.

This chapter will shed light on the overwhelming interconnectedness of NOX, 
growth factors, and vasoactive factors as well as larger-scale oxidant-dependent 
and oxidant-independent pathways to elucidate the complexity of signaling in 
coronary vascular endothelium.

Keywords
Oxidative stress · Reactive oxygen species · Vascular endothelium · Cardiovascular 
diseases · NADPH oxidase · Angiogenesis factor · Endothelial nitric oxide 
 synthase · Endothelium-dependent relaxing factors · Vascular endothelium- 
dependent relaxation · VEGF

2.1  Introduction

In this chapter, oxidant-dependent and oxidant-independent angiogenic and vaso-
motor signaling pathways will be discussed in-depth, including the structures of 
oxidant-producing enzymes, their agonists, and their related transcription factors in 
endothelial cell (EC). Vascular endothelial growth factor (VEGF) which is a major 
growth factor involved in the maintenance of EC health, vasomotor tone, and angio-
genesis, will also be discussed. VEGF utilizes both reactive oxygen species (ROS)-
dependent and ROS- independent arms of EC signaling.

ROS are produced at higher levels at sites of inflammation and injury by 
enzymes, such as NADPH oxidase. At low concentrations, ROS contribute to phys-
iological signaling pathways that regulate cell growth and cell survival. At higher 
concentrations, or when exposure is prolonged, ROS can exacerbate endothelial 
cell injury and trigger apoptosis. In this chapter, NADPH oxidase-induced oxidant-
dependent angiogenesis will be discussed in-depth, including the structures of all 
NADPH oxidase isoforms, agonists, and transcription factors that are involved in 
proangiogenic signaling pathways. We will also discuss vascular endothelial growth 
factor (VEGF) signaling pathways that are affected by the upregulation of ROS 
generation.
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Previously, increased levels of ROS were believed to be purely associated with 
pathological conditions as seen in cardiovascular diseases (CVD). Indeed, ROS are 
produced in higher levels at sites of inflammation and injury by the mitochondria 
and enzymes. Recent findings, as to be discussed in this chapter, have contradicted 
this notion that ROS are purely a part of pathophysiological pathways. Studies have 
shown that experimentally reducing global ROS levels does not improve vascular 
function and recovery as expected. Reducing ROS levels instead results in inhibi-
tion of endothelial nitric oxide synthase (eNOS) activation and decreased nitric 
oxide (NO) synthesis in endothelial cells. Rather than improving vascular function, 
a global decrease in ROS hinders endothelial function, reduces coronary vasodila-
tion, and inhibits angiogenic signaling. Several recent reports suggest that homeo-
static and even above physiological levels of subcellular ROS may contribute to 
optimal endothelial cell and vascular functions. These studies suggested that the 
beneficial versus detrimental effects of higher levels of ROS are time-, location-, 
and concentration-dependent.

Notably, VEGF is a major proangiogenic growth factor in endothelial cells required 
for normal vasculature in homeostasis; yet it can also contribute to tumor growth 
when uncontrolled. VEGF-mediated signaling pathways seem to be influenced by the 
levels of ROS. This chapter discusses the VEGF-mediated oxidant- independent and 
oxidant-dependent pathways that lead to augmented angiogenesis and explores the 
roles that oxidized low-density lipoproteins play in these signaling cascades. 
Participating in both oxidant-dependent and oxidant-independent pathways, VEGF 
responds to oxidative stress by activating the PI3K-Akt-eNOS pathway and NO syn-
thesis, thus inducing vasodilation. The VEGF downstream signaling pathway can also 
be activated independently of ROS by activating the PLC γ-ERK1/2 axis.

The endothelium itself also plays a significant role in regulating vascular tone in 
response to different stimuli, such as oxygen consumption and shear stress. For 
instance, the endothelium can induce a vasodilatory response through the release of 
vasoactive agents, such as NO, prostacyclin, acetylcholine, and endothelium- 
derived hyperpolarizing factor. While some of these factors and signaling molecules 
depend on ROS, we will also discuss the preferential oxidant-independent pathways 
of vasoactive agents like arachidonic acid metabolites, endothelium-derived hyper-
polarizing factors, and acetylcholine. The various mechanisms that govern the inter-
actions between different endothelium-derived vasoactive molecules will also be 
discussed.

2.2  Regulation of Coronary Vascular Function 
and Angiogenesis

Maintaining a vascular homeostasis is essential for cardiovascular health and to 
provide adequate blood supply to the tissues. It is known that the cardiovascular 
system is considered as a recourse allocation in the presence of trigger factors, such 
as exercise, hypoxia, and others [1]. Thereby, the body has developed a way for 
recourse allocation during hypoxic or ischemic crisis, allotted as vasodilation and 
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angiogenesis. Vasodilation or vasorelaxation of the arterioles increases blood flow 
by reducing resistance. Vascular endothelium plays a critical role in the process by 
synthesizing NO that acts on the adjacent smooth muscle layer in the arterioles and 
produces relaxation resulting in vasodilation. Angiogenesis is the physiological pro-
cess of forming new blood vessels from preexisting vessels [2]. Several regulators 
play a pivotal role to control angiogenesis. The importance of these regulators, 
including oxidant-dependent and non-oxidant regulators, in angiogenesis is becom-
ing increasingly apparent. However, pathophysiological responses have shown clin-
ical implications related with variation in the concentration, time exposure, or 
source of the stimuli. In this chapter, pathways regulating angiogenesis and vascular 
response have been classified as oxidant-dependent and oxidant-independent 
pathways.

The process of angiogenesis involves multiple steps that start with the increase in 
vascular permeability, resulting in the deposition of plasma proteins, such as fibrin-
ogen, fibronectin, and plasminogen in the extracellular matrix [3]. These proteins 
eventually get activated and form a fibrin-fibronectin gel [3, 4]. The fibrin- fibronectin 
gel facilitates and acts as a scaffold that supports the migration of endothelial cells 
and fibroblast within the extracellular matrix (ECM) [3, 5]. The last step in angio-
genesis involves remodeling and maturation of the newly formed blood vessel and 
deposition of new extracellular matrix which contains components that are nor-
mally not found in adult ECM [3]. These ECM components include tenascin, larger 
amounts of hyaluronan and chondroitin sulfate proteoglycans, abnormally glycosyl-
ated decorin, and plasma protein-rich interstitial fluid.

2.3  NADPH Oxidase-Derived Oxidant-Dependent Vascular 
Signaling

2.3.1  Structure and Subcellular Localization of NADPH Oxidases

NADPH oxidase (NOX) is an intracellular membrane-bound enzyme complex that 
has the capacity to transfer electrons from NADPH to an oxygen molecule, produc-
ing the superoxide anion, O2

− [6–8]. Unlike other reactive oxygen species (ROS)-
producing enzymes, ROS production is the sole function of NOX enzyme [6]. Thus, 
NOX enzyme is considered the major non-mitochondrial source of ROS in various 
tissues in the body, including coronary endothelium. In the vasculature, there are 
different isoforms of NADPH oxidases that have been identified, namely, NOX1, 
NOX2 (gp91phox), NOX4, and NOX5 [6, 8–10]. NOX enzymes exhibit distinct 
isoform- dependent localization, subcellular regulatory subunits, and involvement in 
physiological function [10]. All four NOX isoforms are found in the endothelium; 
NOX1, NOX4, and NOX5 are found in vascular smooth muscle cells; and NOX2 
and NOX4 are found in adventitial fibroblasts [9, 10]. Vascular NADPH oxidase is 
composed of membrane-bound and cytosolic regulatory subunits (Fig.  2.1) [10]. 
Three isoforms, NOX1, NOX2, and NOX4, are associated with the protein p22phox. 
NOX1 requires the cytosolic subunits NOX organizer 1 (NOXO1), NOX activator 1 
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(NOXA1), and the small G-protein Rac1 for its activity. NOX2 activity is dependent 
on the cytosolic subunits p40phox, p47phox, p67phox, and Rac1. NOX4, however, is 
constitutively active and does not require cytosolic factors for its activity but can be 
activated by polymerase-δ-interacting protein 2 (POLDIP2). The NOX5 isoform is 
the only NOX isoform not associated with p22phox. NOX5 is a calcium-dependent 
enzyme which can be regulated by calmodulin [10, 11]. The distinct locations and 
functions of the NADPH oxidase isoforms have been shown to exert different physi-
ological and pathological effects in vascular homeostasis, involving signal transduc-
tion, cell proliferation, and apoptosis. NADPH oxidases are considered to be major 
sources of ROS in ECs. Since ECs do not depend on their energy production (ATP) 
on mitochondrial oxidative phosphorylation and instead depend on the glycolytic 
pathway, the mitochondria are believed to be a minor source of ROS.

2.3.2  NOX1-Induced Oxidant-Dependent Vascular Response

There is compelling evidence that ROS produced in vascular smooth muscle cells 
(VSMC) influence the function of endothelial cells and the development of several 
cardiovascular diseases [12–19]. Of interest, NOX1 enzyme is predominantly 
expressed in VSMC and has been associated with VSMC migration and prolifera-
tion, as well as pathological hypertension and neointimal formation [19–22]. 
Upregulation of NOX1 has been implicated in augmenting and maintaining the 
angiotensin II vasomotor response [14, 15]. One study showed that in mice treated 
with angiotensin II, there is impairment of endothelium-dependent vasorelaxation 

Fig. 2.1 The structure of vascular NADPH oxidases. NOX1, NOX2, NOX4, and NOX5 are local-
ized in the membrane and associated with p22phox, except for NOX5. NOX1 activity requires 
NOXO1, NOXA1, and Rac. NOX2 (gp91phox) activity requires p40phox, p47phox, p67phox, and Rac. 
NOX4 does not require a cytosolic factor for its activity but can be activated by POLDIP2. NOX5 
activity is dependent on Ca2+. All NOX isoforms produce reactive oxygen species by converting 
NADPH to NADP + H+, or NADH to NAD + H+
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due to a decrease in nitric oxide (NO) [14]. Another study showed that the produc-
tion of ROS through NOX1 in VSMC contributes to the uncoupling of endothelial 
nitric oxide synthase (eNOS). This creates a self-perpetuating cycle of NOX1- 
induced ROS production which subsequently impairs endothelium-dependent vaso-
relaxation [12]. It was also found that in NOX1-deficient mice, medial aortic 
hypertrophy and extracellular matrix accumulation were attenuated [9, 11]. 
Together, these findings suggest that NOX1 plays a critical role in the pathogenesis 
of angiotensin II-induced hypertension. Other studies have implicated NOX1 in the 
pathogenesis of atherosclerosis [18, 20–22]. For example, it has been found that in 
NOX1-deficient mice, the levels of ROS production, neointimal growth, and migra-
tion were attenuated in the setting of injury-induced neointimal formation [18, 22]. 
Thus, selective inhibition of NOX1 may contribute to halting the formation of an 
atherosclerotic plaque. Further studies should be conducted to examine the role of 
EC-specific NOX1-derived ROS in human coronary vessels since NOX1 is also 
expressed in endothelial cells and may play a crucial role in endothelial signaling 
pathways and phenotypes.

2.3.3  NOX2-Induced Oxidant-Dependent Vascular Response

The NOX2 enzyme has been shown to induce positive effects on the coronary endo-
thelium [8]. Reduced ROS levels have been shown to inhibit coronary vasorelax-
ation by inhibiting activation of PI3K-Akt-eNOS signaling and did not improve 
cardiovascular disease outcomes [23, 24]. Conversely, higher levels of ROS have 
been shown to improve endothelial function in a temporal-dependent manner [25, 
26]. Thus, it is imperative to study both the concentration-dependent and time- 
dependent effects of ROS on pathophysiological states.

In vitro studies have found that endothelial cell-specific NOX2 is involved in the 
activation of the phosphoinositide 3-kinase (PI3K)-Akt-eNOS-mediated cell growth 
and survival pathway and in increased vasodilation by producing NO (Fig. 2.2) [7, 
27]. However, an in  vivo study using EC-specific transgenic animal model has 
shown that endothelial NOX2 stimulates NO production via activation of the 
AMPK-eNOS axis through Ca2+-/calmodulin-dependent protein kinase kinase β 
(CaMKKβ). Activation of this particular axis was associated with improved 

Fig. 2.2 Vasodilation meditated via endothelial NOX2 enzyme. NOX2-derived ROS activates 
PI3K, leading to the activation of Akt family, which in turn stimulates eNOS to produce NO
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coronary vasodilation and increased endothelial cell proliferation and migration 
(Fig. 2.3) [27].

Autophagy is an intracellular process which regulates the degradation of pro-
teins, metabolites, and organelles [28]. This process starts by engulfing the cellular 
components in a double-membrane autophagosome. Subsequently, the autophago-
some merges with a lysosome where the components are degraded by the acidic 
environment [28]. A major part of autophagocytosed materials are recycled to syn-
thesize cellular proteins, enzymes, nucleic acids, etc. The autophagy process exerts 
a protective effect during cell damage. Increased ROS levels have been shown to 
stimulate AMPK-mediated inhibition of mTOR (Fig.  2.3) [27], which results in 
increased autophagy to help recycle the damaged organelles.

Supraphysiological ROS levels exert distinct beneficial and detrimental effects 
on the coronary endothelium depending on the duration of exposure. After short- 
term ROS exposure, EC-specific NOX2 activates the CaMKKβ-AMPK-eNOS-NO 
pathway to produce beneficial effects, such as vasodilation [26]. However, a sus-
tained increase in ROS levels seems to exert deleterious effects on endothelial cells 
[26]. This sustained increase in ROS results in the formation of peroxynitrite and a 
decrease in NO bioavailability via increased NO quenching by ROS, rather than 
direct inhibition of eNOS enzymatic activity. Sustained ROS exposure also results 
in inactivation of mitochondrial antioxidant MnSOD and thus increase in mitochon-
drial ROS levels with a decrease in mitochondrial membrane potential. All of these 
effects have resulted in decreased vasodilation and cell proliferation (Fig. 2.3) [26].

The above-mentioned findings advance our understanding of concentration- 
dependent and time-dependent roles of NOX2-derived ROS and the communication 

Fig. 2.3 Vasodilation and angiogenesis mediated via endothelial NOX2-derived ROS using a 
transgenic animal model. NOX2 activates CaMKKβ which activates AMPK.  AMPK-mediated 
activation of eNOS leads to NO production. AMPK-mediated inhibition of mTOR leads to a pro-
tective autophagy response. After long-term ROS exposure, increased –ONOO formation occurs by 
ROS and NO, which in turn inhibits vasodilation and angiogenesis
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between subcellular compartments. It further suggests the critical impact on under-
stating disease states and future subcellular compartment-specific treatment modali-
ties that can offer better management of cardiovascular diseases. Hence, future 
work is warranted to address the effects of subcellular ROS.

2.3.4  NOX4-Induced Oxidant-Dependent Vascular Response

The NOX4 enzyme produces ROS, predominantly hydrogen peroxide (H2O2) mol-
ecules [8, 19, 29–33]. Compared to the other NOX isoforms, NOX4 is expressed 
most abundantly in endothelial cells [8]. This enzyme has potential beneficial effects 
on vascular functions [28, 31–35]. There is a notion that NOX4 may act as a sensor 
for nuclear redox reactions due to its subcellular location in the human endothelial 
cell [34]. Functionally, NOX4-derived H2O2 activates transforming growth factor β1 
(TGF β1) which induces vascular angiogenesis and increases hemoglobin content 
[35]. NOX4-derived H2O2 acts as an endothelial vasodilator and enhances blood 
flow. One intriguing mechanism by which ROS act as vasodilator is endothelium 
hyperpolarization [36–38]. This may happen due to Ca2+ release from the endothe-
lial endoplasmic reticulum which potentiates the opening of Ca2+-activated K+ chan-
nels. NOX4 also participates in cell survival by inhibiting the activation of apoptotic 
caspases [35]. One plausible mechanism for this observation is through activation of 
heme oxygenase-1 (HO-1). HO-1 is an enzyme that confers a vascular protective 
role through several mechanisms [35]. In NOX4 knockout mice, HO-1 levels were 
reduced which was accompanied by an increase in apoptosis and endothelial 
E-selecting expression [35]. To maintain expression of HO-1, NOX4 protects the 
oxidation of Kelch-like ECH-associated protein (Keap), which in turn prevents deg-
radation of Nrf-1, a transcriptional factor for HO-1. These findings suggest that 
therapeutic strategies to regulate ROS levels to treat cardiovascular diseases require 
careful consideration of the source of ROS, for example, NOX4 is unique in its 
propensity to produce H2O2 rather than O2

−.

2.3.5  NOX5-Induced Oxidant-Dependent Vascular Response

NOX5 enzyme has been found in the endoplasmic reticulum of human microvascu-
lar endothelial cells (HMEC-1) and in the vascular wall [39]. It is unique in its 
structure because it contains an additional N-terminal region that binds calcium, 
allowing the activation of the enzyme through an increase in intracellular calcium 
levels [39, 40]. It has different variants, including NOX5α, NOX5β, NOX5γ, and 
NOX5δ. Some of these variants, including NOX5β, NOX5δ, and a variant lacking 
the calcium-binding domains (NOX5S), are expressed in the vasculature of HMEC-1 
and contribute to endothelial ROS production, cell proliferation, and angiogenesis 
[11, 39].
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In response to thrombin, NOX5 variants were implicated in the production of 
ROS and the formation of capillary-like structures, which are indications of an 
NOX5 angiogenic response [24–41]. NOX5β and NOX5S were especially found to 
be responsible for ROS basal level elevation. This shows that NOX5 may play an 
equally pivotal role as NOX2 in endothelial responses to thrombin. Although NOX2 
requires p22phox for ROS production, NOX5 apparently does not require p22phox [42, 
43, 47].

In a patient with atherosclerosis, the level of calcium-dependent NADPH oxi-
dase, NOX5, was markedly elevated compared to non-atherosclerotic subjects [11]. 
Mechanistically, NOX5 seems to share similarities with NOX4, as NOX5 predomi-
nantly releases H2O2 in the human vasculature [11]. As mentioned previously, H2O2 
plays a critical dual role in cell signaling and contributes to atherosclerotic plaque 
development. Increasing the levels of Ca2+ in endothelial cells promoted an increase 
in NO production; however, one plausible mechanism involved in the development 
of atherosclerosis is the consumption of NO by ROS [11]. Furthermore, increasing 
Ca2+ in vascular smooth muscle cells triggered the contractile apparatus and a loss 
of NO due to diffusion into other cells [11]. These events may alter the vascular 
response to vasoactive hormones. Thus, calcium channel antagonists are commonly 
employed to treat cardiovascular diseases by reducing intracellular calcium and 
exert beneficial effects by inhibiting NOX5 enzyme, subsequently preventing oxi-
dant injury.

2.3.6  Mitochondria-Derived Oxidant-Dependent Vascular 
Response

Mitochondria are endomembrane organelles found in all eukaryotic cells [44, 45]. 
They orchestrate energy production through respiration via a process known as oxi-
dative phosphorylation [44, 45]. Yet the role of mitochondria goes beyond energy 
production and includes ROS formation, activation of cellular death, and calcium 
regulation [46]. They have distinct form and functions depending on the cell type. 
In an endothelial cell, mitochondria comprise less than 6% of cell volume, which 
implies that endothelial cells do not rely on mitochondria-derived energy, but rather 
on anaerobic glycolysis [28, 47]. In fact, mitochondria seem to serve primarily as 
critical signaling organelles in the vascular endothelium rather than energy power-
houses [46]. For example, mitochondria have been reported to be anchored to the 
cytoskeleton of coronary endothelial cells and to play roles in angiogenesis in 
response to shear stress [48]. As intermediary signals, mitochondria are a vital 
mediator for downstream regulation of angiogenesis-related gene expression, as 
well as apoptosis [28, 46–48]. Thus, preserving the mitochondrial quality control is 
essential for optimal function of EC. This is accomplished by biogenesis, dynamics, 
and mitophagy of the mitochondria [46].

Increased mitochondrial mass is required to carry out different functions. A key 
mediator which coordinates mitochondrial replication and expression is proliferator- 
activated receptor-γ coactivator-1α (PGC-1α) (Fig. 2.4) [28]. PGC-1α serves a dual 
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function in protecting EC against excessive oxidative stress. PGC-1α triggers mito-
chondrial biogenesis by activating two critical factors, nuclear respiratory factors 1 
and 2. It also triggers the expression of mitochondrial transcription factors A and B 
(TFAM and TFBM) to regulate the expression of mitochondrial DNA [46]. PGC-1α 
also regulates the expression of VEGF-1 to induce angiogenesis in vascular endo-
thelium [49]. Moreover, it regulates the expression of other genes related to lipid 
and glucose metabolism, as well as apoptosis [50–52].

Mitochondria undergo cyclic and balanced fusion and fission processes to pre-
serve their integrity (Fig. 2.4) [53]. Fusion of the outer membrane is carried out by 
the transmembrane GTPases mitofusin-1 and mitofusin-2 (MFN1, MFN2), whereas 
fusion of the inner membrane is mediated by optic atrophy protein-1 (OPA1). This 
process is imperative for the distribution of protein, metabolites, and mitochondrial 
DNA within the mitochondria. Moreover, it is critical for the maintenance of electri-
cal and biochemical connectivity [28]. Fission is controlled by Fission 1 (FIS1) 
which recruits dynamin-related protein-1 (DRP1) to initiate the process. Fission is 
essential for cell division and elimination of senescent mitochondria [28]. During 

Fig. 2.4 Illustration of the mitochondrial life cycle and the involvement of mitochondrial dynamic 
mitophagy mechanisms to maintain quality. Biogenesis and gene expression are regulated by 
PGC-1α, which activates NRF1, NRF12, TFAM, and TFBM. The mitochondria undergo cyclic 
and balanced fusion and fission processes to preserve their function. Fusion is regulated by MFN1, 
MFN2, and OPA1 to form elongated mitochondrial networks. Similarly, fission is regulated by 
FIS1 and DRP1 to form smaller organelles. In mitophagy, the process is triggered by mitochon-
drial membrane depolarization, which causes the accumulation of PINK1, which recruits parkin. 
P62 is also vital for the formation of the autophagosome and is subsequently degraded during 
active autophagy. NIX may trigger the uncoupling of Beclin-1 from BLC-2 and BCL-XL. Beclin-1 
and LC3-I are conjugated onto phosphatidylethanolamine to form LC3-II, causing the assembly of 
autophagosome after the enclosure and isolation of mitochondria in the phagophore. Finally, the 
autophagosome is incorporated into a lysosome, which initiates the mitophagy process
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apoptosis, fission occurs concomitantly with the release of cytochrome c and outer 
membrane permeabilization [53, 54]. Emerging evidence has demonstrated that 
mitochondrial dynamics are critical in patients with cardiovascular risk factors. For 
example, polymorphism in the OPA1 and MFN2 genes have been implicated in 
hypertension [55, 56].

Mitochondrial-specific autophagy is referred to as mitophagy. Normal compo-
nents of the damaged mitochondria can be reincorporated, while dysfunctional 
progenies are sent for elimination [57]. This process is imperative to yield new 
daughter mitochondria after damage, as otherwise the mitochondria would undergo 
apoptosis. An important trigger for mitophagy is membrane depolarization, which 
under physiological conditions leads to the accumulation of tensin homolog-induced 
putative kinase protein-1 (PINK1), recruitment of the E3 ubiquitin ligase parkin, 
and derepression of Beclin-1 (Fig.  2.4) [58]. Mitochondrial surface proteins are 
ubiquitylated, resulting in the binding and degradation of p62, leading to creation of 
the autophagosome. The autophagosome requires several proteins for its matura-
tion, including microtubule-associated protein 1 light chain 3 (LC3-I), a ubiquitin- 
like protein which conjugates with Beclin-1 onto phosphatidylethanolamine to form 
LC3-II. The action of NIX, which is linked to the mitochondrial membrane and 
LC3, is also required to target mitochondrial autophagy [58]. During erythroblast 
differentiation, NIX is activated triggering mitophagy through uncoupling of 
Beclin-1 from BCL-2 and BCL-XL [59]. Compelling evidence shows that impaired 
mitophagy and autophagy are associated with the progression of several vascular 
diseases, such as atherosclerosis and hypertension [60]. These processes seem to 
form a protective response in the endothelium by improving vascular functions via 
breakdown and recycling of damaged cellular components. In Beclin-1/LC3-II- 
induced autophagy, clearance of oxidized LDL in an endothelial cell was accom-
plished, reinforcing the protective role of autophagy [61].

Mitochondrial ROS are tightly regulated to carry out physiological functions in 
EC.  Subcellular communications between endogenous cytosolic ROS and mito-
chondrial ROS have been identified and termed as ROS-induced ROS release [62]. 
One of the major enzymes that is linked to mitochondrial ROS production in the 
endothelial cell is NADPH oxidase, specifically NOX4 [63]. Another potential 
source of mitochondrial ROS is p66Sch, a growth factor adaptor protein that causes 
the oxidation of cytochrome c, generating H2O2 [64–66]. The effects of mitochon-
drial ROS have been shown to be concentration-dependent and time- dependent 
[26]. Low levels of mitochondrial ROS are associated with normal vascular 
responses, such as shear-stress-induced vasodilation, autophagy, and hypoxia sig-
naling [48]. However, the accumulation of mitochondrial ROS has been linked to 
vascular diseases, for instance, oxidized LDL-mediated dyslipidemia and NOX- 
derived ROS angiotensin II-induced hypertension [67, 68]. These vascular diseases 
can be improved by the production of endogenous antioxidants, which halt supra-
physiological ROS levels. For example, the mitochondrial antioxidant thioredoxin-2 
attenuates the levels of ROS and suppresses angiotensin II-induced hypertension 
[68]. Excessive mitochondrial ROS levels also have an influence on the develop-
ment of atherosclerotic plaque and endothelial dysfunction seen in diabetic patients 
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[69, 70]. In diabetes, high levels of blood glucose induce endothelial dysfunction 
which alters mitochondrial dynamics [46]. Concomitantly, mitochondrial fragmen-
tation is increased with an increase in organelle fission. Furthermore, the increase in 
the ROS levels has been shown to blunt cell growth and induce apoptosis. 
Interestingly, high levels of blood glucose alter mitochondrial membrane potential 
by activating metalloproteinase 9. The ROS increase also attenuates expression of 
PGC-1α, thus downregulating mitochondrial biogenesis and gene expression [46].

Following a short-term exposure to increased cytosolic ROS (by NOX) in coro-
nary endothelial cells induces mitochondrial ROS production, and the increased 
mito-ROS was checked or balanced by increase expression of mitochondrial anti-
oxidant, such as superoxide dismutase 2 (SOD2), resulting in the improvement of 
vascular functions [26]. On the contrary, long-term exposure to NOX-derived cyto-
solic ROS has been shown to produce detrimental effects, such as impairment of 
endothelium vasodilation [26]. During long-term exposure, uncontrolled levels of 
ROS allow the conversion of NO to the deleterious molecule peroxynitrite, which 
impairs the function of mitochondrial ROS scavengers.

The mitochondria are organelles that can sense the mechanical forces of blood 
flow. A key determinant and an oxidant-dependent and oxidant-independent media-
tor for the development of coronary atherosclerosis are shear stress [71]. Local 
hemodynamic abnormalities contribute to endothelial dysfunction through mito-
chondrial ROS. Three forms of blood flow that can influence the function of the 
endothelial cell include (i) laminar flow, when there is a constant flow velocity; (ii) 
pulsatile flow, which is unidirectional flow with variation in the magnitude; (iii) and 
oscillatory flow, bidirectional flow with variation in the magnitude. Laminar and pul-
satile flow seem to induce vascular vasodilation by triggering the activation of eNOS 
and thus production of NO [72–75]. Also, they increase the expression of mitochon-
drial ROS scavengers, thereby halting the damaging effects of oxidative stress [76]. 
Mechanistically, laminar flow regulates mitochondrial fission via cytosolic Drp1 
recruitment [77]. This, in turn, increases mitochondrial membrane potential and ROS 
formation, leading to the activation of the antioxidant enzyme PRX3. Furthermore, 
laminar and pulsatile flow modify autophagosome formation via activation of the 
AMPK and JNK pathway [78]. Conversely, oscillatory blood flow increases the 
expression of NADPH enzymes, thereby increasing the levels of ROS [79].

2.4  Oxidant-Dependent and Oxidant-Independent VEGF- 
Induced Vascular Response

VEGF is the most potent proangiogenic growth factor in EC. It is crucial for normal 
vascular homeostasis and also contributes to the progression of various diseases by 
promoting vascular growth [80]. VEGF signaling pathways seem to be influenced 
by the levels of ROS. Cross talk between NOX2 and NOX4 has been shown to pro-
mote development of the angiogenic phenotype in endothelial cells [81]. Both 
enzymes participate in generating O2

- and H2O2 which contribute to VEGF signaling 
and angiogenesis [61]. VEGF in turn stimulates NOX2 and NOX4 to induce 
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angiogenesis and other critical endothelial cell functions, such as nitric oxide syn-
thesis and hemostasis [62]. Thus, a reciprocal relationship between ROS and VEGF 
is crucial in VEGF angiogenic signaling pathway [82].

A positive feedback loop coordinated by NOX-derived and mitochondrial- 
derived ROS induces an angiogenic response via VEGF [62]. The binding of VEGF 
on VEGF receptor-2 (VEGFR2) stimulates the autophosphorylation of tyrosine 
kinase receptor and thus the activation of downstream signaling pathways in the 
endothelial cell. Once VEGFR2 becomes activated, the ROS-induced axis gets acti-
vated (Fig.  2.5). The axis involves, initially, the activation of NOX4 to produce 
H2O2. NOX4-derived H2O2 activates NOX2 to produce O2

- that is rapidly converted 
to H2O2 by the enzyme SOD2. NOX4/NOX2 axis promotes mitochondrial ROS 
production via phosphorylation of pSer36-p66Sch by either protein kinase C or 
ERK/JNK in EC, which then gets translocated to the mitochondria. In the mito-
chondria, pSer36-p66Sch catalyzes transfer of electrons from cytochrome c to oxy-
gen, thereby forming superoxide and then H2O2 within mitochondria. ROS then 
enhance phosphorylation of VEGFR2, thus amplifying ROS signaling, as well as 
inducing proangiogenic endothelial cell migration and proliferation [62]. Cell 
migration requires Ca2+, achieved by the glutathiolation of sarcoplasmic/endoplas-
mic reticulum Ca2+-ATPase (SERCA) found on the endoplasmic reticulum [83].

ROS can modulate protein functions, for example, by causing the oxidation of 
cysteine thiols [81]. ROS, especially H2O2, oxidize cysteine to form disulfide bonds 
via a sulfonic acid intermediate (Fig. 2.6) [84]. The oxidation of cysteine thiols has 
been shown to be able to activate or inhibit targeted pathways. For instance, intracel-
lular NADPH-derived ROS have been involved in linking and activating post- VEGF 
signaling proteins, specifically c-Src, rendering c-Src-PI3K-Akt signaling 

Fig. 2.5 ROS-dependent VEGF-induced endothelial cell angiogenesis. The activation of VEGFR2 
leads to activation of the ROS release axis. In turn, increase in NOX2-, NOX4-, and mitochondrial- 
derived ROS leads to increased VEGFR2 activation, the major factor for endothelial angiogenesis
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ROS-dependent in endothelial cells (Fig.  2.6) [81, 85]. Mechanistically, VEGF 
induces the downstream PLC γ-ERK1/2 signaling pathway involved in artery-vein 
specification independent of NADPH-derived ROS [81]. One plausible explanation is 
that PLC γ activation does not require an oxidative intermediate (Fig. 2.7). In a study 
using si-p47Phox, the level of thrombomdulin activity and decay-accelerating factor 
(DAF) was measured [85]. They found that VEGF-mediated induction of thrombom-
dulin activity was abrogated, suggesting that VEGF-mediated thrombomdulin activity 
is sensitive to NADPH oxidase in endothelial cell. Consistent with the study, VEGF 
has been shown to protect endothelial cell against complement- mediated lysis inde-
pendent of NADPH as DAF was not affected by si-p47Phox. These findings suggest 
different NADPH oxidase-dependent and NADPH oxidase-independent signaling 
pathways for VEGF. In this way, using NADPH medication for therapeutic approach 
will certainly show selective effects on VEGF signaling pathways.

2.5  Oxidant-Dependent Lipoprotein-Induced Inflammatory 
Response

Under homeostatic conditions, the endothelium expresses little to no proinflamma-
tory factors, while endothelial dysfunction is linked with vascular lesion, vasocon-
striction, and atherosclerosis [86]. Reactive oxygen species (ROS) are produced at 

Fig. 2.6 ROS-dependent VEGF-induced vasodilation. Increased levels of H2O2 induce cysteine 
oxidation, which activates c-Src. This pathway activates the PI3K-Akt pathway, producing NO via 
eNOS activation

Fig. 2.7 VEGF 
downstream signaling 
pathway can be activated 
independent of ROS. This 
is achieved by activating 
the PLC γ-ERK1/2 axis, 
which does not appear to 
require an oxidation step
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sites of inflammation and injury [86]. As such, endothelial cells experiencing oxida-
tive stress show heightened vascular endothelial permeability [86, 87]. As a conse-
quence, oxidative stress promotes leukocyte adhesion in endothelial cells and leads 
to changes in both signaling pathways and levels of proinflammatory transcription 
factors [87].

In inflammatory diseases involving endothelial dysfunction, such as atheroscle-
rosis, oxidized phospholipids, which are derived from lipoproteins and oxidatively 
stressed cell membranes, start to build up. Monocyte chemoattractant protein-1 
(MCP-1) is a proinflammatory chemokine that promotes atherogenesis [87]. Its 
activity increases oxidation of low-density lipoprotein (LDL) in blood vessel walls 
(Fig. 2.8). A study by Aiello et. al has shown that there was a threefold increase in 
lipid oxidation in mice with overexpressed MCP-1 transgene as compared to mice 
with normal levels of expression of MCP-1 mRNA [88]. As such, MCP-1 expres-
sion on macrophages progresses atherosclerosis via increasing leukocytes and oxi-
dation of lipids. In the tissue, macrophages initiate a proinflammatory response 
through production of ROS and growth factors [87]. Summarily, there is evidence 
that oxidized lipoproteins are not only present in affected mice but also in the ath-
erosclerotic lesions of humans. The oxidized lipoproteins contribute to altering gene 
expression by increasing VEGF which stimulates collateral arterial growth [82, 87, 
89]. The specific factors that elicit lipoprotein oxidation are yet to be identified.

With regard to endothelial dysfunction in diabetes, oxidative stress-induced 
overexpression of growth factors is associated with neovascularization [89]. 
Generally, diabetes is characterized by high levels of oxidative stress and accumula-
tion of oxidized LDLs [89]. However, the increase in mitochondrial ROS levels 
induced by hyperglycemia may drive inflammatory pathways and lead to persistent 
changes in proinflammatory gene expression [89].

Fig. 2.8 MCP-1 expression contributes to increased oxidation of low-density lipoproteins. Rapid 
accumulation of oxidized LDL (ox-LDL) can lead to atherosclerosis and proinflammatory gene 
expression
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2.6  Oxidant-Dependent NF-kB-Induced Vascular Response

The nuclear factor NF-kB has long been known for its proinflammatory and redox 
regulation in the vascular endothelial cell [90, 91]. The phosphorylation and activa-
tion of NF-kB causes the binding of p50 and p65 subunits into a heterodimer, which 
is then translocated to the nucleus [92]. Stereoselective activation of NF-kB by one 
of the arachidonic acid metabolites induces propagation of a proangiogenic signal 
in the coronary endothelium (see section “Arachidonic Acid”) [92]. The cytoplas-
mic localization of NF-kB is imperative for prompt signal transduction. One study 
has demonstrated that the activation of this pathway involves protein kinase C [92]. 
Furthermore, it was found that the levels of ROS were elevated, suggesting the 
involvement of ROS intermediates in this pathway (Fig. 2.9).

Different pathways involving NF-kB have been implicated in vascular endothe-
lial dysfunction [93, 94]. However, scarcity of evidence exists in humans that impli-
cates detrimental role of NF-kB in chronically impaired endothelial function with 
aging or obesity [93]. In an obese and middle-aged group, ROS levels were found 
to be elevated, which may contribute to endothelial dysfunction [93]. One plausible 
mechanism is the activation of NADPH oxidase via NF-kB, because the levels of 
ROS were attenuated after the administration of salsalate, an NF-kB inhibitor. In 
type 2 diabetes, downregulation of NF-kB yields a significant improvement in coro-
nary vascular function [94]. This is achieved by decreasing the activity of mecha-
nisms dependent on PARP-1, Sp-1, and COX2. It is well-known that NF-kB interacts 
with PARP-1 to form a complex, which then translocates to the nucleus and modu-
lates gene expression. PARP-1 activity is reduced when the NF-kB pathway is 
inhibited, causing improvement in the vascular function. Furthermore, the p65 
NF-kB subunit interacts with Sp-1, which negatively regulates eNOS promoter 

Fig. 2.9 The role of NF-kB in the angiogenic phenotype of coronary endothelium. The binding of 
the arachidonic acid metabolite 12(R)-hydroxyeicosatrienoic acid (12(R)-HETrE) causes the for-
mation and activation of the p50-p65 heterodimer, the major form of NF-kB. This heterodimer 
then gets translocated to the nucleus, which causes an elevation in ROS levels. This pathway has 
been implicated to propagate the angiogenic response in the coronary microvascular endothelial 
cell
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activity. Also, since NF-kB is considered a proinflammatory mediator, its inhibition 
resulted in improvement of vascular function via the inhibition of a downstream 
signaling molecule, COX2 [94].

2.7  Endothelium-Derived Vasoactive Molecules 
and Signaling Pathways

The endothelium plays a major role in controlling the blood flow through blood ves-
sels. Regulation of the blood flow by the endothelium is achieved due to EC’s sen-
sitivity to various stimuli [94]. These stimulating factors can be mechanical in 
nature, such as hemodynamic changes. In addition, the endothelium can be acti-
vated by various molecules that are produced in different conditions. These mole-
cules include acetylcholine; catecholamines; bradykinin; arachidonic acid 
derivatives, such as prostacyclin; and many others [93]. Subsequently, the endothe-
lium translates the binding of those molecules into a wide variety of responses 
through the activation of multiple signaling pathways. Some of these signaling 
pathways were found to be influenced by the ROS, such as the activation of eNOS 
and NO production. H2O2 was also found to regulate vascular blood flow and affect 
the contractility of smooth muscle cells through various mechanisms [95].

There are other endothelial signaling pathways that have been recognized to 
work independently in the absence of ROS. These include prostacyclin signaling 
pathway and its vasodilatory effect and the production of endothelial-derived hyper-
polarizing factors (EDHF), such as epoxyeicosatrienoic acids (EETs) and H2S [96]. 
Moreover, the nervous system can affect the vasculature through the activation of 
muscarinic and adrenergic receptors that are expressed on endothelial cell.

2.7.1  eNOS-Derived NO-Dependent Signaling Pathways

Nitric oxide (NO) is a free radical that diffuses freely across cellular membranes. 
NO mediates several vascular effects including vasodilation, inhibition of platelet 
activation, inhibition of leukocyte adhesion to the endothelium, and others [95, 97]. 
The soluble fraction of guanylyl cyclase (sGC) constitutes the intracellular NO 
receptor that mediates signal transduction via the generation and elevation of intra-
cellular cyclic guanosine monophosphate (cGMP) levels [95, 98]. cGMP activates 
cGMP-dependent protein kinase, also called protein kinase G (PKG), which in turn 
phosphorylates several proteins, such as the vasodilator-stimulated phosphoprotein 
(VASP) and phospholamban. Phospholamban is known to increase the reuptake of 
calcium by the endoplasmic reticulum in smooth muscle cells, facilitating muscle 
relaxation [95, 98, 99]. In addition, the cGMP/PKG signaling pathway results in the 
activation and opening of calcium-activated K+ channels (KCa) and KATP channels on 
vascular smooth muscle cells [100, 101]. This indicates that part of NO-induced 
vasodilation is mediated through hyperpolarization (Fig. 2.10).
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NO is produced by an enzyme known as NO synthase (NOS). There are three 
major NOS isoforms, including neuronal NOS (nNOS), inducible NOS (iNOS), and 
endothelial NOS (eNOS) [95, 102, 103]. The NOS enzyme complex catalyzes the 
oxidation of nitrogen from L-arginine, forming NO and L-citrulline [95, 102, 104]. 
Activation of NO synthesis by eNOS is achieved by three main mechanisms. The 
first involves increased calcium levels within the cytosol, which occurs in response 
to ACh or bradykinin stimulation [95, 100, 103, 105] (Fig.  2.11). The main 

Fig. 2.10 NO-mediated smooth muscle relaxation. Endothelial cells produce the potent vasodila-
tor molecule NO, which then diffuses to the underlying smooth muscle cells and activates the 
soluble fraction of GC enzyme. sGC catalyzes the conversion of GTP into cGMP, which in turn 
activates PKG. PKG phosphorylates several proteins, such as Phospholamban, which increases the 
uptake of Ca2+ ions by the endoplasmic reticulum that is necessary for smooth muscle contraction. 
In addition, PKG activates the opening of both Kca and KATP channels, therefore inducing smooth 
muscle relaxation through hyperpolarization

Fig. 2.11 Mechanism of eNOS activation. eNOS activation occurs in response to various stimuli, 
such as increased shear stress, pulsatile strain, and VEGF. Activation of eNOS involves increased 
calcium levels within the cytosol, which occurs in response to ACh or bradykinin activation. The 
main physiologic mechanism for NO production involves the phosphorylation of eNOS by Akt. 
PI3-kinase phosphorylates and activates Akt, which then activates eNOS by making it more sensi-
tive to lower levels of calcium
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physiologic mechanism for NO production involves the phosphorylation of eNOS 
by protein kinase B (also called Akt). In this pathway, PI3-kinase phosphorylates 
and activates Akt, which in turn activates eNOS by making it more sensitive to 
lower levels of calcium [95, 102, 103, 106, 107]. The activation of eNOS by this 
mechanism occurs in response to various stimuli, such as increased shear stress, 
pulsatile strain, and VEGF [95, 100, 105–107] (Fig. 2.11). The sphingolipid path-
way involved in cellular proliferation and migration also activates eNOS through 
the interaction between sphingosine-1-phosphate and Akt [95, 102, 103].

Activation of eNOS happens in the caveolae, which are invaginations of the 
plasma membrane that are rich in cholesterol and sphingolipids but poor in phos-
pholipids [96, 102, 103]. eNOS is found anchored within these caveolae to a scaf-
folding protein called caveolin-1, which inhibits its activity [95, 108]. Stimuli, such 
as elevated calcium concentration and Akt-mediated phosphorylation of eNOS, 
attenuate the interaction between eNOS and caveolin-1, leading to the liberation of 
the eNOS enzyme from its inhibiting conformation. In fact, it was found that mice 
lacking the caveolin-1 gene demonstrate increased eNOS activity [95, 109].

There is a clear association between endothelial dysfunction and lack of eNOS 
activity. Mice that are eNOS-deficient have been found to be more prone to develop 
several cardiovascular diseases, such as hypertension and atherosclerosis [95, 110, 
111]. Studies have shown that the increased coronary blood flow and shear stress in 
healthy exercising dogs induce a NO-mediated vasodilatory response that is most 
prominent in the larger coronary blood vessels [112, 113]. The administration of a 
NO synthase inhibitor blunted the flow-induced vasodilation of those larger vessels, 
but this effect was counterbalanced by the compensatory vasodilation of the smaller 
arterioles that decreased the resistance and maintained the blood flow [112]. 
Similarly, blocking NO production in the smaller coronary arterioles resulted in the 
activation of other endothelium-mediated vasodilatory pathways. These vasodila-
tory mechanisms include those that are activated by ACh and bradykinin, as well as 
the release of endothelium-derived vasodilating agents, such as prostacyclin and 
EDHF [112, 114–116].

2.7.2  Hydrogen Peroxide-Dependent Vasodilation

A study showed that mice that are deficient in eNOS were found to have an inhibited 
ACh-dependent vasorelaxation response to catalase [95, 117]. This suggests a role 
for hydrogen peroxide in inducing vasodilation. H2O2 induces smooth muscle relax-
ation by opening the KCa channels and hyperpolarizing the cell. In addition, H2O2 
can mediate vasodilation by creating a disulfide bond in PKG, activating the enzyme 
in a way that is independent of guanylyl cyclase [95, 118]. Moreover, studies show 
that H2O2 appears to be involved in the autoregulation of blood flow within the small 
coronary blood vessels in response to ACh and decreased perfusion pressure [95, 
119]. Furthermore, it is worth mentioning that H2O2 activates PKC, which in turn 
activates phospholipase A2 to generate arachidonic acid which can eventually lead 
to the formation of EETs [95].
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2.7.3  Oxidant-Independent Arachidonic Acid Metabolite- 
Induced Vascular Responses

The cytochrome P450-derived arachidonic acid metabolites, including different 
epoxyeicosatrienoic acids (EETs) and their corresponding dehydroxy-EETs, have 
been identified as EDHFs. This was evident in studies that showed that the inhibi-
tion of cytochrome P450 attenuated hyperpolarization-dependent vasodilation [95, 
120]. Therefore, cytochrome P450, specifically the 2C9 isoform, is considered an 
EDHF synthase. In addition, cytochrome P450-2C9 generates ROS within coronary 
endothelial cells, which in turn activates the transcription factor NF-κB, resulting in 
increased expression of leukocyte adhesion molecules [95, 120]. In response to ago-
nist stimulation from molecules, such as bradykinin, EETs are produced and acti-
vate gap junctions between the endothelial and smooth muscle cells, which facilitate 
their diffusion [95, 121]. Subsequently, EETs, just like other EDHFs, induce smooth 
muscle relaxation via opening KCa channels and decreasing intracellular calcium 
concentration [95, 120].

2.7.3.1  Prostacyclin
Prostaglandins were the first endothelium-derived relaxing factors to be discovered. 
They were originally identified as anticoagulation factors that are also capable of 
relaxing the smooth muscle layer in the vasculature [122, 123]. Prostaglandin pro-
duction starts with the generation of arachidonic acid from membrane-bound phos-
pholipids via activity of phospholipases [122]. Arachidonic acid is then metabolized 
by different enzymes, yielding various vasoactive molecules. For instance, lipoxy-
genases act on arachidonic acid, forming lipoxides which are mainly constrictor 
molecules. Epoxygenases, on the other hand, generate EDHF, which are vasodila-
tory molecules [122]. Lastly, cyclooxygenases (COX) metabolize arachidonic acid 
into prostaglandin H2. This is then acted upon by various synthase enzymes to form 
prostacyclin, prostaglandin E and F, and thromboxane [122]. There are two major 
COX isoforms: COX-1, which is produced constitutively, and COX-2, which is pro-
duced under specific conditions, such as inflammation. In inflammation, platelets 
release thromboxane molecules which act on the endothelium and induce COX-2 
expression. Consequently, prostacyclin production is increased and accounts for the 
vasodilatory effect in inflammation [122, 124] (Fig. 2.14). Prostacyclin is also capa-
ble of suppressing the release of constrictor molecules from the nerve endings 
within the vascular wall [122, 125].

Like NO, prostacyclin is a lipid-soluble molecule that diffuses out of the endo-
thelial cell shortly after being synthesized and acts as an anticoagulant and vasodila-
tor. Prostacyclin signal transduction is mediated by activation of the adenylyl 
cyclase/cAMP system, which removes calcium from the cytoplasm and causes 
smooth muscle relaxation [100, 122, 126] (Figs. 2.12 and 2.13). In addition, prosta-
cyclin can also induce vasodilation through smooth muscle hyperpolarization [114, 
122, 125, 127]. Several studies have investigated the role of hyperpolarization 
induced by prostacyclin on smooth muscle relaxation [122, 128–131] (Fig. 2.13). A 
study was conducted in which glibenclamide, an ATP-sensitive K+ channel blocker, 
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Fig. 2.12 Platelet-induced vasodilation in inflammation. Platelet activation during inflammation 
results in the release of Thromboxane A2, which increases COX-2 expression by endothelial cells. 
COX-2 overexpression results in the formation of Prostacyclin, which in turn diffuses to the under-
lying smooth muscle cells and activates AC enzyme. AC catalyzes the conversion of ATP into 
cAMP, which removes Ca ions from the smooth muscle cell cytoplasm, therefore inducing muscle 
relaxation

Fig. 2.13 Mechanisms by which prostacyclin induces smooth muscle relaxation. Prostacyclin sig-
nal transduction is mediated through activation of the adenylyl cyclase/cAMP system, which 
removes calcium from the cytoplasm and causes smooth muscle contraction. Prostacyclin can also 
induce vasodilation through smooth muscle hyperpolarization that occurs in response to opening 
KATP channels
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was used as an inhibitor of the prostacyclin-mediated hyperpolarization and relax-
ation. The study found that blocking KATP channels attenuated indomethacin- 
sensitive, endothelium-dependent hyperpolarization and substantially decreased the 
relaxation of the coronary arteries of guinea pigs [122, 131]. These results indicate 
that hyperpolarization plays a role in mediating prostacyclin-induced vascular 
relaxation, in conjunction with other mechanisms, such as reducing the cytoplasmic 
calcium concentration and the sensitivity of the contractile apparatus to calcium.

NO deficiency due to pharmacological blockade or genetic knockout of NOS 
was found to be associated with marked elevation of resting blood pressure, reach-
ing up to a 50 mmHg increase [132, 133]. However, blockade of COX enzyme and 
subsequent prostacyclin production by indomethacin did not affect resting blood 
pressure in humans [134]. Furthermore, clinical trials that were done with patients 
with coronary artery disease showed that prostanoids contribute significantly to 
vasodilation [100, 134, 135]. Interestingly, a third clinical trial failed to demonstrate 
a critical role of prostanoids in healthy subjects [100, 137]. These findings support 
the idea that the vasodilatory effect of prostanoids compensates for NO deficiency 
in disease conditions, while, under normal conditions, their effect is minimal. In 
fact, studies have shown that inhibition of cyclooxygenase and prostanoid produc-
tion with indomethacin had minimal effect on the coronary blood flow in healthy 
dogs under resting conditions as well as during exercise [100, 137]. Upon coadmin-
istration of the eNOS inhibitor L-NAME and indomethacin, the period of reactive 
hyperemia was shortened, suggesting a possible interaction between NO and pros-
tanoids [100, 138].

As stated earlier, prostacyclin plays an important role in inducing vasodilation 
and preventing the adhesion of platelets and erythrocytes to the vascular wall, mak-
ing its role of great importance in diseases that involve thrombus formation, such as 
atherosclerosis [122]. Several diseases, including atherosclerosis, hypertension, 
diabetes mellitus, and others, have been found to have a greater tendency for throm-
bus formation [7, 139–141]. The treatment of these diseases may involve drugs that 
block prostanoid synthesis including prostacyclin. Suppressing prostacyclin pro-
duction by such drugs can increase the propensity of thrombus formation. In fact, 
many treatment regimens include prostacyclin analogues to compensate for prosta-
cyclin underproduction. Alternative treatment approaches should be more specific 
and target only the harmful prostaglandins and spare prostacyclin. Such drugs could 
target specific receptors or enzymes that are involved in the signaling or production 
of undesired molecules [122].

2.7.3.2  Endothelium-Derived Hyperpolarization Factors
There exist variable degrees of vasodilation even after NO and prostacyclin inhibi-
tion, suggesting the existence of other endothelial-derived molecules that exert a 
vasodilatory effect [95, 142]. The fact that this vasodilation response is accompa-
nied by hyperpolarization of the endothelial and smooth muscle cells and is inhib-
ited by blockade of calcium-activated potassium channels (KCa) or high extracellular 
K+ concentration indicates that these molecules mediate their effect through 
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hyperpolarization [95, 142]. These molecules are called endothelial-derived hyper-
polarizing factors (EDHF). Their vasodilatory action is mediated through K+ efflux 
due to the opening of KCa and rectifying K+ channels (KIR), which prevents the acti-
vation of voltage-gated calcium channels, therefore decreasing calcium concentra-
tion within the smooth muscle cells and thus reducing muscle contraction [95, 142] 
(Fig. 2.14). Although the nature of these molecules is not fully understood, several 
EDHFs have been identified, including arachidonic acid metabolites, hydrogen per-
oxide, and K+ ions acting within gap junctions between endothelial and smooth 
muscle cells [95, 119–121, 143].

EDHF dysfunction has been documented in different diseases affecting the vas-
culature, such as diabetes mellitus and hypertension [95, 142]. In these conditions, 
EDHF lose their ability to hyperpolarize and relax the smooth muscle cells, leading 
to impairment of their vasodilatory influence.

2.7.3.2.1 K+ Ions and Gap Junctions
Certain molecules, such as Ach, induce endothelial KCa channel opening leading to 
the efflux of K+ ions. These ions activate the Na-K ATPase pump in smooth muscle 
cells and KIR channels in endothelial cells, resulting in vascular relaxation that occurs 
through inhibitory mechanisms [95, 121, 142]. As stated earlier, the gap junctions 
that exist between endothelial and smooth muscle cells contribute to the endothe-
lium-mediated vasodilation via EDHF, allowing electric coupling between the two 
cell types, as well as the transmission of different chemical mediators [95, 143].

Fig. 2.14 EDHF-mediated smooth muscle relaxation. EDHF release induces vasodilation through 
endothelial cell and smooth muscle cell hyperpolarization. The exposure of the endothelial cell to 
several vasodilator agonists, such as bradykinin, ACh, or shear stress, leads to the formation and 
release of EDHF, which then moves through the gap junction to the underlying smooth muscle 
cells. This results in the opening of Ca-activated K+ channels and ATP-sensitive K+ channels, lead-
ing to hyperpolarization and smooth muscle relaxation
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2.7.3.2.2 H2S
Recent evidence demonstrated that H2S acts as endothelial-dependent relaxation 
factor (EDRF) and as EDHF [95]. As an EDRF, H2S modifies cysteine residues on 
the KATP channels of smooth muscle cells in a process called “sulfhydration,” lead-
ing to their dissociation from their inhibiting ATP molecules and enhancing their 
binding with phosphatidylinositol 4,5-biphosphate (PIP2), which favors opening of 
these channels. Opening of KATP channels results in K+ efflux and hyperpolarization, 
which induces vasodilation [95, 144, 145]. Inhibition of H2S production has been 
found to decrease ACh-induced endothelial-dependent relaxation, suggesting that 
H2S plays a role in mediating this vasodilatory effect [95, 146]. H2S acts as an 
EDHF via activating the K+-dependent calcium channels (SKCa and IKCa) on endo-
thelial cells, causing endothelial hyperpolarization and smooth muscle relaxation 
via the electric coupling transmitted by gap junctions [95, 147]. Moreover, H2S 
induces eNOS expression, which increases NO production [95, 148].

2.7.3.2.3 Endothelins
Endothelins are vasoactive peptides produced by vascular endothelial cells. There 
are three endothelin isopeptides, ET-1, ET-2, and ET-3, of which ET-1 is the most 
abundant and most active within the coronary vasculature [100, 149, 150]. It is pro-
duced by the endothelium in its inactive form known as Big ET-1 or Pro ET-1, 
which is then acted upon by endothelin converting enzyme (ECE) located on the 
plasma membrane of endothelial cells, transforming into the active form [100, 149, 
152]. ET release is stimulated by many factors acting on the vascular endothelium 
including bradykinin, high- and low-density lipoproteins, angiotensin II, ischemia, 
shear stress, and several growth factors [150, 151].

There are two major types of ET-1 receptors, ETA and ETB. Both receptors are 
expressed by vascular smooth muscle cells, while ETB is the only type expressed in 
the endothelium [100, 150, 151–153]. Acting on the vascular smooth muscle cells, 
ET induces vasoconstriction through ETA and ETB receptor activation [99, 150] 
(Fig. 2.9). However, the activation of ETB receptor on endothelial cells triggers the 
release of several vasodilators, most importantly NO and prostacyclin, which atten-
uate the vasoconstrictor influence of ET and even inhibit its production in a negative 
feedback loop [99, 152, 154] (Fig. 2.9). The vasoconstrictive effect of ET is attenu-
ated during exercise due to the activity of NO and prostacyclin [100, 155]. A study 
showed that upon administration of Tezosentan, a nonselective ET receptor antago-
nist, along with inhibition of NOS or COX, the vasodilatory effect of Tezosentan 
was maintained during exercise [100, 155]. This finding demonstrates that the NO 
and prostacyclin vasodilatory systems work in coordination with each other to 
demolish the vasoconstrictor effect of ET during exercise. This also explains why 
under certain conditions in which NO production is impaired, such as atherosclero-
sis and endothelial dysfunction, ET-induced vasoconstriction is maximized and 
contributes to the pathogenesis of these diseases.

The intramyocardial blood vessels have been found to be very sensitive to ET 
vasoconstrictor influence, and many cardiovascular diseases, such as myocardial 
infarction, coronary artery disease, heart failure, and others, are associated with 
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increased plasma levels of ET [8]. In order to investigate the effectiveness of block-
ing ET-induced vasoconstriction in patients with stable angina, a study used 
Bosentan, a nonselective ET receptor antagonist, as a blocking agent [100, 156]. It 
was found that Bosentan attenuated the vasoconstrictive influence of ET and 
increased the vascular diameter. However, this stimulated a simultaneous 10% drop 
in aortic blood pressure, which caused the coronary blood flow to remain unchanged 
despite the vasodilatory effect of Bosentan [100, 156].

2.8  Vascular Effects of Oxidant-Independent Nervous 
System-Derived Molecules

One of the ways by which the nervous system regulates the vascular tone is through 
the activation of muscarinic and adrenergic receptors that are located on endothelial 
cells. The parasympathetic system mediates its vascular effects through ACh, while 
the sympathetic system acts through the release of catecholamines. In this section, 
we explore some of effects and signaling pathways that are activated by the two 
systems.

2.8.1  Acetylcholine

The coronary resistance vessels are highly innervated by parasympathetic nerve 
endings [99]. The effects of vagal stimulation, mediated by acetylcholine (ACh), on 
coronary vascular tone and blood flow vary among different species. In dogs, the 
parasympathetic stimulation of the coronary blood vessels results in a vasodilatory 
response mediated by the release of NO [100, 157, 158]. This effect was found to be 
blocked by administration of the anticholinergic atropine, indicating that this vaso-
dilatory response was cholinergic in origin [100, 157, 158]. During exercise, the 
administration of atropine does not affect heart rate or blood flow, indicating that the 
parasympathetic innervation to the heart during exercise is negligible [100].

In contrast, parasympathetic innervation of the smooth muscle layer of the coro-
nary blood vessels of pigs masks the endothelial vasodilatory effect of ACh, which 
results in a net vasoconstriction effect [100, 159, 160]. A study has shown that 
administration of atropine results in a vasodilatory response at rest, but this response 
was attenuated by increasing levels of exercise since the vagal influence is minimal 
during exercise [100, 161, 162].

When blood circulates, shear stress is generated on blood vessel walls. In 
response, the endothelium relaxes the smooth muscle and allows for an increase in 
arterial diameter via flow-mediated dilatation, in which vasodilators like ACh are 
released [163]. ACh activates calcium release from internal stores in endothelial 
cells and stimulates NO production [163]. The endothelium expresses choline acet-
yltransferase (ChAT), which is responsible for the synthesis of ACh; vesicular ace-
tylcholine transporter (VAChT), which loads ACh into vesicles for secretion; and 
acetylcholinesterase (AChE), which catalyzes hydrolysis of ACh [163]. Endothelial 
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organic cation transporters release ACh upon mechanical activation from shear 
stress [163]. The non-vesicular release of ACh requires production of acetyl Co-A 
in the mitochondrial matrix, so that the acetyl group can be transferred to choline to 
produce ACh [163]. Flow activates a predominant M3 subtype muscarinic receptor/
phospholipase C (PLC)/inositol 1,4,5-trisphosphate receptor (IP3R) signaling cas-
cade [149, 163]. ACh serves as the agonist, activating the muscarinic receptor. PLC 
then cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol 
(DAG), and IP3. IP3 binds IP3R, a membrane glycoprotein complex that serves as a 
calcium ion channel (Fig. 2.15).

Results from other studies show that local ACh release may regulate endothelial 
cell migration and contribute to angiogenesis [149, 163, 164]. HUVECs exhibit a 
nonneuronal cholinergic autocrine system [164]. Cholinergic stimulation of musca-
rinic receptors was shown to regulate angiogenesis and increase tube length as well 
as complexity [149, 164]. A study by Cooke et al. indicates that there is an endog-
enous pathway, activated by endogenous acetylcholine or exogenous nicotine, for 
angiogenesis in response to oxidative stress [164]. Regarding endothelial nicotinic 
acetylcholine receptors (nAChRs), the selective α7-nAChR antagonist 
α-bungarotoxin was demonstrated to inhibit endothelial tube formation [164]. In 
addition, α7-nAChR is upregulated by hypoxia in vitro in endothelial cells experi-
encing ischemia [165]. Notably, there seems to be interconnection among pathways 
to angiogenesis modulated by growth factors and pathways mediated by endothelial 
nAChRs [149, 164]. VEGF-induced endothelial cell migration actually involves 
nAChR activation, and, in cases where nAChR antagonists are introduced, growth 
factor-induced endothelial cell migration is also reduced [164].

Fig. 2.15 Mechanical stimulation of endothelial ACh release induces a Ca2+-dependent vasodila-
tory effect. Blood flow stimulates endothelial ACh release, which in turn activates M3 cholinergic 
receptors on endothelial cells. M3 receptor activation results in the formation of IP3 and DAG from 
PIP2 by the action of PLC. IP3 induces Ca2+ release from the endoplasmic reticulum, which results 
in the activation of Ca2+-dependent signaling pathways that promote vasodilation
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2.8.2  α2 Adrenergic Receptors

α1 Adrenergic receptors are considered the primary adrenergic receptor subtype in 
mediating the vasoconstrictor effect of catecholamines, though α 2 receptors also 
appear to be involved [100, 112, 165]. However, the coronary endothelium has been 
found to harbor α2 adrenoceptors that induce the release of prostacyclin and NO, 
resulting in vasodilation [96, 100, 112]. The vasoconstrictor influence of the α 2 
receptors on normal coronary blood vessels at rest and even during exercise appears 
to generally be negligible, rather than being masked by its endothelium-mediated 
vasodilatory effect [112].

Ishibashi et al. have proposed that myocardial hypoperfusion, due to arterial ste-
nosis, for instance, renders the coronary vessels more susceptible to vasoconstric-
tion during exercise [112]. Their study showed that administration of the NO 
synthase inhibitor Nω-nitro-L-arginine (LNNA) to exercising dogs with coronary 
artery stenosis enhanced the previously negligible vasoconstrictor effect mediated 
by α2 receptors [112]. The researchers arrived at this conclusion despite the fact that 
co-inhibition of the α2 receptors did not return the coronary blood flow back to nor-
mal. This finding can potentially be explained by multiple mechanisms, one being 
that the sympathetic stimulation during exercise might have resulted in the activa-
tion of α1 receptors located on the vascular smooth muscle cells. Since many patients 
with cardiovascular diseases, such as atherosclerosis and hypertension, have 
impaired endothelial NO production, based on these findings, these patients are 
more vulnerable to suffer from myocardial hypoperfusion during exercise due to the 
enhanced α 2 receptor-mediated vasoconstrictor effect [112].

2.9  Implications in Pathophysiology and Future Research

Endothelial dysfunction is a marker for cardiovascular disease. Endothelial cells 
induce vasorelaxation by releasing endothelium-derived relaxing factors (EDRFs), 
such as NO [166]. Upregulating or inhibiting the endothelial cells’ ability to release 
NO leads to endothelial dysfunction and consequently develops into atherosclerosis 
and coronary disease [166]. In the same vein, the production of the endothelium- 
derived contractile factors – and subsequent increase in reactive oxygen species – 
contributes to aging, diabetes, and cardiovascular disease [166].

NO notably prevents abnormal vasoconstriction by controlling the release of 
endothelin-1 [166]. Without NO fulfilling a protective role, an inflammatory 
response is induced, leading to atherosclerosis. Endothelial cells upregulate the pro-
duction of NO by eNOS, an endothelium-specific enzyme isoform that synthesizes 
nitric oxide [166]. Indeed, experiments have shown that, when the endothelium is 
removed or dysfunctional, relaxation of coronary arteries no longer occurs, and, 
instead, vasospasms are observed [166]. NO is able to inhibit EDHF activity by 
inhibiting EDHF synthase, cytochrome P450. Therefore, conditions that involve 
endothelial dysfunction and NO depletion, such as atherosclerosis and other cardio-
vascular diseases, increase the EDHF-dependent vasodilator mechanisms [167]. As 
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such, the importance and contribution of these molecules in regulating blood flow 
become more prominent. Depending on the arterial size, different endothelial- 
derived mediators regulate the vascular tone [167]. For instance, in large conduc-
tance arteries, such as the aorta and the epicardial arteries, NO is the major 
contributor to vasodilation. In small arterioles, EDHF predominates along with 
some other mechanisms, such as NO and adenosine [167].

VEGF inhibitors can lead to chronic hypertension as a side effect, perhaps due to 
upregulation of endothelin-1 production (as opposed to regulating NO release), and 
can reduce response to acetylcholine. [166] Hypoxia also increases endothelin-1 
synthesis gene expression and synthesis [166]. As a powerful vasoconstrictor, endo-
thelin- 1 greatly impacts homeostatic water and sodium levels in the kidneys and 
increases vascular ROS levels [166]. Thus, endothelin-1 overproduction is linked to 
endothelial dysfunction and pulmonary hypertension [166, 168]. Aside from increas-
ing oxidative stress, endothelin-1 has also been shown to interfere with lipid metabo-
lism and the NO pathway [166]. Further research on endothelin antagonists could 
help treat hypertension, high arterial blood pressure, and complications related to 
chronic kidney disease [166]. There is still uncertainty over short-term versus long-
term effects of endothelin-1 antagonism, though long-term antagonism has shown 
improvement in endothelial function in patients with atherosclerosis [166, 169].

Recently, vasoconstricting prostanoids like COX-1 and COX-2 have been shown 
to exacerbate endothelium-dependent contractions by activating TP receptors in 
smooth muscle cells [166, 170]. Future research on antagonists of TP receptors 
could be done to develop therapy for cardiovascular disorders. A 2015 study found 
chronic fluoxetine treatment to induce endothelial dysfunction and increased blood 
pressure through generation of COX-derived prostanoids [168]. These findings war-
rant further research into the risk fluoxetine treatment poses for aggravating vascu-
lar injury.

Finally, miRNA, noncoding RNA that regulate gene expression, are a relatively 
recent scientific discovery. Studying how miRNA affect the activity or concentra-
tions of the aforementioned EDRFs would illuminate current understanding of eNOS 
expression. Specifically, miR-155 appears to decrease expression of eNOS [166].

2.10  Conclusion

The findings presented in this chapter suggest the effects of ROS on the vasculature 
appear to be dependent on the subcellular location, concentration, and duration of 
ROS exposure. Different isoforms of NADPH oxidase (NOX) enzymes appear to be 
major contributors of ROS in EC. The four isoforms of NOX are all found in the 
endothelium at specific subcellular location, and specific activity of each isoforms 
contributes to physiological and pathological changes in the vasculature. NOX1 
plays a critical role in pathogenesis of Ang- II-induced hypertension and possibly in 
atherosclerosis, and its selective inhibition may mitigate development of atheroscle-
rotic plaques. Endothelial NOX2 activates either the PI3K-Akt-eNOS axis or 
AMPK-eNOS axis, leading to an increase in NO and subsequent vasodilation, 
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endothelial cell proliferation, and migration. NOX4 essentially generates hydrogen 
peroxide and is expressed abundantly in the endothelium. NOX4-derived hydrogen 
peroxide has shown beneficial effects, including inducing vascular angiogenesis. 
NOX5 is localized in the endoplasmic reticulum and is activated upon increase in 
intracellular calcium levels. The NOX5 variants also contribute to endothelial ROS 
production, cell proliferation, and angiogenesis.

The mitochondria are well-known for energy production through oxidative phos-
phorylation, but they are also integral to ROS formation, signaling cellular death, 
calcium regulation, and ACh mechanotransduction. Short-term exposure of elevated 
cytosolic ROS increases ROS production by the mitochondria, counterbalanced by 
SOD2 activity. Long-term exposure to elevated cytosolic ROS, however, proves to 
be more detrimental and can lead to impairment in endothelial vasodilation as well 
as cause conversion of NO to peroxynitrite.

VEGF is critical in inducing angiogenesis. While VEGF-induced vasodilation 
can take place in a ROS-dependent manner via PI3K-Akt-eNOS pathway, the VEGF 
signaling pathway can also activate PLC γ-ERK1/2 in an ROS-independent manner. 
VEGF interacts with proinflammatory factors in a positive feedback loop. 
Inflammatory stimuli activate TLRs which in turn promote HIF-1α expression, 
resulting in activation of the VEGF promoter.

Various vasodilating agents respond to shear stress and other stimuli by altering 
vascular tone and often promoting smooth muscle relaxation. VEGF-induced sig-
naling involves some of these factors, notably ACh. By contrast, Ang-II exaggerates 
vasocontraction via NO reduction. As was the case with NOX1, Ang-II is involved 
in the pathogenesis of hypertension. Factors like NO, prostacyclin, endothelin, and 
EDHF share similar stimuli leading to their production and are interrelated in induc-
ing vasorelaxation.

The overwhelming interconnectedness of NOX, growth factors, and vasoactive 
factors as well as larger-scale oxidant-dependent and oxidant-independent path-
ways demonstrate the complexity of signaling in coronary vascular endothelium.
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Stress-Induced Cardiac Remodeling
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Abstract
Cardiac remodeling is the pathological ramification of myocardium resulting 
into various cardiac diseases. Oxidative stress represents a self-perpetuating 
mechanism by producing excess reactive oxygen species (ROS) and plays a criti-
cal role in cardiac remodeling. A redox state that maintains the homeostatic bal-
ance in the cell is critical in cardiac remodeling. A misbalance of redox state 
triggers cellular damage and promoting adverse signaling pathways leading to 
apoptosis. MicroRNAs (miRNAs) are short, 19–21 nucleotides, endogenous 
noncoding RNAs modulate gene regulation, elicits a vital role in cardiac remod-
eling including cardiac hypertrophy, fibrosis, myocardial injury and arrythmia 
via multiple mechanisms. Recent studies indicated that miRNAs are influencing 
the generation of ROS and modulate antioxidant defense mechanism by regulat-
ing antioxidative enzymes and are termed as “redoximiRs.” Here, I review the 
current progress and the mechanisms by which “redoximiRs” regulate cardiac 
remodeling.
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3.1  Introduction

Cardiac remodeling is defined as a structural alteration of the heart in response to 
hemodynamic load. The resulted phenomena exhibited as left ventricular hypertro-
phy (LVH), interstitial fibrosis and contractile dysfunction leading to heart failure. 
Evidences suggest that the redox-sensitive signaling pathways contribute a critical 
role in cardiac dysfunction [1]. The reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) serve as signaling messengers to mediate the cardiac remod-
eling process including cardiac hypertrophy, fibrosis, arrhythmia, and heart failure 
[2, 3].

ROS, a highly reactive and unstable chemical, is generated as intermediates in 
reduction-oxidation (redox) reactions [4]. Generation of ROS fundamentally dam-
ages the cellular membranes, DNA, and enzymes which are involved in basic cel-
lular function and homeostasis [5]. Thus, activation of key mediators/molecules by 
ROS in the cardiac pathology along with the reduction of its counterpart, the anti-
oxidant molecules, is important in cardiac remodeling process. Additionally, ROS 
do modulate the extracellular matrix (ECM) function by promoting deposition of 
increased ECM in the interstitial and perivascular region of the heart and trigger 
fibrosis [6]. The significance of oxidative stress in cardiac remodeling is crucial at 
physiological and pathological standpoints and is not completely elucidated.

MicroRNAs (miRNAs) are a class of noncoding endogenous RNA molecules, 
~19–22 nucleotides in length, and influence posttranscriptional gene regulation. 
The miRNAs are discovered in Caenorhabditis elegans and are regulatory agents 
for posttranscriptional level of mRNA [7]. Recent studies illustrated the command-
ing role of miRNA in modulating transcriptional and translational phases during 
cardiac remodeling. However, the aberrant expression of miRNA in response to 
oxidative stress has started emerging. Therefore, this review will discuss the possi-
ble connections between ROS-mediated miRNAs and cardiac remodeling, to under-
stand the interactions of these molecular entities during cardiac remodeling. This 
review further attempts to offer a new approach to understanding cardiac pathogen-
esis and focuses on the possible interplay between ROS and miRNA.

3.2  Oxidative Stress

3.2.1  ROS, Antioxidant Enzymes, and Redox Balance

Oxidative stress has been shown to play an important role in diverse cardiac pathol-
ogies and heart failure [1, 8]. The ROS constitutes several free radicals, such as 
superoxide anion (O2

∙−), hydroxyl radical (∙OH), and non-radicals, and is capable of 
generating hydrogen peroxide (H2O2). The O2

∙− contributes primarily to the genera-
tion of other ROS, such as H2O2 and ∙OH. The ∙OH is also generated by addition of 
iron in H2O2 called Fenton reaction and from interaction between O2

∙− and H2O2 
called Haber-Weiss reaction. Another strong oxidant is peroxynitrite (∙ONOO−). 
The reaction of nitrous oxide (NO) with O2

∙− results in the formation of 
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∙ONOO− which is detrimental to the cells [9]. It is of note that NO is required for 
normal cardiac physiology including coronary vasodilation, regulation of contrac-
tile function, and inhibition of platelet and neutrophil adhesion and activation, pro-
viding a protective role cardiac injury [10, 11].

Increased ROS can disrupt cellular function by DNA damage leading to irrevers-
ible cell damage which displayed a wide range of pathological cardiac diseases 
[12]. Specifically, ROS can significantly compromise cardiac contractile function, 
modifying excitation-contraction coupling, activating several signaling cascades 
associated with cardiac diseases, and triggering activation of transcription factors 
responsible for diverse gene regulation. The ROS can further activate cardiac fibro-
blast to proliferate and trigger extracellular matrix remodeling. The three major cell 
types, the myocytes, fibroblasts, and endothelial cells, are the source of ROS gen-
eration in the heart. Although their exact contribution to the generation of ROS is 
unknown, evidence suggests that mitochondrial electron transport chain and non- 
phagocytic oxidases are likely be the predominant sources in cardiac myocytes [13].

As ROS is harmful to the cells, cells are developing a defense mechanism by 
synthesizing a set of antioxidant enzymes (e.g., dismutase, catalase, and peroxi-
dase) and small molecules (glutathione, vitamins, etc.) to detoxify the ROS [14]. 
Among these enzymes, superoxide dismutases (SODs) are one of the main antioxi-
dant enzymes that catalyze the conversion of O2

∙− to H2O2 and protect cellular dam-
ages caused by oxidative stress. In mammalian tissue, three isoforms of SODs, 
manganese-containing SOD (Mn-SOD), copper-containing SOD (Cu-SOD), and 
zinc-containing SOD (Zn-SOD), are present [15]. Among them, Mn-SOD is pre-
dominantly present in cardiac mitochondria and responsible for ~70% of the overall 
SOD activity in the heart by controlling O2

− generation in mitochondria (in myocar-
dium) [16]. Another enzyme, NADPH oxidase (NOX), a multi-subunit enzyme that 
catalyzes superoxide production by the reduction of oxygen using NADPH or 
NADH as the electron donor, showed a critical role on cardiac remodeling [17–19]. 
Therefore, a balance between ROS production and antioxidant systems is critical in 
cellular homeostasis referred as “redox state.” So, the antioxidant enzymes are the 
body’s defense system. The fine-tuning between ROS generation and endogenous 
antioxidants is essential for redox homeostasis in regular physiological processes.

3.2.2  Mechanism of ROS-Induced Cardiac Remodeling

3.2.2.1  Cardiac Hypertrophy
Cardiac hypertrophy represents an increase in cardiac mass in response to hemody-
namic overload. Under this setting, cardiomyocyte undergoes increase in size to 
compensate the initial thrust, but sustained pressure overload leads to cardiac hyper-
trophy [20]. The process activates fetal gene program, triggering inflammation, pro-
moting cell death, and eventually impairing the cardiac function. An imbalance 
between the oxidation and reduction by ROS and antioxidant systems induces oxi-
dative stress at cellular level promoting cardiac diseases like cardiac hypertrophy 
[21]. The underlying mechanisms of ROS-mediated hypertrophic response are 
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incompletely understood; however, activation of redox-sensitive signaling mole-
cules is documented [22–25]. Three important downstream effectors from MAPK 
signaling (ERK, p38MAPK, and JNK) are redox-sensitive molecular targets in car-
diac hypertrophy [23, 26]. Furthermore, H2O2-treated cardiomyocytes in cell cul-
ture model releases ROS and suggested to promote apoptosis by triggering 
mitochondrial permeability pore transition [27, 28]. Recently, NOX have been 
shown to be a primary source of ROS [29]. NOX is well studied [30] and demon-
strated a critical role in cardiac hypertrophy. NOX activity is increased in pressure 
overload-induced cardiac hypertrophy along with MAPK activation [31]. Genetically 
modified mice lacking the Nox2 subunit of NADPH oxidase was shown protective 
in angiotensin II-induced cardiac hypertrophy model [32]. Furthermore, Nox2−/− 
mice were protected against pressure overload-induced myocardial dysfunction 
[33]. On the contrary, Nox2-deficient mice subjected to aortic banding developed 
the same degree of hypertrophy as wild-type mice [34, 35]. Nonetheless, it is imper-
ative that Nox4 oxidase is an important mediator of pressure overload-induced 
hypertrophy [34]. Interestingly, cardiac-specific knockout of Nox4 elicited reduced 
hypertrophy and fibrosis in pressure overload model and improved cardiac function 
apparently by increasing angiogenic activity [36]. However, Nox4-null mice showed 
opposite phenotype of developing hypertrophy, dilatation and contractile dysfunc-
tion [37]. Therefore, it is reasonable to accept that Nox4 plays a protective role in 
cardiac remodeling in contrast to Nox2.

Another antioxidant enzyme, Mn-SOD (SOD2), has been shown to be protec-
tive in cardiac hypertrophy. SOD2 is the primary antioxidant enzyme neutralizing 
∙O2

− in mitochondria [38]. Overexpression of SOD2 in myocytes showed “super” 
cardiac performance by enhancing mitochondrial function and metabolic vasodila-
tion [38, 39]. On the other hand, deficiency of Mn-SOD2 showed neonatal lethality 
and dilated cardiomyopathy indicated that Mn-SOD is essential for normal cellular 
and biological function of tissues by maintaining the integrity of mitochondrial 
enzymes [40].

3.2.2.2  Cardiac Fibrosis
Cardiac fibrosis which is a severe pathologic manifestation resulting from diverse 
stressful situation like pressure overload, ischemic insult, or metabolic stress [41, 
42]. The underlying molecular and morphological harmony of cardiac fibrosis is 
disruption of cardiac architecture by excessive deposition of extracellular matrix 
(ECM) proteins which include collagens, matrix metalloproteinases (MMP), etc. in 
the heart leading to cardiac stiffness and impair function [43, 44]. Activation of 
cardiac fibroblast due to diverse stimuli further contributes in cardiac fibrosis, 
another manifestation of adverse cardiac remodeling. Although many potential 
mechanisms have postulated that promote fibrosis over the past decades, the precise 
molecular mechanisms are not fully understood. Growing body of evidences indi-
cate the involvement of oxidative stress in the development of fibrosis in the heart. 
Three major intracellular sources of ROS generation are considered in the heart. 
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They are mitochondria electron-transport chain (ETC), membrane-bound NOXs, 
and endoplasmic reticulum (ER) [45]. ROS generated by NOXs and their interac-
tions with NO are suggested to activate redox signaling cascade in the pro- fibrotic 
process leading to heart failure [46, 47]. In doxorubicin-induced cardiac toxicity 
mouse model, it is reported that Nox2-derived ROS contributes to myocyte death, 
inflammatory response, cellular infiltration, interstitial fibrosis, and contractile dys-
function [48]. In the same model, contractile dysfunction was attenuated in Nox2−/− 
mice compared to the WT mice [48]. In angiotensin II-induced cardiac fibrosis 
model, Nox2−/− mice displayed abrogation of fibrosis indicating a critical role of 
Nox2 in fibrosis [32, 34]. Furthermore, in vitro studies demonstrated that Nox4 is 
associated with fibroblast activation and transformation into myofibroblasts in TGF-
β1-stimulated human cardiac fibroblast [49]. Using rat neonatal cardiac fibroblast, 
we have shown that H2O2 treatment increases intracellular ROS production and 
alteration of SODs and catalase levels [50]. Increased ROS further disrupted the 
mitochondrial membrane potential and subsequently increase the Bax/Bcl2 ratio 
favoring cell death [50]. However, the relevance of these results remains to be estab-
lished in vivo.

3.2.2.3  Cardiac Arrhythmia
Cardiac arrhythmia is defined as abnormal rate or rhythm due to unquiet electro-
physiological setting in the myocardium. This include tachycardia (heart rate is too 
fast) and bradycardia (heart rate is too slow). Atrial fibrillation (AF) which is the 
most common type of arrhythmia contributed significant morbidity and mortality 
[51, 52]. In 2010, it is reported that AF affect 2.7–6.1 million people in the United 
States and 14–16% have died of ischemic stroke [53]. It is reported that AF is linked 
with increased levels of ROS such as superoxide [54]. ROS promotes structural and 
electrophysiological remodeling such as ER and mitochondrial dysfunction, abnor-
mal Ca2+ handling leading to abnormalities in action potential (AP) conduction, or 
repolarization culminating into AF [55–57]. In animal studies, it has been reported 
that NOX played a crucial role for enhancing ROS activity in AF.  In a porcine 
pacing- induced AF model, Dudley et al. demonstrated that AF increased superoxide 
along with Rac1, NOX, and xanthine oxidase activities [58]. Interestingly, Rac1 
overexpression transgenic mice showed AF which was reversed by statin treatment 
[59]. Furthermore, Reilly S et al. reported that NOX activation may be obligated for 
early development of AF, whereas mitochondrion and uncoupled eNOS are essen-
tial in permanent AF [60]. Analysis of human LA myocardium of AF patients 
showed significant upregulation of Rac1 GTPase and NOX activity [59, 61]. 
Furthermore, the role of Nox2 and Nox4 is shown in tachypacing HL-1 atrial myo-
cytes [62, 63]. Tachypacing induced ROS production and TGFβ expression and 
increased calpain activation for myofibril degradation. In summary, data showed 
that NOX-derived ROS are involved in the pathogenesis of AF, albeit the role of 
their specific isoforms remains unclear.
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3.2.3  MicroRNA (miRNA) and Cardiac Remodeling

3.2.3.1  miRNA Biogenesis
RNA polymerase II is responsible for the transcription of long primary miRNA 
transcripts (pri-miRNA) in the nucleus [63]. The pri-miRNAs are then processed by 
the ribonuclease III, Drosha, to produce a precursor miRNA (pre-miRNA) that is 
approximately 100 nt long and has a hairpin-like structure. Another critical compo-
nent of Drosha is RNA-binding protein DiGeorge critical region-8 (DGCR8) which 
specifically recognizes and facilitates the cleaving process of pri-miRNAs in the 
nucleus [64]. The pre-miRNA is subsequently translocating to the cytosol by expor-
tin 5. Another ribonuclease III, Dicer, then diced the pre-miRNA further to generate 
double-stranded RNA [65]. Dicer further then facilitates loading the miRNAs into 
the RNA-induced silencing complex (RISC) by recruiting Argonaute 2 (Ago2) [66] 
(Fig. 3.1). The guide miRNA strand binds a complementary or partially comple-
mentary sequence in the 3′-untranslated region (UTR) of its target mRNA, followed 
by translocation to a processing body (P-body) for mRNA degradation where miR-
NAs guide the RISC to target genes by binding to imperfect complementary sites 
within the 3′UTRs [67].

Fig. 3.1 miRNA biogenesis. The miRNAs are transcribed by RNA polymerase II as primary 
transcript of miRNA (pri-miRNA). The pri-miRNA is the cleaved by RNase III enzyme, Drosha, 
along with several cofactors including DGCR8 and produces the stem-loop precursor miRNA 
(pre-miRNA). The pre-miRNA is then exported out of the nucleus by Exportin-5 to the cytoplasm. 
In the cytoplasm, the pre-miRNA is diced-up by Dicer resulting in miRNA duplex, ~22 nucleotides 
long. The mature miRNA is incorporated into the RNA-induced silencing complex (RISC) which 
contains Argonaute (Ago) and is guided to the 3′-UTR of target mRNAs. The gene silencing is 
achieved by either mRNA degradation or translational repression. (Adopted from Modulation of 
miRNAs in Pulmonary Hypertension. Gupta S, Li L Int J Hypertens. 2015; 2015:169069)
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Studies have shown that miRNAs are dysregulated in cardiac remodeling [68–
71]. Furthermore, genetic studies (transgenic and knock-out mouse model) of miR-
NAs have established their function to cardiac pathologies, but miRNA- mediated 
ROS modulation is emerging. This review will discuss this important aspect.

3.2.3.2  Redox miRNAs and Redox Homeostasis
It is established that miRNAs are playing a key role in diverse cardiac remodeling 
process; however, it remains to be elucidated how miRNAs can orchestrate cellular 
redox homeostasis, a significant contributor in several cardiac pathologies. Recently, 
it has been reported that miRNAs are able to modulate the redox signaling by direct 
interaction with nuclear factor-erythroid 2 related factor 2 (Nrf2), Kelch-like ECH-
associated protein 1 (Keap1) and CNC homolog 1 (Bach1); the critical transcrip-
tional regulators of ROS [72, 73]. A new subset of miRNAs which regulate redox 
pathways or regulated by the cellular redox state have been coined as “redox- miRs” 
[74]. Homeostasis is defined as a self-regulating dynamic process in biological sys-
tems which provide a stability by modulating conditions that are favorable for sur-
vival. This review highlights the potential role of miRNAs in cellular redox 
homeostasis.

3.2.3.3  Redox Regulation by miRNAs in Cardiac Remodeling: 
“MyomiRs”

Redox regulation in various cardiac pathologies and cellular signaling has been well 
documented [25, 75–77]; however, the roles of miRNA(s) in regulating the ROS 
pathways are emerging. This review will summarize ROS-mediated miRNA modu-
lation in cardiac remodeling.

Apparently, the first study that link the ROS with miRNA was the Dicer knock-
down strategy in human microvascular endothelial cells. The outcome has drasti-
cally reduced the ROS production in response to various stimulus like TNFα or 
vascular endothelial growth factor [78]. Furthermore, reduced Dicer expression was 
observed under oxidative stress, but liberation of superoxide cannot be ignored for 
defense response [79]. Also, the Dicer level may be restored once the stress is 
removed [79] indicating a transient cellular response but the association is 
remarkable.

Doxycycline (Dox)-induced oxidative stress-mediated myocardial damage sig-
nificantly increased miR-140-5p along with ROS leading to develop cardiotoxicity 
[80]. As a result of upregulation of miR-140-5p, the target genes, the Nrf2 and Sirt2, 
were reduced in Dox-induced rodent models (both rat and mouse). The Dox-induced 
oxidative damage was exacerbated when treated with miR-140-5p mimic; but the 
injury was mitigated with miR-140-5p inhibitor treatment [80]. Another study 
showed that overexpression of miRNA-132 attenuated TAC-induced cardiac hyper-
trophy and increased antioxidant SOD and Bcl2, elicits a miRNA-ROS association 
[81]. Another miRNA, the miR-1, is abundantly expressed in the heart muscle [81] 
and is reduced in cardiac hypertrophy [82]. It is of note that miR-1 controlled 
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cardiomyocyte growth by negatively regulating calmodulin, Mef2a, and Gata4 and 
all are critical for cardiac hypertrophy [82]. Furthermore, a recent study indicated 
ROS-dependent regulation of miR-1 targeting myocardin in cardiac hypertrophy 
[83]. This study is particularly interesting as it showed miR-1 mimic delivery atten-
uated TAC-induced cardiac hypertrophy [83, 84]. Together, the data underscore the 
significance of miR-1 in ROS-dependent cardiac remodeling. Another miRNA, the 
miR-21, is shown to participate a role in regulating ROS-induced by H2O2 [28]. 
Intracellular ROS was determined in miR-21 mimetic and inhibitor transfected car-
diomyocytes and stained with DCFH-DA and DHE, respectively, indicators for 
H2O2 and O2

− activities. Representatives of confocal microscopy images are shown 
in Fig.  3.2a. Intracellular ROS level was further measured by fluorimetry. 
Immunofluorescence images showed a 3.88 ± 0.15-fold (p = 0.0003) enhanced ROS 
activity in H2O2-treated cells, compared to unstimulated cells. Transient transfection 
with miR-21 inhibitor enhanced the ROS level to 4.38 ± 0.14-fold (p = 0.019), and 
miR-21 mimetic suppressed the ROS level by 3.09 ± 0.21-fold (p = 0.045), com-
pared to H2O2 treatment as shown in Fig. 3.2b. Together, the data suggested that 
miR-21 has a potential role in regulating the ROS activity under oxidative stress. A 
schematic presentation of ROS-induced cardiac remodeling is shown in Fig. 3.3.

It is known that an alteration in the intracellular calcium (Ca2+) is a critical regu-
lator in signaling mechanism and responsible for cardiac dysfunction including 
hypertrophy, apoptosis, or arrhythmia. It has been demonstrated that miR-145 regu-
lates ROS-induced Ca2+ overload in cardiomyocytes [85]. Another model, cardiac 

Fig. 3.2 Schematic presentation of ROS-mediated miRNA modulation in cardiac remodeling. 
ROS can modulate the miRNAs through posttranscriptional regulation of NRF2 and Sirt2 mRNAs. 
Green arrow indicates upregulatory pattern and red arrow indicated downregulatory pattern
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ischemia and reperfusion (I/R), caused cardiomyocyte apoptosis/necrosis, liberated 
ROS, and caused myocardial injury. As reperfusion increases oxidative stress and 
tissue damage, the set of miRNAs that are deregulated are often termed as “hypox-
amiRs.” Several evidences have accumulated a wealth of data linking miRNAs, 
such as let-7 family, miR-1, miR-133a/b, miR-19a/b, miR-150, miR-195, miR- 
199a, miR-221, miR-23a/b, and miR-320, to ischemic diseases [for recent compre-
hensive reviews, see Refs [86–91]]. Hypoxia-inducible factor 1 alpha (HIF1α) is a 
master transcriptional regulator to hypoxia [92]. Remarkably, miRNAs are critical 
modulator of HIF1α. For instance, miR-199a is downregulated in cardiac myocytes 
upon hypoxia, and this reduction is required for rapid upregulation of its target, 
HIF1α [91]. Another study indicated that therapeutic inhibition of miR-34 showed 
restoration of ischemia-induced cardiac remodeling and improves recovery [93]. 

Fig. 3.3 Overexpression of miR-21 attenuates H2O2-induced ROS level in neonatal cardiomyo-
cytes. The ROS level was measured in transfected neonatal cardiomyocytes with miR-21 mimetic 
and inhibitor followed by H2O2 treatment for 24 h by confocal microscopy and fluorimetry. (a) 
Representative confocal microscopy images of cardiomyocytes stained with DCFH-DA and DHE, 
respectively, showing the activity of H2O2 and O2

−. (b) Effect of miR-21 mimetic and inhibitor on 
generation of ROS in cardiomyocytes treated with H2O2 by fluorimetry. The data presented are 
mean ± SE. ∗∗P < 0.01 vs. control, #P < 0.05 vs. H2O2 treatment (n = 3). (Adopted from Wei C, Li 
L, Kim IK, Sun P, Gupta S. Free Radic Res. 2014, Reference 28)
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Together, it is speculated that “hypoxamiRs” are critical in the regulation of the HIF 
system via negative and positive feedback loops and orchestrated a fine-tuning plat-
form in response to the hypoxic response.

As discussed earlier that miRNAs participate in many cardiac diseases, a subset 
of miRNA is cardiac muscle-specific and have been called myomiRs. The first study 
on myomiRs was conducted by Sempere et al. [94] listing miR-1, miR-133a, and 
miR-206 as they are highly enriched both in human and mouse heart and skeletal 
muscle. Later, few isoforms and miR-208 were added, and currently the list included 
miR-1-1, miR133a-2, miR1–2/miR133a-1, miR-206, and miR-208 [95–97]. 
Interestingly, a low level of myomiRs including miR-367, miR-302b/c/d, and miR- 
499 is reportedly expressed in cardiac tissues [98]. Together, evidence suggested 
that a complex network of myomiRs posttranscriptional-regulated gene expression 
may orchestrated overall cardiac growth and function.

3.2.3.4  Redox Regulation by miRNAs in Cardiac Fibrosis: “FibromiRs”
Cardiac fibrosis is a debilitating process and one of the major contributors to the fail-
ing heart. Cardiac fibrosis is defined as an excessive deposition of ECM proteins in the 
interstitium and in perivascular region of the heart resulting the stiffness and impairing 
the cardiac function [99, 100]. The miRNAs are the regulators of fibrotic processes, 
and a subset of miRNAs that contribute to this event are called “fibromiRs” [101]. The 
first study of role of miRNA in cardiac fibrosis was demonstrated by Eva von Rooij 
et al. and established that miR-208 is a key mediator of cardiac fibrosis [102]. Since 
then, a large body of evidence suggested the role of several miRNAs in cardiac fibro-
sis and their potential in therapeutic intervention [103–108]. Previous studies have 
shown that miR-29 family members are downregulated in a variety of organ fibrosis 
including cardiac, renal, liver, etc., and considered as a “FibromiR” [102, 104, 109]. 
There are several reports in ROS-mediated lung, liver, and kidney fibrosis [110–115], 
but there are little evidence that showed a direct association between miRNA-ROS 
and cardiac fibrosis; however, the concept is emerging.

A recent report indicated that subclinical lipopolysaccharide (LPS) induced car-
diac fibrosis by upregulating collagens, MMP2, MMP9, TIMP1, TIMP2, and peri-
ostin but not CTGF [116]. Mechanistically, authors showed a downregulation of 
miR-29c and upregulation of NOX2 suggesting a link between ROS-miRNA and 
cardiac fibrosis [116]. Another antioxidant defense molecule, the Nrf2, a major 
transcriptional regulator, is closely linked with ROS-mediated cardiac remodeling 
[25, 72] and was regulated by miR-140-5p [80]. Furthermore, a recent study showed 
a set of miRNAs (miR-27a, miR-28-3p, and miR-34a) which were upregulated and 
preferentially incorporated into a vesicle (exosome) followed by secretion into the 
extracellular milieu and eventually reduced the Nrf2 level in myocardial infarction 
model [117] (Fig. 3.4). The finding is interesting and provides a new mechanism of 
MI-induced miRNAs that contribute to oxidative stress by inhibiting Nrf2. Data 
indicated potential new therapy to target miRs and NOX2/Nrf2 warrants further 
investigation.
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3.2.3.5  Redox Regulation by miRNA in Arrhythmia
Accumulating evidence showed involvement of miRNAs in arrhythmogenesis [118]. 
Seahyoung Lee et al. have tabulated a list of miRNAs by literature review and revealed 
that ROS-mediated miRNAs are associated with cardiac arrhythmia [119]. The set of 
miRNAs that showed a possible association with ROS and arrhythmia are miR-1, 
-19a, -21, -26, -30, -133, -145, and -499. The study connected to ROS- miRNA- 
arrhythmia is limited, but the possibility that ROS-mediated miRNA modulation con-
tributed either directly or indirectly to arrhythmia still exists. It is of note that the 
possibility of single nucleotide polymorphism (SNP) in the miRNA coding region for 
the development of arrhythmia cannot be ignored. There are two reports that showed 
a correlation between an SNP and atrial fibrillation in Chinese population [120, 121]. 
Therefore, alteration of miRNA in arrhythmia in response to ROS may indicate a pos-
sibility for arrhythmia and warrants further investigation with appropriate experimen-
tal conditions or models to understand the underlying mechanism.

3.3  Conclusion

Oxidative stress is continuously showing a significant contributor to cardiac dis-
eases. As a result, its modulation is likely to be attractive at therapeutic standpoint. 
Accordingly, antioxidant therapies are in the front line for treatment for many 

Fig. 3.4 Interconnection 
of ROS with miRNA 
expression in the event of 
fibrosis. ROS can modulate 
the miRNAs through 
posttranscriptional 
regulation of NOX2 and 
NRF2 mRNA. Green 
arrow indicates 
upregulatory pattern, and 
red arrow indicated 
downregulatory pattern
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decades. Along the line, miRNAs are now floated on the surface for cardiac disease 
therapeutics. It might be interesting to target miRNA(s) that control ROS and as a 
result we can achieve two goals in one effort; one is ROS and the other is the spe-
cific gene that is associated within it. The beauty of targeting miRNA is that a single 
miRNA can regulate the expression of several genes and the gene network. 
Development of specific inhibitor and mimic of miRNA that can be locally or sys-
temically delivered to the specific organ would be a great tool for designing thera-
peutic molecule. However, a proper and strategic design is required for therapeutic 
intervention. Furthermore, “off-target” effects should be considered because of 
multiple gene target and the organ/tissue specificity which is challenging. Although 
redox-miR- axis is emerging, a significant progress is made in determining the mag-
nitude of several aspects of cardiac remodeling. It seems to take a long run to 
achieve clinical testing of these agents in cardiac diseases, but a pathway appears to 
be propitious. The findings showed that miRNAs regulating ROS have uncovered a 
potential use for treatment of cardiac remodeling via redox-based mechanism of 
“myomiRs” or “fibromiRs” or together we can say “myofibromiRs.”

Moreover, we should acknowledge a new class of noncoding RNA, long noncod-
ing RNA (Lnc RNA), or small nucleolar RNA (snoRNA) which are implicated in a 
number of diseases including cardiac under oxidative stress condition with a wide 
range of functions. However, lncRNAs consist of a large number of transcripts may 
have some difficulties in targeting for specific drug intervention but cannot be 
ignored.
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4Myocardial Oxidative Stress 
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Abstract
Aging, diabetes, obesity, atherosclerosis, hypertension, and dyslipidemia shared 
similar manifestations of cardiomyopathy. This disease is characterized by path-
ological, cytological, and molecular alterations of both cardiomyocytes and 
endothelial cells. The disease altered the cytoplasmic organelle structure and 
function such as mitochondria, endoplasmic reticulum, Golgi apparatus, and 
lysosomes. These involved dramatic changes of protein synthesis in endoplasmic 
reticulum, calcium storage in mitochondria, autophagy in lysosomes, and lipid 
metabolism in Golgi complex. Enhanced lipid peroxidation, oxidative stress, and 
release of free oxygen species are the main contributing factors of cell damage 
and cell death. This review summarized the concept of oxidative stress in cardio-
myocytes and role of each cytoplasmic organelle in its development during prog-
ress of the disease.

Keywords
Oxidative stress · Myocardium · Aging · Diabetes · Obesity · Cytoplasmic 
organelles

4.1  Introduction

Cardiac muscle is highly coordinating and pumping blood into the blood vessels 
carrying oxygen, nutrients, and biochemical components which are essential for the 
living and function of body cells. Mitochondria and ATP are dispersed in between 
cardiac muscle fibers and are responsible for aerobic metabolism. Branching of 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8946-7_4&domain=pdf
mailto:elsayyad@mans.edu.eg


82

cardiac muscle cells allows it to contract in a wave-like structure. The cardiac con-
tractions are controlled by pacemaker cells which receive signals from the auto-
nomic nervous system and respond to the various hormones. Oxidative stress 
involves liberation of free radicals, such as O2∗(−), H2O2, and ∗OH, which are gen-
erated extra- or intracellularly and cause toxicity to cardiomyocytes. During myo-
cardial oxidative stress, the generation of ROS occurred due to altered nitric oxide 
synthase (NOS), NADPH oxidase, xanthine oxidase, and lipoxygenase/cyclooxy-
genase and the auto-oxidation of catecholamines [1]. Mitochondria play a role on 
generation of free radicals through an enzymatic source of free radical generation 
which leads to a catastrophic cycle of mitochondrial DNA damage. The oxygen 
radical species developed myocyte hypertrophy, apoptosis, and interstitial fibrosis 
via activating matrix metalloproteinases [2]. Aging [3], obesity, hypercholesterol-
emia and hyperlipidemia [4], hypertension [5], and diabetes [6] are contributed to 
myocardial oxidative stress. Also, the role of cytoplasmic organelles in oxidative 
stress such as mitochondria, rough endoplasmic reticulum, lysosomes, and Golgi 
apparatus is illustrated.

4.2  Metabolic Diseases and Oxidative Stress

According to World Health Organization (WHO), about 346 × 106 peoples were 
affected by diabetes worldwide and would be two-fold increase by 2030 [7]. The 
heart is the active organ, which needs the highest amount of adenosine triphosphate 
(ATP), for performing its function. Myocardial contraction required ATP and mito-
chondria for energy utilization, such as ionic pumps and the force-generating sarco-
meres [8]. Sarcomeres are highly ordered arrays of molecular motors developed 
through a finely regulated mechanotransductive mechanism [9]. The poor diabetic 
control is associated with hyperglycemia and alterations of insulin and fatty acids, 
which altered cardiomyocyte function [10]. Impaired glucose uptake is correlated 
with disturbances of the insulin signaling pathway. Impaired cardiac activity and 
insulin-activated phosphorylation of Akt are more detected [11].

Intra- and extracellular high glucose level led to the development of advanced 
glycation end products (AGEs) derived from the collagenous protein materials 
leading to ventricular stiffness, the marker of diabetic cardiomyopathy [12]. 
Hyperglycemia is mediated by posttranslational modifications such as 
O-GlcNAcylation of Ca2+ proteins and kinases which have been shown to play a 
major role in cardiac impairment in diabetes [13]. Diabetes cardiomyocytes is 
associated with alterations of Ca2+ and consequently the formations of SERCA2 
leading to withdraw Ca2+ from the cytosol during the diastolic contraction. Also, it 
affected myofilament Ca2+ sensitivity and increase ryanodine receptor-mediated 
Ca2+ release from the sarcoplasmic reticulum leading to arrhythmia susceptibility 
[14]. Diabetic cardiomyopathy developed from abnormal changes in the myocar-
dial substrate and energy metabolism. It is affected by the reduction of calcium ion 
levels impairing the relaxation-contraction process and developed diastolic and 
systolic dysfunction. Sarcoplasmic reticulum (SR) represents the main part of 
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cardiac excitation-contraction supplied with Ca2+ via the SERCA2a (sarcoplasmic/
endoplasmic reticulum calcium-ATPase 2a). The decreased activity of SERCA2a 
and increase of Ca2+ release facilitated to the development of diabetic cardiomy-
opathy [15].

Diabetes have been associated with vasodilatation [16] as expressed by the 
increase of thrombomodulin, von Willebrand factor (vWF), selectins, and type IV 
collagen, the markers of endothelial damage [17] which predicted the vascular 
pathological changes. Also, the overexpression of protein kinase C (PKC) and 
elevated levels of angiotensin II (ANG-II), AGEs, plasminogen activity inhibitor-1 
(PAI-1), are observed in the damaged endothelial cells [18]. Also, diabetes-induced 
myocardial infarction is associated with overexpression of cleaved caspase-3 
expression, the marker of apoptosis. Also, it increased endoplasmic reticulum 
stress through the elevated level of the serum creatine kinase and lactate dehydro-
genase activities [19]. Alterations in the cell metabolism, oxidative stress, forma-
tion of extracellular matrix proteins, endoplasmic reticulum stress, AGE, and 
steatosis (accumulation of lipid droplets) are involved in cell death diagnosed by 
the diabetes [15]. Also, there is a reduction of cardiac contractile function, impaired 
autophagic process, and increased ER stress and phosphorylation of signaling mol-
ecules Akt and mTOR [20].

Obesity is characterized by accumulated body fat, resulted from the high food 
intake, missing of physical exercise, and genetic factors. Obese individuals exhibited 
increased level of hormones, nonesterified fatty acids, glycerol, and cytokines. 
Obesity impaired the function of B cells and consequently developed diabetes [21], 
hypertension, atherosclerosis, and cardiovascular disease [22, 23]. Increase lipid 
intake enhanced the endoplasmic reticulum stress, abnormal autophagic process, de 
novo ceramide synthesis, oxidative stress, inflammation, and changes in gene expres-
sion [24]. These factors implicated in the impairing of the systolic and diastolic dys-
function progress the development of both coronary heart disease and heart failure.

Although the glucotoxicity exhibited the cardiotoxicity, lipotoxicity developed 
the disease via another way. Fatty acids (FFAs) are the main sources of cell energy. 
They enter the mitochondria by the enzyme carnitine palmitoyltransferase 1 (CPT1) 
and undergo further β-oxidation to generate acetyl-CoA, the main substrate for the 
Krebs cycle. It is also used in ATP synthesis. Excess FFA is abnormally involved in 
ER stress, mitochondrial dysfunction, calcium dysregulation and cell death, and 
consequently liberation of reactive oxygen species (ROS) [25]. The cellular FFA 
uptake is controlled by CD36. Intracellularly, saturated FFAs enhanced the produc-
tion of cytosolic and mitochondrial reactive oxygen species (ROS). Palmitate over-
load induced oxidative stress through triggering abnormal endoplasmic reticulum 
(ER), Ca2+ release and consequently reduction of the ER Ca2+ stores [26]. 
Experimental animal model like Sprague-Dawley rats fed on high-fat, low- 
carbohydrate diet (HFLCD) for 7 weeks resulted in obesity associated with depleted 
myocardial glycogen and also levels of both plasma adiponectin and insulin. 
Hyperlipidemia reduced the myocardial antioxidant gene transcript and activities of 
catalase and superoxide dismutase which coincides with increased xanthine oxidase 
activity and the gene of NADPH oxidase-4 transcript. Also, the decrease of 
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myocardial mitochondrial DNA led to the marked reduction cardiac mitochondrial 
factors such as nuclear respiratory factor-1 and transcription factor A-mitochondrial 
[27]. Also, in obese pigs, cardiomyopathy is manifested by a marked increase of 
heart weight parallel with interstitial and perivascular fibrosis, increased lipid accu-
mulation, oxidative stress, and decrease of the antioxidant enzymes. HFD overex-
pressed Grp94, CHOP, caspase 12, p62, and LC3II and increased the ratio of LC3II 
to LC3I in the left ventricle (LV) of the 5-month-old Lee-Sung (MetS) pigs [28]. 
Palmitate, stearate, and oleate are the most abundant FFAs, accounting for 70–80% 
of total plasma FFAs [29]. Palmitate overload developed type 2 diabetes, liberating 
the ROS generation and Ca2+-mediated cardiac pathogenic changes. Palmitate cyto-
toxicity facilitated the release of calcium ions from the endoplasmic reticulum (ER) 
and increased its concentration in the cytosolic mitochondria which may accelerate 
ROS generation and increase permeability transition (PT) pore opening [26].

Diabetic cardiomyopathy is closely associated with hypertension and dyslipid-
emia which induce dysfunctional remodeling, myocardial fibrosis, and diastolic 
dysfunction and systolic impairment. Also, it is known that the impaired insulin 
metabolic signaling increased the oxidative stress and reduced nitric oxide bioavail-
ability, AGE products, cardiomyocyte extracellular matrix stiffness, mitochondrial 
dysfunction, renin-angiotensin-aldosterone system, inflammation, cardiac auto-
nomic neuropathy, endoplasmic reticulum stress, microvascular dysfunction, and a 
myriad of cardiac metabolic abnormalities [30]. Also, obesity led to insulin resis-
tance, and type 2 diabetes developed cardiomyopathy. It is characterized by struc-
tural and functional alterations and interstitial fibrosis without coronary artery 
disease or hypertension. In the old stage, the diastolic and systolic functions are 
impaired [31]. The diseases suppressed the insulin receptor signaling through 
hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphor-
ylation of insulin receptor substrate-1 (IRS-1). Mice deficient in X-box-binding 
protein-1 (XBP-1), a transcription factor, promotes the ER stress response and 
develops insulin resistance [32]. There is a close association between the obesity 
and endoplasmic stress expressed by tumor necrosis factor (TNF)-alpha and insulin 
receptor signaling such as c-Jun NH2-terminal kinase (JNK) and inhibitor of nuclear 
factor-kappaB kinase-mediated transcriptional which inhibits insulin function [33, 
34]. The endoplasmic reticulum protein TXNDC5 induces cardiac fibrosis by 
increase folding of extracellular matrix protein and cardiac fibrosis via redox- 
sensitive c-Jun N-terminal kinase signaling [35].

Although other factors are involved, aging is closely associated to type 2 diabetes 
or insulin resistance [36]. Aging is associated with the increase of myocardial 
remodeling and altering cardiac reserve leading to myocardial damage [37], increas-
ing left ventricular wall thickness, chamber size, and prolonged diastole. These 
cooperated in the impairing of the myocardial contractility [38].

Aged vascular smooth muscle cells (VSMCs) are associated with the sharp rise 
of interleukin-6 leading to overexpression of nuclear factor κ-light chain-promoted 
B-cell activation and production of mitochondrial O2 [39]. Nair and Ren [40] men-
tioned that aging attenuated the growth hormone (insulin-like growth factors) sig-
naling, lack of DNA replication, and repair of histone acetylation which predicted 
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loss of ventricular function. Aging impaired autophagic process, leading to the 
accumulation of damaged proteins and organelles. Age-related cardiovascular dys-
function is characterized by liberated reactive oxygen species (ROS) and superox-
ide by low-grade inflammation such as left ventricular hypertrophy, fibrosis, 
diastolic dysfunction, endothelial damage, decreased vascular elasticity, and 
increased vascular stiffness [41]. Collagen types I, II, III, IV, V, and VI, elastin, 
fibronectin, laminin, and fibrinogen represent the cardiac fibroblasts activated ECM 
proteins [42]. Although these materials provide structural support to the myocar-
dium, its ECM accumulation mediated the diastolic dysfunction and increase myo-
cardial stiffness [43]. There is a dynamic balance between ECM synthesis and 
degradation by matrix metalloproteinases (MMPs) which impaired during aging 
process [44]. The increase of transforming growth factor-β (TGF-β) and connective 
tissue growth factor (CTGF) levels represents the main element in ECM synthesis 
in aging mice that express myocardial fibrosis and loss of cardiac diastolic function 
[45]. Oxidative stress is also associated with myocardial damage resulted from 
impacting proteins, lipids, and RNA and DNA of cells as well as increase of oxida-
tive stress leading to mitochondrial damage and release of cytochrome c, causing 
cell death [41].

4.3  Endothelium and Oxidative Stress

The endothelium is a metabolically active thin single cell layer lines the internal 
lumina of the vasculature and separate the blood circulation from the vascular smooth 
muscle cells (VSMCs) and maintained the vasodilatation and vasoconstriction. The 
endothelium performs its function via the expression of the vasodilators and vasocon-
strictors which promote vascular homeostasis, cellular adhesion, vessel wall inflam-
mation, and angiogenesis [46]. Dysfunctions of the endothelium led to impair the 
vasoconstriction and increase inflammation via the depletion of endothelial nitric 
oxide synthase, endoplasmic reticulum stress, overproduction of vascular endothelial 
growth factor inflammatory pathways, and oxidative stress. All of these are involved 
in the development of diabetes, coronary artery disease, peripheral arterial disease, 
stroke, and microvascular complications [47]. The microvascular complications in 
diabetes and hypercholesterolemia may lead to retinopathy [48], while macrovascular 
complications are illustrated in myocardial [49] and peripheral vascular disease [48].

Endothelial cells and macrophages are tightly contact and contributed to the 
modulation of vascular function. In adult, the endothelial cells possess signals for 
the progressive differentiation and characterization of macrophages such as expres-
sion of Tie2 and CD206/Mrc1. These macrophages accelerate angiogenesis and 
effectively engage in tight associations with endothelial cells in vivo [50].

The endothelial (ECs), myeloid, and cardiomyocyte cells have the great ability to 
switch from generating ATP through oxidative phosphorylation to glycolysis and to 
change from one energy source to another [51]. Hyperlipidemia is closely linked to 
hyperglycemia and insulin resistance leading to the development of cardiovascular 
disease [52]. Atherothrombosis is developed from the downregulation of 
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endothelial cells which facilitated attraction, binding, and aggregation of mono-
cytes. These are activated cell adhesion molecules on the endothelial cells together 
with the chemokines, platelet-activating factor, CCL2 and CCL5 [53]. 
Cardiomyopathy, related to impairing of coronary endothelial cell (EC), myocardial 
necrosis, and fibrosis are the main causes of mortality in diabetic patients [54].

Dysfunction of the dynamic balance between the pro- and anti-inflammatory regu-
lators of macrophages and activation of inflammatory macrophages facilitated the 
development of obesity, metabolic syndrome, and diabetes [55]. Mitochondrial oxida-
tive stress (mitoOS) amplified macrophages by promoting NF-κB-mediated entry of 
monocytes and other inflammatory processes during the progress of human athero-
sclerosis [56]. Also, it is involved in the activation of inflammatory macrophage lead-
ing to the adipocyte dysfunction. These also illustrated the therapeutic implications 
for obesity, metabolic syndrome, and diabetes [55]. Activated macrophages are the 
main source of reactive oxygen species, reactive nitrogen species, and peroxynitrite 
which are generated through the respiratory burst. Also, the liberated pro-inflamma-
tory cytokines, such as tumor necrosis factor-α, initiated NF-κB and activated pro-
tein-1 translocation enhancing the liberation of free radicals in macrophages. These 
epigenetic factors accelerated the development of metabolic diseases [57].

The dynamic balance between the endothelium-dependent of either contracting 
(EDCFs) or relaxing factors (EDRFs) and endothelium-dependent hyperpolarizing 
factors is impaired during aging (EDHF) (endothelin-1 (ET-1)). It is a result from the 
depletion of NO, the endothelium vasorelaxant, and production of cyclooxygenase and 
the vasoconstrictor molecules [58]. Depletion of l-arginine, the substrate for NO pro-
duction, or activity of eNOS, the enzyme that synthesizes NO led to decreased produc-
tion of NO in endothelial cells. It led to of the downregulation of tetrahydrobiopterin 
(BH4), the cofactor of eNOS. Many authors reported its depletion during aging [59].

4.4  Cytoplasmic Organelles and Oxidative Stress

Reactive oxygen (ROS) and/or nitrogen species (RNS) are observed in many biologi-
cal processes as well as during the development of hypertension, ischemia/reperfusion 
injury, diabetes mellitus, atherosclerosis, stroke, cancer, and neurodegenerative disor-
ders. Their overexpression predicted the early marker of cardiomyocyte cell death. 
Mitofusin-2 (Mfn-2) protein manages the mitochondria and endoplasmic reticulum 
(ER). Hyperglycemia decreased the cardiac function and activated ER interactions 
and mitochondrial apoptotic pathways via increase ER and mitochondrial stress fac-
tors, apoptotic proteins, cytochrome c, and mitochondrial permeability transition pore 
(mPTP) opening [60]. Type 2 diabetes-associated cardiomyopathy exhibited abnor-
mal twofold higher level of adiponectin, the marker of lipotoxicity [61].

Oxidative stress plays a role in ischemia/reperfusion injury, atherosclerosis, and 
aging. Type 2 diabetes and other metabolic diseases are associated with ROS, pro-
tein aggregation, and glycosylation defects. The existence of more than 20 protein 
disulfide isomerase family members such as endoplasmic reticulum oxidoreductin 
1 (ERO1) and NOX4-knockout mice clearly mentioned the development of stress in 
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ER and GA.  Oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH 
changes appear to be of importance and indicate the balance of intercompartmental 
communication [62]. There is a close relationship between the overexpression of 
free radicals and oxidative stress-associated cardiomyopathies. Mitochondria repre-
sent the main target for the primary generation of superoxide radicals. However, the 
Golgi apparatus (GA) cooperated in modifying, sorting, and packaging macromol-
ecules for cell metabolism. GA play a great role in Ca2+/Mn2+ homeostasis, cell 
apoptosis, sphingolipid metabolism, signal transduction, and antioxidation [23]. 
Experimentally induced diabetes in both metallothionein overexpression transgenic 
and wild-type (WT) mice exhibited cardiac ER stress expressed by chaperones and 
cell death by CCAAT/enhancer-binding protein (C/EBP) homologous protein 
(CHOP) and cleaved caspase-3 and caspase-12 after 2 and 5 months [63].

Intracellular hyperglycemia increased the production of free radicals leading to 
the overexpression of nuclear poly(ADP-ribose) polymerase and inhibits GAPDH, 
the predictor of diseased signaling pathways. ROS and poly(ADP-ribose) poly-
merase are also decreased the expression of sirtuin, PGC-1α, and AMP-activated 
protein kinase activity. These mediated the loss of mitochondrial biogenesis, 
increased ROS production, and altered normal synchronization of glucose and lipid 
metabolism. Also, there is a progressive increase of nuclear transport of proathero-
genic transcription factors, transcription of neutrophil enzyme initiating NETosis 
and peptidylarginine deiminase 4, and activates the NOD-like receptor family, pyrin 
domain-containing 3 inflammasome. Insulin resistance led to the increase of ROS 
within the cardiomyocyte through increase fatty acid flux and oxidation. There are 
a marked activation of cardiomyopathy markers such as nuclear receptor PPARα 
and nuclear translocation of forkhead box O1. ROS impair the balance between 
mitochondrial fusion and fission through increasing of fission process, decreasing 
metabolic capacity, loss of mitochondrial electron transport chain, and ATP synthe-
sis [64]. Sirtuin 1 is an NAD+-dependent histone deacetylase that regulates endo-
plasmic reticulum stress and cardiomyocyte apoptosis through impairment of 
cardiac contractility. Twelve-month-old Sirt1−/− mice exhibited overexpression of 
nitric oxide synthase and increased endoplasmic reticulum stress and apoptosis in 
the myocardium leading to impairment of cardiac contraction [65].

4.5  Endoplasmic Reticulum and Oxidative Stress

The endoplasmic reticulum (ER) is a highly branched tubular organelle regularly 
oriented parallel with each other and interconnected with the nuclear envelope. It is 
important in cellular homeostasis, signal transduction, folding protein via formation 
of disulfide bonds, and transmission to Golgi apparatus [66] as well as provides a lot 
of Ca2+ responsible for protein folding [67, 68]. It is the most dynamic organelle that 
determines cell survival or death. It contains protein chaperones and enzymes such 
as Grp78 (BiP), Grp94, protein disulfide isomerase (PDI), calnexin, and calreticu-
lin, which are involved in protein folding. Folded proteins are transferred to the 
Golgi organelle, while incompletely folded ones are transported in the ER to 
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complete the folding process or delivered to the cytosol to undergo degradation [69, 
70]. Two kinds of endoplasmic reticulum are known. Rough ER play a great role in 
protein synthesis, folding, modification, and transport. The other type is smooth ER 
which involved in the biosynthesis of lipids and steroids, metabolism of carbohy-
drates, and regulation of calcium intracellular homeostasis [69].

The lumen of the ER and its cytosol possesses the increased ratio of GSSG/GSH 
with a characteristic oxidizing environment which facilitates disulfide bond forma-
tion and prevents accumulation of unfolded protein [71]. Glutathione is formed in 
the cytosol in a reduced form by NADPH-dependent reaction and glutathione 
reductase [72]. Glutathione works as a thiol-disulfide redox buffer, and the average 
ration of GSH/GSSG predicted the cellular redox state. The level of reduced gluta-
thione to oxidized form is >50:1 in the cytoplasm and 1:1 to 3:1 in the ER lumen 
(Hwang and Sinskey 1992). It determined the functions of PKR-like endoplasmic 
reticulum kinase (PERK) and transcription factor 4 (ATF4), which reduce ROS via 
transcriptional regulation [73].

There is a close-related function between ER and mitochondria especially during 
the oxidative stress and inflammation. Both organelles shared the production of the 
cellular reactive oxygen species (ROS) [74]. In the mitochondria, the ROS is devel-
oped from the by-product of oxidative phosphorylation-associated ATP production, 
whereas in ER, ROS is formed during disulfide bond formation of folded protein 
[75]. This led to the depletion of the anti-oxidative defense of cells [76]. Also, the 
calcium ions predicted the correlation between mitochondria and ER. During oxida-
tive stress, calcium ion levels are altered. These are accompanied by disruption of 
the membrane potential, altered pH, decreased the production of ATP, and opened 
the permeability transition pores, causing cytochrome c leakage into the cytoplasm. 
Also, the endoplasmic reticulum (ER) is the site of calcium storage and disulfide 
bond formation of protein folding. The endoplasmic reticulum stress increased the 
production of reactive oxygen species via altering the activities of protein disulfide 
isomerases, endoplasmic reticulum oxidoreductin-1, and reduced glutathione, and 
mitochondrial electron transport chain proteins are altered [77].

Unfolded or misfolded protein contents of endoplasmic reticulum activate the 
endoplasmic stress as a result of hyperglycemia, oxidative stress, ischemia, distur-
bance of calcium homeostasis, and overproduction of abnormal proteins, leading to 
increase of unfolded protein response (UPR) and cardiac cell apoptosis [78, 79]. 
Protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring 
kinase 1 (IRE1), and activating transcription factor 6 (ATF6) are the main proximal 
transducers of ER stress detected at the molecular level. These inhibit the protein 
translation, enhance protein-folding capacity, and augment ER-associated degrada-
tion to refold denatured proteins and restore cellular homeostasis [80, 81].

Calcium storage and protein folding are detected mainly in the ER.  Abnormal 
changes of both oxidative stress and intra-ER Ca2+ activated the ER stress leading to 
liberation of free radicals. Increased level of calcium ion can transfer into mitochon-
dria through IP3R-enriched MAM to activate the mitochondrial function. Decreased 
ER calcium channels and enhanced calcium release from the ER into the cytoplasm 
increased the more production of reactive oxygen species from mitochondria [82]. 
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Also, the ER stress-associated oxidative stress signaling is carried out via PERK- 
mediated activation of ATF4 and nuclear factor erythroid 2-related factor 2 (NRF2)—
the transcription factor responsible for the antioxidant cell response [83]. ER stress 
altered the ER protein-folding metabolism which led to abnormal accumulation of 
misfolded proteins in the lumen of ER by exposing to hydrophobic amino acid domain 
and consequently activated apoptotic pathways [70, 84, 85]. ER-associated degrada-
tion (ERAD) machinery or autophagic process plays a great role in degraded the accu-
mulation of misfolded or immature proteins [86]. The ER stress is composed of four 
main steps: (1) increased protein synthesis carried out to prevent protein aggregation/
accumulation, (2) transcriptional induction of ER chaperone genes to accelerate pro-
tein folding, (3) transcriptional induction of ERAD genes to increase ERAD ability/
capacity, and (4) induction of cell death to remove affected cells. Accumulation of 
misfolded proteins exerted proteotoxicity. Senescence is a complex cell phenotype 
induced by telomere attrition, DNA damage, and activation of some oncogenes lead-
ing to oxidative stress. It is characterized by a cell hypertrophy, complete cell cycle 
arrest, and the formation of a secretome enriched in pro-inflammatory [87].

Endoplasmic reticulum stress is essential in coronary artery disease and cardiac 
hypertrophy. The ER transmembrane illustrates the accumulation of unfolded pro-
teins and increases the transcriptional and translational pathways via specific sen-
sors. Oxidative stress is balanced by antioxidant defense systems managed by the 
unfolded protein response (UPR). Nuclear factor-E2-related factor (Nrf2) is a regu-
lator of cellular resistance to oxidants and interrelated with the UPR sensor called 
pancreatic endoplasmic reticulum kinase. The interventions against ER stress and 
Nrf2 activation reduce the myocardial infarct size and cardiac hypertrophy in ani-
mals exposed to I/R injury and pressure overload, respectively [88].

Aging in senescence-accelerated prone mice exhibited activation along with 
reduced expression of 14-3-3η protein, the downstream mitogen-activated protein 
kinase-mediated ER stress, apoptosis, and DNA damage in the cardiomyocytes of 
SAMP8 mice [89]. In an experimental obese mother mice which fed on a high-fat 
diet (60% fat) for 15 weeks, the abnormal myocardium of E12.5 embryos is devel-
oped. It is characterized by ventricular septal defects and persistent truncus arterio-
sus parallel with increasing oxidative stress markers, such as superoxide and lipid 
peroxidation, and endoplasmic reticulum stress markers. Additionally, the levels of 
phosphorylate protein kinase, RNA-like endoplasmic reticulum kinase, phosphory-
lated IRE1α, phosphorylated eIF2α, C/EBP homologous protein and binding immu-
noglobulin protein, endoplasmic reticulum chaperone gene expression, XBP1 
messenger RNA splicing, and cleaved caspase-3 and caspase-8 are increased in 
heart embryos [90]. Ischemic heart disease is a stress condition characterized by 
pathological alterations and triggers cardiac cell death. Recent evidence revealed 
that ER stress is involved in the development and progression of various heart dis-
eases, such as cardiac hypertrophy, ischemic heart diseases, and heart failure. The 
endothelium of atherosclerosis upregulated genes associated with endoplasmic 
reticulum stress. Except PERK, ER transmembrane signal transducers IRE1alpha 
and ATF6 alpha were activated and coincide with expression of protein-folding 
enzymes and chaperones, the markers of ER stress [91].
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Also, the ER stress activated the release of Bip from the sensor proteins, and 
UPR after dimerization and autophosphorylation of PERK and IRE1α, and conse-
quently managed intramembrane proteolysis of ATF6. PERK activation initiated 
factor 2α (eIF2α) phosphorylation and decreased both global protein synthesis and 
formation of the eIF2-containing initiation complex. The increase translation of 
activating transcription factor 4 (ATF4) manages pro-apoptotic factor C/EBPα 
homologous protein (GADD153 or CHOP) mediating the direct transcriptional 
induction and translocation to the ER membrane of a pro-apoptotic BH3 protein of 
the BCL-2 [92, 93].

Unfolded protein (UPR) activates ER protein kinase (PERK), transcription fac-
tor 6 (ATF6), and the inositol-requiring enzyme 1 (IRE-1) which dissociate the 
luminal chaperone BiP/GRP78 from the luminal proteins. These were associated 
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Fig. 4.1 Diagram illustrated endoplasmic reticulum (ER) stress. Accumulated of unfolded pro-
teins within the lumen of ER such asIRE1, PERK, and ATF6 and released signals that manage cell 
function. PERK, protein kinase RNA-like ER kinase; IRE1 inositol-requiring protein 1, ATF6 
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UPR unfolded protein response (Ozcan and Tabas [95])
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with depletion of protein synthesis and increase the transcription of genes encoding 
protein-folding enzymes, ER chaperones, and components of the ER-associated 
degradation (ERAD) [94] (Fig. 4.1).

4.6  Mitochondria

Aerobic metabolism of the cardiomyocyte required mitochondria and almost more 
than 90% of the intracellular ATP which are formed after combustion of fatty acids, 
glucose, and lactate. The cardiomyocyte metabolism required increased level of 
degraded adenosine triphosphate (ATP). Fatty acids supply approximately 60–90% 
of the energy to the heart and are acquired about 10–40% from the oxidation of 
pyruvate (through glycolysis and lactate). Also, glucose is important in production 
of ATP, which is transported from the bloodstream to internal structure of the mito-
chondria in the form of two main components: pyruvate and nicotinic adenine dinu-
cleotide (NADH). These two metabolites are further transported into the central 
part, in the presence of oxygen and produce ATP (adenosine triphosphate) [96].

Mitochondria are abundant in between the myofibrils and just below the sarco-
lemma of the cardiomyocytes. Metabolism of fatty acid and glucose carried mainly 
in the mitochondria. Mitochondria are the main energy supplemented organelles, in 
the form of ATP, and important for cardiac function after combustion of fatty acids, 
glucose and lactate. Calcium (Ca2+) is released from the sarcoplasmic reticulum 
(SR) and activates the excitation-contraction (E-C). Abnormal Ca2+ accumulation 
interfered with impaired mitochondrial function, decreased ATP formation, and 
increased liberation of reactive oxygen species (ROS). The diastolic SR Ca2+ pro-
duction activated mitochondrial Ca2+ production and development of murine model 
of myocardial infarction. Two kinds of Ca2+ released channels are detected on car-
diac SR, namely, type 2 ryanodine receptors (RyR2s) and type 2 inositol 
1,4,5- trisphosphate receptors (IP3R2s). In murine models, mutation of type 2 
ryanodine receptors (RyR2s) cause or inhibit leakage of SR Ca2+ leak which results 
in mitochondrial Ca2+ overload and morphological abnormality [97].

Mitochondria are in contact with the Ca(2+) production and uptake of channels of 
[Ca(2+)-ATPase (SERCA)] in the sarcoplasmic reticulum (SR). Their reactive-free 
radicals manage Ca(2+) cycling in the cardiomyocytes. The authors proposed that 
free radicals induced overproduction of Ca(2+) via promoting SR Ca(2+) release, 
which increases other Ca(2+) channels and dysregulates Ca(2+), leading to abnormal 
action potential (AP) which altered the mitochondrial and SR unction. Morphological 
abnormalities of AP are affected by increase of free radicals and AP firing and 
SR-mitochondria distance [98].

Cardiomyopathy increased the consumption of fatty acids (FAs) via FATP1 cell 
surface transporters [99] and consequently abnormal lipid accumulation [100], 
mitochondrial dysfunction [101], and increase oxidative stress [102].

Aging developed dysfunctional cardiac mitochondria is resulted from production 
of less ATP. Abnormal reduction of mitochondrial function exhibited the reduction 
of mitochondrial elements, abnormal mitochondrial morphology, opening of the 
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mitochondrial permeability transition pore, missing activity of the electron trans-
port chain, and increased ROS production [103].

Aging is involved in damaging of mitochondria DNA, impairing bioenergetics 
efficiency, increasing apoptosis, and developing the inflammation processes [104]. 
In situ electrocardiograms of aged human, ECGs, showed significant prolongations 
in RR and QT intervals in the aged rats. Light and electron microscopic investiga-
tions of the affected myocardium illustrated marked increases in muscle fiber radius 
and deposition of collagen fibers as well as apparent flattened and partial local split-
ting in elastic lamellas in the aorta, parallel with disruption of mitochondria and 
lysosomes within the myofilaments in cardiomyocytes [105]. Abnormal lipid accu-
mulation in cardiomyocytes of obese and diabetic patients altered the peroxisome 
proliferator-activated receptor-γ(PPARg) and increased the calcium transient ampli-
tude and sarcoplasmic reticulum (SR) calcium stores in cardiomyocytes. These are 
associated with the arrhythmia and sudden cardiac death [106]. Mitochondria are 
important elements in the obesity through lipid β-oxidation, ATP production, oxida-
tive stress, and inflammation. MicroRNAs (miRs) are involved in adipocyte differ-
entiation, insulin action, and fat metabolism. Also, miRs are important regulators of 
mitochondrial function by either modulating of both mitochondrial proteins and 
metabolic process in the context of obesity [107].

Diabetic cardiomyopathies decreased the metabolism of cardiac mitochondria 
impairing the contractility and reducing the cardiac efficiency. These may result 
from the increase in cardiac fatty acid oxidation and glycolysis [108]. Diabetes- 
associated hyperglycemia and hyperlipidemia led to mitochondrial dysfunction via 
inducing mitochondrial fission and generation of reactive oxygen species (ROS) 
[109]. Also, it is associated with altering mitochondrial biogenesis and respiratory 
function such as mitochondrial abnormalities and reduced gene expression of mito-
chondrial oxidative phosphorylation (OXPHOS) [110] and altering peroxisome- 
proliferator- activated receptor (PPAR) gamma and coactivator-1α (PGC-1α [111].

Diabetes-related cardiomyopathy in Sprague-Dawley (SD) rats for 4, 8, and 
12 weeks increased fast sugar and HbA1c levels coincides with decreased left ven-
tricular pressure (LVP), heart rate (HR), and altered inflammatory markers of 
plasma IL-1 and IL-4. Also the levels of cardiac4-HNE and Bax mRNA were 
increased; meanwhile ALDH2 activity and Bcl-2 mRNA levels and Bcl-2/Bax 
mRNA ratios were decreased. The activity of ALDH2 was decreased correlated 
with increased inflammation, oxidative stress, and the occurrence of cardiomyocyte 
cell death (Wang et al., 2013). High-fat diet increased the plasma and myocardial 
lipids (TG, LDL-C, TL, and PL), MDA, and CK-MB in rabbits especially in male 
more than in females which coincide with disrupting myocardial junctional com-
plexes and mitochondrial size [112].

The diabetic myocardium is characterized by alteration in cardiomyocyte signal-
ing and increase in circulating glucose, insulin, and fatty acids [10]. Extracellular 
hyperglycemia enhanced the development of advanced glycation end products 
(AGEs) on collagenous protein, contributing to the ventricular stiffness, as well as 
of the AGEs-associated intracellular proteins leading to diabetic cardiomyopathy 
[12]. Hyperglycemia-related posttranslational modifications such as 
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O-GlcNAcylation of key Ca2+ proteins and signaling kinases have been shown to 
induce diabetic cardiomyopathy [13]. Ca2+ disturbance prolonged the SERCA2- 
mediated Ca2+ removal from the cytosol during diastole contraction, altering myo-
filament Ca2+ sensitivity, and Ca2+ leak from the sarcoplasmic reticulum leading to 
cardiac arrhythmia [14]. Decreased cardiac insulin stimulated the phosphorylation 
of Akt is evident in diabetic rodent models [11].

Aging-related cardiomyopathy increased the somatic mtDNA mutations [113], 
disorganized nuclear and mitochondrial DNA integrity [114] causing epigenetic 
alterations, mitochondrial dysfunction, and genomic instability [115], and increased 
oxidative damage-associated cardiac dysfunction. Two kinds of mitochondria are 
detected in the myocardium such as subsarcolemmal mitochondria and interfibrillar 
mitochondria which are implicated in age-related cardiac mitochondrial disease 
[116]. The mitochondria exhibited five kinds of protein markers managing mito-
chondrial fission and fusion including mitofusins 1 and 2 (MFN1, MFN2), optic 
atrophy 1 (OPA1), dynamin-related protein 1 (DRP1), and fission 1 (FIS1). 
Mitochondrial fusion is activated by two Mfn isomers, Mfn1 and Mfn2 and OPA1; 
meanwhile FIS1 and DRP1 are needed for mitochondrial fission [117, 118]. MFN1 
and MFN2 present on the outer membrane with the N-terminal GTPase [119]. 
OPA1 is present in an intermembrane space protein [120] and promotes mitochon-
drial fusion [121]. In addition, Mfn2 is also found in the endoplasmic reticulum 
(ER) membrane where it facilitated ER-mitochondria junctions [122]. DRP1 pres-
ent in a cytosolic pool, but a fraction localizes to puncta on mitochondria [123]. 
Cytosol FIS1 molecule possesses a single transmembrane domain at the C-terminal 
end [123, 124].

A transgenic mouse model of myocardial lipotoxicity exhibited abnormal over-
production of ACSL1 (long-chain acyl-CoA synthetase 1) in the cardiomyocytes 
associated with myocardial fatty acid uptake and involved in atrophy of the mito-
chondria. This mitochondria dysfunction activates palmitoyl-carnitine oxidation 
and generation of the free radicles. Palmitate exposure to ventricular cardiomyo-
cytes of neonatal rat activated the mitochondrial respiration, mitochondrial polar-
ization, and ATP synthesis. However, long-term exposure to palmitate (>8  h) 
enhances ROS generation and accelerates loss of the mitochondrial reticulum and 
increased mitochondrial fission. This activated ubiquitination of AKAP121 
(A-kinase anchor protein 121) and decreased phosphorylation of DRP1 (dynamin- 
related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atro-
phy 1) [125].

Myocardial ischemia-reperfusion injury (I/R) exerted the mitochondrial dysfunc-
tion assessed by the increase of O2

− and decrease state 3 respiration as a result of 
cysteine oxidation on mitochondrial complex I [126]. Mitochondrial oxidative stress 
(mitoOS) activated the macrophages by managing NF-κB-mediated entry of mono-
cytes and other inflammatory processes during the human atherosclerosis [56].

Diabetes and hypertension activated inner membrane anion channels of mito-
chondria and depolarization, decreasing signaling pathways and altering the cardiac 
action potential leading to increase release of mitochondria ROS (AP) [127]. 
Intracellular hyperglycemia increased the ROS production which inhibited GAPDH 
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and increase of nuclear poly(ADP-ribose) polymerase predicting the early glyco-
lytic pathogenic signaling pathways. Also, ROS and poly(ADP-ribose) polymerase 
reduce sirtuin, PGC-1α, and AMP-activated protein kinase activity impaired the 
mitochondrial biogenesis. This enhances overexpression of the nuclear receptor 
PPARα and nuclear translocation of forkhead box O1, which developed cardiac 
disease. Also, ROS led to increase the mortality among diabetes through increasing 
of ryanodine receptor phosphorylation and depletion of sarco/endoplasmic reticu-
lum Ca(++)-ATPase transcription. This is contributed to the increased risk of fatal 
cardiac arrhythmias associated with diabetic cardiac autonomic neuropathy [64].

Also, mitochondrial Ca2+ uptake is needed for energy supply to maintain the anti- 
oxidative capacity in a reduced form to prevent liberation of ROS. Mitochondria 
uptake Ca2+ through the mitochondrial Ca2+ channel, which is present in a multipro-
tein complex. During cardiomyopathy-related oxidative stress, ROS is liberated 
from the mitochondria which may activate another ROS liberation from neighbor-
ing ones through cellular network of redox signaling. Although low values of ROS 
may serve biological function, higher ones exerted cardiomyopathy through redox- 
sensitive kinases and cell death [128, 129].

Hyperglycemia increased oxidative stress via increase of the vascular defects. 
The mitochondrial NAD(P)H oxidase is involved in liberation of ROS in the vascu-
lature. Increased production of NAD(P)H oxidase in diabetes may decrease the 
intracellular levels of NADPH, the main precursor for endothelial NO synthase 
(eNOS) and antioxidant systems. Increase liberation of ROS leads to development 
of uncoupling eNOS, mitochondrial dysfunction, and impaired antioxidant defenses 
due to impairment of intracellular NADPH (Gao and Mann, 2009). In vitro studies 
of neonatal rat cardiomyocytes subjected to high levels of glucose (25 mmol/L) for 
24 h markedly elevated CM-H(2)DCFDA fluorescence, which is inhibited by 1,2- 
bis (o-aminophenoxy) ethane- N,N,N′,N′-tetraacetic acid tetraacetoxymethyl ester 
(BAPTA-AM), a (Ca(2+))(i) chelator. These findings mentioned that high glucose 
level upregulated phosphorylated CaMKII expression and (Ca(2+))(i) due to NCX 
activation and consequently increase liberation of ROS [130].

Both mitochondria and lysosomes exhibit great role in mediating oxidative stress 
[131] through mitochondrial oxidative phosphorylation, the generator of superoxide 
radicals during electron transport [132]. Lysosomes contain high concentrations of 
redox-active iron that can catalyze the homolytic splitting of hydrogen peroxide, 
which produces the reactive hydroxyl radical by the Fenton reaction [133].

4.7  Golgi Apparatus

Golgi apparatus (GA) is important in Ca2+ homeostasis, especially during Ca2+ 
stress (Southall et  al. 2006). Golgi apparatus contains three important elements 
which promote both Ca2+ regulation and transportation [134]. These are the sarco-
plasmic/endoplasmic reticulum Ca2+ ATPase (SERCA), the inositol 
1,4,5- trisphosphate receptors (IP3R), and the plasma membrane-Ca2+ ATPase 
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(Pmr1p) [135]. The activity of both IP3R and SERCA can be promoted by ROS/
RNS or the cellular redox state [136]. It is known that caspases promoted degrada-
tion of the Golgi proteins, such as golgin-160, GRASP65, p115, syntaxin 5, GM130, 
and giantin, and may cause GA fragmentation and apoptosis (Walker et al. 2004). 
Golgi protein golgin-160 is proteolyzed by caspase-2, and the other ones are cleaved 
by caspase-3 or caspase-7. Increased production of caspase-resistant golgin-160, 
GRASP65, and p115 initiated the kinetics of GA fragmentation [137]. Thus cas-
pases may trigger oxidative stress-related signals leading to fragmentation and 
apoptosis of GA [138]. It is known that mitochondria are responsible for the genera-
tion of superoxide radicals. However, the GA participates in modifying, packaging, 
and sorting macromolecules for either cell secretion or internal cell function. It is 
involved in the oxidative stress, via damaging proteins, lipids, and DNA, and conse-
quently alters Ca(2+)/Mn(2+) homeostasis, cell apoptosis, sphingolipid metabolism, 
and signal transduction [23].

Cardiomyocyte cell death associated Golgi oxidative stress causing secretion of 
eIF5A resulted from tyrosine sulfation and resulted in development of myocardial 
ischemia/reperfusion (but not ischemia alone) [139]. Mitochondria and endoplas-
mic reticulum (ER) are affected GA. Oxidative stress of GA possessed signal trans-
duction pathway through the PKR-like ER kinase/activating transcription factor 4 
pathway (ATF4) which is the regulator of amino acid metabolism. ATF4 is regu-
lated by the gene involved in the biosynthetic enzyme for cysteine and cystathionine 
γ-lyase (CSE) and maintains the redox homeostasis [140]. Iron promotes function 
of many ATPases such as the Na+, K+-ATPase, and the Ca2+ ATPase. Also, ATP- 
binding cassette (ABC) families are transmembrane proteins localized in all the 
plasma membrane of intracellular Golgi apparatus, lysosomes, peroxisomes, and 
endoplasmic cardiomyocytes against oxidative stress [141].

Iron overload decreases the Ca2+ ATPase activity and impairs the sarco/endoplas-
mic reticulum, increasing Ca2+ and the GA Ca2+ levels, which manage nitration, 
enzyme oxidation, and fragmentation [142]. Iron regulatory protein IRPs were 
found in the cytosol of endoplasmic reticulum and GA and can be affected by cell 
stress or iron status [143]. Hyperglycemia induces ligand-independent phosphoryla-
tion of vascular endothelial growth factor receptor 2 (VEGFR2), the main compo-
nent in GA and consequently impaired VEGFR2 at the cell surface mediated by Src 
family kinases [144]. Calcium signaling pathways interact with ROS causing intra-
cytoplasmic influx of Ca2+ from the extracellular source as well as from the ER or 
sarcoplasmic reticulum (SR) via the plasma membrane and the ER/SR channels, 
respectively. Low level of ROS acts as signaling involved in different cellular pro-
cesses such as cell growth and death. Dysfunction of these systems induced patho-
genesis of various diseases [145]. Increased cytosolic Ca2+ altered Ca2+−sensitive 
enzymes leading to enhancement of mitochondria-derived ROS/RNS generation. 
This led to disruption of the respiratory chain [146] (Fig. 4.2).
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4.8  Lysosomes

Lysosomes are acidic cytoplasmic organelles containing almost 60 types of hydro-
lases which hydrolyze extracellular materials by endocytosis and intracellularly by 
autophagy. The hydrolyzed materials are transmitted by lysosomal channels of 
either specific exporters or trafficking vesicular membrane that maintain membrane 
potential, ion homeostasis, membrane trafficking, and nutrient sensing. Lysosomal 
storage diseases are related to impairment of autophagy process (LSDs) [148]. The 
lysosome is an active organelle exhibiting low ratio of copper and iron released dur-
ing hydrolysis of metalloproteins. Its acidity and increase content of thiols keep iron 
in a reduced (ferrous) state, which can react with endogenous or exogenous hydro-
gen peroxide. During abnormal autophagic process, the development of lipofuscin 
pigment is detected and predicts the age-related diseases. Increased oxidative stress 
enhanced permeability of the lysosomal membrane and disrupted relocation of the 
cytosolic contents of iron and hydrolytic enzymes, leading to apoptosis or necrosis 
[133].

Fig. 4.2 Diagram illustrated ER stress-associated calcium cross stalk and ROS. Reactive oxygen 
species (ROS) are liberated between PDI and ERO1α. PDI is involved in ROS-generating NADPH 
oxidases (NOX). NOX-derived ROS modulates SERCA activity by overexpression of calcium ion 
in ER and activate the unfolded protein response (UPR). Mitochondrial ROS can affect NOX 
increasing ROS and calcium load in the ER leading to apoptosis. Abbreviations: SERCA sarco/
endoplasmic reticulum Ca2+ATPase, MAM mitochondria-associated ER membranes, NOX NADPH 
oxidase, PDI protein disulfide isomerase, ERO1α endoplasmic reticulum oxidoreductin-1 [147]
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Autophagy is also involved the breakdown of SQSTM1/p62 protein and reduced 
the function of senescent cells. This was confirmed by rapamycin, MTOR-dependent 
autophagy activators and PP242 [149]. The autophagic process is activated by the 
development of a phagosystem from the mitochondria, endoplasmic reticulum, and 
lysosomes, which phagocytosed organelles to from the autophagosome. It is pro-
moted by phosphatidylinositol-3-kinase (PI-3  K) and beclin-1 [150]. Also the 
autophagy is important during myocardial stress. Mitochondrial fission and missing 
of mitochondrial membrane potential are contributed for autophagic degradation of 
mitochondria. Maintained hypertension altered the structure and function of cardio-
myocyte mitochondria leading to degradation via autophagy [151].

Aging of cardiac myocytes undergoes alterations via the accumulation of waste 
products such as defective mitochondria, aberrant cytosolic proteins, and intralyso-
somal lipofuscins. These illustrated the defective activity of autophagy and impaired 
activities of calpains and proteasomes. The hypertrophied mitochondria are charac-
terized by impairing both ATP synthesis and inner membrane potential and libera-
tion of reactive oxygen species. This autophagic turnover of enlarged and damaged 
mitochondria is carried out leading to increase oxidative stress and cardiomyocyte 
cell death. Also cardiomyopathies may result from mitochondrial DNA mutations, 
as a result of abnormal accumulation of non-eliminated mitochondria by autophagy. 
The hydrolysis of iron-saturated ferritin increased lysosomal oxidative stress and 
promoted myocardial damage in hemochromatosis [152, 153]. Diabetes, obesity, 
and dyslipidemia exhibited abnormalities of autophagic process altering cardio-
myocyte homeostasis leading to myocardial disease [154–156]. Cardiomyopathy- 
related obesity possessed lipotoxicity, inflammation, oxidative stress, apoptosis, and 
sympathetic overactivation [157]. 7beta-hydroxycholesterol (7betaOH), a choles-
terol oxidation metabolite formed during atherosclerotic lesions, was found to 
increase cell death through lysosomal and mitochondrial damage and production of 
free radicals [158].

Cardiac aging is manifested by mitochondrial dysfunction, aggregation of mis-
folded proteins, hypertrophy, and fibrosis. Also, it may be attributed to cardiomyocyte- 
associated damaging of both mitochondria and lysosomes. Mitochondrial alterations 
exhibited structural deformation and hypertrophy, while lysosomes possessed 
autophagic turnover of mitochondria and accumulate lipofuscin pigment [152, 159]. 
Also, inhibition of receptor of advanced glycation end products increases vascular 
cell damage and development of atherosclerosis. The cardiac antioxidant capacity 
was upregulated as detected by overproduction of superoxide dismutase and sirtuin 
mRNA expressions. Abnormal mitochondrial structure and function, cathepsin L 
activity, and mitochondrial fission protein Drp1 and Fis1 were increased in RAGE−/− 
mice sustained autophagy-lysosomal flux [160].

Mice model lacking the lysosomal cysteine protease cathepsin L (CTSL) devel-
oped a cardiomyopathy (DCM). It is manifested by swollen heart chamber, fibrosis, 
and lacking contractility [161]. Aging-related impairing of cell function is charac-
terized by DNA damage, aggregation of impaired organelles, increase liberation of 
free reactive oxygen species, and accumulation of oxidized proteins and lipids. 
Autophagy is an important quality control pathway and is necessary to maintain 
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cardiac homeostasis and to adapt to stress. Autophagy is an important biological 
process, and impairing of its function has been contributed to aging models [162]. 
Mitochondrial dysfunction and cell death have been predicted by the apoptotic BH3 
protein Bnip3. It is also a potent inducer of autophagy. Oxidative stress and increased 
intracellular Ca (2+) level have been reported to induce autophagy, compared to 
Bnip3-induced autophagy independent of antioxidant treatment or Ca (2+) [163].

4.9  Conclusion and Future Direction

This review outlines the sources of free radicals and progress of oxidative stress in 
cardiomyocytes during aging and metabolic diseases. The disease disrupts the 
microconstituents of mitochondria, endoplasmic reticulum, Golgi complex, and 
lysosomes changing their structure and function and shared in the overproduction of 
free oxygen species. There different opinion of applying natural product for scav-
enging the liberated free radicals and improving the structure and function of the 
cytoplasmic organelles consequently improved the cardiomyocytes.
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Abstract
Cardiovascular disease (CVD) is one of the most common causes of deaths 
globally. Oxidative stress is documented to be one of the potential risk factors for 
CVD. This review focuses on genetic and epigenetic factors contributing toward 
CVD risk. Certain genetic variants in oxidants, i.e., NADPH oxidase p22Phox 
rs4673, eNOS (-786 T>C, 894 G>T, and 27bp VNTR), MPO (-463 and -129 
GA-genotypes), XO 69901 A>C, COX2 (rs5277 and rs20417), and ALOX15 
(rs2619112 and rs7217186), were reported to increase CVD risk. Similarly, 
genetic variants in antioxidants, i.e., SOD1 (rs9974610, rs10432782, rs1041740), 
SOD2 (V16A, C24T), GPX1 Pro198Leu, NQO1 C609T, PON1 Q192R, and 
TXNIP (rs7212 and rs7211), were also shown to exhibit positive association 
with CVD risk. Apart from oxidants and antioxidants, folate and xenobiotic met-
abolic pathways were also investigated due to their direct influence on synthesis, 
methylation, and repair of DNA. Among the functional variants of folate path-
way, GCPII H475Y, MTHFR C677T, and MTRR A66G were reported to increase 
CVD risk, thus influencing S-adenosylmethionine/S-adenosyl homocysteine 
ratio. Two genetic variants, i.e., cSHMT C1420T and TYMS 5’-UTR 28bp tan-
dem repeat, were shown to confer protection by inducing the futile folate cycle 
and by increasing the flux of folate toward remethylation of homocysteine, 
respectively. Among the xenobiotic variants, CYP1A1 CAC and TAC haplotypes 
and GSTT1 and GSTM1 null variants contribute toward CVD risk by inducing 
quinone and semiquinone synthesis and by preventing conjugation of glutathi-
one, respectively. These two process trigger mutagenicity. CYP1A1 TAC 
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 haplotype and CYP4F2 rs2108622 confer protection against 
CVD.  Hypermethylation of ER-alpha, ER-beta, p15(INK4b), FOXP3, and 
DDAH2 was associated with CVD risk, which is attributed to altered 
ER-signaling, increased oxidative stress, and impaired synthesis of Treg cells. 
Factor VII hypermethylation confers protection against CVD.  In a nut shell, 
interplay of genetic and epigenetic factors in oxidant–antioxidant system modu-
lates susceptibility to CVD.

Keywords
Cardiovascular diseases · Oxidants · Folate pathway · Xenobiotic pathway · 
Epigenetics · Methylation

5.1  Introduction

According to the heart disease and stroke statistics 2018 update, the cardiovascular 
disease is the primary cause of death and accounts for nearly 836,546 deaths in the 
United States. On an average, one American dies for every 38 s, accounting to 2300 
deaths each day due to cardiovascular diseases (CVD) [1]. The CVD is also a major 
health burden in India and is the leading cause of mortality accounting age- 
standardized CVD death rate of 272 per 100,000 populations which is higher than 
the global average of 235 per 100,000 population [2]. The CVD is a multifactorial 
disorder that mainly consists of diseases such as coronary artery disease (CAD), 
heart failure, stroke, and hypertension. It is influenced by several factors including 
obesity, diabetes, smoking, lifestyle, family history, age, genetic predisposition, and 
oxidative stress [3].

The reactive oxygen species (ROS) are generated from a diverse group of 
biological sources including mitochondria electron transport [4, 5], NADPH oxidase 
[6], nitric oxide synthase, myeloperoxidase, xanthine oxidase, and cyclooxygenase 
and lipoxygenase [7, 8]. The ROS at physiological levels are important signaling 
molecules regulating many processes in the cardiovascular system to maintain car-
diovascular homeostasis [9]. Increased ROS levels have been linked to initiation, 
progression, and clinical consequences of cardiovascular diseases including athero-
sclerosis, arrhythmia, myocardial infarction, cardiac hypertrophy, cardiomyopathy, 
heart failure, hypoxia–reoxygenation, systemic and pulmonary hypertension, and 
ischemia–reperfusion injury [10]. The molecular mechanism of free radical-induced 
cardiovascular risk is mediated through the interaction of ROS with biomolecules 
such as lipids, proteins, and DNA, thus contributing to cellular damage, necrosis, 
and apoptosis [11, 12]. However, antioxidant defense mechanisms comprising of 
enzymatic and nonenzymatic defense systems counteract the free radical-mediated 
oxidative damage. The enzymatic defense system comprises of superoxide dis-
mutase (SOD), catalase, glutathione peroxidase, thioredoxin, and peroxiredoxin, 
while the nonenzymatic antioxidant defenses include vitamin E, vitamin C, and 
glutathione, which in turn confer protection against CVDs [3, 8, 13, 14].
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In recent years, several genetic risk factors have been identified which play a 
crucial role in the initiation and progression of CVD, as these genes code for various 
enzymes involved in redox reactions. Genetic variations may alter the baseline 
expression and structural and functional changes of the enzyme and thereby contrib-
uting to the imbalance between the prooxidant and antioxidants ultimately leading 
to increased oxidative stress.

5.2  Oxidants

5.2.1  NADPH Oxidase

Different isoforms of NADPH oxidases, i.e., NOX1, NOX2, NOX4, and NOX5, are 
present in the vasculature. NOX1 and NOX2 are associated with angiotensin 
II-induced vascular response, which results in uncoupling of eNOS with reduced 
levels of BH4 [13, 14]. Angiotensin II induces vasoconstriction, increases blood 
pressure, enhances vascular smooth muscle cell proliferation, and participates in the 
process of ROS generation, thus resulting in vascular damage [15]. NOX4 isoform 
is expressed in endothelial and vascular smooth muscle cells. It generates hydrogen 
peroxide without the need of activating cytosolic factors [16]. Hydrogen peroxide 
results in enhanced activation of eNOS, VEGFR2, p38MAPK, and AMPK-α path-
ways which are crucial for angiogenesis [17]. p47phox is an important cytosolic 
subunit of NADPH oxidase enzyme whose knockout results in reduced ROS pro-
duction, PI3K-Akt-eNOS, mediated NO production and VEFG-induced vasodilata-
tion [18]. The p22phox rs4673 polymorphism was shown to be associated with 
1.53-fold risk for CAD by impairing the function of p22phox protein [19].

5.2.2  Nitric Oxide Synthase (eNOS)

Nitric oxide (NO) is one of the major effectors molecules that play a crucial role in 
cardiovascular physiology by inducing endothelium-dependent vasorelaxation and 
inhibit platelet aggregation, vascular smooth muscle cell proliferation, and leuko-
cyte adhesion [20]. Nitric oxide synthase (NOS) exists in three different isoforms: 
endothelial (eNOS), inducible (iNOS), and neuronal (nNOS). These isoforms 
require transfer of electron from oxygen to catalyze the conversion of l-arginine to 
l-citrulline to produce NO. Among these isoforms, nNOS [21] and eNOS [22] are 
protective against atherogenesis, while increased iNOS expression produces excess 
amount of NO and is involved in aggravating atherosclerotic plaque formation [23].

Three functional polymorphisms have been well studied in the eNOS gene: a 
single nucleotide polymorphism -786T >C (rs2070744) at 5′ flanking region of the 
eNOS gene that reduces the eNOS gene promoter activity by approximately 50 
percent [24, 25], a missense mutation 894G >T (Glu298Asp, rs1799983) located in 
exon 7 leading to amino acid substitution at position 298 associated with the eNOS 
activity consequently influencing the NO levels, and a 27-bp VNTR (4b/a) 
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polymorphism located in intron 4 which is a source for small interference RNA 
(siRNA) spliced during eNOS pre-mRNA processing able to suppress eNOS 
expression. A recent meta-analysis showed the significant association with all the 
three SNPs with CAD in European, Middle Eastern, Asian, Asian–Indian, and African 
ancestries (Glu298Asp, OR = 1.28–1.52, p = 0.0001, T786-C, OR = 1.34–1.42, p = 
0.0001, and 4b/a, OR = 1.19–1.41, p = 0.002) [26]. The subgroup analysis has revealed 
that Glu298Asp and 4b/a have the strongest association among the Middle Easterners, 
whereas T786-C showed the highest risk for CAD among subjects of Asian ancestry 
[26].

5.2.3  Myeloperoxidase

Myeloperoxidase (MPO) is expressed in neutrophils and monocytes, catalyzes the 
formation of ROS, and is involved in inflammation, thus contributing to tissue dam-
age. However, under physiological conditions, these oxidation products derived 
from MPO play an important role in host defense. Two common SNPs in the pro-
moter of MPO gene, i.e., -463G/A and -129G/A, were reported to affect the binding 
of the transcriptional factor specificity protein1 (SP1) and thus influencing the 
expression of MPO [27]. The GA-genotypes at -463 and -129 positions were shown 
to increase the CAD risk by 1.53- and 1.94-folds, respectively [28]. A meta-analysis 
comprising of 3491 cases and 7293 controls has confirmed that MPO -463 G>A 
polymorphism as a potential risk factor for CAD; however, MPO -129 G>A did not 
emerge as a risk factor in the pooled analysis [29].

5.2.4  Xanthine Oxidase

Xanthine oxidase (XO) catalyzes the oxidation of hypoxanthine to xanthine and 
further oxidizes xanthine to uric acid. These biochemical reactions require oxygen, 
forming the superoxide molecules, which are converted to hydrogen peroxide. XO 
is associated with endothelial dysfunction and is elevated during ischemia–reperfu-
sion injury [30]. Allopurinol, a potent inhibitor of XO, was reported to reduce the 
incidence of myocardial infarction to the extent of fivefolds in a meta-analysis [31]. 
The XO SNPs, i.e., rs11904439 and rs148756340, were reported to increase the 
incidence of hypertension by 1.31- and 1.69-folds [32]. Additionally, SNPs in XO, 
i.e., 47686C>T, XO 69901A>C, and 67873A>C, were also reported to increase 
hypertension in Japanese population. [33] Among the three SNPs in XO, 69901A>C 
was associated with carotid artery atherosclerosis (p = 0.03) [33] (Table 5.1).

5.2.5  Cyclooxygenase

Cyclooxygenase (COX) coverts the arachidonic acid into hydroperoxy- 
endoperoxide, PGG2, which is reduced to form hydroxyl-endoperoxide PGH2, the 
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Table 5.1 Functional genetic variants associated with oxidative stress system and predictions of 
their impact using SIFT and PolyPhen tool

Gene rs number
Amino acid 
change ROS system SIFT PolyPhen

SOD2 rs4880 Val16Ala Antioxidant 
system

Tolerated Benign

MTHFR rs1801133 Ala222Val Antioxidant 
system

Deleterious Probably 
damaging

MTRR rs1801394 Iso22Met Antioxidant 
system

Deleterious Probably 
damaging

PON1 rs854560 Leu55Met Antioxidant 
system

Deleterious Benign

PON1 rs662 Gln192Arg Antioxidant 
system

Tolerated Benign

p22phox rs4673 Tyr72His ROS 
production 
system

Tolerated Benign

eNOS rs1799983 Glu298Asp Antioxidant 
system

Tolerated Benign

GPx1 rs1050450 Pro198Leu Antioxidant 
system

Deleterious Benign

GCPII rs61886492 His475Tyr Antioxidant 
system

Tolerated Benign

SHMT1 rs1979277 Leu474Phe Antioxidant 
system

Deleterious Benign

CYP1A1 rs1048943 Iso462Val Antioxidant 
system

Tolerated Benign

CYP1A1 rs1799814 Thr461Asn Antioxidant 
system

Tolerated Benign

precursor for eicosanoid synthesis [34]. The eicosanoids play a crucial role in 
atherosclerotic process. COX2 expression is increased in atherosclerotic lesions, 
specifically in macrophages and foam cells [35]. COX-2 rs5277 C-allele carriers 
were reported to have increased risk for major adverse cardiac and cerebrovascular 
events, more specifically for CAD [36]. The G-765C COX2 polymorphism 
(rs20417) is associated with less frequent occurrence of multivessel CAD [37].

5.2.6  Lipoxygenase (LOX)

Lipoxygenase (LOX) pathway metabolizes arachidonic acid to form pro- 
inflammatory leukotrienes, which induce vasoconstriction and increase risk for 
atherosclerosis [38]. In animal models, the knockout of the arachidonate 
5-lipoxygenase (ALOX5) was reported to induce resistance against the development 
of atherosclerosis [39]. Higher levels of ALOX5 were reported in advanced plaques 
[40]. The Sp1 addition/deletion polymorphism in the promoter region of ALOX5 
was reported to increase CAD risk by 4.47-folds by influencing LDL and HDL 
levels [41]. ALOX15 rs2619112 GA and rs7217186 CT variants are associated with 
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2.27- and 3.41-fold increased risk for CAD [42]. The 5-lipoxygenase-activating 
protein (ALOX5AP) HapB and HapC haplotypes are reported to increase the CAD 
risk by 1.67- and 2.41-folds, respectively [43]. The epistatic interactions among the 
ALOX5, ALOX5AP, and MPO were found to act synergistically in contributing to 
ischemic stroke [44].

5.3  Genetic Variants in Antioxidant Enzymes

5.3.1  Superoxide Dismutase

Superoxide dismutase (SOD) is one of the most crucial antioxidant enzymes that 
scavenge ROS by converting superoxide to hydrogen peroxide. There are three iso-
forms of SOD: (i) cytoplasmic CuZn SOD (SOD1), (ii) mitochondrial MnSOD 
(SOD2), and (iii) extracellular SOD (SOD3). Plasma levels of SOD1 and SOD2 
were reported to be elevated in patients with CAD, while SOD3 levels showed no 
significant association with CAD [45]. Three variants in SOD1, i.e., rs9974610, 
rs10432782, and rs1041740, are reported to increase the risk for cardiovascular 
disease [46]. The SOD2 V16A polymorphism was reported to increase the risk for 
cardiovascular disease independent of gender, smoking, blood pressure, cholesterol, 
and glycemic index [47]. The SOD2 C24T showed a significant association with the 
CAD risk in the presence of TT-genotype, while CC and TC genotypes were found 
to have protective role [48]. The SOD3 R231G polymorphism was shown to influ-
ence CAD risk with RG and GG genotypes as risk factors that contribute to severity 
of CAD and risk of myocardial infarction by lowering α-tocopherol levels [49].

5.3.2  Glutathione Peroxidase and Catalase

Glutathione peroxidase (GPx) isoenzyme and catalase are the part of the second line 
of antioxidant defense which converts H2O2 and ROOH into water and alcohol. 
Erythrocyte GPX-1 activity <23.9  U/gHb and GPX1 Pro198Leu polymorphism 
contribute to 4.72- and 2.14-fold risk for CAD [50]. An inverse association was 
observed between the GPx1 activity and risk for myocardial infarction and severity 
of CAD [50]. The Pro198Leu (rs1050450 C/T) variation of GPx-1 influences the 
enzyme activity due to the structural conformation of the active site region of the 
enzyme [51]. The C198T GPx-1 and C609T NQO1variants contribute toward CAD 
risk in type II diabetes mellitus [52]. The catalase gene C/T promoter polymorphism 
at position -262 influences the expression of mRNA and protein [53]. Ultimately, 
these functional variants may affect the overall enzyme activity and antioxidant 
capacity leading to oxidative stress and CVD.
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5.3.3  Paraoxonase 1

Paraoxonase 1 (PON1), an antioxidant glycoprotein, is majorly synthesized in the 
liver and secreted into the bloodstream, where it is associated with the high-density 
lipoproteins (HDL) [54]. The major function of PON1 includes the prevention of 
LDL and HDL from oxidative processes, inactivates the toxic products resulting 
from the oxidation of LDL (ox-LDL), prevents the accumulation of ox-LDL, stimu-
lates cholesterol efflux from macrophages through HDL, and suppresses the differ-
entiation of monocytes into macrophages, thereby preventing the formation of 
atherosclerotic plaques [55–59]. Two missense mutations, L55M (rs854560) and 
Q192R (rs662), were well studied in association with the heart disease which affects 
the levels of PON1 and catalytic efficiency, respectively. The rs854560 “T-allele” 
encodes methionine leading to elevated levels of paraoxonase, whereas “A-allele” 
encodes leucine with low paraoxonase activity. Previous studies have revealed that 
AA (55LL) genotype is associated with the increased risk of insulin resistance, 
blood pressure, increased carotid artery intima-media thickness, increased 
lipoprotein- associated phospholipase A2 activity (HDL-Lp-PLA(2), and therefore 
cardiovascular risk [60–63]. PON1 192RR genotype exhibits higher enzyme activ-
ity which decreases in the following order QQ > QR > RR, with almost very low 
paraoxonase activity, and is associated with the RR genotype leading to coronary 
atherosclerosis [64].

5.3.4  Genetic Variants Associated with the Folate Pathway

The folate pathway or one-carbon metabolic pathway regulates the synthesis, repair, 
and methylation of DNA and also negates the oxidative stress by acting in synergy 
with phase II enzymes of xenobiotic metabolic pathway. The supplementation with 
5-methyltetrahydrofolate was found to improve the flow-mediated dilatation, a 
marker of endothelial function [65]. Homocysteine, the by-product of this meta-
bolic pathway was reported to undergo autoxidation to generate free radicals [66]. 
Hyperhomocysteinemia is a well documented risk factor for CAD [67, 68].

Glutamate carboxypeptidase II (GCPII) enzyme is required for the conversion of 
folylpolyglutamate to folylmonoglutamate for the intestinal absorption of folate. 
The C1561T polymorphism (rs61886492, H475Y) of GCPII in which histidine 475 
is substituted with tyrosine leading to reduced GCPII activity resulted in low blood 
folate and higher homocysteine levels (Hcy) [69]. GCPII C1561T was shown to 
increase in the risk for CAD by 2.71-folds and is associated with the increased oxi-
dative stress [70].
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Serine hydroxymethyltransferase1 (SHMT1) is a key enzyme involved in the 
folate metabolism that catalyzes one-carbon transfer from serine to tetrahydrofolate 
to form 5,10-methylenetetrahydrofolate. The SHMT1 C1420T polymorphism 
(Leu474Phe) was reported to reduce CAD risk to 50% by lowering oxidative stress 
[70].

Methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase 
(TYMS) are the two crucial rate-limiting enzymes that dictate whether folate 
(5,10-methylene tetrahydrofolate) flux should be directed toward synthesis of 
S-adenosylmethionine (SAM) or toward thymidylate synthesis. Both these steps are 
essential for DNA methylation and synthesis, respectively. MTHFR converts 
5,10-methylene tetrahydrofolate to 5-methyltetrahydrofolate, which in turn is 
required for remethylation of homocysteine. The MTHFR 677 C>T polymorphism 
induces thermolability in MTHFR thus contributing to the dissociation of active 
dimer into inactive monomers with subsequent loss in FAD-binding capacity. The 
presence of MTHFR 677 C>T polymorphism is associated with the homocysteine 
elevation and thereby increases the CAD risk by 1.61-folds [71]. The TYMS 5′-UTR 
28bp tandem repeat, which affects the transcription of TYMS, was shown to reduce 
CAD risk by 34% [71] and was shown to lower the oxidative stress [70].

The remethylation of homocysteine is catalyzed by methionine synthase (MTR) 
using 5-methyl tetrahydrofolate as the substrate and methylcobalamin as the cofac-
tor. The reductive methylation of cobalamin is carried out by methionine synthase 
reductase (MTRR). MTRR A66G polymorphism was reported to increase CAD risk 
1.92-folds [71] by increasing oxidative stress [70].

5.3.5  Thioredoxin-Interacting Protein and Nrf2

Thioredoxin-interacting protein (TXNIP) is a binding protein of thioredoxin (TRX), 
which acts as an oxidative stress modulator by inhibiting antioxidant capacity of 
TRX [72] and by interacting with transcription factors such as Nrf2 [73]. Two SNPs 
in TXNIP, i.e., rs7212 and rs7211, were reported to increase the CAD risk by 1.26- 
and 1.23-folds, respectively [74]. The smoking and alcohol intake were shown to 
interact with TXNIP rs7212 and increase the risk for CAD by 3.7-folds [74]. The 
SNP in TXNIP rs7212 was reported to influence the TXNIP mRNA expression, 
plasma TXNIP, and malondialdehyde levels [74]. The downregulation of Nrf2/ARE 
was reported in CAD cases with increased oxidation of phospholipid 1-palmitoyl- 2-
arachidonyl-sn-glycero-3-phosphoryl- choline [75].

5.3.6  Genetic Variants of Xenobiotic Metabolism

Xenobiotic metabolic pathway is the crucial pathway for detoxification of certain 
endogenous and several exogenous polycyclic aromatic hydrocarbons (PAH). This 
detoxification process is executed in two phases: (i) phase I involving the activation 
of the xenobiotic agent into an electrophile or a nucleophile and (ii) phase II 
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involving detoxification of electrophile or a nucleophile through conjugation with 
glutathione or through quenching the formation of quinones from catechol com-
pounds by O-methylation. Hyperinducibility of phase I and impaired activity of 
phase II enzymes cause the oxidative lesions in DNA due to the formation of PAH–
DNA adducts. Several genes regulating this pathway were explored for their asso-
ciation with CVD risk. CYP1A1 CAC and TGC haplotypes were reported to 
increase CAD risk by 1.72- and 2.05-folds, respectively, while TAC haplotype was 
reported to reduce the risk for CAD by 44% [76]. Two SNPS in CYP2D6, i.e., 
C2850T and G1846A, are associated with 2.07- and 1.70-folds increased risk for 
CAD [77]. A meta-analysis revealed the inverse association of CYP4F2 rs2108622 
with CAD risk [78]. Among the phase II genetic variants, the GSTT1 null variant 
showed independent risk for CAD (OR: 2.53, 95% CI: 1.55-4.12). These variants 
were shown to have higher levels of 8-oxo-dG; this could be due to the defective 
detoxification and increased ROS production [76]. The GSTM1 null genotype was 
reported to increase the CAD risk by 1.35-fold in a meta-analysis comprising of 
10595 cases and 13782 controls [79]. The GSTT1/GSTM1 null haplotype was 
reported to be a potential risk factor for myocardial infarction [80].

5.3.7  Epigenetic Factors Contributing to Coronary Artery 
Disease (CAD) Risk

Cardiovascular diseases are not only the consequences of genetic variations, but also 
due to epigenetic aberrations and alterations. The epigenetic mechanisms are able to 
alter the gene expression (can enhance or silence) without altering the DNA sequence. 
The capability of cells to transmit their tissue and stage-specific gene expression pat-
terns to daughter cells without mutation of the DNA sequence, thereby making these 
changes reversible. These processes are crucial in normal development and differen-
tiation of distinct cell lineages in the adult organism [81]. They can be modified by 
exogenous influences, and as such, they can contribute to alterations of phenotype or 
pathophenotype. The basic epigenetic regulatory mechanisms includes methylation 
of CpG islands in the DNA (carried out by DNA methyltransferases), posttranslation 
modification of histone proteins (PTMs) (carried out by various enzymes, namely, 
histone acetyl transferases, histone deacetylases, histone methyl transferases, and 
histone demethylases), and small noncoding RNA-based mechanisms, i.e., microR-
NAs. Many studies have shown the link between the involvement of epigenetic fac-
tors and the cardiovascular diseases such as myocardial infarction, cardiac 
hypertrophy, atherosclerosis, and heart failure [82, 83] (Fig. 5.1).

5.3.8  Altered DNA Methylation Affecting the Gene Expression

The DNA methylation of cytosine at promoter sites is to downregulate the expression 
by directly blocking the binding of specific transcription factors of genes by 
modifying the accessibility of the transcriptional machinery to DNA. The process of 
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DNA methylation is catalyzed by the enzyme known as DNA methyltransferase 
(DNMTs: DNMT1, DNMT3a, and 3b), which utilizes S-adenosyl methionine 
(SAM) as methyl donor. Differential methylation has been observed in the candi-
date genes that regulate the biological processes underlying cardiovascular diseases 
like diabetes, hypertension, atherosclerosis, and inflammation [84–87]. The lower 
levels of methyl donor S-adenosyl methionine (SAM), 5-methyltetrahydrofolate, 
and higher plasma homocysteine levels were reported in CAD patients [88]. 
Homocysteine is known to be an independent risk factor for CAD [89]. Elevated 
blood homocysteine levels were correlated with reduced DNA methylation in 
peripheral blood lymphocytes isolated from patients with vascular disease [90]. The 
endothelial dysfunction and altered DNA methylation patterns were also demon-
strated in animal models with elevated homocystene levels [91, 92]. Higher global 
DNA methylation was observed in CAD patients whose serum homocysteine levels 
were found to be >12.5 μM [93]. Hyperhomocysteinemia was shown to induce 
expression of p66shc via hypomethylation of its promoter thus resulting in increased 
oxidative stress and reduced bioavailability of nitric oxide [94]. The aberrations in 
folate metabolism can induce altered gene expression of extracellular superoxide 
dismutase (EC-SOD), glutathione-S-transferase (GST)P1, and BCL2/Adenovirus 
E1B 19  KDa protein-interacting protein 3 (BNIP3), thus contributing to the 
increased oxidative stress and increased susceptibility to CAD [95].

Fig. 5.1 Schematic representation of different candidate genes and epigenetic mechanisms 
contributing to oxidative stress and cardiovascular disease risk
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The heart cells are able to express constitutive nitric oxide synthases, eNOS and 
nNOS [96]. The constitutively expressed eNOS is hypomethylated in the endothe-
lium but heavily methylated in smooth muscle cell lines, whereas iNOS expression 
is increased in atherosclerotic plaque neointima due to inflammatory conditions but 
downregulated by methylation in most of the tissues [97]. Estrogen receptors (ERs) 
are present in the coronary arterial wall on both endothelial and smooth muscle cells 
and may play an important role in protection against atherosclerosis [98]. Estrogens 
have shown the protective role against oxidative stress mediated by ER-α. In men, 
deficiencies in ER-α may lead to accelerated atherosclerosis [99]. The hypermeth-
ylation of ER-α and ER-β was observed in coronary atherosclerotic plaques in com-
parison to normal aorta [100, 101]. The promoter methylation of ER-α has been 
demonstrated to increase with age and reach nearly a complete methylation level in 
the elderly [100].

The epigenetic modulator, 3-deazaadenosine, was shown to prevent smooth 
muscle cell proliferation and neointima formation by interfering with Ras 
methylation [102]. The factor VII promoter methylation confers protection against 
CAD as it lowers factor VIIa levels [103]. The methylation at ATP-binding cassette 
A1 (ABCA1) locus was shown to lower HDL levels and increase the risk for CAD 
[104]. The methylation at p15 (INK4b) locus was shown to increase CAD risk by 
influencing the expression of antisense noncoding RNA in the INK4 locus (ANRIL) 
[105].

Low-density lipoprotein L5, the most negatively charged subfraction of low- 
density lipoprotein, is capable of inducing apoptosis and was shown to inhibit 
fibroblast growth factor-2 (FGF-2) by inducing hypermethylation of its promoter 
[106]. Aspirin was found to attenuate the adverse effects of L5 by lowering the 
FGF2 expression [107]. The oxLDL response element in FGF2 promoter that is 
responsible for methylation-induced repression of FGF2 [108]. LDL stimulates the 
binding of the DNA methyl-CpG-binding protein-2 and histone methyltransferase 
enhancer of Zeste homolog 2 whereas decreases the binding of the KLF2 transcrip-
tional activator, i.e., myocyte-enhancing factor-2, to the KLF2 promoter in endothe-
lial cells [109]. The downregulation of KLF2 by LDL leads to a dysfunctional, 
hypercoagulable endothelium. Regulatory T (Treg) cells have been shown to play a 
protective role in experimental models of atherosclerosis. Hypermethylation of the 
transcription factor forkhead box P3 (FOXP3) was shown to decrease Treg cells and 
increase the risk for acute coronary syndrome [110]. Hyperlipidemia was shown to 
be associated with methylation of ATP-binding cassette, subfamily G, member 1 
(ABCG1), lipase, hepatic (LIPC), and phospholipid transfer protein (PLTP) [111]. 
Hypomethylation of the ADP receptor P2Y12 was reported to be associated with 
clopidogrel resistance in CAD patients [112]. Hypermethylation of dimethylargi-
nine dimethylaminohydrolase 2 (DDAH2) was shown to impair the function of 
endothelial progenitor cells, thus playing an important role in the pathophysiology 
of CAD [113]. Smoking and air pollution have shown to influence methylation and 
cardiovascular risk. The smoking-related methylation pattern in the coagulation fac-
tor II (thrombin) receptor-like 3 (F2RL3) gene was reported to influence the prog-
nosis of CAD [114]. Further, differentially methylated regions (DMRs) were 
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observed in genes, i.e., TCN2 promoter, CBS 5'UTR, AMT, and PON1 involved in 
folate pathway [115]. Exposure to air pollution, an established risk factor for isch-
emic heart disease and stroke, is associated with reduced blood methylation of 
LINE-1, increased CDKN2B, and MAGEA1 methylation [116].The smoke induced 
lower LINE-1 DNA methylation and also alterations in methylation of specific 
genes in buccal mucosa samples obtained from children [117], indicating that DNA 
methylation may be one of the mechanisms linking exposure to the pollutants and 
the development of CVD.

In CAD cases, differentially methylated regions were observed in the intronic 
region of complement component 1, q subcomponent-like 4 (C1QL4) genes and 
upstream region of the coiled-coil domain containing 47 (CCDC47) and transform-
ing growth factor, beta receptor III (TGFBR3) genes [118]. A recent systemic 
review on DNA methylation and CAD identified that the candidate genes such as 
ABCG1 and FOXP3 are hypomethylation, whereas ESR-α gene was hypermethyl-
ated in CHD [119]. Additionally, the EWAS identified 84 genes showing differential 
methylation patterns in relevance to obesity, inflammation, and lipid and carbohy-
drate metabolism influencing the risk of CHD [119]. Candidate gene approaches are 
much needed in order to understand the differential methylation patterns at specific 
loci contributing to cardiovascular risk as they are influenced by external stimuli.

5.3.9  Histone Modifications and Effect on Gene Expression

Histones have protruding N-terminal tails which can undergo posttranslational 
modifications (so-called histone modifications/marks) [120]. There are various 
types of modifications including acetylation (ac), methylation (me), phosphoryla-
tion (P), ubiquitination (ubi), and sumoylation (SUMO). Methylations at lysine 9, 
27, and 36 on histone H3 generally lead to reduced gene expression, while methyl-
ations of lysine 4 and 79 on histone H3 and lysine 20 on histone H4 cause the 
increased expression of genes. The dynamics of these marks are mediated through 
histone methyl transferases that place methyl groups and histone demethylases 
removes methylation. Acetylation of lysines on histones H3 and H4 is associated 
with increased transcription of genes. Acetyl groups are placed by histone acetyl 
transferases and removed by histone deacetylases [121]. Histone modifications have 
been shown to influence the transcription and gene expression [122]. Posttranslational 
modifications of histones also include their binding to specific proteins and mediate 
processes such as gene expression, apoptosis, and DNA damage repair [123]. 
Elevated levels of ROS arising from alterations in cellular metabolism and inflam-
matory responses constitute a key risk state for DNA damage. DNA repair requires 
dynamic changes in surrounding chromatin, including changes in nucleosome posi-
tioning and histone modifications [124, 125]. Epigenetic alterations have been 
shown to be induced by the ROS and H2O2, where DNMT1 becomes more tightly 
bound to chromatin after H2O2 treatment and thereby alter the methylation status of 
CpG regions [126]. In a study, eNOS upregulation was associated with an increased 
H3 and H4 histone acetylation in the eNOS promoter in neonatal rodent-persistent 
PH of the newborn model [127].
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Histone acetyltransferase (HAT) activities have shown to possess a positive role 
in cardiac hypertrophy (CH) as demonstrated by the HAT activity of the transcrip-
tional co-activators CREB-binding protein (CBP) and p300. The overexpression of 
CBP or p300 in cardiomyocytes resulted in hypertrophy, whereas that was absent in 
overexpressive mutant CBP and p300 lacking HAT activity [128]. Cardiac hypertro-
phy (CH) has also been linked with histone methylation, in particular with H3K9 
[129–131] and H3K4 methylations [132, 133] in animal models. Histone modifica-
tions are also involved in heart failure; in a genome-wide histone methylation of 
heart tissues, Kaneda and colleagues reported that tri-methylated histone H3H4 and 
H3K9 were altered in heart failure [134].

Histone acetylases and deacetylases (HDACs) localize to the sites of DNA 
damage induced by oxidative free radicals to facilitate repair by increasing the 
access of repair proteins to the break site [131]. A family of methyl-CpG-binding 
proteins has recently been recognized that specifically bind to methylated CpGs, 
thereby contributing to transcriptional repression by recruiting histone-modifying 
proteins which include the MBD protein family (MBD1,MBD2, MBD4, and 
MeCP2), Kaiso and Kaiso-like proteins, and SRA domain proteins (e.g., SUVH9 
and SUVH2) [124]. After ischemia/reperfusion in caveolin knockout mice, there is 
an increase in histone methylation and is associated with an increase in the HDAC 
activity as well as an elevated level of HMT G9a protein [135]. Decreased expression 
of sirtuin-1 was observed in caveolin knockout mice and a reduction in the 
translocation of Foxo-3a to the nucleus [135]. Further supporting the cardioprotective 
role caveolin, the caveolin knockout mice had decreased ventricular function and 
increased apoptosis of cardiomyocyte cells in the setting of ischemia and reperfusion 
[135].

5.3.10  RNA-Mediated Gene Silencing

MicroRNAs (miRNA) are highly conserved, small, noncoding RNAs (20–40 
nucleotides long), which inhibit translation or decrease the mRNA stability by 
binding to specific sites usually in the 3′-untranslated region (3′UTR) of target 
regions of the genome. RNA-induced silencing complex, or RISC, is a multiprotein 
complex that incorporates one strand of miRNA. In neonatal cardiomyocytes, the 
overexpression of miR-23a, miR-23b, miR-24, miR-195, or miR-214 induced 
cardiac hypertrophy, whereas overexpression of miR-133 inhibited the phenotype 
[136, 137]. Evidence that redox signaling in cells is subject to regulation by miRNA 
was shown through Dicer knockdown in human microvascular endothelial cells 
[138]. This was demonstrated by lower inducible production of ROS when activated 
with phorbol ester, tumor necrosis factor-α, or vascular endothelial growth factor. 
The miRNA deficiency caused by Dicer knockdown specifically downregulated 
both p47phox expression and ROS production. Thus, p47phox of the NADPH 
oxidase complex has been identified as a target of miRNAs [138]. miRNA-29b can 
reduce the expression of DNMT enzymes and thereby affect the global methylation 
status [139]. Wang et al. demonstrated that miRNA-152 can knockdown DNMT1 in 
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human aortic SMCs, leading to hypermethylation of the ER-α gene [140]. HDAC 
expression can be regulated by miRNAs, such as miRNA-449a [141]. miRNA-33 
predominantly targets the gene encoding the ATP-binding cassette transporter 
ABCA1, which is involved in cellular cholesterol mobilization. The HIF-responsive 
miRNA- 210 was shown to be ubiquitously expressed in the hypoxic cell and tissue 
types [142]. miR 155/miR22 targets eNOS and STAT5A in endothelial cells and is 
involved in neovascularization [143, 144] and miR-10a/miR-181b targets HOXA1,M 
βTRC, AP3K7, and KPNA1 in endothelial cells and influences inflammation and 
endothelial dysfunction [145, 146].

Though the studies have shown the possible role of posttranslation modification 
of histone proteins and mRNA-based expression in the regulation of candidate 
genes in cardiovascular disease, however, the redox contribution of several of these 
miRNAs and histone protein modifications are unclear; further studies are war-
ranted to elucidate the precise role of these epigenetic factors in cardiovascular 
disease.

References

 1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, 
Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, 
Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, 
Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir 
K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez 
CJ, Roth GA, Rosamond WD, UKA S, Satou GM, Shah SH, Spartano NL, Tirschwell 
DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, 
American Heart Association Council on Epidemiology and Prevention Statistics Committee 
and Stroke Statistics Subcommittee (2018) Heart disease and stroke statistics-2018 update: a 
report from the American Heart Association. Circulation 137(12):e67–e492

 2. Prabhakaran D, Jeemon P, Roy A (2016) Cardiovascular diseases in India: current 
epidemiology and future directions. Circulation 133(16):1605–1620

 3. Li H, Horke S, Förstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. 
Atherosclerosis 237(1):208–219

 4. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial 
reactive oxygen species. Trends Pharmacol Sci 27(12):639–645

 5. Rigoulet M, Yoboue ED, Devin A (2011) Mitochondrial ROS generation and its regulation: 
mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 14(3):459–468

 6. Cave A, Grieve D, Johar S, Zhang M, Shah AM (2005) NADPH oxidase-derived reactive 
oxygen species in cardiac pathophysiology. Philos Trans R Soc Lond Ser B Biol Sci 
360(1464):2327–2334

 7. Tardif JC (2003) Oxidative stress and coronary heart disease. Cardiology Rounds, 7. www.
cardiologygrounds.org

 8. Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and 
hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 
2):S170–S180

 9. Zhang M, Shah AM (2014) ROS signalling between endothelial cells and cardiac cells. 
Cardiovasc Res 102(2):249–257

 10. Brown DI, Griendling KK (2015) Regulation of signal transduction by reactive oxygen 
species in the cardiovascular system. Circ Res 116(3):531–549

S. K. Katkam et al.

http://www.cardiologygrounds.org
http://www.cardiologygrounds.org


121

 11. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in 
an antioxidant pathway to prevent apoptosis. Cell 75(2):241–251

 12. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol 
Today 15(1):7–10

 13. Sheehan AL, Carrell S, Johnson B, Stanic B, Banfi B, Miller FJ (2011) Role for Nox1 
NADPH oxidase in atherosclerosis. Atherosclerosis 216:321–326

 14. Judkins CP, Diep H, Broughton BR, Mast AE, Hooker EU, Miller AA et al (2010) Direct 
evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, 
and early atherosclerotic plaque formation in ApoE−/− mice. Am J  Physiol Heart Circ 
Physiol 298:H24–H32

 15. Taubman MB (2003) Angiotensin II: a vasoactive hormone with ever-increasing biological 
roles. Circ Res 92:9–11

 16. Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz S et al (2011) Endothelial 
Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in  vivo. 
Arterioscler Thromb Vasc Biol 31:1368–1376

 17. Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C et al (2011) NADPH oxidase 4 promotes 
endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation 
124:731–740

 18. Barry-Lane PA, Patterson C, Merwe MV, Hu Z, Holland SM, Yeh ET et al (2001) P47phox is 
required for atherosclerotic lesion progression in Apo−/− mice. J Clin Invest 108:1513–1522

 19. Mazaheri M, Karimian M, Behjati M, Raygan F, Hosseinzadeh CA (2017) Association 
analysis of rs1049255 and rs4673 transitions in p22phox gene with coronary artery disease: 
a case- control study and a computational analysis. Ir J Med Sci 186(4):921–928

 20. Madamanchi NR, Runge MS (2013) Redox signaling in cardiovascular health and disease. 
Free Radic Biol Med 61:473–501

 21. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R et  al (2001) 
Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in 
apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 
104:448–454

 22. Ponnuswamy P, Schröttle A, Ostermeier E, Grüner S, Huang PL, Ertl G et al (2012) ENOS 
protects from atherosclerosis despite relevant superoxide production by the enzyme in 
ApoE−/− mice. PLoS One 7:e30193

 23. Kuhlencordt PJ, Chen J, Han F, Astern J, Huang PL (2001) Genetic deficiency of inducible 
nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in 
apolipoprotein E-knockout mice. Circulation 103:3099–3104

 24. Miyamoto Y, Saito Y, Nakayama M, Shimasaki Y, Yoshimura T, Yoshimura M, Harada 
M, Kajiyama N, Kishimoto I, Kuwahara K, Hino J, Ogawa E, Hamanaka I, Kamitani S, 
Takahashi N, Kawakami R, Kangawa K, Yasue H, Nakao K (2000) Replication protein A1 
reduces transcription of the endothelial nitric oxide synthase gene containing a -786T-->C 
mutation associated with coronary spastic angina. Hum Mol Genet 9(18):2629–2637

 25. Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, Motoyama 
T, Saito Y, Ogawa Y, Miyamoto Y, Nakao K (1999) T-786-->C mutation in the 5′-flanking 
region of the endothelial nitric oxide synthase gene is associated with coronary spasm. 
Circulation 99(22):2864–2870

 26. Rai H, Parveen F, Kumar S, Kapoor A, Sinha N (2014) Association of endothelial nitric oxide 
synthase gene polymorphisms with coronary artery disease: an updated meta-analysis and 
systematic review. PLoS One 9(11):e113363

 27. Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M, Reynolds WF (1996) An Alu 
element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone- 
retinoic acid response element. J Biol Chem 271:14412–14420

 28. Arslan S, Berkan Ö, Bayyurt B, Beton O, Şahin NLÖL, Aydemir EI (2017 Dec) Effects 
of MPO-463G/A and -129G/A polymorphisms on coronary artery disease risk and patient 
survival in a Turkish population. Biomed Rep 7(6):547–552

5 Impact of Genetic and Epigenetic Factors on the Oxidative Stress…



122

 29. Wang Y, Chen XY, Wang K, Li S, Zhang XY (2017) Myeloperoxidase polymorphism and 
coronary artery disease risk: a meta-analysis. Medicine (Baltimore) 96(27):e7280

 30. Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey 
JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. 
J Mol Cell Cardiol 17(2):145–152

 31. Singh TP, Skalina T, Nour D, Murali A, Morrison S, Moxon JV, Golledge J (2018) A meta- 
analysis of the efficacy of allopurinol in reducing the incidence of myocardial infarction 
following coronary artery bypass grafting. BMC Cardiovasc Disord 18(1):143

 32. Scheepers LE, Wei FF, Stolarz-Skrzypek K, Malyutina S, Tikhonoff V, Thijs L, Salvi E, 
Barlassina C, Filipovský J, Casiglia E, Nikitin Y, Kawecka-Jaszcz K, Manunta P, Cusi 
D, Boonen A, Staessen JA, Arts IC (2016) Xanthine oxidase gene variants and their 
association with blood pressure and incident hypertension: a population study. J Hypertens 
34(11):2147–2154

 33. Yang J, Kamide K, Kokubo Y, Takiuchi S, Horio T, Matayoshi T, Yasuda H, Miwa Y, Yoshii M, 
Yoshihara F, Nakamura S, Nakahama H, Tomoike H, Miyata T, Kawano Y (2008) Associations 
of hypertension and its complications with variations in the xanthine dehydrogenase gene. 
Hypertens Res 31(5):931–940

 34. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol 
Toxicol 38:97–120

 35. Schonbeck U, Sukhova GK, Graber P, Coulter S, Libby P (1999) Augmented expression of 
cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol 155(4):1281–1291

 36. Liu H, Xu Z, Sun C, Gu D, Teng X, Zhao Y, Zheng Z (2017) A variant in COX-2 gene is 
associated with left main coronary artery disease and clinical outcomes of coronary artery 
bypass grafting. Biomed Res Int 2017:2924731

 37. Rostoff P, Szczeklik W, Piwowarska W, Konduracka E, Sanak M, Nessler J (2014) Association 
of common cyclooxygenase-2 (COX-2) gene polymorphisms with clinical and angiographic 
characteristics of patients with coronary artery disease. Przegl Lek 71(6):314–318

 38. Mehrabian M, Allayee H (2003) 5-lipoxygenase and atherosclerosis. Curr Opin Lipidol 
14(5):447–457

 39. Mehrabian M, Allayee H, Wong J, Shi W, Wang XP, Shaposhnik Z, Funk CD, Lusis AJ (2002) 
Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility 
in mice. Circ Res 91(2):120–126

 40. Spanbroek R, Grabner R, Lotzer K, Hildner M, Urbach A, Ruhling K, Moos MP, Kaiser 
B, Cohnert TU, Wahlers T, Zieske A, Plenz G, Robenek H, Salbach P, Kuhn H, Radmark 
O, Samuelsson B, Habenicht AJ (2003) Expanding expression of the 5-lipoxygenase 
pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci U S A 
100(3):1238–1243

 41. Todur SP, Ashavaid TF (2012) Association of Sp1 tandem repeat polymorphism of ALOX5 
with coronary artery disease in Indian subjects. Clin Transl Sci 5(5):408–411

 42. Kaur N, Singh J, Reddy S (2018) Interaction between ALOX15 polymorphisms and coronary 
artery disease in North Indian population. Clin Exp Hypertens 40(4):398–405

 43. Girelli D, Martinelli N, Trabetti E, Olivieri O, Cavallari U, Malerba G, Busti F, Friso S, 
Pizzolo F, Pignatti PF, Corrocher R (2007) ALOX5AP gene variants and risk of coronary 
artery disease: an angiography-based study. Eur J Hum Genet 15(9):959–966

 44. Liu D, Liu L, Song Z, Hu Z, Liu J, Hou D (2017) Genetic variations of oxidative stress 
related genes ALOX5, ALOX5AP and MPO modulate ischemic stroke susceptibility through 
main effects and epistatic interactions in a Chinese population. Cell Physiol Biochem 
43(4):1588–1602

 45. Peng JR, Lu TT, Chang HT, Ge X, Huang B, Li WM (2016) Elevated levels of plasma 
superoxide dismutases 1 and 2  in patients with coronary artery disease. Biomed Res Int 
2016:3708905

 46. Neves AL, Mohammedi K, Emery N, Roussel R, Fumeron F, Marre M, Velho G (2012) 
Allelic variations in superoxide dismutase-1 (SOD1) gene and renal and cardiovascular 
morbidity and mortality in type 2 diabetic subjects. Mol Genet Metab 106(3):359–365

S. K. Katkam et al.



123

 47. Möllsten A, Jorsal A, Lajer M, Vionnet N, Tarnow L (2009) The V16A polymorphism in 
SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in 
type 1 diabetes. Diabetologia 52(12):2590–2593

 48. Tian C, Liu T, Fang S, Du X, Jia C (2012) Association of C47T polymorphism in SOD2 
gene with coronary artery disease: a case-control study and a meta-analysis. Mol Biol Rep 
39(5):5269–5276

 49. Grammer TB, Renner W, Hoffmann MM, Kleber M, Winkelhofer-Roob BM, Boehm BO, 
Maerz W (2009) SOD3 R231G polymorphism associated with coronary artery disease and 
myocardial infarction. The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. 
Free Radic Res 43(7):677–684

 50. Wickremasinghe D, Peiris H, Chandrasena LG, Senaratne V, Perera R (2016) Case control 
feasibility study assessing the association between severity of coronary artery disease 
with Glutathione Peroxidase-1 (GPX-1) and GPX-1 polymorphism (Pro198Leu). BMC 
Cardiovasc Disord 16:111

 51. Ravn-Haren G, Olsen A, Tjønneland A, Dragsted LO, Nexø BA, Wallin H, Overvad K, 
Raaschou-Nielsen O, Vogel U (2006) Associations between GPX1 Pro198Leu polymorphism, 
erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort 
study. Carcinogenesis 27(4):820–825

 52. Ramprasath T, Murugan PS, Kalaiarasan E, Gomathi P, Rathinavel A, Selvam GS (2012 
Feb) Genetic association of Glutathione peroxidase-1 (GPx-1) and NAD(P)H:Quinone 
Oxidoreductase 1(NQO1) variants and their association of CAD in patients with type-2 
diabetes. Mol Cell Biochem 361(1-2):143–150

 53. Forsberg L, Lyrenäs L, de Faire U, Morgenstern R (2001) A common functional C-T 
substitution polymorphism in the promoter region of the human catalase gene influences 
transcription factor binding, reporter gene transcription and is correlated to blood catalase 
levels. Free Radic Biol Med 30(5):500–505

 54. Rochu D, Chabrière E, Masson P (2007) Human paraoxonase: a promising approach for pre 
treatment and therapy of organophosphorus poisoning. Toxicology 233(1-3):47–59

 55. Zielaskowska J, Olszewska-Słonina D (2006) The polymorphism of paraoxonase and its 
effects in physiological and pathological processes. Adv Clin Exp Med 15:1073–1078

 56. Rosenblat M, Gaidukov L, Khersonsky O, Vaya J, Oren R, Tawfik DS, Aviram M (2006) The 
catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) 
is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimula-
tion of macrophage cholesterol efflux. J Biol Chem 281(11):7657–7665

 57. La Du BN, Aviram M, Billecke S, Navab M, Primo-Parmo S, Sorenson RC, Standiford TJ 
(1999) On the physiological role(s) of the paraoxonases. Chem Biol Interact 119–120:379–388

 58. Berrougui H, Loued S, Khalil A (2012) Purified human paraoxonase-1 interacts with plasma 
membrane lipid rafts and mediates cholesterol efflux from macrophages. Free Radic Biol 
Med 52(8):1372–1381

 59. Shih DM, Lusis AJ (2015) The role of paraoxonase in cardiovascular diseases. Ann Clin Lab 
Sci 45(2):226–233

 60. Garin MC, James RW, Dussoix P, Blanché H, Passa P, Froguel P, Ruiz J (1997) Paraoxonase 
polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. 
A possible link between the paraoxonase gene and increased risk of cardiovascular disease in 
diabetes. J Clin Invest 99(1):62–66

 61. Barbieri M, Bonafè M, Marfella R, Ragno E, Giugliano D, Franceschi C, Paolisso G (2002) 
LL-paraoxonase genotype is associated with a more severe degree of homeostasis model 
assessment IR in healthy subjects. J Clin Endocrinol Metab 87(1):222–225

 62. Roest M, Rodenburg J, Wiegman A, Kastelein JJ, Voorbij HA (2006) Paraoxonase geno-
type and carotid intima-media thickness in children with familial hypercholesterolemia. Eur 
J Cardiovasc Prev Rehabil 13(3):464–466

 63. Christidis DS, Liberopoulos EN, Kakafika AI, Miltiadous GA, Liamis GL, Kakaidi B, 
Tselepis AD, Cariolou MA, Elisaf MS (2007) Effect of paraoxonase 1 polymorphisms on 

5 Impact of Genetic and Epigenetic Factors on the Oxidative Stress…



124

the response of lipids and lipoprotein-associated enzymes to treatment with fluvastatin. Arch 
Med Res 38(4):403–410

 64. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human 
serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density 
lipoprotein against low density lipoprotein oxidative modification. FEBS Lett 423:57–60

 65. Doshi SN, McDowell IF, Moat SJ, Lang D, Newcombe RG, Kredan MB, Lewis MJ, 
Goodfellow J  (2001) Folate improves endothelial function in coronary artery disease: an 
effect mediated by reduction of intracellular superoxide? Arterioscler Thromb Vasc Biol 
21(7):1196–1202

 66. Hogg N (1999) The effect of cyst(e)ine on the auto-oxidation of homocysteine. Free Radic 
Biol Med 27(1–2):28–33

 67. Vinukonda G, Shaik Mohammad N, Md Nurul Jain J, Prasad Chintakindi K, Rama Devi 
Akella R (2009) Genetic and environmental influences on total plasma homocysteine and 
coronary artery disease (CAD) risk among South Indians. Clin Chim Acta 405(1-2):127–131

 68. Ma Y, Peng D, Liu C, Huang C, Luo J (2017) Serum high concentrations of homocysteine 
and low levels of folic acid and vitamin B12 are significantly correlated with the categories 
of coronary artery diseases. BMC Cardiovasc Disord 17(1):37

 69. Divyya S, Naushad SM, Addlagatta A, Murthy PV, Reddy CR, Digumarti RR, Gottumukkala 
SR, Kumar A, Rammurti S, Kutala VK (2012) Paradoxical role of C1561T glutamate 
carboxypeptidase II (GCPII) genetic polymorphism in altering disease susceptibility. Gene 
497(2):273–279

 70. Vijaya Lakshmi SV, Naushad SM, Seshagiri Rao D, Kutala VK (2013) Oxidative stress is 
associated with genetic polymorphisms in one-carbon metabolism in coronary artery disease. 
Cell Biochem Biophys 67(2):353–361

 71. Vijaya Lakshmi SV, Naushad SM, Rupasree Y, Seshagiri Rao D, Kutala VK (2011) Interactions 
of 5′-UTR thymidylate synthase polymorphism with 677C → T methylene tetrahydrofolate 
reductase and 66A → G methyltetrahydrofolate homocysteine methyl-transferase reductase 
polymorphisms determine susceptibility to coronary artery disease. J Atheroscler Thromb 
18(1):56–64

 72. Patwari P, Higgins LJ, Chutkow WA et al (2006) The interaction of thioredoxin with Txnip. 
Evidence for formation of a mixed disulfide by disulfide exchange. J Biol Chem 281:21884

 73. He X, Ma Q (2012) Redox regulation by nuclear factor erythroid 2-related factor 2: 
gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. 
Mol Pharmacol 82:887

 74. Wang XB, Han YD, Zhang S, Cui NH, Liu ZJ, Huang ZL, Li C, Zheng F (2016) Associations 
of polymorphisms in TXNIP and gene-environment interactions with the risk of coronary 
artery disease in a Chinese Han population. J Cell Mol Med 20(12):2362–2373

 75. Mozzini C, Fratta Pasini A, Garbin U, Stranieri C, Pasini A, Vallerio P, Cominacini L (2014) 
Increased endoplasmic reticulum stress and Nrf2 repression in peripheral blood mononuclear 
cells of patients with stable coronary artery disease. Free Radic Biol Med 68:178–185

 76. Lakshmi SV, Naushad SM, Saumya K, Rao DS, Kutala VK (2012 Oct) Role of CYP1A1 
haplotypes in modulating susceptibility to coronary artery disease. Indian J Biochem Biophys 
49(5):349–355

 77. Bhat MA, Gandhi G (2018) CYP2D6 (C2850T, G1846A, C100T) polymorphisms, haplotypes 
and MDR analysis in predicting coronary artery disease risk in north-west Indian population: 
a case-control study. Gene 663:17–24

 78. Zhang T, Yu K, Li X (2018) Cytochrome P450 family 4 subfamily F member 2 (CYP4F2) 
rs1558139, rs2108622 polymorphisms and susceptibility to several cardiovascular and 
cerebrovascular diseases. BMC Cardiovasc Disord 18(1):29

 79. Zhang ZX, Zhang Y (2014) Glutathione S-transferase M1 (GSTM1) null genotype and 
coronary artery disease risk: a meta-analysis. Int J Clin Exp Med 7(10):3378–3384

 80. Kariž S, Nikolajević Starčević J, Petrovič D (2012) Association of manganese superoxide 
dismutase and glutathione S-transferases genotypes with myocardial infarction in patients 
with type 2 diabetes mellitus. Diabetes Res Clin Pract 98(1):144–150

S. K. Katkam et al.



125

 81. Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M (2018) Role of epigenetics in cardiac 
development and congenital diseases. Physiol Rev 98(4):2453–2475

 82. Schleithoff C, Voelter-Mahlknecht S, Dahmke IN, Mahlknecht U (2012) On the epigenetics 
of vascular regulation and disease. Clin Epigenetics 4(1):7

 83. Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene 
expression. Circ Res 102(8):873–887

 84. Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and CVD. Proc 
Nutr Soc 70(1):47–56

 85. Turunen MP, Aavik E, Yla-Herttuala S (2009) Epigenetics and atherosclerosis. Biochim 
Biophys Acta 1790(9):886–891

 86. Baccarelli A, Rienstra M, Benjamin EJ (2010) Cardiovascular epigenetics: basic concepts 
and results from animal and human studies. Circ Cardiovasc Genet 3(6):567–573

 87. Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, Carletto A, Pattini P, 
Corrocher R, Olivieri O (2008) Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 
2 gene promoter is related to human hypertension. Atherosclerosis 199(2):323–327

 88. Loehrer FM, Angst CP, Haefeli WE, Jordan PP, Ritz R, Fowler B (1996) Low whole-blood 
S-adenosylmethionine and correlation between 5-methyltetrahydrofolate and homocysteine 
in coronary artery disease. Arterioscler Thromb Vasc Biol 16(6):727–733

 89. Debreceni B, Debreceni L (2012) Why do homocysteine-lowering B vitamin and antioxidant 
E vitamin supplementations appear to be ineffective in the prevention of cardiovascular 
diseases? Cardiovasc Ther 30(4):227–233

 90. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ (2003) Jakobs 
C, and Tavares de Almeida I.  Increased homocysteine and S-adenosylhomocysteine 
concentrations and DNA hypomethylation in vascular disease. Clin Chem 49:1292–1296

 91. Devlin AM, Arning E, Bottiglieri T, Faraci FM, Rozen R, Lentz SR (2004) Effect of Mthfr 
genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 
103:2624–2629

 92. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, 
Esteller M, Zaina S (2004) DNA methylation polymorphisms precede any histological sign 
of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 279:29147–29154

 93. Sharma P, Kumar J, Garg G, Kumar A, Patowary A, Karthikeyan G, Ramakrishnan L, 
Brahmachari V, Sengupta S (2008) Detection of altered global DNA methylation in coronary 
artery disease patients. DNA Cell Biol 27(7):357–365

 94. Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB, Kumar A, Jeon BH, McNamara 
DM, Irani K (2011) Homocysteine promotes human endothelial cell dysfunction via site- 
specific epigenetic regulation of p66shc. Cardiovasc Res 92(3):466–475

 95. Lakshmi SV, Naushad SM, Reddy CA, Saumya K, Rao DS, Kotamraju S, Kutala VK (2013) 
Oxidative stress in coronary artery disease: epigenetic perspective. Mol Cell Biochem 
374(1–2):203–211

 96. Lacza Z, Pankotai E, Busija DW (2009) Mitochondrial nitric oxide synthase: current concepts 
and controversies. Front Biosci (Landmark Ed) 14:4436–4443

 97. Kim GH, Ryan JJ, Archer SL (2013) The role of redox signaling in epigenetics and 
cardiovascular disease. Antioxid Redox Signal 18(15):1920–1936

 98. Venkov CD, Rankin AB, Vaughan DE (1996) Identification of authentic estrogen receptor 
in cultured endothelial cells. A potential mechanism for steroid hormone regulation of 
endothelial function. Circulation 94:727–733

 99. Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. 
Pharmacol Rev 60:210–241

 100. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, 
Milliken EE, Issa JP (1999) Methylation of the estrogen receptor gene is associated with 
aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43(4):985–991

 101. Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, Goldschmidt-Clermont PJ, Issa JP 
(2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular 
tissues and in-vitro vascular senescence. Biochim Biophys Acta 1772(1):72–80

5 Impact of Genetic and Epigenetic Factors on the Oxidative Stress…



126

 102. Sedding DG, Tröbs M, Reich F, Walker G, Fink L, Haberbosch W, Rau W, Tillmanns H, 
Preissner KT, Bohle RM, Langheinrich AC (2009) 3-Deazaadenosine prevents smooth 
muscle cell proliferation and neointima formation by interfering with Ras signaling. Circ Res 
104(10):1192–1200

 103. Friso S, Lotto V, Choi SW, Girelli D, Pinotti M, Guarini P, Udali S, Pattini P, Pizzolo F, 
Martinelli N, Corrocher R, Bernardi F, Olivieri O (2012) Promoter methylation in coagulation 
F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J Med 
Genet 49(3):192–199

 104. Guay SP, Brisson D, Munger J, Lamarche B, Gaudet D, Bouchard L (2012) ABCA1 gene 
promoter DNA methylation is associated with HDL particle profile and coronary artery 
disease in familial hypercholesterolemia. Epigenetics 7(5):464–472

 105. Zhuang J, Peng W, Li H, Wang W, Wei Y, Li W, Xu Y (2012) Methylation of p15INK4b 
and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. 
PLoS One 7(10):e47193

 106. Chang PY, Chen YJ, Chang FH, Lu J, Huang WH, Yang TC, Lee YT, Chang SF, Lu SC, 
Chen CH (2013) Aspirin protects human coronary artery endothelial cells against atherogenic 
electronegative LDL via an epigenetic mechanism: a novel cytoprotective role of aspirin in 
acute myocardial infarction. Cardiovasc Res 99(1):137–145

 107. Yang TC, Chen YJ, Chang SF, Chen CH, Chang PY, Lu SC (2014) Malondialdehyde 
mediates oxidized LDL-induced coronary toxicity through the Akt-FGF2 pathway via DNA 
methylation. J Biomed Sci 21:11

 108. Kumar A, Kumar S, Vikram A, Hoffman TA, Naqvi A, Lewarchik CM, Kim YR, Irani K 
(2013) Histone and DNA methylation-mediated epigenetic downregulation of endothelial 
Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 
33(8):1936–1942

 109. Jia L, Zhu L, Wang JZ, Wang XJ, Chen JZ, Song L, Wu YJ, Sun K, Yuan ZY, Hui R (2013) 
Methylation of FOXP3  in regulatory T cells is related to the severity of coronary artery 
disease. Atherosclerosis 228(2):346–352

 110. Guay SP, Brisson D, Lamarche B, Gaudet D, Bouchard L (2014) Epipolymorphisms 
within lipoprotein genes contribute independently to plasma lipid levels in familial 
hypercholesterolemia. Epigenetics 9(5):718–729

 111. Jiang D, Zheng D, Wang L, Huang Y, Liu H, Xu L, Liao Q, Liu P, Shi X, Wang Z, Sun L, 
Zhou Q, Li N, Xu L, Le Y, Ye M, Shao G, Duan S (2013) Elevated PLA2G7 gene promoter 
methylation as a gender-specific marker of aging increases the risk of coronary heart disease 
in females. PLoS One 8(3):e59752

 112. Su J, Li X, Yu Q, Liu Y, Wang Y, Song H, Cui H, Du W, Fei X, Liu J, Lin S, Wang J, Zheng 
W, Zhong J, Zhang L, Tong M, Xu J, Chen X (2014) Association of P2Y12 gene promoter 
DNA methylation with the risk of clopidogrel resistance in coronary artery disease patients. 
Biomed Res Int 2014:450814

 113. Niu PP, Cao Y, Gong T, Guo JH, Zhang BK, Jia SJ (2014) Hypermethylation of DDAH2 
promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery 
disease patients. J Transl Med 12:170

 114. Breitling LP (2013) Current genetics and epigenetics of smoking/tobacco-related 
cardiovascular disease. Arterioscler Thromb Vasc Biol 33(7):1468–1472

 115. Fiorito G, Guarrera S, Valle C, Ricceri F, Russo A, Grioni S, Mattiello A, Di Gaetano C, 
Rosa F, Modica F, Iacoviello L, Frasca G, Tumino R, Krogh V, Panico S, Vineis P, Sacerdote 
C, Matullo G (2014) B-vitamins intake, DNA-methylation of One Carbon Metabolism and 
homocysteine pathway genes and myocardial infarction risk: the EPICOR study. Nutr Metab 
Cardiovasc Dis 24(5):483–488

 116. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 
21:243–251

 117. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD (2009) Prenatal tobacco 
smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care 
Med 180:462–467

S. K. Katkam et al.



127

 118. Sharma P, Garg G, Kumar A, Mohammad F, Kumar SR, Tanwar VS, Sati S, Sharma A, 
Karthikeyan G, Brahmachari V, Sengupta S (2014) Genome wide DNA methylation profiling 
for epigenetic alteration in coronary artery disease patients. Gene 541(1):31–40

 119. Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R (2017) Association 
between DNA methylation and coronary heart disease or other atherosclerotic events: a 
systematic review. Atherosclerosis 263:325–333

 120. Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599
 121. Kaypee S, Sudarshan D, Shanmugam MK, Mukherjee D, Sethi G, Kundu TK (2016) 

Aberrant lysine acetylation in tumorigenesis: implications in the development oftherapeutics. 
Pharmacol Ther 162:98–119

 122. Li B, Carey M, Workman J  (2007) The role of chromatin during transcription. Cell 
128:707–719

 123. Jenuwein T, Allis C (2001) Translating the histone code. Science 293:1074–1080
 124. Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of 

DNA around histones. Nat Rev Mol Cell Biol 7:437–447
 125. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay 

between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360
 126. O’Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai 

Y, Van Neste L, Easwaran H, Casero RA, Sears CL, Baylin SB (2011) Oxidative damage 
targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to 
promoter CpG Islands. Cancer Cell 20:606–619

 127. Xu XF, Ma XL, Shen Z, Wu XL, Cheng F, Du LZ (2010) Epigenetic regulation of the 
endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn 
rat. J Hypertens 28:2227–2235

 128. Gusterson R, Jazrawi E, Adcock I, Latchman D (2003) The transcriptional co-activators 
CREBbinding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is 
dependent on their histone acetyltransferase activity. J Biol Chem 278:6838–6847

 129. Haddad F, Bodell P, Qin A, Giger J, Baldwin K (2003) Role of antisense RNA in coordinating 
cardiac myosin heavy chain gene switching. J Biol Chem 278:37132–37138

 130. Majumdar G, Johnson I, Kale S, Raghow R (2008) Epigenetic regulation of cardiac 
musclespecific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor 
m- arboxycinnamic acid bis-hydroxamide. Mol Cell Biochem 312:47–60

 131. Zhang Q, Chen H, Wang L, Liu D, Hill J, Liu Z (2011) The histone trimethyllysine 
demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in 
mice. J Clin Invest 121:2447–2456

 132. Bingham A, Ooi L, Kozera L, White E, Wood I (2007) The repressor element 1-silencing 
transcription factor regulates heart-specific gene expression using multiple chromatin- 
modifying complexes. Mol Cell Biol 27:4082–4092

 133. Stein A, Jones T, Herron T, Patel S, Day S, Noujaim S, Milstein ML, Klos M, Furspan PB, 
Jalife J, Dressler GR (2011) Loss of H3K4 methylation destabilizes gene expression patterns 
and physiological functions in adult murine cardiomyocytes. J Clin Invest 121:2641–2650

 134. Kaneda R, Takada S, Yamashita Y, Choi Y, Nonaka-Sarukawa M, Soda M, Misawa Y, Isomura 
T, Shimada K, Mano H (2009) Genome-wide histone methylation profile for heart failure. 
Genes Cells 14:69–77

 135. Tsutsumi YM, Horikawa YT, Jennings MM, Kidd MW, Niesman IR, Yokoyama U, Head 
BP, Hagiwara Y, Ishikawa Y, Miyanohara A, Patel PM, Insel PA, Patel HH, Roth DM (2008) 
Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by 
mimicking ischemic preconditioning. Circulation 118:1979–1988

 136. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, 
Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen 
O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 
controls cardiac hypertrophy. Nat Med 13:613–618

 137. Latronico M, Condorelli G (2009) MicroRNAs and cardiac pathology. Nat Rev Cardiol 
6:419–429

5 Impact of Genetic and Epigenetic Factors on the Oxidative Stress…



128

 138. Shilo S, Roy S, Khanna S, Sen CK (2008) Evidence for the involvement of miRNA in 
redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler 
Thromb Vasc Biol 28:471–477

 139. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, 
Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield 
CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G (2009) MicroRNA-29b induces global 
DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia 
by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

 140. Wang YS, Chou WW, Chen KC, Cheng HY, Lin RT, Juo SH (2012) MicroRNA-152 mediates 
DNMT1-regulated DNA methylation in the estrogen receptor alpha gene. PLoS One 7:e30635

 141. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R 
(2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 
28:1714–1724

 142. Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 
9:1072–1083

 143. Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X (2012) MiR-26 controls LXR-dependent 
cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 586:1472–1479

 144. Kim J, Yoon H, Ramírez C, Lee S, Hoe H, Fernández-Hernando C, Kim J (2012) MiR-106b 
impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp 
Neurol 235:476–483

 145. Fang Y, Shi C, Manduchi E, Civelek M, Davies P (2010) MicroRNA-10a regulation of 
proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl 
Acad Sci U S A 107:13450–13455

 146. Sun X, Icli B, Wara A, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, MICU 
Registry, Blackwell TS, Baron RM, Feinberg MW (2012) MicroRNA-181b regulates NF-κB- 
mediated vascular inflammation. J Clin Invest 122:1973–1990

S. K. Katkam et al.



129© Springer Nature Singapore Pte Ltd. 2019
S. Chakraborti et al. (eds.), Modulation of Oxidative Stress in Heart Disease, 
https://doi.org/10.1007/978-981-13-8946-7_6

V. Gupta 
Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta 
School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India 

Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India 

V. Arige · N. R. Mahapatra (*) 
Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta 
School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
e-mail: nmahapatra@iitm.ac.in

6Role of Monoamine Oxidases in Heart 
Diseases

Vinayak Gupta, Vikas Arige, and Nitish R. Mahapatra

Abstract
Monoamine oxidases (MAOs) are flavoenzymes that metabolize biogenic 
amines, dietary amines, and catecholamines in the brain and peripheral tissues. 
While MAOs are known to contribute to psychiatric and neurodegenerative 
(Parkinson’s and Alzheimer’s) diseases for a long time, recent studies have estab-
lished their role in heart diseases as these enzymes potently generate reactive 
oxygen species (ROS) in cardiomyocytes via oxidative deamination of mainly 
norepinephrine and serotonin. Indeed, MAOs have emerged as important regula-
tors of mitochondrial/endothelial/cardiac dysfunction, essential hypertension, 
ventricular hypertrophy, myocardial infarction, cardiomyocyte apoptosis, post-
ischemic cardiac damage, and heart failure. Transcriptional and posttranscrip-
tional regulation of MAOs (via certain transcription factors or microRNAs) may 
emerge as new therapeutic strategies for treatment of cardiovascular pathological 
conditions. The next-generation MAO inhibitors (that do not cause irreversible 
inhibition of MAOs) may also be useful for management of cardiovascular dis-
ease states involving dysregulated expression/activity of MAOs.
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6.1  Introduction

Monoamine oxidases (MAOs) (EC 1.4.3.4) are flavin adenine dinucleotide (FAD)-
dependent enzymes which metabolize biogenic amines, dietary amines, and 
catecholamines (viz., epinephrine, norepinephrine, and dopamine) in the brain and 
peripheral tissues. MAOs oxidatively deaminate these amines into corresponding 
aldehydes and generate hydrogen peroxide (H2O2) and ammonia (NH3) during this 
reaction. Aldehydes generated in these reactions are further metabolized into cor-
responding organic acids by aldehyde dehydrogenases [1]. MAOs are expressed as 
integral proteins in the outer membrane of mitochondria. Based on the differences 
observed in substrate/inhibitor specificity and cell-/tissue-specific expression, 
MAOs are classified into two types, namely, MAOA and MAOB [2]. In brief, epi-
nephrine, norepinephrine, and serotonin are preferentially metabolized by MAOA, 
while phenylalanine and benzylamine are mainly metabolized by MAOB. Dopamine, 
tyramine, and tryptamine are common substrates for both the MAOs [3]. Selective 
MAOA and MAOB inhibitors are clinically used to treat depression and Parkinson’s 
disease [4].

Apart from sharing ~70% identity between their amino acid sequences, both 
MAOs have a conserved pentapeptide sequence (viz., Ser-Gly-Gly-Cys-Tyr), which 
serves as the FAD binding domain [1]. In several mammalian species including 
human, mouse, and rat, MAOs are mapped to the p arm of the X chromosome; these 
two genes are located next to each other in a tail-to-tail fashion. Identical exon- 
intron organization, equal number of exons, and high sequence similarity suggest 
that MAOA and MAOB are derived from a common ancestral gene (Fig. 6.1). Both 
MAOs are ubiquitously expressed in all cell types except red blood cells in a tissue- 
specific manner [5]. The human heart contains high levels of both isozymes; in the 
rat heart, MAOA is abundant, while MAOB is almost absent and the reverse is true 
for the mouse heart [6, 7]. MAOA expression is regulated by several transcription 
factors including circadian-clock components (via E-box elements), GATA2 (GATA 
binding protein-2), Krüppel-like factor-11 (Klf11), R1, sirtuin 1, Sp1 (specificity 
protein 1), SRY (sex-determining region gene on the Y chromosome), and TBP 
(TATA-binding protein), while MAOB expression is reported to be regulated by 
c-Jun, Egr1 (early growth response protein1), Klf-11, and Sp1 [8–12]. Interestingly, 
MAOs are also regulated by molecules of cardiovascular relevance such as andro-
gen, glucocorticoid, retinoic acid (RA), forskolin, and tumor necrosis factor-α 
(TNF-α) [8, 9].

Besides the well-studied functions of MAOs in neuronal/behavioral disorders, 
cancer metastasis, and embryonic development [13–16], a lot of research has been 
performed in recent years to explore their possible roles in mitochondrial/endothe-
lial/cardiac dysfunction, essential hypertension, ventricular hypertrophy, myocar-
dial infarction, cardiomyocyte apoptosis, postischemic cardiac damage, and heart 
failure as discussed below [17–24]. This chapter aims to summarize our current 
understanding on the role of these enzymes in heart diseases.
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6.2  Role of MAOs in Cardiac Cell Death and Chronic 
Ventricular Dysfunction

MAOs are potent generators of reactive oxygen species (ROS) or oxidative stress 
due to oxidative deamination of mainly norepinephrine and serotonin in cardiac tis-
sues [25–28]. Depending on the type of available substrate and ROS generated by 
MAOs, different signal transduction mechanisms lead to distinct phenotypes includ-
ing cell proliferation/hypertrophy, basilar artery contraction, or apoptosis/necrosis 
[17, 18, 27–30]. For example, transgenic mice with cardiac-specific MAOA overex-
pression displays oxidative stress-induced p53 activation, which leads to downregu-
lation of peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) 
(a crucial regulator of mitochondrial biogenesis/function) that in turn causes mito-
chondrial dysfunction, cardiomyocyte necrosis, and chronic ventricular dysfunction 
[18] (Fig. 6.2). Moreover, ROS generated via MAOA can also block autophagic flux 
of lysosomes by reducing the lysosomal acidification and by preventing the nuclear 
translocation of transcription factor-EB (TF-EB) (that acts as a master regulator of 
lysosomal biogenesis and autophagy) [29] (Fig. 6.2).

Fig. 6.1 Schematic representation of human MAOA and MAOB genes and their protein products. 
The human MAOA (panel A) and MAOB (panel B) genes consist of 15 exons seperated by 14 
introns (UCSC Genome Browser refGenes NM_000240 and NM_000898). The lengths of UTRs, 
exons, and introns are mentioned. FAD flavin adenine dinucleotide, UTR untranslated region, Ex 
exon, Int intron, bp base pair. MAOA protein consists of 527 amino acids and the amino acids 
403–407 serve as the FAD binding site. MAOB protein consists of 520 amino acids and the amino 
acids 394–398 serve as the FAD binding site
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6.3  Role of MAOs in Cardiac Hypertrophy and Heart Failure

In contrast to cardiac cell death via apoptosis or necrosis, MAOs can lead to cardiac 
hypertrophy via different signaling pathways. In biomechanically stretched cardio-
myocytes, MAOA has been reported to be upregulated (by ~four-fold) leading to 
cardiac hypertrophy and consequent heart failure [31]. These cellular changes are 
due to oxidative stress generated during oxidative deamination of serotonin and 
norepinephrine.

Serotonin (5-hydroxytyramine [5-HT]), a MAOA-specific substrate and a potent 
vasoactive amine, induces cardiomyocyte hypertrophy in a MAOA-dependent man-
ner via activation of extracellular-regulated kinases (ERK1/2 that are essential sig-
naling molecules for cell growth) [28] (Fig. 6.3). This cardiac hypertrophy is partly 
5-HT2B receptor dependent as reflected by cellular response following treatment 
with amine transporter inhibitors (imipramine) and MAO inhibitor (pargyline) [28]. 
In corroboration, MAOA contributes to oxidative stress in human heart valves fol-
lowing exposure to serotonin and dopamine [25]. In the circulatory system, the 
major source of 5-HT is platelets. Upon aggregation/activation, a large amount of 
5-HT is released from the platelets into the circulation causing either vasorelaxation 
via endothelial cells or vasoconstriction via vascular smooth muscle cells [24]. In 
addition, 5-HT-dependent MAOA-mediated ROS also leads to basilar artery con-
traction in rats [26].

Norepinephrine stimulates the MAOA enzyme activity in neonatal and adult 
cardiomyocytes in vitro that leads to ROS production and maladaptive hypertrophy 
[27]. These in vitro changes may involve the transcription factor NFAT (nuclear 

Fig. 6.2 Plausible mechanisms of MAOA-mediated apoptosis, necrosis, endothelial dysfunction, 
and ventricular dysfunction. MAOA-generated oxidative stress causes p53 activation and conse-
quently downregulates PGC1α. Oxidative stress also impairs lysosome’s function by blocking the 
nuclear translocation of TF-EB, which in turn leads to blockade of autophagic flux. p53- and 
TF-EB-mediated pathways lead to necrosis/chronic ventricular dysfunction. MAO-generated oxi-
dative stress can also promote apoptosis via ceramide accumulation and downregulation of S1P in 
cardiomyocytes. Blunt-headed arrow indicates “inhibition” of nuclear translocation of TF-EB. S1P 
sphingosine 1-phosphate, PGC1α peroxisome proliferator-activated receptor-coactivator 1α, P 
phosphorylation
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factors of activated T cells) that contributes to maladaptive hypertrophic signaling 
(Fig. 6.3). In line with this finding, pharmacological or genetic inhibition of MAOA 
prevents the occurrence of heart failure in mice subjected to pressure overload [27]. 
Corroboratively, transcriptomic and proteomic analyses reveal that MAOA is one of 
the most upregulated proteins in a well-defined rat model of chronic heart failure 
(which has volume overload due to surgically created aorto-caval fistula) [32]. 
Similarly, enzyme activity and expression of both MAOs are significantly elevated 
in left and right ventricles of end-stage ischemic failing hearts in human [33].

In addition, MAOB knockout mice show compensated cardiac hypertrophy 
following pressure overload induced by transverse aortic constriction. They are also 
found to be resistant to adverse left ventricular (LV) dilation and dysfunction upon 
pressure overload. Thus, MAOB activity also contributes to oxidative stress and 
structural and functional derangements in the heart [19]. Moreover, oxidative stress 
also diminishes the activity of aldehyde dehydrogenase which may, in turn, cause 
the accumulation of toxic aldehydes. These accumulated aldehydes may induce 
mitochondrial dysfunction contributing to myocardial damage [19].

Fig. 6.3 Signaling pathways underlying development of cardiomyocyte hypertrophy via MAOA- 
mediated catabolism of serotonin and norepinephrine. Serotonin and norepinephrine are released 
from the activated platelets and intracardiac nerves, respectively. Following interaction with their 
respective receptors and signaling, they are sequestered into the cytoplasm via respective trans-
porters present in the membrane. Serotonin and norepinephrine are degraded by MAOA-generating 
hydrogen peroxide/oxidative stress that, in turn, contributes to basilar artery contraction or cardio-
myocyte hypertrophy. ERK1/2, extracellular signal-regulated kinase 1/2
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6.4  Role of MAOs in Blood Pressure Homeostasis

Essential hypertension (EH), a common, multifactorial/polygenic health problem, is 
the chief risk factor for cardiovascular/renal diseases (viz., myocardial infarction, 
heart failure, stroke, and end-stage renal disease) [34]. Catecholamines have been 
implicated to play an important role in the pathogenesis of EH. For example, dopa-
mine modulates blood pressure via generation of ROS, interaction with the renin- 
angiotensin- aldosterone system (RAAS), regulation of epithelial sodium transport, 
and vascular smooth muscle contractility [35, 36] (Fig. 6.4). Therefore, MAOs are 
logical candidate genes for blood pressure regulation. Of note, there are three blood 
pressure QTLs (Bp65, Bp64, and Bp56) (source: Rat Genome Database) in the X 
chromosome of rat; both MAOA and MAOB are localized in the Bp65 and Bp64 
QTLs (with LOD scores of 5.8 and 5.2, respectively) in line with their plausible 
contributions to blood pressure modulation (Fig. 6.5).

Several studies reported higher level of catecholamines in hypertensive 
individuals and in rodent models of hypertension compared to their respective 
normotensive controls [37–39]. This difference may, at least partly, be attributed to 
altered expression or enzyme activity of catecholamine catabolizing enzymes (e.g., 
MAOs and catecholamine-o-methyltransferase). Notably, two independent 
microarray studies on adrenal gland and kidney tissues of mouse models of human 
essential hypertension (viz., BPH (blood pressure high) and BPL (blood pressure 
low) mice) showed that MAOA expression was elevated by ~1.3- and ~3.3-fold, 
respectively, in BPL mice [40, 41]. Based on these observations, we speculate that 

Fig. 6.4 Plausible molecular mechanisms of blood pressure regulation by catecholamines. 
Catecholamines alter the blood pressure homeostasis either through adrenergic/dopaminergic 
receptors or by increasing the release of renin from the adrenal cortex. Higher level of renin pro-
duces more angiotensin II which leads to vasoconstriction via angiotensin receptor 1, increasing 
endothelin-1, aldosterone secretion, and ROS generation (via enhancing the expression/activity of 
MAOs and NADPH oxidase)
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higher MAOA levels in BPL may contribute to lower catecholamine levels, which in 
turn could lead to low blood pressure phenotype. MAOs also inhibit nitric oxide 
synthase (NOS2) expression and consequently reduce the levels of the vasodilator 
nitric oxide (NO) (Fig. 6.4) [42]. Consistently, MAOA enzyme activity was ~1.4-
fold higher in the kidneys of normotensive Wistar-Kyoto (WKY) rat than the 
spontaneously hypertensive rat (SHR) [43]. Surprisingly, some studies reported 
higher MAOA enzyme activity in the heart, aorta, femoral arteries, isolated 
cardiomyocytes, and brain of SHR compared to WKY rats [20, 42, 43]. SHR rats 
have also been reported to have higher MAOA protein level in their basilar arteries 
compared to WKY rats [26]. Similarly, MAOB enzyme activity was reported to be 
~2.8-fold higher in isolated cardiomyocytes of SHR compared to WKY rats [21]. 
However, comparative microarray analysis showed that SHR adrenal gland tissues 
exhibited ~0.52-fold underexpression of MAOB than that of WKY [44]. The 
mechanism of such differential expression/activity pattern of MAOs across different 
tissues of SHR and WKY remains unclear. Of note, a recent study reported that 
in  vivo administration of lipopolysaccharide and angiotensin II augments the 
vascular expression of both the MAOs leading to increased generation of H2O2 and 
subsequent endothelial dysfunction [22] (Fig. 6.4).

Fig. 6.5 Graphical representation of the blood pressure QTLs on the X chromosome of rat. Blood 
pressure QTLs (Bp65, Bp64, and Bp56) on the rat X chromosome and their respective LOD scores 
obtained from Rat Genome Database. Two of these three BP QTLs harbor the MAOA and MAOB 
genes, suggesting their important roles in BP regulation. The genomic positions of MAOA and 
MAOB genes in the BP QTLs are indicated
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MAOB-specific substrates (phenylethylamine, tyramine, and tryptamine) are 
bioactive endogenous amines present in mammalian peripheral as well as central 
nervous system in low concentration (less than 1% of biogenic amines); therefore, 
they are called trace amines (TAs) [45]. These amines lack the catechol nucleus but 
are similar to biogenic amines in terms of structure and metabolism; these are 
described as “false neurotransmitters” or “sympathomimetic amines.” TAs are pres-
ent in food products like cheese, red wine, chocolates, etc. MAO inhibitor-treated 
patients consuming a TA-rich diet may develop complications such as tachycardia 
and hypertension. This hypertensive crisis is described as “cheese effect” irrespec-
tive of the nature of TA-rich food [46, 47]. The molecular mechanism of TA-induced 
hypertension is based on the fact that tyramine and phenylethylamine are structur-
ally similar to norepinephrine. Therefore, these molecules enter sympathetic neu-
rons by the same monoamine membrane transporter and displace norepinephrine. 
Consequently, norepinephrine is diffused from the cytoplasm into the synaptic cleft, 
leading to α-adrenoceptor-mediated vasoconstriction and the sudden rise in blood 
pressure [46, 48]. Thus, various studies support the role of MAOs in modulating 
blood pressure under pathophysiological conditions.

6.5  Mechanisms of Transcriptional Regulation of MAOs

6.5.1  Transcriptional Regulation of MAOA

Because transcription factors play crucial roles in gene regulation, a potential 
strategy for developing novel therapeutics against disease conditions can be attained 
by modulating the expression and/or activity of a specific transcription factor [49–
51]. Regulatory mechanisms for both MAOs have been studied extensively. For 
example, previous reports showed that Sp1 and SRY synergistically enhanced the 
human MAOA (hMAOA) promoter activity in a dose-dependent manner. Of note, 
SRY plays a very important role in blood pressure homeostasis [52]. Indeed, apart 
from MAOA, promoters of several other key cardiovascular-regulatory genes 
including tyrosine hydroxylase (the rate-limiting enzyme in the catecholamine 
biosynthesis pathway) [53], chromogranin B [54], and genes in RAAS pathway 
[55] are responsive to Sry and influence blood pressure.

Sp/Klf family, Sp3, Sp4, and KLF11 are the other transcription factors which 
have also been reported to regulate hMAOA promoter. KLF11 and Sp4 are known to 
trans-activate the hMAOA gene expression; on the other hand, Sp3 and a novel tran-
scription factor known as R1 (RAM2/CDCA7L/JPO2) repress hMAOA gene expres-
sion as they compete for the same binding site with Sp1 [9, 56]. KLF transcription 
factors, in general, interact with histone acetyltransferases (HATs), including p300, 
for gene regulation. Consistently, co-transfection of p300 and KLF11 expression 
plasmids with hMAOA promoter luciferase construct showed that activation of 
hMAOA by KLF11 was further augmented in the presence of p300 [56]. The mouse 
MAOA (mMAOA) promoter is also well-characterized; mMAOA gene expression is 
regulated by GATA2, Sp1, and TBP in a coordinated manner [8]. Of note, not only 
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mMAOA, these transcription factors also enhance the MAOA protein levels in 
humans [8]. It is interesting to note that GATA2 may also hamper the inflammatory 
state in atherosclerosis and obesity [57], indicating a possible role of MAOA in 
these disease conditions. In addition, circadian-clock components (via E-box ele-
ments) and NAD-dependent deacetylase sirtuin 1 (SIRT1) have also been reported 
to regulate mMAOA gene expression [11, 12]. SIRT1-/GATA2-mediated MAOA 
gene regulation is critical because single-nucleotide polymorphisms (SNPs) present 
in both of these upstream regulators of MAOA are associated with cardiovascular/
cardiometabolic disorders or their risk traits [58–61].

Dopamine, a common substrate for both the MAOs, regulates the expression and 
enzymatic activity of MAOA via D-2-like receptors in mesangial renal cells although 
such regulation has not been observed in proximal tubule renal cells [62]. 
Dexamethasone, a synthetic glucocorticoid hormone, has also been shown to aug-
ment MAOA gene expression in human skeletal myocytes via glucocorticoid recep-
tor and Sp1. These results provide molecular mechanism for the pathogenesis of 
glucocorticoid-induced myopathy [63]. In addition, forskolin-mediated cAMP- 
PKA (protein kinase A) pathway and TNF-α also increase MAOA gene expression 
via Sp1 [8]. This observation has therapeutic implications since forskolin (a diter-
pene isolated from root of Coleus forskohlii) was reported to have beneficial effects 
in cardiovascular diseases including congestive heart failure and hypertension [64–
67]. It may also be noted that a recent study established the role of GATA2, Sp1, and 
TBP in regulating MAOA gene expression under ischemia-like pathophysiological 
conditions [8].

6.5.2  Transcriptional Regulation of MAOB

Several studies reported the characterization of the human MAOB (hMAOB) 
promoter. Unlike the hMAOA promoter, the core hMAOB promoter contains a TATA 
box; it also harbors two Sp1 binding domains, which are separated by a CACCC 
element [68]. Egr1 also regulates hMAOB expression by binding to the distal Sp1 
domain [69, 70]. Another transcription factor called Sp4 trans-activates hMAOB 
promoter activity via direct interaction with the Sp1 sites; this activation has been 
reported to be repressed by Sp3 and Krüppel-like zinc-finger transcription factor 
KLF5 (also called BTEB2) as Sp3/KLF5 compete for the Sp1-binding sites [9, 56]. 
Site-directed mutagenesis revealed that CACCC sequence (present between the two 
Sp1-binding sites) is a repressor element. It is important to note that the transform-
ing growth factor-β-inducible early gene TIEG2 (also called KLF11) and Sp3 
exhibit dual functions for the regulation of hMAOB. TIEG2 acts as a repressor at the 
CACCC element whereas it acts as an activator at the distal Sp1 site of hMAOB 
promoter. However, due to its higher affinity for the Sp1 site than the CACCC ele-
ment, the overall effect of TIEG2 is activation of the hMAOB gene expression [68]. 
Egr1 and c-Jun can also regulate hMAOB gene expression by interacting with the 
overlapping Sp1/Egr-1/Sp1 sites [9]. Interestingly, phorbol 12-myristate 13-acetate 
enhances hMAOB gene expression by increasing the Egr1/c-Jun gene expression via 
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activation of PKC (protein kinase C) and MAPK (mitogen-activated protein kinase) 
signaling pathways [9]. Our recent studies suggest that MAOB gene expression may 
also be regulated by cyclic AMP/PKA/CREB (cAMP response element binding 
protein) pathway (unpublished observation).

The roles of a number of hormones, such as androgen, glucocorticoid, estrogen, 
and RA, have been demonstrated in hMAOB gene regulation [9]. Of note, RA 
enhances MAOB expression through retinoic acid receptor α (RARα) and retinoid X 
receptor α (RXRα) transcription factors. RARα physically interacts with Sp1 to 
form a transcriptional regulatory complex and recruited to Sp1-binding sites at 
hMAOB promoter [9]. Of note, RAR/RXR have a crucial role in cardiovascular 
pathophysiology as evident from the fact that knockout of RAR/RXR in mice leads 
to the development of heart defects such as defects in the conduction system, heart 
malformations, and heart failure. On the other hand, elevated level of RAR or RXR 
leads to dilated cardiomyopathy and congestive heart failure [71, 72].

Similar to MAOA gene regulation, dexamethasone has been reported to stimulate 
hMAOB promoter activity via glucocorticoid response element (GRE) and Sp1- 
binding sites in  vitro and in  vivo. The molecular mechanism of this activation 
involves activation of glucocorticoid receptor by dexamethasone, which then trans-
locates into the nucleus and binds to GRE [9, 56, 73]. Interestingly, glucocorticoids 
and their receptors have direct effects on the heart, blood vessels, and cardiometa-
bolic risk factors which are discussed in detail elsewhere [74, 75]. Dopamine may 
also activate MAOB expression similar to the case of MAOA; the dopamine- 
mediated upregulation of MAOB seems to be modulated by cyclic AMP response 
element (CRE) in the proximal MAOB promoter (unpublished observation).

6.5.3  Potential Therapeutic Application of the Transcriptional 
Regulators of MAOs

As detailed above, some of the transcription factors (viz., Sp1, KLF11, possibly 
Egr1, and CREB) are common regulators of MAOA and MAOB.  Regulation of 
these molecules as a new therapeutic strategy for management of cardiovascular 
diseases may be worth studying. Of note, mithramycin A, an antibiotic produced by 
Streptomyces argillaceus, is used to treat various diseases including testicular carci-
noma and chronic myeloid leukemia by virtue of its ability to diminish binding of 
Sp1 and Egr1 to regulatory promoter elements (and thereby modulating gene 
expression) [76, 77]. Mithramycin A has also been reported to diminish the binding 
of Sp1 and Egr1 to the MAOB promoter, thereby offering neuroprotection in a 
mouse model of Parkinson’s disease [78, 79]. Moreover, in endothelial cells, mith-
ramycin A prevented the TNF-α-mediated fractalkine (a chemokine) expression 
suggesting that it could function as an anti-inflammatory agent [80]. In view of 
these reports, it will be interesting to evaluate therapeutic potential of mithramycin 
A and other agents that may regulate the expression of MAOs via interactions with 
the key transcription factors in the context of cardiovascular diseases.
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6.6  Posttranscriptional Regulation of MAOs: Potential Role 
for Several microRNAs

MicroRNAs (miRNAs) are small (~22 nucleotides), noncoding RNAs which have 
emerged as important posttranscriptional regulators of gene expression either by 
inhibiting translation or by degrading mRNA [81]. They are involved in regulating 
various physiological processes including development, metabolism, and maintain-
ing homeostasis [82, 83]. Dysregulated expression of miRNAs is associated with 
various complications including cardiovascular diseases. In addition to this, circu-
lating miRNAs serve as excellent noninvasive biomarkers for diagnosis and progno-
sis of diseases [84]. Some miRNAs are also being evaluated for their therapeutic 
applications in various disease states. For example, miravirsen (a miR-122 inhibi-
tor) is under clinical trials for the treatment of chronic hepatitis C infection [85]. 
Similarly, a few miRNAs are at various preclinical/clinical stages for the plausible 
treatment of various pathological conditions [86].

MiRNA-142 is reported to diminish MAOA expression in neuronal cells by 
downregulating SIRT1 [87]. Computational analysis of the MAOA and MAOB 
3’-UTRs using ten miRNA prediction tools (DIANA-microT [88], miRanda [89], 
miRDB [90], miRWalk [91], RNAhybrid [92], PICTAR4, PICTAR5 [93], PITA 
[94], RNA22 [95], and Targetscan [93]) revealed putative binding sites for 641 and 
297 miRNAs, respectively. MiRNAs predicted by at least three tools and based on 
the thermodynamic scores obtained using PITA (ΔΔG < -10) and RNAhybrid (ΔG 
< -20 kcal/mole) are presented in Table  6.1. Interestingly, miR-608 and miR- 
125a- 3p harbor putative binding sites in the 3’-UTRs of both the MAOs represent-
ing these miRNAs as candidates for further studies. However, experimental 
validations of interactions between miR-608/miR-125a-3p and MAOA/MAOB are 
required for confirmation of their roles in regulating MAOA/MAOB expression.

An early increase in plasma levels of miRNA-133a and miR-133b in myocardial 
infarction (MI) and coronary artery disease is well-documented indicating that these 
miRNAs could serve as novel diagnostic markers for these diseases [96, 97]. 
Interestingly, in silico analysis using PITA and RNAhybrid revealed putative bind-
ing sites for miR-133a and miR-133b in the 3’-UTR of both the MAOs. Both MAOA 
and MAOB are also predicted by miRwalk (version 3.0) as putative targets of miR- 
1224. Besides this, a recent study reported the increase in miR-1224 levels in human 
hepatocytes and serum under acute liver failure. The levels of miR-1224 were also 
augmented in mice subjected to ischemia/reperfusion compared to control [98]. 
Furthermore, in mouse, lipopolysaccharide (LPS)-induced miR-1224 was shown to 
downregulate the expression of Sp1 [99]; this finding suggests that miR-1224 may 
also indirectly regulate MAOs, since Sp1 governs the expression of both the MAOs. 
miR-1224 may also regulate MAOs via modulation of the expression of CREB, a 
key regulator of catecholamine biosynthetic genes, since CREB is a target of miR- 
1224 [100] and forskolin/cAMP augments MAOA [8]/MAOB expression/activity 
[101]. Our in vitro experiments also provided evidence for regulation of MAOB by 
miR-1224 (unpublished observation). Of note, the expression of MAOs is aug-
mented by LPS and angiotensin II (AngII) in murine aortic rings, which is mediated 
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by phosphatidylinositol kinase and nuclear factor-κB [22]. Taken together, this 
increase in miR-1224 could be a compensatory mechanism to block MAOA/MAOB 
gene expression by binding to their 3′-UTRs and by targeting both Sp1 and CREB 
(Fig.  6.6). This is further substantiated by the evidence that MAO inhibitors are 
protective against oxidative stress [102]. All these observations indicate a complex 
interplay between miR-1224, Sp1 and CREB in regulating MAOA/MAOB expres-
sion which warrants further investigation.

Table 6.1 Putative microRNAs that may bind to the 3′-UTR of human MAOA and MAOBa

Gene miRNA
Predicted by 
number of tools PITA (ΔΔG) RNAhybrid (ΔG), kcal/mole

MAOA hsa-miR-608 7 −16.35 −33.3
MAOA hsa-miR-449b 7 −14.23 −29.1
MAOA hsa-miR-449a 7 −12.93 −28.8
MAOA hsa-miR- 

125a-3p
4 −11.81 −28.7

MAOA hsa-miR-412 7 −10.75 −22.8
MAOA hsa-miR-769-5p 4 −10.45 −34.3
MAOA hsa-miR-1262 4 −10.15 −24.9
MAOA hsa-miR-34c-5p 7 −10.13 −25.6
MAOB hsa-miR- 

1207-5p
3 −20.95 −36.9

MAOB hsa-miR-485-5p 5 −15.11 −24.0
MAOB hsa-miR-296-3p 4 −13.14 −30.2
MAOB hsa-miR-608 4 −12.64 −34.3
MAOB hsa-miR- 

125a-3p
3 −12.35 −29.7

MAOB hsa-miR-1294 4 −11.38 −24.1
MAOB hsa-miR-486-3p 7 −10.96 −27.6
MAOB hsa-miR-641 6 −10.86 −27.3
MAOB hsa-miR-630 9 −10.74 −27.4
MAOB hsa-miR-654-5p 4 −10.14 −27.1
MAOB hsa-miR-184 4 −10.02 −24.4

aTen prediction tools (viz., DIANA-microT, miRanda, miRDB, miRWalk, RNAhybrid, PICTAR4, 
PICTAR5, PITA, RNA22, and Targetscan miRNA) were used to predict the putative miRNAs that 
may bind to the 3′-UTRs of human MAOA and MAOB. The number of programs predicting bind-
ing sites for a miRNA is shown. Some of the predicted miRNAs are common to both MAOA and 
MAOB (viz., miR-608 and miR-125a-3p); those are shown in bold. This table includes only those 
miRNAs that were predicted to have ΔΔG values of less than −10 (as per PITA program; https://
genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html) and ΔG values of less than −20 kcal/
mole (as per the RNAhybrid program; https://bibiserv2.cebitec.uni-bielefeld.de/rnahybrid) since 
these values (i.e., ΔΔG < −10 and ΔG < −20 kcal/mole) indicate higher accessibility and affinity 
of miRNA/mRNA interaction
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6.7  Cardiovascular Implications of Systemic Ablation 
of MAOA/MAOB in Mouse

Generation of MAOA or MAOB knockout mice was carried out by inserting 
interferon β transgene or neomycin resistance gene into exon 2 and 6 of MAOA and 
MAOB, respectively [103]. As expected, MAOA knockout mice displayed higher 
levels of its substrates (catecholamines and serotonin) in the brain along with vari-
ous neurochemical and physiological changes in comparison with the wild-type 
animals [103]. Similarly, adult MAOB knockout mice showed ~8.0-fold higher level 
of phenylethylamine in the brain while no statistically significant increase in sero-
tonin, norepinephrine, and dopamine, due to the substrate specificity of MAOB. The 
most striking cardiovascular characteristic of MAOA/MAOB knockout mice was 
their hypotensive nature and reduced heart rate in the resting, restrained state [103]. 
This finding is in corroboration with the resting hypotension in Norrie disease 
patients who have deletions in MAOA gene [104, 105]. But this is in contrast to the 
fact that higher level of catecholamine is mostly associated with hypertension. This 
phenotype can be explained by the fact that high level of catecholamine may be a 
cause or effect, which can lead to higher/lower blood pressure. Most probably, these 

Fig. 6.6 Possible interplay of miR-1224, Sp1, and CREB in governing MAO gene regulation. The 
transcription factors Sp1 and CREB regulate MAOA/MAOB gene expression, which in turn may 
contribute to oxidative stress during ischemia/reperfusion (I/R) injury. The levels of miR-1224 are 
augmented under I/R condition which could be a compensatory mechanism to block Sp1, CREB, 
and MAOA/MAOB gene expressions. Upward arrows indicate “increase” and blunt-headed arrows 
indicate “inhibition” of function of the corresponding molecules. Sp1 specificity protein 1, CREB 
cAMP response element binding protein, miR-1224 microRNA-1224
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knockout mice developed some compensatory mechanism which leads to lowered 
blood pressure than that of wild-type mice. Expectedly, MAOA/MAOB knockout 
mice were found to have increased baroreceptor activity that serves to regulate 
blood pressure and leads to hypotensive state [106].

6.8  Human Genetic Studies Link MAOs and Their Upstream 
Regulators with Cardiovascular and Cardiometabolic 
Risk Factors

Genome-wide linkage analysis in human hypertensive population revealed several 
blood pressure quantitative trait loci (QTLs); among them, the blood pressure QTL 
on the X chromosome (Xp11.4-Xq11) harbors several genes of cardiovascular rel-
evance including MAOA and MAOB [107]. This observation is in line with the iden-
tification of blood pressure QTLs that harbor these genes in the X chromosome in 
rats (Fig.  6.5). Some of the well-characterized polymorphisms (VNTR (variable 
number of tandem repeats) and EcoRV polymorphism) present in MAOA gene are 
also associated with cardiovascular or cardiometabolic risk factors including body 
mass index, lipid levels, and obesity [108–111]. In brief, the most widely studied 
polymorphism in hMAOA gene is a VNTR (30-bp repeat sequence present in 3, 3.5, 
4, or 5 copies) present at ~1.2 kb upstream of the coding region in hMAOA. Several 
studies in the last few decades reported the functional role of this VNTR in the con-
text of neuronal/behavioral traits. According to those studies, alleles with 3.5 or 4 
copies of the repeat sequence displayed substantially higher (two- to tenfold) tran-
scriptional activity when compared to alleles with 3 or 5 copies of the VNTR [112–
114]. Another polymorphism present in MAOA gene, i.e., EcoRV polymorphism or 
T/C polymorphism (rs1137070) located within exon 14, has been associated with 
altered MAOA enzyme activity [115]. Briefly, MAOA gene with allele T harbors an 
EcoRV site and higher MAOA activity than that of MAOA gene with allele C and no 
EcoRV site. Interestingly, this T/C polymorphism causes a nucleotide substitution 
at the third position of a codon and does not affect the amino acid sequence (Asp to 
Asp). Perhaps, the polymorphism is in linkage disequilibrium with another genetic 
variation to regulate MAOA enzyme activity [115], or the rate of translation of the 
mRNA transcript could be altered due to this synonymous T/C polymorphism [116]. 
Moreover, this SNP was also associated with gout and hyperuricemia (another risk 
factor for cardiovascular disorders) [52, 117].

Several studies have associated SNPs in the upstream regions of the crucial 
transcriptional regulators of MAOA including SIRT1 and GATA2 with weight/body 
mass index/systolic blood pressure/diastolic blood pressure/hypertension/hypergly-
cemia in different populations across the world [58–61, 118, 119]. Sirtuin proteins 
(SIRT1–SIRT7) are nicotinamide adenine dinucleotide (NAD)-dependent deacety-
lases. The most conserved member of the sirtuin family, SIRT1, regulates the 
PGC1α activity via deacetylation, thereby protecting the cells against oxidative 
stress. In addition, SIRT1 deacetylates many other crucial transcription factors and 
cofactors including p53 [120], forkhead box class O (FOXO) proteins [121], and 
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nuclear factor-κB [122]. Of note, MAOA upregulation leads to necrosis or chronic 
ventricular dysfunction via p53-PGC1α-mediated pathway as shown in Fig. 6.2. It 
is evident from human genetic studies that the SIRT1 SNP rs2273773 (C/T in exon 
5, a silent mutation) is associated with seasonal variation in weight and diastolic 
blood pressure/hypertension in Finnish nationwide population [58]. Another study 
has also probed the association of SIRT1 SNPs (rs7895833 (A/G in the promoter 
region), rs7069102 (C/G in intron 4), and rs2273773 (C/T in the coding region)) 
with cardiovascular/cardiometabolic risk factors. For example, the mutant alleles 
for rs7069102 and rs2273773 were detected at significantly higher frequencies in 
cardiovascular disease patients compared to control subjects, increasing the disease 
risk by 2.4- and 1.9-fold, respectively, in mutant allele carriers than in wild-type 
allele carriers. In contrast, the allele frequency for rs7895833 did not differ between 
both groups [61]. Another study in a Japanese population showed the association of 
rs7895833, rs7069102, and rs2273773 with different cardiovascular/cardiometa-
bolic phenotypes including fasting glucose/hyperglycemia/body fat ratio/systolic 
blood pressure/diastolic blood pressure/hypertension [60]. Thus, SIRT1 emerged as 
a potential therapeutic target for metabolic syndrome [123–125]. In addition to 
SIRT1, human genetic studies have identified GATA2 as a novel susceptibility gene 
for coronary artery disease by showing the association of GATA2 SNPs with cardio-
vascular/cardiometabolic risk traits [118, 119].

6.9  Conclusions and Perspectives

A growing body of research suggests that dysregulation of MAOs plays an important 
role in several cardiovascular pathophysiological conditions (including essential 
hypertension, LV remodeling, heart failure, cardiomyocyte hypertrophy, and I/R 
injury) possibly due to ROS generated by MAOs. Therefore, regulation of MAOs 
(perhaps, by tissue-specific regulation of some transcription factors) may emerge as 
a new therapeutic strategy for treatment of cardiovascular pathologies. Although, so 
far, conclusive studies on the applicability of MAO inhibitors with heart disease 
patients are lacking, general MAO inhibitors were previously used as therapeutics 
for cardiovascular diseases and have been reported to reduce blood pressure and 
intensity/frequency of anginal pain [126]. However, the main concern for the use of 
these irreversible MAO inhibitors is a phenomenon called “cheese effect” which, 
subsequently, causes hypertensive crisis. The efficiency of the next-generation 
reversible MAO inhibitors that are devoid of these harmful effects remains to be 
evaluated in cardiovascular pathologies. It is also important to note that although 
MAOB is highly abundant in the human myocardium, most of the studies focused 
on MAOA; therefore, future research should be designed to understand the contri-
bution of MAOB to these complications. Systematic studies identifying posttran-
scriptional regulators (certain microRNAs or their inhibitors) of MAOs may also 
lead to identification of novel cardiovascular therapeutics. Based on human genetic 
studies, computational predictions, and regulatory mechanisms, certain common 
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molecular factors may also emerge as potential therapeutic agents for dysregulated 
MAO expression/activity.
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Abstract
The “Oxygen Paradox” proposes that it is tough for aerobic organisms to live 
without oxygen, but it is difficult to live with oxygen as well. Assigned a job of 
incessant pumping, the heart, being an obligate aerobic organ, epitomizes the 
paradoxical effects of oxygen. Much of them are attributed to the reactive oxy-
gen species (ROS) that mold the embryonic development and normal functioning 
of the heart under homeostatic conditions on one hand and the progression of 
cardiovascular diseases on the other. The ROS generation within the heart is 
equated at controlled physiological levels to the scavenger endogenous antioxi-
dants that are employed to prevent their accumulation. A shift in the balance 
causes toxic levels of ROS to accumulate, self-accentuate, and inflict damage to 
cellular components, leading to myocardial oxidative injury. In addition, a num-
ber of pathophysiological signalling pathways are triggered by amassed ROS 
which culminate into enhanced myocardial apoptosis, fibrosis, inflammation, 
and contractile dysfunction—hallmarks of a failing heart. Adverse left ventricu-
lar remodeling as in pathological cardiac hypertrophy and myocardial infarction 
is intricately associated with oxidative stress, which prompts researchers to focus 
their attention on the redox biology of the heart in health and disease. This has 
been yielding far-reaching clinical implications in the field of antioxidant ther-
apy and redox biomarker discovery. As cardiac disorders continue to be the high-
est contributor to the Global Burden of Disease, a molecular detailing of where, 
what, when, and how ROS is conducive to the remodeling of the cellular milieu 
in the heart would provide a holistic appreciation of cardiac disease biology.
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7.1  Introduction

Reactive oxygen species (ROS) describe a group of reactive molecules and free 
radicals derived from molecular oxygen, viz., superoxide (O2•−), hydrogen peroxide 
(H2O2), hydroxyl radical (OH•), hypochloride anion (OCl−), hydroperoxide 
(ROOH), hydroperoxyl radical (HOO•), peroxyl radical (ROO•), and singlet oxy-
gen (1O2) [1]. In living organisms, ROS are generated from the plasma membrane, 
the cytosol, the peroxisomes, and on membranes of mitochondria and the endoplas-
mic reticulum [2]. Such molecules have been implicated to be associated with a 
wide range of disease forms such as chronic obstructive pulmonary diseases, inflam-
matory bowel disease, neurodegenerative disorders, cardiovascular diseases, and 
aging. Research in the last few decades have established a link between free radicals 
and cardiac tissue injury from biochemical, physiological, and pharmacological 
data. The first published article in PubMed on the cellular role of ROS dated as late 
as 1945. “Reactive oxygen species” as keyword in PubMed fetches more than 
2,20,661 English-written research articles, almost 23,262 of which are review arti-
cles, while use of “reactive oxygen species and cardiac” as keywords results in 
around 14,869 articles. Remarkably, a “free radical theory” proposed by Denham 
Harman in 1956 suggested endogenous oxygen radicals generated within cells over 
time result in cumulative cellular damage targeting DNA, protein, lipids, and other 
components of the cell [3]. Till date, redox biological research has successfully 
established the role of ROS as second messengers in cellular signalling and as medi-
ators of pathophysiology within the diseased tissue. Accrued evidence suggests that 
oxidative damage directly or indirectly alters the cellular and molecular milieu of 
the diseased myocardium.

According to the World Health Organization (WHO), cardiovascular diseases 
have been designated as the major cause of mortality worldwide. Pathological stress 
involving the cardiovascular tissues is classified according to the anatomical struc-
tures affected (i.e., myocardium, valves, coronary arteries, aortic root, endocardium, 
pericardium), impaired physiological function (i.e., heart failure, pulmonary hyper-
tension), and thirdly, the abnormality found in cardiac physiological parameters 
(such as systolic dysfunction, pulmonary valve stenosis, concentric/eccentric myo-
cardial hypertrophy, arrhythmia, congenital anomalies). Herein, we focus upon car-
diac diseases that are associated with an enlarged, thick, or rigid myocardium or 
with the dire loss of cardiomyocytes due to either chronic hemodynamic load or 
acute coronary insufficiency, both being manifested by reduced functional effi-
ciency of the heart. Chronic heart failure is characterized by structural or functional 
cardiac abnormalities that lead to reduced cardiac output [4, 5]. Acute cardiac injury 
during myocardial infarction (MI) leads to loss of myocyte and increased myocar-
dial strain post-MI, causing eccentric hypertrophy of the remaining myocytes 
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through neurohormonal activation leading to fibrosis and progressive left ventricu-
lar dilatation, altogether altering the shape of the left ventricle from elliptical to 
spherical, thus bringing about left ventricular remodeling [6, 7].

Reportedly, ROS directly induce tissue damage along with the activation and 
expression of antioxidant enzymes-proteins that minimize the ROS-mediated per-
turbations. ROS are deleterious to organisms at high concentrations; when ROS 
levels cannot be mitigated by the antioxidant defense within a cell, a state of “oxida-
tive stress” is triggered. Oxidative stress is a phenomenon which is related to the 
development of many pathological conditions [8]. Despite their destructive activity, 
ROS are a well-described species of second messengers in a variety of biological 
and physiological processes. Early in evolution, as it seems from their unique pres-
ence throughout the animal kingdom, nature selected ROS as a signal transduction 
mediator to allow for adaptation to changes in the microenvironment of tissues of 
aerobic organisms due to various endogenous signals.

The enhanced production of ROS during pathological stress can lead to lipid 
peroxidation, protein oxidation, nucleic acid damage, enzyme inhibition, activation 
of programmed cell death (PCD) pathway, and ultimately death of the cells. Whether 
ROS will act as damaging or signalling molecule depends on the delicate equilib-
rium between ROS production and scavenging. Reportedly, studies from our labora-
tory and others, over the last few decades, have shown that the enhanced production 
of ROS during pathological cardiac hypertrophy and MI contribute to a collabora-
tion between mitochondria and endoplasmic reticulum, leading to disease progres-
sion toward heart failure [7, 9]. Moreover, over a decade, our laboratory has focused 
to decipher the various molecular regulators of chronic and acute forms of cardio-
vascular diseases and the therapeutic targets and strategies to reduce the myocardial 
oxidative stress. Herein, the sources and the role of ROS-mediated mechanisms 
would be elucidated within cardiac pathophysiological tissues to benefit clinicians 
and research scientists alike toward future discovery of pharmacological interven-
tions in management of the morbid diseases.

7.2  Chemical Nature of ROS

Oxidative stress, as redox chemistry defines, is an “increase in the reduction poten-
tial or a large decrease in the reducing capacity of the cellular redox couples” [1]. 
Ground state molecular oxygen is itself a radical and is often known as a diradical; 
according to Pauli’s exclusion principle, for two electrons to occupy the same 
atomic orbital, they must possess opposite spin. Electrons added to the oxygen 
diradical must be transferred one at a time when it gets reduced, with highly reactive 
oxygen-derived free radicals as intermediates in the reaction [10].

ROS can be defined as oxygen-containing chemically reactive molecules. Some 
of them are considered as free radicals since they contain unpaired electrons (i.e., 
radicals) and are capable of independent existence (hence called free) like superox-
ide anion (O2•−), hydroxyl radical (OH•), and lipid radicals. The unpaired electrons 
from these ROS in an attempt to complete their orbitals and gain stability steal 
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electrons from other molecules and give rise to other stable ROS like hydrogen 
peroxide (H2O2), peroxynitrite (ONOO−), and hypochlorous acid (HOCl) which are 
not considered to be free radicals yet result in an oxidizing effect within the cell [8].

Superoxide anion (O2•−) from whichever source can either spontaneously dis-
mutate (be reduced) to H2O2 or be converted to H2O2 catalyzed by superoxide dis-
mutase (SOD). SOD decreases the half-life of O2•− from 10−9–10−11 s to 10−15 s. Two 
O2•− radicals get converted to oxygen and H2O2 in the SOD-catalyzed reaction:

 2 22 2 2 2O H H O O•- ++ ® +  

H2O2 can be reduced to water by the action of peroxidase and catalase. 
Alternatively, the iron-catalyzed Haber-Weiss reaction produces hydroxyl radicals 
(OH•) from H2O2 and O2- anion.

 Fe O Fe O3
2

2
2

+ - ++ ® +•  

The second step in the reaction is known as the Fenton reaction which makes use 
of reduced transition metals. The optimal pH for this reaction is 3.0–6.0.

 Fe H O Fe OH OH2
2 2

3+ + -+ ® + +•  

 Fe H O Fe OOH H3
2 2

2+ + ++ ® + +•  

The destructive OH• radical can attack unsaturated fatty acid side chains, gener-
ating a carbon radical in the process. This lipid radical undergoes subsequent rear-
rangement to form a conjugated diene which gives rise to free radicals in the 
presence of oxygen. The latter initiates a chain reaction by attacking additional fatty 
acid side chains, thereby producing lipid peroxide.

 Lipid H OH H O Lipid— • •+ ® +2
 

 Lipid O LipidOO• •+ ®2
 

 Lipid H LipidOO Lipid OOH Lipid— • — •+ ® +  

On the other hand, O2•− can also react with nitric oxide (NO) forming another 
relatively reactive molecule, peroxynitrite:

 NO O ONOO+ ® --
2 •  

ONOO− is further oxidized or reacts with a hydrogen radical (H•), generating 
the stable HOONO which rapidly dismutates into OH• and free nitrogen species 
(NO2•). With a very short half-life of about 10−9s, the highly reactive OH• radical 
cannot diffuse to large distances and thus causes damage to cellular components 
very close to its origin. But the less reactive O2•− radical can pass from the mito-
chondrion to the cytosol through anion channels like the voltage-dependent anion 
channel (VDAC). H2O2 on the other hand diffuses freely into the cytosol from the 
mitochondrial sites of its generation [11]. Thus, the term oxidative stress encom-
passes the overall reactions between the reactive oxygen and reactive nitrogen spe-
cies that together produce the deleterious effects.
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7.3  History of ROS Research in Cardiac Disease: 
A Twentieth-Century Perspective

The prevalent therapy for cardiovascular diseases was primarily limited to surgical 
interventions such as bypass surgeries and percutaneous balloon angioplasties 
which had been developing since the late 1960s. Incidentally, it was almost during 
this time that the earliest reports of ROS production in the heart revealed physiolog-
ical amounts of peroxide generation within suspensions of electron transport parti-
cles within beef heart [12]. Pigeon heart mitochondrial suspensions also showed 
peroxide generation particularly with succinate, without detectable levels of gluta-
thione peroxidase and catalase enzymes [13], whereas catalase was found to be 
present in the rat heart mitochondrial matrix [14].

Oxygen toxicity in the heart was a concept introduced in the late 1970s when 
initial evidences showed the efficacy of various molecules like alpha-tocopherol 
and sodium selenite in mitigating myocardial damage due to reperfusion post- 
ischemia [15, 16]. An exciting solution to the intriguing problem of hypoxic- 
reoxygenation damage to the heart was provided by studies showing hypoxia results 
in a proportional decline of SOD and glutathione peroxidase activity with time in 
isolated Langendorff perfused rat hearts which continues upon reoxygenation [17–
20]. Another interesting study reported that cardiac myocytes from rabbit interven-
tricular septal preparations were more susceptible to damage from hydroxyl radical 
than from superoxide, as in the former case, mitochondrial swelling and basement 
membrane blebbing were evident [21]. Interestingly, isolated mitochondria from 
hypoxic heart tissue showed lesser ROS generation compared to normoxic ones, 
which was increased only upon increasing the duration and concentration of cal-
cium addition [22].

The perfect time for administration of free radical scavengers to obtain maxi-
mum myocardial protection was an intriguing question that had to draw attention. 
Although animals that received them prior to the ischemic episode showed enhanced 
myocardial function post-reperfusion [23], it was subsequently demonstrated that 
scavenging free radicals at the time of reflow decreases reperfusion injury [24, 25]. 
But the administration of SOD and catalase post-reperfusion did not alter the extent 
of the infarct size [26]. Finally, considering all these accounts, experimental proof 
acknowledged that ischemia reduced the intracellular glutathione pool and the ini-
tiation of reperfusion caused a burst of ROS production that led to cellular injury by 
dampening the residual antioxidant activity [27].

With the advent of biophysical tools, the application of electron paramagnetic 
resonance (EPR) spectroscopy to analyze free radical production following reperfu-
sion of the ischemic rabbit heart was evaluated [28]. This study, along with others 
[29], reports the generation of ROS during ischemia too. However, direct evidence 
to this phenomenon surfaced as late as in 1997 when an investigation showed that 
the ROS which are generated prior to reperfusion during ischemia, cause little cell 
death until reperfusion and is related to the residual oxygen during ischemia, and 
this is a major contributor to reperfusion injury [30].
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In vitro evidence showed that treatment with xanthine oxidase at pH 7.0 reduced 
sarcoplasmic reticular calcium uptake and ATPase activity that was in part reverted 
by glucose. As such, this was a slice of the novel concept that the glucose-insulin- 
potassium combination acts as a free radical scavenging system during global hypo-
thermic ischemia-reperfusion [31]. Similar models reported an increase in ROS 
production and lipid peroxidation products and a decrease in SOD activity [32]. 
Subsequently, cultured murine myocardial cells exhibited loss of sarcolemmal 
integrity, indicative of sarcolemmal dysfunction due to oxygen-derived free radi-
cals, the species of which were found to be dependent upon pH and concentration 
of iron salts. Interestingly, a combination of SOD, catalase, dimethyl sulfoxide and 
an alkaline pH proved to be beneficial to the membrane integrity [33]. Xanthine 
oxidase blockade by allopurinol also provided beneficial effects to the heart similar 
to SOD [34].

The first set of reports of the clinical role of ROS in pathological cardiac hyper-
trophy included the usage of butylated hydroxyanisole, vitamin E and catalase as 
antioxidants to mitigate the hypertrophic effects of tumor necrosis factor alpha 
(TNF-α) and angiotensin II (AngII) [35]. Graded hypoxia was reported to cause 
parallel increase in ROS and contractile dysfunction in cardiomyocytes which could 
be reverted by normoxic exposure; however, physiological levels of ROS signalling 
as second messengers were traced to the same mitochondrial origin. The decrease in 
Vmax of mitochondrial cytochrome oxidase led to enhanced mitochondrial superox-
ide production [36]. Free radicals are also believed to take part in the peroxidative 
attack of the unsaturated fatty acid of the mitochondrial phospholipid cardiolipin, 
associated with a decline in mitochondrial cytochrome c oxidase activity during 
ischemia-followed reperfusion insult [37]. Besides this, mechanical strain-induced 
tenascin-C in cardiac myocytes could also be attenuated using antioxidants, sug-
gesting the role of ROS in left ventricular remodeling [38]. This even extends to the 
effects of other pro-hypertrophic agents like ouabain which inhibit cardiac myocyte 
Na+/K+-ATPase that have also been shown to be reversed upon ROS inhibition [39].

The perpetual search of newer roles of cardiac ROS is still ongoing and has defi-
nitely garnered popular medical interest in antioxidant therapy in various experi-
mental models of cardiac pathologies which range from naturally occurring 
phytochemicals like resveratrol [40] and fisetin [41] to intracellular signalling inter-
mediaries like the glutathionylated SET and MYND domain containing 2 (SMYD2) 
protein [42], peroxisome proliferator activated receptor alpha (PPARα) [43], cyto-
chrome oxidase subunit 6B1 (COX6B1) [44], mammalian Ste20-like kinase 1 
(Mst1) [45], and GJA1-20k, an isoform of cardiac connexin 43 [46].

7.4  Biological Sources of ROS

There has been a large number of reported sources of ROS, enzymatic and other-
wise, that are linked intricately to cardiovascular health and disease. Although the 
relative contributions of the enzymatic ROS-generating systems are not well known, 
the three principal cell types in the mammalian heart, viz., cardiomyocytes, 
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fibroblasts, and endothelial cells are known to possess all these sources. They mostly 
include mitochondrial respiratory chain, nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidases, xanthine oxidase, lipoxygenase (LO), uncoupled nitric 
oxide synthase (NOS), and myeloperoxidase (MPO) (Fig. 7.1). Notably, it needs to 
be highlighted that several of the myocardial injuries stem from ischemic insults. 
With the decrease in the oxygen supply in itself, the ROS levels would be presumed 
to decline since oxygen is the prerequisite to ROS-generating chemical reactions. 
The most plausible explanation is that at a given level of oxygen availability, super-
oxide generation from the mitochondria is positively correlated with the factors that 
enhance the reduction state of their electron transport chain [36]. In other words, the 
strongly reduced mitochondrial redox state initiates ROS generation even under 
limiting oxygen supply by promoting electron donation to the residual oxygen.

7.4.1  Mitochondrial Respiratory Chain

Since cardiomyocytes require a huge amount of adenosine triphosphate (ATP) to 
fuel their relentless contractions, mitochondria comprise almost 35% of their vol-
ume in mammalian hearts which are in essence obligate aerobic organs. 

Fig. 7.1 Schematic representation of the different sources of myocardial ROS generation. The 
combined effects of the reactive forms are primarily inflicted upon cellular DNA, proteins, and 
lipids. Dashed lines indicate the fate of the reaction by-products
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Mitochondrial oxidative phosphorylation produces ROS as a by-product of aerobic 
respiration [8]. The high free energy of electrons derived from reduced nicotin-
amide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH) (i.e., 
NADH2 and FADH2) flows through a series of cytochrome-based complexes like 
complexes I and III which comprise the respiratory transport chain to molecular O2, 
giving rise to ATP, and in this process exhibit electron leak to finally convert about 
1–2% of molecular O2 to O2•−. O2•− from complex I is released into the mitochon-
drial matrix and on both sides of the inner mitochondrial membrane from complex 
III. Isolated adult cardiomyocytes also show a phenomenon of mitochondrial ROS- 
induced ROS release (RIRR) as a burst of mitochondrial ROS generation is observed 
upon mitochondrial permeability transition pore (mPTP) induction caused by a trig-
ger of ROS.

7.4.2  Xanthine Oxidase in the Cytosol

Xanthine oxidoreductase is a homodimeric molybdoflavin enzyme that exists in two 
functionally distinct and interconvertible forms, xanthine dehydrogenase and xan-
thine oxidase. Both of them are involved in the oxidation of hypoxanthine and xan-
thine during purine metabolism and catalyze the chemical conversion of 
hypoxanthine to xanthine and xanthine to uric acid, but only the oxidase form gen-
erates O2•− and H2O2. H2O2 is, however, the major oxidant product of xanthine oxi-
dase activity. Under stressful situations, it is the oxidase form that predominates. 
Xanthine dehydrogenase can readily be converted to the oxidase form either revers-
ibly by formation of disulfide bonds due to oxidation of cysteine residues or by 
irreversible proteolysis. In addition, it may serve to produce nitric oxide (NO) under 
hypoxic conditions. Xanthine oxidase thus serves a major contributor of ROS espe-
cially in ischemia-reperfusion models [2].

 Hypoxanthine H O O Xanthine H O+ + +2 2 2 2  

 Xanthine H O O Uric acid H O+ + +2 2 2 2  

7.4.3  NADPH Oxidase (Nox) in the Cell Membrane

The Nox family comprises of transmembrane enzymes mostly, but not always, 
across the cell membrane, each based on a core catalytic subunit. They utilize 
NADPH as the electron donor to catalyze the reduction of molecular oxygen to 
superoxide and hydrogen peroxide. Although specific cell types in the heart express 
specific predominant Nox isoforms, in general Nox2 and Nox4 are particularly 
highly expressed in the heart. Although known for their physiological roles, various 
Nox enzymes generate elevated ROS in the diseased heart [2].

 NADPH O NADP O H+ « + ++ - +2 22 2 •  
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Cardiomyocytes predominantly express Nox2 and Nox4, while Nox5 is expressed 
in the cardiovascular system of higher animals only. The main stimuli activating 
Nox2 in cardiomyocytes and endothelial cells seem to be G protein-coupled recep-
tor (GPCR) agonists such as AngII (a known mediator of hypertension and hyper-
trophy) and endothelin-1, inflammatory cytokines such as TNFα, metabolites such 
as glucose, insulin (mediator of diabetic cardiomyopathy), oxidized low-density 
lipoprotein (LDL), glycated proteins, and mechanical forces like stretch and strain. 
These activate the inactive enzyme complexed with p22phox (phox: phagocyte 
NAPDH-oxidase) at the cell membrane (collectively called flavocytochrome b558) 
and the other dormant cytosolic regulatory subunits p47phox, p67phox, p40phox, 
and Rac1.

Nox4 has been found to be a major source of oxidative stress in the failing heart. 
It has been implicated in pressure overload cardiac condition as well as in hypertro-
phic stimuli, promoting apoptosis and mitochondrial dysfunction in cardiomyocytes 
by enhanced ROS production. It has also been known to mediate hypertrophy by the 
oxidation of histone deacetylase 4 (HDAC4), causing its nuclear exit. Unlike Nox2, 
it does not require activation by binding of various proteins as it is constitutively 
active, generating low levels of ROS in the cell, particularly H2O2.

7.4.4  Myeloperoxidase (MPO) in Azurophilic Granules

Abundant in polymorphonuclear neutrophils, MPO is a hemoprotein that catalyzes 
the formation of hypohalous acids from H2O2 and halides (Cl−, Br−, and I− ) or pseu-
dohalide (SCN− ). Hypohalous acids act as the potent reactive oxidant that takes part 
in antimicrobial respiratory burst. Action of MPO is produced in tissues, in this case 
the heart muscle, during inflammatory infiltration of neutrophils after cardiac dam-
ages like ischemia, MI, and reperfusion injury [47]. They are also active in partici-
pating in the inflammatory stimulation of culprit atherosclerotic plaques in the 
vascular system, especially the coronary arteries, due to which they have been pro-
posed as useful risk markers in acute coronary syndromes. Macrophages in athero-
sclerotic plaques also express MPO which is endogenously regulated by granulocyte 
macrophage colony-stimulating factor. Endothelial cells either capture soluble 
MPO released by activated neutrophils into the circulation or through direct cellular 
contact mediated by β2-integrin. This apart, MPO also contributes to atrial fibrilla-
tion and associated fibrosis. However, MPO-derived ROS do not affect myocardial 
tissue necrosis after MI but adversely affect left ventricular remodeling and 
function.

7.4.5  eNOS in Membrane Caveolae

A family of calmodulin-dependent homodimeric enzymes called nitric oxide syn-
thases (NOS) is responsible for nitric oxide (NO) production in tissues. Each mono-
mer within the dimeric state consists of an N-terminal oxygenase domain and a 
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C-terminal reductase domain. NOS in general produce NO upon catalyzing the 
chemical conversion of L-arginine to L-citrulline. Electrons derived from NADPH 
are transferred via the flavins [flavin adenine dinucleotide (FAD) and flavin mono-
nucleotide (FMN)] to the haem, present in the N-terminal oxygenase domain of 
NOS. eNOS, originally identified in vascular endothelium, is also present in a num-
ber of other cell types within the heart and elsewhere [2] and is a potent source of 
O2•− besides NO. However, the reduction in the availability of its cofactor tetrahy-
drobiopterin (BH4) and substrates like L-arginine shapes the balance between NO 
and O2•− generation to predominate O2•− release. This condition is known as eNOS 
uncoupling when electrons are diverted towards molecular oxygen. Consequently, 
the increased O2•− rapidly reacts with NO to form peroxynitrite (ONOO−) which 
further oxidizes BH4 leading to eNOS uncoupling and even more production of 
O2•−. Therefore, the augmentation of BH4 is of considerable pharmacological inter-
est to reduce the burden of various cardiovascular disorders.

7.4.6  Lipoxygenase (LO) in the Nucleus

Lipoxygenases are nonheme iron-containing dioxygenase that catalyze the oxygen-
ation of polyunsaturated fatty acids such as linoleic acid and arachidonic acid to 
form corresponding hydroperoxides. ROS are usually produced as a by-product of 
this reaction [2]. Metabolites of 5-LO further generate ROS by stimulating Nox. 
Studies expose that 5-LO is a major contributor toward atherosclerotic susceptibil-
ity, and 15-LO is enzymatically active in young atherogenetic lesions but not in 
advanced plaques. 5-LO is abundantly expressed in arterial walls of patients afflicted 
with atherosclerosis. 5-LO localizes to macrophages, dendritic cells, foam cells, 
mast cells, and neutrophilic granulocytes, and the number of 5-LO-expressing cells 
markedly increases in advanced lesions. Genetic disruption of the 12/15-LO gene 
attenuates atherosclerosis in apolipoprotein E (ApoE)- and LDL receptor-deficient 
mice. A randomized trial study thus brings hope as it revealed suppression of MI 
biomarkers upon chemical inhibition of 5-LO-activating protein (FLAP) [48].

7.4.7  Endoplasmic Reticulum (ER) Stress: Protein Disulfide 
Isomerase (PDI)-ER Oxidoreductase (ERO-1) System

The ER lumen is a highly oxidizing environment which is conducive to proper pro-
tein folding. The active site of the chaperone and oxidoreductase PDI contains cys-
teine residues which accept electrons from substrate polypeptides of nascent 
proteins, causing reduction of PDI during disulfide bond formation. PDI activity is 
molecular oxygen-dependent, and this forms the basis of the overwhelming load of 
misfolded proteins accumulating in the cardiac ER since a large number of cardiac 
diseases stem from ischemic or hypoxic injury. The FAD-binding protein ER oxido-
reductin 1 (ERO-1) then accepts electrons from the reduced PDI and transfers them 
to molecular O2, generating H2O2 in the process [2]. Under conditions of an increased 
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protein-folding load, the ER becomes particularly vulnerable to oxidative stress 
since it possesses limited enzymatic antioxidant capacity.

7.4.8  Detection of ROS and Redox Biomarkers in Cardiac 
Diseases

The central role of oxidative signalling in cardiac pathophysiology places molecular 
markers of redox as excellent biometric tools for research and clinical application. 
As a putative integrator of the cellular stress during cardiovascular pathophysiology, 
downstream redox biomarkers provide a quantitative estimate of disease processes, 
e.g., neurohormonal activation in heart failure. ROS quantification though per-
formed by robust biochemical techniques becomes much more technically chal-
lenging in  vivo due to the short half-life of ROS at the sites of generation. The 
following techniques, among many others, are widely used for the direct detection 
of ROS.

7.4.9  Fluorometric Detection of ROS Using H2DCFDA

The nonfluorescent ester dihydrodichlorofluorescein diacetate (H2-DCFDA) being 
lipophilic easily penetrates the plasma membrane into the cytosol where it is cleaved 
rapidly by unspecific esterases, producing the membrane-impermeable nonfluores-
cent alcohol derivative H2DCF (2′,7′-dihydrodichlorofluorescein). This compound 
is then oxidized by mitochondrial/cellular ROS with the formation of highly fluo-
rescent end product 2′,7′-dichlorofluorescein (DCF) [49] (Fig.  7.2). The newly 
developed carboxylated H2DCFDA analog (carboxy-H2DCFDA), carries two nega-
tive charges at physiological pH. Following cleavage of the acetate and ester groups 
by intracellular esterases and oxidation, it forms carboxydichlorofluorescein, with 
additional negative charges that impede its leakage out of the cell.

7.4.10  Fluorometric Detection of Mitochondrial ROS Using 
MitoSOX™ Red

MitoSOX™ Red is a fluorogenic dye which is highly selective for the detection of 
mitochondrial superoxide generation (Fig. 7.2). It is oxidized by superoxide once 
inside the mitochondria due to which it emits a red fluorescence. The oxidation 
product gets distinctly fluorescent upon binding to nucleic acids. The oxidation of 
the probe is highly specific as any other ROS or reactive nitrogen species (RNS) are 
not able to generate the red fluorescence. This is because the superoxide-mediated 
oxidation of the indicator dihydroethidium causes its hydroxylation at the 2- position, 
yielding 2-hydroxyethidium. The latter exhibits a fluorescence excitation peak at 
~400 nm that is absent in the excitation spectrum of the ethidium oxidation product 
generated by ROS other than superoxide. Chemically, the dye comprises of 
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hydroethidine (HE), the two-electron reduced form of ethidium, which is a com-
monly used probe for O2•−, linked by a hexyl carbon chain to a triphenylphospho-
nium (TPP+) group. The three lipophilic phenyl groups surrounding the positive 
charge on the phosphonium of the TPP+ cations target molecules to mitochondria, 
thereby facilitating movement across phospholipid bilayers and accumulation 
within the mitochondrial matrix in response to the negative membrane potential 
[50].

Fig. 7.2 Fluorometric detection of total cellular ROS generation using DCFDA (A) and ROS of 
mitochondrial origin by MitoSOXTM Red (B) in cultured neonatal cardiomyocytes. The blue fluo-
rescence indicates DAPI (4′,6-diamidino-2-phenylindole)-stained nuclei.
(A) AngII-treated cardiomyocytes (panel ii) show an increase in green fluorescence signifying 
induced ROS generation compared to untreated myocytes (panel i). Amelioration of oxidative 
stress in hypertrophied myocytes by cardiomyocyte-targeted nanodelivery of carvedilol (panel iii) 
or of p53siRNA (panel iv).
(B) Reduction in mitochondrial ROS-induced fluorescence detected by MitoSOXTM Red (red) in 
PPARα overexpressed hypertrophied cardiomyocytes (panels viii, ix) compared to AngII-treated 
myocytes (panels v, vi).
(Reproduced from Rana et al., Journal of Controlled Release, 2015, and Rana et al., Antioxidants 
& redox signaling, 2018)
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7.4.11  Spectroscopic Detection of ROS Using EPR Spin Trapping

Electron paramagnetic resonance (EPR) or the electron spin resonance (ESR) spec-
troscopy is a tool to detect paramagnetic species having an unpaired electron, as in 
free radicals. In this technique, electron spins are excited, and the transition of the 
unpaired electrons in an applied magnetic field is detected by measuring the absorp-
tion of a quantum of microwave (MW) radiation that matches the energy gap 
between the two spin states (resonance conditions). However, if the half-life of radi-
cals is too short to detect with EPR, compounds known as spin traps are used which 
convert them to stable long-lived radicals called spin adducts. Nitrones and nitroso 
compounds are highly acknowledged spin traps. Frequently used spin traps include 
alpha-phenyl N-tertiary-butyl nitrone (PBN) and 5,5-dimethyl-pyrroline N-oxide 
(DMPO) besides C-nitroso spin traps such as 3,5-dibromo-4- nitrosobenzenesulfonic 
acid (DBNBS). The spin-trapping reaction occurs with the covalent addition of the 
free radical to the double bond of the diamagnetic spin trap, with the resultant spin 
adduct having paramagnetic EPR spectrum. The EPR characteristics of spin adducts, 
like the g-value, hyperfine coupling constant (hfcc), and spin concentration, are 
obtained from their EPR spectra. This ultimately allows the qualitative and quantita-
tive detection of ROS and RNS [51]. The unavailability of the robust apparatus and 
instrumentation required for this technique in most biochemical laboratories limit 
the use of this method.

7.4.12  Colorimetric Measurement of Nitric Oxide (NO) Production

Griess reagent is used for the indirect colorimetric determination of NO by spectro-
photometric measurement of its stable decomposition products NO3

− and NO2
−. 

This method can only detect NO2
−, and thus NO3

− should first be reduced to NO2
−. 

Griess reaction is a two-step diazotization reaction of sulfanilamide by the 
NO-derived nitrosating agent, dinitrogen trioxide (N2O3), which is generated from 
the acid-catalyzed formation of nitrous acid from nitrite (or autoxidation of NO) to 
produce a diazonium ion. The latter is then coupled to the naphthyl ring N-(1- 
naphthyl) ethylenediamine to form a chromophoric azo product that absorbs 
strongly at 540 nm [52].

The principles of the diazo coupling reaction method in a high-throughput com-
bination with a dedicated high-performance liquid chromatography (HPLC) system 
developed by Ei Com Corporation, as well as certain other different fluorometric 
methods, allow sensitive and selective measurement of nitrite and nitrate in all bio-
logical matrices with ease and specificity [52]. One such fluorometric method 
employs aromatic diamino compound 2,3-diaminonaphthalene (DAN) as an indica-
tor of NO formation. The relatively nonfluorescent DAN reacts rapidly with N2O3 
generated from acidified nitrite (nitrous acid) or from the interaction of NO with 
oxygen to yield the highly fluorescent product 2,3-naphthotriazole. In addition to 
the DAN assay, more recent studies demonstrated that diaminofluoroscein-2 (DAF- 
2) may be used to determine the presence of NO in vitro and in situ.
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7.4.13  Chemiluminescent Probes for ROS Detection

ROS detection by chemiluminescent probes rely on the fact that upon exposure to 
O2•−, these probes release a photon, which, in turn, is detected by a scintillation 
counter or a luminometer. The most frequently used chemiluminescence technique 
in this regard is lucigenin-enhanced chemiluminescence. Chemically, lucigenin is 
bis-N-methylacridinium nitrate whose reactive radical form generated by univalent 
reduction is involved in the reaction with O2•− [53]. Therefore, lucigenin (LC2+) is 
reduced by O2•− to its cationic radical (LC• +), which further reacts with a second 
O2•− generating the energy-rich dioxetane molecule (LCO2) that emits a photon. 
However, this technique suffers from a limitation related to erroneous overestima-
tion of O2•− due to the chemistry of the redox cycling phenomenon in which O2•− is 
generated as a result of the reaction of the lucigenin radical with oxygen. In contrast 
to lucigenin, another promising probe for O2•− is the cypradina luciferin-based mol-
ecule 2-Methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one, 
hydrochloride (MCLA) which does not undergo redox cycling. However, it is 
restricted to the detection of extracellular O2•− as it is cell impermeable [54].

In addition to the above biochemical techniques for the direct detection and mea-
surement of ROS in biological systems, researchers taking interest in the patho-
physiological aspects of ROS-mediated signalling in disease universally tend to 
look out for stable redox biomarkers that serve as an indirect yardstick of oxidative 
injury. They either may be detectable from the tissue or cell of interest or can be 
freely circulating ones. Since excessive ROS cause oxidative modifications in DNA, 
lipids, and proteins and cause increase in the antioxidant response system, these 
serve as important prognostive biomarkers of stress in preclinical and clinical stud-
ies. One factor that seems to question the potential of these biomarkers is their 
specificity, since the component of biological ROS content has an integral spatio-
temporal variable built into it, in the sense that quite a few free radicals are unstable 
and are detectable within specific cellular microdomains. Therefore, analysis of 
other established parameters in assessing disease remains a sine qua non to the use 
of redox biomarkers.

7.4.14  Oxidized Proteins

ROS oxidize reduced glutathione (GSH), a small tripeptide (γ-L-glutamyl-L-
cysteinyl- glycine), in the cell causing the sulfhydryl (thiol) group of its cysteine to 
get linked to a second GSH through a disulfide bridge. This results in the formation 
of the dimerized form of the protein, i.e., oxidized GSSG. The enzyme glutathione 
reductase can restore GSH by modification of GSSG. The increase in the GSSG/
GSH ratio thus reflects oxidative stress. Detection can be achieved by an enzyme- 
recycling assay using the reagent 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) 
which oxidizes GSH, resulting in the formation of GSSG and the chromophore 
5-thio-2-nitrobenzoic acid (TNB). GSSG is again reduced to GSH by glutathione 
reductase using NADPH-derived reducing equivalent. The rate of TNB formation is 
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determined by measuring TNB formation at 412 nm since it is proportional to the 
sum of GSH and GSSG present in the sample. Another reliable method is based on 
fluorometric detection post HPLC separation. Iodoacetic acid (IAA), as a thiol- 
alkylating agent, is used to form S-carboxymethyl derivatives with free thiols and 
fluorodinitrobenzene that reacts with amines allowing UV absorbance detection at 
365 nm. Dansyl chloride derivatization to fluorescently tag amino groups as a modi-
fication to this protocol enhances assay sensibility to fluorometric detection.

Other oxidative protein modifications that can serve as redox biomarkers include 
analysis of nitration and S-glutathionylation of key proteins. RNS-mediated protein 
tyrosine nitration, like in those of the sarco(endo)plasmic reticulum Ca2+ ATPase 2a 
(SERCA2a) and MnSOD, is detected by immunostaining using antibodies to nitro-
tyrosine, although the most reliable method is based on tandem mass spectrometric 
experiments. Antibodies against nitrated proteins are also being developed. On the 
other hand, S-glutathionylation involves the formation of a stable yet reversible 
disulfide bridge between the cellular GSH and a reactive cysteine residue within the 
target protein, like SERCA2a, ryanodine receptor (RyR), eNOS, Na+-K+ pump, etc. 
Apart from highly sensitive mass spectrometric analysis, this modification is stud-
ied by Western blotting and enzyme-linked immunosorbance assays (ELISA) with 
monoclonal anti-glutathione antibody [55].

7.4.15  Lipid Peroxidation

Lipids are susceptible targets of oxidation by several free radicals because of abun-
dant reactive double bonds they possess within their biochemical backbone. Lipid 
hydroperoxides are usually analyzed by HPLC, often followed by fluorescence 
detection. The most well-studied markers of lipid peroxidation are the unsaturated 
aldehydes which are the end products of lipid peroxidation. They include 4-hydroxy- 
trans-2-nonenal (HNE), malondialdehyde (MDA), isoprostanes, and acrolein. 
Among these, 4-HNE is the most abundant and hence the most studied product of 
arachidonic acid, the polyunsaturated fatty acids (PUFA) present in phospholipid 
cell membranes. HPLC and gas chromatography-mass spectrometric (GC/MS) 
techniques are suitable to detect these products. HPLC protocols typically make use 
of chemical aldehyde-reactive probes such as 2,4-dinitrophenylhydrazine and 
1,3-cyclohexandione. For detection with negative chemical ionization using GC/
MS, derivatizing reagents like pentafluorobenzyl oxime followed by silylation are 
also required. Newer techniques like liquid chromatography-mass spectrometry 
(LC/MS) are preferable since the derivatization step to enhance optical activity or to 
generate a volatile product is not required. Even the measurement of HNE-modified 
proteins along with their MS identification provides important ROS-related infor-
mation in disease. Isoprostanes are another family of stable, arachidonic acid- 
derived prostaglandin-like compounds. They can be measured using GC/MS, LC/
MS, ELISA, and radioimmunoassay in plasma and urine samples. Malondialdehyde 
(MDA) is another product of lipid peroxidation which is typically quantified from 
plasma samples by a colorimetric assay based on the reaction between MDA and 
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thiobarbituric acid (TBA). This thiobarbituric acid reactive substances (TBARS) 
assay has been applied as an effective indicator of oxidative injury in cardiovascular 
disease models. ELISA and HPLC tools are also promising in measuring MDA 
[55].

However, in addition to the above methods, proteins modified by these lipid 
peroxidation- derived aldehydes can also be easily detected by Western blotting or 
immunohistochemistry with antibodies against aldehyde-modified proteins. Several 
anti-protein MDA and anti-protein HNE antibodies are now commercially available 
and have been found effective for immunohistochemistry, Western blotting, and 
ELISA. Polyclonal or monoclonal antibodies against HNE-treated keyhole limpet 
hemocyanin or bovine serum albumin are used to identify HNE-histidine adducts.

7.4.16  Measuring the Seral Antioxidant Capacity

The activity of circulating antioxidant enzymes such as catalase, glutathione peroxi-
dase, and SOD has been quantified in plasma to measure antioxidant capabilities in 
the face of oxidative stress. Catalase activity can be measured by the non- spontaneous 
decomposition of H2O2 present in high concentration. On the contrary, peroxidase is 
known to possess a high affinity for H2O2 and can thus remove it even when it is 
present in low concentration. Measuring SOD activity is based on the principle of 
inhibition of the formation of nicotinamide adenine dinucleotide, phenazine metho-
sulfate, and amino blue tetrazolium formazan. The commercial availability of these 
antioxidant enzyme-based assay kits allows them to be evaluated in large-scale 
high-throughput analysis [55].

7.5  Endogenous Myocardial Antioxidants

Unmitigated ROS produced within physiological ranges as well as their upregulated 
generation during pathological states can cause considerable damage to proteins, 
lipids, and DNA within the cell that produces it as well as in a paracrine fashion to 
adjacent cells. Therefore, an endogenous system of antioxidants plays a significant 
spatiotemporal role to quench ROS.

7.5.1  Superoxide Dismutases (SOD)

Superoxide dismutases are known to catalyze the conversion of O2•− to H2O2. SOD1 
is a cytosolic Cu/ZnSOD, SOD2 is a mitochondrial MnSOD, whereas SOD3 is a 
membrane-bound Cu/ZnSOD. SOD infusion improves myocardial contraction after 
ischemia-reperfusion injury. Mice deficient in MnSOD exhibit early mitochondrial 
DNA damage during atherosclerotic initiation. Extracellular SOD also preserves 
pressure overload-induced cardiac dysfunction and adverse remodeling [56].

R. D. Chaudhuri et al.



167

7.5.2  Catalase

Catalase is a tetrameric heme-containing enzyme that catalyzes the decomposition 
of H2O2 into oxygen and water. The enzyme is at first oxidized to a high-valent iron 
intermediate by reaction with H2O2, known as Compound I (Cpd I), which is rapidly 
reduced back to the resting state by further reacting with H2O2 to generate oxygen 
and a water molecule. Transgenic mice overexpressing catalase in the heart exhibit 
improved contractile force and reduced infarct size after ischemia-reperfusion insult 
compared to non-transgenic littermates. Cardiac-specific overexpression of catalase 
has been reported to prevent adverse myocardial remodeling and transition to overt 
heart failure [56].

7.5.3  Glutathione Peroxidase

Glutathione peroxidase is an enzyme having selenocysteine at its active site and is 
believed to be the predominant antioxidant defense system in the heart even under 
strong oxidative injury. Besides serving as a peroxynitrite reductase, it utilizes glu-
tathione (GSH) to reduce H2O2 to water and lipid peroxides to their respective alco-
hols. An inverse association between glutathione peroxidase activity and 
cardiovascular events has been found in patients of coronary artery disease. 
Transgenic mice overexpressing glutathione peroxidase in the heart show resistance 
to myocardial ischemia-reperfusion injury shown to caused by downregulated car-
diomyocyte apoptosis. Conversely, glutathione peroxidase deficiency accelerates 
cardiac hypertrophy and dysfunction in AngII-dependent hypertension [56].

7.5.4  Peroxiredoxins (Prx)

Peroxiredoxins are a diverse family of thiol-based antioxidant proteins that take part 
in redox signalling and act as peroxidases to detoxify H2O2, aliphatic and aromatic 
hydroperoxides, and peroxynitrite. The mammalian Prx family comprises six mem-
bers (Prx 1–6), grouped as typical 2-Cys (Prx 1–4), atypical 2-Cys (Prx 5), and 
1-Cys Prxs (Prx 6) classified on the basis of H2O2-sensitive catalytic cysteines. 
Being highly abundant in the heart, these enzymes are posttranslationally modified 
in response to oxidative stress in cardiomyocytes and undergo complex redox- 
dependent structural modifications. The human failing myocardium shows a decline 
in the protein expression of Prx 3–6 isoforms. Although another study reveals an 
increase in myocardial Prx 3 expression during MI, its cardioprotective effect has 
not been doubted. Oxidative stress reduces Prx 2 in cardiac myocytes, and overex-
pressing it prevents apoptotic cell death. While elevated serum levels of Prx 4 has 
been suggested to be a circulating biomarker in cardiovascular events, oxidation- 
induced dimerization of cardiac Prx 3 could be a specific potent biomarker of mito-
chondrial ROS production during ischemia. Prx 3 overexpressing transgenic mice 
are protected from cardiac failure and left ventricular remodeling after MI [56].
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7.5.5  Thioredoxin

Thioredoxin is an oxidoreductase enzyme that catalyzes the reduction of other pro-
teins by cysteine-thiol disulfide exchange. While thioredoxin 1 is cytosolic, thiore-
doxin 2 is mitochondrial. Thioredoxins have a highly conserved canonical CGPC 
catalytic motif, the cysteine residues of which they use to break disulfide bonds in 
oxidized substrate proteins. These two cysteine residues get oxidized to form a 
disulfide as a catalytic cycle ends. They are then converted back to the reduced state 
by thioredoxin reductase at the expense of the reduced form of NADP (i.e., NADPH). 
Thioredoxin reduces the oxidized form of thioredoxin peroxidase, and the reduced 
thioredoxin peroxidase acts as a ROS scavenger. The significance of the system is 
evident from studies that cardiac hypertrophy and oxidative stress is promoted upon 
inhibition of endogenous thioredoxin 1 even in baseline conditions besides pressure 
overload, when it upregulates the expression of miR-98/let-7. Elevated levels of 
circulating thioredoxin may also serve as a potent biomarker of ischemic heart dis-
ease. Transgenic mice overexpressing thioredoxin 1  in the heart exhibit reduced 
myocardial infarct size and improved ventricular recovery post-ischemia. 
Exogenously applied thioredoxin after ischemia-reperfusion protocols also showed 
improved infarct size, protection against arrhythmia, and antiapoptotic effects [56].

Genes for the abovementioned enzymes are known to possess a cis-acting anti-
oxidant response element (ARE) in their promoter regions [56]. Gene expression 
through the ARE is mediated primarily by Nrf2 (nuclear factor E2-related factor 2). 
Basal low levels of Nrf2 (half-life of ∼20 min) are due to its rapid degradation by 
proteasomes. Degradation of Nrf2 is triggered by polyubiquitination through the 
actin-associated Kelch-like ECH-associated protein 1 (Keap1) protein/Cullin3 
ubiquitin ligase. Oxidation of Keap1 causes a disruption of this complex and trans-
location of increased levels of Nrf2 into the nucleus leading to an induction of the 
endogenous antioxidant defense system.

7.6  Pathophysiology of ROS-Induced Cardiac Diseases

ROS in the cardiac system are mostly studied for the obnoxious role they play in the 
progression of heart failure. But this preponderance does not preempt the apprecia-
tion of their physiological role in normal cellular homeostasis. Prior to the detailing 
of what damage they cause to the cardiovascular system, it must be emphasized that 
ROS can have salutary functions too. H2O2, among all the ROS, fits every criterion 
for being a second messenger in signalling pathways, in its properties of enzymatic 
production and degradation and specificity of thiol oxidation. That small nonlethal 
amounts of ROS in the heart per se evoke adaptive signalling and create compensa-
tory responses are best described by the term “hormesis” [57].

One of the most distinguishing features of cardiomyocytes is the arrest in the cell 
cycle which is the primary postnatal change caused by an increase in ROS upon a 
transition to an oxygen-rich environment just after birth [58]. Also, a recent report 
has concluded exciting role of ROS in cardiac mechanotransduction. It has been 
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suggested that in healthy cardiomyocytes, a burst of Ca2+ sparks—the elementary 
event associated with the release of free intracellular Ca2+ is triggered by ROS pro-
duced from Nox2. This Nox2 in turn is activated by physiologic mechanical stretch 
in myocytes. The ROS which is produced in the sarcolemmal and T-tubule mem-
branes where Nox2 is located sensitizes the RyRs in their vicinity in the sarcoplas-
mic reticulum. However, this stretch-dependent increase in Ca2+ signalling sensitivity 
is deregulated during disease to trigger arrhythmia [59]. ROS find another important 
role in facilitating cardiac myocytes to distinguish calcium transients meant for the 
normal excitation-contraction coupling from those which result in excitation- 
transcription coupling during stress by suppressing the latter cascade in normal 
times [60]. In addition, physiological levels of NO and O2•− form intracellular per-
oxynitrite (ONOO–), which together with GSH activates SERCA by reversible 
S-glutathiolation of its Cys674 residue. In pathological states like atherosclerosis, 
chronic increase in ROS/RNS irreversibly oxidizes thiols that are critical for physi-
ological function such as Cys674 thereby blocking S-glutathiolation [61]. On a dif-
ferent note, local mitochondrial ROS activate mitochondrial quality control system 
within the heart [62].

During ischemic preconditioning of the heart, free radicals act as second mes-
sengers potentiating tyrosine kinase phosphorylation which results in the activation 
of p38 mitogen-activated protein kinase (MAPK) and MAP kinase-activated protein 
kinase 2 (MAPKAPK2) leading to the activation of nuclear factor kappa-light- 
chain-enhancer of activated B cells (NF-κB) that provides cardioprotection [63]. 
NF-κB is a common target of multiple signals in the ischemic heart, like ROS, NO, 
tyrosine kinase, and protein kinase C (PKC), that play a significant role in late phase 
of ischemic preconditioning [64]. Preconditioning-derived oxygen radicals activate 
PKC which contribute to reduced infarct size [65]. The sarcoplasmic reticulum Ca2+ 
channel/ryanodine receptor is a possible target of sulfhydryl oxidation associated 
with the protective effect of ischemic preconditioning [66]. Low levels of ROS 
derived from either Nox2 or Nox4 protect the heart from ischemia-reperfusion 
injury by preventing the hypoxia-inducible factor (HIF)-1α inactivation and inhibi-
tion of PPARα [67]. In cultured cardiomyocytes, treatment with sublethal doses of 
4-hydroxy-2-nonenal (4-HNE), a product of ROS-mediated lipid peroxidation, 
turns on Nrf2-mediated transcription and GSH biosynthesis which ultimately con-
fers protection against ischemia-reperfusion stress [68].

Having an insight into the pathological effects of augmented ROS in the cardio-
vascular system without prior appreciation of its positive roles would thus strongly 
undermine the notion of myocardial ROS being a double-edged sword and a neces-
sary evil. The significance of the adverse signalling set in by the imbalance between 
ROS and antioxidants (Fig. 7.3) is huge, as established by a large repertoire of exist-
ing literature, so much, so that the myocardial ROS content has, of late, been used 
as an important parameter for distinguishing infarct from non-infarct zones prior to 
global proteomic analysis in experimental post-MI models [69].
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7.6.1  Cardiomyocyte Apoptosis

An increase in ROS culminates into cardiomyocyte apoptotic loss due to incident 
pathological stimulus. Apoptosis is a prime mode of cell death during heart failure 
[4]. Direct treatment of adult cardiac myocytes with ROS turns on the mitochondrial 
apoptotic pathway [70] or via lamin-A as in case of O2•− in particular, mostly asso-
ciated with an increase in p53 protein content [71]. Upregulated p53 in turn leads to 
enhanced cardiomyocyte apoptosis [72]. Another report shows that treatment of car-
diocytes with H2O2 activates the lectin-like oxidized low-density lipoprotein recep-
tor- 1 (LOX-1) and apoptosis [73]. However, the relative contribution of the various 
sources of ROS in the heart in etiologically different cardiac disease forms needs to 
be studied in detail, since a recent report has pointed out that the expression level of 
xanthine oxidase does not alter during pathological hypertrophy in comparison to 
control samples, unlike so during MI [7]. Whether the source of ROS generation 
molds the predominant route to apoptosis during such divergent disease forms 
therefore warrants further investigation. Kulisz et al. [74] in contrast have put for-
ward evidence of pO2-dependent mitochondrial ROS generation in hypoxic cardio-
myocytes which they opine to contribute to adaptive responses. Inhibiting the Nox 
as a means of ROS scavenging upon AngII-induced cardiac hypertrophy has been 
shown to decrease the apoptotic burden [75]. In general, beta-adrenergic signalling 
leading to myocyte apoptosis is mediated by ROS [76]. However, Amin et al. [77] 

Fig. 7.3 Schematic diagram shows imbalance between the cellular ROS-generating systems and 
the ROS-scavenging antioxidant defense resulting in oxidative stress in the heart. In turn, aggra-
vated ROS induce insufficient levels of antioxidant enzymes by the Nrf2 pathway. Thus, exoge-
nous antioxidants have a huge potential in reducing the contribution of the deleterious factors that 
predispose the myocardium to oxidative injury. Acute oxidative stress results in MI, whereas 
chronic forms induce pathological left ventricular hypertrophy. The pie chart gives a snapshot 
summary of the factors that aggravate ROS generation in the heart

R. D. Chaudhuri et al.



171

also report the ROS dependence of hypertrophic phenotype brought about by alpha- 
adrenergic signalling due to norepinephrine treatment.

The downstream effectors of ROS-elicited apoptotic response are mostly attrib-
uted to the MAPK signalling cascade. While ROS generation due to endothelin and 
phenylepinephrine treatment to adult cardiac myocytes mediate cardiac hypertro-
phy via specific activation of the extracellular signal-regulated kinase (ERK) path-
way [78], AngII-stimulated ROS leads to apoptosis by p38 activation downstream 
to Ca2+/calmodulin-dependent protein kinase, even at low levels of Ca2+ [75]. 
Nonetheless, another study reports p38 to act upstream of ROS, and treatment with 
Vitamin C and E scavenged ROS and downregulated apoptosis and left ventricular 
function in failing rabbit hearts [79]. On the other hand, ROS from beta-adrenergic 
stimulation as well as xanthine oxidase activation culminates into mitochondrial 
and endoplasmic reticular stress-induced c-Jun N-terminal kinase (JNK)-mediated 
cell death [7, 76]. Treatment of adult rat cardiomyocytes with high concentration of 
H2O2 that induce apoptosis reveals that ERK 1/2 and Akt play a protective role 
against apoptosis while JNK is proapoptotic [80]. The serine-threonine kinase Akt, 
also known as protein kinase B (PKB) and acting downstream to the phosphoinosit-
ide 3-kinase (PI3K), is thus another effector in the cell fate determination under 
oxidative injury favoring cardioprotection [81]. Thus, pharmacological strategies to 
reduce cardiomyocyte apoptosis under oxidative stress target the Akt pathway. For 
example, the drug atorvastatin activates Akt phosphorylation and represses apopto-
sis in H2O2-treated cardiomyocytes [73], while the Chinese medicine QSKL reduces 
intracellular ROS, upregulates phosphorylation of PI3K and Akt, and attenuates 
myocardial apoptosis in in vitro and in vivo models of ischemia-reperfusion injury 
[82]. High glucose-induced Nox-derived ROS generation and resultant cardiomyo-
cyte apoptosis can be rescued by treatment with resveratrol which specifically 
increases phosphorylation of 5′ adenosine monophosphate-activated protein kinase 
(AMPK) [83]. Similarly, overexpression of the trypsin-like serine protease corin 
protects cardiomyocytes against H2O2-induced injury by decreasing apoptosis and 
activating the PI3K/Akt and the nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) signalling pathways and upregulating HIF-1α [84].

Related to cardiomyocyte death on a different note, oxidative stress caused by 
glucose deprivation in  vitro results in autophagic induction. ROS production is 
simultaneously associated with decreased glutathione levels. Conversely, 
N-acetylcysteine treatment or overexpression of catalase or SOD disrupts autoph-
agy [85]. Excess autophagy is a characteristic feature of failing hearts and is closely 
linked to cardiomyocyte death in pathological situations. At least upon ischemia- 
reperfusion insult, oxidative stress is strongly responsible for the induction of 
autophagy and subsequent myocardial injury [86]. Upon reperfusion post-ischemia, 
myocardial autophagosome accumulation is closely associated with increased ROS 
generation and resultant cardiomyocyte death, mainly due to decrease in lysosome- 
associated membrane protein-2 (LAMP-2) and Beclin-1 upregulation [87]. 
However, Beclin-1 is not upregulated during exogenous peroxide treatment to adult 
rat ventricular myocytes, which show an increase in AMPK activity and a decrease 
in the mechanistic target of rapamycin (mTOR)-ERK pathway, proteins related to 
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autophagy. These H2O2-induced changes could be reverted by treatment with the 
adipokine adiponectin, underpinning its antioxidant potential [88]. Similarly, dur-
ing cardiac hypertrophy, an increase in ROS production and the autophagosome 
formation is attenuated by overexpression of catalase specifically expressed in mito-
chondria in the heart [89]. The fine detailing of what ROS perpetrates on the heart 
can more be appreciated on comparing the two reports that Nox4 in the mitochon-
dria promotes cardiomyocyte apoptosis during hypertrophy [90] but upon glucose 
deprivation, endoplasmic reticular Nox4 promotes cardiomyocyte autophagy that is 
related to enhanced survival [91]. However, in the contex of autophagy-related 
AMPK activity, it is interesting to note that besides being cardioprotective during 
hypertrophy, it shapes the pattern of hypertrophic response. In response to trans-
verse aortic constriction (TAC) surgery, wild-type mice develop concentric hyper-
trophy, whereas AMPK-kinase dead mice develop eccentric hypertrophy and show 
enhanced ROS generation compared to the former group [92].

7.6.2  Cardiac Fibrosis

The failing myocardium is characterized by fibroblast proliferation and excess 
deposition of extracellular matrix proteins in the cardiac interstitium, leading to 
stiffness and loss of functional architecture of the ventricles. Fibroblasts respond 
both to direct stimulation by oxidative stressors and to cytokine signalling, viz., 
interleukin 6 (IL-6), TNF-α, and transforming growth factor beta (TGF-β) [6, 93], 
apart from paracrine and exosomal contribution from cardiomyocytes [6, 94]. The 
membrane-associated Nox complex is the predominant source of ROS in cardiac 
fibroblasts subjected to AngII treatment which leads to concomitant upregulation of 
collagen I and collagen III expression [95].

The outcome of excessive ROS generation on cardiac fibrosis remains a debat-
able issue. That ROS-induced oxidative stress leads to a decrease in collagen syn-
thesis accompanied by enhanced activity of the matrix metalloproteinases (MMPs), 
MMP-2, MMP-9, and MMP-13 [96], is contradicted by a series of contrasting 
reports. Induction of cardiac fibroblasts by superoxide leads to their proliferation 
along with upregulated TGF-β gene expression [97], which has reportedly been a 
significant pro-fibrogenic cytokine that can act independent of AngII stimulation as 
well [98, 99].

On similar lines are other studies that indicate ROS as a fibrotic mediator in the 
stressed heart. AngII treatment to cardiac fibroblasts causes a JNK- and ERK- 
dependent upregulation of osteopontin expression which plays a prime role in post-
 MI remodeling by promoting collagen synthesis and accumulation [100]. 
Overexpression of mitochondria-targeted catalase, an antioxidant, reduces AngII- 
induced ventricular fibrosis [89]. Besides, the xanthine oxidase inhibitor allopurinol 
reduces ROS along with marked reduction in interstitial cardiac fibrosis after MI 
[101]. Rats orally fed with the phytomedicine curcumin exhibit attenuated oxidative 
stress, cardiac fibrosis, and ventricular dysfunction after reperfusion [102], and 
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nanotized forms of the same compound increase its therapeutic efficacy within the 
diseased heart with improved bioavailability and retention [103].

Interestingly, the activation of fibroblasts in this context has been attributed to a 
seemingly increasing list of identified sources. A recent study has appreciated the 
role of Nox4 in AngII-mediated cardiac fibroblast proliferation and migration via 
AngII receptor type 1 (AT1)/Nox4 physical association. These are regulated by 
IL-18 and MMP-9 activities which are further dependent upon redox-sensitive mod-
ulation of p65 and c-Jun [104]. The increase in the protein expression of the 
intermediate- conductance Ca2+-activated K+ (KCa3.1) channels points toward an 
important role in the oxidative stress-induced proliferation and inflammatory reac-
tion during the progression of cardiac fibrosis in hypertensive mice; this could, how-
ever, be reverted upon inhibition of ERK activity [105]. AngII infusion to 
cardiac-specific Nox4 transgenic mice worsened cardiac injury by robust elevation 
of Nox4 compared to AngII-infused control mice and upregulated fibrosis through 
a possible Akt-mTOR-NF-κB pathway [106]. Depletion of Nox4, but not Nox5, 
reduced TGF-β1-induced Smad 2/3 (homolog of SMA of C. elegans and of 
Drosophila protein mothers against decapentaplegic) phosphorylation and conse-
quent activation of interstitial fibrosis [107]. In addition, Nox2 has been shown to be 
another significant mediator of profibrotic signalling after pressure overload as well 
as after MI by using murine models of Nox2-/- strains [108–110]. A recent study 
has projected the contribution of AngII-induced endothelial Nox2 activation to the 
profibrotic effect on the heart as an integration of phenomena like enhanced 
endothelial- to-mesenchymal transition and inflammation [111]. Yet another report 
has focused on the uncoupling of NOS3 as the prominent cause of myocardial ROS 
generation due to pressure overload that leads to maladaptive remodeling including 
fibrosis [112].

7.6.3  Contractile Dysfunction

The failing heart is characterized by contractile dysfunction primarily due to the 
depressed sarcomeric excitation-contraction coupling as a result of a deregulated 
calcium handling apparatus. For cardiomyocytes to activate contraction upon arrival 
of action potential, the intracellular Ca2+ concentration should rise from the resting 
100 nM to 10 μM. The majority of this calcium is intracellularly released via the 
Ca2+-sensitive RyRs in the sarcoplasmic reticulum. This is triggered by the external 
Ca2+ entering into the cell via sarcolemmal L-type Ca2+ channel (LTCC) [113]. ROS 
appear to function early during the development of cardiomyocyte contractile dys-
function upon exogenous H2O2 stimulation or hypoxia [36]. Importantly, cyclical 
mechanical stretch in cardiomyocytes causes hypertrophy and apoptosis due to 
amplitude-dependent enhanced ROS production [114]. Calcium channel currents 
are inhibited by oxidizing agents and hypoxia due to redox modifications on distinct 
cysteine residues on the α1C subunit of recombinant human LTCC [115]. A reduc-
tion in cardiac LTCC activity induces cardiac hypertrophy and heart failure [116]. 
On the contrary, another study reports that H2O2-induced oxidation-dependent 
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activation of Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) facilitates rat 
ventricular LTCC and causes an increase in L-type Ca2+ current amplitude and 
slowed its inactivation [117]. H2O2 induces oxidation of methionine residues in the 
regulatory domain which sustains CaMKII activity even in the absence of Ca2+/
CaM, ultimately leading to cardiomyocyte apoptosis on AngII stimulation [118]. 
Oxidizing agents accelerate sarcoplasmic reticulum Ca2+ leak and decreases sarco-
plasmic reticular Ca2+ content in normal hearts. ROS cause abnormal oxidative 
modification of key cysteine residues of RyR2 that enhances its activity and elevates 
Ca2+ leak from the sarcoplasmic reticulum during chronic heart failure [119]. 
Cardiac myocytes from post-MI dogs having ventricular flutter show increased ROS 
production and RyR oxidation [120]. Thus, the RyR open probability is favored by 
oxidizing conditions [121].

The increased cytosolic Ca2+ level during cardiomyocyte contraction has to 
return back to low levels during relaxation. The SERCA pump sequesters back Ca2+ 
into the sarcoplasmic reticulum followed by trans-sarcolemmal Ca2+ removal via 
the Na+/Ca2+ exchanger (NCX) [113]. Hypoxic guinea pig ventricular myocytes 
have a significantly inhibited NCX activity which upon reoxygenation is reactivated 
at a time when ROS increase. Exogenous H2O2 application during the hypoxic pro-
tocol rapidly reactivates NCX, signifying that elevated ROS during reoxygenation 
rapidly reactivate NCX [122]. NADH/NAD+ being an important redox couple, 
increasing cytosolic NADH inhibits NCX by accumulating ROS in adult cardio-
myocytes [123]. On the other hand, hydroxyl radical inhibits SERCA function by 
directly attacking its ATP-binding site, and ATP binding to its active site prevents 
the loss of SERCA activity. This indicates that the ATP depletion during ischemia 
enhances the free radical-induced inhibition of SERCA activity on reperfusion 
[124]. In isolated perfused rat hearts, endothelin-1 treatment enhances ROS genera-
tion which partially is responsible for increase in contractility [125]. Following a 
challenge with hydroxyl radical, the maximum positive inotropic response to Ca2+ 
is significantly decreased due to inhibition of SERCA. Carvedilol could partly pre-
vent such contractile dysfunction in atrial myocardial preparations [126]. Carvedilol 
treatment has also been shown to cause increase in SERCA expression accompa-
nied by downregulation of ROS during cardiac hypertrophy [127]. Another com-
pound called apocynin attenuates cardiac contractile dysfunction due to 
ischemia-reperfusion by downregulating Nox-derived ROS [128]. H2O2-mediated 
oxidation of SERCA at Cys674 also decreases its activity in adult ventricular myo-
cytes. Similar oxidative modification downregulates SERCA activity and impairs 
myocyte relaxation in aged hearts [129]. The contribution of such posttranslational 
modification of SERCA toward impaired contractility is confronted since nitric 
oxide-derived nitroxyl in cardiomyocytes activates SERCA by its S-glutathiolation 
at Cys674 [130].

In addition to these changes that directly affect the function of the Ca2+-handling 
apparatus, ROS also cause oxidative modifications on key sarcomeric proteins that 
lead to contractile dysfunction in the heart. The spectrum of affected proteins in this 
category is broad, ranging from high to low molecular weight ones. For example, 
oxidative stress modifies large proteins like titin and desmin that decreases the 
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extensibility and increases passive resistance in titin and forms insoluble desmin 
aggregates which disrupt the sarcomeric lattice. Redox modifications of cysteine in 
myosin heavy chain (MHC) dampen myosin ATPase activity. Cysteine oxidation 
within actin alters actin filament sliding velocity and actomyosin ATPase activity. 
Redox modification of cardiac tropomyosin also alters its flexibility. Actin-myosin 
cross-bridge formation is thus hampered [131].

7.6.4  Inflammation

Activation of the immune system is a classic feature of failing hearts that leads to an 
increase in the production of pro-inflammatory cytokines, the most important ones 
within the cardiac perspective being TNF-α, IL-1, and IL-6 [132]. Interestingly, the 
regulation of the plethora of inflammatory genes involves the active participation of 
the transcription factor NF-κB which is a hallmark of the failing heart [133]. The 
“cytokine hypothesis” holds that a portfolio of biologically active cytokines is 
responsible for heart failure progression [134]. All the resident nucleated cells 
within the myocardium, including the cardiac myocyte, are potent sources of these 
inflammatory mediators [135]. However, it has been suggested that cardiac fibro-
blasts are more ideally suited than cardiomyocytes to initiate the inflammatory 
response to ischemia owing to their abundance, strategic interstitial location, and 
lesser susceptibility to oxidative stress-mediated death, as by H2O2 [136]. ROS pro-
duction mediates the activation of the inflammasome by cardiac fibroblasts [137].

TNF-α has been found responsible for adverse myocardial remodeling, left ven-
tricular dysfunction, and cardiomyocyte apoptosis [138]. H2O2 induces myocardial 
TNF-α production by a mechanism involving p38 MAPK-dependent cardiomyo-
cyte death and myocardial dysfunction [139]. Conversely, TNF-α increases ROS 
production in cultured cardiomyocytes which result in mitochondrial DNA damage 
and dysfunction [140] in addition to hypertrophy [35]. This ROS production and 
resultant cardiomyocyte death occur due to caspase-8 activation [141]. Logically, 
TNF-α inhibition in experimental heart failure models ameliorates oxidative stress 
and mitochondrial dysfunction in the heart [142]. Furthermore, pro-inflammatory 
cytokines like TNF-α, IL-1β, and IFNγ enhance the production of superoxide and 
NO in the heart resulting in the production of peroxide which causes contractile 
failure [143]. Adverse cardiac remodeling due to a TNF-α trigger is caused due to 
faster and stronger MMP expression and activation in cardiomyocytes in compari-
son to fibroblasts, which is dependent upon superoxide generation and activation of 
PI3Kγ [144].

IL-1β induction has been shown in murine models of MI, and serum levels of 
IL-1β are elevated early in MI. It exerts pro-hypertrophic and proapoptotic effects 
in cardiomyocytes while depressing their contractility [145]. Treatment of neonatal 
rat ventricular myocytes with pathological concentration of IL-1β for 24 hours 
caused a significant rise in ROS and reduced the density of L-type Ca2+ current, 
which could be reverted by antioxidant treatment. Such decline in L-type Ca2+ 
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current density was traced to increased membrane translocation of PKCε down-
stream to IL-1β-mediated ROS activation [146].

IL-10 is one important anti-inflammatory cytokine whose mRNA levels have 
been detected in the failing heart. It is known to repress the levels of TNF-α, IL-1, 
and IL-6 [132]. Particularly, a reduction in IL-10 and in the IL-10/TNF-α ratio cor-
relates well with a depressed cardiac function subsequent to MI [147]. IL-10 treat-
ment to cardiac myocytes reversed all the effects of TNF-α treatment on cellular 
redox state including downregulating the elevated ROS levels caused by TNF-α 
[148]. In this phenomenon, p38 MAPK and ERK 1/2 play an interactive role in 
modulating oxidative stress and cardiomyocyte apoptosis [149].

The intrinsic stress response system to myocardial tissue injury is shaped up by 
the innate immune response system of the heart. While the pro-inflammatory cyto-
kines serve as downstream molecular effectors, a family of receptors called Toll-like 
receptors (TLRs) and NOD-like receptors (NLRs) act as upstream molecular com-
ponents of the system. These are, in essence, membrane-spanning and cytoplasmic 
pattern recognition receptors (PRRs), respectively. The heart expresses TLR-2 and 
TLR-4 in abundance, the latter being upregulated in failing human hearts [150]. In 
cardiac myocytes, TLR-2 takes part in the H2O2-induced activation of NF-κB and 
activator protein 1 (AP-1). Such oxidative stress-induced cardiomyocyte apoptosis 
was increased upon blockade of TLR-2 [151]. Furthermore, TLR-4 null mice show 
all signs of cardioprotection from doxorubicin-induced cardiomyopathy compared 
to wild-type mice, including a reduction in oxidative and inflammatory stress, car-
diac apoptosis, and an improved cardiac function, which indicates a negative role of 
TLR-4 in cardiac remodeling [152]. Hyperglycemia upregulates TLR-4 in the heart, 
and its knockdown causes a decline in Nox activation, ROS production, and apop-
tosis, suggesting a role of TLR-4 in the diabetic heart [153]. Similar suppression of 
the myocardial ROS/TLR-4 axis in different models of diabetes using selenium 
[154] and the alkaloid matrine [155] has been reported.

Nucleotide-binding oligomerization domain-like receptor with a pyrin-domain 
(NLRP)3 activation mediates the release of IL-1β via the activation of the inflam-
masome. Following acute MI, inflammasome formation in the heart promotes loss 
of functional myocardium [156], cardiac fibroblasts being the active contributor to 
the process [157]. Therefore, the NLRP3 inflammasome mediates ischemia- 
reperfusion injury [158]. Although a recent study contradicts this conclusion as it 
reports that NLRP3 inflammasome activation in the heart is cardioprotective in 
ischemia-reperfusion [159], other compelling evidences show the opposite. For 
example, drugs like pirfenidone attenuate ROS levels and TAC-induced hypertrophy- 
associated fibrosis and inflammation by suppressing NLRP3 inflammasome forma-
tion [160]. The diabetic heart also exhibits oxidative stress-related NLRP3 
inflammasome activity as contributors toward cardiac dysfunction [161]. A recent 
study also highlights that mitochondrial NLRP3 potentiates ROS to augment 
R-Smad activation during TGF-β stimulation to result in inflammasome- independent 
fibrosis [162].
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7.7  Factors Modulating ROS-Induced Cardiac Pathologies

A large number of pathological stimuli to the heart exert cardiovascular injuries 
through the prodigious generation of ROS, yet their effects are reinforced by certain 
other factors like those discussed below, among others, which modify the effective 
functional phenotype of various heart failure models across population and in the 
laboratory (Fig. 7.3).

7.7.1  Age

The development of left ventricular hypertrophy, heart failure, and atrial fibrillation 
increases rapidly with age, underpinned by structural and functional alterations in 
the heart. The Framingham Heart Study and the Baltimore Longitudinal Study on 
Aging (BLSA) have shown this to hold for even healthy individuals [163]. With this 
is intertwined the concept of the deleterious side attacks of free radicals on cellular 
constituents as a contributor to aging [3]. This theory was later modified to specifi-
cally point out that mitochondria are the prime producers as well as the prime tar-
gets of the damage inflicted by ROS [164]. The increase in mitochondrial ROS 
generation from the aged heart was thereby reported by a large number of studies 
[165]. Mitochondria from aged hearts as a result of elevated ROS in mice display an 
increase in mitochondrial protein carbonylation and mtDNA mutation which culmi-
nate into upregulated signals for mitochondrial biogenesis via the peroxisome 
proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α) pathway. 
These pathologies could successfully be reverted in mice overexpressing mitochon-
drial catalase [166]. In mice, the activity of thioredoxin is decreased but its expres-
sion level is increased in the aging heart, and this difference is further amplified 
after myocardial ischemia-reperfusion injury, indicating toward posttranslational 
modification of thioredoxin. As a result of increased production of RNS, thiore-
doxin nitration is increased in the aging heart which inhibits its activity and interac-
tion with apoptosis signal-regulating kinase 1 (ASK1). This leads to upregulation of 
p38 MAPK activity, apoptosis, and a larger infarct size in postischemic aging hearts 
[167]. Another study also reports increase in ROS in both human and rats due to 
aging in MI, but RNS concentrations increased from young to middle age and 
decreased from middle age to the oldest in the murine model of ischemia- reperfusion 
[168].

7.7.2  Sex

The incidence of lower rates of cardiovascular diseases in premenopausal females 
compared to both age-matched males and postmenopausal females has been brought 
to focus through a number of anecdotal experimental configurations and meta- 
analyses across patient populations. This instigated research toward estrogen as a 
cardioprotective hormonal molecule. However, there were no direct evidences of 
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reduced oxidative stress in the heart due to estrogen until it was reported that estro-
gen treatment to isolated cardiomyocytes subjected to hypoxia-reoxygenation acti-
vates p38β and PI3K, resulting in suppression of ROS and consequent p38α 
activation and apoptosis [169]. Female rats also show lower mitochondrial free radi-
cal production and cardiac oxidative stress than their male counterparts [170]. It was 
also reported that in female hearts, ROS generation is decreased due to increase in 
phosphorylation of α-ketoglutarate dehydrogenase following ischemia-reperfusion. 
The ROS-generated aldehyde adducts in such hearts were detoxified by increased 
activity of aldehyde dehydrogenase-2, which was dependent upon the PI3K path-
way [171]. As such, immediate estradiol replacement to aged ovariectomized rats 
prevented NF-κB activation, cytokine overproduction, and increased ROS-handling 
capabilities leading to restoration of ventricular performance [172]. Increase in 
cystathionine-γ-lyase due to estradiol treatment in ovariectomized females dimin-
ishes oxidative stress in the heart which can be traced to the increased production of 
cardioprotective hydrogen sulfide [173]. Despite these reports, the appropriate dos-
age of estradiol required for reducing oxidative stress and promoting cardiac func-
tion was suggested to be lower than the standard pharmacological dose, with the 
benefit of avoidance of risks associated with estrogen replacement therapy [174]. 
Interestingly, basal ROS production from cardiac mitochondria is not affected due 
to ovariectomy but is enhanced only upon stimulation by high Ca2+ and antimycin-
 A, which further declines with estrogen and progesterone supplementation [175]. 
Thus, estradiol acting via estrogen receptors-α and estrogen receptors-β in cardio-
myocytes increases mitochondrial p38β activation during ischemia-reperfusion 
injury. This in turn activates MnSOD by phosphorylation leading to downregulation 
of ROS production and consequent myocardial infarct size [176].

7.7.3  Exercise Training

A sedentary lifestyle is a major health concern for heart failure, for which exercise 
training proves beneficial in such subjects. Training decreases mitochondrial ROS 
in the heart through specific adaptations in the complex I and particular increase in 
catalase activity, without any improvement in the Ca2+-induced mitochondrial dys-
function [177]. Free radicals, as such, do not play an important role in physiological 
hypertrophy, but they accentuate functional cardiac adaptations due to exercise via 
the PI3K/Akt signalling pathway. Therefore, the exercise regimen must be carefully 
considered if supplemented with dietary antioxidants to improve cardiac perfor-
mance [178]. Swimming alleviates isoproterenol-induced ROS production and car-
diac fibrosis in an AMPK-dependent manner through specific increases in 
myocardial antioxidants like SOD1, SOD2, and catalase and decreases in Nox4 
protein expression [179]. Exercise preconditioning prior to ischemia-reperfusion 
provides adaptive signalling by Nox-derived ROS which replenish glutathione by 
redox-dependent modification in glutathione reductase [180]. Exercise-induced 
increase in left ventricular SOD and decrease in lipid peroxidation has been reported 
to improve myocardial tolerance to ischemia-reperfusion injury [181]. 
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Downregulated antioxidant activities of glutathione peroxidase and catalase were 
observed in heart tissues from exercise-trained normotensive and hypertensive rats 
[182]. This contradiction particularly fosters attention to the exercise regimen used 
in the study which included a week of detraining after the exercise period, which as 
per recent reports is known to cause cardiomyocyte apoptosis and ventricular dys-
function in a PKC isoform switch-dependent fashion [183]. Long-term endurance 
training in rats improved the overall antioxidant protection system in cardiac 
homogenates in rats [184]. The duration and intensity of training seem to be an 
important parameter since short-term training does not yield antioxidant defense 
[185] whereas an acute bout of heavy exercise increases oxidative stress in the aged 
myocardium possibly due to limited antioxidant capacity [186]. Sprint-trained rats 
exhibit antioxidant defense in the heart by upregulation of glutathione peroxidase 
and glutathione reductase activity, but not SOD [187]. Moderate exercise in female 
rats, however, showed no lowering of cardiac lipid peroxide levels but a significant 
increase in antioxidants like SOD, catalase, glutathione peroxidase, and glutathione- 
S- transferase in heart homogenates compared to sedentary controls [188]. The ben-
eficial effects of exercise-induced improvement in antioxidant activity in the heart, 
however, decline with age [189]. But upon application of an ischemia-reperfusion 
insult, exercise increases antioxidant activity and cardioprotection regardless of age 
[190]. Another dimension to this concept is that lifelong exercise can boost antioxi-
dant activity in aged hearts [191].

7.7.4  High-Fat Diet

Obesity-associated metabolic syndrome stands to be an independent risk factor for 
cardiometabolic diseases leading to ventricular dysfunction. In this regard, a num-
ber of studies have made an attempt to define the role of ROS in such pathologies, 
mostly by feeding experimental models a high-fat diet (HFD). Mice fed with a HFD 
show decreased Sirtuin-3 (SIRT3) expression and increased ROS levels in the heart 
compared to normal diet-fed mice, the consequences of which are aggravated by 
SIRT3 loss [192]. SIRT3 in turn blocks Foxo3a-dependent antioxidant genes like 
MnSOD and catalase to increase ROS production in hypertrophied cardiomyocytes 
[193], and its increased expression protects them from oxidative stress-mediated 
apoptotic cell death [194]. Cardiac mitochondria from high-fat, high-sucrose-fed 
mice showed upregulated peroxide generation and mitochondrial dysfunction asso-
ciated with oxidative posttranslational modification of mitochondrial complex I and 
II proteins, which was ameliorated in transgenic mice that express catalase in mito-
chondria [195, 196]. High-fat, high-sucrose-fed mice showed considerable decrease 
in ATP synthesis. Decreased myocardial ATP availability is a characteristic of 
advance heart failure [197], and preclinical strategies specifically targeted to cardio-
myocytes to mitigate ROS in the diseased myocardium show an increase in ATP 
content [43]. Proteomic screening of global reversible cysteine oxidation in Western 
diet-fed mice has identified specific targets that perturb glycolysis, the tricarboxylic 
acid (TCA) cycle, beta-oxidation, and the mitochondrial electron transport chain 
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(ETC) that may be traced to enhanced free radical formation, resulting in cardiac 
dysfunction [198]. It is therefore of logic to derive antioxidant therapies to mitigate 
the HFD-induced cardiac dysfunction and fibrosis, as have been studied with a wide 
variety of such beneficial molecules as polyphenols like resveratrol and S17834 
[199], catalase [200], folic acid [201], and mitoTempo [202].

7.7.5  Diabetes

Cardiovascular complications are a major cause of mortality in diabetic patients, the 
number of which has assumed epidemic proportions. Epidemiological data have 
suggested a positive correlation between diabetes and heart failure [203] character-
ized by adverse myocardial remodeling, inflammation, impaired excitation- 
contraction coupling, and ventricular dysfunction. Insulin resistance makes the 
heart more prone to ROS generation by the mitochondria. This is associated with 
the upregulation of the proton leak channels uncoupling protein (UCP)2/UCP3 and 
reduced mitochondrial membrane potential, leading to mitochondrial swelling, dys-
function, and consequent cardiomyocyte apoptosis. This, in turn, is further wors-
ened by redox-sensitive KATP channels [204]. Increased production of ROS is 
involved in the pathology of diabetic hearts. Elevated cytosolic glucose oxidation 
due to diabetic blood glucose levels leads to an increase in the concentration of 
reducing equivalents like NADH, which participate in mitochondrial ROS genera-
tion [205]. Besides mitochondrial apoptosis, high glucose also induces necroptosis 
and inflammation in cardiocytes [206]. The diabetic heart is further worse as it pos-
sesses a low antioxidant capacity in comparison to other organs [205]. Therefore, 
pharmacological intervention to reduce ROS levels has resulted in decreased 
hyperglycemia- induced injuries in cardiomyocytes [207] and attenuated develop-
ment of diabetic cardiomyopathy [208]. Hyperglycemia-induced cardiomyocyte 
apoptosis in rats is attenuated by antioxidant treatment [209]. Catalase [210] and 
MnSOD [211] have also been shown to provide cardioprotection in murine diabetic 
models.

7.7.6  Cardiotoxic Drugs

The effectiveness of a number of chemotherapeutic drugs is severely limited by the 
adversities they cause to the heart. For example, doxorubicin causes an increase in 
the oxidative injury to the heart as well as in cultured cardiomyocytes by activating 
the oxidative DNA damage-induced p53-based apoptotic pathway, which can be 
restored by pitavastatin treatment [212]. Carvedilol has also been shown to have 
antioxidant properties against doxorubicin-induced cardiomyopathy [213]. A reduc-
tion in reduced glutathione content and SOD activity and an increase in lipid peroxi-
dation in the heart are caused by cisplatin treatment in rats, the effects of which are 
reversed by antioxidant treatment like y acetyl-L-carnitine, DL-α-lipoic acid, and 
silymarin [214] along with N-acetylcysteine [215]. N-acetylcysteine can completely 
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Fig. 7.4 Simplified flow diagram indicating the major signalling pathways that are affected by the 
redox imbalance in diseased heart. Heart failure encompasses increased cardiomyocyte apoptosis, 
fibrosis, inflammation, and contractile dysfunction, among others, that ultimately depress the myo-
cardial performance. The dashed lines indicate the final role of the affected molecule in the signal-
ling cascade. PHD, prolyl hydroxylase; NQO1, NAD(P)H quinone dehydrogenase 1; BNIP3, 
BCL2/adenovirus E1B 19kDa interacting protein 3
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antagonize the apoptotic effects of a combination of 5-fluorouracil and levofolene 
on cardiocytes, although this combination of anticancer drugs results in lesser oxi-
dative stress than doxorubicin [216]. The oxidative stress in this regard yields mem-
brane lipid peroxidation and NO2

− formation [217]. A complete exception to such 
drug-induced cardiotoxicity is represented by the action of the anticancer drug 
paclitaxel in case of myocardial ischemia-reperfusion injury whereby it results in a 
decline in ROS levels in a JNK-HO-1-dependent manner [218].

The major signalling pathways that are affected by ROS that lead to adverse 
myocardial remodeling in the failing heart are summarized in Fig. 7.4.

7.8  Conclusion

A long history of research in the redox biology of the heart supports an association 
between oxidative stress and myocardial dysfunction; accordingly, oxidative stress 
remains an attractive target for cardiovascular disease prevention and therapy. 
Reportedly, epidemiological data from Mediterranean populations showed lower 
cardiovascular mortality when compared with Northern European countries due to 
significant differences in the intake of antioxidant-rich foods and beverages [219]. 
In line, a meta-analysis of cohort including almost 400,000 patients showed high 
intake of vitamin E or vitamin C to be associated with a lower rate of coronary heart 
disease [220]. Collectively, these considerations provide an insight to the possible 
role of “traditional” antioxidants in therapy of cardiovascular disorders. However, 
interventional trials (HOPE, Heart Outcomes Prevention Evaluation trial) did not 
confirm the role of traditional antioxidant therapy in oxidative stress amelioration in 
clinical setting [221]. Interestingly, administration of statins resulted in an early 
antioxidant effect by enhancing plasma vitamin E level [222], thereby warranting a 
deeper understanding of the complex physiology of ROS. Robust epidemiological 
trials may further establish the role of ROS in progression of the pathophysiology. 
Nonetheless, significant clinical data are necessary to design treatment strategies 
against cardiovascular diseases in the future.

Cardiac developmental physiology and the evolution of heart disease are strongly 
linked with the production of ROS and mechanisms of dysregulation of endogenous 
oxidant-antioxidants pathways. ROS are important mediators of physiological func-
tions, but in higher concentrations, they may modify the cardiac signalome and 
regress cardiac mechanics or function, thereby triggering a feedforward mechanism 
that leads to further worsening of systolic and diastolic function. Therefore, unrav-
eling the molecular mechanisms of ROS accumulation behind disease pathology 
and progression might be critical in providing suitable targets for exploring innova-
tive therapeutic avenues. Redox biology research in the last few decades have devel-
oped a greater understanding of ROS production. Innovative ROS detection 
strategies and novel targets for attenuation of ROS production have led to discovery 
of therapeutic strategies for cardiovascular diseases. Pharmacological strategies 
tested under preclinical setting toward amelioration of ROS production or better-
ment of ROS-mediated muscle injury have shown promising results [223]. However, 
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better appreciation of new strategies may warrant adequately designed clinical 
 trials, both from conceptual and methodological background.

To sum up, the existence of prodigious empiric data on the cardioprotective 
potential of ROS scavengers provides reasons enough to believe in the need for 
urgent advancement in antioxidant pharmacokinetics for healthcare, yet their failure 
in clinical trials remains a myth to be busted. Whether effectivity in such trials 
would stem from a combination therapy of antioxidants, or from more selectivity in 
ROS modulation to avoid scavenging of physiological ROS levels, or from better- 
controlled targeting of the ROS-generating cell, persists only of speculation until 
now. Toward this end, as a novel preclinical curative approach from our laboratory, 
the cardiomyocyte-targeted delivery platform with a stearic acid modified carboxy-
methyl chitosan conjugated to a 20-mer peptide has shown promising results toward 
betterment of oxidative stress and associated cardiac pathophysiology, by tinkering 
various novel molecular targets within cardiomyocytes [43, 94, 103, 127]. 
Interestingly, the designed nanoconstruct is instrumental in therapy of the diseased 
myocardium in a spatial scale by reducing bystander effects of the biomaterials; 
however, a greater degree of precision toward redox therapy of myocardium may be 
achieved if biomaterials are released from nanoconstruct when the ROS production- 
to- scavenging balance is dysregulated. Our laboratory has been working toward the 
controlled release of biomaterials that would be triggered on a spatiotemporal scale, 
specifically within cardiomyocytes that have an aberrant ROS production. Overall, 
we look forward to progress the field of cardiac therapeutic research and translate 
the preclinical results to clinical trials for betterment of human cardiac 
pathophysiology.
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8Reactive Oxygen Species Generation 
in Neutrophils: Modulation by Nitric 
Oxide

Sachin Kumar and Madhu Dikshit

Abstract

Neutrophils, the phagocytic and short-lived cells, were initially noticed for 
powerful microbicidal action; however, their specific depletion helped in gaging 
their unidentified importance in myocardial ischemia-reperfusion injury. 
Moreover, change in the number of circulating/or migrating neutrophils at the 
inflammatory site attracted scientists to investigate their significance in various 
pathologies. Importantly, inhibition of neutrophil recruitment and reactive 
oxygen species (ROS) generation ability improved cardiac function including 
cardiac hypertrophy and remodeling in diverse conditions. ROS and protease 
release from neutrophils have been associated with tissue damages including 
myocarditis, myocardial infarction, and ischemia-reperfusion injury. Nitric oxide 
(NO), a pleotropic molecule, modulates various physiological functions including 
vascular tone and cardiac homeostasis. NO controls most of neutrophil functions 
including ROS generation that influence release of several inflammatory media-
tors. Neutrophil ROS that depends on NADPH oxidase (NOX-2) system is regu-
lated by diverse mechanisms including posttranslational modifications, protein 
interactions, and cofactors. In this chapter, we discuss various regulatory mecha-
nisms involved in NO-mediated modulation of neutrophil reactive oxygen and 
nitrogen species (RONS) generation, and also NO production by neutrophils, 
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which has impacted our understanding of the inflammatory diseases including 
cardiovascular disorders.

Keywords
Neutrophils · ROS · Nitric oxide · Inflammation · NADPH oxidase · Inducible 
nitric oxide synthase · Neuronal nitric oxide synthase

8.1  Introduction

Neutrophils are first cells to respond to infection/injury and play crucial role in 
inflammation [1–3]. Furthermore, inflammation is an important pathological com-
ponent in cardiovascular diseases including myocarditis, dilated cardiomyopathy, 
myocardial infarction (MI), and ischemia-reperfusion injury [4–6]. Diverse models 
have revealed increased accumulation of neutrophils in first hour of injury and 
reperfusion that causes exacerbation of the inflammatory response and MI injury [7, 
8]. Several early studies using antibodies-mediated specific depletion of neutrophils 
have demonstrated reduction of myocardial infarct size by neutrophil depletion 
[9–11]. Interestingly, studies from our group demonstrated that the number of neu-
trophils decreased after thrombosis, and antioxidants were found to be protective 
against thrombosis [12, 13]. Further studies have identified role of neutrophil activa-
tion, release of extracellular traps, and reactive oxygen species in thrombosis [14, 
15]. The severity of heart disease including myocarditis and ischemia-reperfusion 
injury uniquely correlated with the proportion of neutrophils both in mice models 
and human patients [6, 16, 17]. Indeed, inhibition of neutrophil recruitment and 
activity improves cardiac function [6, 9, 18, 19]. Similarly, neutrophils also identi-
fied to play important role in neuro-inflammation, ischemic stroke, and neurodegen-
eration as depletion or inhibition of neutrophils infiltration led to protection to 
neuropathology [20, 21]. Furthermore, all of these pathologies are often accompa-
nied with high oxidative stress that is associated with collateral damage in ischemic 
stroke and neuro-disorders. The contribution of neutrophils in these pathologies 
seems crucial as these cells produce high amount of ROS through NADPH oxidase 
system and subsequent release of NETs coincides with these pathologies. Thus, 
understanding of various mechanisms involved in ROS generation in PMNs is of 
great importance. Interestingly, the early accumulation of neutrophils to myocardial 
injury exacerbates tissue injury through the reactive oxygen species or proteases 
that are major contributors of inflammation and tissue damage. Furthermore, mice 
deficient in neutrophil-derived ROS have shown protection in cardiac remodeling, 
contractile dysfunction, and cardiac hypertrophy in diverse conditions [22–24]. On 
the similar note, antioxidants have mixed success in myocardial Infarction [25]. 
Neutrophils also degranulate an array of matrix metalloproteases that regulate car-
diac remodeling in combination with ROS production [26]. Unraveling of ROS and 
nitric oxide (NO) interaction and subsequent formation of several toxic species 
made researchers inquisitive about the modulatory effect of these species on the 
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intracellular signaling network, which introduced the science of redox biology. ROS 
and NO both are present in atmosphere and are also produced by all the live forms, 
suggesting them to be the major players of cellular fate and function. NO regulates 
vascular tone and cardiac homeostasis. Interestingly, NO donors or drugs enhancing 
NO levels protect against ischemia-reperfusion injury [27, 28]. In addition, NO also 
controls neutrophil degranulation and migration and ROS generation to regulate 
neutrophil-mediated inflammation and possibly ROS-mediated cardiac dysfunc-
tion. Here we will overview neutrophil function specifically ROS generation and 
NO status in neutrophils and then describe NO-mediated regulation of ROS in neu-
trophils in association to cardiac homeostasis.

8.2  Neutrophils

Elie Metchnikoff’s (1883) micro-phagocytes, popularly known as polymorphonuclear 
leukocytes (PMNs/neutrophils), are the most abundant leukocyte (60–70%) in 
circulation. Neutrophils initially considered as terminally differentiated, postmitotic 
cellular entity present with tremendous ability of recognition, chemotaxis, phagocy-
tosis, and production of highly reactive oxygen species and microbicidal proteases 
to attack and kill the invading pathogens [3, 29, 30], while sustained activation of 
neutrophils is also associated with more or less collateral tissue damage in inflam-
matory conditions [3]. Interestingly, neutrophils have gone through a paradigm shift 
from an innate phagocyte to driver of acquired immunity with time [1, 2, 29]. 
Though in recent decades participation of neutrophil in adaptive immunity has also 
been observed by activation and regulation of T, B, and dendritic cells via expres-
sion of MHCs and cytokines [1, 2, 31–33], still neutrophils are major player to 
control infection and inflammation through phagocytic function in association with 
diverse proteases and ROS production ability via NADPH oxidase activation. In the 
following section, we discuss the respiratory burst or ROS generation in neutrophils 
and its modulation by NO.

8.2.1  Respiratory Burst/ROS Generation in Neutrophils

Early studies have demonstrated that neutrophils during phagocytosis produce large 
amounts of H2O2 through “respiratory burst” phenomenon [34, 35]. Interestingly, in 
neutrophils, this is associated with extra respiration that mainly depended on hexose 
monophosphate (HMP) shunt but was independent of mitochondrial activity [35]. 
Further research identified microbicidal function of cytoplasmic granules that were 
discharged into the phagocytic vacuole [36, 37]. Later, distinct neutrophil granules 
were characterized, and several granule proteins were found to exhibit microbicidal 
activity [38, 39]. Soon after the discovery of superoxide dismutase by McCord and 
Fridovich in 1969, activated neutrophils were found to generate superoxide, and this 
leukocyte oxidase activity was lacking in chronic granulomatous disease (CGD) 
patients [40, 41]. In addition, antimicrobial function of myeloperoxidase (MPO) 
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through halogenation of targets was also described [42, 43]. Thus neutrophils 
exhibit killing of pathogens through both oxygen-dependent (including superox-
ide-, hydrogen peroxide-, and myeloperoxidase-dependent hypohalous acids) and 
oxygen-independent (involving granular proteins such as lysozyme, lactoferrin, and 
proteases such as elastase, cathepsins) mechanisms [29, 44]. Besides these benefi-
cial functions, neutrophils have also been involved in tissue damage (Fig. 8.1).

Thus respiratory burst was reported by Baldridge and Gerald [34] during the 
process of phagocytosis in neutrophils, due to the activity of NADPH oxidase, a 
multi-subunit enzymatic complex [34]. Importantly, respiratory burst is responsible 
for more than 90% of the total oxygen consumption by neutrophils [45]. This leads 
to generation of O2

− into the phagosome or to the exterior milieu. Superoxide anions 
are relatively less noxious but form additional toxic oxygen species, in particular 
H2O2, by spontaneous dismutation which may then oxidize halides, in particular 
Cl−, to hypohalous acid, e.g., HOCl, catalyzed by myeloperoxidase released from 
azurophil granules during degranulation. In phagocytosis, neutrophils uptake the 
invading organism into vacuolar structure or phagosome. Importantly, both oxygen- 
dependent and oxygen-independent antimicrobial functions take place in phago-
some. Upon stimulation, multi-subunit of NADPH oxidase system get assembled at 
membrane. p47Phox, p67Phox, and a Rac-related GTP protein that in steady-state con-
dition reside in cytoplasm move to the plasma membrane, where it forms complex 
with b-type hemoprotein and cytochrome b558 consisting of dimer of gp91Phox and 
p22Phox and binds to FAD and NADPH [29, 46]. Further transfer of an electron from 
the cytochrome to oxygen leads to the superoxide generation [29, 46]. These super-
oxide radicals induce a series of oxidative events generating other strong oxidants, 
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Fig. 8.1 Key enzymes involved in ROS, NO and RONS generation in neutrophils
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which result in microbial killing. In CGD patients, mutation of NADPH oxidase 
subunits causes failure in superoxide generation. Importantly, these patients face 
recurrent infections due to dysfunction of oxidant-dependent antimicrobial mecha-
nism in phagocytic cells [46]. Interestingly, in addition to superoxide generation, 
neutrophils also produce NO through nitric oxide synthase. Importantly, NO has 
been defined to exhibit both superoxide scavenging and modulation of NADPH 
oxidase activity that are discussed in following sections.

8.3  Nitric Oxide

NO, initially known as endothelium-derived relaxing factor (EDRF), is a tiny 
lipophilic reactive radical gas that mediates both regulatory and cytotoxic functions 
[47]. Further studies revealed involvement of enzyme nitric oxide synthase (NOS) 
in NO synthesis in various cells including vascular endothelial cells [48], macro-
phages [49], and neurons [47]. Importance of NO in diverse system was well appre-
ciated by defining this as “molecule of the year” (Science journal in 1992) and 
Nobel Prize to Furchgott, Ignarro, and Murad in 1998. Immune cells such as eosino-
phils, platelets, neutrophils, monocytes, and macrophages also synthesize 
NO. Among them, neutrophils, the most abundant leukocytes, have been observed 
to participate in diverse pathological conditions. Interestingly, deregulated NO syn-
thesis and signaling in neutrophils are suggested to involve in these pathologies 
(Fig. 8.2).
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Fig. 8.2 (a) NO-NOS mediated regulation of NADPH Oxidase, (b) NO mediated modulation of 
other proteins involved in diverse neutrophil functions
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NO synthases (NOSs) catalyze the conversion of L-arginine to L-citrulline and 
NO in nicotinamide adenine dinucleotide phosphate (NADPH)-dependent manner. 
There are three isoforms of NOS including neuronal NOS (nNOS), endothelial 
NOS (eNOS), and inducible NOS (iNOS). eNOS and nNOS, the constitutive NOS 
(cNOS), are considered to produce low level of NO and depend on calcium for its 
activity; however, inducible iNOS that can be augmented by inflammatory milieu is 
calcium independent and produce high NO for prolonged time [50]. NOS enzyme 
contains two domains: the C-terminal reductase domain contains binding sites for 
NADPH, FMN, and FAD, while the N-terminal oxygenase domain binds with biop-
terin (BH4), heme, and L-Arg. Calmodulin (CaM or calcium-modulated protein) 
binding triggers flow to electrons from the reductase to the oxygenase domain [47]. 
Heme and biopterin play essential role in enzyme dimerization, a stable conforma-
tion for electron transport. iNOS tightly interact with calmodulin and thus functions 
in calcium-independent manner [50].

NO diffuses actively in aqueous as well as hydrophobic environments; further its 
biological concentration is defined partially by vicinity and cellular redox environ-
ment. Furthermore, its target cell specificity depends on its concentration, compart-
mentalization, exposure time, chemical reactivity, vicinity, and priming of target 
cells. NO functions can be divided into direct and indirect categories [51, 52]. In 
direct effect, NO at low concentration react directly with a biological target mole-
cule for a short period. In contrast, NO at much higher concentrations interacts with 
oxygen or superoxide to generate RONS and thus indirectly regulates biological 
processes. At molecular level, NO modulates the biological activities by reaction 
with transition metal (direct effect) and nitration and nitrosylation of tyrosine and 
cysteine residues, respectively, of the proteins and modify their functions (indirect 
effect). NO can react with transition metals, such as iron, copper, and zinc, abun-
dantly present in enzymes and proteins including guanylate cyclase, cytochrome 
P450, and NOS itself [53]. NO also induces the S-nitrosylation at cysteine residues 
via formation of S-nitrosothiols. Furthermore, NO and superoxide anion (O2

−) inter-
act very quickly to form peroxynitrite (ONOO.-), a powerful nitrating agent for pro-
teins, lipids, and nucleic acids. Thus, the direct vs indirect effects are controlled by 
concentration of NO, vicinity to target, and target itself. Thus, NO is a highly diffus-
ible, reactive signaling molecule and concentration of which depends on interaction 
with diverse reactive species and distance to target molecules [51, 52, 54]. NO regu-
lates infinite number of biochemical responses including functional activity, growth, 
death, etc. in various physiological and pathological conditions.

For long, based on low levels of constitutive NOS in human PMNs under 
physiological conditions, more focus remains NO generated by endothelium, 
platelets, or other cells. Although, as under various pathological conditions NO and 
NOS levels increase in neutrophils and being most abundant, these leukocytes can 
provide significant NO in circulation. Furthermore, NO biology in PMNs remains 
complex with its association with NOX-generated superoxide. In the following 
section, we will emphasize on status of NO/NOS in neutrophils and modulation of 
PMNs function with special focus on ROS.
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8.4  NO/NOS in Neutrophils

Presence of NOS in PMNs was first recognized in a study conducted by using rat 
peritoneal neutrophils and vascular ring preparation [55]. Both peritoneal and 
peripheral rat PMNs elicited a relaxation response in rat aortic rings when added to 
endothelium-denuded aortic rings [55, 56]. Human PMNs produce NO at a rate of 
0.75 ± 0.2 ρmoles/min/l06 cells in the presence of SOD [57, 58]. Furthermore, neu-
trophils exhibited platelet aggregation inhibitory response that was enhanced in the 
presence of superoxide dismutase but abolished by NO scavenger, suggesting 
NO-mediated inhibitory effect of PMNs on platelets [56]. Interestingly, NG-
monomethyl L-arginine and NG nitro-L-arginine methyl ester also inhibited PMNs 
mediated response, indicating presence of an NOS in PMNs [56, 59]. Neutrophil-
mediated inhibition of platelet aggregation was thus due to NO, which stimulated 
the formation of cGMP in the platelets [59]. Role of NO and neutrophils in regula-
tion of hemostasis was revealed by our early studies in rat thromboembolism model 
[56]. Malawista et al. suggested functional importance of NO in the microbicidal 
activity of neutrophils [60]. In other study, phagocytosis-induced NO generation 
was implied in peroxynitrite- mediated formation of nitrotyrosine [61]. Consistent to 
this down the road, presence of NOS in rat and human PMNs have been established 
at protein and transcript level, while NO production has been revealed by measure-
ment of nitrite (NO2

−), DAF-2DA, and NOS activity by conversion of radiolabeled 
L-arginine to radiolabeled L-citrulline [62–66]. Subsequent studies were addressed 
to characterize the enzymatic source responsible for NO generation in PMNs.

In leukocytes, Wheeler et al. (1997) identified neutrophils as the primary source 
of iNOS in patients with urinary tract infections [67]. Furthermore, increase in neu-
trophil iNOS was observed after bacterial infection [67]. While Miles et al. [63] 
failed to detect iNOS mRNA, protein, or enzymatic activity in circulating PMNs 
from rat and human, that was increased after cultured for 4–6  h in  vitro [63]. 
Presence of iNOS was also observed in cytokine-stimulated [61] or bacterial- 
infected human neutrophils that was evident in the primary granules [67]. Wallerath 
et al. [68] were successful in detecting NOS isoform transcripts expression in bone 
marrow human neutrophil granulocytes, megakaryocytes, and platelets. Cedergren 
et al. noticed constitutive expression of iNOS in human PMNs and suggested that 
failure of iNOS observation in resting PMNs by others could be because of incom-
plete release of the membrane-bound enzyme and inadequate proteinase inhibition 
[66], as more than 90% of iNOS is tightly bound to membrane in human PMNs 
[67]. Human PMNs present in oral cavity [69] and isolated from patients with sepsis 
syndrome [70] have possessed iNOS mRNA and protein and exhibit enzyme activ-
ity. In addition, human and rat neutrophils were shown to express nNOS mRNA 
constitutively [71, 72].
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Biochemical characterization of NO formation in our lab using radioactive 
L-arginine demonstrated the utilization of L-arginine to synthesize NO formation 
by control and LPS-treated PMNs [73]. We also showed distribution of functionally 
active nNOS and iNOS in cytosolic and nuclear compartments of rat PMNs [65]. 
Both nNOS and iNOS were found to colocalize and interact with caveolin-1 in rat 
PMNs [65]. Interestingly, caveolins functioned as negative regulators of NOS by 
regulating post-transcription proteasomal degradation and direct interaction [74, 
75]; however, signal for eNOS was not detectable [65]. While investigating the 
importance of neutrophil-derived NO generation in various experimental models, 
we found augmented NO formation in PMNs isolated from spontaneously hyper-
tensive rat (SHR) in comparison to normotensive Wistar rats [76]. Furthermore, 
expression of iNOS was significantly more in the neutrophils obtained from SHR, 
while nNOS expression remained unaffected. We also found importance of high 
ascorbate in sustaining neutrophil NOS expression, catalysis, and oxidative burst 
[77]. Ascorbate helped in maintaining the redox-sensitive tetrahydrobiopterin con-
tent to support NO synthesis by neutrophils. Recent findings from our lab also dem-
onstrated constitutive expression of iNOS in human PMNs, and it was evident in 
plasma membrane, cytosol, nucleus, mitochondria, as well as elastase and gelatin-
ase containing granules [78]. Immunofluorescence staining further documented the 
presence of nNOS and iNOS in human PMNs, while eNOS was not detected in 
agreement with previous report [68]. Similarly, in RT-PCR, transcripts for nNOS 
and iNOS but not for eNOS were identified [68]. Presence of eNOS in neutrophils 
is still controversial as only one group published so far has proposed the presence of 
eNOS in resting human neutrophils [79] and suggested decreased eNOS expression 
during acute myocardial infarction or TNFα treatment. In yet another study, it was 
observed that neutrophil nNOS expression during their maturation in the bone mar-
row remains unchanged, while iNOS levels were augmented in the rats [80]. 
Importantly, eNOS expression was attenuated leading to undetectable levels in 
mature neutrophils. RT-PCR and Western blot analysis further demonstrated low 
expression of NOS isoform (nNOS and iNOS) in human PMNs in comparison to 
mice circulating PMNs [63, 66, 71]. Together, research so far unequivocally identi-
fied presence of both nNOS and iNOS in rat, mice, and human neutrophils [65, 66, 
72, 77, 81, 82]. Thus, neutrophils possess functional iNOS and nNOS under tight 
regulation that provide substantial amount of NO and further can modulate ROS 
generation and vascular homeostasis.

8.5  NO and Neutrophil ROS

Exogenous NO is known to affect most of neutrophil functions in a concentration- 
dependent manner [83]. Studies in rodent and human PMNs also demonstrated that 
NOS enzymes were present though in variable amounts right from promyelocytes 
to the segmented stage. NOS primarily catalyzes NO generation, but it can also 
produce O2

.-, ONOO−, and NO3
− depending on the environment [84]. In normal 

productive cycle in the presence of all cofactors, NOS synthesizes NO. All the three 
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NOS isoforms (nNOS, eNOS, and iNOS) can also generate O2
− under L-arg or BH4 

limitation, by mechanism known as uncoupling [84]. When the NO concentration 
accumulates in the range of micromolar, ONOO.- and NO3 − are generated from 
NOS known as futile cycle [84].

Further, NO regulates ROS levels by modulating superoxide levels by scavenging, 
regulating NADPH oxidase system, and producing additional oxidant species. NO 
has been extensively investigated to modulate oxidative burst in neutrophils in our 
laboratory and is also supported by others [73, 77, 85–90]. The observations 
convincingly indicated toward NO-mediated augmentation of free radical genera-
tion from PMNs [73, 82, 85–87, 91]. Thus, several studies from this laboratory 
proposed role of NO in the modulation of neutrophil free radical generation by 
using multiple fluorescent probes and other methodologies [73, 82, 85–87, 91–93]. 
Interestingly, suppression of luminol-dependent chemiluminescence (LCL) 
response was observed in the presence of NO in micromole concentration [86], 
while by using other probes, formation of RONS was also evident [82, 87, 91, 93]. 
Coherent to an early study, that utilized D and L- enantiomers of NOS inhibitors to 
test neutrophil ROS and found differential effect on LCL based on enantiomers 
interaction and advice to be cautious for NO-mediated effects on LCL responses 
[92]. This NO-mediated superoxide scavenging and distinct effect was further 
explored. Interestingly, Kumar et al. demonstrated contrasting effect on DCF and 
DHE adducts and advocated a precaution while using these probes, based on 
superoxide- scavenging ability of NO [87]. In other study, ascorbate has been shown 
to regulate tetrahydrobiopterin levels and thus control NOS activity and NO content 
[88, 89], while ascorbate deficiency led to decrease in NO and free radical genera-
tion in neutrophils [77]. Together, most of these studies using diverse probes for 
reactive oxidant detection suggest increase in ROS generation in NO-treated PMNs. 
Hereafter, direct biochemical association and regulation of NADPH oxidase by NO 
are described.

Clancy et al. revealed a direct interaction of NO with the membrane subunit of 
the NADPH oxidase complex [90], suggesting NO-mediated regulation of NOX 
system, while another study demonstrated an inhibitory association of NO with 
both membranous and cytosolic subunits [94]. Further, Lee et al. reported an inhibi-
tory effect also at a higher concentration of NO [95]. In an intriguing study, NOS 
was found to interact with Rac2 to regulate activation of NADPH oxidase system 
that was translocated to phagosomes during phagocytosis [82]. Together, NO was 
demonstrated to contribute to ROS/RNS generation and microbial killing. ONOO− 
also exhibited a biphasic effect like NO, being stimulatory at lower concentrations 
through the MEK/ERK/MAPK pathway but inhibitory at very higher concentra-
tions [85]. NO was also observed to regulate neutrophil-derived free radical genera-
tion following hypoxia-reoxygenation [85] that was blocked in the presence of NO 
scavenger. Moreover, hypoxic neutrophils following oxygenation exhibited a sig-
nificant increase in the respiratory burst in a NO-dependent manner [85]. Further 
study suggested involvement of protein kinase C and calcium signaling in neutro-
phil ROS generation following hypoxia reoxygenation [96]. These observations are 
of significance in explaining the damaging effects of neutrophils at the hypoxic 
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environment of the inflammatory loci. Klink et al. have reported that NO donors 
decrease PMA- and/or fMLP-induced p47 phosphorylation on tyrosine and serine/
threonine residues and PKC on serine residues and ROS production with MAPK 
phosphorylation [97]. In a time-dependent study, Nagarkoti et al. demonstrated NO 
donors itself induces phosphorylation and glutathionylation of p47 that led to 
increase in ROS generation [91]. These differential outcomes might be a result of 
probe selection of ROS detection [87]. This probe-based dilemma was further 
resolved by using biochemistry approach, in which NO was found to interact with 
Rac2 resulting in translocation of NADPH oxidase subunits to the plasma mem-
brane [82, 91]. Furthermore, intracellular and extracellular calcium levels also have 
a modulatory impact on NOS activity and free radical generation [98]. Another 
study has suggested the involvement of K+ channels and kinases in NO-mediated 
augmentation of respiratory burst [99]. Our laboratory has also revealed 
NO-dependent NETs release from human neutrophils for the first time through 
ROS-dependent mechanisms, as NOX and myeloperoxidase inhibitors reduce NETs 
release [93]. In a mechanistic study, PMA-induced ROS has led to activation of 
ERK and p38 MAPK that has regulated NETs release from human neutrophils 
[100]. Recent study from this lab has shown that sustained ROS generation by 
NOX-2 was due to the glutathionylation of the important cysteine residues in the 
P47phox, and if glutathionylation was blocked, PMA-induced respiratory burst 
could not be sustained even in the presence of phosphorylation. Similarly, FMLP- 
induced short burst of ROS formation was converted to sustained generation by 
promoting glutathionylation of phosphorylated P47phox [91].

It is intriguing to note that factors instigating oxidative burst might also 
simultaneously trigger NOS in neutrophils or vice versa. For example, 
lipopolysaccharide (LPS), a membrane component of gram-positive bacteria, 
potentially induced iNOS and L-arginine uptake. In addition, it also induced free 
radical generation with arachidonic acid from peripheral and peritoneal neutrophils 
[73]. Nitrite treatment was found to elevate free radical generation and 
myeloperoxidase (MPO) release from neutrophils [73]. Interestingly, NOS 
inhibitors, aminoguanidine and 7- nitroindazole, have inhibitory effect on arachidonic 
acid-induced free radical generation and MPO-derived ROS in PMNs [73, 87]. This 
together suggests that NO-mediated regulation of free radical generation from 
PMNs is dependent on NOX and MPO activity. In a recent study, mechanism of 
NO-induced sustained ROS generation in neutrophil was found to be dependent on 
S-glutathionylation of p47phox unit of NOX system [91]. Interestingly, NO 
treatment induced p47phox glutathionylation responsible for sustained ROS 
generation, which was not the case in fMLP stimulation [91]. In other study, 
prolonged treatment with NO was found to induce apoptosis of neutrophils through 
ROS-mediated caspase-8 and caspase-3 activation and mitochondrial death pathway 
[101]. NO thus affect ROS generation by modulating multiple mechanisms in a 
time- and concentration-dependent manner, leading to NETs release or apoptosis. 
Understanding of the molecular mechanisms involved is of immense importance, as 
these might help in identifying the signaling networks associated with infective and 
noninfective inflammatory conditions.
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In addition, nitric oxide as well as ROS regulates neutrophil migration and 
chemotaxis [102–105]. An early report identified role of NO and NOS signaling in 
neutrophil migration in carrageenan- (Cg) or LPS-induced inflammation [104]. 
NOS inhibitors, NG-nitro-L-arginine and aminoguanidine, enhanced neutrophil 
migration in Cg model that was reversed by co-treatment with L-arginine, suggest-
ing involvement of NOS pathway [104]. Furthermore, iNOS-deficient mice exhib-
ited more neutrophil migration upon Cg challenge than wild-type mice. This 
increase in neutrophils at inflammatory sites was further observed due to increase in 
adhesion and mitigation of apoptosis [104]. In other study, L-NAME-mediated 
NOS inhibition led to induction of microparticles from neutrophils [105]. 
Interestingly, these L-NAME-induced microparticles were found to enhance neu-
trophil migration to IL-8 [105]. Another study from our group revealed that NO 
modulates actin polymerization to regulate neutrophil migration and polarization. 
More specifically, NO treatment led to S-glutathionylation of cytoskeleton proteins 
actin and L-plastin (LPL) in neutrophils [106]. Further experiments identified that 
S-glutathionylation of LPL cause impaired neutrophil migration and bactericidal 
activity [106]. Furthermore, elevated LPL S-glutathionylation was evident in neu-
trophils from diabetic patients and db/db mice that exhibit neutrophil dysfunctions 
[106]. Interestingly, ROS also regulate S-glutathionylation of actin [102]; this sug-
gests an intriguing cross talk of ROS-RNS through NADPH oxidase and NO syn-
thases. Further, NO can modulate proliferation and cytostasis of diverse cells 
including promyelocytic HL-60s depending on concentration [107]. In other study, 
NO was found to suppress proliferation of murine and human Th17 cells. NO also 
inhibited IL-22 and IL-23 receptor signaling in Th17 cells [108]. Interestingly, 
IL-17-IL-23 axis also regulates neutrophil homeostasis [109, 110]. Thus, 
NO-mediated regulation of neutrophil ROS and IL-17 axis might be responsible for 
distinct characteristics of neutrophil subsets and generation of neutrophils through 
granulopoiesis.

Neutrophils, being reservoirs of oxidants and proteases, possess strong 
antioxidant defense mechanisms which remain on constant vigil to maintain the 
redox balance. Neutrophils are protected against self-destruction by intracellular 
superoxide dismutase, ascorbate, GSH, and catalase [44]. Furthermore, to counter 
against ROS-mediated killing by neutrophils, Escherichia coli expressed 
enterobactin (Ent), a catecholate siderophore for iron that inhibited PMA-induced 
ROS and NETosis [111], thus identified a novel microbial antiradical defense to 
mitigate neutrophil responses. Further, it would be important to investigate the 
effect of these siderophore on NO-induced neutrophil ROS generation, as free iron 
might affect NOS activity. Extent of neutrophils with pro-inflammatory 
characteristics, also described as aged neutrophils, was dependent on microbiota 
[112]. Interestingly, gut microbiota have been suggested to impact cardiovascular 
function [113]. Thus, microbiota-mediated regulation of NO and neutrophil ROS is 
important to understand and warrants future investigation.
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8.6  Neutrophils and NO/NOS in Diseases

Neutrophil-dependent inflammation through high levels of NO and ROS has been 
involved in various pathological conditions. High levels of plasma nitrate concen-
tration have been reported in patients with septicemia with normal or elevated num-
ber of neutrophils in peripheral blood than to those with neutropenia [114]. 
Furthermore, during hypoxia-reoxygenation, neutrophil-derived NO induces free 
radical generation [85]. An increase in the release of NO from PMNs after thrombo-
sis [56] suggests its role in the regulation of homeostasis. Circulating neutrophils 
from hypertensive patients were present with high oxidative stress than normoten-
sive counterparts [115]. Consistently, neutrophils from spontaneously hypertensive 
rats exhibited high iNOS and augmented NO generation that might be responsible 
for oxidative and inflammatory stress in hypertension [116]. Circulating neutrophils 
via suppression of bacteria and IFNγ-dependent iNOS expression have also been 
shown to maintain physiological blood pressure [117] as neutrophil depletion led to 
low blood pressure and suggested to maintain the optimal vascular tone.

In addition, dysregulation of neutrophils NOS levels and NO signaling has been 
reported in neurological disorders. Increase in the neutrophil nitrite content and its 
role in Parkinson’s disease has been detected [118], while no change was observed 
in plasma and platelets nitrite levels. Interestingly, PMNs catalase activity was 
decreased, while SOD and GPx were unaffected in PD patients, while a significant 
decrease (>70%) of nitrite level and NOS activity was observed in neutrophils from 
patients of depression [119]. Moreover, Gatto et al. [81] have reported overexpres-
sion of neutrophil nNOS in Parkinson’s disease. In contrast, in schizophrenia 
patients, a specific and significant decrease in NO levels in PMNs has been reported, 
while antioxidant enzyme activities remain unaffected in the PMN of schizophrenia 
patients [120].

Interestingly, in yet another study, we observed a reduction in the circulating 
levels of NO/nitrite, which was also found in the cellular fractions of bone marrow 
in the patients of myeloid leukemia [121]. A study focused on bio-antioxidants has 
revealed alterations of GSH-redox cycle, total thiol groups, and vitamins E and C in 
blood, platelets, neutrophils, heart, and lung in thrombosis [122]. Clinical relevance 
of NO and its metabolite nitrite and nitrate increases to high level in systemic 
inflammatory response syndrome (SIRS), sepsis, and septic shock. Data has revealed 
a direct association between NO metabolites and progression of septic shock [123]. 
In addition, neutrophils and inflammation also control myocarditis, dilated cardio-
myopathy, myocardial infarction, and ischemia-reperfusion injury [4–6]. Decisive 
role of neutrophil ROS has been well demonstrated in cardiac remodeling, contrac-
tile dysfunction, and cardiac hypertrophy using mice deficient in neutrophil-derived 
ROS that have exhibited protection in diverse conditions [22–24]. Neutrophils being 
abundant leukocytes might thus add substantial amount of NO in circulation with a 
potential widespread impact on vascular homeostasis [124]. Furthermore, knowl-
edge of NO-mediated regulation of neutrophil ROS generation is important for our 
better understanding of the pathological conditions. It is also desired to conduct 
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studies to monitor the changes in some of the abovementioned parameters for diag-
nostic, prognostic, and therapeutic purposes.

8.7  Conclusions

Together, NO as a pleiotropic molecule regulates homeostasis and neutrophil-driven 
inflammation through modulation of ROS production. NO also exhibits differential 
effects on NADPH oxidase, and MPO system in neutrophils and on quenching of 
superoxide forms more toxic peroxynitrite. Being these cells abundant in circula-
tion, cells can provide sufficient ROS levels to cause tissue damage including heart 
dysfunction. Further recent studies suggested role of NO in the modulation of neu-
trophil NOX- and MPO-mediated RONS generation by multiple mechanisms, thus 
providing unique approaches to specifically target enzymes/pathways to intercept 
inflammation. Neutrophil ROS also participates in cardiac remodeling and cardiac 
hypertrophy that might be targeted therapeutically through further understanding of 
regulatory mechanisms.
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Abstract
Heat shock proteins, apart from having a strong impactful function as molecular 
chaperones, are involved in a variety of diseases including cardiovascular dis-
eases. Various studies have reported that there is an elevation of concentration 
gradients of circulating heat shock protein antibodies. These HSP antibodies 
have a strong alliance in case of extremity and advancement of cardiovascular 
diseases. A major stress factor, such as oxidative stress, contributes largely to 
endothelial dysfunction through several mechanisms, hence leading to the devel-
opment of associated cardiovascular diseases. During this time, the heart accu-
mulates misfolded proteins and chaperones/co-chaperone network function for 
preventing misfolding, refolding denatured proteins, and targeting them for fur-
ther degradation. In this review, the cardioprotective roles of these chaperones, 
co-chaperones, and heat shock factors (HSF) will be discussed in correlation 
with oxidative stress, inflammatory cytokines, and others which are said to be 
acquainted with the evolution and advancement of cardiovascular diseases.

Keywords
Heat shock proteins · Small Hsps · ROS · Oxidative stress · Induced cardiovascu-
lar diseases

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8946-7_9&domain=pdf


216

9.1  Introduction

The discovery of heat shock proteins is one of the most evolutionary findings in the 
history of molecular biology. It has shaped the present scenario of research in the 
particular field and has given it a completely new dimension. In the year 1962, the 
heat shock proteins were first pioneered by Ferruccio Ritossa and his coworkers. 
They observed that heat shock generates a different kind of puffing pattern and gene 
expression profile in the salivary gland of Drosophila melanogaster larva. Heat 
shock proteins are a certain type of multigene family proteins which are induced 
due to application of excess heat and temperature. They are highly conserved 
throughout different species and can be induced in prokaryotes, eukaryotes as well 
as in plant cells [1–4].

9.2  “Heat Shock” Proteins: The “Stress” Proteins

Heat stress helps in upregulation of the spontaneous conflation of a multigene group 
of heat shock proteins. This specific kind of retaliation is often known as the heat 
shock response. The sublethal heat stress response apparently promotes the capabil-
ity of a cell to bear with a comparatively lethal subsequent heat stress challenge. 
This occurrence is known as thermotolerance, which deals with an important role in 
studies of in vitro as well as in vivo experimental models. This phenomenon shows 
a certain similarity in the heat shock responses and also gives protectional coverage 
against either simulated ischemia or hypoxia. Several multigene families consist of 
some stress proteins which show a range of 10 to 160 kDa in molecular size, and 
those are available in various membrane-enclosed regions and in significant cellular 
compartments (Hsp 27, Hsp 70, Hsp 90, etc.). The expression of heat shock protein 
genes is often induced by several significant stress activities like inflammation, 
amino acid analogues, puromycin, ethanol, heavy metal analogues, ischemic stress, 
and oxidative stress. Besides this, there are some broad varieties of stressors like 
arsenicals, tissue explanation, and infections caused by certain viruses. This particu-
lar term “stress proteins” also include glucose regulatory proteins (GPRs) which are 
localized in the rough endoplasmic reticulum (ER), and being a member of HSP 
family, they are also considered as “stress proteins.” GRPs are induced by glucose 
deprivation and also by some stress factors. They also include certain HSP inducers 
(amino acid analogues, heat, etc.) and also induce glycosylation inhibitors that are 
said to be stressors selective for GRPs and Ca’+ ionophores. From the studies of 
both eukaryotic and prokaryotic responses, it is considered that the stress factors 
that induce GPRs as well as HSPs do share a nature that causes cells to synthesize 
proteins in both ER compartments and the compartments of the nucleoplasm. They 
also have a nature of damaging the aberrant proteins directly. Through several 
experiments, it is proved that the cells can properly make a distinctive comparison 
between local and denatured forms of the similar protein. There is an experimental 
evidence of 70 kd heat shock cognate protein (Hsc70), and it was said that confiscat-
ing Hsc70 may readily initiate the process of induction. Such a sequestration is 

S. Mitra et al.



217

responsible for the release of heat shock transcription factor (HSF) from which a 
reversible association can be seen with that of Hsc70. This ultimately releases HSF 
and readily triggers the heat shock genes. Moreover, the particular complexes that 
carries both HSF and Hsc70 were found in the extracts of Hela cell (Baler, University 
of Miami). Another experiment proves that in normal cells, Hsc70 shows an asso-
ciation with advancing chains of polypeptide. However, in a condition of stress, this 
kind of transient association stays for a long time. This eventually helps to exhaust 
the pool of Hsc70 and thus creates a high deficient functions of Hsc70. Heat shock 
response can activate the human hsp70 gene. This activation is readily reduced by 
cycloheximide. The evidence shows that the reduction in the synthesized polypep-
tides can be considered to be tactful targets for thermal damage. This releases the 
bound Hsc70 into an available pool. Structurally, it is evident that for translocation 
throughout the cell membrane, polypeptides start unfolding themselves which can 
be considered as transient proteins in cellular organisms [2, 3, 5–14].

9.3  The Classification

The classification of heat shock proteins is done based on the molecular weight they 
possess, for example, 60kDa molecular weight; HSp60. Molecular chaperones vary 
from 10 to over 100 kDa in range. According to shape, size, and molecular weight, 
the range of molecular chaperones varies within the cell. The physiological roles 
including specific locations of molecular chaperones of heat shock proteins can be 
present in different intracellular compartments. The entire families of HSPs are 
located in various locations within the cell; for example, HSP10, HSP60, and HSP75 
are sited in cell organelle, mitochondria. Other Hsp families are located in the 
nucleus, cytoplasm, cytosol, and endoplasmic reticulum. In the process of embry-
onic development, the molecular weight of small heat shock proteins that ranges 
from 15 to 43 kDa are regarded as heat shock protein β (HSPBs); these HSPBs also 
possess chaperone activity. The chaperons exhibit different kinds of functions, and 
they are stabilization, translocation, and assembly of oligomeric proteins and prote-
ases such as ubiquitin-dependent proteasomes which facilitate the indignity of par-
tially or completely damaged proteins.

9.4  The Expression and Function

The expression and function of heat shock proteins is apparently constitutive in 
nature. The HSPs involve both chaperones and protease activities that are essential 
for overcoming the changes in involving protein degradation and denaturation. It is 
observed that in Escherichia coli organisms, the heat shock response is controlled 
by a specified factor named sigma-32 (σ32). This σ32 factor is triggered by the rpoH 
gene, which eventually interacts with heat shock promoters. These heat shock pro-
moters are localized in the upstream of heat shock genes. Evidences show that the 
intracellular concentrations of these proteins can be increased by two- to threefold 
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by application of excess heat which results in protein misfolding, aggregation, and 
protein unfolding. HSPs also function in cellular mechanism, such as receptor mat-
uration, signal transduction, and protein trafficking. These actions are exhibited by 
the HSPs by depicting the term “heat shock” as a misstatement. Members of this 
protein family are Hsp100, Hsp90, Hsp70, Hsp60, and Hsp40, including other small 
heat shock proteins in the family [13–19].

9.5  Heat Shock Proteins: A Molecular Chaperon

Several studies prove the concept of HSPs playing an important role as a molecular 
chaperon. Molecular chaperons are those proteins which helps in folding of other 
polypeptides and also helps in the association of their specific oligomeric forms. 
Hsps have a high molecular weight in different vertebrates and plants (fungi, 
Drosophila, yeast, etc.). Small heat shock proteins usually maintain a molecular 
mass between 15 and 30kDa. Mammalian Hsps are said to be localized in the cyto-
sol of the cell as well as in the tissues and consist of 32 subunits. They show an 
oligomeric confirmation and can be present without the presence of any external 
stress factors like elevated temperature. A major role of heat shock protein is to 
prevent the aggregation of polypeptides and proteins. They also play an important 
role in the unfolding of cellular proteins especially in stressed conditions. This 
chaperone-resembling activity was first observed in the eye lens protein α-crystallin 
and in the hetero-oligomer products of two genes, αA- and αB-crystallin, against 
the heat-persuaded aggregation of β-crystallin, γ-crystallin, and alcohol dehydroge-
nase. Experimental evidences say that aggregation of α-glucosidase is prevented by 
human Hsp 27 and murine Hsp 25. Bovine αB-crystallin also functions in aggrega-
tion of citrate synthase. Homo-oligomers of αA- and αB-crystallin also prevent 
aggregating a few of the target proteins, thus exhibiting a chaperon-like activity. 
There are several Hsps which show temperature-dependent chaperone-like activity. 
For example, Hsp B2 and Hsp 22 help in aggregation of target proteins. Hsp 27 
proceeds with thermal induction and thus helps to increase the size of oligomeric 
form. Thus, this small heat shock protein correlates with elevating the molecular 
chaperon-like activity. Sometimes heat-induced conformational changes can be 
seen in rat Hsp22. An increased exposure of hydrophobic surfaces is eventually 
exhibited by Hsp22. This shows a strong presence of chaperone-like activity [6, 
20–25].

9.6  Chaperones and Proteases

Heat shock proteins may act as molecular chaperons as well as exhibit protease 
activities. The chaperons exhibit different kinds of functions such as stabilization, 
translocation, and assembly of oligomeric proteins. On the other hand, proteases 
such as ubiquitin-dependent proteasomes facilitate the degradation of damaged 
proteins.
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9.7  A Brief on Chaperon Network

In case of stressed conditions, there are several structural proteins as well as some 
enzymes that are responsible for some lethal changes both structurally and function-
ally. These proteins thus prevent the accumulation of nonlocalized proteins and help 
in refolding the disaggregated and denatured proteins so that they can retain their 
functional conformation. They also remove potentially harmful polypeptides that 
are nonfunctional which appears from denaturation, aggregation or in misfolding 
condition. These structural proteins and enzymes play a major role in cell survival 
under typical stressed conditions. There are several classes of Hsps that show 
chaperon- like activity and thus cooperate in cellular protection. These heat shock 
proteins sometimes play an overlapping function to protect the proteins from 
stressed conditions. In the case of thermosensitive E. coli mutants, there is a coordi-
nation between several classes of chaperones which shows plasmid-controlled 
chaperone expression. There are also some plant heat shock proteins which exhibit 
chaperon-like activities. It is observed that Hsp18.1 from pea (Pisum sativum) 
shows an interaction with heat-denatured protein. This plHsp 18.1 folds in such a 
competent way so that it can help in further refolding by the members of Hsp100 or 
Hsp 70 chaperon families. In the case of Hsp16.6 from Synechocystis sp., there is a 
binding evidence of nonnative proteins. They eventually protect them from getting 
aggregated and thus provide a complete pool of substrates for successive refolding. 
The complexes of Hsp70 and Hsp100 families are mainly taking part in it [26–29].

9.8  Hsp as Cardiovascular Chaperon

Heat shock proteins are stated as well-conserved stress proteins, and one of the 
primary functions of Hsp is exhibiting a chaperon-like activity. Under triggered 
conditions, they are enhanced by several cellular stress stimuli. There are several 
molecular chaperons which act as an important factor and begin a spontaneous 
expression in normal cardiac function with a very minimal level. These molecular 
chaperon components of cardiomyocyte eventually increase the target expression in 
connection with cardiac stress. In the case of reperfusion or ischemia, HSPs usually 
show upregulation in the heart. In congestive failure and hemodynamic overload, 
these HSPs show a chaperon-like activity and thus undergo upregulation in the 
heart. Hsps have a major role in various cardiovascular diseases and also have sev-
eral major implications in cardiac-pathological conditions like myocardial hyper-
trophy, cardiomyopathy, and ischemic preconditioning. These cardiac-pathological 
conditions upregulate HSPs for cardioprotection. Some of the stress proteins having 
low molecular weight along with their major HSP families having predominant 
functions in cardiovascular diseases are presented below in the table [30, 31] 
(Table 9.1).
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Table 9.1 Some Hsps and their source and importance in the cardiovascular system [14, 32–35]

Hsp families 
(stress proteins)

Organelle/
tissue Protein targets Cellular functions

Cardiovascular 
significance

Hsp20 Mainly 
cytoplasm

Hsp27, 
αB-crystallin

Vasorelaxation Cardiac dysfunction, 
apoptosis

Hsp27 Nucleus/
cytoplasm

p38 kinase, 
αB-crystallin

Actin dynamics, 
thermotolerance

Atherosclerosis, 
heart attack, and 
stroke causes 
ischemia, cross- 
tolerance (obligatory 
condition)

Hsp32 Cytoplasm αB-crystallin Thermotolerance, 
cleaves heme to get 
carbon monoxide 
and the antioxidant 
molecule biliverdin

Regulation of 
ischemia/
reperfusion-induced 
cardiac injury

Hsp47 Endoplasmic 
reticulum

Procollagen I Quality control of 
caring Procollagen 
synthesis

Reactive and 
reparative interstitial 
fibrosis

Procollagen III

[Small HsP] Mainly 
cytoplasm

— Hypoxia Antioxidant activity
Heme 
oxygenase 
(HO-1, HO-2)

αB-Crystallin/
Hsp22

Cytoplasm Hsp27 Stabilization of 
cytoskeleton near Z 
bands

Cross-tolerance 
Ischemia (obligatory 
conditioning)

Hsp60 Mitochondria Chaperonin 10 Protein import/
folding

Heat stress, ischemia 
(cytochrome c and 
apoptosis)

Hsp70 Cytoplasm — Active in protein 
folding in 
endoplasmic 
reticulum (ER)

—

mHsp75 Mitochondria Translocation 
and protein 
folding

— Cytochrome c and 
apoptosis

Grp78/BiP Endoplasmic 
reticulum

Grp94 Protein folding 
(unfolded proteins)

Cystic fibrosis 
transmembrane 
conductance 
regulator (CFTR 
binding)

Hsc70 
(cognate)

Cytoplasm Peroxisome Folding of Hsp40 
protein

Binding of cystic 
fibrosis 
transmembrane 
conductance 
regulator

(continued)
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9.9  Regulation and Expression of Heat Shock Protein

The induction and organization of heat shock proteins are regulated by a special 
kind of transcription factor, namely, heat shock protein factor (HSF), localized at 
the promoter region of the heat shock gene. In the case of vertebrates, four HSFs 
have been identified, and among these, two are ubiquitously present and conserved 
throughout all species of vertebrates; these are HSF1 and HSF2. Among these two, 
HSF1 plays the major role in vertebrates during stress conditions; on the other hand, 
it is found that during differentiation and early development processes, HSF2 shows 
higher activity. HSF1 is a monomeric molecule which is present in the cytoplasm in 
latent state, and also it is incompetent to bind and interact with the DNA molecule. 
During stress conditions, HSF1 is activated by an intracellular deluge of newly syn-
thesized nonnative proteins, and these proteins are hyperphosphorylated in a Ras- 
dependent mitogen-activated protein kinase. After that, HSF1 is being transmuted 
to phosphorylated trimers having the capacity to get interacted with the DNA, and 
subsequently they are being translocated from the cytoplasm to the nucleus.

On the other hand, HSF2 proteins are said to be temperature sensitive. During 
increased temperature, it gets inactivated and also sequestered to the cytoplasm. 
Thus, it is being prevented from interacting with HSF1 in stressed cells.

The mechanisms by which heat shock proteins are being induced are highly reg-
ulated; otherwise their continuous production will affect the homeostasis and intra-
cellular cell functions and thus leads to cell death or apoptosis. One notable 
mechanism which is responsible for the regulation as well as the expression of the 

Table 9.1 (continued)

Hsp families 
(stress proteins)

Organelle/
tissue Protein targets Cellular functions

Cardiovascular 
significance

Hsp70 Cytoplasm/
nucleus

Platelets and 
RAD46

Folding of Hsp40 
protein (heat stress/
unfolded proteins)

Heat stress, 
ischemia/reperfusion 
injury, 
cytoprotection 
(ischemic events)

Hsp90α 
(Hsp86)

Cytoplasm p23, Hsp70, 
Hsp56,

Functional activity 
as aporeceptor due 
to heat stress

Atherosclerosis
Estrogens

Hsp90β 
(Hsp84)

Cytoplasm Immunophilins, 
steroid 
receptors

— Immunosuppressive 
therapy, cardiac 
transplantation

Grp94 Endoplasmic 
reticulum

94-Kinase Calcium-binding 
chaperone

Ischemia reperfusion

Osp94 Renal 
medulla

Osmotic and 
heat stress

— Dehydration, 
hyperosmolar stress

Hsp110 
(human)

Nucleolus/
cytoplasm

Hsc70, Hsp40 Thermotolerance Ischemic 
cross-tolerance
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heat shock protein is facilitated by the interaction of Hsp70 to the transactivation 
domain of HSF1, which leads to restraining the transcription process of the heat 
shock gene. DNA binding as well as the HSF1 in stress-induced phosphorylation 
remains unaltered by the interaction between Hsp70 and HSF1. Another mechanism 
which regulates heat shock protein synthesis is the interaction between heat shock 
protein binding factor 1 (HSBP1), the active trimeric form of HSF1, and Hsp70, 
which results in inhibition of the capacity of HSF1 to bind to DNA. The localization 
of HSBP1 is mainly in the nucleus, whereas HSBP1 mRNA can be found in higher 
concentrations in different cell lines and animal tissues that remain unaffected by 
heat shock [14, 15, 18, 19, 34–37].

9.10  Heat Shock Protein in the Cardiovascular System

In recent studies, it has been shown that a large number of people from the western 
world is suffering from acute and chronic ischemic heart disease which even leads 
to fatal death, although various exogenous pharmacological protective measures 
have been taken, such as coronary vasodilators, calcium antagonists, and blocking 
agents of the angiotensin, which later coverts into b-adrenoreceptors and enzymes 
too. It is reported that the heart might get some positive advantages from an endog-
enous source if only some protective measures are possessed. In this context, a 
phenomenon like elevation and upregulation of heat shock protein synthesis can 
improve the level of endurance to ischemic heart disease, e.g., in humans.

9.11  Heat Shock Proteins Play Active Roles in the Recovery 
of Ischemic Heart Disease

HSP70 is a particular heat shock protein that is found to have a significant function 
in preventing the onset of ischemic heart disease. Research conducted on animal 
models has shown that:

 1. Forced overexpression of HSP70 confers a cytoprotective effect in cultured cells 
which includes myocytes that eventually simulate ischemia

 2. Myocardial function is seen to be improved in transgenic mice due to overex-
pression of HSP70

 3. Other than HSP70, HSP27 and αβ-crystallin are found to be effective in protect-
ing cardiomyocytes against ischemic damage

Although results are pretty convincing, the proper mechanism of heat shock pro-
teins in promoting cardioprotection has not been deciphered completely yet 
[38–44].
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9.12  Biochemical Activities of HSPs in Response 
to Myocardial Infarction

In an experiment conducted by Benjamin and McMillan, it was observed that in 
cultured myogenic cells, highly acidic condition (pH 6.70) was ineffective in bind-
ing HSF1 with exposed DNA to simulate ischemia (if ATP stores were being pre-
served). On the other hand, when ATP molecules were severely depleted (65%), the 
binding of HSF1 to DNA was stimulated, in spite of normal pH range. In the case 
of intact ischemic heart, approximately 15 minutes of ischemia generates reversible 
injury and is also related to decrease in ATP stores (65%). On the contrary, lethal 
injury is related to prolonged ischemia (>40%) and high depletion of ATP stores 
(>90%). It can be concluded that biochemical features of HSPs as well as the ATP- 
dependent HSF1 regulatory pathway are both improbable to be unfavorably affected 
during the entire span of transient ischemia as well as myocardial ischemic injury. 
It also confirms the cardioprotective properties of heat shock proteins. In spite of 
these favorable outcomes, few salient features regarding HSPs and cardiovascular 
diseases have to be understood, and they are as follows:

 1. How they are related to other intrinsic pathways which are involved in cardiopro-
tection against reactive oxygen species

 2. Specific functions of the different members of the HSP70 multigene family
 3. How these pathways are related during acute ischemia and other physiological 

processes which induce heat shock protein production [2, 5, 6]

9.13  Relation Between Infections, Hsps, and Cardiovascular 
Diseases

Development of atherosclerosis appears to be a balanced event between regulatory 
and proinflammatory immune responses. The presence of concurrent infection is a 
decisive factor in immunogenic responses during the development of atherosclero-
sis. Accumulated evidences gathered from the infection of Chlamydia pneumonia 
indicate that infective pathogens take part in the development of atherosclerosis. 
The organism C. pneumonia is found in atherosclerosis plaque, and it is able to 
induce foam cell formation in macrophages. Researchers have isolated T-cells spe-
cific for C. pneumonia from atherosclerosis plaque, which concludes the fact that 
the organism is able to elicit T-cell-mediated immunity. Substantial work has been 
done on isolated Hsp60 from C. pneumonia. It shows that HSP 60 may have the 
potential to induce macrophage production of TNF-α and matrix metalloproteinase 
activity. In spite of these convincing results, the definitive correlation between ath-
erosclerosis and infection has not been elucidated clearly. Still some researchers 
have deciphered a positive correlation between antibodies against C. pneumoniae 
and the antibody levels of antimycobacterial hsp65 [45–50].
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Some laboratory data clearly depict about the oxidative functions in the patho-
genesis of cardiovascular diseases. Several proceedings of antioxidant vitamins 
such as vitamin A and E describe their potential outcomes along with some mar-
ginal results (Table 9.2).

9.14  Pathogens Involved in Cardiovascular Diseases

A study conducted by Haraszthy et al. [52] identified 22 different pathogens which 
take active part in human carotid atheromas. The identification was done based on 50 
carotid atheromas that found at endarterectomy due to the presence of 16S rDNA via 
polymerase chain reaction. Over here, specific probes are used for periodontal patho-
gens like B. forsythus, Actinobacillus actinomycetemcomitans, P. gingivalis, and 
Prevotella intermedia. The result showed that 13 (26 %) were positive for P. gingiva-
lis, 15 (30%) of the specimen were positive for B. forsythus, 9 (18%) were positive for 
A. actinomycetemcomitans, and 7 (14 %) were positive for P. intermedia. Additionally, 
9 (18%) of these atheromas were detected in C. pneumoniae DNA. It is evident from 
these studies that pathogens like C. pneumonia can have a major role in the succession 
of atherosclerosis. In other studies, P. gingivalis was found to be proficient to invade 
both the carotid and coronary endothelium during cell culture (Table 9.3).

9.15  Disease Mechanism

A proposal of direct mechanism is made by Herzberg and colleagues and Herzberg 
and Meyer [53, 54], which suggests that dental infection bacteria is able to trigger 
cardiovascular diseases. In another study, it was revealed that an oral gram-positive 

Table 9.2 Table showing some hands-on laboratory experimental details along with their clinical 
manifestation in cardiovascular disease [5, 6, 51]

Disease name Laboratory studied data Clinical manifestation
Cardiovascular 
diseases

(i) Overexpression of 
SOD gives a nature of 
protection against several 
injuries

Alpha-Tocopherol, Beta-Carotene Cancer 
Prevention (ATBC) Study says that no overall 
benefit on cardiovascular disease (CVD) rate 
with vitamin E or beta-carotene is found but 
increase in CVD deaths with beta-carotene 10 is 
found as evidence

(ii) Interference and 
disarrangement of SOD 
often lead to heart failure
Vitamin E provides 
protection against 
development and growth 
of atherosclerosis 87

Cambridge Heart Antioxidant Study (CHAOS) 
says that vitamin E eventually lowers the rate of 
nonfatal myocardial infarct

Pre-atherosclerotic blood 
vessels show the 
elevation of functional 
ROS86

Physicians’ Health Study I (PHS I) says that 
there is strong evidence in high-risk subgroups
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bacteria (Streptococcus sanguis) and a gram-negative periodontal pathogen P. gin-
givalis promote the production of platelet aggregation-associated proteins. These 
might induce atheroma production. Endotoxin lipopolysaccharide (LPS) is on such 
stimuli, which is able to activate the inflammatory cytokine cascade. These cyto-
kines can be a potent source of atherosclerosis stimulation, which induces the liver 
so that it can produce some acute-phase proteins. Acute-phase proteins like 
C-reactive protein (CRP) and fibrinogen can affect coagulation, platelet aggrega-
tion, and activation. The expression of leukocyte adhesion molecules such as ICAM 
and VCAM can also be increased by inflammatory cytokines, and LPS is seen in 
periodontal disease. This often leads to atheroma formation [55, 56].

9.16  Cardiovascular Disease and Heat Shock Protein 
Antibodies

In context with the functional activity as molecular chaperones, the proteins of HSP 
family performs immunodominance-like phenomenon which describes that immune 
responses are depicted against only a few antigenic peptides among thousands pro-
duced, and as a result, only a distinct element of the immune response to pathogenic 
microorganisms is forwarded toward heat shock protein peptides. They are obtained 
from the phylogenetic similarity between mammalian and microbial forms of these 
molecules (45–75% identical residues in the case of the 60 kDa family). A proposal 
said that those elements could behave like harmful autoantigens, and moreover, 
from those particular infectious agents that cause immune responses to heat shock 
protein, determinant might play an important role in cross-reaction having similar-
ity with “self” molecules. As a result, a connection between several autoimmune 
diseases and their respective infection conditions is highly in demand.

There is a strong association observed between the progressive engrossment of 
antibodies to the 65 kDa mycobacterial heat shock protein (HSP65) that is said to 
be 75% homologous in nature to human Hsp60 with effectiveness, severity, and 
elevation of cardiovascular disease. As a consequence, anti-Hsp65 antibody values 
predict the 5-year mortality of the corresponding patients having carotid atheroscle-
rosis and the several prevalence of cardiovascular properties. Therefore, the pro-
posal comes that immunity forwarding to heat shock proteins may have a high 

Table 9.3 Causative agents 
incriminated in atherogenesis

Bacteria Virus
Helicobacter pylori Cytomegalovirus (CMV)
Porphyromonas 
gingivalis

Herpes simplex virus (HSV)

Streptococcus mutans Coxsackie B
Chlamydia pneumoniae Hepatitis A
Enterobacteriaceae Influenza A
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chance to influence the elevation, progression, and development of various severe 
cardiovascular diseases. As a result, those antibodies via cross-reactivity to Hsp65 
mediate endothelial cytotoxicity expressed with Hsp60, and on the surface of human 
endothelial cells after heat treatment, this can guide the evidence that suggests that 
such particular interactions can result in endothelial injury [57–60].

9.17  Oxidative Stress and Cardiovascular Diseases

Around 1950, the eminent scientist Denham Harman observed the “free radical 
theory” of aging. According to his words, endogenous oxygen radicals were pro-
cured in cells, and thus a consecutive pattern of cumulative damage is observed. 
After a decade, an enzyme was evident whose one of the main functions is removal 
of superoxide anions. This is vividly known as superoxide dismutase (SOD). SOD 
has been classified into three enzymatic types: (i) Cu/Zn SOD, (ii) Mn SOD, and 
(iii) extracellular SOD.  This SOD spontaneously dismutases O2– to H2O2. As a 
result, H2O2 eliminates glutathione peroxidase (GPx) and catalase to water. SOD is 
also responsible for providing other essential mechanistic details for Harman’s 
hypothesis. Oxidative stress plays a major role in the development of cardiovascular 
diseases as well as in pathogenesis. Several oxidase enzymes such as cyclooxygen-
ase, xanthine oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) 
are responsible for the generation of ROS.  Uncoupled endothelial NO synthase 
(eNOS) and mitochondrial electron transport are also involved in the process of 
ROS generation. ROS undergoes involvement of a variety of cell types, like endo-
thelial cells, mononuclear cells, and vascular smooth muscle cells (VSMCs). HOCl, 
ONOO−, and H2O2 are classified as non-free radicals, and OH, O2

−, and NO are 
classified as free radicals; both groups have potent oxidation ability [61–70] 
(Fig. 9.1).

9.18  Oxidative Stress in Response to Pathogenesis

Various patterns of evidence demonstrate that several physiological manifestations 
like atherosclerosis, myocardial infarction, hypertension, heart failure, dyslipid-
emia, diabetes mellitus, and angina pectoris include a major role played by oxida-
tive stress. It is said that protective antioxidant mechanisms show a multifactorial as 
well as a complex nature. There are such antioxidant defense systems like catalase, 
SOD, scavenge ROS, and GPx. These antioxidant defense systems play an impor-
tant role in the inhibition of NO degradation. Several sensitive transcriptional fac-
tors such as hypertrophy, cell proliferation, and apoptosis are induced by oxidative 
stress. Moreover, oxidative stress also induces activation of various signaling cas-
cades. Lipid peroxidation induces overexpression of redox genes, which eventually 
damages the endothelial or myocardial cells. Oxidative stress-induced atherosclero-
sis leads to the development
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of atherosclerosis. Excess ROS such as free radicals involves oxidation of vari-
ous molecules. It is also evident that protein oxidation induces overexpression of 
redox genes and results in the damage of vascular smooth muscle cell (VSMCs) as 
well as plays a major role in damaging endothelial cells.

9.19  Effect of Oxidative Stress on Endothelium

There are different kinds of bioactive layers found in our system. Among them, the 
endothelium acts as the inner layer of blood vessels. The most important function of 
the endothelium is to control vascular tone permeability. Extracellular matrices 
(collagens), adhesion molecules, and other regulatory mediators like endothelin-1 
(ET-1), NO, angiotensin II (Ang II), prostanoids, and von Willebrand factor (VWF) 
are being produced by the endothelium.

Research shows that in the case of atherosclerotic disease, endothelial dysfunc-
tion (ED) is an early sign which leads to subsequent clinical manifestations as well 
as complications. Accumulated evidences indicate the fact that ED can be termed as 
a strong predictor of future onset of cardiovascular diseases. It is observed that reac-
tive oxygen species (ROS) plays a key function in promoting ED and thus may act 
as intracellular messengers. These intracellular messengers (ROS) eventually tend 
to modulate other signaling pathways. If production of ROS species gets increased, 
it can severely damage the endothelium and can lead to atherosclerosis. NO pro-
duced by endothelial cells is one of the most important chemical modulators, and it 
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Fig. 9.1 Generation of ROS and its corresponding cellular response
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acts as a formidable vasodilator. Decreasing permeability, antiplatelet and antipro-
liferative nature, and anti-inflammatory actions are the important functions of 
NO.  NO also inhibits leukocyte adhesion and cytokine-induced expression of 
monocyte chemotactic protein (MCP-1) and vascular endothelial cell adhesion mol-
ecule (VCAM-1). It is observed that ED decreases NO production and availability 
to an extent due to the inactivation of NO by superoxide. Superoxides are found to 
react with NO rapidly, as a consequence of which the formation of peroxynitrite is 
readily observed with the bioavailability loss of NO [71–74].

9.20  Relation Between Oxidative Stress and Atherosclerosis

Endothelial dysfunction is a major cause behind the onset of atherosclerosis. 
Generation of free radicals plays an integral part in the development of atheroscle-
rosis which can lead to myocardial infarction and sudden death in due course. Free 
radicals can severely damage the inner layer of the blood vessels. The development 
of atherosclerosis is a multistep process where plasma cholesterol level and prolif-
eration of smooth muscle cells play key roles [70].

9.21  Cardioprotective Effects of Heat Shock Proteins

9.21.1  Stress Induced

The concept of heat stress preconditioning was first observed by Currie et al. [75]. It 
was treated as a strategy for myocardial infarction. It also gets several benefits for the 
ischemic myocardium. Cardiovascular function often tends to get protected by pre-
induction of HSP70 following trauma hemorrhage [76]. According to Dillman et al. 
[77], the increased level of inducible Hsp70 plays a major role in hearts subjected to 
prolonged ischemia and necrosis. Overexpression of HSP70 usually protects the 
heart against the lethal damaging effects of ischemia. Correction of metabolic acido-
sis and recovery of high energy phosphate stores act as competent determinants as a 
protecting component of the heart. According to the description by Latchman [78], 
the cardioprotective mechanistic details of HSPs inhibit the mitochondrial caspase 9 
pathway by HSP27, HSP70, and HSP90. The overexpression of HSP70 enhances 
NO production in response to cytokine stimulation [79]. HSP70 has also been known 
as a cytoprotective therapeutic agent [80]. It basically reduces I/R by decreasing the 
huge risk of postoperative atrial fibrillation [81]. It is observed that in any kind of 
oxidative stress, free radicals are formed in myocardial I/R injury that results in a 
phenomena named “myocardial stunning.” This is also known as ventricular dys-
function, or arrhythmias. Molecular chaperones also have some intense effect on 
cardioprotection in connection with the reactive oxygen species (ROS). The cardio-
protection by these molecular chaperones involves some of the protective 
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mechanism of superoxide dismutase (SOD) and glutathione peroxidase (GPx and 
catalase) [82]. Various models of cell culture exhibit their activity in expressing the 
mechanistic path of cardiac protection of HSPs. In pediatric patients, during cardiac 
surgery heat shock proteins play a major role in cardioprotective effect [83].

9.21.2  In Vascular Endothelial Cells

In context with maintaining the hemodynamic stress of the vascular cells [84], heat 
shock proteins play certain important functions by acting as a molecular chaperon. 
The reperfusion does not extend to the coronary endothelium [85]. As a result, the 
endothelial cells, which is also known as cardiomyocyte, also express heat shock 
proteins in response to congestive heart failure. Coronary endothelial cells are con-
sidered as a foremost localization of induction of HSP70 family which eventually 
provides protection to heat stress on the recovery of cellular and endothelial func-
tion [86]. It has also been observed that if the levels of anti-HSP antibodies are 
elevated, it can actually enhance ischemic stroke [87].

9.21.3  HSP32 and Its Role in Cardioprotection

HSP32 is a 32 KDa protein which induced different kinds of stress situations. Some 
of the stressed conditions are ischemia/reperfusion, hypoxia, heavy metals (e.g., 
selenium, cobalt, cadmium, stannous ions) and hydrogen peroxide. Hsp32 plays a 
key function in cardioprotection by mediating vasodilation of VSMCs and guanylyl 
cyclase-dependent platelet inhibition. Angiotensin II treatment conducted on mice 
model shows a decrease in Hsp32 mRNA expression. Evidences also show that it 
has the potential to modulate oxidative stress during ischemia and vascular tone as 
well as inhibit platelet aggregation thus promoting cardioprotection [88–90].

9.21.4  Inducible Cardiac Synthesis of Hsps

Heat shock proteins show their presence in vascular compartments as well as in 
cardiac compartments and can be induced by some specific stressors. It is noted that 
the type of proteins expressed in the heart is in some way different from the vascular 
compartment. In the case of adult mice, those in nonstressed conditions such as 
Hsps (Hsp27, Hsp70, and Hsp84) are constitutively expressed in several tissues, 
including the heart. These four Hsps usually retain a comparative low level in the 
heart compared with the other tissues. In contrast, cardiac Hsp70 levels are similar 
to those in other tissues in the case of the adult rabbit. It is observed that levels are 
much higher in unstressed rats, whereas intermediate levels of this B-crystallin 
show their presence for Hsp27.
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9.22  The Proteomic Aspect of Heat Shock Proteins Related 
to Cardiac Response and Stress

Proteomic analysis in cardiovascular biology is a hot topic of interest nowadays. 
Endothelial cells and smooth muscles are said to be responsible for the changes that 
occurred in the cardiovascular system. Proteomic approaches can unite these par-
ticular changes in response to cardiovascular stress. It is observed that in terms of 
cardiovascular diseases, differential proteomic approaches consist of mitochondrial 
HSP70 precursor, mitochondrial stress protein (HSP70), protein changes of HSP72, 
HSP70, mitochondrial matrix protein p1 (membrane-bound HSP60), and HSP27. 
Changes in cardiac protein expression determine the posttranslational modifications 
of cardiac proteins in response to cardiomyopathy.

As the process of CHF induction is over, the cardiac sHSP tends to be expressed 
in an elevated way. This shows a kind of proteomic analysis of cardiac sHSP expres-
sion in the case of congestive heart failure (CHF). A large number of HSPs function 
as molecular chaperones of the cardiovascular system. In the pathophysiology of 
CHF [91], αB-crystallin, HSP20, and HSP27 significantly increase the level of CHF 
compared to a normal heart and also perform a censorious redeeming role. Almost 
50 HSP27 protein species revealed the analysis of dilated cardiomyopathy-diseased 
human myocardial tissue by immunoblotting mechanism [92].

9.23  Conclusions

Heat shock proteins (HSPs) principally persuade stress stimuli, specifically in car-
diovascular diseases. By inhibiting cellular apoptotic mechanisms, they eventually 
protect the cardiac tissue from further damage and recurring injuries. Heat shock 
proteins are said to be significant in the prevention of apoptosis. By regulating cells 
under normal conditions, most of the intrinsic HSPs play a vital role in biochemis-
try. A majority of HSPs are induced by stress stimuli and thus promote the resis-
tance mechanism of tissues upon initial stress. These Hsps act like the first line of 
defense. Heat shock proteins undergo a mechanism of self-induced cardioprotection 
as well as in vascular endothelial cells. Hsps are also involved in constitutive and 
inducible effect of cardiac synthesis. This cardioprotective nature of the heat shock 
protein could be indispensable to reclaim cardiac tissues during consecutive cardiac 
stress. Thus, comprehension of the physiological functions of HSPs would defi-
nitely be beneficial for the preparation and development of synthetic drugs and also 
exhibit effectiveness against cardiovascular prophylaxis. Therefore, heat shock pro-
teins are said to be the “guardian” components in response to cardiovascular stresses.
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Abstract
Cardiovascular disease (CVD), the leading cause of morbidity and mortality, 
represents a major global health and economic burden worldwide [1, 2]. The 
World Health Organization report has projected that approximately half of all 
deaths in developed countries will be due to CVD by 2020. CVD is a multifac-
torial disorder, which encompasses a broad range of injuries of the vasculature 
and heart including atherosclerosis, coronary heart disease leading to myocar-
dial infarction, peripheral vascular disease, stroke, aneurysms, and cardiomy-
opathy [3–6] (Fig. 10.1). There is no single cause for CVD, but there are a 
range of risk factors, which increase the likelihood for clinical manifestations 
of cardiovascular disease. These risk factors for CVD include obesity, dyslipid-
emia, diabetes, hypertension, smoking, and aging as well as a positive family 
history and environmental factors [5, 7–9]. A significant number of studies 
have shown a close association among these cardiovascular risk factors. Indeed, 
hypertension, dyslipidemia, obesity, insulin resistance, and chronic hypergly-
cemia often coexist and synergistically enhance the risk for CVD-related deaths 
[1, 5, 7, 8]. Reports suggest that diabetes increases the risk of stroke and myo-
cardial infarction with diabetic patients demonstrating a 1.7 times higher risk of 
CVD death than nondiabetic individuals [1]. In addition, the risk for CVD 
including coronary disease and stroke is elevated with a rise in blood pressure 
[8, 10]. Smoking is an avoidable risk factor of CVD, and a person’s risk of 
CVD mortality can be reduced by 36% over 2 years upon cessation of smoking 
[11]. The burden of CVD risk increases with age and can be decreased partly 
by modifying and monitoring other coexisting CVD risk factors [12]. CVD can 
also result from environmental and demographic factors. The high prevalence 
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of CVD and its risk factors among the general population have motivated 
research investigating the pathological mechanisms of CVD and to develop 
novel approaches to prevent the progression of this disease. This has led to a 
better understanding of the underlying pathogenic mechanisms for the develop-
ment and progression of CVD.
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10.1  Introduction

Cardiovascular disease (CVD), the leading cause of morbidity and mortality, rep-
resents a major global health and economic burden worldwide [1, 2]. The World 
Health Organization report has projected that approximately half of all deaths in 
developed countries will be due to CVD by 2020. CVD is a multifactorial disorder, 
which encompasses a broad range of injuries of the vasculature and heart includ-
ing atherosclerosis, coronary heart disease leading to myocardial infarction, 
peripheral vascular disease, stroke, aneurysms, and cardiomyopathy [3–6] 
(Fig. 10.1). There is no single cause for CVD, but there are a range of risk factors, 
which increase the likelihood for clinical manifestations of cardiovascular disease. 
These risk factors for CVD include obesity, dyslipidemia, diabetes, hypertension, 
smoking, and aging as well as a positive family history and environmental factors 
[5, 7–9]. A significant number of studies have shown a close association among 
these cardiovascular risk factors. Indeed, hypertension, dyslipidemia, obesity, 
insulin resistance, and chronic hyperglycemia often coexist and synergistically 
enhance the risk for CVD-related deaths [1, 5, 7, 8]. Reports suggest that diabetes 
increases the risk of stroke and myocardial infarction with diabetic patients dem-
onstrating a 1.7 times higher risk of CVD death than nondiabetic individuals [1]. 
In addition, the risk for CVD including coronary disease and stroke is elevated 
with a rise in blood pressure [8, 10]. Smoking is an avoidable risk factor of CVD, 
and a person’s risk of CVD mortality can be reduced by 36% over 2 years upon 
cessation of smoking [11]. The burden of CVD risk increases with age and can be 
decreased partly by modifying and monitoring other coexisting CVD risk factors 
[12]. CVD can also result from environmental and demographic factors. The high 
prevalence of CVD and its risk factors among the general population have moti-
vated research investigating the pathological mechanisms of CVD and to develop 
novel approaches to prevent the progression of this disease. This has led to a better 
understanding of the underlying pathogenic mechanisms for the development and 
progression of CVD.
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10.2  Oxidative Stress in CVD

A plethora of both experimental and clinical studies suggest that oxidative stress, a 
pathological state as a result of imbalance between reactive oxygen species (ROS) 
production and antioxidant defense systems, plays a crucial role in the pathogene-
sis of CVD [13]. ROS act as a double-edged sword in cellular processes; at a low 
level, it participates in the cell signaling process, whereas at a high level, it has 
cytotoxic effects by interacting with macromolecules including DNA, proteins, and 
lipids leading to cell death [14–16]. It has been suggested that the cellular redox 
potential is an important determinant of cell function, and interruption of redox 

Fig. 10.1 Schema represents the modulation of oxidative stress in cardiovascular diseases and 
potential avenues for intervention. Reactive oxygen species (ROS); superoxide anion (O2

−); hydro-
gen peroxide (H2O2); hydroxyl radical (OH−); peroxynitrite (ONOO−); oxidized low-density lipo-
protein (Ox-LDL); renin-angiotensin-aldosterone system (RAAS); vascular cell adhesion 
molecule-1 (VCAM-1); intracellular adhesion molecule-1 (ICAM-1); tumor necrosis factor-α 
(TNF-α); interleukin-1-β (IL1-β); interleukin-18 (IL-18); monocyte chemoattractant protein-1 
(MCP-1); nuclear transcription factor-κB (NFκB); vascular smooth muscle cells (VSMCs); extra-
cellular matrix (ECM); NOX inhibitor (NOXi); xanthine oxidase inhibitor (XOi); lipoxygenase 
inhibitor (LOi); mitochondrial ROS inhibitor (mtROSi); coronary heart disease (CAD); myocardial 
infarction (MI); and peripheral vascular disease (PVD)
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balance adversely affects cell function. ROS is a common term used to describe a 
number of reactive molecules and free radicals derived from molecular oxygen. 
Free radicals such as superoxide anion (O2

∙−) and hydroxyl radical (OH∙−) have an 
extremely high chemical reactivity due to the presence of unpaired free electron. 
Other ROS like hydrogen peroxide (H2O2), peroxynitrite (ONOO−), and hypochlo-
rous acid (HOCl) are not free radicals as they lack the free unpaired electron but 
have oxidizing effects instead of reactive effects resulting in oxidant stress [14–16]. 
Generation of ROS requires a series of chain reactions which also leads to forma-
tion of more ROS through a vicious cycle [15, 16]. In the physiological system, 
ROS promotes cellular activities, regulates hormone level, preserves chemical bal-
ance, enhances synaptic plasticity, and induces enzymes. Moreover, ROS also helps 
to combat against invading pathogens and induce an immune response against the 
pathogens [15]. To some extent, ROS are neutralized and kept at homeostatic levels 
by intracellular antioxidant enzymes such as superoxide dismutase (SOD), gluta-
thione peroxidase (GPx), and catalase. Other nonenzymatic antioxidants consumed 
as supplements include 𝛽-carotene, ascorbic acid, and tocopherol supplements 
which balance ROS at normal levels. The disruption of the balance between ROS 
production and antioxidant defense capacity results in oxidative damage of the cell 
membrane integrity causing altered permeability and changes in expression of pro-
teins [16, 17].

A variety of enzymatic and nonenzymatic sources of ROS exists in cardiovascu-
lar cells. Therefore, ROS produced by these sources play a crucial role in normal 
vascular physiology but also in cardiovascular disease. The sources of ROS in the 
cardiovascular system includes the mitochondrial respiratory chain, NADPH oxi-
dases (NOX), lipoxygenase (LO), xanthine oxidase (XO), cytochrome P450 (CYP), 
and uncoupled nitric oxide synthases (NOS) [15–17]. Among these enzymatic 
sources of ROS, NADPH oxidases are the only known enzymes solely dedicated to 
ROS generation [13, 18, 19]. In addition to these, a number of external mediators 
also contribute to the production of ROS including ionizing radiation, heavy metals, 
metal complexes, nanoparticles, cigarette smoke, various drugs, and certain types of 
other chemical compounds [20].

The increase in cardiovascular ROS due to overproduction and/or a decrease in 
degradation as well as a decline in the level of antioxidants result in oxidative dam-
age to various cellular components of the heart and blood vessels [13, 15]. The 
common risk factors for CVD include chronic hyperglycemia, hypertension, hyper-
cholesterolemia, smoking, and aging which further enhance the level of ROS gen-
eration in CVD [13, 15–17]. Enhanced levels of cardiovascular ROS mediated by 
these risk factors can activate the key elements of proinflammatory and profibrotic 
pathways causing endothelial dysfunction; upregulation of adhesion molecules 
(VCAM-1, ICAM-1), cytokines (TNF-α), and chemokines (MCP-1); activation of 
transcription factors (NFκB), the NLRP3 inflammasome (IL-1β, IL-18), and metal-
loproteinases (MMPs); accumulation of extracellular matrix proteins (collagens and 
fibronectin) and proteoglycans; as well as induction of proliferation and migration 
of smooth muscle cells, lipid peroxidation, and change in vasomotor functions, 
which collectively lead to CVD [15, 17, 21] (Fig. 10.1).
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10.3  Antioxidants in Reducing CVD

Several clinical studies have been conducted to investigate the use of dietary anti-
oxidant supplements containing vitamins (e.g., vitamin E, vitamin C, coenzyme 
Q10, L-carnitine, and a-lipoic acid) in combination or alone to alleviate the burden 
of oxidative stress-induced cardiovascular tissue damage in CVD including diabetes 
and hypertension. However, the effectiveness of antioxidant interventions in clinical 
trials still remains a controversy and thereby remains a challenge for future thera-
peutic approaches. Indeed, a meta-analysis showed that many of the trials failed to 
improve the disease outcome and in fact some of them had adverse effects [22]. 
Therefore, the use of these dietary antioxidants is arguable as their mechanism of 
action and function remain poorly understood. Since exogenous antioxidants have 
largely failed to improve disease outcomes in clinical trials, new approaches to 
combat dysregulation of redox status are necessary to attenuate the progression of 
CVD.

Nrf2 Activators Endogenous antioxidants play an important role in combating 
oxidative stress in various diseases, including CVD. The nuclear factor E2-related 
factor-2 (Nrf2) plays a pivotal role as a key regulator of the expression of several 
critical antioxidant and detoxification genes. Activation of antioxidant response 
element by Nrf2  in combination with its negative regulator, Kelch-like ECH-
associated protein 1 (Keap1), leads to increased expression and activity of several 
antioxidants, including glutathione S-transferase, hemeoxigenase-1 (HO-1), and 
c- glutamylcysteine synthetase, and NADPH quinone oxidoreductase [23, 24]. 
Nrf2- deficient mice showed decreased expression of antioxidant genes in associa-
tion with increased tissue oxidative stress and toxicity in the vasculature with acti-
vation of inflammatory pathways [25, 26]. Therefore, Nrf2 activation or its 
downstream genes can be targeted by therapeutics to lower the impact of CVD. The 
Keap1-Nrf2 and Nox pathways have been shown to regulate both mitochondrial 
and cytosolic ROS production [27]. Indeed, the deficiency of Nrf2 in cardiomyo-
cytes showed ROS (hydrogen peroxide, peroxynitrite, and 4-hydroxy-2-nonenal) 
induced cell injury [28]. However, Nrf2 overexpression in endothelial cells resulted 
in decreased expression of inflammatory mediators such as TNF-α, IL-1β, MCP1, 
and VCAM1, suggesting an anti-inflammatory potential of Nrf2 [29]. Activators of 
Nrf2 vary in their chemical properties and the mechanism of action. Nrf2 activa-
tion has been shown to be critical in the defense against a variety of cardiovascular 
diseases, including high glucose-induced oxidative damage to heart tissue [30]. 
Indeed, Protandim, an Nrf2 activator, showed a robust increase in heme oxygen-
ase-1 (HO- 1) in coronary artery endothelial cells and cardiac myocytes [30, 31]. In 
addition, in a clinical study, Protandim showed decreased levels of ROS in associa-
tion with a significant increase in uric acid and the activity of erythrocyte SOD and 
catalase [30, 31]. In addition, administration of a novel Nrf2 activator, bardoxolone 
methyl derivative, dh404, in diabetic mice showed upregulation of Nrf2-responsive 
genes including HO-1 and downregulation of proinflammatory mediators such as 
VCAM-1 and the p65 subunit of NF-κB in association with attenuation of endothe-
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lial  dysfunction and atherosclerosis via reduction in both systemic and vascular 
ROS [32, 33]. Furthermore, in a clinical trial, despite an initial benefit in patients 
with diabetic nephropathy, bardoxolone methyl in the subsequent phase 3 trial was 
prematurely terminated because of higher cardiovascular mortality in the treated 
group (ClinicalTrials.gov NCT01351675) [34, 35]. In addition, the use of other 
Nrf2 activators including sulforaphanes and MG132 demonstrated attenuation of 
cardiac hypertrophy, fibrosis, and inflammation as well as reduced aortic wall 
thickness and structural derangement of the aorta via reduction in ROS production 
and upregulation of Nrf2-dependent antioxidative function in diabetic mice [36–
38]. However, the study also revealed that chronic use of these Nrf2 activators 
could be detrimental to cardiac function. Findings from these studies suggest that 
Nrf2 activators may have a significant therapeutic potential against CVD; however, 
further detailed studies are necessary to unravel the role of Nrf2 in the pathogene-
sis of cardiovascular diseases prior to its therapeutic use for the treatment of CVD 
[39, 40].

Probucol The antioxidant, Probucol, a clinically used lipid-lowering drug, has 
reported to possess cardioprotective effects in experimental models of CVD by 
enhancing the endogenous antioxidant reserve [41]. The use of Probucol showed 
alleviation of atherosclerosis through accelerating the process of reverse choles-
terol transport by lowering the level of ox-LDL and improving HDL function in 
association with improving anti-inflammatory and antioxidant functions [42, 43]. 
In addition, a study using WHHL rabbits as a model of human familial hypercho-
lesterolemia showed that administration of Probucol reduced plasma cholesterol 
levels and resulted in a prominent reduction of aortic en face lesions, reduced coro-
nary artery stenosis, and increased plaque stability as well as reduced macrophages 
and increased smooth muscle cells [44]. These results suggest that Probucol treat-
ment may have beneficial effects on the plaque stability of hypercholesterolemic 
patients. In addition, Probucol also suppressed hydrogen peroxide-induced ROS in 
human endothelial cells. AGI-1067, a stable analog for Probucol, has similar anti-
oxidant and vasculoprotective properties [45]. In ApoE-deficient mice, AGI-1067 
exhibited lipid-lowering and anti-inflammatory functions, thereby reducing the 
progression of atherosclerosis [45]. A phase III clinical trial of AGI-1067 has shown 
reduced morbidity from stroke and myocardial infarction in patients with athero-
sclerosis [43, 46].

TPCD NP Because conventional antioxidant therapies have shown limited clinical 
outcomes, it has been suggested that a broad-spectrum ROS-scavenging nanoparti-
cle could function as a potent therapy in atherosclerosis [47, 48]. A broad-spectrum 
ROS-eliminating material was synthesized and named TPCD and its nanoparticle, 
TPCD NP.  The nanoparticle was rapidly and effectively internalized by macro-
phages and vascular smooth muscle cells and inhibited inflammation and apoptosis 
in macrophages, by reducing intracellular ROS production. In ApoE−/− mice, TPCD 
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NPs inhibited development of atherosclerosis and decreased systemic and local 
 oxidative stress and inflammation [48]. It also reduced inflammatory cell infiltration 
in atherosclerotic plaques. The study indicated that TPCD NPs were safe after long- 
term treatment and have the potential to be developed as an anti-atherosclerotic 
nanotherapy [48].

10.4  Agents Targeting the Source of ROS in Reducing 
the Risk of CVD

Evidence suggests that the use of dietary antioxidant supplements failed to improve 
the health of patients with cardiovascular diseases. This is partly because of the lack 
of information about the specificity and the mechanism of action of these antioxi-
dants. This raises many questions in relation to our current knowledge of the molec-
ular processes involved in ROS formation and downstream effects. Based on 
previous experimental studies, it appears to be more beneficial to directly target the 
source of ROS in order to maintain the cellular antioxidant-redox homeostasis, 
thereby alleviating the oxidative damage of cardiovascular tissues [16, 18, 49, 50].

NADPH Oxidases Significant progress has been made to better understand the role 
of pro-oxidant enzymes, NADPH oxidases (NOX), in cardiovascular pathophysiol-
ogy and the contribution of individual NOX isoforms in the pathogenesis of CVD 
[21, 51–53]. Under physiological conditions, most NOX isoforms have very low or 
no constitutive activity, but the enzyme can be activated in disease states such as 
hypertension and diabetes. In these situations, increased NOX-derived ROS sur-
passes the handling capacity of the endogenous antioxidant system, thus leading to 
increased oxidative stress and ultimately tissue injury [16, 21]. Nox 1, 2, 4, and 5 
isoforms of NADPH oxidase are expressed in cardiomyocytes and vascular cells 
[21, 54–56]. Based on experimental evidence, it is postulated that NOX-generated 
ROS modulates both vascular physiology and pathology [21, 54, 56]. Studies in 
experimental animals revealed that Nox isoforms, particularly Nox2 and Nox4, are 
upregulated in heart disease and play crucial roles in cardiac hypertrophy, fibrosis, 
and cardiac remodeling [57–62]. However, Nox1 has been shown to be a potential 
target in atherosclerosis [21, 52, 63]. Certain compounds including apocynin [64], 
plumbagin [65], GLX351322 [66], and probucol [67] are shown to be associated 
with partial NOX inhibition and reduced ROS formation and showed a certain 
degree of protection against renal and cardiovascular injury in experimental studies. 
However, these compounds lack specificity toward the individual NOX isoform. 
Furthermore, angiotensin-converting enzyme inhibitors (ACEi), vitamins, angio-
tensin receptor antagonists, calcium channel blockers, as well as statins were found 
to inhibit NOX activity and reduce oxidative stress [19].

The advancement in NOX/ROS pathobiology has shown some degree of prog-
ress in developing NOX-specific agents. Some of these compounds, considered 
NOX-specific inhibitors, named GKT136901 and GKT137831, developed by 
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Genkotex (www.genkyotex.com/), have shown promising results at the preclinical 
level. Both GKT136901 and GKT137831 are dual inhibitors for the NOX1 and 
NOX4 isoforms, but they also confer a lesser degree of inhibitory action on NOX5 
and an almost negligible effect on NOX2 [68–71]. However, the inhibitory mecha-
nism of action of these compounds is poorly understood. Experimental data demon-
strated that application of GKT136901 partially reduced atherosclerosis and renal 
injury in diabetes via reduction in ROS production [72–74]. In addition, we and 
others have demonstrated more pronounced athero- and renoprotective effects of 
GKT137831  in animal models of insulin-deficient diabetes (STZ-ApoE KO and 
OV26 mice and Akita mouse) in association with reduced renal and vascular ROS 
formation and inflammation [50, 52, 63, 75, 76], suggesting that concomitant NOX1 
and NOX4 inhibition can provide simultaneous athero- and renoprotection. In addi-
tion, the antiatherosclerotic effect of GKT13781 was associated with a decrease in 
MCP-1 expression and reduced macrophage accumulation within vascular wall 
[52]. Studies in patients with GKT137831 have demonstrated excellent tolerability 
and reduction of various markers of chronic inflammation. A phase IIb clinical trial 
of GKT137831 in patients with type 2 diabetic kidney disease showed significant 
reduction in markers of inflammation and ROS; however, reduction in albuminuria 
was not observed [21]. In addition, a longer-duration and higher-dosage clinical 
trial of this drug is under investigation in patients with type 1 diabetic nephropathy. 
Since Nox5 is absent in rodents and present in humans in addition to other NOX 
isoforms, the function of NOX5 requires further extensive investigation. This will 
provide impetus for the development of isoform-specific NOX inhibitors. It needs to 
be shown if isoform-specific NOX inhibitors such as NOX5 inhibition alone or in 
combination with other NOX isoforms will have superior protection against end- 
organ tissue damage.

Xanthine Oxidase Xanthine oxidase (XO) is predominantly found in mammalian 
tissues with elevated expression in capillary endothelium [77]. This oxidase cata-
lyzes the conversion of hypoxanthine to xanthine and generates O2

∙− and H2O2 [78]. 
Pharmacological inhibition of XO by allopurinol or oxypurinol or by inactivating 
XO by a tungsten-rich, molybdenum-deficient diet to experimental animals has 
been shown to reduce atherosclerosis [79]. It has been revealed that NADPH oxi-
dase upregulates XO expression and thereby O2

∙− generation implying that factors 
controlling NADPH oxidase may also affect XO [80]. Among the XO inhibitors, 
allopurinol has proven to be effective as second-line drugs in patients suffering from 
chronic stable ischemic heart disease and has been recommended in this setting by 
current evidence-based guidelines [81]. It has been shown that inhibition of XO 
with allopurinol reduced ROS production and intracellular Ca2+ overload in both 
ischemia-reperfusion-injured rat hearts and hypoxia-reoxygenation-injured cardio-
myocytes [82]. The use of allopurinol in patients with type 1 diabetic nephropathy 
is under investigation in the prevention of early loss of renal function (PERL-study, 
NCT 02017171). Furthermore, a clinical study showed reduction in the progression 
of kidney disease and cardiovascular risk in patients with gout and diabetes treated 
with allopurinol [83, 84]. In addition, febuxostat, a nonpurine inhibitor of XO, has 
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been found to reduce stress-induced ROS production and adipose tissue  inflammation 
in experimental animals [85]. Febuxostat has been shown to have pharmacological 
advantages over the commonly used doses of allopurinol as it has higher serum 
urate-lowering efficacy, lower reported hypersensitivity reactions, and no require-
ment for adjustment of doses in patients with moderate renal impairment [86, 87]. 
However, long-term studies are required to demonstrate any beneficial effect of 
febuxostat on cardiovascular outcomes in CVD [88].

Lipoxygenases Lipoxygenases (LOs) are nonheme, iron-containing enzymes that 
catalyze insertion of molecular oxygen into fatty acids [89]. Previous studies have 
depicted the role of LOs in cardiovascular pathophysiology. Studies have indicated 
that LOs promote atherosclerosis by producing ROS and oxidized low-density lipo-
protein (Ox-LDL) [90, 91]. It has been shown in several experimental models that 
leukocyte-type 12-lipoxygenase- and 15-lipoxygenase-1 (12/15-LO)-deficient mice 
demonstrated decreased atherosclerosis [92–94]. Deficiency of 12/15-LO has also 
been shown to reduce interleukin production and the adhesion of monocytes to 
endothelial cells in atherosclerosis [92]. The number of 5-lipoxygenase (5-LO) 
positive cells has been reported to rise in human atherosclerotic plaque specimens, 
and increased 5-LO activity has been associated with plaque instability [95, 96]. 
Interestingly, inhibition of 5-LO decreased production of leukotrienes and coronary 
plaque burden (as assessed by CT scan) in patients suffering from acute coronary 
syndrome [96]. Another compound named DG031 which inhibits 5-LO activating 
protein (FLAP) has been found to decrease biomarkers of cardiovascular risk in 
patients [97]. Furthermore, it has been shown that targeting the 5-LO pathway could 
effectively lower coronary heart disease and abdominal aortic aneurysms. In addi-
tion, another 5-lipoxygenase inhibitor, VIA-2291 (atreleuton), reduced leukotriene 
production and coronary plaque burden in patients with recent acute coronary syn-
drome [96]. However, the results require to be confirmed in a larger scale trial for a 
longer duration. In addition to XO and LO, the cytochrome P450 (CYP) system has 
been shown to have an indirect role in ROS production in the cardiovascular system. 
It has been shown that cytochrome P450 produces ROS via activation of NOX, 
causing renal and vascular cell injury in diabetic mice [98, 99]. Upregulation of 
CYP expression has been shown to be associated with risk factors for MI, cardio-
myopathy, and heart failure [99]. A cardioprotective role for CYP2C9 inhibitors 
including chloramphenicol, cimetidine, and sulfaphenazole was demonstrated in an 
ischemia-reperfusion model of MI [100, 101].

There is evidence to suggest that uncoupled eNOS-mediated ROS generation 
leads to low levels of endothelial NO bioavailability which results in vascular endo-
thelial dysfunction in cardiovascular diseases [102]. Studies have shown that arte-
rial segments from humans with atherosclerosis exhibit eNOS uncoupling [103]. In 
addition, eNOS uncoupling can be reversed by treating with 5-methyl tetrahydrofo-
late (5-MTHF; the active form of folic acid), which elevates intracellular BH4 lev-
els, and thereby reduces vascular superoxide production [104].
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Mitochondrial Respiratory Chain There is increasing evidence suggesting that 
mitochondrial respiratory chain-derived ROS are crucial mediators in the progres-
sion of CVDs [105, 106]. Though most of the electron flux through mitochondria is 
used to reduce cellular oxygen to water, 1–2% of the electrons are leaked from the 
redox centers in the electron transport chain to oxygen [107, 108]. As a result, oxy-
gen is reduced to O2

∙− and acts as a precursor of most ROS and mediates oxidative 
chain reactions. O2

∙− is further dismuted by superoxide dismutase or spontaneously 
to H2O2 which in turn may be completely reduced to water or partially reduced to 
one of the powerful oxidants hydroxyl radical [107, 108]. It has been shown that 
there is a higher number of mitochondria in the cardiomyocytes in comparison to 
other cell types [107]. It is unknown whether mitochondrial deregulation is a cause 
or consequence of cellular dysfunction, but it appears to be part of a vicious cycle 
perpetuating ROS generation and end-organ injury. Under pathological conditions 
such as CVD, higher levels of mitochondrial ROS (mtROS) produced by increased 
flux through oxidative phosphorylation induce adverse effects, including cell apop-
tosis, hypertrophy, and inflammation leading to abnormal cardiac and vascular 
function [109–111]. Various studies have shown that mtROS regulate important 
vascular function in physiological conditions and activate inflammatory pathways 
in response to CVD risk factors [110, 112].

The importance of eliminating enhanced mitochondrial O2
∙− has been demon-

strated in a study using animals which were depleted for the manganese superoxide 
dismutase (Mn-SOD) allele. It has been found that the Mn-SOD-deficient mice 
exhibited perinatal lethality due to cardiac dysfunction [113]. In addition, a cardiac- 
specific Mn-SOD deletion in animals showed progressive congestive heart failure 
with morphological changes of mitochondria [112]. On the other hand, overexpres-
sion of the mitochondrial antioxidant peroxiredoxin-3 (Prx-3) has been shown to 
prevent left ventricular (LV) remodeling and heart failure after myocardial infarc-
tion [114]. Overall these studies imply that overproduction and less utilization of 
mitochondrial ROS in the heart and vasculatures play a key role in the development 
and progression of CVD and heart failure.

Recent progress in characterizing mtROS has led to the generation of a new para-
digm, in which blockade of mtROS production may serve as a promising therapy 
for inhibiting proinflammatory cytokine production and in turn CVD, including ath-
erosclerosis and heart diseases. The outer mitochondrial membrane protein voltage- 
dependent anion channel 1 (VDAC1) has been considered a promising target for 
therapeutic intervention related to mitochondrial dysfunction in CVD. The com-
pounds VBIT-3 and VBIT-4 have been shown to inhibit VDAC1 apoptosis- associated 
mitochondrial dysfunction, reestablishing mitochondrial membrane potential and 
ultimately lowering ROS production [115]. In addition, inhibition of mtROS by 
MitoTEMPO suppressed LPS-induced endothelial cell activation and aortic mono-
cyte recruitment in ApoE-deficient mice [116]. Furthermore, treatment with MitoQ 
(mitochondria-targeted ubiquinone) in Akita mice showed decreased nuclear accu-
mulation of profibrotic transcription factors, phospho-Smad2/3, and beta-catenin, 
indicating reduced TGF-β/Smad signaling in these mice [117]. These results 
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indicate that targeting of mitochondrial ROS can be a promising therapy for vascu-
lar inflammation and cardiovascular diseases.

10.5  Conclusion

The precise underlying redox mechanism of CVD and consequences of elevated 
ROS in cardiovascular tissue are intricate and have not yet been fully elucidated. 
But it is well established that ROS play a critical role in the pathogenesis and devel-
opment of CVD including atherosclerosis and heart diseases. Future studies are 
required to understand the mechanisms that control the activation of individual 
sources of ROS in cardiovascular cells, particularly the isoform-specific role of 
NOX enzymes in CVD, the crosstalk between NOX isoforms and other sources of 
ROS, and their involvement in cardiovascular diseases.
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Abstract
Heart failure (HF) remains a major cause of disability, suffering, and death world-
wide. The prevalence of HF increases with age and at an alarming pace in the elderly 
population aged 65 years or more. Importantly, the increase in HF prevalence, first 
seen in developed countries and currently in developing countries as well, has taken 
place despite tremendous advances in HF therapy and efforts to encourage imple-
mentation of management guidelines. The magnitude of this HF pandemic is stag-
gering, affecting nearly 26 million people across the world. There are several reasons 
for this continued increase in HF prevalence despite optimal therapy; of these, two 
that stand out include (i) the aging-induced cardiovascular (CV) remodeling that 
modifies disease expression and response to therapy and aging-related increase in 
reactive oxygen species (ROS) and oxidative stress (OXS) that augment adverse left 
ventricular remodeling after myocardial injury; ii) the lifelong exposure to CV dis-
ease (CVD) risk factors that increase ROS and OXS, as well as inflammation. Other 
pathways and mechanisms leading to HF that are yet to be addressed may also 
involve OXS and inflammation. This chapter focuses on the evidence for ROS-
induced myocardial damage during HF progression and some potential pharmaco-
logical interventions and strategies for reducing the damage. In addition, some key 
issues facing translation of experimental successes with antioxidant therapy into 
successes in clinical practice on the real-world stage are addressed.
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Inflammation · Myocardial infarction · Mitochondria · Oxidative stress · 
Prevention · Remodeling · Reperfusion injury

Abbreviations

ACS acute coronary syndrome
ACE angiotensin-converting enzyme
ACEIs angiotensin-converting-enzyme inhibitors
ADAM a disintegrin and metalloproteinase
AMP adenosine monophosphate
Ang II angiotensin II
ARB angiotensin II type 1 receptor blocker
ARNI angiotensin receptor neprilysin inhibitor
ATP adenosine triphosphate
BH4 tetrahydrobiopterin
BNP N-terminal B-type natriuretic peptide
CABG coronary artery bypass surgery
CAD coronary artery disease
CANTOS Canakinumab Anti-Inflammatory Thrombosis Outcomes Study
CARE cholesterol and recurrent events
cGMP cyclic guanosine monophosphate
CKD chronic kidney disease
CMR cardiac magnetic resonance
CPB cardiopulmonary bypass
CRP C-reactive protein
CVD cardiovascular disease
DM2 type 2 diabetes mellitus
ECG electrocardiogram
ECM extracellular matrix
eNOS endothelial nitric oxide synthase
EPR electron paramagnetic resonance
ESR electron spin resonance
ET endothelin
ETC electron transfer chain
GDF growth differentiation factor
GLP-1 antidiabetic glucagon-like peptide-1
GLP-1RA glucagon-like peptide/receptor agonist
H2O2 hydrogen peroxide
HDL high-density lipoprotein
HF heart failure
HFmrEF heart failure with midrange ejection fraction
HFpEF heart failure with preserved ejection fraction
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HFrEF heart failure with reduced ejection fraction
hs-CRP high-sensitivity C-reactive protein
IGF insulin-like growth factor
IL interleukin
IL-1ra recombinant IL-1 receptor antagonist
iNOS inducible nitric oxide synthase
I/R ischemia-reperfusion
IRA infarct-related artery
IZ infarct zone
LDL low-density lipoprotein
LV left ventricular
LVAD LV assist device
MACE major adverse cardiovascular events
MI myocardial infarction
MMP matrix metalloproteinase
MPO myeloperoxidase
MRA mineralocorticoid receptor antagonist
MRI magnetic resonance imaging
MUGA multigated acquisition scan
NDEA N-nitrosodiethylamine
NEP neprilysin
NADPH nicotinamide adenine dinucleotide phosphate
NDMA N-nitrosodimethylamine
NIZ noninfarct zone
•NO nitric oxide
NOO− NO-derived peroxynitrite
NOS nitric oxide synthase
NOX NADPH oxidase
NSTEMI non-ST-segment elevation MI
O2 oxygen
OFRs oxygen free radicals
OPN osteopontin
OXS oxidative stress
•OH hydroxyl radical
PCI percutaneous coronary intervention
PDGF platelet-derived growth factor
PKG phosphokinase G
PPCI primary PCI
O2•− superoxide anion radical
RAAS renin-angiotensin-aldosterone system
RCT randomized clinical trial
RIPC remote ischemic preconditioning
ROS reactive oxygen species
SGLT2 sodium glucose cotransporter-2
SLPI secretory leucocyte protease inhibitor
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SOD superoxide dismutase
SPARC secreted protein acidic and rich in cysteine
STEMI ST-segment elevation MI
TIMP tissue inhibitor of metalloproteinase
TGF transforming growth factor
TNF tumor necrosis factor
VSMC vascular smooth muscle cell

11.1  Introduction

In this second decade of the twenty-first century, heart failure (HF) remains a major 
cause of disability, suffering, and death worldwide [1–13]. The prevalence of HF 
increases with age and reaches alarming proportions in elderly people aged ≥65 
years, a group that is growing steadily [14–19]. Over the last two decades alone, HF 
has grown into a serious pandemic, affecting nearly 26 million people in developed 
and developing countries across the world [3–6]. In Europe, both the prevalence and 
risk of HF in the adult and aging population are significant; it is reported that HF 
occurs in about 1–2% of adults and rises to more than 10% in those who are older 
than 70 years [1]; the lifetime risk of HF in people aged 55 years is reported at 33% 
for men and 28% for women [20]. In the United States, HF prevalence in people 
aged ≥20 years is reported to have increased from 5.7 million over 2009–2012 to 
6.5 million over 2011–2014, with a projected increase by 46% over 2012–2030, 
which equates to over 8 million people aged ≥18 years with HF [6]; HF incidence 
in people aged >65 years approached 21 per 1000 or 2.1%, and HF risk was highest 
among African Americans [6]; the lifetime risk of HF was 20–45% for people aged 
45–95 years and was higher for people with hypertension (HTN) and obesity irre-
spective of age [6]. Across Asia, estimates of HF prevalence ranged between 1.26 
and 6.7% [6, 21]. Taken together, the global burden of HF in the aging population is 
clearly and undeniably staggering [3–6, 14–16, 22, 23]. Importantly, this increase in 
HF prevalence, first in developed countries and currently in developing countries as 
well, has taken place despite tremendous advances in HF therapy and efforts to 
encourage implementation of management guidelines [1, 2, 7–13].

There are many causes for HF (Fig.  11.1) and these have been extensively 
reviewed [1, 8]. New pathophysiological mechanisms leading to HF continue to be 
elucidated, and potential targets are being identified for therapeutic intervention 
[24, 25]. The two leading causes of HF remain myocardial infarction (MI) and HTN 
[1–19]. In his 2015 Lancet lecture, Braunwald boldly stated that it is “time to declare 
war on HF” and nicely underpinned several targets for urgent action [26]. However, 
as depicted in Fig. 11.2, one additional target that needs urgent action concerns the 
lifelong onslaught from reactive oxygen species (ROS), oxygen free radicals 
(OFRs), and oxidative stress (OXS) associated with exposure to cardiovascular dis-
ease (CVD) risk factors, such as hyperlipidemia, obesity, type 2 diabetes mellitus 
(DM2), HTN, and aging; although OXS has been recognized as an important 
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mechanism of HF and a major contributor to both aging [16, 18] and HF progres-
sion [27, 28], definitive therapy for quenching increased levels of ROS/OFRs, and 
thereby limiting OXS and its potential contribution to excess morbidity and mortal-
ity in the aging population with HF, is still lacking [22]. Another target that needs 
urgent action is inflammation, which is also related to lifelong exposure to the same 
CVD risk factors and is exacerbated by acute triggers such as ischemia, ischemia- 
reperfusion (I/R), and MI, and appears to interact synergistically with OXS to inten-
sify myocardial damage and HF progression [16, 18, 19, 28], as depicted in Fig. 11.3. 
In that context, inflammation can be viewed as the fuse that ignites the smouldering 
background fire of OXS into the raging flames of a wildfire that exacerbates HF 
progression.

Extensive research over the last four decades has elucidated the underlying cel-
lular, subcellular, and molecular mechanisms involved in the generation of ROS/
OFRs and OXS as well as the central role of mitochondria [29, 30] and identified 
several key signaling pathways that could serve as potential targets for pharmaco-
logical intervention [31–33]. An in-depth review of all the mechanisms and path-
ways illustrating the role of OXS in HF would be too lengthy for this one chapter, 
and several of them are addressed in other chapters of this book. The chapter here 
focuses on some potential future pharmacological interventions aimed at reducing 
ROS-induced damage during HF progression in the clinical setting. In addition, 
some key issues facing the translation of experimental successes with antioxidant 

Fig. 11.2 The roles of ROS/OXS and inflammation in the cardiovascular disease continuum and 
the progression to heart failure. Adapted and modified from Jugdutt (2014) [18, 19]
∗Cardiovascular risk factors tied to ↑ ROS, OXS, and inflammation. Other abbreviations as in text: 
ECM extracellular matrix, HFpEF heart failure with preserved ejection fraction, HFrEF heart 
failure with reduced ejection fraction, I/R ischemia-reperfusion, LV left ventricular, OXS oxidative 
stress, PPCI primary percutaneous coronary intervention, ROS reactive oxygen species, STEMI 
ST-segment elevation myocardial infarction

Cardiovascular
risk factors

&
comorbidities

• Aging *
• Genetic factors 
• Nutrition & diet 
• Smoking (tobacco)
• Sedentary lifestyle
• Stress (mental,
   psychological,
   physical; metabolic, 
   cellular)  
• Dyslipidemias * 
• Diabetes type 2 *
• Obesity *
• Metabolic syndrome *
• Hypertension * 
• Exposure to 
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↑ROS/OXS &↑Inflammation
synergism

Aging
Hypertension

Obesity
Metabolic syndrome
Insulin resistance
Type 2 diabetes
↑blood glucose
↑HbA1C

Hyperlipidemia
↑total cholesterol
↑triglyceride
↑LDL cholesterol
↓HDL cholesterol

CAD

Ischemia
I/R injury

MI

HFrEF

Coronary vascular,
microvascular,
& endothelial dysfunction
↓ coronary flow reserve

↑ECM, ↑LV fibrosis, ↑ atrial fibrosis
LV hypertrophic concentric remodeling
LV diastolic dysfunction
↓systolic reserve with exercise

HFpEF

Metabolic dysregulation
↓ myocardial bioenergetics

Neurohumoral dysregulation

Atrial fibrillation
Ventricular arrhythmias
Renal dysfunction
Pulmonary hypertension

↑ salt intake ↑ fat intake ↑ sugar & sweet 
beverage intake

Poor diet & ↓ physical activity

CVD risk factors
(genetic predisposition, environmental)

Ischemia

Fig. 11.3 Schematic of putative interactions between CVD risk factors and aging, comorbidities, 
increased ROS and OXS, increased inflammation, fibrosis, vascular, and LV dysfunction in the 
march to HFpEF
Abbreviations as in text: CAD coronary artery disease, CVD cardiovascular disease, ECM extracel-
lular matrix, HDL high-density lipoprotein, HFpEF heart failure with preserved ejection fraction, 
HFrEF heart failure with reduced ejection fraction, I/R ischemia-reperfusion, LDL low-density 
lipoprotein, LV left ventricular, MI myocardial infarction, OXS oxidative stress, ROS reactive oxy-
gen species

therapy into successes in clinical practice on the real-world stage are addressed, and 
the importance of proper validation in carefully designed randomized clinical trials 
(RCTs) is discussed.

11.2  Pathophysiology of Progressive Remodeling in Heart 
Failure

Six points about the pathophysiology of the progressive adverse remodeling leading 
to progression in HF severity need emphasis.

11.2.1  Multiple Causes of the HF Syndrome

It is important to appreciate that multiple etiologies (Fig. 11.1), via diverse patho-
physiological mechanisms, converge to produce the final clinical syndrome of HF [1, 
8]. In the final analysis, HF represents a failure of homeostasis on several fronts; 
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simply put, the left heart fails to pump enough oxygenated blood forward and main-
tain optimal perfusion of the tissues in the systemic circuit, whereas the right heart 
fails to pump all venous blood returned from the tissues to the lungs for reoxygen-
ation in the pulmonary circuit; the congested lungs in turn fail to optimally reoxygen-
ate the venous blood and return it all to the left heart to maintain circulatory flow. The 
reduced cardiac output generated by the failing heart can no longer match the meta-
bolic demands of normal activities of daily life. The net effect of these failures at the 
level of the heart, systemic and pulmonary circulatory circuits, and the backup of 
blood in the lungs and tissues manifest themselves in the patient’s typical complaints 
of generalized weakness and fatigue, shortness of breath, and swelling of the ankles 
and legs; on examination, the patients show characteristic signs such as prominent 
neck veins with elevated jugular venous pressure, congestion of the lungs with typi-
cal crackles on auscultation, evidence of edema in the extremities, hemodynamic 
evidence of reduced cardiac output and/or elevated intracardiac pressures at rest or 
with exercise stress, and bedside two-dimensional (2D) or three-dimensional (3D) 
echocardiographic evidence of left ventricular (LV) global and regional systolic dys-
function with reduced LV ejection fraction (LVEF), as well as evidence of LV dia-
stolic dysfunction and remodeling of LV structure and shape [35–46]. Laboratory 
test panels often display metabolic abnormalities related to the severity and duration 
of stress on different organs and tissues, such as reduced mixed venous oxygen satu-
ration and arteriovenous oxygen difference, metabolic and respiratory acidosis with 
elevated lactate levels, altered blood profile with anemia, electrolyte imbalance with 
changes in serum sodium (Na+) and potassium (K+) levels, changes in serum creati-
nine (kidney stress), serum albumin and liver enzymes (liver stress), and biomarkers 
such as N-terminal B-type natriuretic peptide (BNP) and NT-proBNP (cardiac stress) 
and C-reactive protein (CRP; for inflammation). Metabolic panels reveal evidence of 
neurohormonal activations such as the sympathetic nervous system, renin-angioten-
sin-aldosterone system (RAAS), and endothelin (ET) system. Evidence of hypothy-
roidism is often present in the blood test. Other tests, such as electrocardiogram 
(ECG), chest X-ray, multigated acquisition (MUGA) scan, nuclear stress test, mag-
netic resonance imaging (MRI) or cardiac magnetic resonance (CMR), contrast echo 
with 2D and 3D imaging, pharmacologic stress test, and cardiac catheterization with 
angiography, provide clues regarding the precise etiology. No routine blood tests are 
currently done to screen for OXS.

11.2.2  Two Main Subsets of HF with Divergent LV Remodeling

Notwithstanding the multiplicity of etiologies leading to HF (Fig. 11.1), the two 
commonest aforementioned causes are MI and HTN, and they account for the 
majority of cases of HF seen in clinical practice and show nearly equal distribution 
(about 50% with MI and about 50% with HTN) [1, 2, 7–13]. The type and degree of 
adverse cardiac remodeling in HF depend on the underlying cause; dilative and 
eccentric remodeling with eccentric LV hypertrophy develops after ST-elevation MI 
(STEMI) and volume overload conditions; and concentric remodeling with 
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concentric LV hypertrophy develops in HTN and other pressure overload conditions 
(Fig. 11.2). The progressive, adaptive, and maladaptive remodeling of cardiac struc-
ture, geometric shape, and function that occurs over time in survivors of the differ-
ent types of CVD insults takes different paths, as illustrated by MI [34–44] and 
HTN [45, 46], as well as various cardiomyopathies, including those associated with 
DM2 and obesity.

11.2.3  Different Subsets of HF Based on LVEF

Stratification of HF on the basis of LVEF has unmasked three categories with 
distinct phenotypes that are now recognized in the latest HF management guide-
lines [1, 2]: (i) HF with reduced LVEF <40% (HFrEF); (ii) HF with preserved 
LVEF ≥50% (HFpEF); and (iii) most recently, an intermediate group with mid-
range LVEF 40–49% (HFmrEF). Besides the difference in LVEFs, the criteria 
for diagnosis of HFpEF and HFmrEF both include the presence of elevated BNP 
levels and either LV diastolic dysfunction or abnormal structure reflected in LV 
hypertrophy and/or left atrial enlargement [1]. In survivors of the acute phase of 
the insults, MRI or CMR can be used, where available, not only to quantify 
ventricular volumes, LVEF, and LV mass but also to assess fibrosis and scar 
size, and provide clues as to the precise etiology in various cardiomyopathies [1, 
2]. In the context of ROS and OXS, the most data currently available is for these 
two main categories of HF, namely, HFrEF and HFpEF.

11.2.4  Divergent Types of Remodeling in the Two Subsets of HF 
Based on LVEF

Over the last four decades, the underlying structural, biochemical, cellular, subcel-
lular, molecular, and metabolic derangements in HF following MI and HTN have 
been extensively researched, and key pathways and molecules have been identified 
and targeted by therapeutic interventions that have undisputedly reduced the num-
ber of patients dying and suffering from this debilitating chronic disease [1, 2, 25–
35]. It is well appreciated that the nature of the insults and rates of progression of 
remodeling after MI and HTN are very different (Figs. 11.2 and 11.3). Typically, 
remodeling after anterior transmural MI or STEMI has two components; an early, 
dramatic, and rapidly developing regional expansion of the infarct zone with thin-
ning and dilation (infarct expansion), followed by more gradual dilative global LV 
remodeling of both the IZ and NIZ during the healing and repair phases. Both these 
two components of remodeling are associated with HFrEF and poor outcome [34, 
39–43, 52–58], and cumulative evidence suggests that both OXS and inflammation 
play distinct pathophysiologic roles in the two components of remodeling during 
the development and progression of HFrEF [27–44, 48–58]. In contrast, remodeling 
in HTN progresses at a much slower pace, in parallel with progression of the hyper-
tensive disease and increasing blood pressure; this results in progressive concentric 
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LV remodeling with development of HFpEF and poor outcome [45, 46]. Cumulative 
evidence over the last two decades indicates that OXS and inflammation also play 
important pathophysiologic roles in the development and progression of HFpEF, 
often with significant contribution from various comorbidities [27–33, 59–69]. 
These current concepts are summarized in Figs.  11.3 and 11.4. Furthermore, 
research has shed light on the various mechanisms leading to OXS and inflamma-
tion and their roles in the pathophysiology of CVD and the progression to HF via 
the chains of ischemia-MI-I/R-/HFrEF and HTN-HFpEF, as illustrated in Figs. 11.2, 
11.3, and 11.4. Research has also suggested novel potential therapeutic targets.

11.2.5  Evidence on the Roles of OXS and Inflammation in HFrEF 
and HFpEF

Evidence for the roles of OXS and/or inflammation in the progression of HFrEF and 
HFpEF were addressed in several studies, and some key reports are summarized 
below.

Overweight & obesity, hypertension, 
diabetes, iron deficiency

HFpEF
Comorbidities

Pro-inflammatory state
↑ inflammation

(↑ IL-6, TNFα, sST2, Pentraxin-3 levels)

Monocyte migration 
into subendothelium

Release TGF-β

Fibroblast Myofibroblast

Collagen deposition in interstitium

HFrEF
Comorbidities

Overweight & obesity, hypertension, 
diabetes, iron deficiency

Pro-inflammatory state
↑ inflammation

(↑ IL-6, TNFα, sST2, Pentraxin-3 levels)

Ischemia/STEMI

Adjacent cardiomyocyte
↓guanylate cyclase

↓cGMP
↓PKG

Release hypertrophy brake

↑ Resting 
tension

Hypertrophy

Cardiomyocyte
↑ROS (OXS)

Autophagy, apoptosis, necrosis

Attract leucocytes, monocytes

Inflammation, repair, remodeling

Coronary microvascular endothelium

↑ROS/OXS, 
↑peroxynitrite (ONOO–), ↓ nitric oxide (NO)

Adhesion molecules
(VCAM, E-selectin)

Fig. 11.4 Schematic showing steps in myocardial remodeling in HFpEF versus HFrEF. Adapted 
from Paulus and Tschӧpe (2013) [46]
Abbreviations: as in text
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11.2.5.1  Multiple Biomarkers
In a clinical study of the different biological pathways that characterize HFrEF and 
HFpEF, Tromp et al. [59] analyzed 92 biomarkers in a cohort of 804 elderly HF 
patients (47% HFrEF, 27% HFpEF; mean age 74 years); they found that key mark-
ers of HFrEF were BNP, growth differentiation factor-15 (GDF-15), IL-1 receptor- 
like 1, and activating transcription factor 2, whereas key markers in HFpEF were 
integrin subunit beta-2 and catenin beta-1. They concluded that biomarker profiles 
in HFrEF are related to regulation of sequence-specific DNA-binding transcription, 
smooth muscle cell proliferation, and nitric oxide (NO) biosynthesis and metabo-
lism, whereas those for HFpEF were related to cell adhesion, leucocyte migration, 
cytokine response and inflammation, neutrophil degranulation, and ECM organiza-
tion, and the profile for HFmrEF was intermediate between those of HFrEF and 
HFpEF [59]. However, OXS was not addressed.

11.2.5.2  Multiple Comorbidities
In a small experimental study of multiple comorbidities in swine with chronic 
streptozotocin- induced diabetes, high-fat diet, and HTN induced by renal artery 
embolization over 6 months, Sorop et al. [60] documented that increased blood 
glucose and triglyceride, kidney dysfunction, and HTN were associated with evi-
dence of systemic inflammation (increased IL-6 and tumor necrosis factor-α 
[TNF- α]), myocardial OXS (with increased superoxide or O2•−, NADPH oxidase 
or NOX activity, and endothelial NO synthase or eNOS uncoupling), coronary 
microvascular dysfunction (with decreased NO and impaired endothelial-depen-
dent vasodilation), as well as increased myocardial collagen, decreased capillary/
fiber ratio, with hemodynamic evidence of increased passive myocardial stiffness, 
LV diastolic dysfunction, and HFpEF [60]. However, OXS was not directly 
addressed in that study.

11.2.5.3  Microvascular Dysfunction
In a small clinicopathologic study of LV biopsies in 3 groups of patients (HFpEF, 
n = 36; aortic stenosis, n = 67; and HFrEF, n = 43), van Heerebeek et al. [65] 
found that protein kinase G (PKG) activity was lower in patients with HFpEF 
than in patients with aortic stenosis or HFrEF; importantly, the lower PKG level 
was associated with lower cyclic guanosine monophosphate (cGMP) concentra-
tion and higher nitrosative-OXS as well as a higher cardiomyocyte resting ten-
sion which was normalized by in  vitro exogenous PKG administration [65]. 
They also noted that higher nitrosative-OXS, reflected in higher myocardial 
nitrotyrosine content in HFpEF than in HFrEF (and aortic stenosis) and known 
to impair NO-cGMP-PKG signaling, might result from the higher prevalence of 
associated comorbidities that increase OXS and inflammation (such as HTN, 
obesity, and DM2) in the HFpEF group. The patients in that study were older 
adults with a mean age of 60–65 years [65]. The overall findings suggested that 
microvascular dysfunction and PKG might be useful targets in HFpEF, but these 
need validation.
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11.2.5.4  Coronary Flow Reserve and Microvascular Dysfunction
In a prospective observational study of coronary flow reserve in 202 patients with 
HFpEF and without unvascularized large vessel CAD, Shah et al. [62] documented 
a high prevalence of coronary microvascular dysfunction reflected in endothelial 
dysfunction (low reactive hyperemic index), higher albumin/creatinine ratio, 
NT-proBNP, and right ventricular dysfunction [62]. The patients in that study were 
elderly (mean age 72–75 years) with several comorbidities (such as HTN, obesity, 
DM2, hyperlipidemia, chronic kidney disease [CKD], cigarette smoking) known to 
increase OXS and inflammation.

In another study of coronary flow reserve using phase contrast cine-MRI of the 
coronary sinus to assess flow as an index of LV microvascular function in elderly 
patients (25 HFpEF, mean age 73 years; 13 hypertensive LV hypertrophy, age 67; 18 
controls, age 65), Kato et al. documented that coronary flow reserve was lower in 
76% of the HFpEF patients compared to that in patients with hypertensive LV 
hypertrophy and the controls; in addition, they found that coronary flow reserve cor-
related with serum BNP levels [64]. The findings suggested that impairment of 
coronary flow reserve might be related to the severity of HFpEF [64]. The patients 
in that study had several comorbidities (such as HTN, DM2, hyperlipidemia, ciga-
rette smoking) that are known to increase OXS and inflammation.

11.2.5.5  OXS Markers
Despite these compelling reports of the role of OXS and inflammation in HFpEF, 
controversy exists. In one small study of 50 patients with and without HFpEF, Negi 
et al. [69] measured various OXS markers (such as derivatives of reactive oxidative 
metabolites, F2-isoprostanes, ratios of oxidized to reduced glutathione and cyste-
ine) and angiotensin-converting-enzyme (ACE) levels and activity; while they 
found an association between HFpEF and male gender and higher body mass index 
(BMI), they did not find significant evidence of systemic renin-angiotensin system 
(RAS) activation or OXS, leading them to conclude that their finding may explain 
the failure of RAS inhibitors to alter outcomes in HFpEF [69].

11.2.5.6  Unexplained Mode of Death in HFpEF
In a systematic review of 1608 papers on HFpEF from 1985 to 2015, the authors 
found that about 25% of deaths were sudden, calling for a longitudinal multicenter 
global registry [70]. Whether there is an arrhythmic and/or ischemic contribution to 
the mode of death in HFpEF is not currently established; however, this appears very 
likely in view of the increased OXS [60–63, 65, 67–69], inflammation [59–61, 63], 
ECM and fibrosis [59–69], microvascular disease [62, 63], impaired coronary flow 
reserve [64, 66], and impaired bioenergetics [67], as depicted in Fig. 11.3.

11.2.5.7  Merits of RCT Versus Observational Data in HF
From another review of electronic databases on observational nonrandomized stud-
ies versus those in RCTs until the end of 2017 for the association between drug 
therapy and mortality in HF patients, the authors concluded that “treatment effects 
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cannot be estimated from observational data” [71]. That finding supports the need 
for RCTs to guide therapy.

In summary, cumulative evidence supports the role of CVD risk factors in pro-
moting OXS and inflammation (Figs. 11.2, 11.3, and 11.4), thereby leading to coro-
nary microvascular dysfunction, subendocardial ischemia, regional and diffuse 
fibrosis, cardiac steatosis, vascular stiffness, and adverse LV remodeling.

11.2.6  Impact of Multiple Etiologies and Comorbidities on HF 
Therapy

The distinction between the two HF categories based on severity of systolic 
dysfunction is logical from a treatment perspective because the specific cate-
gory might dictate the specific therapeutic approach to be recommended in com-
pliance with the management guidelines [1, 2, 10–13]. Since the two main 
categories of HF (HFrEF and HFpEF) based on LVEF are characterized by two 
divergent types of LV remodeling (Fig. 11.2), it is not surprising that therapies 
recommended for the management of the two distinct categories of HF in the 
updated published guidelines should be quite different [1, 2, 10–13], as reflected 
in the summaries shown in Tables 11.1, 11.2, and 11.3. However, it should be 
noted that, whereas therapies for HFrEF are fairly well-defined (Tables 11.1 and 
11.2), those for HFpEF still remain to be defined (Table 11.3); this is partly due 
to the heterogeneous causations and the presence of multiple CV comorbidities 
in HFpEF [66], such as HTN, obesity, metabolic syndrome, DM2, hyperlipid-
emias, CAD, atrial fibrillation, ventricular arrhythmias, renal dysfunction, and 
pulmonary hypertension (Fig. 11.3), and these require different specific thera-
pies (Table  11.3). They also have several non-CV comorbidities, including 
osteoarthritis, hypothyroidism, chronic obstructive lung disease, sleep apnea, 
CKD, iron-deficiency anemia, anxiety, and depression, that require separate 
therapies. In addition, RCTs have not distinguished between HFpEF and 
HFmrEF because the phenotypes are still being characterized [72]; as a result, 
the recommendations have tended to lump the two categories into a single 
HFpEF category at this time [1, 2]. Furthermore and as mentioned before, at 
least 50% of HF patients have HFpEF, and they tend to be elderly, and aging is 
an important CV risk factor as shown in Figs. 11.3, 11.4, and 11.5.

11.2.7  Management Guidelines for HF Therapy and HF 
Pathophysiology

It should also be noted that management guidelines that are updated by the major 
CV societies worldwide represent the consensus opinion of experts based on avail-
able evidence mainly from RCTs, are meant to guide therapy, and do not address all 
pertinent issues [1, 2]. Guideline-driven management of HF centers around improv-
ing clinical status, functional capacity, and quality of life and reducing 
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Table 11.1 Recommended 
pharmacologic therapies 
during acute STEMI and 
reperfusion

During acute STEMI and 
reperfusion
Thrombolytics
Antiplatelet agents
  P2Y12 inhibitor (prasugrel, 

ticagrelor), clopidogrel
  Aspirin
  GPIIb/IIIa inhibitors
  Cangrelor
Anticoagulants
  Unfractionated heparin
  Bivalirudin
  Enoxaparin
  Fondaparinux
Fibrinolytics
  Fibrin-specific agent 

(tenecteplase, alteplase, 
reteplase)

  Antiplatelet agents (aspirin, 
clopidogrel, P2Y12 inhibitor)

  Anticoagulants (enoxaparin, 
unfractionated heparin)

During maintenance after 
STEMI
Antithrombotic agents
  Aspirin
  Antiplatelet agents
  Proton pump inhibitors
  Oral anticoagulants
Beta-blockers
  Metoprolol
Lipid-lowering agents
  Statins
  Ezetimide
  PCSK9 inhibitors
Nitrates
Calcium antagonists
Angiotensin-converting-enzyme 
inhibitors (ACEIs)
Angiotensin II receptor blockers 
(ARBs)
Mineralocorticoid/aldosterone 
receptor antagonists (MRAs)
  Eplerenone

Summarized and adapted from 
Ponokowski et al. (2016) [1]
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Table 11.2 Recommended 
pharmacologic therapies for 
HFrEF

HFrEF
Angiotensin-converting-enzyme 
inhibitors (ACEIs)
  Captopril, enalapril, lisinopril, 

ramipril, trandolapril
Beta-blockers
  Bisoprolol, carvedilol, metoprolol, 

nebivolol
Angiotensin type I receptor blockers 
(ARBs)
  Candesartan, valsartan, losartan
Mineralocorticoid/aldosterone 
receptor antagonists (MRAs)
  Eplerenone, spironolactone
Angiotensin receptor neprilysin 
inhibitors (ARNIs)
  Sacubitril/valsartan
If-channel blocker
  Ivabradine
Diuretics
  Loop diuretics
   Furosemide, bumetanide, 

torasemide
Thiazides
  Bendroflumethiazide, 

hydrochlorothiazide, metolazone, 
indapamide

Potassium-sparing diuretics
  Spironolactone/eplerenone, 

amiloride, triamterene
Other drugs
  Hydralazine and isosorbide dinitrate
  Digoxin
  N-3 PUFA (polyunsaturated fatty 

acid)
Drugs of unproven benefit
  3-Hydroxy-3-methylglutaryl-

coenzyme A reductase inhibitors 
(statins)

  Oral anticoagulants and antiplatelet 
therapy

  Renin inhibitors
Drugs not recommended/
contraindicated
  Non-dihydropyridine calcium- 

channel blockers (CCBs)
  Verapamil and diltiazem unsafe
  Amlodipine and felodipine safe, 

only if compelling indication

Summarized and adapted from 
Ponokowski et al. (2016) [1]
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Table 11.3 Recommended and other pharmacologic therapies for HFpEF

In the absence of irrevocably positive RCT evidence that any drug treatment reduces 
mortality or morbidity in HFpEF, 2016 management guidelines recommend the 
following:
Treatment of cardiovascular comorbidities
Treatment of noncardiovascular comorbidities
Treatment of HF symptoms and signs of congestion with diuretics
Treatment effects on “symptom relief” reported as follows:
  Diuretics: usually positive, as for HFrEF
  ACEIs: evidence inconsistent
  ARBs: evidence inconsistent except for candesartan (improve NYHA class)
  Beta-blockers and MRAs: no evidence
Treatment effects on “HF hospitalizations” as follows:
  ACEIs, ARBs
  Patients in sinus rhythm: some evidence of benefit with nebivolol, digoxin, spironolactone, 

and candesartan
  Patients in atrial fibrillation: evidence inconclusive for beta-blockers, absent for digoxin
Treatment effects on “mortality” as follows:
  No RCT evidence for ACEIs, ARBs, beta-blockers, and MRAs except
  Nebivolol reduced the “combined death and cardiovascular hospitalization endpoint”
Other drugs for specific comorbidities:
Atrial fibrillation:
  Anticoagulants: positive evidence for reducing risk of thromboembolism
   Antiplatelet agents: no proven benefit
   Non-vitamin K oral anticoagulants (NOACS), such as apixaban, dabigatran, rivaroxaban: 

increase risk of hemorrhage in renal dysfunction, use contraindicated
   Rate control: aggressive control might be deleterious
    Digoxin, beta-blockers or rate-limiting CCBs, monotherapy or used in combination
    Verapamil or diltiazem should not be combined with a beta-blocker
Hypertension:
  Non-RCT evidence favors treatment of systolic blood pressure in HFpEF with
   Diuretics, ACEIs, ARBs, and MRAs all effective; patients on ACEIs and beta-blockers 

should not receive the ARB olmesartan based on one study
   Beta-blockers may be less effective
Type 2 diabetes:
  Metformin, considered first-line drug
Type 2 diabetes and cardiovascular risk prevention:
  Empagliflozin, sodium glucose cotransporter-2 (SGLT2): induces diuresis, natriuresis, 

weight loss; lowers blood pressure, preload/afterload; RCT evidence on efficacy of this drug 
for reducing blood glucose, HbA1C, and body weight (probably by increased glucose 
excretion and osmotic diuresis); reducing HF hospitalization and cardiovascular mortality; 
reduce cardiovascular events and heart failure. Warning: aggressive management of 
dysglycemia may be harmful

  Liraglutide, glucagon-like peptide/receptor agonist (GLP1RA): improve glycemic control, 
reduce risk of myocardial infarction, cerebrovascular accident, cardiovascular death in 
adults with type 2 diabetes and cardiovascular disease. Warning: stop drug if pancreatitis is 
suspected or confirmed

(continued)
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Table 11.3 (continued)

Myocardial ischemia:
  Treatment as per published management guidelines for angina and HFrEF
Exercise intolerance:
  Combined endurance/resistance training
Obesity:
  Diet and exercise
  Various weight-loss drugs (FDA approved and non-FDA approved)
Hyperlipidemias:
Lipid-lowering agents as in myocardial ischemia, infarction, and HFrEF
  Statins
  Ezetimide
  PCSK9 inhibitors
Other drugs proposed for HFpEF
LCZ696 (sacubitril/valsartan), angiotensin receptor neprilysin inhibitor: approved for 
treatment of HFrEF in 2015; trials in HFpEF are in progress and results are pending

Summarized and adapted from Ponokowski et al. (2016) [1], and updated from 2018 Congresses 
of the American College of Cardiology, European Society of Cardiology, and American Heart 
Association
Abbreviations as in text

hospitalization, morbidity, and mortality [1, 2]. It is recognized that several drugs 
that show efficacy in the short term may prove to be harmful in the long term [1, 2].

In HFrEF, pharmacotherapy consists of diuretics and neurohumoral antagonists 
such as ACE inhibitors (ACEIs), mineralocorticoid receptor antagonists (MRAs), 
and beta-blockers in the absence of contraindications or intolerance [Table 11.2]. 
Based on the results of a single RCT showing that the new compound LCZ696, 
which combines moieties of the angiotensin II (Ang II) type 1 receptor blocker 
(ARB) valsartan and the neprilysin (NEP) inhibitor sacubitril in a single molecule 
that is an angiotensin receptor neprilysin inhibitor (ARNI) and acts on both the 
RAAS and the neutral endopeptidase system, was superior to the ACEI enalapril in 
reducing HF mortality and hospitalization [73], it was recommended to replace 
ACEIs in HFrEF patients who continue to be symptomatic despite optimal therapy 
[1, 2, 74–76]. Several reports supported the replacement of ACEI with sacubitril/
valsartan in patients with HFrEF [75, 76]. Moreover, since ARBs do not consis-
tently reduce mortality, they are only used in ACEI-intolerant patients [1, 2]. The 
If-channel blocker ivabradine is used to control elevated heart rate above 70 beats 
per minute [1, 2].

Some safety issues with the ARNI sacubitril/valsartan include hypotension and 
angioedema [1, 2]. Recent reports in 2018 of contamination with human carcino-
gens N-nitrosodiethylamine (NDEA) in irbesartan and both N-nitrosodimethylamine 
(NDMA) and NDEA in valsartan supplied by certain pharmaceutical firms have 
raised additional concern that needs to be addressed. Of note, the recently updated 
recall list of the Food and Drug Administration (FDA) in the United States includes 
the ARB losartan for the same reason.
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In the absence of firm and specific recommendations for HFpEF in the 2016 
management guidelines [1, 2], several studies have been evaluating the efficacy of 
LCZ696 in HFpEF; while the final RCT results are still pending, there is consider-
able enthusiasm and hope of a positive outcome [76–81]. While awaiting RCT 
results in HFpEF, physicians in current clinical practice have tended to use therapies 
recommended for HFrEF to treat the HF component, including diuretics, beta- 
blockers, MRAs, ACEIs, and ARBs [1, 2], in addition to other specific therapies for 

Aging-related CV changes
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• baroreceptor sensitivity
• ↑ LV stiffness, ↓ CV compliance, ↑
peripheral vascular resistance

• CV responsiveness to beta-agonists 
and beta-blockers
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• ↑Aortic stiffness 
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• ↑ mitochondrial stress & dysfunction
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Fig. 11.5 Some aging-related cardiovascular and noncardiovascular physiological and patho-
physiological changes and associated comorbidities
Adapted from Jugdutt [14–19, 34–36, 49]
Abbreviations: ↑ increased, enhanced, ↓ decreased, AV atrioventricular, CV cardiovascular, GI gas-
trointestinal, HF heart failure, LV left ventricular
Other abbreviations as in text
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common comorbidities such as HTN and DM2, an approach that has resulted in 
partial benefit [1, 2]. As summarized in Table 11.3, newer therapies, such as the 
sodium glucose cotransporter-2 (SGLT2) inhibitor empagliflozin and the glucagon- 
like peptide/receptor agonist (GLP-1RA) liraglutide, which were recently shown to 
improve control of DM2 as well as CV events and CV risks [80, 82, 83], are being 
implemented. However, there have been several negative studies; a large RCT of 
spironolactone in HFpEF failed to show benefit [84]. Although in patients with 
HFpEF an RCT with the phosphodiesterase-5 inhibitor sildenafil on exercise capac-
ity [85] and another randomized double-blind crossover study with isosorbide 
mononitrate on daily activity [86] were negative, a subsequent meta-analysis of 
RCTs showed the benefit of exercise in HFpEF [87].

11.2.8  Studies on the Role of Inflammation 
in the Pathophysiology of HF Progression

The critical roles of acute and chronic inflammation during acute MI and the subse-
quent healing processes, and the progressive remodeling that spans these processes 
during remote MI and well beyond over years into the chronic HF stage, have been 
well documented, and various anti-inflammatory strategies have been proposed over 
the last five decades [34–36, 39, 41–44, 48–55, 58, 88–102]. These studies and oth-
ers have underscored several pertinent points that need consideration when develop-
ing therapy for HFrEF after MI. The main points include the following.

11.2.8.1  Timing of Events Post-MI
The events that follow an acute MI all take place in tandem fashion (Table 11.4); 
early damage of muscle, matrix, and microvasculature triggers the healing process, 
which through a timed sequence of acute and chronic inflammation and associated 
biochemical, molecular, cellular, and subcellular reactions lead to formation of a 
fibrotic scar in the IZ, followed by fibrosis and hypertrophy in the NIZ and signifi-
cant remodeling of structure, shape, and function [34–36, 41, 42, 49, 51–55, 101, 
103]. Considering a single factor, such as the time interval needed for collagen 
deposition to reach a plateau during healing and repair after MI, this varies from 
weeks to months depending on the species, infarct size, reperfusion, and other fac-
tors; it usually takes a few days in mice, about 1 week in rats, 6 weeks in dogs, and 
3 to 6 months in humans [51]. As reviewed before [51], this timing of the various 
events during the progression of fibrosis after MI is clearly important when deciding 
on timing and duration of therapies for HFrEF post-MI [34, 42, 99].

11.2.8.2  Multiple Cellular and Molecular Processes
An additional consideration with respect to therapy for HFrEF post-MI is the diver-
sity and multiplicity of the cellular and molecular processes, cell types, and changes 
involved in the four main stages after STEMI or reperfused STEMI [50], as sum-
marized in Table 11.4. Briefly, the early infarction phase over the first few hours 
involves damage to cardiomyocytes by apoptosis and necrosis, extracellular matrix 
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Table 11.4 Cell types and 
processes during stages of 
healing after MI and the 
march to HFrEF

Infarction phase, damage stage (hours)
Cardiomyocyte apoptosis and necrosis
ECM damage and vascular damage
Cardiomyocyte autophagy
Early healing phase, inflammation stage 
(days/weeks)
Different cell types:
  Neutrophils
  Monocytes: Ly-6Chigh, Ly-6Clow

  Macrophages: M1, M2
  Mast cells
Lymphocytes: Treg
  Dendritic cells
Late healing phase, proliferation stage 
(weeks/months)
Monocytes: Ly-6Clow

Macrophages: M2
Dendritic cells
Fibroblasts and myofibroblasts
Collagen/ECM deposition and ECM 
remodeling
Angiogenesis and vascular remodeling
Pericyte/endothelial cell
Maturation phase and scar formation 
stage (weeks/months)
Myofibroblasts
ECM remodeling
Collagen cross-link formation
Scar remodeling: contraction, late thinning; 
scar compaction; late scar expansion
Structural remodeling, during and after 
healing (days/months/years)
Early remodeling with infarct expansion 
(stretching, thinning, dilatation)
Scar remodeling (persistent myofibroblasts)
Structural remodeling
  Infarct and noninfarct zones
  Infarcted left ventricular chamber 

(dilatation, hypertrophy)
  Other cardiac chambers: left atrium, right 

ventricle, right atrium
Left ventricular systolic and diastolic 
dysfunction
Left ventricular volume overload
Heart failure (HFrEF)
End-stage heart disease

Adapted and updated from Jugdutt (2013) [51]
Abbreviations as in text
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(ECM) by matrix metalloproteinases (MMPs), and vascular cells by apoptosis and 
necrosis; the early healing phase with inflammation over days involves neutrophils, 
monocytes, macrophages, and mast cells; late healing with proliferation over weeks 
involves fibroblasts, myofibroblasts, collagen/ECM deposition, ECM remodeling, 
angiogenesis and vascular remodeling, and maturation with further ECM remodel-
ing by cross-link formation, and scar formation, structural remodeling of the IZ and 
NIZ, and LV systolic and diastolic dysfunction [50]. The key modulators and medi-
ators involved during the healing, repair, and fibrosis phases after MI and in the 
march to HFrEF, several of which can be targeted, have been reviewed before [51, 
103] and are summarized in Table 11.5. Over all the phases leading to HFrEF, the 
three neurohumoral systems (RAAS, ET, and adrenergic) and OXS exert important 
modulating effects.

11.2.8.3  Persistent Inflammation Post-MI
The trickle of evidence over the last three decades indicates that low-grade inflam-
mation and ECM remodeling both continue beyond the MI and collagen plateau 
phases during healing into the later phase of progression to the chronic HF phase, as 
reviewed elsewhere [101–108]; this is also an important consideration for timing 
and duration of therapy. During healing post-MI, the release of key factors that 
modulate healing, such as chemokines, cytokines, matrikines, growth factors includ-
ing transforming growth factor-β (TGF-β), MMPs, and other matrix proteins, is 
quite precisely timed to orchestrate the sequence of acute and chronic inflammation 
with formation of granulation tissue, tissue repair with proliferation of fibroblasts, 
deposition of ECM, formation of myofibroblasts and scars, structural and functional 
remodeling of IZ and NIZ myocardium with cardiomyocyte hypertrophy and very 
little regeneration, and some angiogenesis [34, 51, 101–103, 108].

11.2.8.4  Timing of Remodeling Post-MI
The remodeling in post-MI survivors also occurs in a timed sequence, is progres-
sive, and spans the infarction (first 24–48 h in humans) and healing (6 weeks to 3 
months in humans) phases and far beyond (months to years) [34, 35, 40–44, 49, 51]; 
it is also modulated by multiple factors that orchestrate post-MI remodeling of myo-
cardium, vascular tissue, ECM, and over time other cardiac chambers, tissues, cells, 
and molecules, resulting in a vicious cycle leading to end-stage HF. The additional 
role of exposure to CV risk factors that exacerbate OXS and inflammation in aging 
post-MI survivors during the march to HFrEF, just as in aging HTN victims in the 
march toward HFpEF as depicted in Figs.  11.2 and 11.3, in the progression of 
adverse remodeling needs to be recognized and addressed. Furthermore, the added 
contribution of non-CV risk factors in exacerbating OXS and inflammation and 
thereby promoting progressive adverse remodeling in the marches to both HFrEF 
and HFpEF need to be addressed.
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Table 11.5 Some key modulators and mediators during healing, repair, and fibrosis phases after 
MI in the cascade to HFrEF

Infarction phase RAAS, Ang II, ROS, ET, adrenergic overtone
Cardiomyocyte damage
  Necrosis Nuclear factor κB (NFκB), Toll-like receptor 4 (TLR4)
  Apoptosis Caspases, etc.
  Autophagy AMP-activated kinase (AMPK), Beclin-1, NR4A2 (NR4A 

orphan nucleus receptor family member)
Vascular damage Neutrophils, nuclear factor NF-kB (transcription factor family); 

TNFα, IL-1, chemokines (IL8), adhesion molecule ICAM-1, 
etc.

ECM damage Proteases: matrix metalloproteinases (MMPs); stromelysin 
MMP-13; membrane-type MMP-14, MTP-MMP; collagenases: 
MMP-1, MMP-8, MMP-18; gelatinases: MMP-2, MMP-9; 
chymase/tryptase; MMP inhibitors, TIMP-1, TIMP-2, TIMP-3, 
TIMP-4

Early healing phase Complement cascade
Acute inflammation Cytokines: Tumor necrosis factor-α (TNF- α); interleukin 

(IL)-6; IL-1β; IL-18
Different cell types: Chemokines: monocyte chemoattractant protein-1 (MCP-1)
  Neutrophils, monocytes, 

macrophages, mast cells, 
lymphocytes: Treg, 
dendritic cells

Selectins, integrins, histamine
Monocyte subsets Ly-6Chigh, Ly-6Clow

Macrophage receptors, macrophage subsets M1, M2

Late healing phase
Chronic inflammation Monocyte subset Ly-6Clow, macrophages: M2
Proliferation Growth factors:
Monocytes, macrophages, 
dendritic cells

  Transforming growth factor-β (TGFβ) → Smad signaling

Fibroblasts and 
myofibroblasts

  Basic fibroblast growth factor (bFGF)

Collagen/ECM deposition   Platelet-derived growth factor (PDGF)
Pericytes, endothelial cells   Connective tissue growth factor (CTGF)

  Myocardial-related transcription factor-A
Maturation phase Matricellular proteins/ECM remodeling:
Myofibroblasts   Secreted protein acidic and rich in cysteine (SPARC); 

osteopontin (OPN); Thrombospondin (TSP)-1
Collagen/ECM remodeling Matrixins: A disintegrin and metalloproteinase (ADAM)-10, 

ADAM-17
Collagen cross-link 
formation

Protease inhibitors: Secretory leucocyte protease inhibitor 
(SLPI)
Growth differentiation factor (GDF)-5; bone morphogenetic 
protein (BMP-2); bone morphogenetic protein (BMP)/growth 
differentiation factor-5 or BMP-14/GDF-5 (↑ scarring post-MI)

Fibrosis Secreted frizzled-related protein-2 (sFRP-2); galectin-3; 
myocardin-related transcription factor (MRTF)-A

(continued)
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Table 11.5 (continued)

Infarction phase RAAS, Ang II, ROS, ET, adrenergic overtone
Angiogenesis and vascular 
remodeling

Vascular endothelial growth factor (VEGF), etc.

Repair Stem cells: Akt-mesenchymal stem cell (MSC); Wnt signaling
Blood flow; metabolism; mitochondrial pathways

Structural LV remodeling (infarct/noninfarct zone)
Scar formation, contraction, compaction, expansion
Structural remodeling of other cardiac chambers
  Left atrium, right atrium, right ventricle
Development of LV systolic and diastolic dysfunction
Development of heart failure/HFrEF

Adapted and updated from Jugdutt (2013) [51]

11.2.8.5  Addressing Residual Inflammation in the Progression 
of Atherosclerosis Post-MI

It is well-known that (i) inflammation plays major roles in the initiation as well as 
the progression of atherosclerosis, as indicated by increased levels of the marker of 
inflammation, namely, high-sensitivity CRP (hs-CRP); and (ii) statins, through a 
pleotropic effect, reduce the residual inflammatory risk after MI [109–113]. 
However, the importance of “residual inflammation” in the progression of athero-
sclerosis in post-MI patients was only underscored in two recent RCTs [114, 115]. 
In the first report of the Canakinumab Anti-Inflammatory Thrombosis Outcomes 
Study (CANTOS) group, anti-inflammatory therapy with canakinumab to target 
IL-1β in 10,061 stable post-MI patients with evidence of residual inflammation, 
assessed by elevated hs-CRP levels, resulted in reducing the hs-CRP level and 
recurrence of CV events, independent of lipid-lowering [114]. In the second report 
of the CANTOS group, canakinumab therapy in 4833 patients with atherosclerosis 
showed that those patients in whom the IL-6 levels were lowered benefited from a 
reduction in major adverse CV events (MACE), hospitalization for unstable angina, 
and lower CV mortality as well as lower all-cause mortality independent of lipid- 
lowering. These findings suggested that modulation of the IL-6 proinflammatory 
pathway is beneficial for limiting vascular and CV events [115]. In the previous 
cholesterol and recurrent events (CARE) trial in MI survivors, levels of CRP 
increased over 5 years, indicating an increase in residual inflammation. Importantly, 
in that study, while therapy with the lipid-lowering agent pravastatin prevented the 
increase in CRP levels after MI, this benefit was not related to the extent of lipid- 
lowering, suggesting that a pleiotropic effect of the drug was involved [113]. In the 
more recent report of a cohort of 385 patients with hospitalization for HF from the 
original 10,061 patients with prior MI and elevated hs-CRP in CANTOS, the IL-1β 
inhibitor canakinumab showed a dose-dependent reduction in HF hospitalization 
and the composite endpoint of hospitalization for HF or HF-related mortality [116].
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11.2.8.6  Addressing Inflammation in the ACS: Shift in Focus 
to Prevention of MI

In the last two decades, the thinking relating to the role of inflammation in acute 
coronary syndromes (ACS) and MI has shifted from the focus on treatment of the 
atherosclerotic plaque and epicardial coronary artery thrombosis, and the use of 
statins for lipid reduction and CV prevention, to the use of anti-inflammatory strate-
gies for atherosclerosis and other strategies for ACS without thrombosis [117]. The 
CANTOS group continues to study IL-1 blockade with the IL-1β inhibitor 
canakinumab for interrupting the IL-1/IL-6 cascade and thereby reducing inflam-
matory risk in different settings [114, 115, 118, 119]. A small phase II RCT of 182 
patients with non-ST elevation ACS showed that the recombinant IL-1 receptor 
antagonist (IL-1ra) anakinra reduced the elevated CRP, suggesting that IL-1 may be 
driving CRP elevation in ACS [120]. Interestingly, in that study, the CRP level rose 
again 16 days after treatment was stopped [120], suggesting that the persistent 
inflammation requires longer-term therapy. Furthermore, although the patients in 
CANTOS and the other studies with interleukin inhibitors were mostly older with 
mean ages of 60–64 years [114–116, 118, 120], and several factors in aging hearts 
are known to lead to increased ROS, O2•−, and myocardial Ang II which in turn 
trigger increased proinflammatory cytokines, MMPs, and OXS markers and thereby 
modulate post-MI healing and repair and progression of HF, OXS markers were not 
measured in those studies.

11.2.8.7  Role of IL-8 in Enhanced Damage After STEMI
While the canine aging study of Jugdutt et al. drew attention to the role of IL-6 
as one important mediator of adverse LV remodeling after STEMI [58], other 
chemokines and proinflammatory cytokines may also be involved [121]. In a 
recent study of 258 patients with STEMI undergoing percutaneous coronary 
intervention (PCI) and who were followed for a median of 70 months, high levels 
of IL-8 in serially drawn blood samples were associated with large infarct size, 
impaired LV functional recovery, and adverse clinical outcome [122]. 
Interestingly, in that study, levels of IL-8 remained higher in nonsurvivors com-
pared to survivors at 4 months [122]. While that study supports targeting of IL-8 
for suppressing post-MI inflammation [122], the authors did not measure mark-
ers of OXS. Of note, the patients in that study were older adults, with an average 
age of 60 years (range 53–66 years) [122].

11.2.8.8  Surge of ROS and OXS After Reperfused STEMI
It is known that after STEMI, the extent of myocardial injury is massive and with 
reperfusion after a time delay; both the intensity of the inflammatory response and 
the extent of damage caused by the initial MI and the subsequent delayed reperfu-
sion can be significant [48, 58]. Myocardial damage after STEMI is further exacer-
bated by the burst of OFR release and OXS with reperfusion as shown by Bolli et al. 
[123]. In that study, Bolli et al. showed that the levels of ROS, measured by electron 
paramagnetic resonance (EPR) and a spin trap, also called electron spin resonance 
(ESR), spectroscopy in the venous effluent from the stunned zone of myocardium in 
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the dog model and sampled via a catheter positioned in the anterior interventricular 
vein, increased significantly to a peak over the first 20 minutes and persisted for 
several hours after reperfusion [116].

11.2.8.9  Role of Dysregulation of Immune Pathways in Adverse 
Post-MI Remodeling and HF

In a review on the topic, Prabhu and Frangogiannis [124] summarized the innate 
immune mechanisms involved in the four main steps of the cascade between MI and 
scar formation: (i) danger signals from necrotic cells in MI lead to activation of 
innate immune pathways that trigger inflammation; (ii) increased expression of pro-
inflammatory cytokines (such as IL-1 and TNF-α) and chemokines (such as mono-
cyte chemoattractant protein-1/CCL2) in response to stimulation of Toll-like 
receptor (TLR) signaling and complement promotes adhesive interactions between 
leukocytes and endothelial cells that lead to extravasation of neutrophils and mono-
cytes; (iii) activation of repair mechanisms with suppression of inflammatory 
response cells leads to fibroblast proliferation and differentiation into myofibro-
blasts (driven by the RAAS and TGF-β), increase in ECM proteins, and scar forma-
tion; and (iv) scar maturation follows, with cross-linking of the collagen matrix, and 
removal of granulation tissue by apoptosis. The authors suggested that the combina-
tion of dysregulation of the immune pathways, impaired suppression or resolution 
of post-MI inflammation, failure of spatial containment of the inflammatory 
response, and excessive fibrosis contributes to adverse post-MI remodeling and HF 
[124]; however, they did not mention the possible contributions of persistent OXS, 
residual inflammation, the interaction between OXS, and inflammation in the pro-
gression from MI to HFrEF. While there is a vast body of compelling research evi-
dence that supports therapeutic modulation of the inflammatory and repair responses 
after MI [124], Granger and Kochar pointed out that targeting inflammation in acute 
MI with a specific inflammatory agent might be “an elusive goal” [125]. In fact, the 
management guidelines up to 2016 recommend that anti-inflammatory agents such 
as steroids and nonsteroidal anti-inflammatory agents should be avoided after 
STEMI [1, 2, 109, 110].

11.2.8.10  Role of Different Monocyte Subsets in Post-MI Healing 
and HF

In another provocative review of innate immune mechanisms during healing after 
MI, Nahrendorf et  al. [102] underscored the importance of two populations of 
monocytes involved in post-MI healing and found in both mice and humans [102, 
126]; briefly, they noted that there is a biphasic response post-MI in the mouse, with 
Ly-6Chigh monocytes (resembling CD16− monocytes in humans) that are dominant 
in the early inflammatory phase and Ly-6Clow monocytes (resembling CD16+ mono-
cytes in humans) that are dominant in the subsequent reparative phase [102]. They 
also noted that monocyte numbers are increased in atherosclerosis and increased 
recruitment of Ly-6Chigh monocytes after plaque rupture impairs healing of MI and 
promotes HF via a cascade of increased chemokines (such as TNF-α), increased 
protease activity (such as MMPs, cathepsins), resolution of inflammation (with 
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decreased TGF-β), and decreased collagen synthesis, based on previous findings in 
apoE−/− mice [102, 127]; importantly, they postulated a bell-shaped parabolic rela-
tion between monocyte numbers and healing after MI, in which both too little or too 
many of the monocytes can impair healing [102]. The authors proposed “shifting 
the monocyte response to a hypothetical vertex that denotes ‘optimal’ healing” as a 
goal of therapy for preventing HF [102]. They also suggested tailoring therapy to 
modulate the recruitment of monocyte subsets [102].

In a more recent study, Ruparelia et al. found that the patterns of gene expression 
associated with monocytes in inflammation and proliferation are switched on before 
they infiltrate the injured myocardium, suggesting that early therapy might be ben-
eficial [126]. Of note, in that study, the average ages of the control and STEMI 
groups of human subjects were 63 and 60 years, respectively [126]. It should also 
be noted that during the early inflammatory response, the recruited neutrophils, 
macrophages, and monocytes release OFRs and contribute to OXS.

Together, these studies underscore the need to address the possible contributions 
of continued inflammation and OXS as well as ECM remodeling during healing 
after MI and the progression to HFrEF in post-MI survivors.

11.2.9  Role of Aging on the Pathophysiology of HF Progression

The importance of aging in the progression of adverse ventricular remodeling and 
HF (Fig. 11.4) is slowly becoming appreciated since the publication of several criti-
cal reviews and books on the topic [1–4, 14–19, 128]. The main points are summa-
rized below.

11.2.9.1  Aging-Related Changes and HFpEF
As reviewed before [14, 15, 18, 19, 46–51, 103, 128], the progressive physiological, 
biological, and structural changes that characterize CV aging lead to increased ECM 
deposition and fibrosis (driven by increased Ang II, aldosterone, and TGFβ) in the 
heart, thereby increasing ventricular-arterial stiffening and LV diastolic dysfunction 
resulting in HFpEF (Fig. 11.5). In addition, increased ECM deposition and fibrosis 
plus decreased elastin (associated with increased MMP-9, MMP-12, cysteine pro-
teinases cathepsins S, K, L, and serine proteinase neutrophil elastase from inflamma-
tory cells) lead to increased aortic stiffness which in turn leads to the chain of 
increased aortic pulse wave velocity, systolic blood pressure, and afterload, which 
results in systolic HTN, LVH, and fibrosis (driven by increased Ang II, aldosterone, 
and TGFβ). As pulse pressure widens, a decrease in diastolic blood pressure below 
70 mmHg can lead to the J-curve effect and thereby decrease diastolic myocardial 
perfusion, which in turn can trigger subendocardial ischemia and increase CV risk 
[128]. In that construct, the physiological changes during aging predispose the sub-
ject to HFpEF (Fig. 11.4); the added insults from HTN and the associated combined 
effects of LV pressure overload, LV hypertrophy, excess LV and aortic ECM and 
fibrosis, and decrease in aortic elastin collaborate to drive the concentric LV remod-
eling in the initial stage of HFpEF. Exposure to other CVD risk factors cooperates in 
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exacerbating OXS, inflammation, and microvascular dysfunction in the survivors, 
thereby contributing to the progressive adverse remodeling and the march toward 
increasing severity of HFpEF progression (Figs. 11.2, 11.3, 11.4, and 11.5). Later, as 
a result of acute ischemia or other aggravating factors, a mixture of the two types of 
LV remodeling may develop and lead to HFrEF superimposed on HFpEF, thereby 
accelerating the march toward end-stage disease (Figs. 11.2, 11.3, and 11.4).

11.2.9.2  Aging-Related Changes and HFrEF
In the aging patient who develops acute STEMI, the background physiological 
changes of CV aging that predispose the patient to HFpEF alter and augment the 
responses to acute injury; the combination of enhanced damage to the myocardium, 
ECM, microcirculation, and endothelium with STEMI drives the development of dila-
tive LV remodeling and the shift toward HFrEF (Fig. 11.4). The continued exposure 
to risk factors that exacerbate OXS and inflammation in the survivor contributes to 
progressive adverse remodeling (Figs. 11.2, 11.3, and 11.4). Furthermore, reperfusion 
therapy with restoration of coronary blood flow in the infarct-related artery (IRA) 
after STEMI leads to an acute surge in OXS, which, in combination with the intense 
acute inflammation, exacerbates the damage [19, 31, 34, 48–52, 58, 101, 102].

11.2.9.3  Aging-Related Changes in Healing and Post-STEMI 
Remodeling

As mentioned before, progressive adverse remodeling that takes place during the sub-
sequent healing, repair, and beyond the healing/repair phases in survivors of STEMI 
spurs on the progression to HFrEF (Fig. 11.2). Expanding on that general theme, it is 
now established that with aging (Fig.  11.5), adverse post-MI remodeling is more 
severe [14–19]. This is due to impaired healing and repair of the damaged tissue 
resulting from a dysregulation of the pathways that are involved [15, 18]. The aug-
mented adverse remodeling affects the entire left ventricle and, in time, leads to 
remodeling of the left atrium and right ventricle as well (Fig. 11.3). Of note, cardio-
myocyte hypertrophy and fibrosis after STEMI develop in both the spared myocar-
dium within the IZ and the myocardium in the NIZ [51]. In the aging mouse model of 
reperfused MI, Bujak et al. showed that enhanced adverse remodeling was associated 
with suppression of the inflammatory response, delayed granulation tissue formation, 
and reduced collagen deposition [48]. In the aging canine model of reperfused STEMI, 
with reperfusion after 90 minutes of ischemia after coronary occlusion, Jugdutt et al. 
[58] showed age-dependent early increases in markers of damage (increased ischemic 
injury, infarct size, cardiomyocyte apoptosis, blood flow impairment and no-reflow), 
structural remodeling (increased LV dilation and dysfunction) and matrix remodeling 
(increased expression of secretory leucocyte protease inhibitor [SLPI], secreted pro-
tein acidic and rich in cysteine [SPARC], osteopontin [OPN], a disintegrin and metal-
loproteinase [ADAM]-10 and ADAM- 17, and MMP-9 and MMP-2), and inflammation 
(with increased inducible NO synthase [iNOS], proinflammatory cytokines IL-6 and 
TNF-α, and TGF-β1, and decreased anti-inflammatory cytokine IL-10). Importantly 
in that study, early therapy with the ARB candesartan, initiated at the time of reperfu-
sion, attenuated these adverse age-dependent changes [58].
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As reviewed previously [50], the main changes in molecular and cellular 
responses during healing and repair after STEMI/reperfused STEMI in older sub-
jects include (i) increased RAAS, Ang II, and ROS activity; (ii) impaired or defec-
tive healing, with amplification of damage in the infarction phase (reflected in 
increased apoptosis, necrosis, and ECM degradation), dysregulation of inflamma-
tion in the early inflammation phase (with decreased antioxidant response), and 
defective healing and repair in the late phase (reflected in decreased myofibroblasts, 
collagen/ECM, angiogenesis, and telomere lengths) resulting in a defective scar. 
The ECM changes during repair include increased collagen type III (more elastic 
and pliable) and decreased collagen type I (more rigid) and cross-linking [50].

11.2.9.3.1  Aging-Related Changes in Mitochondrial OXS 
and Inflammation During HF Progression

The roles of aging, mitochondrial OXS, inflammation, and CVD risk factors during 
HF progression have been underlined here in Figs. 11.2, 11.3, 11.4, 11.5, 11.6 and 
11.7, and the pertinent advances recently reviewed by Paneni et al. [128] are sum-
marized below under 14 subheadings.
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11.2.9.3.2 The Problem of Changing Demographics of HF with Aging
Expanding on previous reviews on aging and HF [14–19, 50, 51], Paneni et  al. 
reemphasized the impact of lifelong vascular remodeling on the development of 
CVD risk and HF [128]. Updating previous demographic data on aging [14], they 
underline the projected doubling of the population aged >65 years from 12% in 
2010 to 22% in 2040 [128]. Importantly, they point out that the prevalence of CVD 
is increasing in people aged >65 years, more so in those aged >80 years, and will 
increase by 10% over the next 20 years [128]. More alarming, the projected increases 
between 2010 and 2030 are for 27 million more people with HTN, 8 million more 
with CHD, 4 million more with stroke, and 3 million more with HF, and these will 
be mainly in the expanding elderly group [128]. They also underscore several 
important points that are pertinent for therapeutic interventions [128] and are out-
lined below.

11.2.9.3.3 Molecular Mechanisms in Aging-Related Vascular Remodeling
The evidence for how the changes associated with aging-related vascular remodel-
ing contribute to CVD risk and adverse CV events and what key cellular mecha-
nisms and pathways are involved in endothelial dysfunction [128] are as follows: (i) 
decreased cofactor tetrahydrobiopterin (BH4), in eNOS-mediated generation of NO 
from L-arginine, leads to eNOS uncoupling with decreased NO release and increased 
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Fig. 11.7 Schematic depicting the postulated temporal evolution of changes in myocardial dam-
age, extracellular matrix, inflammation, and oxidative stress after myocardial infarction during 
progression of HFrEF
Data based on studies in the canine model by Jugdutt BI et al. using histopathology for myocardial 
damage (necrosis and apoptosis), inflammation, collagen and fibrosis, and biochemistry for col-
lagen, MMP, and TIMP [18, 34–36, 42, 44, 49–51, 55, 58, 92, 94, 98, 103, 128, 129] and Bolli 
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a review of inflammation and repair postinfarction by Nahrendorf et al. based initially on data in 
mouse [102]
Abbreviations: MMP matrix metalloproteinase, TIMP tissue inhibitor of metalloproteinase
Other Abbreviations as in text
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formation of the pro-oxidant superoxide anion (O2•−); (ii) increased arginase activ-
ity leads to reduced L-arginine and decreased NO production and bioavailability; 
(iii) increased ROS can also increase NO degradation, which is mediated in part by 
chronic inflammation, and thereby results in NO depletion [128]; (iv) increased 
TNF-α and NADPH oxidase lead to increased superoxide (O2•−) that reacts with 
NO to form peroxynitrite (NOO−), which nitrosylates eNOS and antioxidant 
enzymes; (v) increased RAAS and Ang II activities contribute to NO inactivation; 
(vi) increased RAAS and Ang II activities also activate NADPH oxidase, thereby 
increasing ROS which, in turn, promotes vascular inflammation; (vii) increased 
H2O2 activates NF-kB, which in turn leads to release of proinflammatory cytokines 
(such as IL-6), chemokines (such as TNF-α), and adhesion molecules that are 
known to mediate atherogenesis; (viii) increased ET-1 levels in the blood and aortic 
wall promote vasoconstriction and impair endothelium-dependent dilatation; ix) 
increased cyclooxygenase (COX)-derived eicosanoids (such as prostaglandin [PG]-
H2, thromboxane [Tx]-A2, and PGF2α) that are known to promote vasoconstriction 
and thrombosis, combined with decreased prostacyclin (PG-I2) that is known to 
prevent these effects, result in increased vasoconstrictor tone and thrombogenicity; 
(x) increased collagen (from increased collagen deposition and decreased break-
down, as well as increased advanced glycation end-products [AGEs]) and decreased 
elastin (via the aforementioned increase in MMP-9, MMP-12, cysteine proteinases 
cathepsins S, K, L, and serine proteinase neutrophil elastase from inflammatory 
cells with elastolytic activity) lead to increased arterial stiffness (especially the tho-
racic aorta) and reduced distensibility of large elastic arteries; and (xi) increased 
TGF-β activity, which induces increased synthesis of interstitial collagen by the 
adjacent vascular smooth muscle cells (VSMCs) and increased RAAS, Ang II, and 
TGFβ, which increase both synthesis of collagen and lysis of elastin in the arterial 
wall, contribute further to arterial stiffness [128]. Taken together, vascular aging is 
associated with arterial stiffening, endothelial dysfunction with decreased 
endothelial- dependent vasodilation and antithrombotic property, and increased 
OXS and proinflammatory cytokines, which act in concert to increase the predispo-
sition to atherosclerosis, thrombosis, and CVD [128].

11.2.9.3.4  Impact of Lack of Evidence-Based Therapy for HFpEF 
in the Elderly

As mentioned before, whereas aging-related adverse myocardial and vascular 
remodeling are known to lead to HTN and HFpEF in the elderly, the lack of 
evidence- based effective therapies for HFpEF further predisposes the patients to 
increased risk of myocardial ischemia, MI, ischemic cardiomyopathy, and a switch 
to HFrEF [128]. Furthermore, while aging is associated with decreased skeletal 
calcium, the elderly develop increased risk of calcific aortic stenosis that is partly 
due to increased inflammation and can contribute to increase in afterload, LVH, and 
subendocardial ischemia. Paradoxically, statins appear to hasten coronary artery 
calcification [128]. In addition, aging-related frailty with sarcopenia (i.e., loss of 
muscle mass and function) results in increased sensitivity to drugs used for treating 
HTN in the elderly [15, 19, 128]. The diagnosis of frailty is complicated by the 
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associated osteoporosis and obesity (that is partly due to the proinflammatory state) 
[128]. Frailty also appears to interact with the increased prevalence of CVD in the 
elderly, thereby resulting in increased vulnerability to stressors and OXS.

11.2.9.3.5 Aging-Related Increased Incidence of Cardiac Amyloidosis
OXS and inflammation may play a role in cardiac amyloidosis. Increase in light- 
chain amyloidosis is associated with the increase in multiple myeloma with aging, 
whereas cardiac amyloidosis is associated with wild-type transthyretin (wtTTR) 
that is more common in older men. Imaging detected wtTTR cardiac amyloidosis in 
about 13% of patients with HFpEF aged ≥60 years, whereas autopsy showed it in 
about 20% of people who died at age >80 years [128]. Although there is no proven 
treatment for wtTTR cardiac amyloidosis, several trials are under way. Chemotherapy 
is used in light-chain amyloidosis.

11.2.9.3.6  Aging-Related Telomere Shortening During Cellular 
Senescence

As previously reviewed [19], evidence suggests that telomere shortening is associ-
ated with increased risk of CVD during aging. It is well established that aging- 
related increase in senescent cells in the vascular wall and heart contributes to 
adverse remodeling [128]. Telomeres consist of repetitive nucleotide sequences 
(TTAGGG on one strand and AATCCC on the other strand) at the ends of mamma-
lian chromosomes. These act as caps that preserve chromosome stability and integ-
rity by preventing deterioration or fusion with neighboring chromosomes; every cell 
division shortens telomeric DNA. When a critical length is reached, the capping 
function is lost, leading to DNA damage and apoptosis. Studies have shown an 
association between decreased leukocyte telomere length (TL) and vascular cell 
senescence, aortic stenosis, CV risk factors (such as HTN, DM2, obesity, and smok-
ing), and risk of atherothrombotic events. Other studies showed correlations between 
leukocyte TL and atherosclerosis, ischemic and hemorrhagic stroke, and between 
reduced leukocyte TL and risk of plaque and its progression [128]. A meta-analysis 
(43,725 participants; CVD, 8400) showed that patients with the shortest leukocyte 
TL had a higher risk of coronary heart disease and cerebrovascular disease [129].

11.2.9.3.7  Mitochondrial Oxidative Stress and Cardiovascular Aging: 
Role of the p66Shc Gene

The molecular events in CV aging, mitochondrial OXS, chromatin remodeling, and 
genomic instability may all be linked [128]. Six lines of evidence from translational 
studies support the idea that mitochondrial OXS contributes to cellular senescence 
through a chain of O2•− or H2O2 formation, ROS overload, senescence, DNA dam-
age, inflammation, and cell death pathways including apoptosis [128]. The evidence 
supporting the role of the mitochondrial adaptor p66Shc gene in this chain of cellular 
events is as follows: (i) cells lacking p66Shc show reduced intracellular ROS, whereas 
mice lacking p66Shc have reduced ROS upon exposure to high OXS, and mice with 
p66Shc deletion show increased longevity; (ii) aging p66Shc-deficient mice have 
reduced ROS and preserved NO bioavailability and are protected from both 
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systemic and cerebral endothelial dysfunctions; (iii) p66Shc-deficient mice with 
brain injury from I/R show reduced ROS production in the brain and reduced stroke 
size, and in vivo postischemic silencing of p66Shc prevents I/R brain injury in mice; 
(iv) increased p66Shc expression found in stroke patients correlates with neurologi-
cal deficits; (v) increased p66Shc is present in peripheral blood mononuclear cells of 
patients with ACS and DM2; and (vi) p66Shc protein activation is found in patients 
with CV risk factors, including hyperglycemia, oxidized low-density lipoprotein, 
smoking, and HTN. Together, these findings suggest that p66Shc may be a potential 
therapeutic target for age-related CVD and increased mitochondrial ROS [128].

11.2.9.3.8  Mitochondrial Oxidative Stress and Cardiovascular Aging: 
Role of JunD

Evidence suggests that the activated protein-1 (AP-1) transcription factor JunD 
mediates aging-related OXS [128]. JunD, which is formed from dimeric complexes 
from three main families of DNA-binding proteins (Jun, Fos, and ATF/CREB), is 
involved in regulation of cell growth and survival, as well as in protection against 
OXS by modulating genes involved in antioxidant defense and ROS production 
[128]. Five lines of evidence that support the role of JunD are as follows: (i) JunD 
levels are lower in the aorta of the aging mouse and in peripheral blood mononu-
clear cells from old compared to those in young healthy humans; (ii) young mice 
lacking JunD show endothelial dysfunction and vascular senescence similar to that 
found in old wild-type mice; (iii) JunD null mice show increased aging markers 
p53 and p16INK4a, reduced telomerase activity, and mitochondrial DNA damage 
in their aortas, whereas overexpression of JunD rescues vascular aging features in 
old mice; (iv) the age-associated decrease in JunD leads to an imbalance between 
the oxidant NADPH oxidase and scavenger enzymes manganese superoxide dis-
mutase (MnSOD) and aldehyde dehydrogenase 2, which results in early redox 
changes, mitochondrial dysfunction, and vascular senescence; and (v) mice lack-
ing JunD develop less hypertrophy after mechanical pressure overload whereas 
mice with cardiomyocyte-specific expression of JunD develop LV dilatation and 
contractile dysfunction; moreover, fra-1 transgenic mice overexpressing the AP-1 
member fos- related antigen and lacking JunD develop dilated cardiomyopathy 
associated with defective mitochondria and increased cardiomyocyte apoptosis; 
the findings suggested that JunD promotes adaptive or maladaptive hypertrophy 
depending on its level [130].

11.2.9.3.9  Mitochondrial Oxidative Stress and Cardiovascular Aging: 
Role of Sirtuin-1

The evidence supporting the beneficial role of the sirtuins (silent information reg-
ulator [SIR] genes), which are NAD+-dependent enzymes of the big nicotinamide 
adenine dinucleotide (NAD)-dependent protein family, in human aging [128] is as 
follows: (i) endogenous sirtuin-1 (SIRT1) expression in VSMCs correlates 
inversely with donor age, and age-related loss of SIRT1 correlates with reduced 
stress response and increased senescence; (ii) endothelial-specific SIRT1 overex-
pression or chronic exposure to a SIRT1 activator in hypercholesterolemic mice 
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decreases atherogenesis, whereas reduced SIRT1 increases atherosclerosis; (iii) 
inhibition of SIRT1 by immunosuppressant drugs (such as sirolimus and everoli-
mus) leads to endothelial senescence; (iv) inhibition of SIRT1 with sirtinol impairs 
eNOS function, while activation of SIRT1 improves endothelial NO availability; 
(v) inhibition of SIRT1 with the endogenous inhibitor, microRNA-217, suppresses 
SIRT1- dependent eNOS function and promotes endothelial senescence; (vi) 
SIRT1 has been shown to regulate p66Shc transcription, whereas reduced SIRT1 
leads to NF-kB p65 acetylation, resulting in increased inflammatory genes; (vii) 
SIRT1 has been shown to repress pathways of arterial aging, thereby preventing 
DNA damage, cell cycle arrest, and oxidative stress; and (vii) SIRT1 has been 
shown to activate the energy regulator enzyme 5 ́-adenosine monophosphate 
(AMP)-activated protein kinase involved in glucose homeostasis, thereby main-
taining cellular ATP levels and maintaining endothelial integrity via regulation of 
eNOS activity and autophagy [128]. Together, the findings suggest that activation 
of SIRT1 may preserve endothelial function during aging and contribute to pre-
vention of CVD and progression to HF.

11.2.9.3.10  Mitochondrial Oxidative Stress and Cardiovascular Aging: 
Role of Klotho

Recent evidence suggests that Klotho is an important antiaging gene and Klotho 
protein acts as a circulating hormone, which binds to a cell-surface receptor and 
thereby suppresses intracellular signals of insulin and IGF-1that are known to favor 
longevity [128]. Studies show that (i) Klotho deletion in mice induces premature 
aging and reduces life span, whereas overexpression increases life span and protects 
against age-related CV and kidney dysfunction; (ii) high plasma levels of Klotho in 
patients are associated with a reduced risk of CVD, whereas low serum Klotho 
concentrations predict CAD and arterial stiffness [128]. Together, these findings 
suggest that Klotho may be a useful biomarker and a potential target for limiting 
age-related CVD and stalling progression to HF.

11.2.9.3.11  Aging-Related Dysregulation of DNA Repair and Damaged 
DNA Overload

Evidence suggests that the buildup of damaged genetic material throughout life and 
defects in the DNA repair mechanism after damage (caused by chemicals, muta-
tions, and epigenetic alterations [i.e., “change in gene activity without change in 
DNA sequence”]) might result in genomic instability and cellular senescence and 
thereby promote CV aging and dysfunction [128]. Studies have shown that (i) 
extensive nuclear DNA damage in the Hutchinson-Gilford progeria syndrome is 
associated with premature atherosclerosis and CVD that lead to early MI or stroke; 
(ii) mice with genomic instability from defective repair genes develop premature 
aging that is associated with endothelial cell senescence, vascular stiffness, and 
HTN, thought to be due to dysregulation of eNOS and sirtuin and to increased 
NADPH oxidase; and (iii) humans develop sporadic genomic mutations, as sup-
ported by findings of (a) DNA damage in circulating cells and plaques of patients 
with atherosclerosis, (b) chromosomal damage and mitochondrial DNA deletions in 
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peripheral blood mononuclear cells of patients with coronary heart disease that cor-
relate with severity of the disease, (c) association between variation in nucleotide 
excision repair components and carotid-femoral pulse wave velocity, and (d) 
increased phosphodiesterase type 1 (PDE1A) expression and impaired NO-cGMP 
signaling and endothelial dysfunction in senescent VSMCs, and association between 
PDE1A polymorphisms and diastolic blood pressure and carotid intima-media 
thickness in patients [128]. Together, these findings suggest that preserving genome 
stability may limit age-related CVD that contributes to HF progression.

11.2.9.3.12 Aging-Related Defects in Angiogenesis
Evidence suggests that defects in angiogenesis during CV aging lead to (i) increased 
stroke, peripheral artery disease, and MI in elderly, with worse outcomes compared 
to younger patients; (ii) increased mortality and rate of limb amputation after acute 
limb ischemia; (iii) reduced capillary density, associated with microvascular dis-
ease, defective eNOS functionality, and impaired insulin sensitivity in elderly men; 
(iv) decreased proliferative capacity, telomerase activity, and production of angio-
genic growth factors such as VEGF-A in senescent endothelial cells; (v) impaired 
endothelial migration leading to reduced tube formation; (vi) reduced hypoxia- 
inducible factor 1α (HIF1α) activity, due mainly to increased degradation and 
reduced nuclear translocation by importin α; (vii) reduced activity of the transcrip-
tional coactivator PGC-1α that is associated with hypoxia-driven angiogenesis; and 
(viii) dysregulation of angiogenic pathways associated with an age-dependent 
decrease in the number and function of stem and progenitor cells [128]. These find-
ings are pertinent for the development of therapies for the elderly.

11.2.9.3.13  Aging-Related Vascular Remodeling via Nongenomic 
Regulation of Changes in Chromatin

Recent evidence suggests that, besides the well-recognized gene-driven regulation 
of aging, nongenomic regulation of aging via epigenetic modifications of transcrip-
tion programs in OXS, inflammation, angiogenesis, and metabolism can also pro-
mote maladaptive pathways leading to vascular aging [128]. The epigenetic 
modifications that are acquired throughout life appear to be quite stable and explain 
how environmental factors may interact with genomic DNA and change gene 
expression. Importantly, epigenetic changes may be transmitted down or inherited 
and thereby contribute to senescent traits and CVD in young adults [128]. Epigenetic 
processes that modify chromatin include DNA methylation, acetylation, phosphor-
ylation, ubiquitination, and sumoylation. Studies have shown that (i) DNA methyla-
tion, which is the most widely studied, decreases with age, whereas the rate of 
demethylation correlates inversely with age in mice and humans; (ii) unmethylated 
or partially methylated CpG (cytosine-guanine) islands are present in atheroscle-
rotic plaques and leukocytes from patients and atherosclerosis-prone mice; (iii) 
changes in DNA methylation localize at promoter sites of several regulatory genes, 
including NOS and the vascular endothelial growth factor receptor, that are involved 
in atherosclerosis and aging; (iv) histone methylation has been implicated in regu-
lating life span and vascular homeostasis that involves endothelial NF-kB, SIRT1, 
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and other genes, including methyltransferase Set7 expression which is increased in 
peripheral blood mononuclear cells from DM2 patients and correlates with NF-kB- 
mediated inflammation, OXS, and endothelial dysfunction; (v) histone deacety-
lation by SIRT1 may influence age-related CVD and transgenic overexpression of 
SIRT1 was shown to improve metabolic efficiency and endothelial function in old 
mice; and (vi) SIRT6 can prevent endothelial dysfunction and atherosclerosis by 
epigenetic modulation of multiple atherosclerosis-related genes, including the pro- 
atherogenic gene of the TNF family [128]. Together, these findings implicate chro-
matin modifications in aging-related CVD.

11.2.9.3.14  Aging-Related Changes and Stem Cell-Based Therapies 
for Vascular Repair in the Elderly

With regard to the status of vascular repair and of autologous bone marrow-derived 
stem cell transplantation in the elderly, the conflicting results of RCTs of stem cell- 
based therapies in MI may be explained by the fact that, in most cases, the aged 
bone marrow cells have been down the senescence pathways and the substrate in the 
elderly involved activation of pathways that may impair the healing ability of trans-
planted stem cells. Therapies that can potentially modulate epigenetic modifications 
of chromatin and thereby restore gene expression may be useful [128]. Another 
consideration is the supplementation with adjunctive therapy for targeting both 
increased OXS and inflammation in elderly patients. Other aging-related molecular 
remodeling including impaired adrenergic signaling and calcium handling are dis-
cussed in detail elsewhere [16, 19].

11.2.9.4  Aging-Related Increase in Mitochondrial ROS 
and Autophagy

A prevalent theory is that aging is general, including CV aging, and involves 
increased generation of ROS from dysfunctional mitochondria leading to ROS- 
induced cumulative cellular damage [131, 132]; the dysfunctional mitochondria are 
thought to accumulate during cellular aging due to decreased autophagy [131, 133]. 
Autophagy, which performs cellular housekeeping and maintains homeostasis in 
the cell by renewing or recycling cytoplasmic materials and organelles (including 
mitochondria), removing toxic protein aggregates and harmful ROS, and providing 
essential energy and biomolecules to cells, is a cytoprotective function that has been 
shown to decline with aging [133, 134]. With aging, evidence for both the increase 
in basal ROS levels [135] and the increase in dysfunctional mitochondria from 
reduced or dysregulated autophagy [134] have been documented. Since cardiomyo-
cytes are not frequently replaced, they are subjected to OXS and oxidative damage 
during aging [135]. Dai et al. have reviewed the interactions among mitochondrial 
ROS, redox, and other cellular signaling pathways as well as various therapeutic 
strategies and drugs (such as mitochondrial antioxidants MitoQ, SkQ1, and the 
mitochondrial protective peptide SS-31) that can potentially improve mitochondrial 
function during aging [132].

Evidence shows that homeostasis by autophagy is maintained through cues from 
“danger-associated molecular patterns” (DAMPs), such as ROS, mitochondrial 
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DNA, and extracellular ATP that are detected by “pattern recognition receptors” 
(PRRs) comprised of several families, including “Toll-like receptors” (TLRs) and 
“NOD-like receptors” (NLRs), which control autophagy and are also involved in 
innate and adaptive immune response [136]. DAMPs activate the NLRP3 inflamma-
some in response to ROS and other stimuli, such as extracellular ATP and lysosomal 
disruption [136]. Evidence suggests that autophagy and inflammation are interde-
pendent [137]. As mentioned before, impaired autophagy is associated with an 
increase in defective mitochondria and levels of ROS and leads to increased inflam-
matory cytokine levels; evidence suggests that increased ROS activates inflamma-
somes which process IL-1β.

While preclinical studies are consistent with decreased autophagy during aging 
(Fig. 11.5) and autophagy-driven regulation of the degree of inflammation, whether 
the decrease in autophagy with aging leads to increased basal levels of inflammation 
and OXS in the human heart or the CV system during HF needs further study. The 
studies reviewed by Linton et al. did not specifically address this question but the 
results were interesting [136]. In one small study of 9 HF patients with idiopathic 
ischemic cardiomyopathy maintained on an LV assist device (LVAD), LV biopsies 
showed a downregulation of the autophagy gene mRNA and protein [138]. In 
another study of 170 patients undergoing coronary artery bypass surgery (CABG), 
22% who developed postoperative atrial fibrillation showed evidence of impaired 
autophagy in their atrial biopsies, while levels of hs-CRP, inflammation, fibrosis, 
and other markers were similar for patients with or without postoperative atrial 
fibrillation [139]. In a further study of 19 patients undergoing surgery with cardio-
pulmonary bypass (CPB), the test results suggested depletion of autophagy proteins 
[140]. In another study of patients undergoing heart surgery with I/R, biopsies of the 
right atrial appendage showed evidence of upregulation of autophagy-related genes 
in 13% and downregulation in 4% [141]. A small study of patients undergoing 
CABG and remote ischemic preconditioning (RIPC) failed to show changes in 
autophagy in LV biopsies [142], probably due to issues with study design [136]. In 
a cohort of older cardiac surgery patients (mean age 62 years, range 33–87 years) 
who had right atrial biopsies before and after CPB, Linton’s group found evidence 
for a “robust” autophagic response to the ischemic stress that was age-independent, 
albeit as assessed by lipidation of the autophagy protein LC3 which is somewhat 
controversial [143]. Another pertinent finding with respect to exposure to comor-
bidities is that animals with metabolic syndrome and DM2 show suppression of 
autophagy; in a cohort of their surgical patients, Linton’s group found evidence for 
impaired autophagy in those DM2 patients with poor glycemic control and HbA1C 
level > 7% [136].

Several studies addressed the role of autophagy in postremodeling and HF; in 
one study in young mice with chronic MI, the autophagy inhibitor bafilomycin A1 
worsened remodeling, whereas the autophagy enhancer rapamycin attenuated 
remodeling, suggesting that autophagy might protect against adverse post-MI 
remodeling [144]; another more recent study in young mice with chronic MI showed 
that TLR3 upregulation contributes to persistent autophagy which promotes HF and 
death, whereas TLR3 deletion inhibits autophagy, reduces MI size, attenuates HF, 

B. I. Jugdutt and B. A. Jugdutt



293

and improves survival, and the autophagy inducer rapamycin abolishes these bene-
fits [145].

11.2.9.5  Role of AGEs and RAGEs in OXS and Heart Failure
AGEs are condensates of glucose that nonenzymatically form cross-links between 
collagen molecules, thereby rendering them resistant to enzymatic degradation 
[128]. AGEs are known to accumulate in vessel walls and contribute to both micro-
vascular and macrovascular complications through formation of cross-links. They 
exert adverse effects through either receptor or nonreceptor mechanisms; in the 
receptor mechanism, they bind to specific cell-surface receptors for AGEs (RAGEs) 
thereby activating RAGE and leading to a chain of NF-kB upregulation, proinflam-
matory cytokine (such as TNF-α, IL-1β) activation, growth factors (such as PDGF, 
IGF-1), adhesion molecules (such as VCAM-1), and increased ROS which con-
verge on tissue damage. While soluble AGEs activate monocytes, basement mem-
brane AGEs inhibit monocytes; AGE-bound RAGE increases endothelial 
permeability; AGEs block NO activity and induce ROS production; AGEs have also 
been implicated in diabetic vascular injury [146, 147]. Prasad et al. [147] referred to 
the adverse effects of AGE and AGE-RAGE as “AGE-RAGE stress” and its endog-
enous defense mechanisms as “antistressors”; the endogenous antistressor mecha-
nism involves enzyme-mediated (through glyoxalase 1 and 2) and AGE 
receptor-mediated (AGER-1 and AGER-2) degradation of AGE, and increased sol-
uble receptor of AGE (sRAGE); exogenous defense strategies include decreasing 
AGE consumption, preventing AGE formation, and downregulating 
RAGE. Pharmacological agents known to reduce AGE formation include those used 
to treat HFrEF and HTN (ACEIs, ARBs), DM2 (anti-DM2 drugs; aminoguanidine) 
and CVD risk (statins), and others [147]. Drugs that elevate sRAGE include ACEIs, 
statins, and antidiabetic drugs [147].

11.2.9.6  Role of Synergism Between OXS and Inflammation in HF 
Progression

The topic of stress and disease has raised concern since ancient times. Selye stud-
ied the role of stress in health and disease, focusing mainly on its role in the brain 
and related disorders [148]. Interest in the role of OXS as an important mediator 
of CVD was rekindled in the 1980s [31–33]. The vast literature on the biology, 
physiology, and biochemistry of OFRs, ROS, and OXS that stemmed from exten-
sive basic, translational, and clinical research over nearly 5 decades since the 
1970s has been recently reviewed elsewhere [31–33]. This has improved our 
understanding of the pathobiology, biochemistry, and pharmacology of OFRs 
(Fig. 11.6) and unveiled the mechanisms leading to OXS and its contribution to 
the pathophysiology of CVD, including myocardial ischemia, I/R and MI, and 
subsequent initiation and progression to HFrEF [27, 28, 31–33, 128]. In addition, 
the realization that both OXS and inflammation contribute to the progression of 
HFpEF and HFrEF has perked interest in the critical roles of OXS and inflamma-
tion in HF progression and underscored the importance of OXS and inflammation 
as potential targets for stalling HF progression [28–33]. The additional 
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contributions of CVD risk factors in increasing both OXS and inflammation have 
also been underscored [31–33]. With the passage of time during aging, OXS and 
inflammation appear to propel the progression of HF forward toward end-stage 
heart disease (Figs. 11.2 and 11.4). However, more research is needed to unravel 
the mechanisms of how exactly CVD risk factors lead to increased OXS and 
inflammation and thereby mediate HF progression.

We hypothesize that the synergism between OXS and inflammation is an impor-
tant factor in accelerating HF progression toward end-stage heart disease, and both 
OXS and inflammation need to be targeted for optimal results.

11.2.9.6.1  OXS and Inflammation in Post-STEMI Remodeling and HF 
Progression

The OXS-inflammation interaction during post-STEMI cardiac remodeling and 
its contribution during HF progression have been a topical issue for the last two 
decades (Figs. 11.2, 11.3, and 11.4). Although persistent inflammation has been 
addressed recently in several aforementioned RCTs showing the benefit of some 
anti- inflammatory strategies during post-MI HF progression [114, 115], RCTs 
that target persistent OXS alone or the OXS-inflammation interaction have not 
been launched.

11.2.9.6.2 Development of ROS Overload and OXS Post-STEMI and HF
The development of ROS overload and OXS in HF represents a breakdown of 
homeostasis that occurs whenever the production of OFRs far exceeds the capacity 
of endogenous antioxidant defense mechanisms to neutralize them; when that hap-
pens, the result is damage to the myocardium and other CV tissues. It is known that 
during aerobic respiration, molecular oxygen (O2) acts as the final acceptor of elec-
trons in the ETC, thereby leading to generation of adenosine triphosphate (ATP) 
through the Krebs cycle in the mitochondria. The ATP supplies the energy needed 
for maintaining contractile function, cardiac output, and organ perfusion. Under 
physiological conditions, oxygen molecules are reduced to the ROS superoxide 
(O2•−) which is converted to hydrogen peroxide (H2O2) by the endogenous antioxi-
dant superoxide dismutase (SOD); H2O2 is then broken down into H2O by other 
antioxidants (such as catalase or glutathione peroxidase), as shown in Fig.  11.6. 
However, under pathological conditions (such as myocardial ischemia, I/R, MI, and 
HF), the formation of ROS or OFRs including O2•−, H2O2, hydroxyl radical (•OH), 
hypochlorite (HOCl), and NO-derived peroxynitrite (NOO−) increases; the scav-
enging ability of the antioxidants is exceeded, thereby resulting in ROS overload 
and OXS (Fig. 11.6) [30, 31, 149]. H2O2 is converted to the reactive (•OH) via the 
Fenton or Haber-Weiss reactions (Fig. 11.6). Increased NO from inducible NOS 
(iNOS) leads to increase in the reactive NOO− (Fig. 11.6). Whereas most ROSs are 
lipid insoluble and remain within the cell, H2O2 can cross cell membranes and 
thereby cause damage at remote regions [149]. Endogenous antioxidants include 
SOD, glutathione peroxidases, catalase, and peroxiredoxins [149] (Fig.  11.6). 
Sources of ROS include enzymes in mitochondrial ETC, plasma membrane, peroxi-
somes, endoplasmic reticulum and nuclear membrane, and other enzymes such as 
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xanthine oxidase, MPO, and cytochrome P450 enzymes (monooxygenases), some 
of which are found in macrophages and neutrophils that accompany inflammation, 
NADPH oxidases, and soluble heme proteins [149]. ROS produced by cardiomyo-
cytes and infiltrating inflammatory cells leads to cellular damage through disruption 
of membranes, proteins, and nucleic acids and activation of cell death pathways that 
trigger apoptosis [150, 151] (Fig. 11.6). During postischemic reperfusion after MI, 
ROS may be produced by both enzymatic and nonenzymatic systems and in both 
cardiomyocytes and infiltrating inflammatory cells. Reperfusion stimulates neutro-
phil activation and lipid peroxidation in membranes which result in increased 
ROS. Although NO is nonreactive, iNOS generates reactive •NO from NO; NOXs 
generate reactive superoxide (O2•−) from O2; the •NO and O2•− interact to yield 
highly reactive peroxynitrite (NOO−) (Fig. 11.6). Evidence suggests that peroxyni-
trite leads to the formation of hydroxyl, nitrite, and carbonate radicals, which medi-
ate cell damage (Fig. 11.6), and tyrosine nitration which serves as a biomarker of 
OXS [149]. Besides protein nitration, increased ROS and NOO− also lead to lipid 
peroxidation, single-strand nucleic acid breaks, and chromosomal changes [149]. 
Some pertinent harmful effects of ROS overload during I/R include (i) stimulation 
of platelets to release platelet activating factor, thereby attracting more neutrophils 
that exacerbate damage; (ii) attenuation of NO function, thereby enhancing endo-
thelial dysfunction through NOO− formation and augmenting damage; and (iii) 
blunting of endothelium-dependent vasodilation and enhanced ET-1-induced vaso-
constriction, which together aggravate the decrease in reflow.

11.2.9.6.3  Reasons for Failure to Reduce ROS Overload and OXS Post-
STEMI and HF in Patients

Despite experimental animal studies suggesting that administration of exogenous 
antioxidants including SOD, xanthine oxidase inhibitors (such as allopurinol), 
N-acetyl cysteine, vitamin E, and vitamin C during after I/R and MI yields favorable 
results, overall clinical experience has been disappointing [1, 2].

There are several possible reasons for the lack of clinical benefit of antioxidants 
during and after I/R and MI at the bedside. These include the following: (i) in the 
setting of I/R and MI, the presence of intense inflammation can have many harmful 
effects as mentioned before, including increased ROS and activation of platelets 
which aggregate and provide the matrix scaffold for thrombi to form and plug blood 
vessels, thereby augmenting cardiomyocyte damage; (ii) the acute inflammation 
after STEMI also induces vascular damage, which (as mentioned before) is aug-
mented by reperfusion, and involves sequential activation of resident macrophages, 
release of proinflammatory cytokines (such as IL-1 and TNF-α), upregulation of 
vascular adhesion molecules (such as selectins, integrins, and ICAM-1) and CXC 
chemokines (such as IL-8, macrophage inflammatory protein-2 [MIP-2]), neutro-
phil adhesion and transmigration, damage to endothelial cells, basement membrane 
and matrix, and increased permeability with microvascular hemorrhage; impor-
tantly, the intensity of the inflammatory response is regulated by the balance between 
proinflammatory cytokines (such as TNF-α, IL-1, and CXC chemokines) and anti- 
inflammatory cytokines (such as IL-10 and IL-13); (iii) the intense inflammatory 
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response with I/R and reperfused STEMI appears to collaborate in the early surge in 
ROS in the first 2–10 min and the persistence for several hours thereafter (Figs. 11.7 
and 11.8) [123]; since inflammation extends far beyond reperfusion and generates 
ROS as discussed before (Fig. 11.7), it can be expected to contribute to the ROS 
pool far beyond the early postreperfusion phase into the subsequent phase of heal-
ing and repair, with obvious pathophysiological and therapeutic implications; of 
note, SOD plus catalase, given over 15 min before and continued for 30 min after 
reflow, blocked ROS production in  the stunned zone, and improved functional 
recovery in the dog model [152]; (iv) intracellular remodeling after I/R injury is 
associated with increased proteolytic enzyme activity and alterations in gene expres-
sion and translation mechanisms which can have persistent effects [153]; (v) humans 
with STEMI are middle-aged or older adults, or elderly, with a host of aging-related 
issues as discussed before (Fig. 11.5); for example, aging may blunt the response to 
therapy, as found with an ARB after reperfused STEMI in dogs [58] and with post-
ischemic conditioning in mice [97]; aging may also modify inflammation, healing, 
and repair [48, 58, 124]; (vi) in the context of aging, age equivalence should be 
considered when assessing therapies in animal models with the goal of translation 
to humans. For example, a 6-week-old mouse or rat would be equivalent to a young 
human child by age, and not even to a young adult [99]; (vii) persistent ROS pro-
duction over the healing phases of acute and chronic inflammation [48, 50, 97, 
101–103], and far beyond, during progressive remodeling and HF as discussed 
below; (viii) the rate of reperfusion differs between animal models and humans, 
being usually more abrupt in most animal models than in humans who undergo PCI 
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Fig. 11.8 Schematic depicting concept of synergism between persistent ROS and inflammation in 
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Abbreviations: as in text
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and/or thrombolysis after STEMI [97]; (ix) besides SOD and catalase, other protec-
tive endogenous mechanisms against ROS include adenosine, opening of ATP-
sensitive potassium (K-ATP) channels, and release of NO [154]; (x) ROS overload 
and OXS-induced damage after reperfusion of STEMI and thereafter in humans 
may be enhanced by comorbidities such as hyperlipidemia, HTN, and DM2 
(Figs.  11.2 and 11.3) that aggravate endothelial dysfunction and lead to adverse 
vascular remodeling [110, 111, 128]; (xi) targeting I/R injury and OXS in humans 
is further complicated by the multiple factors, players, mechanisms, mediators, sig-
naling pathways, background drugs, pathologies, approaches, and timings involved 
[109–111] (Figs. 11.3, 11.4, 11.5, 11.6, and 11.7); and xii) despite successful pri-
mary percutaneous coronary intervention (PPCI) after STEMI and achieving TIMI 
grade 3 flow in IRAs, reperfusion at the tissue level is often incomplete in as many 
as 9–15 % of patients due to a combination of microvascular damage and distal 
embolization of bits of thrombi and debris from atherosclerotic plaques [155, 156]. 
Taken together, these points should be considered in designing RCTs to demon-
strate the benefit of therapies targeting ROS overload and alleviate OXS in HFrEF 
and HFpEF. Importantly, rather than targeting ROS alone, both ROS and inflamma-
tion need to be targeted.

11.2.9.6.4  ROS-Driven Progression of Early and Late Remodeling Post-
STEMI and HF in Patients

The mechanisms that modulate post-STEMI cardiac remodeling have been 
addressed above and elsewhere before [34, 39–43, 52–58], as has the contribution 
of inflammation [27–44, 48–58, 102, 124, 126]. However, the molecular and cel-
lular mechanisms that modulate ROS-driven progression of early and late remod-
eling after STEMI and thereby contribute to chronic HF were not addressed. 
Grieve et al. very nicely underlined some of the evidence implicating ROS, OXS, 
and redox signaling in the progression of early and late remodeling after STEMI 
[157]. They noted that under physiological conditions, ROS can (i) act as second 
messengers in several cellular functions, including reacting with cysteine residues 
in sulfhydryl groups of proteins, and thereby induce conformational changes that 
mediate signal transduction; (ii) stimulate DNA synthesis and induce expression 
of growth-related genes (such as c-fos, c-jun, and c-myc); and (iii) alter the activ-
ity of redox-sensitive phosphatases and kinases such as mitogen-activated protein 
kinases (MAPK), thereby leading to changes in gene transcription and cell pheno-
type. Under pathophysiological conditions, they suggested a chain of increased 
intracellular ROS, ROS-induced activation of kinases (such as p38MAPK, extra-
cellular signal-related kinase [ERK]-1/2, c-Jun N-terminal kinase [JNK], protein 
kinase B/C, and protein tyrosine phosphatase/tyrosine protein kinase c-Src), 
redox-sensitive gene transcription, and the development and progression of early 
and late ventricular remodeling [157].

Increased ROS and OXS have been documented in animal models of IR, MI, and 
HF and in patients with chronic HF in early studies almost two decades ago [27, 
123, 152, 158–162]. Hill et al. showed that rats with MI have marginal increases in 
SOD, glutathione peroxidase and catalase activities, and vitamin E levels during the 
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nonfailure stage at 1 week but develop increased redox state (reduced/oxidized glu-
tathione ratio) and lipid peroxidation associated with decreased SOD, glutathione 
peroxidase and catalase activities, and vitamin E levels during moderate to severe 
HF at 16 weeks, suggesting that HF post-MI is associated with an antioxidant- 
deficit and increased OXS [158]. Kinugawa et al. showed, using ESR spectroscopy 
in mice with MI, that the hydroxyl radical (•OH) scavenger dimethylthiourea 
(DMTU) attenuated the increase in •OH as well as MMP-2 in the NIZ [159]. Singh 
et al. suggested that antioxidant vitamins reduced OXS in patients with suspected 
MI [160]. Dhalla et al. showed that aortic banding in guinea pigs induced hypertro-
phy associated with decreased OXS (increased redox state) at 10 weeks followed by 
HF with increased OXS at 20 weeks; importantly, chronic vitamin E therapy 
improved the reserve of endogenous vitamin E, reduced OXS (decreased glutathi-
one/oxidized glutathione ratio), and ultrastructural damage at 20 weeks, suggesting 
that long-term antioxidant therapy can potentially attenuate or prevent HF [161]. 
Ide et al. showed, using the dog model of congestive HF induced by 4 weeks of 
rapid ventricular pacing, that ROS (using ESR spectroscopy for measuring ROS 
superoxide anion) increased nearly threefold in HF; this was due to a functional 
block of electron transport at complex I (reflected in decreased complex I enzymatic 
activity) and uncoupling of the respiratory chain, leading to increased production of 
mitochondrial ROS and resulting in contractile dysfunction and structural damage 
to the myocardium during HF [162]. Kim et al. showed, using adenoviral-mediated 
gene transfer of a rac1 gene product in VSMCs in culture, that inhibition of rac1 
blocks the release of ROS upon reoxygenation (as with reperfusion) and protects 
against reoxygenation-induced cell damage [163]. Talukder et  al. used 
cardiomyocyte- specific overexpression of active rac to show that increased myocar-
dial rac leads to increased injury, contractile dysfunction, and MI after I/R [164].

It is clear that there are multiple sources of ROS during HF, including inflamma-
tory cells such as neutrophils and monocytes [49, 51, 157], cardiomyocyte mito-
chondria [29–31, 162, 165], xanthine oxidases [157], phagocytic-type NADPH 
oxidases [157, 166, 167], and dysfunctional NO synthase [157, 168, 169]. Vascular 
injury can occur not only during the initial MI but also with recurrent ischemia, I/R, 
and MI during progression of both HFrEF and HFpEF (Figs. 11.3 and 11.7). As 
mentioned before, acute inflammation appears to be regulated by anti-inflammatory 
mediators (such as IL-10, IL-13, and SLPI) that in turn can regulate NF-kB activa-
tion and dampen the release of proinflammatory mediators (such as TNFα and 
IL-1), thereby attenuating the damaging effects of oxidants and proteases derived 
from recruited neutrophils [170]. Lentsch et al. suggested that therapy to limit vas-
cular injury should be based on anti-inflammatory mediators [170]. Many other 
studies have implicated other specific pathways involved in ROS overload and 
potential signaling pathways and molecules that could be targeted to quench ROS 
overload and reduce OXS during the adverse remodeling and progression to HF 
after MI [27–33].
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11.2.9.6.5  Role of ECM Remodeling in Progression of LV Remodeling 
in HFrEF After STEMI

The evidence for the role of the ECM in cardiac remodeling has been reviewed else-
where [18, 34–37, 42, 44, 49–58]. Several points need emphasis: (i) dramatic ECM 
remodeling in early STEMI is driven by the sharp and early rise in MMP levels 
(Fig. 11.7), causing a chain of MMP/TIMP imbalance, ECM degradation, decreased 
collagen, adverse LV remodeling, LV dysfunction, HFrEF, and adverse outcome; (ii) 
the disturbed ECM homeostasis after acute injury continues during healing and 
repair phases, and beyond initial scar formation in survivors, and contributes to fur-
ther progressive ECM and LV remodeling and HF progression; whereas the MMP 
and TIMP levels subside over weeks as inflammation subsides and the early rise in 
ROS falls (Fig. 11.7); chronically high MMP/TIMP ratios may promote continued 
ECM degradation and contribute to the commonly observed progressive LV dilation 
during healing and remote MI and progressive increase in severity of HFrEF; (iii) 
continued low-grade inflammation and low level of ROS production (Figs. 11.7 and 
11.8), in part due to the continued inflammation itself, contribute further to the pro-
gression of HFrEF; (iv) in contrast to that construct, a chronically low MMP/TIMP 
ratio can contribute to increased ECM and fibrosis in both the IZ and NIZ and thereby 
lead to increased stiffness and diastolic dysfunction and aggravate LV systolic dys-
function over time; (v) defective ECM and fibrosis together with increased cross-
linking can also augment adverse LV remodeling and systolic/diastolic dysfunction; 
in addition, decreased ECM deposition and fibrosis and/or defective ECM (with 
increased type III collagen and decreased or abnormal cross-linking) can further 
exacerbate adverse LV remodeling, LV systolic dysfunction, and LV rupture; (vi) 
whereas LV remodeling is a major mechanism for LV enlargement leading to HF 
after STEMI, it is the ECM disruption that mediates the initial step in LV dilatation 
and is the key mechanism underlying LV structural remodeling and Ang II (a primary 
effector molecule of the RAAS) that drives both ECM and LV remodeling [34, 35]; 
(vii) the aforementioned mix of cells (inflammatory cells, fibroblast, and vascular 
cells) together with a mix of molecules (growth factors, cytokines, chemokines, and 
matrikines) in the healing post-MI substrate act in concert to further modulate LV 
remodeling [36]; (viii) fibroblasts regulate ECM synthesis/deposition and mediate 
ECM degradation/turnover through MMP/TIMP balance, and various MMPs 
(including MMP-1, MMP-2, and MMP-9) modulate ECM remodeling; concurrently, 
growth factors (such as TGF-β) and proinflammatory cytokines (such as Ang II, IL-6, 
and TNF-α) that are released after MI modulate MMP/TIMP imbalance, ECM deg-
radation or interstitial fibrosis, and remodeling [36]; (ix) diffusion of proteins and 
migration of cells from the IZ to borders and the NIZ may extend fibrotic remodeling 
to those areas, whereas MMP-9 can interact with inflammatory response proteins in 
the post-MI inflammatory response (such as activator protein-1, specificity protein-1 
and NF-κB) and, in fact, shows correlation with various inflammatory markers (such 
as IL-6, hs-CRP, and fibrinogen), LV hypertrophy, adverse remodeling with LV dila-
tion, dysfunction in HFrEF and HFpEF as well as CV mortality [49, 50, 96]; (x) 
TIMP-3 also regulates inflammation and inhibits ADAM-17 and ADAM-10, which 
in turn can alter integrins (cell-surface matrix receptors) and  thereby disrupt 
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cell-matrix interactions, degrade ECM, and contribute to LV dilation; xi) ADAMS 
also interact with inflammatory cytokines and alter MMPs and thereby impact LV 
remodeling and/or injury; these interactions between the matrix proteins and inflam-
matory cytokines may modulate ECM damage; (xii) since inflammation is a key 
modulator of healing/repair after MI and impacts both ECM and cardiac remodeling, 
tight regulation of the inflammatory response is essential not only for adequate heal-
ing/repair and scar formation but also during the subsequent progression to HF and 
beyond; it follows that dysregulation of the inflammatory response can result in 
defective scars, increased adverse ECM and LV remodeling, and more rapid progres-
sion to HFrEF and end-stage disease; (xiii) the inflammatory cells also release MMPs 
and oxidants; infiltrating neutrophils release MMPs such as MMP-9; activated neu-
trophils and monocytes produce MPO which enhances remodeling through genera-
tion of oxidants and MMP activation; the aforementioned Ly-6Chigh monocytes 
secrete inflammatory cytokines, ROS, and matrix-degrading proteases, whereas the 
Ly-6Clow monocytes trigger collagen/ECM synthesis by myofibroblasts and promote 
healthy infarct scar formation. Myofibroblasts persist in the infarct scar and maintain 
ECM; xiv) ROS modulates fibroblast proliferation and collagen synthesis and acti-
vates MMPs [171–173] which are redox-sensitive [172–174]; and various cytokines 
(such as Ang II, cytokines, and cyclic load) stimulate both ECM remodeling and 
intracellular ROS generation [175–177]; and (xv) ACEIs and ARBs attenuate both 
adverse post-MI remodeling and OXS [178–182]; chronic treatment with the ROS 
scavenger DMTU was shown to inhibit adverse LV remodeling and HF, and reduce 
collagen deposition, MMP-2 activity, LV hypertrophy, and dilatation in mice [159]; 
the antioxidant probucol was shown to improve LV function, prevent LV dilatation, 
and reduce cardiac fibrosis post-MI in rats [183]. Although a time-course analysis 
showed nuclear-mitochondrial cross-talk in global myocardial ischemia, the effect of 
HF therapies on the cross-talk needs further study [184].

Taken together, the findings support the idea that interactions between ROS and 
inflammation after STEMI contribute to adverse ECM and cardiac remodeling and 
progression to HFpEF.

11.3  Conclusion and Future Directions

The rising trend in disability and death from HF has persisted despite adherence to 
therapies recommended in the published management guidelines from major societ-
ies including the American Heart Association, American College of Cardiology, and 
European Society of Cardiology [1–5, 7]. Clearly, this trend burdens the available 
healthcare resources [9]. As mentioned before, HF prevalence in Europe is reported 
to be about 1–2% in adults, rising to over 10% in those older than 70 years [1], and 
the lifetime risk of HF in people aged 55 years is 33% in men and 28% for women 
[20]. In the United States, the lifetime risk of HF was 20–45% for people aged 
45–95 years and was higher for people with HTN and obesity irrespective of age 
[6]. The recommended pharmacologic therapies in the guidelines for ST-segment 
elevation MI (STEMI) and HF are listed in Tables 11.1, 11.2, and 11.3, respectively. 
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Whereas mortality and morbidity after ACS and MI have improved dramatically 
over the last four decades due to adherence to guideline-driven timely reperfusion 
and adjunctive therapies [1, 2, 74], there remains a 7% mortality and 22% morbidity 
in patients with STEMI at 1 year after prompt reperfusion and PPCI [1, 110, 111]. 
Although several pharmacological interventions were shown to be effective for pre-
venting and limiting the ravages of ROS and OXS during myocardial ischemia, I/R, 
MI, and HF in animal models, they did not prove to be effective in patients [1, 2, 7, 
12, 109, 110]. The guidelines therefore did not recommend the use of antioxidants 
in the setting of myocardial ischemia, I/R, MI, and HF [1, 2, 7–10, 12, 109, 110].

As is clear from the discussions in this chapter, the area of prevention of OXS 
on the clinical front is complex. While there are several reasons for the continued 
increase in HF prevalence despite optimal approved therapy, three reasons that 
stand out include (i) the aging-induced CV remodeling that modifies disease 
expression and response to therapy; (ii) the lifelong exposure to CVD risk factors 
that increase ROS and OXS as well as inflammation (Fig.  11.4); and (iii) the 
contribution of synergism between ROS overload/OXS and inflammation as pro-
posed here (Fig. 11.8) and other yet to be addressed pathways and mechanisms 
leading to HF.

The multiplicity of CVD risk factors, comorbidities, and pathophysiological 
mechanisms and pathways involved in HFpEF, coupled with the lack of 
guideline- approved therapy for HFpEF in 2018, actually provides unique 
opportunities for drug development in this area. As shown in Fig. 11.8, whereas 
OXS and inflammation appear to show synergism in mediating damage, this 
aspect of the background mechanisms still remains to be fully characterized 
and addressed. Whereas there are recommended therapies for HFrEF, the per-
sistence of background levels of inflammation as well as ROS and MMPs, as 
shown in Fig. 11.7, also provides unique opportunities for drug development in 
this area. Already, the CANTOS trial group has tested effective adjunctive anti-
inflammatory therapy for limiting the residual inflammation on top of back-
ground therapies in post-STEMI/HFrEF patients [114, 115]. A similar approach 
can be used to test a carefully selected antioxidant or pathway in a well-
designed RCT for HFrEF and HFpEF. It is also important to select a biomarker 
or panel of biomarkers for OXS that can be used to assess response to therapy 
and to predefine realistic endpoints.

In this war against OXS, the matter of background therapy is an important con-
sideration when undertaking RCTs. Background drugs used by both HFrEF and 
HFpEF patients include ACEIs, ARBs, MRAs, beta-blockers, and other drugs that 
already decrease OXS. In addition, in spite of the lack of support for the use of anti-
oxidants in the management guidelines, off-the-counter vitamins and other related 
drugs that are advertised to reduce OXS are widely used, especially in the elderly. 
Furthermore, the health-conscious patients are already on diet and exercise pro-
grams that reduce OXS.

Thus, the selection of the appropriate placebo arm of an OXS-RCT becomes a 
difficult task. It is essential for investigators designing the RCTs to limit OXS to 
have a clear appreciation of the key basic mechanisms and problems facing the 
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translation of strategies that are found to be effective when tested in research studies 
carried out in appropriate animal models. Well-designed preliminary clinical studies 
in humans are also essential before launching equally well-designed RCTs and 
before moving to application at the bedside of patients suffering from HF. What, 
when, and exactly how best to target OXS and translate promising experimental 
therapy to the real-world by well-designed RCTs before application at the bedside 
by practicing cardiologists and physicians remains an unanswered question. Waging 
war on OXS is a worthy goal but it can be challenging.
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Abstract
Metabolic syndrome (MS) is characterized by the convergence of several risk 
factors at the same time in which each individual contributes to cardiovascular 
risk. Although the factors that establish the relationship between metabolic alter-
ations and vascular changes that predispose to cardiovascular events are not fully 
understood, it is likely that endothelial dysfunction has decisive importance in 
this regard. We implemented the use of fibrinogen, nitric oxide, adiponectin, and 
superoxide dismutase, to evaluate the implication of these phenomena in mito-
chondrial function and morphology in a MS model. It was demonstrated that the 
sustained oxidative stress situation induces histological alterations at the aortic 
level. This pathological and oxidative state leads to a mitochondrial dysfunction 
with repercussion in the morphology of this organelle.

Due to the intimate link to insulin resistance (IR), obesity, and MS, the impor-
tance of studying the implication of the inflammatory phenomenon and associ-
ated oxidative stress is understood, in order to establish the probable 
physiopathogenic mechanisms with the aim of generating strategies that prevent 
the incidence and prevalence of this pathology, given that it has huge conse-
quences in health system. For this it is necessary to identify the determinants of 
the disease in order to implement preventive measures for control and monitor-
ing as well as to study therapeutic strategies that can be implemented to reduce 
the incidence of this multisyndromic pathology.
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12.1  Introduction

Metabolic syndrome (MS) is characterized by the convergence of several risk fac-
tors at the same time in which each individual contributes to cardiovascular risk and 
its association increases exponentially and not only additively [1–3]. In addition 
diabetes mellitus type 2 (T2DM), obesity, and hypertension are associated with pro-
thrombotic, hypofibrinolytic, and proinflammatory alterations that contribute indi-
vidually to cardiovascular risk (Fig. 12.1) [4–6].

The biochemical parameters that accompany syndrome are insulin resistance and 
compensatory hyperinsulinism associated with a metabolism of hydrocarbon 
metabolism disorders, lipid alterations (such as hypertriglyceridemia, lowering of 
high-density lipoprotein cholesterol (c-HDL), presence of low cholesterol lipopro-
tein density type B, increase of free fatty acids, postprandial lipemia), obesity, and 
high blood pressure [7].

Although the factors that establish the relationship between metabolic alterations 
and vascular changes that predispose to cardiovascular events could elicit, a pivotal 
role in endothelial dysfunction has been suggested to be decisive importance in this 
regard [8].

Fig. 12.1 Evolution of metabolic syndrome
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Currently, there is increased evidence about that MS pathophysiology is related 
to a low-grade inflammatory condition, given that the patients exhibit high level of 
cytokines and inflammatory markers. All these would be the result of hypercaloric 
diets with low-energy expenditure, associating with an increase of fat body tissue, 
increasing abdominal visceral fat [9].

There are also primary triggers that induce the inflammatory cascade, such as the 
presence of high levels of oxidized LDL and early inducers of atherogenesis. Other 
secondary triggering factors that are involved in the maintenance and amplification 
of cytokine production include the presence of mechanical factors, angiotensin II 
levels, free radicals, and metalloproteinases, among others [10].

Proinflammatory stimuli increase acute-phase reactants by activating specific 
cytokine production patterns for different proteins. As a consequence of the activa-
tion, some markers such as plasma fibrinogen (FP), C-reactive protein (CRP), cyto-
kines (interleukin-6 (IL-6)), tumor necrosis factor-alpha (TNF-α), adhesion 
molecules (intercellular adhesion molecule, ICAM I), and other coagulation factors 
may be increased in plasma and have prognostic value for future cardiovascular 
events [11, 12].

Although these stimuli increase the concentrations of acute-phase reactants, not all 
of them increase uniformly in the same or different diseases, indicating that they are 
individually regulated (Fig. 12.2) [13]. This behavior of inflammatory markers along 
with insulin could play an important role as a cardiovascular risk factor and oxidative 
stress have been proposed to be as a potential inducer of inflammation, susceptibility 
to obesity, and comorbid states [12, 14, 15]. However, interaction is not clearly eluci-
dated among them in the pathogenic mechanism of this multisyndromic disease.

Fig. 12.2 Vascular inflammatory process
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In fact, in each of the disorders that characterize MS (diabetes, obesity, hyperten-
sion, and hyperlipidemia), there is an alteration in the function of the endothelium, 
which responds poorly to the stimuli of relaxation [16]. These dysfunctional endo-
thelia lose the ability to regulate their vital functions acquiring procoagulant proper-
ties instead of anticoagulants and are likely to modify the synthesis of reactive 
oxygen intermediates.

The deterioration of health due to some pathology can be evaluated through the 
use of biomarkers, parameters that allow knowing the normal or abnormal state of 
an individual and express the probability that an undesired effect will occur as a 
result of an exposure [17]. The existence of a transversal and prospective associa-
tion between the plasma measurement of oxidative stress and the risk of presenting 
MS would be independent, since the prospective association persists even after 
including in the analysis of the classic risk factors [18]. In this context, we imple-
mented the use of fibrinogen, nitric oxide, adiponectin, and superoxide dismutase, 
to evaluate the implication of these phenomena in mitochondrial function and mor-
phology in a MS model.

12.1.1  Nitric Oxide

NO is a relatively stable gas, which has an unpaired electron, thus giving it the prop-
erty of free radical. This molecule exerts various physiological and pathological 
effects [19]. As a free radical, NO easily undergoes chemical reactions of addition, 
substitution, and oxidation; these reactions constitute the molecular basis of its dif-
ferent biological effects.

Under conditions of oxidative stress, as in the case of MS, the bioavailability of 
NO decreases, because it follows a pathological pathway by reacting with the super-
oxide radical forming peroxynitrite; generating oxidations in lipids, proteins, and 
other cellular structures; and perpetuating the lesion in the vascular layers [12, 20, 
21].

Its determination as a biomarker represents an indirect measurement of nitrites 
and nitrates generated by oxidative stress [12]. One of the most important reactive 
oxygen intermediates is nitric oxide (NO), which is synthesized in the endothelial 
cells by means of the enzyme nitric oxide synthase producing in an equimolar way 
L-citrulline [22, 23]. Oxidative inactivation of NO due to excessive production of 
superoxide and hydrogen peroxide constitutes the most characteristic and early sys-
temic phenomenon of endothelial dysfunction [24–27].

The NO would follow a pathophysiological path, coupling with the superoxide 
anion (O2

−) at very high speeds, at the limit of the dysfunctional control, leading to 
the formation of peroxynitrite (ONOO−). Peroxynitrite is formed in vitro and in vivo 
when its precursors coexist temporally and spatially, participating in a series of 
processes at the molecular and subcellular level and generating protein nitration 
with subsequent tissue damage [28]. Tyrosine nitration is mediated by reactive 
nitrogen species.
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On the other hand, this nitration of the tyrosine residues in proteins prevents their 
functional interactions and jeopardizes the cell viability, being able to alter the con-
formation and structure of the proteins, their catalytic activity, and/or their suscep-
tibility for digestion [29]. There are researches indicating that the vasculature per se 
produces significant amounts of superoxide, which reduces the bioavailability of 
NO through the degradation of it and the formation of peroxynitrite [30].

It is argued that the existence of a pro-oxidative state triggered by oxidative 
stress can induce insulin resistance by causing phosphorylation of insulin receptors 
[31].

The excess in the formation of these highly reactive molecules alters the activity 
of antioxidant enzymes that catalyze the decomposition of these harmful oxidants, 
neutralize their toxicity, and prevent their concentrations from becoming pathologi-
cal [32, 33]. Some have postulated that antioxidant mechanisms would be respon-
sible for the deterioration of insulin action [34]. On the other hand, the uncontrolled 
production of ROS would also damage DNA and induce lipid peroxidation of the 
cell membrane, affecting its permeability and functionality, generating accumula-
tion of lipid peroxides that pass into the bloodstream, and increasing peroxidation 
of lipoproteins promoting endothelial dysfunction in SM [35].

12.1.2  Fibrinogen

Fibrinogen is a soluble glycoprotein found in plasma synthesized mainly in the liver 
and has a half-life of 100 h. As a coagulation factor, fibrinogen is a precursor of 
fibrin. It also participates in processes of inflammation, atherogenesis, and thrombo-
genesis [36].

On the other hand, it is an acute-phase reactant whose concentrations increase in 
plasma in response to a tissue injury; therefore it is postulated that it exists a close 
relationship between fibrinogen and atherosclerotic vascular disease. Likewise, it is 
considered that fibrinogen is not only a cardiovascular risk factor, but also it can be 
implemented as a biological marker in pathologies with inflammatory components 
such as the metabolic syndrome [37].

It is about the complex process of endothelial dysfunction, where hyperfibrino-
genemia could reflect the proinflammatory state of MS probably through the phys-
iopathological pathway of NO and the modified enzymatic activity of SOD [38].

12.1.3  Superoxide Dismutase

The human organism has a system of oxidant detoxification by the enzyme super-
oxide dismutase (SOD), whose plasma levels are essential to preserve the availabil-
ity of NO.

This enzyme is part of the natural defense mechanism that the human body pos-
sesses. Its main function is to neutralize the free radicals produced physiologically 
in the organism by the metabolic processes. It is mainly responsible for the 
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dismutation of the superoxide anion into hydrogen peroxide, a less harmful com-
pound for the cell avoiding cellular oxidative stress [12, 39, 40]. The normal func-
tioning of superoxide dismutase would be inhibited in a situation of oxidative stress, 
due to the excess of free radicals that saturate the enzymatic activity, a situation that 
leads to the generation of tissue lesions in pathologies such as MS [36, 38]. Its deter-
mination would be useful to establish the cellular antioxidant status in multifactor 
pathologies.

SOD neutralizes naturally the superoxide anion and catalyzes its enzymatic con-
version to hydrogen peroxide (H2O2) at a much higher rate of spontaneous conver-
sion; evidently the antioxidant chain is continued with the definitive reduction to 
water, by peroxidases or catalases of the peroxide formed, but the importance of 
SOD reaction is that at the level of the endothelial wall, the massive production of 
superoxide decreases the bioavailability of NO.

Experimental studies have shown an inhibition in the enzymatic activity of SOD, 
and this mechanism could be relevant in the endothelial dysfunction observed in 
pathologies such as MS [32, 43]. This endogenous enzyme establishes a biochemical 
“surveillance,” since the superoxide anion is generally formed as an intermediary in 
the oxygenation reactions of substrates, thus protecting the tissues from the deleteri-
ous action of the superoxide radical [40]. In SM there would be a direct relationship 
between the production of free radicals by induction of oxidative stress and the 
endogenous antioxidant system specifically SOD [41, 42]; however there are no con-
clusive data in the literature regarding the binomial SM and SOD and so with the 
importance of studying the behavior of SOD in experimental models [44, 45].

12.1.4  Mitochondria: Function and Morphology

The production of mitochondrial superoxide is an important mediator of cellular 
oxidative injury; likewise, succinate-cytochrome c reductase (SCR) present in the 
electron transport chain could be involved as a mediator in the generation and as an 
alternative target of NO in the regulation of mitochondrial respiration [46].

The control of mitochondrial functions depends on two variables, the concentra-
tion of NO and the oxygen level; each one acts on a range of concentrations and 
gradients, and there are critical points in which both variables are intercepted gen-
erating peroxynitrite. In this way, NO, superoxide anion, and peroxynitrite play a 
crucial role in the regulation of mitochondrial function [47, 48]. This process would 
irreversibly inhibit different components of the mitochondrial respiratory chain. 
This effect would be produced through different enzymatic ways of inactivation of 
dehydrogenated NADH (complex I) and dehydrogenated succinate (complex II), as 
well as through the inhibition of ATP synthase [49]. The generation of ROS in mito-
chondria can be triggered by several factors such as efficiency of the electron trans-
port chain, the concentration of oxygen, the availability of electron donors such as 
NADH and FADH2 of cytokines, and the activity of antioxidant defenses [50].

The ability of the mitochondrial matrix to produce NO has several implications. 
On the one hand, NO would act as a physiological messenger that modulates the 
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speed of electron flow under physiological conditions by binding to the active site 
of oxygen in cytochrome oxidase in a competitive manner. This binding regulates 
the oxygen consumption representing a beneficial effect. The interruption of cyto-
chrome oxidative phosphorylation and, consequently, the alteration of the cellular 
metabolic activity could be produced by NO that reacts with heme’s iron (Fe) form-
ing a nitrosylated inclusion complex [51].

In addition, the endothelial NOS (eNOS) requires the presence of the Ca2+ ion for 
its catalytic activity and in the cells involved in the systemic inflammatory response 
to the intracellular Ca2+ homeostasis. The cellular breakdown would generate a mas-
sive influx into the ion cell of Ca+ and Na+ and an increase in cell volume due to the 
entry of water, inducing alterations at the mitochondrial level and initiating an 
increase in ROS inside these organelles, a process that could contribute to the initia-
tion of vascular pathologies in which mitochondrial antioxidant defenses are over-
come. This plays an important role in mitochondrial energy regulation, modulated 
by the release of hydrogen peroxide, which is converted to hydroxyl radical. In situ-
ations of oxidative stress, the hydroxyl radical would inhibit the ATPase activity of 
the Na+/Ca2 + pump and causes damage to the cell membrane, which would increase 
its permeability. The continuous flow of uncontrolled Ca2+ activates different 
enzymes (proteases, endonucleases, and phospholipases) creating a vicious circle, 
which would contribute to a higher production of free radicals affecting oxidative 
phosphorylation and, therefore, the production of antioxidants in a process that 
requires energy [51, 52].

The changes observed at the mitochondrial level also involve the Krebs cycle. 
The oxidation of fatty acids, aerobic respiration, related to oxidative mitochondrial 
phosphorylation and the synthesis of ATP. For example, peroxynitrite would carry 
out the nitration of tyrosines in several mitochondrial proteins, such as the ferro- 
sulfurated cycle of Krebs aconitase and the dehydrogenated glyceraldehyde-3P 
involved in glycolysis, leading to an inhibition of mitochondrial respiration and a 
fall in the synthesis of ATP.

When mitochondrial respiration is inhibited, electrons would accumulate in the 
respiratory chain, which would lead to the complex NADH-ubiquinone reductase 
(complex I) and ubiquinol-cytochrome c reductase (complex III) that possess ubi-
quinone as a common component and increase the generation of superoxide and 
consequently peroxynitrite and hydrogen peroxide, perpetuating the lesions gener-
ated by oxidative stress [53, 54]. Therefore, the reduction of electron transport and 
oxidative stress could represent an important objective for the modulation of the 
function of adipocytes in the SM [55, 56]. DM associated with metabolic disorders 
can lead to mitochondrial dysfunction, activation of NADPH oxidase (NOX), and 
excess ROS production, which results in oxidative stress and promotes cardiovascu-
lar disorders [57, 58].

The modifications generated would be responsible for the morphofunctional 
mitochondrial alteration, changes to which probably contributed the modified 
inflammatory biomarkers, variations in the concentration of adiponectin, insulin 
resistance, and hyperinsulinism. It is demonstrated that mitochondrial damage is 
related to the pathogenesis of several metabolic disorders, especially those related 
to insulin resistance, such as obesity and DM2 [59].
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From the aforementioned, we understand the importance of studying the impli-
cation of the inflammatory phenomenon and oxidative stress in pathologies with 
vascular components to establish on the one hand the probable physiopathogenic 
mechanisms with the aim of generating strategies that prevent the appearance of 
events by decreasing or controlling the risk factors. If the concentration of mito-
chondrial ROS were reduced, endothelial dysfunction and its consequences in the 
initial stages of MS would probably be controlled or reversed [60].

The clinical importance of an experimental model is the identification of early 
markers that would help find ways to prevent or slow the development of DM2 
and the progression of atherosclerosis since glucose intolerance is a proinflamma-
tory, proatherogenic, prothrombotic, and facilitating condition of diabetes mellitus 
[61, 62].

That is why we designed SM research from the basic sciences in order to imple-
ment biomarkers of oxidative stress and also to analyze the probable histological 
alterations in the vascular endothelium and liver. In addition, we can assess whether 
morphofunctional modifications of mitochondria of smooth aortic muscle cells are 
generated.

12.2  Metabolic Syndrome Validation

The investigation was carried out according to the guide for care and use of labora-
tory animals published by the US National Institute of Health, NIH publication 
(N°58–23, revised 1996), and the Ethic Committee from the Medicine School 
(National University of Cordoba) Res. N°49/17 has also approved the experimental 
animal procedures. The model of SM was performed in male Wistar rats, divided 
into two groups: (A) control group (n = 12) and (B) group with SM (n = 12) [63, 40]. 
After the SM induction, the blood and tissue samples were processed for further 
analysis. Plasma level was analyzed: blood glucose [64], insulinemia [65], and lipid 
profile [64], complementing with homeostatic model assessment (HOMA) [66] to 
validate this pathology.

In the experimental SM model, the results presented in Table 12.1 showed that 
rats that receive fructose in drinking water in a chronic manner provide a useful 
model for the diagnosis of the factors that make up SM; this is induced by changes 
in the intake and expresses numerous alterations similar to the human subject with 
SM [40, 63]. Unlike glucose, diets with high levels of fructose, being proinflamma-
tory molecules, induce in rodents glucose intolerance, dyslipidemia by lipolysis, 
angiogenesis, endothelial dysfunction, vasoconstriction, fibrinolysis, and insulin 
resistance [67, 68] as demonstrated in our results. The administration of 10% fruc-
tose generated in the SM group experimentally induced hyperglycemia, hypertri-
glyceridemia, decreased HDL levels, and increased circulating levels of total 
cholesterol together with hyperinsulinemia, confirming that the experimental model 
presents the characteristic manifestations of MS [40, 69].
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In addition, the calculation of HOMA is a useful model for the quantification of 
insulin resistance, reflecting the function of beta cells requiring only a fasting serum 
sample. It is calculated by multiplying fasting plasma insulin (FPI) by fasting 
plasma glucose (FPG) and then dividing by the constant 22.5 [66, 70].

In our results, an increase in the HOMA value was obtained in the SM group, 
validating the presence of insulin resistance in the experimental SM model. Arterial 
hypertension, diabetes, and obesity are common but not independent pathologies, 
and their combination is reflected in the SM [71]. Several inflammatory mediators 
produced by adipose tissue and the interrelationship between immune and meta-
bolic cells affect insulin signaling for ROS generation and subsequently endothelial 
dysfunction leading to insulin resistance (IR) and heart diseases [72].

Inflammation of the hypothalamus can be induced experimentally by a diet high 
in fat or by the administration of fructose [73] causing hyperphagia, and it has been 
documented that it impairs the release of insulin from the β cells and the peripheral 
action of insulin. Therefore, the chronic excess of nutrients, such as lipids and glu-
cose, can simultaneously trigger inflammatory responses, which disrupt the meta-
bolic function, generating oxidative stress, inflammation, and MS.

The significant hypertriglyceridemia observed in the group with MS would be 
demonstrating a concentration of triglycerides rich in abnormal lipoprotein (lipo-
protein- a) or modified lipoprotein associated with prothrombotic states.

On the other hand, inhibitory dysfunction of lipolysis in adipocytes produces an 
activation of triglyceride lipolysis and the release to the peripheral circulation of 
free fatty acids. Both hyperinsulinemia and said fatty acids decrease the action in 
the adipose tissue of the catalytic enzyme lipoprotein lipase, generating an increase 
in the production of triglycerides [74], so that their plasma values are increased 
(Table 12.1).

The results of another lipid profile parameter such as HDL were analyzed, and 
significant decrease was observed in the group with MS. This is due to the general-
ized metabolic effect of IR that increases lipolysis, with greater availability of 

Table 12.1 Plasma levels of 
glycemia, insulinemia, and 
lipid profile in control group 
and group SM

Control (A) SM (B)
Glycemia (mg/dL) 115 ± 1,1 176 ± 17,3
Insulinemia (uU/mL) 4 ± 0,82 29,5 ± 4,52
HDL (mg/dL) 61 ± 0,01 28,3 ± 1,14
Total cholesterol (mg/dL) 69,7 ± 1,6 133 ± 9,6
Triglycerides (mg/dL) 46,2 ± 6 75 ± 12,9
HOMA 3 ± 0,38 11 ± 1,3

Mean  ±  ES: glycemia: (A) vs. (B): p  <  0.001. 
Insulinemia: (A) vs. (B): p < 0.001. HDL (high-density 
lipoprotein): (A) vs. (B): p < 0.001. Total cholesterol: 
(A) vs. (B): p  <  0.001. Triglycerides: (A) vs. (B): 
p < 0.001. HOMA: (A) vs. (B): p < 0.001. (n = 12 per 
group) SM (metabolic syndrome) [35]
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FFA. When this mechanism becomes dysfunctional due to the decrease in circulat-
ing plasma HDL, it translates into an increase in proinflammatory properties, endo-
thelial imbalance, and mechanisms of atherothrombosis and fibrinolysis.

On the other hand, normally the initial formation of HDL cholesterol is secreted 
in discoidal particles of the liver. The lipoprotein cholesterol-HDL has a protective 
role in promoting cellular cholesterol efflux and reverse cholesterol transport [75, 
76]. When EHNA-type alterations are present, the synthesis of this lipoprotein and 
its precursors is affected [77], decreasing expression of cell adhesion molecules 
(CAMs) and the increasing endothelial NOS expression modifying the activation, 
release, and bioavailability of NO [78, 79].

12.2.1  Pathological Evaluation in Liver Preparations of Rats 
with MS

The excessive accumulation of fat (steatosis) is linked to diseases such as diabetes 
mellitus type 2, IR, central obesity, hyperlipidemia with low levels of high-density 
lipoprotein (HDL cholesterol), hypertriglyceridemia, and hypertension, becoming 
an increasingly common liver problem. In addition, nonalcoholic steatohepatitis 
(NASH) is considered to be the prevalent liver disease in obese people and with MS 
[80]. Due to its intimate link to IR, obesity, and MS, the importance of studying the 
implication of the inflammatory phenomenon and associated oxidative stress is 
understood, in order to establish the probable physiopathogenic mechanisms with 
the aim of generating strategies that prevent the incidence and prevalence of this 
pathology [81].

To confirm the presence of NASH, a distinctive hepatic seal of the metabolic 
syndrome, 15 liver sections of 3–5 μm each were analyzed by optical microscopy in 
all the batches studied, objectifying in the group with SM-induced alterations con-
sistent with cholestasis, sinusoidal congestion, binucleation, and periportal inflam-
matory infiltrate (Fig. 12.3a, b), compatible with NASH, which corroborates the 
hepatic lesions characteristic of MS, compared to the control group that did not 
show histological changes (Fig. 12.4) [82]. It should be noted that there are also 
histological changes of NASH that include steatohepatitis (fatty liver in addition to 
parenchymal inflammation with or without accompanying focal necrosis), steatosis 
(fatty liver), and varying degrees of fibrosis, including cirrhosis, although they were 
not visualized in the tissues analyzed [83].

The hypertriglyceridemia measured in animals with MS would be due to the 
accumulation of triglycerides in the hepatocytes as a result of the entry of FFA to the 
liver at higher levels than necessary; therefore the remainder is exported to the blood 
circulation, being an adjuvant factor in the increase in cardiovascular risk [45].
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12.2.2  Analysis of Inflammatory Biomarkers and Oxidative Stress

In animals with NASH, it can be proven that when inflammatory responses are 
simultaneously triggered, the plasma concentrations of these acids and glycerol 
increase, interrupting the metabolic function of insulin and triggering oxidative 
stress with an increase in the concentrations of reactive oxygen species (ROS), 
decreasing the amount of bioactive NO by chemical inactivation when toxic per-
oxynitrite is formed, showing a relationship with the decreased plasma NO values 

a b

Fig. 12.3 Liver histological section corresponding to the group of animals with induced SM (B). 
(a): The MO shows vacuolization (star), congestive vasculature (triangle) and binucleation (arrow-
head). (H/EX40). (b): The MO shows binucleation and periportal inflammatory infiltrate 
(arrowhead)

Fig. 12.4 Liver 
histological section 
corresponding to the group 
of control animals (A): the 
MO shows normal hepatic 
histology (H/EX40)
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observed in animals with SM induction. The increased concentrations of fibrinogen 
show the inflammatory state present in SM induced, verifying that this would 
behave as an independent indicator in SM and establishes a close relationship with 
the oxidative stress process reflected by the decrease in the bioavailability of NO, 
which quantifies indirectly the production of superoxide anion (O2

−).
Consequently, when we corroborated the experimental SM model, we proceeded 

to study the plasma concentrations of fibrinogen [84], adiponectin [16] (inflamma-
tory markers), nitric oxide [85] (oxidative marker), and superoxide dismutase activ-
ity [86] (marker) antioxidant in red blood cell lysate (Table 12.2).

In this way it could be established that in this proinflammatory process, fibrino-
gen would generate oxidative stress with probable loss of the capacity of endothelial 
cells to regulate their vital functions in the production of vasoactive substances such 
as NO [87]. Therefore, the inflammatory state and the endothelial disbalance 
described would demonstrate a dysregulation in the circulating levels of fibrinogen, 
forming an important proinflammatory marker being predictive of the evolution of 
cardiovascular diseases such as myocardial infarction, cerebrovascular accident, 
and venous thromboembolism [88].

The increase in fibrinogen values observed in the induced SM group evidences 
that this would behave as an independent predictor in SM and establishes a close 
relationship with the oxidative stress reflected by NO modifications, which indi-
rectly quantifies the production of superoxide anion (O2

∙−).
Due to the efficiency of the reaction of the superoxide with the NO, the local 

concentration of the SOD is a key determinant of the bioactivity of the NO. The 
increased values of SOD in the experimental model is possibly an adaptive response, 
characteristic of biological systems tending to compensate oxidative stress, which 
can be interpreted as a situation of increased redox environment.

This increase in SOD would allow us to infer that the endothelial dysfunction of 
the vascular wall would initially be a stimulus for its synthesis and later descend by 
enzymatic saturation [89]. The increase in the activity of the enzyme SOD observed 
in the results associated with changes in fasting blood glucose levels, dyslipidemia 
due to decreased HDL and hypertriglyceridemia, IR, hypoadiponectinemia, and 
increased inflammatory and oxidative components are indicators of oxidative stress 
present in the experimental model. This would reflect the importance of SOD as an 
endogenous antioxidant mechanism that tries to compensate the increase of free 
radicals; however, it is sometimes insufficient either due to low productivity or the 

Table 12.2 Values of 
fibrinogen, adiponectin, nitric 
oxide, and enzymatic activity 
of superoxide dismutase in 
rats with experimentally 
induced SM

Control (A) SM (B)
Fibrinogen (mg/dL) 203 ± 9 292 ± 11

Adiponectin (μg/dL) 11,17 ± 0,11 8,34 ± 0,2

NO (μM) 23,58 ± 1,4 8,7 ± 1,2

SOD (U/mL) 138,5 ± 3,6 181 ± 6

ME  ±  ES: fibrinogen: (A) vs. (B): p  <  0,00.1. 
Adiponectin: (A) vs. (B): p < 0,01. NO: (A) vs. (B): 
p < 0,001. SOD: (A) vs. (B): p < 0,01. (n = 12 per 
group) SM (metabolic syndrome) [35]
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excess of the production rate of this enzyme, which would allow alterations to prog-
ress in both models [40, 90].

The histological changes visualized at the hepatic level, consisting of cholestasis, 
sinusoidal congestion, binucleation, and periport inflammatory infiltrate, are com-
patible with the first changes of NASH. It should be remembered that it is the most 
common liver disease in obese patients with MS [91, 92].

The interaction of these mechanisms would be responsible for the hyperfibrino-
genemia, the decrease in the bioavailability of NO, and the increase in SOD activity 
demonstrated in the study results associated with the observed liver changes. The 
hypertriglyceridemia measured in animals with MS is due to the accumulation of 
triglycerides in the hepatocytes as a result of the entry of FFA to the liver at levels 
higher than necessary; therefore the remainder is exported to the blood circulation 
[93, 94].

Authors suggest that inflammation of the liver and IR could play an important 
role in the development of endothelial dysfunction and atherosclerosis in patients 
with NASH, especially young and middle-aged, who could benefit from early pre-
vention strategies to help decrease the risk of developing manifest cardiovascular 
disease [38, 95].

Consequently oxidative stress, lipoperoxidation, and the abnormal production of 
proinflammatory adipocytokines have been linked to hepatocyte damage and apop-
tosis. Experimental studies have found that adiponectin, one of the adipocytokines 
that decreases in the SM as observed in the results (Table 12.2), antagonizes the 
excess storage of lipids in the liver protecting against inflammation and fibrosis, so 
that its decrease is associated with the severity of hepatic steatosis, necroinflamma-
tion, and fibrosis.

The massive arrival of free fatty acids to the liver via portal, mainly from the 
lipolysis of visceral adipose tissue, generates a decrease in insulin clearance, 
expressing hyperinsulinism, and increases in gluconeogenesis reflected as hyper-
glycemia and in the synthesis of VLDL responsible for quantified dyslipidemia 
[96]. The lipolysis of abdominal fat has special importance in the pathogenesis of 
NASH [97]; in fact, insulin resistance, peripheral levels of adiponectin, the presence 
of other cytokines such as TNF-α and IL-6, CRP, insulin, and glucose remain 
unchanged after the removal of subcutaneous fat. The reduction of visceral fat 
improves the resistance to insulin and the remaining metabolic disorders associated 
with NASH [98]; it is particularly resistant to the action of insulin [99], and, conse-
quently, it is more easily hydrolyzed.

In addition, the liver, by occupying a strategic place in the portal circulation, 
directly receives the free fatty acids (FFA) released during the lipolysis of abdomi-
nal fat. In animals with NASH, it can be proven that the plasma concentrations of 
these acids and glycerol are greatly increased and that insulin has a reduced capacity 
to prevent the release of n of these lipolysis products [100, 101]. The AGL that reach 
the liver activate the nuclear receptor PPARα (peroxisome proliferator-activated 
receptor) inducing the transcription of numerous genes involved in the catabolism 
and elimination of fatty acids [102, 103]. This protein complex intervenes in the use 
of FFA, in the synthesis of triglycerides inducing steatosis, and in the 
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phospholipids, influencing gluconeogenesis, which is expressed in hyperglycemia; 
they also modify the oxidation in mitochondria, in peroxisomes, or in microsomes, 
and these three oxidations are of great importance since they can contribute to cel-
lular oxidative stress.

12.2.3  Pathological Assessment of Thoracic Aorta in Rats with MS

Several clinical studies recognize MS as responsible for endothelial dysfunction 
triggered by insulin resistance and hyperinsulinism; even in patients with MS, an 
association between an increase in the thickness of the intima and media of the 
carotid has been observed, this image being also a marker of subclinical atheroscle-
rosis [104]. These lesions would lead to an increased risk of cardiovascular events, 
especially in pathologies that involve multiple risk factors such as MS.

Beside the biochemical parameters and biomarkers analyzed, anatomopathologi-
cal studies by MO in thoracic aorta showed that the state of MS (Fig. 12.5) gener-
ates endothelial denudation, thickening of the intima, increase in the extracellular 
matrix, myxoid changes in the subendothelium and protrusion of the vascular wall 
toward the light of the aorta, and changes that objectify the repercussion at vascular 
level and whose functional expression would be endothelial dysfunction [20].

The inflammatory signals elicited by biomarkers activate endothelium via an 
increase in ROS production, which have been supported by the histopathology stud-
ies of thoracic aorta [40, 103].

Fig. 12.5 Optical 
microscopy of rat thoracic 
aorta with induced MS 
showing endothelial 
denudation with red blood 
cells adhered, intimal 
thickening, myxoid 
changes in the extracellular 
matrix and disorganization 
of the internal muscular 
lamina in most cuts (arrow 
head) (H/EX60) [35]
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12.2.4  Study of the Mitochondrial Morphology of Smooth Muscle 
Cells of the Thoracic Aorta of Rats with MS

Due to the biochemical and pathological changes observed, the analysis of the mito-
chondrial morphology and functionality of the mitochondrial respiratory chain was 
carried out, given that it is the final target of oxidative stress.

The plasma results obtained from the SM indicators and histopathological lesions 
demonstrate a common final pathway, which is oxidative stress and endothelial dys-
function. These processes are closely related to morphological and functional alter-
ations of the mitochondria in the smooth muscle cells of the vascular wall (Figs. 12.6 
and 12.7), expressing an important role both in the beginning and in the progress of 
these multisyndromic pathologies [53, 105, 106]. Numerous investigations pro-
vided evidence to suggest that mitochondrial dysfunction is one of the main causes 
of IR and related cardiometabolic diseases [107].

Fig. 12.6 Microphotograph 
of mitochondria in control 
group, structure of 
membranes, and crests 
without changes and 
maintaining normal shape 
and size (arrow), 27,800X 
[34].

Fig. 12.7 Microphotograph 
of mitochondria in SM 
group. Mitochondrial 
groupings with structural 
deformations and areas of 
swelling (head of arrows) 
are observed, 27,800X

12 Oxidative Stress in Metabolic Syndrome: Experimental Model of Biomarkers



328

The mitochondrial oxidative capacity in the SM is totally correlated with the 
number and size of the same [108]; these modifications would be due to the action 
of the AGL and the enzymes that generate or catabolize the regulation of the mor-
phology, that is why the importance of control of the plasma lipid profile as well as 
the synthesis of adiponectin, which, being diminished in the experimental SM, con-
ditions the appearance of proinflammatory and pro-oxidative products that increase 
the peroxidation of HDL, generating repercussions in the development of metabolic 
alterations [109].

Another probable cause of these morphological modifications is due to the fact 
that this organelle constitutes a complex, interconnected, and highly dynamic net-
work, maintained by permanent, opposite, and balanced fusion and mitochondrial 
fission events [110].

Both the number of tubules and their connections, as well as the subcellular dis-
tribution of the organelle, are actively controlled. In this way, the term “mitochon-
drial dynamics” has been coined to encompass at least three different processes:

 (a) The remodeling of the mitochondrial reticulum through fusion/fission pro-
cesses, which is closely linked to the cellular metabolic state and is controlled 
by the activity of a group of guanosine triphosphate hydrolases proteins 
(GTPases) related to the dynamin family [111, 112].

 (b) Subcellular mitochondrial motility, particularly relevant in polarized cells and 
corresponding to the mitochondrial displacement dependent on the kinesin 1 
and 3 motors and the Milton and Miro adapters [113], which ensures the local 
supply of ATP in biological processes with high-energy requirements and the 
use of these organelles as calcium buffer [111, 112, 114].

 (c) The remodeling of the mitochondrial ultrastructure and the condensation of its 
matrix, processes classically considered as a reflection of the mitochondrial 
metabolic state. Both the different functional states of the mitochondria and 
their ultrastructure play a role in remodeling of mitochondrial crests as observed 
in the results [111, 112, 115].

Since mitochondria are organized to form intricate mitochondrial networks and 
these networks work as electrical units to transmit the mitochondrial membrane 
potential, a normal mitochondrial function is required for the correct homeostasis of 
oxidative substrates, since a mitochondrial dysfunction can lead to metabolic dis-
eases or contribute to the pathophysiology of obesity. In addition to the described 
morphological alterations of the mitochondria, modifications were observed in the 
functionality of these organelles.
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12.2.5  Analysis of the Enzymatic Activity of the Mitochondrial 
Respiratory Chain in Smooth Aortic Muscle Cells from Rats 
with MS

A depreciation of the Krebs cycle would have been indicated when the measure-
ments of the activity of the electron chain were analyzed, because a progressive 
decrease in the activity of citrate synthase was observed (Fig. 12.8). This is reflected 
by decreasing the activity of the mitochondrial respiratory chain reflected in the 
depletion of the activity of the enzymes NADH dehydrogenase (IC), succinate ubi-
quinone reductase (CII), cytochrome C reductase (CIII), and cytochrome C oxidase 
(CIV). We must emphasize that this deterioration of mitochondrial function is pro-
gressive and accentuated, manifesting via oxidative stress that proinflammatory and 
pro-oxidative indicators in both experimental models have an impact on mitochon-
drial morphofunctionality.

Pathological processes such as inflammation, hypoxia/ischemia, and oxidative 
stress exert harmful effects on the structure and function of mitochondria [116]. As 
a result, there is a decrease in the phosphorylation potential that directly leads to the 
depression of cellular energy, and consequently there is a decrease in the ability of 
the cell to control homeostasis. Mitochondrial lesions are reversible in short periods 
of time and irreversible when harmful stimuli persist, since oxidative stress in the 
mitochondria through the formation of peroxynitrites (ONOO−) inhibits many mito-
chondrial proteins including the subunits of complexes I and II of the respiratory 
chain (Figs. 12.9 and 12.10), which results in the depletion of oxidative phosphory-
lation as observed in our results [116–118].

In some pathological situations such as hypoxia, complex II would also be a 
producer of physiologically relevant mitochondrial ROS [119]. In the absence of 
ADP, the electrons derived from succinate (substrate FADH2-linked to complex II) 
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Fig. 12.8 Enzymatic activity of citrate synthase in rats with experimental SM. (n = 12 per group) 
SM (metabolic syndrome). ME ± ES: (A) vs. (B): p < 0,01
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can flow in the opposite direction increasing the production of O2 by complex I; for 
this reason, complex I is considered the main physiological and pathologically gen-
erating site of ROS in mitochondria [109, 120, 121]. This increased production of 
ROS would alter the mitochondrial morphological function, and it is known that the 
main sites of production of mitochondrial superoxide derive mainly from complexes 
I and III; these two are the main electron leakage sites in the electron transfer chain, 
and complex I is the most vulnerable (Fig. 12.11) [122].

In the experimental model of MS, the activity of citrate synthase and complex I 
decreased could be by increased oxidation and reduced glucose storage together 
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with the reduced activity of the tricarboxylic acid cycle, β oxidation, and the 
decrease in the chain of electron transfer, as has been described in pathologies with 
obesity and DM2 [123]. In other experimental models of obesity and IR, reduction 
was found in the expression of eNOS, in mtDNA, and in respiratory proteins such 
as cytochrome C oxidase, complex IV of CRM, and cytochrome c, as well as in 
oxygen consumption and ATP production along with changes in mitochondrial 
morphology. Similar behavior was observed in complex IV (Fig. 12.12), due to the 
modifications in the bioavailability of NO, a molecule that modulates mitochondrial 
O2 consumption through mitochondrial inhibition of complex IV, which regulates 
mitochondrial biogenesis [124].
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Fig. 12.11 Enzymatic activity of complex III in rats with experimental SM. (n = 12 per group). 
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Obesity, DM2, and insulin resistance would produce a chronic elevation of cir-
culating FFA that can become cytotoxic; the increase in electron leakage and uncou-
pling in the mitochondria is a serious problem in these conditions since fatty acids 
would cause oxidative stress and alterations in the structure and mitochondrial func-
tion. The evidence shows that oxidative damage to mitochondrial proteins leads to 
progressive dysfunction and that the deterioration of mitochondrial function is a 
unifying mechanism of several risk factors such as MS. [125]

12.3  Conclusions

In our experimental model, a proinflammatory and pro-oxidative state was observed 
at the vascular level, verified by modified levels of the analyzed biomarkers. In addi-
tion, it was demonstrated that the sustained oxidative stress situation induces histo-
logical alterations at the aortic level. This pathological and oxidative state leads to a 
mitochondrial dysfunction with repercussion in the morphology of this organelle.

It is relevant to inquire about inflammation and oxidative stress, since these 
would seem to be the physiopathological origin of phenomena such as IR, MS, and 
obesity. Corroborating the existence of this link would allow establishing therapeu-
tic guidelines that would modify the impact of these diseases on society, given that 
it has huge consequences in health system. For this it is necessary to identify the 
determinants of the disease in order to implement preventive measures for control 
and monitoring as well as to study therapeutic strategies that can be implemented to 
reduce the incidence of this multisyndromic pathology.
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Abstract
Tissue homeostasis and the response to injury require a tight regulation of the 
balance between self-renewal and differentiation of adult stem/progenitor cells. 
Recent evidence obtained in several tissues suggests that this balance is regu-
lated, at least in part, by the cellular redox status via the control of reactive oxy-
gen species (ROS) levels and cellular metabolism. In this chapter, we consider 
the main sources and the relevance of oxidative stress in adult stem turnover and 
the key signaling pathways involved, with a particular focus on cardiac progeni-
tor cell turnover. While it is generally accepted that the mammalian heart has 
high physiological levels of ROS and an oxidative metabolism, few studies have 
explored the importance of redox signaling in cardiac progenitor cells. We pro-
pose that low-ROS areas in the heart are permissive niches for adult cardiac 
progenitor cells. Accordingly, manipulation of ROS-related signaling pathways 
in the adult heart might open new horizons for stem cell therapy by enhancing 
their heretofore limited cardiac regenerative potential.
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13.1  Introduction

Reactive oxygen species (ROS) are a heterogeneous group of highly reactive mol-
ecules that derive from the partial reduction of molecular oxygen. Intracellular ROS 
are mainly observed as hydrogen peroxide (H2O2), hydroxyl free radicals (HO·), 
and superoxide anion (O2

−) (reviewed in [1]). Originally considered as exclusively 
harmful subproducts of oxidative respiration generated as a direct consequence of 
metabolic cellular processes, ROS are increasingly recognized as critical contribu-
tors to the regulation of cellular dynamics [2, 3].

When produced in low levels, ROS are involved in the regulation of several sig-
naling pathways that control cell-fate determination, proliferation, differentiation, 
senescence, and programmed cell death [4–7]. By contrast, excessive ROS forma-
tion, which occurs following the deregulation of ROS balance as a consequence of 
transient or constitutive oxidative stress situations, can promote an appreciable 
alteration of the cellular dynamics and cause oxidative damage to DNA, lipids, and 
proteins [8].

The effects of ROS on cell biology processes are especially important in the 
regulation of adult stem cell compartments, as the cellular pathways they modulate 
are directly involved in the regulation of stem cell self-renewal and differentiation 
[9]. Whereas low levels of ROS are required to maintain a controlled proliferation 
rate, which is necessary for the long-term maintenance of stem cells [10], dispro-
portionate ROS levels induce overproliferation and differentiation, with the conse-
quent reduction of life span and premature exhaustion of the stem cell pool [11, 12]. 
In this review, we summarize our current understanding of redox regulation in adult 
stem cell biology, with a particular focus on cardiac progenitor cells (CPC). A better 
understanding of redox-regulated mechanisms might foster more rational therapeu-
tic approaches that directly target adult stems cells and their niches.

13.2  Maintenance of Intracellular Redox Balance

Given the above, it is not surprising that stem cells are equipped with an efficient 
antioxidant system to exert a tight control over the ROS balance [13, 14]. 
Accordingly, a better understanding of the mechanisms involved in the generation 
and degradation of ROS might yield valuable insights into how stem cells regulate 
these cellular processes (Fig. 13.1).

13.2.1  Sources of ROS Production

In homeostasis, ROS are produced at stable levels and are tightly controlled to pre-
vent premature cell differentiation [15, 16]. Mitochondria are considered the main 
endogenous producers of ROS, which are generated through leakage of electrons 
during normal oxidative phosphorylation (reviewed in [17]). However, ROS can 
also be formed in other cellular compartments, including peroxisomes (Fig. 13.1).
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• Mitochondria.

Under normal conditions, up to 2% of the oxygen consumed by mitochondria is 
converted into ROS, with variable levels depending on cell type, environment, and 
the metabolic activity of the organism/tissue [18, 19]. The main intracellular source 
of ROS originates from the mitochondrial electron transport chain, which channels 
electrons across different respiratory protein complexes to ultimately generate a 
proton gradient used for ATP formation at complex V [20]. ROS are formed when 
this electron flow is inadvertently interrupted, aborting the complete reduction of O2 
to H2O (reviewed in [17]).

In addition to respiration, other reactions inside mitochondria can lead to ROS 
production, although their contribution to total ROS generation is small and depends 
on the specific tissue and the oxidative stress condition. Reactions catalyzed by 
α-glycerophosphate dehydrogenase and flavoproteins, which transfer electrons to 
coenzyme Q [21, 22], and aconitase, which participates in the Krebs cycle by trans-
forming citrate to isocitrate [23], can lead to ROS production. Furthermore, mono-
amine oxidases, which oxidize different amines, are able to generate H2O2 [24]. 
Some proteins can contribute to ROS formation under conditions of oxygen or 
nutrient deprivation. For instance, when oxidized, the adaptor protein p66shc translo-
cates from the cytosol to the mitochondrial intermembrane space and generates 
H2O2 [25]. Interestingly, p66shc is critically involved in the hypoxia survival response 
and self-renewal regulation in normal [26] and transformed adult stem cells [27]. 
Similarly, α-ketoglutarate dehydrogenase has been proposed as a source of ROS 
under conditions of low intracellular nicotinamide adenine dinucleotide (NAD) lev-
els [28].

Fig. 13.1 Integration of main cellular ROSgenic and antioxidant systems, working coordinately 
to maintain redox homeostasis in adult stem cells

13 Oxidative Stress as a Critical Determinant of Adult Cardiac Progenitor Cell-Fate…



342

Stem cells maintain a low mitochondrial activity and mass in their quiescent 
state, which inhibits differentiation [29]. Moreover, they execute a metabolic shift 
from oxidative phosphorylation to glycolysis, which reduces ROS production dur-
ing aerobic respiration [13]. By contrast, stem cell differentiation is accompanied 
by mitochondrial remodeling, which increases the expression of both mitochondrial 
enzymes and enzymes specifically involved in the tricarboxylic acid cycle and oxi-
dative phosphorylation pathways [30–32].

• NADPH Oxidases.

Beyond the mitochondrial respiratory chain, NADPH oxidases (NOX) are the 
major alternative intracellular sources of ROS within cells. NOX are a family of 
transmembrane proteins that reduce O2 to O2

− or H2O2 by accepting electrons from 
NADPH and whose sole function is the production of ROS. Seven different mem-
bers of the NOX family are known in humans: NOX1, NOX2, NOX3, and NOX5 
produce O2

−, whereas NOX4, DUOX1, and DIOX2 generate H2O2. The O2
− gener-

ated by NOX is usually reduced through a dismutation reaction to generate H2O2, 
the main ROS signaling species (reviewed in [33]).

NOX-generated ROS are especially important in the regulation of stem cell dif-
ferentiation and proliferation. For example, in cardiac stem cells, they regulate dif-
ferentiation to the three main cardiac lineages [34, 35], and in neural stem cells, they 
maintain self-renewal capacity [36]. In addition, it has been described that ROS 
produced by NOX are relevant in the degradation of pathogenic molecules by oxi-
dation (reviewed in [33]).

• Other ROS-Producing Organelles.

Peroxisomes and the endoplasmic reticulum also generate ROS at different rates 
depending on the cell type (Fig. 13.1). Peroxisomes produce ROS during long-chain 
fatty acid metabolism, the preferred metabolic pathway in the heart [37], and the 
endoplasmic reticulum produces significant amounts of ROS under stress, which 
are derived from the unfolded protein response oxidative machinery [38].

• Cytosolic Enzymes.

Several proteins in the cytosol that are charged with the metabolism of toxic 
compounds represent another appreciable source of ROS. Chief among these are the 
cytochrome p450 enzymes, which belong to a family of monooxygenases special-
ized in the degradation of xenobiotics such as alcohol and function to reduce the 
levels of toxic compounds through the consumption of NADPH and the subsequent 
generation of ROS (reviewed in [39]). Other ROS-producing enzymes in the cyto-
plasm include lipoxygenases and xanthine oxidases, which catalyze the dioxygen-
ation of polyunsaturated fatty acids in lipids containing a cis,cis-1,4- pentadiene and 
the oxidation of hypoxanthine to xanthine, respectively [40, 41].
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13.2.2  ROS Scavenging Systems

Cells have developed a diverse range of antioxidant mechanisms to transform ROS 
into less reactive molecules [42]. These scavenging mechanisms are particularly 
important for stem cells as their cell biology is strongly influenced by ROS [43]. 
ROS scavenging can be performed directly by specialized antioxidant enzymes or, 
alternatively, through spontaneous reactions involving nonenzymatic antioxidants 
(Fig. 13.1) [42].

• Antioxidant Enzymes.

The main intracellular processing of ROS is performed by a variety of antioxi-
dant enzymes specialized in the neutralization of ROS. Among them, superoxide 
dismutase (SOD), glutathione peroxidase (GPx), catalase, peroxiredoxins, and the 
thioredoxin system are considered the more relevant [42].

SOD are metalloproteins that catalyze the dismutation of O2
− into O2 and H2O2. 

As the first defensive barrier against ROS, SOD maintain ROS levels inside mito-
chondria, thereby preventing the activation of proapoptotic pathways by cytochrome 
C release [44]. Moreover, SOD activity regulates essential cellular processes 
through H2O2 production, the main intracellular ROS second messenger [45]. 
Catalase and GPx act coordinately to decompose H2O2 into O2 and H2O, which can 
abolish downstream signaling. Catalases and peroxiredoxins directly interact with 
H2O2, whereas GPx uses glutathione as a reductant. The thioredoxin system is 
essential for maintaining the functionality of antioxidant enzymes, as ROS scaveng-
ing by GPx or peroxiredoxin results in their oxidation, which can be reversed 
through thioredoxin-driven reduction. Oxidized thioredoxin can then be reduced by 
thioredoxin reductase, which maintains a stable antioxidant system [42]. The 
expression of these enzymes is significantly upregulated in several types of stem 
cells protecting them from harmful ROS increases [46–48].

• Nonenzymatic Antioxidants.

Nonenzymatic antioxidants, which can be produced by endogenous metabolism 
or through the exogenous intake of foods or supplements, are also ROS detoxifiers 
and include vitamins, carotenoids, flavonoids, or different minerals [42]. Indeed, 
several metabolites and other molecules have reductant capacity to generate less 
oxidative molecules.

13.3  ROS Protein Regulation in Stem/Progenitor Cells

Stem and progenitor cell niches [49] comprise cellular components (stem/progeni-
tor cells, fibroblasts, endothelial cells of blood vessels, etc.) and noncellular factors, 
such as extracellular matrix and metabolic factors, and also biophysical signals 
including temperature, shear forces cell-cell contact signaling, and O2 tension. The 
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Table 13.1 Main ROS regulatory proteins in adult stem cells

ROS regulatory 
proteins

Low-ROS levels: redox 
homeostasis

High ROS levels: oxidative 
stress Refs.

HIF1-α Glycolytic metabolism Increased cell sensitivity to 
stress

[64–74]
Self-renewal, pluripotency, 
and maintenance
Quiescence and low 
proliferation

Increased apoptosis

Migration and homing
Survival
Blockage of differentiation 
and cell death

FoxO Glycolytic metabolism Cell cycle arrest [79–84]
Self-renewal, pluripotency, 
and maintenance

Loss of quiescence and 
self-renewal

Quiescence and low 
proliferation

Terminal differentiation

Survival Increased apoptosis
Blockage of differentiation 
and cell death

Nrf2 Cell death protection Enhanced cell cycle entry [88–93]
Self-renewal and pluripotency
Low proliferation Promoted differentiation
Blockage of differentiation 
and cell death

Bmi1 Self-renewal and pluripotency Enhanced cell differentiation 
programs

[96–
102]Low proliferation

Blockage of differentiation Loss of self-renewal and 
stemness

P53 Modulated P53 and P38 
levels allow:

Damage-activated P53 and P38 
trigger:

[103–
107]

Proliferation and survival Senescence and altered 
proliferation

Self-renewal and 
multipotency

Loss of quiescence and 
self-renewal

P38 Quiescence and maintenance Enhanced terminal 
differentiation

ATM Cell cycle delay and 
quiescence

Altered proliferation and 
self-renewal

[104]

Self-renewal and maintenance Loss of quiescence and 
maintenance

APE1/ref-1 Low proliferation Altered proliferation [108]
Cell death protection and 
survival
Self-renewal Altered self-renewal, quiescence, 

and maintenancePreserved differentiation 
potential
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integration of all these components regulates the maintenance, self-renewal, func-
tion, multipotency, and differentiation capacities of stem cells. Early studies revealed 
that stem cell niches were more hypoxic than initially expected and that O2 was a 
key regulator of stem cell biology (reviewed in [50]). Accordingly, low O2 levels 
favored the survival of hematopoietic stem cells (HSC), neural stem cells (NSC) and 
human embryonic stem cells (hES), and also some tumor cells [51–53].

The advantages of hypoxic niches reside in the protection of stem cells from 
detrimental oxidative stress through reducing the source of ROS itself (O2) and the 
fine regulation of ROS production. Redox balance is known to regulate both embry-
onic and adult stem cell functions [54], and thus stem cell niches have developed a 
protective strategy to maintain low-ROS production principally through low mito-
chondrial biogenesis and/or through expression and activation of ROS scavenging 
proteins (Fig. 13.1). Several antioxidant proteins can regulate ROS levels in stem 
cells by inducing hypoxia-inducible factors (HIF), FoxO transcription factors, 
nuclear factor erythroid 2-related factor 2 (Nrf-2), and polycomb family member B 
lymphoma Mo-MLV insertion region 1 homolog (Bmi1). DNA repair proteins, such 
as ataxia-telangiectasia mutated (ATM), the apyrimidinic endonuclease1/redox fac-
tor- 1 (APE1/Ref-1), and p53, are also involved in ROS responses [55]. Below, we 
summarize some important properties of these factors in adult stem cells (Table 13.1).

13.3.1  Hypoxia-Inducible Factors (HIF)

The HIF family of transcription factors are heterodimeric proteins composed of an 
oxygen-responsive alpha subunit (1α, 2α, or 3α) and a constitutively expressed beta 
(β) subunit. HIF proteins are highly regulated transcriptional factors that activate 
downstream hypoxia signaling in response to O2 reduction. Hypoxic stem cell 
niches maintain stem cells at low proliferative rates preventing their exhaustion or 
senescence. Because HIF were reported to trigger cell cycle arrest in several cell 
types [56–58], it was tempting to assume that they could play similar roles in the 
hypoxic stem cell niches. Indeed HIF regulate several stem cell functions including 
cell fate, proliferation, survival, and pluripotency [59–62].

Cellular adaptation to hypoxia includes a metabolic shift from oxidative phos-
phorylation to glycolysis, accompanied by the upregulation of angiogenesis and 
alterations in cell cycle and apoptosis. HIF-1α activation mediates these shifts and 
governs stem cell maintenance and proliferation [63]. HIF proteins are also known 
to control pluripotency and differentiation through direct interactions with down-
stream mediators including NOTCH, OCT4, or WNT, among others [64–67]. Adult 
human and mouse HSC express high levels of HIF-1α, which regulates their quies-
cence, maintenance, and expansion. In this context, HIF-1α must also be tightly 
regulated. Inhibition of HIF-1α function negatively affects hematopoiesis, and HSC 
become more stress sensitive with increased apoptosis, leading ultimately to embry-
onic lethality, whereas excess levels of HIF-1α destabilize HSC function, causing 
premature cell exhaustion [68]. Low O2 levels also regulate NSC and mesenchymal 
stem cell (MSC) niches. Thus, HIF-1α regulates NSC maintenance, proliferation, 
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differentiation, and maturation in the adult brain [69–71], and hypoxia influences 
adult MSC in a similar manner with regard to cell fate or stemness. For example, 
when cultured in low O2, MSC show increased genetic stability and decreased dif-
ferentiation potential [72, 73]. In ES cultures, the synergy between hypoxia and 
ROS can promote the expression of differentiated cardiogenic markers through 
HIF-1α regulation [74].

13.3.2  FOXO Subfamily of Transcription Factors

The FOXO transcription factor family is represented by four isoforms in mammals 
(FOXO1, FOXO3, FOXO4, and FOXO6), and they regulate diverse cellular func-
tions including cell cycle arrest, apoptosis, glucose metabolism, DNA damage 
repair, and stress resistance [75]. FOXO factors limit the expansion of stem/pro-
genitor cell pools in several tissues and are critical regulators of oxidative stress 
through the fine-tuning of ROS to maintain self-renewal, quiescence, and multipo-
tency [76–78]. Under damage conditions such as oxidative stress and ROS accumu-
lation, FOXO factors enter the nucleus where they activate proapoptotic signals and 
downstream antioxidant targets that mediate cell cycle arrest and dormancy. By 
contrast, inactivation of FOXO in HSC by PI3K/AKT-mediated phosphorylation 
results in its exclusion from the nucleus, leading to loss of quiescence and also ter-
minal differentiation [26]. In HSC and NSC populations, FOXO activation (FOXO3 
or FOXO1/3/4, respectively) promotes the loss of self-renewal and also transient 
cell cycle entry, which ultimately triggers apoptosis and cell exhaustion [79–81]. In 
MSC, oxidative stress-mediated FOXO activation induces cell cycle arrest, quies-
cence, antioxidant gene activation, and loss of differentiation of osteogenic or adip-
ogenic lineages [78, 82, 83]. Similarly, in hES, FOXO1 has been related to 
pluripotency maintenance through interaction with OCT4 and NANOG and, in oxi-
dative conditions, can induce cell cycle arrest and apoptosis [84].

13.3.3  Nuclear Factor (Erythroid-Derived 2)-Like 2 (NRF2)

Cells express NRF2 ubiquitously. In homeostasis, NRF2 forms a complex with 
KEAP1 protein, which regulates NRF2 by tethering it in the cytoplasm and facilitat-
ing ubiquitination, leading to its proteosomal degradation. Damage-induced ROS 
increases modify cysteine residues on KEAP1, and the resulting conformational 
change releases NRF2, which enters the nucleus and activates genes encoding anti-
oxidant proteins and detoxification enzymes, protecting cells from redox distur-
bance [85–87]. NRF2 is an essential regulator in HSC, and, in human NSC, it can 
protect against oxidative-induced cell death [88]. Mice deficient for Nrf2 have an 
expanded HSC pool, suggesting a regulatory role for NRF2 in HSC migration and 
retention in the niche [89]. In response to oxidative damage, stabilized NRF2 
enhances HSC cell cycle entry and progenitor contribution during hematopoietic 
regeneration [90] and also controls both pluripotency potential and self-renewal 
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capacities in hES [91]. Interestingly, enforced NRF2 expression in MSC in vitro 
mimicked the beneficial effects of the hypoxic MSC niche, protecting MSC from 
oxidative stress and enhancing self-renewal while inhibiting differentiation poten-
tial [92, 93].

13.3.4  Bmi1

BMI1 is member of polycomb repressive complex 1 (PRC1), which acts as an epi-
genetic repressor of a large number of target genes [94]. The polycomb group of 
proteins (PcG) and, in particular, BMI1 is implicated in the maintenance of self- 
renewal capacity in several adult stem cell populations [95–99]. Bmi1-deficient 
mice present mitochondrial dysfunction and elevated levels of ROS, which sug-
gested a relevant function of BMI1 and PcG as regulators of mitochondrial function 
and redox balance [100]. Indeed, BMI1 confers protection from oxidative stress and 
premature senescence and maintains the multipotency and proliferation capacities 
of both HSC and NSC populations. Accordingly, HSC and NSC deficient in Bmi1 
showed impaired self-renewal and proliferation arrest that culminated in premature 
aging and postnatal cell depletion [96, 97]. The impact of ROS regulation in cardiac 
stem cell functionality, however, has been less explored. We recently identified a 
multipotent and self-renewal population of cardiac progenitors (Bmi1+CPC) 
expressing high levels of Bmi1 [99, 101], which presented low ROS [9]. In homeo-
static Bmi1+CPC, BMI1 repressed cell-fate genes, including the cardiogenic dif-
ferentiation program. Oxidative stress nonetheless modified BMI1 activity in vivo, 
derepressing canonical target genes in favor of Bmi1 antioxidant and anticlasto-
genic functions. This redox-mediated regulatory mechanism is not restricted to 
damage situations; ROS-associated differentiation of cardiac progenitors in steady 
state was also apparent, albeit at lower levels. These findings illustrate a ROS- 
dependent BMI1 role in adult cardiac progenitor cell-fate decisions [102] (see also 
Sect. 13.5.2).

13.3.5  DNA Damage Response

There is a wealth of evidence showing the critical association between ROS control 
and the DNA damage repair machinery in healthy homeostasis. High levels of ROS 
in MSC lead to the activation of p38 MAPK, which in turn activates the cell cycle 
modulator p16INK4A, thus promoting the exit from quiescence, reducing self-renewal, 
and favoring senescence [103].

ATM is a protein kinase with an important role in activating the damage response 
pathway following DNA injury, leading to cell cycle delay or apoptosis. ATM is 
also a redox sensor and can be activated by elevated ROS levels. Accordingly, when 
ATM is dysfunctional in HSC, ROS production is deregulated, provoking exhaus-
tion of the stem cell compartment [104].
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The central tumor suppressor gene, p53, has been well characterized in adult 
stem cells. p53 can be stabilized by hypoxia, and its transcriptional activity can be 
modulated in a redox-dependent fashion. Specifically, under steady-state (or low 
stress) conditions, p53 promotes stem cell quiescence [105, 106]. Basal p53 expres-
sion is necessary to maintain MSC multipotency, whereas oxygen-induced increases 
in p53 expression modulate cell-fate and survival decisions [107].

Finally, the multifunctional protein complex APE1/REF-1 has been implicated 
in redox signaling in stem cells and also in cardiovascular cells. Independent studies 
have identified APE1, the main AP-endonuclease of the base excision repair path-
way, as a factor able to stimulate the binding activity of several transcription factors, 
suggesting a redox-dependent chaperone activity for APE1 in the regulation of stem 
cell renewal (reviewed in [108]).

13.4  ROS and Cardiovascular Disease

To satisfy its exceptionally high-energy demands, the heart relies largely on fatty 
acid oxidation, which drives oxidative phosphorylation in mitochondria. It is esti-
mated that each day, the human heart produces ~6 kg of ATP to sustain optimal 
function [109]. Fatty acid oxidation has been associated with high rates of mito-
chondrial ROS production that can impair mitochondrial and cellular functions. 
Under normal physiological conditions, however, moderate ROS levels are impor-
tant signaling mediators in the cardiovascular system.

13.4.1  The Physiologically Delicate Equilibrium

A fine balance between ROS production and antioxidant activity is essential in the 
heart; otherwise, there would be a high risk to evolve toward cardiac hypertrophy, 
arrhythmia, myocardial ischemia/reperfusion damage, and/or heart failure [110].

Cardiovascular disease (CVD) is a major cause of mortality in the developed 
world, and, consequently, it has been extensively studied over the past decade. 
However, its multifactorial nature has hindered the full elucidation of the underlying 
pathogenic mechanisms. ROS play a pivotal role in the progression of CVD; in 
particular, ROS are key participants in endothelial dysfunction and atherosclerosis, 
which are prominent in CVD [111], and aberrant redox regulation is known to be 
associated with CVD progression [112]. In addition, it has been recently established 
that ROS-mediated regulation during post-myocardial infarction repair and remod-
eling could be affected by the distortion of circadian mechanisms, likely affecting 
brain functions [118].

NRF2 has emerged as a transcriptional factor critically involved in redox- 
sensitive signaling and promotion of the antioxidant response in the heart [112] 
through the regulation of expression of several endogenous antioxidants and detoxi-
fication enzymes (see also Sect. 13.3.3). Loss or deregulation of Nrf2 in mice is 
linked to various manifestations of CVD [113]; for example, NRF2 function is 
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involved in the control of hypertension, the protection against cardiac hypertrophy, 
and the manifestation of several comorbidities that course with CVD, including 
diabetes, all of which are associated with the prolonged exposure to increased ROS 
levels. Nrf2 has also been implicated in ischemia-reperfusion injury, correlating 
with the cardioprotective effects associated with ischemic preconditioning [114]. 
Finally, deregulation of several endogenous sources of ROS is related with heart 
senescence and aging, with a potential role for APE1 (see Sect. 13.3.5) in cardiovas-
cular pathophysiology [108].

13.4.2  Chronic Cardiac Oxidative Stress Derived from Exogenous 
Sources

As mentioned earlier, the main sources of ROS are endogenous, but in certain situ-
ations, these can be supplemented through acute or sustained external interventions. 
Breast radiation therapy has become a critical component in managing patients who 
receive breast-conserving surgery or have certain high-risk features after mastec-
tomy [115]. Unfortunately, radiotherapy to the breast and chest can be associated 
with radiation-related morbidity and mortality that may offset some of its benefits. 
Moreover, because of increased life expectancy, late-appearing adverse effects in 
cancer patients are becoming more common.

In the context of CVD, radiation directly provokes DNA damage and ROS gen-
eration and also activates TGF-β1 and pro-inflammatory signaling, promoting myo-
fibroblast accumulation and extracellular matrix production, thrombin generation, 
and platelet activation. This pathological process leads to pericardial disease, myo-
cardial fibrosis, coronary artery disease, valvular lesions, and cardiac conduction 
system injury, which are collectively considered as radiation-induced heart disease 
(RIHD) (reviewed in [116]).

Although the inflammatory response pathway is very likely the predominant 
mediator of pro-fibrotic effects, other factors also contribute significantly, such as 
the establishment of chronic ROS production. Oxidative stress, in turn, increases the 
levels of inflammatory mediators, proteases, and adhesion molecules and decreases 
the levels of nitric oxide. Ultimately, these long-term stressful conditions promote 
epigenetic modifications in heart tissue [117].

There remains, nevertheless, scarce information about the eventual alterations 
affecting cardiac cell turnover in any of these pathological conditions. A deeper 
understanding of the conceivable effect of deregulated oxidative stress for the func-
tional maintenance of CPC populations might be helpful to better comprehend the 
long-term effects of specific cardiac diseases.
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13.5  Redox Signaling in Cardiac Renewal

Several studies over the last few years have provided solid evidence for a low but 
continuous cell turnover in the mammalian heart during adult life, where cardio-
myocyte turnover is limited [118]. After injury, however, the adult heart has a very 
weak capacity to regenerate, and a fibrotic scar mostly replaces lost cardiomyo-
cytes, leading to a pathological cardiac remodeling. The reasons for the inability of 
adult heart to respond efficiently to injury, nonetheless, remain poorly understood 
(reviewed in [119]).

13.5.1  Heart Regeneration in Lower Vertebrates

Teleost fish can effectively regenerate several organs, including the heart [120] 
(Fig. 13.2). Following heart injury and fibrin deposition, the zebrafish heart does not 
develop an intense collagen scar, which occurs in mammals, but instead preexisting 
cardiomyocytes proliferate to replace those lost after injury [121]. Indeed, genetic 
cell ablation studies show that zebrafish survive after depletion of more than 60% of 
their ventricular cardiomyocytes [122]. This regenerative capacity has been linked 
to the intrinsic mononuclear and monoploid state of their mature cardiomyocytes 
[123, 124] and also with the oxygenation state of the environment [125]. The zebraf-
ish warm aquatic environment has a 1/30th oxygen capacitance compared with air, 
which explains the remarkable tolerance of zebrafish to hypoxia [126].

Heart regeneration studies have not been limited to zebrafish. Newt and salaman-
der can also regenerate lost cardiac tissue and recover cardiac function within 
3 months of injury, without evidence of scarring [127, 128].

Fig. 13.2 Zebrafish and mammalian hearts demonstrate a high regenerative capacity during 
development. After birth (P0), this capacity is progressively substituted by a strong and preferen-
tial healing response (pivoting around P7), generating a nonfunctional fibrotic scar. In addition, 
numbers, and probably also their regeneration capacity, of cardiac progenitors diminish in an age- 
dependent manner
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13.5.2  Heart Regeneration in Mice

In the mouse, embryonic, neonatal, and adulthood stages correlate with different 
cardiac regeneration capacities (Fig.  13.2). During intrauterine life, the blood 
ejected from the mammalian heart is only 65% saturated with a partial pressure of 
oxygen (PaO2) of 25–28 mm Hg as compared with 90% of saturation with a PaO2 of 
35 mm Hg in the umbilical vein (maternal blood) [129]. Therefore, the mammalian 
fetal heart resides in a relatively hypoxic environment, similar to that found for 
zebrafish. In these environmental conditions, the fetal heart demonstrates a robust 
regenerative capacity. Genetic ablation of up to 50–60% of cardiac progenitor cells 
or immature cardiomyocytes is well tolerated during mouse embryonic develop-
ment and does not disrupt normal heart organogenesis [130].

The neonatal mammalian heart partially maintains regenerative capacity and is 
capable of substantial regeneration following apex resection during the first week of 
life, which proceeds through cardiomyocyte proliferation [131]. However, a recent 
study described that resected neonatal hearts displayed thickening of the left ven-
tricle wall and local fibrosis in adulthood [132]. During the early postnatal phase, 
the contribution of CPC to heart regeneration is negligible [101]. Embryonic- 
postnatal transition drastically modifies the oxygenation and metabolic state of car-
diac cells. Accordingly, the arterial PaO2 increases from 28 mm Hg to 100 mm Hg 
[133], and the mitochondrial mass and total ROS increase three-to-four fold [134]. 
These changes lead to the upregulation of the DNA damage response pathway (see 
3.5) and a metabolic shift in energy metabolism in cardiac cells, from glycolysis 
during embryonic development to oxygen-dependent mitochondrial oxidative phos-
phorylation in adulthood [135]. Overall, these changes induce cell cycle exit and 
terminal differentiation of cardiomyocytes, which are mainly (80%) binucleated.

In the adult mammalian heart, there is a failure in the regeneration of the large 
majority of the cardiomyocytes lost after infarction, and tissue resident fibroblasts 
form a nonfunctional scar [136]. Over the last decade, several studies have demon-
strated that resident CPC are present in the adult heart (Fig.  13.3a), including 
cardiosphere- derived cells (CDC), c-Kit+, Gli1+, Sca1+, Pdgfrα+, and Bmi1+ cells 
[99, 137–140]. However, in contrast to other tissues, the consensus on the existence 
of a definitive cardiac cell population(s) responsible for cardiac homeostasis or 
regeneration is still intensely debated [119]. Although a CD45− c-Kit+ resident pop-
ulation was the first candidate proposed and has been studied extensively [137, 
141], recent results have raised concerns about its real contribution to cardiomyo-
cyte turnover [142, 143]. In mice, it has been described that the representation or 
functionality of cardiac progenitor cells such as Bmi1+CPC [102] and c-Kit+ cells 
[144] is reduced during physiological aging, consistent with the loss of regenerative 
capacity. Indeed, a correlation between aging and loss of CSC functionality has 
been established in a rat model of spontaneous hypertension, associated with a pro-
gressive increase in ROS levels and enhanced by hypertension [145].

It has recently been described that a rare population of cycling cardiomyocytes 
exists in the adult heart that expresses HIF-1α and associates with the intrinsic car-
diac turnover capacity (Fig.  13.3b). These hypoxic cardiomyocytes display 
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Fig. 13.3 Source of cardiac cells in adult heart. (a) Resident cardiac progenitor cells (CPC) are 
mainly maintained in a quiescent state. In response to unknown specific signals (both in homeosta-
sis and after several damages), CPC are activated, become proliferative, and contribute signifi-
cantly to the major heart cell lineages (endothelial cells > > smooth muscle cells > cardiomyocytes); 
for the cardiomyocyte differentiation pathway, an intermediate specific progenitor (cardioblast) 
has been defined [172]. (b) In concert, it has been proposed that a poorly defined subpopulation of 
mature cardiomyocytes might dedifferentiated in response to unknown signals and progress to a 
proliferative state. In a final step, their progeny would be able to re-differentiate to new cardiomyo-
cytes. Hippo-YAP pathway seems to be a critical regulator of cell cycle in immature cardiomyo-
cytes [148]
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characteristics very similar to those of proliferative neonatal cardiomyocytes, such 
as smaller size, mononucleation, and low oxidative DNA damage [146]. In this 
regard, the Hippo-YAP signaling pathway, which is involved in cardiomyocyte 
responses to oxidative stress [147], also seems to be a critical regulator of cell cycle 
in immature cardiomyocytes being redundantly repressed by multiple miRNAs 
[148].

Studies exploring the role of metabolism in the homeostasis/differentiation of 
adult cardiac cells are few, but pioneering work in ES cells showed that redox status 
is a key regulator of cardiomyocyte differentiation [149] and that antioxidant treat-
ment impaired cardiomyocyte differentiation from embryoid bodies [150]. In iso-
lated CPC, several genetic (sulfiredoxin-1; p16 INK4A knockdown) or chemical (i.e., 
bergamot fractions) approaches have been used to enhance their survival capacity, 
decreasing ROS levels and mitochondrial membrane potential concomitant with an 
upregulation of the primary antioxidant machinery and improved regeneration 
[151–153]. The scaffold protein β-arrestin2, which regulates multiple signaling 
pathways by desensitization and internalization of G-protein-coupled receptors, has 
been demonstrated to be important for c-Kit+CPC survival, particularly in hypoxic 
cultures [154]. Finally, it has been shown that hypoxic preconditioning prior to 
transplantation enhances neonatal CPC invasion ability, activates pro-survival path-
ways [155], and favors pro-angiogenesis [156].

In adult murine hearts, hypoxemia alleviates oxidative DNA damage, favoring 
heart healing after myocardial infarction [157]. As in other adult tissues (reviewed 
in [158]), accumulating evidence suggests that cardiac cells with progenitor-related 
characteristics display low-ROS levels and, therefore, low oxidative damage:

• c-Kit+ cardiac progenitor cells are nested in hypoxic niches and express high 
levels of SOD [159, 160].

• Pdgfrα+ cardiac progenitor cells are enriched in side population (SP) cells [140], 
which are identified by ATP-binding cassette transport proteins that contribute to 
their survival against oxidative stress [161].

• Bmi1high+ CPC are cells with low levels of ROS whose differentiation status is 
directly related to ROS levels [9] (Fig. 13.4).

Although Bmi1+CPC seem to be quite resistant to short-term oxidative damage- 
induced apoptosis in vivo, there remains cellular damage that provokes a clear dif-
ferential depletion of these cells in the long term [102]. It has been demonstrated 
in vitro that human and murine CDC and Bmi1+CPC are particularly sensitive to O2 
tension during their isolation and expansion [162, 163]; low O2 tension favors the 
preservation of genetic stability and reduces the senescence rate during the required 
expansion prior to transplantation [164]. All these findings clearly underscore the 
fundamental role that redox status plays in cardiac progenitor cell responses.
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13.5.3  Identification of Areas with Low-ROS Levels in the Adult 
Heart

There is increasing evidence that the niche plays a crucial role in adult stem cell 
maintenance and differentiation (reviewed in [158]). The adult stem cell niche 
reduces cellular stress principally through regulation of ROS levels and O2 tension 
[165]. The HSC niche, undoubtedly one of the best-characterized niches, maintains 
HSC in a low-ROS [166] and low-PaO2 [167] environment. Accordingly, it was 
reasonable to hypothesize that adult cardiac progenitor cell niches should be situ-
ated in hypoxic areas in the heart. Because the epicardium and subepicardium are 
areas of low vascularization, the first characterization studies focused on glycolytic 
epicardial cells, leading to the identification of a heterogeneous progenitor-like mul-
tipotent population that expressed HIF-1α and relied on glycolytic metabolism 
[168]. More recently, an elegant fate mapping study in transgenic mice expressing a 
hypoxia-inducible protein showed that ~0.01% of total cardiomyocytes in the 
murine adult heart were hypoxic and were responsible for the majority of proliferat-
ing cardiomyocytes [169]. However, the authors did not find a biased cell distribu-
tion of these hypoxic cardiomyocytes, suggesting that the subepicardium is not the 
unique adult cardiac progenitor cell niche.

Because several proposed adult cardiac progenitor cell populations are found 
perivascularly [138, 170], the coronary vasculature has also been postulated as a 
putative niche-like structure in the adult heart [171]. Similar to what is found in the 
HSC niche [166], Bmi1+CPC are preferentially located close to perivascular low- 
ROS areas in the murine adult heart (Fig. 13.5). Indeed, functional interaction with 
and/or proximity to endothelial cells seems to promote quiescence of 
Bmi1+CPC. Several chemical or genetic approaches to manipulate ROS levels, as 
well as several forms of cardiac damage, disrupt the Bmi1+CPC-endothelium 

Fig. 13.4 Under low 
oxidative stress conditions 
(low ROS; cells in blue); 
BMI1 inhibits cardiogenic 
differentiation program 
(cell-fate genes; in brown). 
ROS increment 
(intermediates or mature 
cells; reddish cells) 
provokes a shift in BMI1 
function to be mainly 
dedicated to mitochondrial 
regulation and DNA repair 
(noncanonical genes; in 
white)
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crosstalk [173], suggesting an important regulatory role for ROS in Bmi1+CPC biol-
ogy (Fig. 13.5). Moreover, ablation (diphtheria toxin-mediated) of Bmi1+CPC in 
vivo confirmed their essential role in normal heart recovery after acute myocardial 
infarction (Fig. 13.5). Accordingly, Bmi1+CPC-depleted animals presented substan-
tially deteriorated heart angiogenesis and ejection fraction, resulting in an ischemic- 
dilated cardiac phenotype [102].

Overall, these arguments strongly support that low-ROS perivascular areas might 
define a physiological niche for Bmi1+CPC.

13.6  Conclusion

Cellular ROS levels and the appropriate function of antioxidant systems orchestrate, 
at least in part, stem cell self-renewal and differentiation capacities. Low-ROS areas 
provide a safe haven for cardiac progenitor cells. The existing low-ROS regions 
around coronary vessels constitute a favorable vascular niche that protects CPC 
from the detrimental effects of oxidative stress. A deeper understanding of the 

Fig. 13.5 The adult mouse heart presents perivascular areas with low-ROS levels (blue) that lodge 
the majority of the progenitor cells (CPC), including Bmi1+ CPC. In addition, coronary vasculature 
regulates CPC behavior through both cell-cell contacts and secreted factors. Genetic ablation of 
Bmi1+ CPC in vivo provokes a deficient angiogenic response after myocardial infarct (MI)
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bidirectional network that regulates CPC biology within their niches could help in 
the design of new approaches for future successful therapeutic interventions.
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14Role of Oxidative Stress 
in Hyperhomocysteinemia-Induced 
Heart Diseases
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Abstract
Evidence suggests that HHcy is closely related with risk of unwanted cardiovas-
cular events. In state of excessively high levels of Hcy, metabolism of Hcy is 
disrupted and vascular tissue is exposed to its adverse effects. Based on epide-
miological, retrospective, and prospective studies, hyperhomocysteinemia is 
considered as an independent risk factor for coronary heart and cerebrovascular 
and peripheral artery diseases. A considerable number of studies have been con-
ducted in order to reveal the mechanisms through which Hcy contributes to 
endothelial injury. Endothelial dysfunction is characterized by impaired endo-
thelium-dependent relaxation due to a decrease in available nitric oxide (NO). 
Hcy exerts harmful effects on vascular endothelium and smooth muscle cells, 
leading to impairment of arterial structure and function. The underlying mecha-
nisms involve an increase in coagulation, synthesis of collagen, proliferation of 
vascular smooth muscle cells, initiation of inflammatory response, and elevated 
generation of pro-oxidants. Redox homeostasis is regulated by several interme-
diates involved in the methionine cycle, such as glutathione, hydrogen sulfide 
(H2S), and S-adenosyl methionine (SAM). Glutathione and H2S are responsible 
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for regulation of cellular redox state, while SAM is a main methyl donor in 
organisms, and is involved in the methylation pathway of Hcy. The exact 
mechanism(s) of HHcy-induced endothelial dysfunction has(ve) not been fully 
clarified. However, it’s been proposed that endothelial dysfunction may be medi-
ated by initiation of ROS production and reduction in capacity of antioxidant 
defense system. Therefore, in this chapter, we tried to consolidate current find-
ings regarding role of oxidative stress in hyperhomocysteinemia.

Keywords
Homocysteine · Oxidative stress · Cardiovascular system · Heart

14.1  Introduction

Homocysteine (Hcy) is a sulfhydryl-containing amino acid which is synthesized dur-
ing metabolism of methionine (Met) [1]. There are two major metabolic routes for 
elimination of Hcy: remethylation and transsulfuration pathways [2]. Remethylation 
refers to the transfer of methyl groups from 5- methyltetrahydrofolate (MTHF) to 
Hcy to form Met and occurs during Met deficiency. Less than 50% of Hcy is catabo-
lized to cysteine and taurine (as final urinary products) by transsulfuration pathway 
[3]. This route is significant for removing excess Hcy, which is not necessary for 
methyl transfer. Furthermore, metabolism of Hcy requires the presence of cofactors, 
such as vitamin B12, B6, and folate [1]. Cellular export mechanisms exist to help 
maintain low levels of plasma Hcy (tHcy) (10 μmol/L) and together with transsulfu-
ration pathway are responsible for the presence of low intracellular concentration 
[4]. The most reactive form of Hcy, known as cyclic thioester—Hcy thiolactone, 
forms during the metabolism of Hcy by methionyl-tRNA synthetase [5].

The total level of plasma tHcy may be altered by diet, lifestyle, and genetic fac-
tors [1]. It has been established that a diet deficient in folate, vitamin B6, and B12 as 
well as alcohol intake, smoking habits, and lack of physical activity may lead to an 
increase in tHcy. Hyperhomocysteinemia (HHcy) is a condition defined as having 
abnormally high levels of Hcy in plasma (above 15 μmol/L). Depending on the level 
of tHcy, hyperhomocysteinemia is classified into mild (between 16 and 30 μmol/L), 
intermediate (31–100 μmol/L), and severe (above 100 μmol/L) [1]. Excessively high 
levels of Hcy (above 500 μmol/L) are associated with accumulation of homocyste-
ine and its metabolites in the urine-homocystinuria [6]. In this condition, metabo-
lism of Hcy is disrupted, and vascular tissue is exposed to its adverse effects.

14.2  Homocysteine and Cardiovascular Diseases

Cardiovascular disease (CVD) is characterized as a class of diseases related to the 
heart or blood vessels and remains the leading cause of mortality and morbidity 
worldwide [7]. Therefore, significant effort has been invested in identifying new 
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risk factors for CVD, as well as prevention. Mounting evidence suggests an associa-
tion between HHcy and vascular diseases [1]. Based on epidemiological, retrospec-
tive, and prospective studies, hyperhomocysteinemia is considered as an independent 
risk factor for coronary heart, cerebrovascular, and peripheral artery diseases [8]. 
Data suggests that for every 4 μM increase in the level of Hcy, the relative risk for 
cardiovascular diseases rises by 1.3–1.4 [9]. It has been reported that in patients 
with Hcy levels below 9 μM/L, overall mortality was 3.8%, while patients with Hcy 
levels above 15 μM/L had a 24.7% increase in mortality [10]. Pronounced and sus-
tained oxidative stress is proposed as one of the mechanisms underlying Hcy- 
induced CVD.

14.3  Hcy and Endothelial Dysfunction: Role of Oxidative 
Stress

Hcy may affect any component of the arterial wall; however, the most prominent 
effects and resulting damage are found in the endothelium. A considerable number 
of studies have been conducted in order to reveal the mechanisms through which 
Hcy contributes to endothelial injury, a critical event in the pathogenesis of athero-
sclerosis. Endothelial dysfunction is characterized by impaired endothelium- 
dependent relaxation due to a decrease in available nitric oxide (NO). This 
pathological state is associated with HHcy and is involved in pathogenesis of hyper-
tension, diabetes, atherosclerosis, and renal and cardiac failure [1, 11].

McCully was the first to propose the “homocysteine hypothesis of arteriosclero-
sis” about 50 years ago [12]. He described the case of atherothrombosis in children 
with elevated Hcy, cystathionine, and Hcy-cysteine disulfide concentrations in 
plasma and urine. Since those discoveries, a substantial amount of scientific work 
has focused on evaluating the effects of Hcy on cardiovascular tissues. Numerous 
data support a role for Hcy involvement in the development of atherosclerosis 
through direct damage of the endothelium or by altering redox status. Hcy exerts 
harmful effects on vascular endothelium and smooth muscle cells, leading to impair-
ment of arterial structure and function. The underlying mechanisms involve an 
increase in coagulation, synthesis of collagen, proliferation of vascular smooth 
muscle cells, initiation of inflammatory response, and elevated generation of pro-
oxidants [13].

14.4  Homocysteine-Induced Oxidative Stress

Reactive oxygen species (ROS) are generated mostly as by-products of mitochon-
drial respiration, and under physiological conditions, there is a balance between pro-
duction and elimination of free radicals [14]. An increase in ROS levels may affect 
mitochondrial gene expression, leading to DNA damage, and impair mitochondrial 
function. Redox homeostasis is regulated by several intermediates involved in the 
methionine cycle, such as glutathione, hydrogen sulfide (H2S), and S-adenosyl 
methionine (SAM). Glutathione and H2S are responsible for regulation of cellular 
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redox state, while SAM is a main methyl donor in organisms and is involved in there-
methylation pathway of Hcy [15]. Investigations have reported that intracellular 
accumulation of Hcy alters mitochondrial structure responsible for oxidative phos-
phorylation and ATP synthesis. Therefore, it’s been suggested that Hcy-induced 
mitochondrial damage may be mediated via enhanced oxidative stress [1, 16].

The exact mechanism(s) of HHcy-induced endothelial dysfunction have not been 
fully clarified. However, it’s been proposed that endothelial dysfunction may be 
mediated by initiation of ROS production and reduction in capacity of antioxidant 
defense system [11]. The free thiol group of Hcy binds, via disulfide bond, to plasma 
proteins or other Hcy, thus promoting generation of ROS.  Prooxidants, such as 
strong oxidizing agent hydrogen peroxide (H2O2), ROS, and reactive nitrogen spe-
cies (RNS), are produced as a result of Hcy binding. Hydroxyl radicals have the 
potential to induce further oxidation of lipids, proteins, carbohydrates, and nucleic 
acids, thus contributing to endothelial dysfunction. ROS and RNS are highly reac-
tive molecules that can with almost all cellular components and thereby compro-
mise cellular integrity [2].

Hcy-induced oxidative stress is caused by several mechanisms. In addition to 
Hcy autooxidation, hyperhomocysteinemia causes a decrease in antioxidant poten-
tial of the cell due to inhibition of activity of enzymatic antioxidants, such as super-
oxide dismutase (SOD) from endothelial surfaces [17]. Furthermore, this 
pathological condition affects enzymes such as nicotinamide adenine dinucleotide 
phosphate oxidase (NADPH oxidase, NOX) and nitric oxide synthase (NOS), which 
are involved in production of ROS [1].

The major non-mitochondrial source of ROS is NOX [18]. The impact of Hcy on 
various forms of NOX has been reported. Several genes responsible for variations in 
plasma Hcy levels have been identified so far. One of the gene loci associated with 
Hcy metabolism is NADPH oxidase 4 (NOX 4), an isoform of NOX [19]. 
Investigations have shown that incubation of tubular cells with Hcy was connected 
with an increased expression of NOX4, resulting in a high generation of superoxide 
anion radical (O2

-) [20]. On the other hand, overproduction of O2
− may be achieved 

by activation of angiotensin-converting enzyme (ACE) by Hcy, which is involved in 
the activation of NOX [21]. The NOX 2 isoform is present in the endothelium, and 
it has been confirmed that Hcy may also induce apoptosis of endothelial cells via 
NADPH oxidase-related oxidative stress. One research study has shown that incu-
bation of human umbilical vein endothelial cells (HUVECs) with Hcy resulted in 
increased expression of the NOX 2 isoform. As a result, there was increased produc-
tion of O2

− and accumulation of nitrotyrosine residues. In addition to endothelial 
cells, a role for Hcy in programmed cell death of cardiomyocytes is proposed as 
well through activation of NOX 2-induced oxidative damage [22]. Moreover, Hcy 
may lead to necrosis and membrane flip-flop, due to inactivation of flippase [23].

Activation of endothelium under pathophysiological conditions is associated 
with suppression of NO signaling [11]. Normally, there are three isoforms of 
enzyme nitric oxide synthase: endothelial NOS (eNOS or NOS1), inducible NOS 
(iNOS or NOS2), and neural NOS (nNOS or NOS3) [1]. Nitric oxide (NO) can be 
generated by all NOS isoforms, which utilize L-arginine as the substrate in the 
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presence of molecular oxygen and NADPH. Other significant cofactors in the NO 
synthase reaction are flavin mononucleotide (FMN), flavin adenine dinucleotide 
(FAD), and tetrahydrobiopterin (BH4) [24].

It has been established that when endothelial cells are damaged, bioavailability 
of NO is lowered, and various studies have reported that homocysteine may alter the 
NOS pathway. At physiological concentrations, tHcy reacts with NO in the pres-
ence of oxygen and forms S-nitroso-homocysteine, resulting in inhibition of sulfhy-
dryl dependent generation of H2O2 [25]. S-nitroso-homocysteine possesses 
vasodilatory and antiplatelet properties, but in comparison to Hcy, it is not converted 
to Hcy thiolactone [26]. In hyperhomocysteinemia, one of the possible explanations 
for decreased NO bioavailability is oxidative degradation of NO due to an increase 
in the production of H2O2 and O2

− [27]. In fact, NO interacts with ROS, particularly 
O2

−, resulting in generation of very toxic peroxynitrite (ONOO−) [28]. Peroxynitrite 
induces tyrosine nitration, which alters protein function, thus leading to endothelial 
dysfunction [29].

Hydroxyl radical formation in the presence of high Hcy promotes lipid peroxida-
tion, leading to a decrease in eNOS expression and NO degradation [30, 31]. 
Additionally, HHcy may inhibit dimethylarginine dimethylaminohydrolase 2 
(DDAH), an enzyme that catalyzes the conversion of asymmetric dimethylarginine 
(ADMA) to L-arginine, citrulline, and dimethylamine. Therefore, accumulation of 
ADMA inhibits activity of eNOS and iNOS, thus decreasing NO bioavailability 
[32, 33]. On the other hand, Hcy can induce pro-inflammatory cytokines, which 
subsequently upregulate iNOS, leading to an increase in NO synthesis [1].

A correlation between high Hcy levels and the concentration of malondialdehyde 
(MDA), a marker of lipid peroxidation, was confirmed in patients with stable or 
unstable angina [30]. On the other hand, it was reported that moderate hyperhomo-
cysteinemia did not worsen oxidative status in these patients. However, other factors 
apart from Hcy are involved in impaired redox state in patients with coronary artery 
disease. Lipid peroxidation initiated by ROS during HHcy results in oxidation of 
LDL, a very potent pro-atherosclerotic mediator [31]. Several enzyme systems are 
involved, such as NOX, mitochondrial electron transport enzymes, xanthine oxi-
dase, lipoxygenase, cyclo-oxygenase, myeloperoxidase, cytochrome P450 enzymes, 
and eNOS. Formation of oxidized LDL cholesterol is responsible for the presence 
of a prooxidant state in all phases of atherosclerosis, from beginning to the acute 
thrombotic events [1].

14.5  Homocysteine and Atherothrombosis: Role of Oxidative 
Stress

Since the early 1990s, it has been known that elevated levels of homocysteine may 
modulate functions and properties of endothelial cells, causing changes in the 
hemostasis system. As a result, there is an imbalance between procoagulant and 
anticoagulant factors. Data suggests that subjects with high levels of tHcy have an 
increased chance to develop venous thrombosis. Reasons for formation and 
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propagation of thrombus are abnormalities of blood flow, blood vessel wall, and 
blood- clotting components [34]. Furthermore, increased levels of homocysteine 
leads to platelet adhesion to endothelial cells, as well as increment of 
β-thromboglobulin, tissue plasminogen activator, and factor VIIc [8].

In addition to the abovementioned pathways, elevation of platelet activation 
represents another risk factor in the pathogenesis of various cardiovascular dis-
eases. An important reason for platelet activation and coagulation can be endothe-
lial injury induced by an imbalance in oxygen concentration, oxidative stress, 
cytokines, and thrombin. Blood platelets can generate different reactive oxygen/
nitrogen species (ROS/RNS) which can be produced by several pathways, such as 
arachidonic acid pathway (via cyclooxygenase or 12-lipoxygenase) stimulated by 
different agonists, the glutathione cycle and metabolism of phosphoinositides 
[35]. This production of ROS in platelets is due to activation of NOX [36–38] and 
xanthine oxidase [39]. Homocysteine is involved in release of arachidonic acid, 
formation of thromboxane A2, and protein tyrosine phosphorylation in blood 
platelets [35].

One of the main molecules that plays a role in thrombus formation is NO [8]. 
Previous investigators were focused on antithrombogenic properties of NO in arte-
rioles rather than in venules. It was established that homocysteine-induced platelet 
activity may be due to promotion of oxidative stress and inhibition of NO formation 
in platelets [35]. Reduced levels of NO may be due to nitrosation of Hcy (reaction 
of HCy with NO to form S-nitroso-homocysteine). Furthermore, generation of per-
oxynitrite in blood platelets by Hcy causes cell death in cardiomyocyte cell line 
H9C2 [39].

Fibrinogen as the main substrate for coagulation cascade can be covalently mod-
ified by Hcy. Modification of lysine residues in fibrinogen, major binding sites for 
fibrinolytic enzymes, may alter fibrinolysis by the N-homocysteinylation reaction. 
Important functional consequences of homocysteinylation are (1) alteration of clot 
and fibrin structure and (2) increased resistance to fibrinolysis [40]. Elevated levels 
of coagulation factor VIII further increase the risk of development of CVD during 
hyperhomocysteinemia [41].

14.6  Homocysteine and Hypertension

A role for Hcy in the pathogenesis of essential hypertension has been reported. 
Incremental concentrations of Hcy directly affects the value of blood pressure. 
However, this impact is gender specific, with the stronger effects noticed in women. 
Elevation of 5 μM/L in concentration of Hcy induces a rise of 0.5  mmHg and 
0.7 mmHg in diastolic and 0.7 and 1.2 mmHg in men and women, respectively. The 
presence of hyperhomocysteinemia attenuates vasodilatory effects of NO, enhances 
production of ROS, and alters vascular wall elasticity. Additionally, biosynthesis 
and function of vasodilator factors in vascular wall is strongly affected by high lev-
els of Hcy. Consequently, there is impairment in formation of extracellular matrix 
components and intense myocyte proliferation and migration [8].
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Hcy induces oxidative stress by changing the redox thiol status of smooth muscle 
vascular cells, which have redox-sensitive homocysteine receptor responsible for 
collagen expression. Therefore, there is activation of nuclear factor kappa-B (NF- 
kB) which contributes to enhanced vascular smooth muscle proliferation [11, 42]. 
Moreover, Hcy may increase tumor necrosis factor-alpha (TNFα) expression in 
coronary arteries, resulting in upregulation of NOX and iNOS [43]. These observa-
tions support a role for HHcy exerting harmful effects via oxidant injury of the 
endothelium. As a consequence of enhancement of collagen synthesis and accumu-
lation, vascular structure is worsened, and systemic vascular resistance is increased. 
Additionally, diastolic dysfunction of the vessels and loss in flexibility occur. 
Abovementioned deleterious effects of HHcy are responsible for Hcy-induced ele-
vation of blood pressure and development of hypertension [8, 11].

14.7  Positive Effects of Homocysteine

It was found that in homocystinuric patients, level of measured Hcy positively cor-
related with activity of extracellular superoxide dismutase (SOD) and GSHPx 
which are an important antioxidant in vascular tissue. This can be explained as 
protective response to overproduction of free radicals induced by Hcy. Consequently 
risk of vascular events in these patients is not extremely high [1, 44]. On the other 
hand, another protective effect of Hcy is reflected in reduction of endothelin-1 pro-
duction, powerful vasoconstrictor, via oxidative stress products [45]. Furthermore, 
it was reported that Hcy at micromolar concentrations produces negligible quanti-
ties of H2O2 and does not elevate peroxynitrite formation but blocks dihydrorhoda-
mine oxidation. Therefore, Hcy is acting as antioxidant on cellular and chemical 
system [46].

14.8  Therapeutic Strategies in Hyperhomocysteinemia

Therapies for lowering levels of Hcy are safe and relatively inexpensive. As men-
tioned earlier, folic acid and B vitamins are necessary for remethylation of homo-
cysteine to methionine. Folic acid is considered to be more effective than vitamins 
B6 and B12, but its daily dose in clinical studies varies [47]. Levels of Hcy can be 
reduced about 25% by supplementation with 0.5–5.0 mg of folic acid. Vitamin B12 
supplementation of at least 0.4 mg daily further lowers levels by 7%. B6 supple-
ments can lower Hcy after loading of methionine [48]. A prospective, randomized 
clinical trial examined impact of prolonged administration of folate combined with 
vitamins B6 and B12 on cardiovascular risk. They revealed that daily administration 
reduced Hcy levels significantly; however, the risk of death from cardiovascular 
causes, myocardical infarction, and stroke was not changed [49]. On the other hand, 
a few smaller trials showed no benefit of treatment with folate and vitamin B com-
plex [50]. This discrepancy between results of clinical trials can be due to inherent 
limitations of observational studies.
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It has been reported that administration of vitamins C and E to mild HHcy sub-
jects disturbs activation of hemocoagulation and reduces potential for endothelial 
adhesion. In addition, supplementation with only vitamin C prevented endothelial 
cells deterioration due to high Hcy concentration [47, 51].

The effect of folate on pro-oxidative impact of Hcy has not been fully investi-
gated. Nevertheless, folate supplementation inhibits proliferation of smooth muscle 
cells of the vessel wall, thus abolishing adverse effects induces by free radicals. 
However, administration of vitamins B6 and B12 did not lead to this effect. Another 
experiment showed that folate can improve endothelial function in HHcy. After 3 
months of folate administration with B6 vitamin, makers of endothelial damage 
(soluble thrombomodulin and von Willebrand factor) were lowered, while the con-
centration of glutathione was not affected. Furthermore, concentrations of Hcy and 
LDL oxidation can be reduced by administration of vitamin cocktail with 0.65 mg 
folate [52–54].
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Abstract
Nitrosative stress because of hyperactive redox milieu is thought to be associated 
with decrease in bioavailability of nitric oxide and the subsequent defective car-
diogenesis. The role of nitrosative stress in pathophysiology of the heart in adults 
has been studied for several decades; however, very few studies link the struc-
tural deformities in the heart with nitrosative stress. In this article, we give a 
detailed discussion of evidence of the impact of nitrosative stress during cardio-
genesis and also the effect of following cardiac remodelling on the metabolism 
of the embryo. We highlight specifically the reactive nitrogen species (RNS)-
mediated structural changes in the cardiac looping and predicted its conse-
quences on embryonic metabolism using transcriptome analysis. In the present 
study, we used thalidomide as RNS inducer, which increases peroxynitrite and 
superoxide levels in the developing heart. The transcriptome analysis of 
thalidomide- treated embryos showed that the treatment affected severely the 
protein and fatty acid metabolism that consequently might lead to thalidomide- 
mediated heart defects in the embryo. To summarize, our data suggest that fatty 
acid metabolism, which is a critical metabolic pathway during heart develop-
ment, is perturbed under an oxidative and nitrosative environment due to thalido-
mide treatment.
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15.1  Background

Structural deformities arising from abnormal formation of the heart or major blood 
vessels at the time of birth are commonly referred to as congenital heart defects, or 
diseases (CHDs) [1]. Congenital heart defects have frequency of 1 in 100 live births 
and are the most common birth defects [2–4]. CHDs alone account for approxi-
mately 10% of the present infant mortality [5]. In India, there is a large number of 
CHDs cases every year with a frequency of 3.7–17.5 per 1000 live births [6]. The 
primary aetiology of CHDs may be genetic, environmental or a combination of 
both. A few genetic factors linked to CHDs are known, whereas majority of them 
are still unknown. Therefore, it becomes a primary interest to understand the mech-
anisms regulating the heart formation which might be helpful to develop new strate-
gies to prevent and treat CHDs. The major CHDs are tetralogy of Fallot (TOF), 
transposition of large vessels, hypoplastic right heart, acyanotic CHD, ventricular 
septal defect (VSD), patent ductus arteriosus (PDA), pulmonary stenosis and atrial 
septal defect (ASD). Aetiology of CHDs and their pattern of inheritance are multi-
factorial [7]. The risk factors of CHDs could be maternal ailments such as maternal 
smoking, gestational diabetes, urinary tract infections or foetal factors such as still 
birth, low birth weight and prematurity [8]. Nitric oxide and its products play a very 
important role during embryonic development, e.g. follicle development, germ cells 
differentiation and organogenesis. Supraphysiological concentration of NO is asso-
ciated with various female reproductive irregularities including infertility [9], inhi-
bition of implantation and inhibition of embryonic growth [10], whereas deficiency 
in NOS3 results in congenital heart defects [11]. In present study, our omics-based 
approach researches the link between nitrosative stress and anomaly of cardiac mor-
phogenesis in the developing heart of chicken embryo.

15.2  Cardiac Morphogenesis

The heart is the first functional organ which begins to beat from 2nd week of gesta-
tion and is fully developed by 8 weeks of gestation [12]. Migration of epiblastic 
cells towards primitive streak differentiates the gastrula into three germ layers: 
ectoderm, mesoderm and endoderm [13]. Precardiac cells are multipotent and get 
differentiated into endothelial, smooth muscle cells and myocardiac cells [14]. 
Anterior mesodermal cells (precardiac cells) get differentiated into cardiac cells 
under the influence of endodermal signalling molecules such as BMPs [15]. Some 
of the highly conserved mesodermal origin transcription factors through the evolu-
tion are NKX2.5, GATA, Mef2, Tbx and Hand [16]. Myocardial cells differentiate 
into conduction cells and chamber-specific myocytes [17]. Structurally there are 
three intricately linked phases of heart development: looping, convergence and 
wedging (Fig. 15.1).
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15.2.1  Looping

The primitive linear heart tube folds into S-shaped structure towards the right and 
begin the right-left lateralization in the embryo [18]. Rotatory movement of cilia in 
primary node creates an extracellular flow current which bends the tube towards 
right. This step locates the future heart chambers into their relative spatial positions. 
Faulty looping results in the anomalies related to heart laterality such as heterotaxy 
syndrome and situs inversus [19].

15.2.2  Convergence

The convergence brings an outflow limb and the inflow limb together which permits 
the alignment of outflow tract with atrioventricular (AV), atrial and ventricular septa 
[18]. The atria and ventricles develop and segregate along anteroposterior and the 
right-left axes [20]. At this stage, the primitive heart develops into four transitional 
zones called sinus venosus, AV canal, primary fold and outflow tract endocardial 
cushions. The sinus venosus develops into atrial septation and contributes to the 
atrial conduction pathways [21]. Primary fold contributes to ventricular septation, 
ventricular conduction pathways and AV node [18]. The OT and the endocardial 
cushions of the AV canal delineate to the outlet segment and the inlet segment of the 
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heart, respectively [22]. Defects at convergence stage lead to the retarded ventricu-
lar growth and the abnormal development of the right AV junction. The major con-
genital heart defects occurred as results of these malformations are ventricular 
hypoplasia, double-inlet ventricle and tricuspid atresia [23].

15.2.3  Wedging

Counterclockwise rotation in the myocardial wall of the OT establishes mitral- 
aortic continuity. Simultaneously, endocardial cushions of the OT are muscularized 
and fused to form conal septum [18, 24]. Conal septum together with the rearrange-
ment of upper primitive ventricular septum establishes the mitroaortic fibrous con-
tinuity. Failure in the proper alignment of OT and ventricles inevitably results in 
ventricular septal defect [25]. TOF might result from the hampered OT looping 
which result in malalignment of the OT and the ventricles [26].

15.3  Molecular Candidates Involved in Chamber 
Specification

Shh-mediated Foxc1/c2 activation followed by involvement of Nkx2.5, Tbx5, Fgf8 
and fgf10 regulates the formation of aortic sac during cardiogenesis [27]. 
Thalidomide is reported to bind with TBX5 at amino acids R81, R82 and K226, 
which are associated in DNA binding which further inhibits thalidomide’s interac-
tion with HAND [28]. However there is no report indicating the involvement of 
RNS in this interaction. CoupTFII and Tnx5 are responsible for the differentiation 
the left and right aorta. Tbx family, BMP10, NKX2.5 and HAND are associated 
with the formation of right and left ventricles [29]. GATA4, TBX5 and NKX2.5 
mediate the formation of intra-atrial and intraventricular septa [30]. Nkx2.5, 
Notch,1, IsI1 and Hand2 pathways mediate the formation of outflow tract and right 
ventricle (Fig. 15.1) [31].

15.4  Nitrosative Stress During Embryogenesis

Excess production of reactive nitrogen species (RNS) overcomes the system’s abil-
ity to neutralize and eliminate them and results in pathophysiological condition 
called nitrosative stress [32]. Generally, nitrosative stress and oxidative stress act 
collectively to damage the cells [33]. In the biological system, nitrosative stress is 
generated by nitric oxide-mediated modulation of biomolecules [34]. The molecu-
lar species responsible for nitrosative stress are referred as reactive nitrogen species 
(RNS). RNS family of molecules are formed by the reaction of superoxide (O2

•−) 
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with nitric oxide (•NO) [35]. The primary source of all RNS is nitric oxide. The 
major reactions of NO which lead to the oxidation of biomolecules are nitrosylation 
(NO), nitration (addition of NO2) and nitrosation (addition of NO+) (Fig. 15.2) [36].

In the cellular system, NO is produced by nitric oxide synthases (NOS) family 
using the semi-essential cationic amino acid L-arginine as substrate and mediates 
multiple cellular functions [37]. Emphasizing the fact that concentration of NO acts 
as an important factor in the production of RNS, the range of NO concentrations 
produced by NOS is 20 nM to 2 μM [38]. The best understood route of RNS produc-
tion is the reaction of nitric oxide (•NO) with superoxide (O2

•−) to form peroxyni-
trite (ONOO−) which might react with all the major classes of biomolecules and, 
therefore, has the potential to mediate cytotoxicity independent of NO or O2

− 
(Fig. 15.3) [39, 40].

As stated previously, the cause of nitrosative stress could be maternal origin or 
foetal or both. In the case of maternal origin, pregnancy-induced hypertension is 
reported to be mediated by nitrosative stress [41]. However, during early pregnancy, 
the effect of nitrosative stress is not much studied. Particulate matter from air pollu-
tion is reported to increase placental nitrosative stress [42]. Several metabolic dis-
eases during pregnancy such as diabetes mellitus are known to induce nitrosative 
stress during early embryonic development [43, 44]. Presence of nitrosative stress 
during early pregnancy majorly causes cardiac abnormalities as heart development 
occurs [45]. In our independent studies, we found that thalidomide causes structural 
deformities in developing heart. Supraphysiological dose of NO during early devel-
opment causes situs inversus in the heart  [72]. Thalidomide has been shown to 
increase RNS in developing heart [46]; therefore, there could be link between RNS 
during cardiogenesis and cardiac anomalies. Increased nitrosative stress also acti-
vates the nuclear enzyme poly(ADP-ribose) polymerase, which contributes to endo-
thelial dysfunction and cardiac pathogenesis [47, 48].
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15.5  Thalidomide for Inducing Oxidative Stress in Embryo

On one hand, thalidomide is a well-known teratogen, but on the other hand, it shows 
a great potential against several pathologies such as Hansen’s disease, multiple 
myeloma [49], Behcet’s disease [50] and tuberculosis (TB) due to its anti-angiogenic 
and anti-inflammatory properties. In our previous study, we reported several struc-
tural deformities in developing heart using chick embryo model, predominantly a 
haematoma like structure named ‘Suvro-Pavitra lump’ rich in oxidative and nitrosa-
tive stress in heart muscles [46]. Taking the lead from the previous work, we planned 
to study the oxidative and nitrosative stress in early developing heart during cardiac 
looping under thalidomide treatment.

15.6  Materials and Methods

Thalidomide was obtained from TRC Canada (T058833). Nitro blue tetrazolium 
(NBT) was procured from Sigma-Aldrich®, India. DHR123 and DAF-FM were 
purchased from Thermo Fisher Scientific (India). Chick embryos were treated with 
thalidomide or vehicle as described elsewhere [46]. In brief, the embryonic stages 
were defined as described by Hamilton and Hamburger (HH) [51]. One small 
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aperture was created in the egg shell over the air sac using sterile needle at HH/24 
stage. A single dose of 20 μl of thalidomide solution of 1 mg/ml or vehicle was 
injected in the aperture of air sac. The aperture was sealed with Mediplast® tape, 
and eggs were incubated for further growth maximum of 6 days or as per experi-
mental requirements.

Oxidative stress in the chick embryonic heart during cardiac looping at HH 15 
was estimated. The heart was dissected out from embryos treated with vehicle or 
thalidomide (15 each group) and used to measure nitric oxide, peroxynitrite and 
superoxide using biochemical assays as described below.

15.6.1  Measurement of Nitric Oxide

Hearts from control or thalidomide-treated embryos were treated with 200 μl of 
10 μM DAF-FM for 15 min at room temperature in the dark. The tissue was homog-
enized and centrifuged at 1000 g for 5 min, and then 100 μl of supernatant was col-
lected and transferred into 96 well plate, and the fluorescence intensity was measured 
at excitation 488 nm/emission 519 nm using fluorescence spectrophotometer [52].

15.6.2  Measurement of Peroxynitrite

Hearts from control or thalidomide-treated embryos were treated with 200 μl of 
10 μM of DHR123 probe at room temperature for 20 min in the dark. The tissue was 
homogenized and centrifuged at 1000 g for 5 min, and then 100 μl of supernatant was 
collected and transferred into 96 well plate, and fluorescence intensity was measured 
at excitation 500 nm/emission 536 nm using fluorescence spectrophotometer [46].

15.6.3  Measurement of Superoxide

Hearts from control or thalidomide-treated embryos were treated with 200 μl of 
5 μM of NBT for 2 h at room temperature. The tissue was homogenized and centri-
fuged at 1000 g for 5 min, and then 100 μl of supernatant was collected and trans-
ferred into 96 well plate, and optical density was measured using adsorption 
spectroscopy at 560 nm using ELISA reader [46, 53].

15.6.4  Transcriptome Experiments and Analysis

Transcriptome data were acquired from our previously deposited database GEO 
(GSE69159). The data were obtained from mRNA isolated from HH29 (6th day) 
old chick embryos (from control or thalidomide-treated group). Cuffdiff (v2.2.0) 
programme was used to analyse the data for differentially expressed genes [52, 54]. 
The differentially expressed genes were used for the pathways enrichment analysis 
using Enrichr [55, 56].
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15.6.5  Statistics

Each experiment was performed in triplicates (n = 3). The data in the results have 
been presented as mean ± standard error mean (SEM). Statistical analysis was done 
using student t-test or as specified. The significant differences among means were 
considered when p ≤ 0.05.

15.7  Results and Discussion

Thalidomide hampers NO signalling in endothelial cells [57]; however, there was 
no significant difference observed in free NO while comparing the heart isolated 
from control group with thalidomide-treated (Fig. 15.4a). Peroxynitrite level was 
1.76-fold higher in the heart isolated from thalidomide-treated embryos compared 
to the heart isolated from control group indicating an increased nitrosative stress 
(p=0.004) (Fig. 15.4b). Level of superoxide was 1.95-fold higher in the heart iso-
lated from thalidomide-treated chick embryos compare to that of control group 
(p<0.001) (Fig. 15.4c). Altogether, these results showed that thalidomide increased 
nitrosative and oxidative stress in the heart during cardiac looping. Increased ROS 
and RNS act as cytotoxic agents in various cellular systems [58, 59]; therefore, 
thalidomide-mediated rise in RNS and ROS could be responsible for the structural 
and anatomical deformities in the heart.

15.8  Nitrosative Stress and CHDs

RNS, as described previously, can be transformed into other species such as nitroxyl 
anion (NO-), nitrosonium cation (NO+), and peroxynitrite (ONOO-) [60]. There are 
several factors which might contribute to RNS formation during pregnancy includ-
ing maternal metabolic pathology. Studies in mice showed that NOS3 expression in 
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the heart starts at E9.5 stage, and it remains high until E13.5 stage. Thereafter, a low 
level of NOS3 is still detectable, and it remains to adulthood [61]. There is increased 
nitrosative stress in the leukocytes of maternal circulation 16th week of gestation 
onwards [62]. RNS modulate signalling of growth factors and transcription factors 
controlling gene expression associated with proliferation, differentiation and apop-
tosis [63]. In fact, ONOO- is a potent oxidizing agent that induces lipid oxidation 
and DNA fragmentation [60]. The cellular damage induced by ROS in the endothe-
lium generates a reduced bioavailability of NO, leading to endothelial dysfunction 
[64]. Therefore, formation of ROS acts double-sided sword to the cellular system by 
reacting with NO which reduces bioavailability of NO and reducing the NOS activ-
ity [65]. Thalidomide is known to induce ROS and interfere with NO signalling 
pathways [57]. In our recent work, we have shown that thalidomide causes severe 
structural deformities in developing heart [46]. Thalidomide modulates the cardiac 
looping which changes the fluidics of the cardiovascular system. Biochemical 
assays shows that during cardiogenesis, there is increase in the levels of superoxide 
and peroxynitrite, whereas there is no change in the free NO as such (Fig. 15.4a–c). 
Therefore, there might be possible link between the defective looping mediated by 
ROS-RNS and altered fluidics.

15.9  Transcriptome Analysis

15.9.1  Cardiac Remodelling Alters Embryonic Metabolism

Thalidomide promotes an imbalance in the redox homeostasis resulting in the per-
turbation of various metabolic pathways. Remarkably, fatty acid metabolism and 
electron transport chain are the most significantly affected metabolic pathways 
(Fig. 15.5a and b). Enrichment of biological processes by genes significantly down-
regulated in thalidomide-treated embryos showed that key processes including met-
abolic pathways and superoxide biology are affected. Metabolic processes including 
mitochondrial electron transport chain, ATP synthesis, complex I biogenesis and 
assembly were inhibited. Cellular response to superoxide, removal of superoxide 
radicals and negative regulation of ROS metabolic process were significantly down-
regulated in thalidomide-treated embryos (Fig. 15.6a and b). Peptide biosynthetic 
process, α-amino acid biosynthetic process and transport were among the affected 
biological processes. Lipid transport and steroid biosynthetic process were also 
downregulated. Notably, there was no direct consequence of thalidomide treatment 
on the expression of genes associated with glycolysis/gluconeogenesis.

15.9.2  Altered Mitochondrial Redox Milieu in Thalidomide- 
Treated Heart

Majority of free radicals are generated in mitochondria. Mitochondria are also the 
most hit target of RNS/ROS as well. The global effect of nitrosation on metabolism 
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is substantial, and upon misregulation, many deleterious effects on metabolic 
enzymes have been reported. Nitrosative stress has been reported to inhibit the pro-
duction of ATP in human spermatozoa by perturbing the processes of glycolysis as 
well as oxidative phosphorylation [66]. Oxidative and nitrosative stress have shown 
to cause deleterious effects on lipid-mediated signalling by directly interacting with 
lipids and affecting lipid membrane properties and palmitoylation [67]. Glucose 6 
phosphate gene expression is upregulated under conditions of enhanced oxidative 
stress [68]. S-nitrosylation affects various enzymes which are key members of met-
abolic processes including glycolysis, gluconeogenesis, citric acid cycle, electron 
transport chain, amino acid and fatty acid metabolism [69]. A recent interesting 
study observed that S-nitrosation inhibits four particular metabolic enzymes, 
namely, 6PGD, ALDH41, COMT and PHGDH by interacting directly with the 
enzymes [70]. However, there are not many studies reporting the effect of nitrosa-
tive stress on gene expression of metabolic enzymes. We observed that majorly gene 
expression of enzymes involved in oxidative phosphorylation, fatty acid and amino 

Fig. 15.5 Heatmaps representation of differentially regulated genes involved in (a) electron trans-
port chain and (b) proteins metabolism
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acid metabolism were significantly downregulated under thalidomide treatment 
which induces nitrosative stress. During foetal heart development, mRNA tran-
scripts of enzymes implicated in fatty acid metabolism specifically FABP4, FABP2 
and NRAP have been observed to be highly expressed since 10 weeks of human 
heart development and increase as the heart continues to develop till 16–18 weeks 
of gestation [71]. Our data suggest that fatty acid metabolism which is a critical 
metabolic pathway during heart development is perturbed under an oxidative and 
nitrosative environment due to thalidomide treatment.

Fig. 15.6 Enriched metabolic pathways of differentially regulated genes of thalidomide-treated 
6-day-old chick embryo. (a) Downregulated metabolic pathways. (b) Downregulated metabolic 
processes
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15.10  Summary

 

Taken together, the present study suggests that nitrosative stress during cardiogen-
esis is likely to cause structural deformities in the heart. The study further confirmed 
that thalidomide increased the level of peroxynitrite and superoxide in developing 
heart and caused structural deformities in the heart. The deformed heart might con-
tribute to altered metabolome of the embryo. The transcriptome analysis of 
thalidomide- treated embryos showed that the genes involved in proteins and fatty 
acid metabolism were differentially regulated.
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Abstract
Pulmonary artery hypertension (PAH) is a progressive disorder characterized by 
pulmonary vascular remodeling ultimately leading to right ventricular failure 
and death. The last few decades have seen considerable progress in PAH therapy 
based on drugs targeting three major mechanistic pathways, viz., prostacyclin, 
endothelin and nitric oxide pathways. A growing body of research has docu-
mented that “oxidative stress” is intricately associated with development of 
PAH. Experimental studies have shown that markers of oxidative tissue damage 
are present in different genetic and chemical models of PAH. Animal studies 
have also shown the preventive and therapeutic potential of endogenous antioxi-
dants and/or drugs with antioxidant activity in experimental PAH. Though the 
evidence implicating oxidative stress in PAH has also been generated in human 
PAH studies, the clinical trials of antioxidants have not yet yielded encouraging 
results. Further studies are warranted to unravel the reason(s) underlying this 
paradox in order to develop potential curative drugs for this morbid disorder.
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16.1  Introduction

Pulmonary arterial hypertension (PAH) can be idiopathic or associated with several 
heritable as well as acquired systemic disorders. PAH forms the first category of the 
current WHO clinical classification of pulmonary hypertension adopted in 2013 [1]. 
It is characterized by a resting mean pulmonary artery pressure ≥25 mm of Hg with 
elevated pulmonary vascular resistance (>3 Wood units) and a normal left atrial 
pressure (≤15 mm of Hg) [1]. PAH is a progressive disorder leading to right ven-
tricular hypertrophy and failure reducing the median survival in affected patients to 
2.8 years without treatment [2].

Despite the advent of several therapeutic agents such as prostaglandin analogues, 
phosphodiesterase 5 inhibitors, and endothelin receptor antagonists in the last few 
decades, PAH remains incurable, steadily progressive, and eventually fatal [3]. The 
symptoms of PAH are nonspecific making diagnosis difficult. Further, low aware-
ness of PAH among primary caregivers as well as socioeconomic constraints of 
patients lead to a very low percentage of PAH patients actually being referred to the 
few tertiary centers equipped to perform definitive diagnoses [4].

16.2  Pathophysiological Mechanisms in PAH

The pathophysiology of PAH has been significantly unraveled in the past several 
decades as involving dynamic pulmonary artery vasoconstriction, thrombosis, and 
remodeling of small pulmonary arteries characterized by hypertrophy of pulmonary 
vascular smooth muscle cells and hyperplasia of endothelial and connective tissue 
cells resulting in plexiform lesions [5]. These pathologic processes are targeted with 
empirical treatment modalities such as oxygen therapy, oral anticoagulants, diuret-
ics, digoxin, and vasodilators especially calcium channel blockers [6]. Calcium 
channel blockers are recommended only in patients showing a positive acute vaso-
reactivity to them during a right heart catheterization study. Unfortunately, none of 
these therapeutic measures have shown any long-term survival benefit in the limited 
number of uncontrolled studies done with them [6]. Over the past two decades, 
significant progress in therapy has been achieved by targeting three mechanistic 
pathways discovered to be dysregulated in PAH, viz., the prostacyclin pathway, the 
endothelin pathway, and the nitric oxide pathway [6].

16.2.1  Prostacyclin Pathway

Prostacyclin (PGI2) and thromboxane A2 (TxA2) are the major derivatives of arachi-
donic acid metabolism in vascular cells. PGI2 is a potent vasodilator, inhibits plate-
let activation, and has antiproliferative properties, while TxA2 is a potent 
vasoconstrictor and platelet agonist. In PAH, the imbalance between these two 
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molecules is found to be shifted toward TxA2. In the urine of patients with pulmo-
nary hypertension, the levels of 6-keto-prostacyclin F2α (a metabolite of PGI2) are 
decreased, whereas the levels of thromboxane B2 (a metabolite of TxA2) are 
increased [7]. Furthermore, the production of prostacyclin synthase is decreased in 
the small- and medium-sized pulmonary arteries of patients with pulmonary hyper-
tension, particularly those with idiopathic PAH [8].

Based on these findings, intravenous epoprostenol (PGI2 analogue) was first used 
in idiopathic PAH in the 1980s. Several randomized clinical trials have shown 
improvement in resting hemodynamics and clinical and functional status of NYHA 
class III and IV PAH patients given intravenous epoprostenol [6]. Epoprostenol is 
the only drug to have shown survival benefit in PAH patients. To obviate the need 
for cumbersome continuous intravenous administration of epoprostenol through 
central veins and associated complications, several longer acting prostacyclin ana-
logues which could be given by intravenous (iloprost, treprostinil), subcutaneous 
(treprostinil), oral (beraprost, iloprost, treprostinil), or inhalational (iloprost, trepro-
stinil) routes were developed and tested in clinical trials. An oral, non-prostanoid, 
selective prostacyclin receptor agonist, selexipag, was recently approved for PAH 
therapy [9]. Although these drugs reproduce the beneficial effects of prostacyclin, 
they are still far from being ideal treatments for PAH owing to their adverse effects, 
short half-lives necessitating frequent dosing, and high cost to the patients [6].

16.2.2  Endothelin Pathway

Endothelin-1 (ET-1), a potent vasoconstrictor chiefly produced by endothelial cells, 
stimulates the proliferation of pulmonary artery smooth-muscle cells. The plasma 
levels of ET-1 are found to be increased and inversely proportional to the magnitude 
of the pulmonary blood flow and cardiac output in PAH [5]. ET-1 can induce fibro-
sis and is a pro-inflammatory mediator by virtue of its capacity to enhance the 
expression of cellular adhesion molecules. The effects of ET-1 are mediated through 
the ETA and ETB endothelin receptors. Activation of ETA receptors causes sustained 
vasoconstriction and proliferation of vascular smooth-muscle cells, whereas ETB 
receptors mediate pulmonary endothelin clearance and induce the production of 
nitric oxide and PGI2 by endothelial cells leading to vasodilatation [8]. Bosentan is 
an orally active dual (ETA and ETB) endothelin-receptor antagonist (ETRA) found 
to be beneficial in clinical trials of NYHA class III–IV PAH patients. Selective ETA 
receptor antagonists (ambrisentan and sitaxsentan) have the theoretical advantage 
of sparing ETB receptor mediated ET-1 clearance and vasodilatation and showed 
lesser perturbation of hepatic transaminase levels in clinical trials [6]. Macitentan, a 
tissue-targeting oral dual ET-1 receptor antagonist, was recently approved by the 
Food and Drug Administration (FDA) for PAH patients [10]. The use of ETRAs is, 
however, limited by their dose-limiting hepatotoxicity, teratogenic potential, and 
high cost [6].
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16.2.3  Nitric Oxide Pathway

Nitric oxide (NO) is a potent endogenous, endothelium-derived vasodilator that 
directly relaxes the underlying vascular smooth muscle through stimulation of sol-
uble guanylate cyclase (sGC) and increased production of intracellular cyclic gua-
nosine monophosphate (cGMP). A number of experimental and clinical studies 
have documented that PAH is associated with a defect in NO availability and thereby 
decreased NO-induced vasodilatation [8]. Therapeutic trials showed that short-term 
NO administration improves pulmonary hemodynamics in PAH.  However, long- 
term NO inhalation therapy is cumbersome to administer and associated with 
rebound deterioration in pulmonary hemodynamics on withdrawal [3].

An indirect strategy employed to increase the biological activity of endogenous 
NO in PAH is through inhibition of phosphodiesterase type 5 (PDE5), the predomi-
nant enzyme metabolizing cGMP in pulmonary vascular smooth muscle cells. 
PDE5 inhibitors (sildenafil, tadalafil) have shown improvement in pulmonary 
hemodynamics and functional status of patients when used as adjunctive treatments 
with prostacyclin analogues in New York Heart Association (NYHA) class III–IV 
PAH patients [6]. A direct sGC stimulator, Riociguat, which produces cGMP even 
in the absence of NO, is undergoing clinical trials in PAH [11]. However, all these 
drugs are expensive and associated with adverse effects including visual distur-
bances, dyspepsia, flushing, headache, and limb pain [3].

16.3  Oxidative Stress

As has already been discussed elsewhere in this book, oxidative stress is implicated 
in the pathophysiology of varied cardiovascular disorders. A considerable amount 
of literature generated over the last few decades supports its involvement in pulmo-
nary vascular remodeling in PAH as well [12]. “Oxidative stress” is the abnormal 
cellular state of redox imbalance characterized by enhanced production of reactive 
oxygen species (ROS) and/or subdued antioxidant defenses. ROS contain at least 
one reactive oxygen atom and include relatively stable molecules such as NO and 
hydrogen peroxide (H2O2) as well as highly reactive ones such as superoxide (O2

−.) 
and hydroxyl (OH.) radicals. NO can react with superoxide to form the highly dam-
aging peroxynitrite (ONOO−) anion. While a low level of ROS is involved in cel-
lular signaling, their excess production is shown to not only damage cellular 
macromolecules in a runaway “chain reaction” but also stimulate pathological cel-
lular proliferation [12, 13]. Under physiological conditions, ROS overactivity is 
kept in check by endogenous enzymatic (catalase, superoxide dismutase, glutathi-
one peroxidase) and nonenzymatic (glutathione, urate) antioxidant defenses. 
Pathological oxidative stress occurs when ROS production overwhelms the antioxi-
dant defenses.
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16.3.1  Sources of ROS in PAH

The multiple enzymatic and metabolic processes known to generate ROS within 
cells of the pulmonary vascular wall are similar to those found elsewhere in the 
body and are most abundant in the mitochondrion [14]. They include the nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidases (Nox) [15], the mito-
chondrial electron transport chain complexes, xanthine oxidase (XO) [16], and 
uncoupled nitric oxide synthase (NOS) [17]. It is widely accepted that NADPH 
oxidases are not only the principal generator of ROS in the vasculature [18], but 
their activities regulate the activities of other ROS-generating oxidases such as XO 
[19]. Among the members of Nox enzyme family, Nox4 was selectively increased 
in the pulmonary vasculature and lungs of hypoxia-exposed mice and in pulmonary 
vascular tissue from patients with pulmonary arterial hypertension [20]. Hypoxia 
also upregulated Nox4  in pulmonary artery adventitial fibroblasts in vitro and in 
adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension 
[21]. Recently, Nox1, Nox2 (gp91phox), and Nox4 expression was found to be 
upregulated in monocrotaline (MCT)-induced model of PAH in rats which was 
shown to be attenuated by treatment with resveratrol [22].

16.3.2  Oxidative Stress in PAH

16.3.2.1  Experimental Studies

16.3.2.1.1  Elevated ROS and/or Suppressed Antioxidant Defenses 
in Experimental PAH

Monocrotaline (MCT)-induced PAH is one of the most commonly employed exper-
imental models of PAH in rats. Oxidative stress has been documented in MCT- 
induced model in both lungs and the failing right ventricle. Elevated levels of lung 
malondialdehyde and inducible NOS (iNOS) expression and reduced levels of cata-
lase, glutathione, and superoxide dismutase have been documented in MCT-treated 
rats [23]. In the right ventricle of MCT-treated rats, an initial rise and later decline 
in antioxidant enzyme (catalase, superoxide dismutase, and glutathione peroxidase) 
activity and increased lipid peroxidation have been shown [24].

In the mouse model of chronic hypoxia-induced pulmonary hypertension (CH- 
PH), intrapulmonary artery superoxide levels have been shown to be elevated [25]. 
Initially, it was thought that hypoxia would attenuate the generation of ROS due to 
the lack of molecular oxygen to generate superoxide radical. However, it was later 
recognized that hypoxia enhanced ROS generation in relative rather than absolute 
amounts [26].

The recently introduced caveolin-1 knockdown model of PAH also shows ele-
vated ROS levels primarily derived from an uncoupled endothelial NOS (eNOS) 
[27]. Caveolin-1, a protein expressed in vascular smooth muscle caveolae, acts as a 
scaffold maintaining eNOS in an inactive form. Knockdown of caveolin-1 leads to 
widespread eNOS uncoupling and excess NO generation and resultant peroxynitrite 
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anion formation. Experimental studies have shown that eNOS uncoupling also con-
tributes to the persistent pulmonary hypertension of newborn [28].

16.3.2.1.2 Genetic Loss/Gain of Function Studies
It has been shown that Nox2 knockout mice fail to develop CH-PH which suggests a 
critical role for superoxide generated by Nox2 containing NADPH oxidases in this 
model [29]. Caveolin null mice have been shown to develop PAH due to elevated 
NO-mediated ROS production mediated by uncoupling of eNOS besides bone mor-
phogenetic protein (BMP) receptor activation [30]. This observation was further 
strengthened by study which showed that rats with double knockout of caveolin and 
eNOS genes do not develop PAH due to lack of formation of peroxynitrite anion [27].

Intratracheal delivery of adenovirus transfected with gene for extracellular super-
oxide dismutase (EC-SOD) was shown to reverse pathological remodeling of pul-
monary vascular cells as well as the right ventricle in MCT-treated rats [31]. 
Recombinant human SOD was shown to restore eNOS function, reduce oxidative 
stress, and reduce pulmonary vascular resistance while breathing 100% oxygen in a 
lamb model of persistent pulmonary hypertension of the newborn [32].

16.3.2.1.3 Drug/Antioxidant Intervention Studies
Several interventional studies employing drugs or herbal products with antioxidant 
properties have shown to attenuate the development of MCT-induced PAH and right 
ventricular hypertrophy. For instance, intratracheal delivery of adenovirus contain-
ing the gene for human extracellular SOD ameliorated development of MCT-PAH 
[31]. More recently, it was reported that the antioxidant resveratrol decreased pul-
monary artery smooth muscle cell proliferation, NADPH oxidase-induced oxidative 
stress and prevented the development of MCT-PAH [22].

Our group has shown the preventive potential of the peroxisome proliferator- 
activated receptor α (PPARα) agonist, fenofibrate, and two herbal drugs, viz., 
Ocimum sanctum (Linn.) and Terminalia arjuna (Roxb.), against development of 
MCT-induced PAH in rats [33–35]. The antioxidant effect of these drugs is thought 
to be involved in their beneficial effect because all of them attenuated markers of 
oxidative stress and/or enhanced antioxidant defenses.

The pathological changes in experimental PAH associated with exposure to 
chronic hypoxia are abolished by administration of the antioxidant, N-acetylcysteine, 
or the XO inhibitor, allopurinol [36]. Excess iron has been implicated in accelerat-
ing the conversion of hydrogen peroxide to highly reactive superoxide and hydroxyl 
radicals by Fenton chemistry. Iron chelation therapy with deferoxamine has been 
shown to reverse chronic hypoxia-induced PAH in rats [37].

16.3.2.2  Clinical Studies

16.3.2.2.1 Elevated ROS and/or Reduced Antioxidant Levels
A large body of evidence attests to the involvement of oxidative stress in the lungs 
of patients with PAH. Oxidative stress has been shown to be associated with ele-
vated pulmonary artery systolic pressure and with survival in PAH patients [38, 39]. 
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Recently, it was shown that patients with idiopathic PAH have elevated XO activity 
compared to control patients and that XO-mediated oxidative stress could be 
reversed by treatment with XO inhibitors [40]. Lung biopsy samples of patients 
with idiopathic PAH have shown depletion of SOD and catalase and elevation of 
3-nitrotyrosine, a widely used biomarker of oxidative protein damage caused by 
reaction of peroxynitrite with tyrosine residues [41]. 8-Hydroxyguanosine staining 
is present within the plexiform lesions from patients with PAH and is absent in the 
pulmonary vascular endothelium of control patients [42]. 8-Hydroxyguanosine is a 
biomarker of oxidative nuclear damage caused by reaction of superoxide with gua-
nine. In the lungs of the same PAH patients, the amount and activity of SOD were 
lower, indicating decreased capacity to scavenge superoxide [42]. Genetic polymor-
phisms of antioxidant enzymes such as catalase and superoxide dismutase have 
been implicated in some cases of persistent primary hypertension of the newborn 
[43]. The valvular fibrosis caused by anti-obesity drugs such as fenfluramine and 
sibutramine has been shown to be due to excess serotonin-mediated monoamine 
oxidase-dependent superoxide generation [44]. The evidence from these studies 
suggests that the lungs of patients with PAH are under chronic oxidative stress.

16.3.2.2.2 Effects of Drug/Antioxidant therapy
The clinical trials of the currently approved drugs in PAH have shown beneficial 
effects in PAH patients by evaluating hemodynamic and functional endpoints [6]. 
However, studies exploring the effect of such drugs on markers of oxidative stress 
in PAH patients have been few and far between [12]. For instance, sildenafil has 
been shown to reduce serum 4-hydroxynonenal levels and improve heart rate vari-
ability in PAH patients [45]. Vardenafil administration in treatment-naïve PAH 
patients has been shown to reduce 8-iso-prostaglandin-F2α and 3-nitrotyrosine 
blood levels while significantly increasing NO levels [46]. Another study showed 
that the beneficial hemodynamic response to inhaled iloprost was attenuated in 
association with endothelial dysfunction and oxidative stress in PAH patients [47].

On the other hand, studies exploring the utility of antioxidants or of drugs with 
antioxidant properties in PAH patients have yielded disappointing results [6]. A 
variety of antioxidants showing beneficial effect in animal models of PAH failed to 
demonstrate similar effect in clinical studies. For instance, supplementation with 
coenzyme Q, a mitochondrial constituent, improved red blood cell redox status in 
PAH patients but not 6-min walk distance or BNP levels [48]. Similarly, in spite of 
promising experimental studies, neither atorvastatin nor simvastatin improved func-
tional status of PAH patients in terms of the distance covered in the 6-min walking 
test [49, 50]. This was further endorsed by a recent meta-analysis of trials of statins 
in PAH patients [51].
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16.4  Quasi-Cancerous Phenotype

A growing body of research has shown that PAH develops a quasi-cancerous phe-
notype over time characterized by pulmonary artery endothelial cell precursors and 
smooth muscle cells developing several hallmarks of cancerous cells [52]. These 
characteristics include self-sufficiency in several growth factors, resistance to apop-
tosis, and a metabolic switch to glycolysis instead of oxidative phosphorylation 
known as Warburg effect [52, 53]. Activation of several intracellular signaling path-
ways such as Rho kinase (ROCK) and mitogen-activated protein kinase (MAPK) 
have been implicated in conferring these properties [52]. Drugs targeting various 
mediators in these pathways such as imatinib (tyrosine kinase inhibitor), sorafenib 
(multikinase inhibitor), fasudil (Rho-kinase inhibitor), and dichloroacetate (mito-
chondrial pyruvate dehydrogenase inhibitor which inhibits glycolysis) have been 
tested in animal as well as clinical studies but have shown only modest benefit 
against risk of significant adverse effects [6].

16.5  Summary and Conclusion

The last few decades have seen considerable progress in the understanding of the 
molecular pathophysiology and drug therapy of PAH.  Oxidative stress has been 
shown to be intricately involved in the underlying pathobiology of PAH. However, 
the exact pathways and mechanisms leading to dysregulated effects of oxidative 
stress signaling remain to be unraveled. In spite of the promising results shown by 
antioxidants and drugs with antioxidant properties in experimental studies, their 
clinical trials in PAH patients have yielded indeterminate results at best. What this 
points to is our incomplete knowledge of ROS kinetics, their subcellular compart-
mentalization, or the inability of drugs to reach appropriate subcellular targets. 
Whatever may be the reason(s), the answers to these questions will determine the 
fate of millions of patients suffering from this currently incurable disorder.
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Abstract
Oxidative stress has long been attributed to the pathobiology of various degen-
erative diseases. However, despite its wide acceptance among the researchers 
and the clinicians, the mechanistic insight into the contribution of various oxi-
dants to the aetiology of those disorders remained enigmatic for a long time. 
Also, the use of antioxidants as therapeutics had very limited success. In the past 
decade, a significant progress has been made in understanding the chemistry of 
various reactive oxygen and nitrogen species, their enzymatic mechanisms, their 
generation, their cellular locations and their targets of action. While some of the 
highly reactive species, viz. hydroxyl radical and peroxynitrite, are deleterious 
for the cell, others like hydrogen peroxide and superoxide often act as bona fide 
signalling molecules. Such knowledge has revealed that a close network of redox 
reactions mediated by these species intricately regulate cellular functions. Any 
perturbation in those circuitries affects the cell physiology, causing distress for 
the related tissue and the organ. This review summarizes the present-day knowl-
edge of those redox processes in the context of certain cardiovascular disorders.
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17.1  Introduction

17.1.1  Role of Free Radicals and Reactive Oxygen Species 
in Cellular Function: An Overview

Ageing is a natural process, but the ageing population are susceptible to various 
degenerating diseases like cancer, diabetes, Alzheimer’s, heart failure and other car-
diovascular disorders. Although the affected organs, pathobiology and the therapeu-
tic options for all these diseases are very different, one commonality between them 
is oxidative stress. Nevertheless, despite the wide acceptance that oxidative stress is 
the causative agent for these diseases, the mechanistic views in this regard have 
undergone a paradigm shift in the past 20 years. While the early concept was undue 
generation of free radicals and reactive oxygen species (ROS) cause many of the 
age-related diseases, it is now established that low-intensity generation of ROS is an 
integral part of cell regulatory network and only their dysfunction and aberrant gen-
eration cause diseases.

17.2  The “Free Radical Theory of Ageing”: A Historical 
Perspective

Biologists and clinicians have long observed the close relationship between ageing 
and degenerative diseases due to dysfunctional organs. A young gerontologist 
Denham Harman in 1955 first proposed that ageing is primarily caused by the dam-
ages to the organs and tissues by the free radicals [1]. Although his proposition was 
quite revolutionary, it was more of a hypothesis as the assays for free radicals and 
reactive species in biological samples were not available in those days. In the sub-
sequent years, he validated his theory by studying the role of free radicals in ageing, 
cancer and atherosclerosis. Because of his phenomenal contribution, he is consid-
ered as the father of the free radical theory of ageing (https://en.wikipedia.org/wiki/
Denham_Harman).

Among the major observations he had made:

 1. Atherogenesis in the artery is caused due to the oxidative polymerization of 
serum lipoproteins, deposition of oxidized materials in the arterial wall and 
inflammation [2].

 2. With the ageing, serum mercaptan level decreases. In this study he formally 
proposed the “Free radical theory of aging” [3].

 3. Mutations induced by the free radicals cause cancer and ageing [4].
 4. Antioxidants can prevent cancer and can extend the life span of mice [5].
 5. Antioxidants boost the immunity in mice, thus connecting the age, immunity and 

the free radicals [6].

Superoxide dismutase (SOD) was the first antioxidant enzyme to be discovered 
in 1969. Since its biological relevance was not understood in those days, it was 
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thought that since free radicals are deleterious for the cell, nature has created this 
enzyme to destroy them. Such interpretation thus gave credence to the “Free radical 
theory of aging” [7]. It was much later that cell biologists realized that the function 
of SOD is to convert superoxide, a strong oxidant, to hydrogen peroxide, a signal-
ling molecule (details given in the following sections).

In a remarkable feat, almost quarter of a century after he proposed the “Free 
Radical Theory of Aging”, Denham Harman rechristened it in 1984 as the “Free 
radical theory of diseases” [8]. He suggested that free radicals accumulate and cause 
damages to the body and the extent of damage increases with ageing. Although the 
environmental and genetic factors have a role to determine the magnitude of such 
damages which differ from one individual to another, aged population is generally 
susceptible for diseases because of those damages. He thus proposed that age- 
related diseases can be prevented by calorie restriction and taking the antioxidants 
that lowers the level of free radicals. Although the beneficial effects of calorie 
restriction have been proved over the years, that of antioxidant remains controver-
sial [9–12]. Nevertheless, these groundbreaking and insightful studies by Denham 
Harman created the foundation of modern-day knowledge of the oxidative stress 
theory of diseases.

17.3  Emergence of the “Oxidative Stress Theory of Diseases”

The role of oxidation-reduction in cellular metabolism, e.g. Warburg effect, Krebs 
cycle, oxidative phosphorylation, etc., was established in the early part of the twen-
tieth century. In the 1950s and 1960s, toxicologists, nutritionists and clinical bio-
chemists realized that xenobiotic agents such as drugs, industrial products and 
environmental pollutants upon metabolism could become electrophiles, which dam-
age the cellular DNA, proteins and lipids [13]. Some of these electrophiles were 
also associated with cancer. In 1985, the deleterious effects of these free radicals, 
especially those which damage the organs and tissues, were formally termed by H 
Sies, a pioneer in the field, as “Oxidative stress” [14].

According to his definition, oxidative stress is a disturbance in the balance 
between pro- and antioxidants in favour of the former. Further, early studies done on 
diseased tissues and organs from people suffering from cardiovascular diseases, 
atherosclerosis, Parkinson’s and Alzheimer’s showed higher incidences of oxidized 
lipids, DNA and proteins [15, 16]. However, in those days, most efforts were given 
to understand the cellular antioxidants defence and how to boost them rather than 
understanding the role of pro-oxidant system per se [17]. Genetic studies also cor-
roborated this approach. It was shown that in C. elegans, mutations leading to the 
increased levels of superoxide dismutase and catalase, two major antioxidant 
enzymes, increases its life span [18]. It was also shown that small molecules that 
mimic these antioxidant enzymes could extend the life span of C. elegans [19]. 
Although these studies showed a close association between ageing and diseases, it 
also subscribed to the concept that oxidative stress is the cause of cancer, Parkinson’s, 
Alzheimer’s and cardiovascular disorders.

17 Free Radicals and Reactive Oxygen Species in Cardiovascular Pathophysiology…
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17.4  Limitations of the Oxidative Stress Theory of Diseases 
and Curing by Antioxidants

With the emergence of strong evidences associating oxidative stress and various 
degenerative diseases, use of antioxidants for their amelioration was also explored. 
In this context, it is necessary to remember that the term antioxidant is too generic 
as it includes a wide spectrum of biomolecules, which can neutralize the cellular 
ROS and thereby prevent their deleterious effects. Over the years, the commonly 
used antioxidants include natural products like vitamins C, E and A, carotenoids, 
polyphenols and synthetic compounds like N-acetylcysteine and allopurinol (an 
inhibitor of xanthine oxidase). However, numerous studies over the past quarter of 
a century and large-scale meta-analyses of those results led to the conclusion that 
the use of antioxidants does not necessarily prevent or cure those diseases [20]. 
Although such observations do not necessarily negate the role of ROS as a trigger 
for certain degenerative diseases, it definitely suggests that the function of ROS in 
cellular physiology is far more nuanced than perceived earlier.

17.5  Regulatory Role of ROS in Cell Physiology: A Paradigm 
Shift

During the 1990s, in a seminal discovery, it was found that when human carcinoma 
cells are treated with the EGF (epidermal growth factor), it generates H2O2. Further, 
this H2O2 inhibited protein tyrosine phosphatase by oxidizing certain cysteine resi-
dues and thereby sustaining the growth signalling [21]. Another major discovery 
was the existence of non-phagocytic NADPH oxidases in various tissues. NADPH 
oxidases are the membrane-associated multisubunit enzyme complexes that gener-
ate superoxide (O2

·−) from molecular oxygen and NADPH. It was first discovered in 
phagocytic cells, where the generation of superoxide and other reactive species 
derived from it is used as a strategy for combating invading pathogens. Therefore, 
with the discovery of the presence of other isoforms of NADPH oxidases, tissues 
other than phagocytic cells led to the proposition that they might generate superox-
ide (which is then converted into hydrogen peroxide) for physiological purposes 
[22].

Subsequent to these two original discoveries almost 25  years ago, it became 
more and more apparent that superoxide and hydrogen peroxide contribute to nor-
mal physiological functions including cell signalling and gene expression for physi-
ological events like cell proliferation, differentiation, autophagy and apoptosis. 
Such role of ROS is also highly conserved in evolution as in plants; various stress 
responses are mediated through the ROS. Further study suggested that alike kinases, 
which reversibly and specifically phosphorylate target proteins, reactive oxygen 
species can selectively oxidize certain cysteine residues of various proteins, regulat-
ing their functions. Accordingly, the signalling by ROS is termed as redox signal-
ling that has unique biochemical and cell biological characteristics [23].
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One scepticism about the role of ROS in cell signalling was the tenet that any 
molecules mediating signal transduction must have target specificity and modifica-
tions induced by them on their targets ought to be reversible. Since physiological 
oxidants like superoxide (O2

·−) and hydrogen peroxide (H2O2) are highly diffusible, 
it was argued that they cannot have specific targets for the oxidation. However, soon 
it was proposed that since these molecules have moderate oxidation potential, they 
can selectively oxidize cysteine residues that have pKa values close to 6.4, which 
depends on the charge distribution of its adjacent amino acids in the 3D conforma-
tion, as superoxide and hydrogen peroxide can oxidize only the thiolate forms of 
cysteine [23]. Also, cellular antioxidants like thioredoxin and glutaredoxins can 
reverse such oxidations of cysteine in cellular environment [25]. These two observa-
tions thus established superoxide and hydrogen peroxide as the bona fide signalling 
agents that selectively and reversibly modify certain cysteine residues of their target 
proteins modulating their functions [26]. One such best-known example is the oxi-
dative activation of the antioxidant transcription factor Nrf2 [27]. Emergence of 
redox proteomics has revealed the existence of numerous such modifications in 
various cellular and tissue contexts [28].

17.6  Pathological ROS Signals and the Onset of Diseases

In contrast to superoxide and hydrogen peroxide, other certain highly reactive spe-
cies, viz. hydroxyl (OH·), hydroperoxyl (HO2

·) and peroxyl (ROO·) radicals, hypo-
chlorous acid (HOCl), peroxynitrite (ONOO−), etc., oxidize proteins and other 
biomolecules non-specifically [29]. In addition, the oxidative modifications induced 
by these highly reactive species are irreversible and thus are unable to have signal-
ling functions. Besides cysteine, several other amino acids like methionine, trypto-
phan and tyrosine can also undergo such irreversible oxidation under highly 
oxidizing environment, resulting in the loss of functions and diseases [30–32].

17.7  Generation of ROS in the Cellular Milieu and Their 
Attenuation by Antioxidants

Different types of ROS are generated in the cellular milieu under various patho-
physiological conditions. While the primary ROS like superoxide and hydrogen 
peroxide have distinct sources and subcellular localizations, several other subspe-
cies are generated only transiently under specific conditions [33]. Superoxide anion 
(O2

·−) is generated by the one electron reduction of oxygen by the enzymes like 
NADPH oxidases, xanthine oxidase, lipoxygenase and cyclooxygenase as well as 
by the electrons leaking out of the electron transport system in the mitochondria 
[34, 35]. NADPH oxidase 2 (Nox 2) is a membrane-associated enzyme first charac-
terized in the neutrophils where it produces superoxide in the phagosomes to kill the 
ingested bacteria and fungi. It is the prototype member of the family, and the pres-
ence of other Noxes was shown in various cell types thereafter [36]. In human, there 
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are several isoforms of this enzyme, viz. NOX1, NOX3 and NOX4 and DUOX1 and 
DUOX2, which differ in their subunit compositions and tissue and subcellular dis-
tributions [37]. They are activated by various growth factors, cytokines, etc., and the 
superoxide generated by the Noxes in non-phagocytic cells is primarily involved in 
downstream signalling [38]. Being present in the plasma membrane or other intra-
cellular locations, they can generate superoxide both extra- and intracellularly with 
distinctive functions. Aberrant generation of ROS by different Noxes has been asso-
ciated with various diseases, and their pharmacological inhibition is being explored 
for therapeutic purposes [39].

Mitochondrial electron transport chain is another major source of superoxide 
generation. Extensive studies have established that complexes I and III are the two 
major sites where superoxide is generated. During normal respiration, electrons 
leak out from the chain at a low intensity. These electrons partially reduce the sur-
rounding oxygen producing limited quantity of O2

·− that acts as a signalling mole-
cule [40]. However, under certain pathological conditions, the extent of generation 
of superoxide in the mitochondria increases which often leads to diseases [41].

During nucleotide metabolism, conversion of hypoxanthine to xanthine and xan-
thine to uric acid is catalysed by the enzyme xanthine dehydrogenase. In oxidizing 
environment, xanthine dehydrogenase is converted to another form of the enzyme 
called xanthine oxidase by the reversible oxidation of a cysteine residue to sul-
phenic acid (it can also be converted into xanthine oxidase by a proteolytic cleav-
age). Xanthine oxidase has the same catalytic activity like xanthine dehydrogenase 
except that the mechanisms of reactions are different. While xanthine dehydroge-
nase uses NAD+ as a cofactor and reduces it to NADH, the cofactor for xanthine 
oxidase is molecular oxygen that is reduced to superoxide. Such conversion of xan-
thine dehydrogenase to xanthine oxidase is an example of ROS-induced activation 
of a ROS-producing enzyme. Superoxide derived from xanthine oxidase also has 
role in redox signalling under both physiological and pathological contexts [42, 43].

Since hydrogen peroxide does not carry any unpaired electron, it is not a free 
radical per se. However, when it comes in contact with Fe++, it generates hydroxyl 
radical, a highly reactive species. Accordingly, hydrogen peroxide is a reactive oxy-
gen species. As compared to superoxide, hydrogen peroxide is a mild oxidant that 
selectively oxidizes cysteine thiols, modulating protein functions. It is thus a signal-
ling molecule [44]. It is formed by several enzymatic reactions of which the primary 
one is the catalytic dismutation of superoxide by the enzyme superoxide dismutases 
(SOD). In human, there are two different of superoxide dismutases: the Cu/Zn type 
that is cytosolic and the Mn types that are mitochondrial. Both the enzymes have 
major roles in regulating the superoxide and hydrogen peroxide levels under physi-
ological and pathological conditions [45].

Both superoxide and hydrogen peroxide are mild oxidants, and when present at 
a lower concentration, they can act as signalling molecules, However, at an elevated 
level, they indiscriminately oxidize proteins, lipids and other macromolecules, 
causing cellular damage. Thus, their intracellular steady-state levels require being 
under tight regulation by the cellular antioxidant system [46]. Accordingly, apart 
from the ROS-generating enzymes, those that attenuate it also play a key role in the 
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redox biology of diseases. Mammalian cells have several enzymatic and nonenzy-
matic antioxidants that maintain the redox homeostasis. While vitamins C and E are 
the primary nonenzymatic antioxidants, superoxide dismutase and catalase 
(degrades hydrogen peroxide) are the two main enzymatic antioxidants [47]. Two 
other antioxidant enzymes involved in the catalytic breakdown of peroxides are 
glutathione peroxidase (GPx) and thioredoxin peroxidase/peroxiredoxins (TPx/
Prx). Mammalian cells have distinct genes encoding thioredoxin, thioredoxin reduc-
tase, and thioredoxin peroxidase/peroxiredoxin enzymes. Glutathione and thiore-
doxin peroxidases have been identified in multiple cellular locations. The 
localization, expression levels and activities of these antioxidant enzymes are the 
key determinants in maintaining ROS levels in cellular microdomains [48].

17.8  Role of ROS in Cardiovascular Functions

It is now well established that oxidative stress is an important contributor to the 
degenerative diseases like cancer, diabetes, Parkinson’s, Alzheimer’s and cardiovas-
cular disorders. Since early studies were inconclusive about the precise role of the 
oxidants in these diseases of diverse aetiology, generalizations were made in terms 
of their prevention and cure by the antioxidants [49]. However, over the past 
20 years, a large volume of information has emerged that clearly shows that the role 
of ROS in these diseases is very much context specific as they are an integral part of 
cellular function and dysfunctions leading to those diseases. As an example, in vari-
ous types of cancers, ROS have now been found to be playing a delicate role in the 
sustenance of the cancer microenvironment and metastasis [50]. Therefore, the role 
of oxidants in these diseases is more specific than general and needs to be discussed 
separately.

17.9  The Role of Oxidative Stress in Cardiovascular Diseases

The cardiovascular system responds to a plethora of pathophysiological signals in 
a highly complex manner. Depending upon the origin, the complexity and the 
intensity of the signals, the changes in the biochemical and molecular biological 
parameters differ. It involves various means of cellular responses, viz. phosphory-
lation-dephosphorylation, intracellular protein trafficking, turnover of mRNA and 
protein, oxidative or reductive modifications of cysteine thiols, etc., that mediate 
the cognate responses. Any aberration in these signalling systems leads to condi-
tions like coronary artery and other vascular diseases, atherosclerosis, obesity, dia-
betes, endothelial dysfunction, hypertension, ischaemia-reperfusion injury, heart 
failure, etc. Hyper-oxidation of cellular proteins, DNA and lipids has been com-
monly observed in these disorders. However, as discussed in previous sections, the 
consequences of the intracellular generation of ROS depend upon the factors like 
their intracellular locations, steady-state concentrations, duration of generation, 
presence or absence of antioxidant system, etc. [51]. Based upon these factors, the 
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ROS, mostly hydrogen peroxide and superoxide, either lead to redox signalling 
through the modification of cysteine thiols to sulphenic acids and disulphide bonds, 
by S-glutathionylation and S-nitrosylation, or global oxidative stress through the 
indiscreminate oxidation of cysteine to sulphonic acid [22–25, 51]. In the cardio-
vascular system, upon stimulation by various pathophysiological agonists, ROS is 
generated at multiple cellular locations that modify a plethora of targets like sarco-
lemmal Na+/Ca++ exchangers, signalling kinases, ion channels, ryanodine receptor 
and gene regulatory proteins [52–57]. Despite the fact that various cardiovascular 
diseases are associated with an increase production of ROS and decreased antioxi-
dant defence, their mechanism of action in inducing these diseases is likely to vary 
among the affected tissues and cell types. Certain environmental factors like 
tobacco smoking, pollution, etc. also contribute to oxidative stress promoting these 
diseases. In the following sections, I will be discussing the role of ROS in the con-
text of two major cardiovascular disorders, i.e. atherosclerosis and heart failure.

17.10  Role of ROS in Atherosclerosis

The endothelium is the layer of cells that line the blood vessels maintaining the wall 
permeability. It also controls the vascular tone, proliferation of smooth muscle cells, 
platelet aggregation and inflammation. In atherosclerosis, plaques comprising of 
lipids and immune cells build up inside the blood vessels. It is a slow progressive 
disorder, and the process of developing such plaques is called atherogenesis. For 
many years, the presence of oxidized proteins and lipids have been found in those 
lesions, and the severity of the disease has been directly associated with the extent 
of oxidation of biomass present there [58]. Endothelial nitric oxide synthase (eNOS) 
is the key regulator of endothelial function. Nitric oxide produced by eNOS main-
tains vascular tone, regulates growth of smooth muscle cells and protects vessels 
from activated platelets and other circulatory cell types. Therefore, eNOS and its 
product NO play a key role in vascular homeostasis [59]. A major cause of athero-
sclerosis is the inadequacy of the eNOS function that results in a pathological condi-
tion called endothelial dysfunction [60]. The enzyme eNOS is a dimeric enzyme 
that has multiple cofactors including biopterin, and its substrate is NADPH and 
L-arginine. It oxidizes NADPH, and the released electron migrates through the elec-
tron carrier FAD and FMN to L-arginine and O2 producing NO [61]. These reac-
tions require the cofactor biopterin to be in its reduced form that is tetrahydrobiopterin 
(BH4). In pathophysiological conditions like diabetes, the activities of NADPH and 
xanthine oxidase increase resulting in an increased generation of superoxide which 
reacts with NO generated from eNOS to form peroxynitrite (ONOO−), a potent 
oxidizing agent. Such oxidizing environment decreases the biopterin level (BH4 is 
oxidized to BH3 and BH2). BH2 competes with BH4 for binding to eNOS, disrupt-
ing its function, a process called uncoupling. The uncoupled eNOS then generates 
more superoxide with concomitant decrease in generation of NO [62]. It is therefore 
an example of ROS (superoxide generated from NADPH oxidases) induced genera-
tion of more ROS, i.e. further generation of superoxide by uncoupled eNOS. ROS 
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generated from uncoupled eNOS has been associated with atherosclerosis in experi-
mental mice and in human patients. It has also been seen in patients with hyperten-
sion, hypercholesterolemia and diabetes [63]. In experimentally induced 
atherosclerosis in mice and in human atherosclerotic plaque, increased activity of 
endothelial and circulatory xanthine oxidase has been demonstrated, suggesting the 
role of superoxide generated from xanthine oxidase in endothelial dysfunction. 
Inhibitor of xanthine oxidase like allopurinol reduces endothelial dysfunction in 
smokers and the development of atherosclerosis in experimental mice [64]. In mice, 
there are several isoforms of NADPH oxidases. While Nox2 and Nox4 are expressed 
in endothelial cells, Nox1 and Nox4 are expressed in vascular smooth muscle cells. 
Both Nox1 and Nox2 have been implicated in inducing atherogenesis. In apolipo-
protein E-knockout mice (ApoE-KO; used for studying atherosclerosis), the dele-
tion of nox1 gene reduces atherogenesis induced by streptozotocin, an inducer of 
diabetes mellitus [65]. Interestingly, in contrast to the proatherogenic function of 
Nox1 and Nox2, Nox 4 has been shown to have a protective role in this process [66]. 
Nox4 produces hydrogen peroxide through the dismutation of superoxide. 
Therefore, upon activation of Nox4, peroxynitrite is not generated as in case of the 
activation of Nox1 and Nox2, rather hydrogen peroxide generated by it provides the 
protective signalling. This is thus an example of oxidative stress versus ROS signal-
ling in the pathology of a disease. Apart from endothelial dysfunction, ROS gener-
ated in the endothelium from NADPH oxidases also increases the expression of 
adhesion molecules on endothelial cells and induces the proliferation of smooth 
muscle cells. These events lead to the infiltration of monocyte and macrophages. 
ROS generated from Nox enzymes in monocytes and macrophages are involved in 
the oxidation of low-density lipoprotein (LDL), a contributor to atherogenesis [67]. 
ROS generated from the mitochondria has also been shown to have roles in 
atherogenesis.

Based on the prevailing view that excessive generation of ROS leads to athero-
sclerosis and other cardiovascular diseases, various groups have tested the effects of 
boosting the antioxidant system, and that has led to interesting results. When kept in 
fatty diet, ApoE-knockout mice (used for atherosclerosis research) overexpressing 
SOD1 through transgene remains equally atherogenic as the control mice. However, 
combined expression of catalase and SOD1 or catalase alone reduces the athero-
genic potential [68]. The possible explanation is that increased expression of SOD1 
might shift the homoeostatic control resulting in the generation of other ROS like 
hydrogen peroxide and hydroxyl radical (generated by the reaction between hydro-
gen peroxide and metal ions). Antioxidant enzymes like glutathione peroxidases 
(Gpx) attenuate hydrogen and lipid peroxides. Deficiency of GPx1  in ApoE-KO 
mice increases the atherogenic potential by the oxidation of LDL, formation of 
foam cells and the proliferation of macrophages, while overexpression of Gpx4 
reduces atherogenic potential [69]. Taken together, generation of atherosclerosis 
plaque involves decrease in eNOS activity, increased inflammation and expression 
of adhesion factors and advanced glycation and oxidation of low-density lipopro-
tein, which may or may not occur concurrently. Therefore, the nature of ROS 
involved and the pathways they trigger might vary from one experimental model to 
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another. Thus, the pathobiology of atherosclerosis is far more complex than a sim-
plistic correlation between increased and decreased level of ROS [70–73].

17.11  Redox Signalling in Cardiac Hypertrophy and Heart 
Failure

Adrenergic receptors (α and β) are the key modulator of cardiac output and its 
homoeostasis [74, 75]. Norepinephrine (NE), a catecholamine, is released from the 
sympathetic nervous system as an agonists for these receptors. Limited adrenergic 
stimulation is required for maintaining the contractile function of the heart. Under 
diseases like hypertension, valve defects, ischaemia-reperfusion injury, myocardial 
infarction, etc., cardiac output is reduced. To boost cardiac performance, sympa-
thetic system increases the release of NE. Initially, under increased NE stimulation, 
myocytes are enlarged (myocytes are terminally differentiated, and they cannot pro-
liferate), a process known as hypertrophy [76]. Although hypertrophic response 
under increased adrenergic stimulation is a compensatory process that recalibrates 
the adrenergic signalling and the downstream gene expression programmes, sus-
tained adrenergic overdrive leads to the loss of cardiac myocytes by apoptosis, fur-
ther compromising cardiac function. Such combination of hypertrophic and 
apoptotic responses eventually leads to substantial weakening of the heart, resulting 
in heart failure [77]. Earlier studies had shown that upon stimulation with lower 
doses of NE (~1–2 μM), cultured murine myocytes faithfully elicit hypertrophic 
responses, while at a higher dose (10 μM and above), they undergo apoptosis [78, 
79]. This experimental system thus provided an excellent system for studying the 
role of oxidants in two distinct pathological responses culminating to a common 
disease, i.e. heart failure. The prevailing hypothesis in this regard was that while at 
a lower dose, NE elicits hypertrophic responses through oxidative signalling, 
increased adrenergic stimulation leads to oxidative stress followed by apoptosis 
[80–82]. We have been studying differential adrenergic signalling leading to two 
distinct responses, i.e. hypertrophy and apoptosis, as a model for understanding the 
role of ROS in cardiac pathobiology. We for the first time contested the concept that 
apoptosis is induced due to oxidative stress. We demonstrated that in H9c2 cardiac 
myoblast cells (rat), hypertrophic and apoptotic responses induced upon NE treat-
ment are initiated by the low-intensity generation of ROS at comparable levels [83]. 
We then analysed the modulation of two redox-responsive transcription factors 
AP-1 and Nrf2 as the downstream targets of NE signalling. Both hypertrophic and 
apoptotic doses NE induced AP-1 and Nrf-2 activities, but the extent and the kinet-
ics of induction of their DNA binding activities were not in direct correlation to the 
level of ROS generated by each treatment. Significantly, the AP-1 activities induced 
by the two doses of NE were functionally different. While 2 μM NE (hypertrophic 
dose) induced FosB: Jun dimer, at 100 μM (apoptotic dose), it activated Fra-1: Jun. 
We thus inferred that both the responses elicited by NE are characterized by distinct 
redox signalling and not an increase in the ROS level, i.e. oxidative stress [83]. We 
also demonstrated that the induction of both FosB and Fra-1 occurs at the level of 
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transcription and were partially suppressed by catalase (converts hydrogen peroxide 
to water) and MnTMPyP (a mimetic of superoxide dismutase that converts superox-
ide to hydrogen peroxide), confirming the role of ROS in their induction. In order to 
decipher the mechanism of gene regulation by ROS, the promoter regions of fosB 
and fra-1 genes were linked to the reporter gene luciferase and assayed for their 
expression under different treatment conditions. These assays showed that multiple 
binding sites for the transcription factors, viz. SP-1, CEBP and AP-1 in the fosB 
promoter, integrate the kinase and the ROS signalling. As an example, while SP-1 
being a cysteine-zinc finger containing transcription factor is directly targeted by 
the ROS generated upon NE treatment, CEBP, a leucine zipper-containing tran-
scription factor, is modulated by the upstream kinases which are in turn modulated 
by ROS further upstream [84]. In a parallel study, we observed that upon stimula-
tion by the two different concentrations of NE, although multiple ROS are gener-
ated at comparable levels, they have distinctive kinetics. When treated with the 
hypertrophic dose of NE (2 μM), myoblast cells generate DCFH-DA positive ROS 
only for 2 h; but those treated with 100 μM NE (apoptotic dose) generated ROS of 
similar intensity as seen in the case of NE treatment at 2 μM dose but for 48 h. 
Noticeably, although certain highly reactive species of unknown nature were also 
detected under both treatment conditions, there were no major differences in their 
levels, further refuting the role of oxidative stress in triggering apoptosis [85]. 
Nevertheless, DNA damage commonly associated with apoptosis was only seen in 
cells treated with 100 μm NE [85]. Thus, from our study, it is evident that both the 
doses of NE elicit hypertrophic and apoptotic responses through characteristic 
redox signalling rather than a mere due to a quantitative difference in the level of 
ROS. In summary, our study therefore subscribes to hypothesis that a characteristic 
pattern of ROS generation modulates the cell signalling and gene expression pro-
gramme leading to both hypertrophic and apoptotic responses.

To settle the ultimate question whether cardiac myocyte loss under adrenergic 
overdrive is due to oxidative stress or redox signalling, it is imperative to identify 
the sources of ROS and their targets in cells under specific stimuli. Among various 
sources of intracellular ROS, viz. mitochondrial electron transport system, enzymes 
involved in oxidation-reduction reactions (like nitric oxide synthase), NADPH oxi-
dases (Noxes), etc., the Noxes are the important regulators of cardiovascular patho-
biology [36, 39]. In a recent study, when we treated myoblast cells with 2 μM NE 
together with an inhibitor of Nox2, generation of ROS was inhibited. Expression of 
a number of marker genes of cardiac hypertrophy induced upon NE treatment was 
also prevented by the inhibition of Nox2. Also, organelle-specific GFP probe that 
specifically detects hydrogen peroxide (HyPerGFP) showed that upon NE treat-
ment, ROS is primarily generated in the cytosol and not in the endoplasmic reticu-
lum or the mitochondria [86]. Therefore, our study till date not only establishes the 
importance of ROS signalling over oxidative stress in mediating the pathological 
responses by NE; it also identified the possible source, nature and the downstream 
targets of the adrenergic signalling system.
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17.12  Concluding Remarks

The exact role of free radicals and ROS in the pathobiology of degenerative diseases 
has been an enigma for about half a century. Despite substantial evidences of oxi-
dizing environment in the diseased tissues and organs, the mechanistic insight into 
the source, nature and the targets of ROS is poorly understood till date. Accordingly, 
the therapeutic potential of antioxidants has been overrated and oversimplified. One 
among various reasons for such deficient outcome is the highly complex nature of 
redox reactions [87, 88]. While the specificity of most biochemical reactions is gov-
erned by the selective interaction between biomolecules, that of redox reactions is 
governed by the redox potentials of the reactants that are intrinsically relative in 
nature [35]. Further, the availability of appropriate reagents and probes for tracking 
redox reactions in the cellular milieu still remains a challenge. Nevertheless, the 
advent of stronger tools of cell biology and redox proteomics has tremendously 
helped in refining our knowledge about the redox biology of other neurodegenera-
tive and cardiovascular diseases. Alike the volume of information that has accumu-
lated over the past quarter of a century on kinase signalling, it is expected that in the 
coming years, significant progresses will be made in understanding the redox regu-
lation of cell function and dysfunction as well. Such advancement will not only help 
us expand our knowledge about this important cellular processes; it also will 
strengthen the process of development of better therapeutics for these crippling 
disorders.
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Abstract
Hyperglycemia-induced excessive superoxide production is the single unifying 
link to development and progression of diabetes micro- and macrovascular com-
plications. Oxidative stress and antioxidant defense systems, inter alia, are rec-
ognized as both antecedent and consequent factors in the development of major 
diabetic complications like diabetic coronary atherosclerosis. The attendant cel-
lular sequelae of exacerbated oxidative stress in diabetic and coronary athero-
sclerotic milieu are entrenched in canonical epigenetic changes like DNA 
methylation and histone posttranslational modifications. They alter the chroma-
tin accessibility to the transcriptional network and steer the transcriptional pro-
grams to invoke atherogenic and inflammatory phenotype in distinct cell types. 
They also act as portals for propagation of the effects of ‘hyperglycemic or meta-
bolic memory’ or the ‘legacy effect’. This chapter presents an update on the con-
tribution of hyperglycemia and oxidative stress both singly and in connivance to 
accelerated development of coronary atherosclerosis through epigenetic modali-
ties. Such a conceptual understanding would enable the identification of plausi-
ble therapeutic strategies for alleviating the burden of diabetic coronary 
atherosclerosis that is compounded by a formidable challenge posed by meta-
bolic memory.
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18.1  Introduction

Diabetes mellitus (DM) represents a syndrome characterized by disordered metabo-
lism and chronic hyperglycemia due to deficiency of or resistance to insulin. Type 1 
diabetes mellitus (T1DM) results from the lack of insulin production from pancre-
atic β cells due to an autoimmune antibody (insulin deficiency). Type 2 diabetes 
mellitus (T2DM) is a heterogeneous, multifactorial, polygenic condition typified by 
elevated blood glucose levels emanating from defective insulin secretion from pan-
creatic β cells and also its inaction [1]. Prolonged hyperglycemia is associated with 
microvascular complications subsuming diabetic nephropathy, retinopathy, and 
neuropathy and macrovascular complications like cardiovascular and cerebrovascu-
lar disease [2–4]. Atherosclerotic cardiovascular disease (CVD), manifested pri-
marily as coronary artery disease (CAD), heightens the risk of premature mortality 
in T2DM individuals [3–6]. Metabolic syndrome, represented by a cluster of meta-
bolic disorders subsuming abdominal obesity, hypertension, hyperlipidemia, hyper-
coagulability, and chronic inflammation, is an antecedent to T2DM and hence CVD 
[7, 8]. These comorbidities also act to precipitate CVD [9–14]. Nevertheless, T2DM 
is posited to be an independent risk factor for the development of ischemic heart 
disease, stroke, and death even in this co-occurrence of multiple risk factors [15]. 
Indeed, the American Diabetes Association (ADA) and American Heart Association 
(AHA) mandated diabetes be considered a CAD ‘risk equivalent’ rather than a risk 
factor [16, 17]. Alluding to this, CVD accounts for the greatest component of health 
care expenditure in people with diabetes [18, 19].

“Diabetes is a growing and massive silent epidemic that has the potential to crip-
ple health services in all parts of the world,” a quote from the deliberation by Dr. 
Robert Beaglehole, director of the Department of Chronic Diseases and Health 
Promotion, at the launch of Diabetes Action Now (a joint program of the World 
Health Organization and the International Diabetes Federation) in 2004. A strong 
degree of commiseration for the social and economic burden of any disease has 
been the triggering point for significant advancement of scientific research in the 
concerned area. In line with this, genomics and proteomics have been at the fore-
front in offering a concierge through high-throughput technologies, for disentan-
gling the genetic basis of polygenic metabolic conditions like type 2 diabetes 
mellitus (T2DM) and associated CV complications [20–27]. In line with this, the 
quest for culpable genetic variants heralded the first wave of gene mapping studies 
comprising linkage and candidate gene association studies [20–27]. They were initi-
ated with the primary objective of circumscribing genomic regions harboring candi-
date genes with intrinsic variation, which determine the susceptibility to diabetes 
and coronary atherosclerosis [28–39]. This was further extended across the entire 
genome through genome-wide association studies (GWAS) without a priori knowl-
edge of functionality [40–45]. Nevertheless, each of these strategies had certain 
shortcomings.

P. Narne



421

18.2  Epigenetics: The Emerging Leitmotif

The first tranche of GWAS identified a large number of common genetic variants 
modestly associating with the disease with small effect sizes, which were postulated 
to coalesce in conferring disease susceptibility [20–45]. The resulting surfeit of 
genomic data showed up formidable gene-disease associations, notwithstanding the 
fact that many of them were implicated by ‘winner’s curse’ and multiple hypothesis 
testing and were indeed conflicting due to lack of robust replication [46–48]. This 
was further compounded by the complex nature of T2DM and CVD that typically 
involves the interplay of a potpourri of genetic, metabolic, and environmental fac-
tors in determining disease susceptibility [20–45]. Amid this flood of data, a distinc-
tive discipline termed ‘epigenetics’ forayed into the province of genomics making 
non-sequence-dependent mitotic and meiotic transmission of altered chromatin 
states and gene function, explicable from biological standpoint [49]. Accordingly, 
chromatin could be perceived as an intersection and storage point for various cel-
lular signals and epigenetic modifications that interact in an intricate manner and 
elicit diverse functional upshots [50]. It is indeed averred that the bulk of heritability 
cannot be explained by the multitude of candidate loci identified through GWAS 
and that epigenetics is de rigueur explanation for ‘missing heritability’ of complex 
diseases [51, 52]. In keeping with this, only 6% of T2DM heritability has been 
explained by 18 loci identified using sibling recurrence risk as the heritability mea-
sure [53]. It also seems to address the paradoxical observations of monozygotic 
twin discordance for non-Mendelian disorders [54].

Conrad Waddington’s doctrine of ‘epigenetics’ posited a deterministic link 
between genetic and epigenetic components of heredity. Over the years this defini-
tion has become more inclusive by accommodating several propositions. It could be 
unequivocally defined as “the structural adaptation of chromosomal regions so as to 
register, signal, or perpetuate altered activity states” [55]. Accordingly, it has been 
proposed to orchestrate the interactions between genetic and nongenetic entities 
with eventual realization of phenotype [56]. This led to the emergence of ‘transgen-
erational epigenetic inheritance’, which serves to explain as to how the altered tran-
scriptional states and gene expression patterns are bequeathed to cell generations 
without the participation of an inherited genetic component [57, 58]. It also intro-
duced a notable paradigm of ‘integrative genetics’ emerging from ‘common disease 
genetic and epigenetic’ (CDGE) hypothesis that, in part, refutes the linearity or 
derivative relationship of genotype and phenotype and espouses the concept of 
‘genome and epigenome’ [58, 59].

Given the staggering complexity of gene regulation, chromatin could be per-
ceived as the point of convergence of establishment signals comprising epigenetic 
states sculpted in response to environmental (both external and internal) and devel-
opmental contingencies [50, 55, 56]. This attribute stems from three distinct epigen-
etic processes, viz., post-replicative DNA methylation, posttranslational 
modifications of histones (PTMs), and ATP-dependent chromatin remodeling [60–
63]. These are executed by a panoply of mediators catalogued under chromatin- 
modifying enzymes, viz., DNA methyltransferases (DNMTs), DNA demethylases, 
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histone acetyl transferases (HATs), histone methyltransferases (HMTs) and histone 
deacetylases (HDACs), histone (lysine) demethylases (HDMs/KDMs), and the 
methyl-CpG binding protein (MeCP2) that contribute to chromatin fluidity. These 
enzymes often function in multiprotein modules encompassing chromatin modifiers 
and transcriptional coactivators and repressors that interact with the basal transcrip-
tional machinery and regulate the promoter activity in a combinatorial manner. The 
assemblage of these trans-acting factors following the sequence cues at putative 
sites induces a “domino effect” resulting in self-perpetuation of altered chromatin 
states [55, 60–63].

A conglomerate of risk factors such as hyperglycemia, dyslipidemia, adiposity, 
vascular resistance, and smoking has been postulated to influence the risk of athero-
sclerosis [3–14]. The epigenetic modifications can accommodate internal and exter-
nal environmental cues by ascertaining weights to them and dynamically altering 
the transcriptional programs. The reported association of epigenetic patterns with 
body mass index (BMI), blood lipids, insulin resistance (IR), and metabolism 
accords significance to this consideration [64–71]. This implicitly underscores the 
contribution of these factors in the development of late-onset phenotypes [58]. 
Therein, hyperglycemia-induced epigenetic changes do not function as standalone 
entities in predisposing to coronary atherosclerosis but function in concert with epi-
genetic modifications induced by intersecting pathways in the pathogenesis of 
T2DM as those of increased adiposity, hyperinsulinemia, elevated blood pressure, 
etc. Based on the accumulating evidence, a deliberation on the plausible mecha-
nisms by which these risk factors influence epigenetic signaling points 
majorly towards oxidative stress among other factors as inflammation, endoplasmic 
reticulum stress, etc., as a common effector [71–75].

18.3  Atherosclerosis: The Primer for Acute Coronary Events 
in Diabetes Mellitus

Atherosclerosis, typified by significant narrowing of arterial walls, is central to the 
pathogenesis of macrovascular disease [3–5, 7, 11–13]. It involves accrual of modi-
fied low-density lipoproteins in arterial intima due to endothelial dysfunction and 
chronic inflammation. Following this is monocyte infiltration into the arterial wall 
and differentiation into macrophages, which morph into foam cells after accumula-
tion of oxidized lipids. Thereafter, foam cells promote macrophage proliferation 
and attract T-lymphocytes. These, in turn, induce vascular smooth muscle cell 
(VSMC) proliferation and promote collagen accrual. The entire process of occlu-
sive coronary thrombosis eventuates in a lipid-rich, deeply ulcerated atherosclerotic 
lesion with a fibrous cap, the rupture of which results in acute vascular infarction. In 
addition to atheroma formation, increased free radical formation in platelets, 
impaired nitric oxide (NO) generation, and altered calcium regulation are culpable 
in promoting platelet aggregation. As significant add-ons, hypercoagulability and 
impaired fibrinolysis perpetuate the risk of vascular occlusion and the attendant 
cardiovascular events in T2DM [4, 11–13].
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18.4  Oxidative Stress: A ‘Conditio Sine Qua Non’ of Diabetic 
Vascular Complications

Oxidative stress and the defects in antioxidant defense systems, inter alia, are rec-
ognized as both antecedent and consequent factors in the development of major 
diabetic complications like diabetic coronary atherosclerosis [72, 73, 76]. Oxidative 
stress is a cytopathic upshot of excessive production of reactive oxygen species 
(ROS), outstripping endogenous antioxidant defense systems. Indeed, oxidative 
stress, through a consolidated mechanism of superoxide anion (O2

.−) production, is 
the common denominator in the pathologies of insulin resistance, β-cell dysfunc-
tion, impaired glucose tolerance, and subsequent manifestation of T2DM that prog-
nosticates diabetic atherosclerosis [72, 73, 77–79]. Under physiological conditions, 
defense against oxidant stress and maintenance of redox balance are achieved by the 
functioning of a plethora of cellular antioxidant systems. Cellular ROS are detoxi-
fied by an arsenal of antioxidative enzymatic systems including superoxide dis-
mutases (SODs), catalase, and glutathione peroxidase (GPx) and the nonenzymatic 
system inclusive of alpha-tocopherol (vitamin E), ascorbic acid (vitamin C), gluta-
thione (GSH), uric acid, etc.

18.4.1  Oxidative Stress, Hyperglycemia, and Atherosclerosis

Brownlee [77] has pioneered the concept that hyperglycemia-induced overproduc-
tion of O2

.− is the single unifying link to diabetes complications [78]. This encom-
passes cellular activation of protein kinase C beta (PKCβ), hexosamine pathway, 
and polyol pathway which are the major pathways of hyperglycemic damage in 
endothelial cells (ECs) [79]. In addition, this mechanism has been insinuated in the 
pathologies of both macro and microvascular complications of T2DM thereby 
emphasizing upon the primacy of oxidative stress [72, 77–79]. This hypothesis is 
corroborated by the collective contribution of the above mentioned hyperglycemia- 
associated pathways to an increased free radical production [72, 77–79]. Augmented 
O2

.−production occurs following exposure of ECs to high glucose which avidly 
quenches NO, a potent endothelium-derived vasodilator that partakes in the general 
vascular homeostasis [80]. In the vascular system, ROS formation from ECs, 
VSMCs, and macrophages seems to be more pertinent in atherogenesis, in part, due 
to their reaction with NO [81]. NO is avidly scavenged by O2

.− to yield cytotoxic 
peroxynitrite (ONOO−), which can rearrange to generate cytotoxic NO3

−  and the 
highly reactive hydroxyl radical (OH∙). Disrupted organ perfusion and systemic 
hypertension due to dampened endothelium-dependent dilation, cellular damage 
and inflammation, apoptosis induction, and deranged intracellular signaling pro-
cesses are the significant pathophysiological sequelae of excessive ROS production 
in vascular system [81, 82].

VSMC proliferation is a prominent feature of atherosclerosis, and VSMC growth 
can be induced by ROS through augmented expression of fibroblast growth factor 
(FGF) and fibroblast growth factor receptor-1(FGFR-1), insulin-like growth 
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factor-1 (IGF-1) and insulin-like growth factor-1 receptor (IGF-1R), and epidermal 
growth factor receptor (EGFR) [3, 4]. Compounding this, nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase-mediated O2

.− generation plays a critical 
role in vasoconstriction,  via angiotensin II (AngII)-induced VSMC proliferation 
and hypertrophy [82]. Hyperglycemia can potentially induce VSMC death through 
formation of cytotoxic hydrogen peroxide (H2O2) [83]. As regards antioxidant 
response, the ROS-scavenging heme oxygenase (HO) induced in the arterial wall 
attenuates monocyte adhesion [84].

18.4.2  Oxidative Stress, Hyperlipidemia, and Atherosclerosis

Oxidative stress prevails throughout the process of atherogenesis, initiating with 
endothelial dysfunction [80, 81]. With the progression of atherogenesis, ROS pro-
duction is amplified through their release from inflammatory cells together with 
other atherosclerotic plaque component cells. This would have proatherosclerotic 
repercussions like LDL oxidation, EC dysfunction, VSMC growth, and monocyte 
migration [11–13]. The proatherosclerotic role of oxidized LDL (ox-LDL) becomes 
vivid from its effects on the components of the arterial wall. ox-LDL incites activa-
tion of the ECs resulting in the expression of several adhesion molecules like inter-
cellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), 
monocyte chemoattractant protein (MCP-1), P-selectin, L-selectin, E-selectin, and 
platelet endothelial CAM-1 (PECAM-1) in vascular ECs that fosters monocyte or 
macrophage adhesion. Release of several growth factors from monocytes or macro-
phages is also instigated by ox-LDL, while VSMCs are subject to excess prolifera-
tion following exposure to ox-LDL [13]. Rupture of the soft plaque is also aided by 
ox-LDL through increased matrix metalloproteinase (MMP) generation in vascular 
ECs and fibroblasts. Additionally, in the initial stages of atherogenesis, ox-LDL 
fosters an increased expression of its endothelial receptor and other scavenger 
receptors on macrophages or monocytes that devour ox-LDL and promote foam cell 
formation [11–13].

18.5  Genomics: The Holy Grail

The susceptibility to diabetic coronary atherosclerosis is deeply entrenched in 
genetic antecedents as underscored by familial and genetic epidemiological studies 
together with those in animal models [6, 20–27, 85]. The genetic disposition of a 
multifactorial disease is often complex since it embodies multiple genes and envi-
ronmental factors [6, 85]. Significant strides have been made in the field of genetic 
epidemiology of diabetes and atherosclerosis, in terms of deciphering the genetic 
underpinnings of disease susceptibility [26–46]. Early studies primarily egged on 
resolving the multigene contribution to genetic susceptibility to CAD [28–39, 86–
101] (Fig. 18.1). The collaborative effort of numerous polymorphisms in the devel-
opment and progression of atherosclerosis has been mapped to the genes involved 
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in lipid metabolism, coagulation, endothelial function, and oxidative stress [20–46, 
86–102].

Nonetheless, early candidate gene association studies were plagued by genotyp-
ing call inconsistencies, small sample sizes, ambiguities in phenotypic definitions, 
variations in the pattern of linkage disequilibrium structure, and lack of replicable 
associations in other independent populations due to population stratification and 
non-application of stringent ‘p’ value thresholds for the hypotheses tested (multiple 
hypothesis testing) [47, 48, 51–53, 103]. In a similar vein, precise dissection of the 
complex nature of diabetes and CVD has been counteracted by factors such as late 
onset of disease, genetic and phenotypic heterogeneity, phenocopies, variable pen-
etrance, and the presence of confounding factors, technical artifacts, and problems 
generic to regional or global approach. Later refinements focused on gene-based or 
pathway analyses and detected genetic effects that replicated across independent 
cohorts [47, 48, 51–53, 103]. On a larger scale, GWAS has been relatively success-
ful in identifying genetic loci for complex non-Mendelian traits such as diabetic 
coronary atherosclerosis [40–45, 95–102]. However, the requirement for an 
extremely stringent level of statistical significance to exclude false positives and the 
non-capture of information on non-single nucleotide polymorphism (SNP) gene 
variants such as insertions, deletions, and variations in gene copy numbers neces-
sitated the replication in independent samples as for other genetic study designs.

Fig. 18.1 Genetic variants associated with varied susceptibility to diabetic coronary 
atherosclerosis
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18.5.1  Genetic Underpinnings of ROS Excess and Propensity 
for Diabetic Atherosclerosis

An increased risk of diabetic atherosclerosis has been convincingly mapped to heri-
table gene polymorphisms of ROS-producing enzymes like NADPH oxidase, nitric 
oxide synthase-2, 5-lipoxygenase, cyclooxygenase-2, etc. and detoxifying enzymes 
like catalase, GPx, GST, SOD, heme oxygenase, etc. that impart discernible interin-
dividual variation in oxidative stress generation and hence susceptibility to diabetic 
CAD [28, 29, 31, 34, 38, 39, 88–94]. The polygenic tenor of diabetic atherosclerosis 
has made it challenging to identify the bona fide genetic markers for diabetic CVD 
predisposition. Several case-control studies, prospectively and retrospectively per-
formed in several small patient cohorts, generated heaps of data for nitpicking due 
to conflicting results. Current GWAS, as discussed earlier, are better equipped with 
a priori approach and rigorous statistical premises so as to obtain reliable and ascer-
taining data. These could prioritize the disease-complicit pro and antioxidative can-
didate genes that could provide a beacon for translational studies and determine the 
robustness of pro/antioxidative system through information on their evolutionary 
conservation and predilection for disease like diabetic CVD. On a parallel plank, 
animal models for multifactorial disorders like diabetic CAD offer effective means 
for delineating the genetic contribution as with altered gene expression to metabolic 
disease development like diabetic atherosclerosis. Nevertheless, this arena is disad-
vantaged to some extent due to stipulations relating to biological microenvironment 
that is often described in the context of marked enzymatic deficiency or dysfunc-
tion. The tenacity of the model may further be influenced by caveats like environ-
mental factors and therapeutic interventions that modulate the disease status and 
hence serve as an injunction against rigorous assessment of absolute effects of anti-
oxidant enzyme deficiency.

18.6  Hyperglycemia and Metabolic Memory

The effects of persistent hyperglycemia and its contravention with intensive glyce-
mic control are distinctively palpable as demonstrated in various clinical trials. 
Testing of “blood glucose hypothesis” through large randomized controlled clinical 
trials like Diabetes Complications Control Trial (DCCT) and Epidemiology of 
Diabetes Interventions and Complications (EDIC) has unequivocally established 
that transient hyperglycemia-induced damage persists for relatively longer periods 
even after achieving  glycemic normalization through intensive glycemic control 
[104, 105]. Transient hyperglycemic excursions posit as an independent risk factor 
for diabetes complications in view of the absence of a correlation between HbA1c 
and glycemic variability when adjusted for mean blood glucose. Empirically, time- 
averaged mean levels of glycemia measured in terms of hemoglobin A1c (HbA1C) 
seemed to contribute trivially (<25%) towards variation in the risk of attendant dia-
betic complications. This is majorly ascribed to a phenomenon called ‘metabolic 
memory’ or ‘legacy effect’. The profound effects of intensive glucose control in 
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terms of a significantly delayed progression into the micro and macrovascular com-
plications (stroke, nonfatal heart attack, death by CVD) in T1DM patients were 
evinced in DCCT and EDIC trials [104–106]. The prescribed benefits of intense 
glycemic control were also evident in (i) the United Kingdom Prospective Diabetes 
Study (UKPDS) where lower fasting glucose correlated with reduced CVD risk in 
T2DM patients [107–109], (ii) the Action in Diabetes and Vascular Disease: Preterax 
and Diamicron modified Release Controlled Evaluation (ADVANCE) trial where 
intensive glycemic control curtailed the progression of micro and macrovascular 
complications owing to a decline in nephropathy [110], and (iii) The Steno-2 study 
on T2DM patients where an intensive multifactorial therapy complementing glyce-
mic control lessened the risk of CV events and death by CVD [111].

The long-term metabolic sequelae of persistent hyperglycemia are an upshot of 
metabolic memory of vascular dysfunction generated by acute hyperglycemic 
excursions or protracted hyperglycemia even after reinstating euglycemia with 
hypoglycemic agents [112–114]. This is best illustrated by the response of ECs and 
VSMCs to chronic hyperglycemia that sculpt the metabolic changes associated with 
CV complications in T2DM [112–118]. ECs cultured in high glucose or transiently 
exposed to high glucose sustained an incremental expression of fibronectin, colla-
gen, extracellular matrix protein encoding genes, nuclear factor kappa-light-chain- 
enhancer of activated B cells (NF-κB)/p65 subunit, inflammatory genes, and 
oxidative stress even after glucose normalization [114–116]. The chronicity of 
hyperglycemia also impinges on oxidative stress that is sustained for up to 1 week 
even after euglycemia restoration, which could be partially counteracted with anti-
oxidants or NADPH oxidase inhibitors [117]. A precocious phenotype and meta-
bolic memory of precedent hyperglycemia seems to prevail in VSMCs and 
macrophages obtained from T2DM, insulin-resistant, or obese diabetic db/db mice 
that demonstrate a sustained increase in expression of NF-κB and cyclic AMP 
response element-binding protein (CREB) transcription factor (TF), inflammatory 
gene expression, monocyte migration, and oxidative stress [118]. These studies cor-
roborate the role of oxidative stress in perpetuating the metabolic memory, essen-
tially through DNA, lipid, and protein modifications [72, 77, 78, 119]. In relation 
with oxidative stress, the centrality of mitochondrial metabolism in inflicting far- 
flung effects of hyperglycemic spikes like endothelial dysfunction after subsequent 
normoglycemia lies in its ability to quantifiably produce ROS or O2

.−-induced oxo-
aldehydes. Hyperglycemia-induced mitochondrial ROS instigate four major path-
ways culpable in the development of CV complications in a diabetic setting as 
described earlier [72, 77–79]. Advanced glycation end products (AGEs) (generated 
by hyperglycemia and oxidative stress) through their interaction with receptor for 
AGEs (RAGE) in connivance with polyol pathway and putative downstream signal-
ing events, beget existing oxidative stress and local inflammation through irrevers-
ible glycation of proteins and lipids [119, 120]. The dicarbonyl intermediate, 
methylglyoxal that is a key precursor of AGE, is complicit in development of dia-
betic vascular complications and can be disarmed with the enzyme glyoxylase-1 
[119]. These deviant events contribute, inter alia, to hyperglycemic memory so as to 
precipitate long-term vascular and end organ damage [121].
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18.7  Epigenetic Basis of Oxidative Stress in Hyperglycemic 
and Cardiac Milieu

A plethora of chromatin modifications either dynamic or in stable configuration 
induced by altered metabolic states and oxidative stress are prescribed to coordinate 
the transcriptional programs. They seemingly propel changes in redox regulation 
and synergize with altered signaling pathways to generate a coherent phenotype as 
atherosclerosis in a diabetic milieu [74, 75, 122]. These in combination with DNA 
methylation influence the interaction of transcriptional complexes with DNA and 
hence determine the directionality of transcriptional network. This eventually regu-
lates the gene expression thereby enabling the cell to adapt to the alterations induced 
by exogenous and endogenous stimuli [68–71, 74, 75]. Though it might sound pre-
cocious for RO/NS and intermediary metabolism to fit into the providential hierar-
chy of ‘epigenator-epigenetic initiator-epigenetic maintainer’ proposed by Berger 
et al., 2007, the role essayed by these entities in modulating epigenetic events is 
increasingly becoming clear [49]. ROS act as signaling molecules and transduce the 
extracellular cues to the downstream signaling cascades thereby enabling cellular 
adaptation to bioenergetic source availability [122–124].

In continuity with the convention that hyperglycemia-induced ROS could per-
petuate the legacy effect, efforts were made to disentangle the molecular underpin-
nings of the cellular memories. Based on the deluge of information from current 
research, mitochondrial ROS-mediated metabolic memory seems to be engendered 
in epigenetic changes induced by transient hyperglycemia and altered gene expres-
sion thereof, that persist even after restoration of euglycemia [117, 125–131]. 
Multivalent events such as histone PTMs and DNA methylation that could endure 
the effects of not only current glycemia but also the memory of precedent hypergly-
cemia are paramount in this consideration [112, 113, 116]. They integrate the short- 
term glucose exposure over time into stochastic or deviant transcriptional events in 
varied cell types. This form of metabolic memory could be visualized as a “palimp-
sest,” with a superimposed and deleterious new epigenetic code written by pro-
longed or chronic hyperglycemia [125–131].

Empirical evidence in this direction was obtained from attenuation of glucose- 
induced NF-κB activation following overexpression of mitochondrial antioxidant 
manganese (MnSOD) and uncoupling protein 1 (UCP1) constructs in ECs [115]. 
This was explicitly linked with an increased localization of a HMT SET7 to chro-
matinized NF-κB/p65 template, which could further be precluded with a selective 
mitochondrial antioxidant idebenone [128–131]. In a similar vein, the complicity of 
PKC in furthering hyperglycemic memory could also be evaluated with the nonse-
lective PKC inhibitor bisindolylmaleimide [132]. This abrogated glucose-induced 
accentuation of p65 gene expression through reduced methylation at histone 3 
lysine 4 (H3K4me), a transcriptionally activating mark [128–131]. NADPH oxi-
dase, the principal producer of ROS, can also plausibly be implicated in the perpetu-
ation of hyperglycemic memory as it is complicit in NF-κB activation in diabetic 
context and its constituent p47phox subunit remains persistently elevated in ECs 
after glycemic reinstitution [117]. Taken together, the striking plasticity of 
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precedent hyperglycemia in dynamically regulating the gene expression resonates 
with the idea that persistent hyperglycemia bequeaths the conserved epigenetic 
fates, conferred by spatial and temporal cues, to cell generations that translate into 
long-term implications in the diabetic heart.

18.7.1  DNA Methylation and Demethylation

Post-replicative methylation of DNA occurs at the 5-carbon ring of the cytosine 
base adjacent to guanine nucleotides (CpG) resulting in the generation of 
5- methylcytosine (5mC) that summarily defines transcriptionally inactive 
DNA.  DNMTs both denovo (DNMT3a, DNMT3b) and maintenance methylases 
(DNMT1) catalyze the addition of methyl marks to the CpG dyads and hence con-
stitute the DNA “writers.” Owing to the sequence symmetry of CpGs, 5mC is stably 
propagated through cell division [61]. DNA methylation is invariably associated 
with transcriptional silencing as it promotes the formation of transcriptionally 
repressive chromatin when occurring at or in the proximity of gene regulatory cis- 
acting elements. Being a thermodynamically stable epigenetic mark, 5mCs repress 
gene expression by acting as a structural perturbation per se, as they project into the 
major groove of DNA and impair the binding of trans-acting TFs like AP2, hypoxia- 
responsive hypoxia-inducible factor-1α (HIF-1α), and c-myc at the cognate sites 
[133]. Alternatively, a coterie of small molecules, viz., methylated CpG binding 
domain proteins, viz., MBD protein family (MBD1, MBD2, MBD4, and MeCP2), 
Kaiso and Kaiso-like proteins, and SRA domain proteins, preferentially bind 
methylated CpGs and recruit chromatin remodeler proteins [134–136]. These 
include epigenetic “erasers” like HDACs and “writers” like HMTs that cause a tight 
compaction of chromatin and preclude the assembly of transcriptional machinery. 
5mC is also subject to removal by active demethylation catalyzed by ten-eleven 
translocases (TET1, TET2, TET3) through iterative oxidation, involving the 
generation of transient forms of oxidatively modified cytosine (oximC) like 
5- hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine 
(5caC), followed by thymine DNA glycosylase-mediated base excision and DNA 
base excision repair (BER) eventually generating a demethylated cytosine [137, 
138]. Further, a discernible variation in the effect of DNA methylation with respect 
to genome context and cell type contributes immensely to transcriptional plasticity. 
This alludes to the genome context and CpG content being considered crucial for 
conservation of DNA methylation signatures [133, 136]. DNA methylation in gene 
bodies and intergenic regions articulates with gene splicing, transcriptional elonga-
tion, and enhancer regulation [136].

Oxidative DNA damage that is featured inevitably among the pathological 
sequelae of hyperglycemia orchestrates an epigenetic phenomenon in collusion 
with DNA methylation. 8-oxo-2′-deoxyguanosine (8-oxodG), a common oxygen 
radical adduct of DNA and a molecular footprint of oxidative DNA damage, is sig-
nificantly elevated in atherosclerotic vessels and in blood and urine of patients with 
atherosclerosis and cardiac failure [76, 139]. OH∙, a ROS, can indirectly 
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demethylate DNA by conversion of 5mC  to 5hmC by abstraction of a hydrogen 
atom from the methyl group [140]. 5hmC then sterically hinders binding of DNMT1 
thereby precluding the perpetuation of methylation signatures [130]. Mechanistically, 
in hemimethylated DNA, under conditions of escalating oxidative stress, the mis-
coding potential of oxidative DNA lesions encumbers the methylation of adjacent 
cytosines by interfering with the binding of MeCP2 to the oligonucleotide duplex 
thereby resulting in hypomethylation [141, 142]. 8-Oxoguanine DNA glycosylase 
(OGG1), instrumental in removing 8-oxodG, can also be recruited to the lesion 
sites, which in concert with TET1 can demethylate DNA [143] O2

.− has also been 
postulated to nonenzymatically methylate cytosine by C5 deprotonation and direct 
transfer of a methyl group donated by S-adenosyl methionine (SAM), thereby cir-
cumventing DNMT utility [144]. The DNA-hypomethylating prowess of 8-oxodG 
could plausibly explain the transcriptional activation of NF-κB-dependent proin-
flammatory genes in response to tumor necrosis factor-α (TNF-α) and impaired 
binding of HIF-1α to VEGF promoter and other pro-angiogenic genes in ECs sub-
jected to hypoxia [145, 146]. Structural perturbations of chromatin that impinge on 
epigenetic patterning can be induced by direct modification of histones by ROS. For 
instance, ONOO− can nitrosylate tyrosine residues in histones H1, H2B, and H3, 
while ROS can oxidatively modify lysine and arginine residues in H3 to form 
protein- bound carbonyl groups that could alter chromatin accessibility, transcrip-
tional competence, and genome stability [147]. Chromatin openness can also be 
influenced by (i) lysine adducts on H2, H3 (H3K23, H3K27), and H4 formed by 
lipid peroxides like 4-oxo-2-nonenal in bacterial endotoxin lipopolysaccharide 
(LPS)-induced macrophages and (ii) redox-sensing S-glutathionylation of Cys110 
residues in H3 [148, 149].

ROS can variably induce global and local DNA hypomethylation. In this regard, 
it can reduce DNMT1 activity by reducing methyl-donating SAM availability in a 
two-pronged manner, either by inhibition of SAM-synthesizing methionine 
adenosyl- transferase or that of methionine-producing methionine synthase. In line 
with this, LINE-1 hypomethylation is imminent following exposure to H2O2 due to 
diversion of methionine for cysteine synthesis so as to generate the antioxidant 
GSH, thereby severely impacting SAM generation [150]. Understandably, LINE-1 
hypomethylation, a surrogate of global methylation, has been observed in patients 
with ischemic heart disease and stroke [151, 152]. Conversely, ROS can induce 
DNA hypermethylation in a context-dependent manner. This is exemplified by HIF- 
1α- mediated increase in activity of DNMT1, DNMT3A, and DNMT3B that invokes 
global hypermethylation and upregulated pro-fibrotic gene expression [153, 154]. 
Concurrently, locus-specific CpG hypermethylation could attenuate SOD gene 
expression in the event of ischemia or oxidative stress-induced injury which in turn 
can be ameliorated by DNMT inhibitors [123]. In a similar vein, hypermethylation 
of PKC-epsilon promoter is promoted by NADPH oxidase 1 (NOX1)-derived ROS 
in a norepinephrine-induced cardiac hypertrophy model that could also be effec-
tively rescued by DNMT inhibition [155, 156]. ROS can also induce endothelial 
dysfunction by impinging on flow-mediated dilatation and triggering flow distur-
bances which purportedly associate with atherogenesis [157]. This involves 
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hypermethylation of genes involved in mechanotransduction and that of a TF in 
particular, viz., KLF4, resulting in downregulated endothelial nitric oxide synthase 
gene (eNOS) expression. Alternatively, ROS can invoke hypermethylation, inter 
alia, by H2O2-induced enrichment of chromatin-silencing DNA-histone complexes 
comprising DNMT1, DNMT3B, SIRT1, and polycomb repressive complex 4 
(PRC4) complexes at GC-rich, presumably CpG, islands, which in turn could 
become persistent [158]. This could conceivably relate with the observation of 
locus-specific aberrant hypermethylation in the context of global DNA hypometh-
ylation [151, 152, 159–162].

Oxidative species like H2O2 and conditions like hypoxia significantly reduce 
TET expression and hence 5hmC with a concomitant rise in DNMT1, DNMT3A 
expression, and 5mC levels as observed in ECs [162–164]. ROS also impinge on the 
activity of oxygen, Fe(II), ascorbate, and 2-oxoglutarate (2-OG)-dependent epigen-
etic enzymes like TETs 1/2/3 and HIF prolylhydroxylases (PHDs), the latter of 
which are attenuated by hypoxia [165, 166]. Unequivocal tampering of TET and 
PHD activity by ROS is attributed to ROS-induced reduction in Fe(II) and ascorbate 
levels [165]. Further, PHDs exhibit an increased propensity to respond to fluctuating 
oxygen concentrations, while TETs with a KM value of 30 μM for O2 are inhibited 
only when it dips below 2% [167]. Preservation of TET activity over an unstipulated 
range of oxygen concentrations could be beneficial in that it could evoke a compen-
satory response by activating transcription of antioxidant defense genes [163]. 
Global reduction in 5hmC signatures with a partial enrichment of 5hmC at differen-
tially methylated regions of the genes involved in oxidative stress and hypoxia path-
ways could align with this consideration [167]. In addition, Kreb’s cycle substrates 
like succinate and fumarate potentiate mitochondrial ROS production in a patho-
logical milieu like diabetic heart that could conceivably inhibit the activity of TETs 
and PHDs thereby significantly affecting the transcriptional cascades [167, 168].

TET2-mediated modulation of 5hmC occurrence is an exemplary instance of 
DNA demethylation-dependent modelling of contractile and dedifferentiated 
VSMC phenotypes [169]. While TET2 and 5hmC gain increased expression in 
VSMCs with contractile phenotype, a diminished expression of TET2 and 5hmC 
defines the demethylation status in experimental models of VSMC dedifferentiation 
and human atherosclerosis. Knockdown of TET2 represses the contractile pheno-
type while fostering the expression of synthetic genes like KLF4, KLF5, and OPN 
and proliferation of human coronary artery VSMCs (Fig. 18.2b). Conversely, TET2 
overexpression confers contractile phenotype on VSMCs, in the absence of differ-
entiation stimuli with a concomitant repression of dedifferentiation and prolifera-
tion [169]. The pivot of this phenotypic plasticity of VSMCs is the chromatin 
accessibility to contractile, synthetic, and proliferative genes arbitrated by TET2 
and 5hmC, thus striking an effective balance in the molecular states [169] 
(Fig. 18.2b). A similar epigenetic modality can be conjectured in driving the erst-
while unknown trans-differentiation of VSMCs into macrophages in atherosclerosis 
that is a significant departure from the long-held view that lesioned macrophages 
are derived from circulating monocytes [170]. In this regard a therapeutic strategy 
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can be contemplated to modulate the paradigmatic transition in the phenotypes so 
as to avert the progression of VSMCs into the proatherosclerotic phenotype.

Atherosclerotic aortas exhibit a propensity for global hypomethylation charac-
terized by reduced frequency of 5mC in the proliferating VSMCs in advanced 
human atherosclerotic plaques as compared with normal arteries and animal models 
like apolipoprotein E (ApoE) null mice [160]. A corollary to this could be altered 
target gene expression relating to HIF-1α, c-fos, p53, estrogen receptor, growth fac-
tors, eNOS, MMPs, and arachidonic acid metabolizing enzymes like 15- lipoxygense 
in the VSMCs and ECs, essential for increased cellular proliferation in atheroscle-
rotic aortas [161, 170, 171]. DNA hypomethylation could also serve as an early 
predictor of atherosclerosis as observed in the leucocytes of ApoE knockout mice as 
early as 4 weeks of age much before the occurrence of histological atherosclerotic 
changes [172]. The coexistent conditions like inflammation and hyperhomocystein-
emia could also provide cues for altered methylome in atherosclerosis [173, 174].

As regards glucose metabolism, insulin (INS) gene expression is epigenetically 
modulated as can be evinced from hypermethylation of INS gene promoter in mouse 
embryonic stem cells and its demethylation in pancreatic β cells [175]. Insulin pro-
duction in pancreatic β cells is also affected by the promoter hypermethylation of 
pancreatic and duodenal homeobox 1 (PDX1) and peroxisome proliferator-activated 
receptor-γ coactivator 1α (PGC-1α) genes that encode TFs crucial for β-cell differ-
entiation and INS gene expression [176–179]. Investigation of genome-wide meth-
ylation landscape in the pancreatic islets of T2DM individuals generated a dossier 
of differentially methylated regions (DMRs) covering loci with prescribed islet 
function, e.g., PDX1, TCF7L2, and ADCY5. The DMRs were enriched at TF 

Fig. 18.2 Dynamic cooperation between DNA methylation and histone posttranslational modifi-
cations in different cell types relevant to diabetic coronary atherosclerosis. (a) Cell-type-specific 
eNOS and iNOS gene expression, (b) phenotypic plasticity in VSMCs, (c) glucose-dependent regu-
lation of insulin (INS) gene expression, (d) histone code for transcriptional activation and repres-
sion of genes involved in cardiac hypertrophy (see text for details)
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binding sites, enhancers, and histone marks that precisely linked with impaired 
insulin secretion thereby linking differential methylation with islet cell dysfunction 
[180]. In an earlier study, the DMRs identified in the diabetic islets, affiliated to 
promoters of 254 genes which were annotated to pathways governing β-cell sur-
vival, cellular dysfunction, and stress adaptation, with a subgroup of them being 
concordant with transcriptional changes [181]. Further, changes in DNA methy-
lome have been recently shown to be anticipatory of chronic conditions like diabe-
tes, while those in transcriptome were pertinent to acute conditions [182]. This 
variation subsumes several differentially methylated regions that modulate the gene 
expression in an allele-specific manner. In a similar vein, a differentially methylated 
locus has been shown to be associated with triglycerides and HDL-C that suffi-
ciently emphasize on the gene regulatory mechanisms linking serum lipid measures 
to CAD risk [183]. Intriguingly, this locus associates with cis-expression of reverse 
cholesterol transporter, viz., ABCG1, and purportedly links reverse cholesterol 
transport with incident CVD events. The magnitude of lipid level-associated CpGs 
is substantial, standing at 64% of 193 CpGs that constitute cis-methylation quantita-
tive trait loci enriched with GWAS SNPs for lipid levels and CAD. For 17% of the 
genes, the methylation status seemed to affect the expression of adjacent genes. As 
regards T2DM, a systematic review of the studies inclusive of randomized control 
trials, cohorts, case-control, and cross-sectional studies in humans identified no 
consistent relationship between global DNA methylation and T2DM, glucose, insu-
lin levels, and IR [159]. However, epigenetic variation associated with candidate 
genes in blood cells, adipose and muscle tissue, and placenta seemed to be pro-
nounced, with no apparent overlap between the susceptible genes [159].

18.7.2  Posttranslational Modifications of Histones

Histones are one of the most conserved set of proteins, and the flexible tails of both 
canonical (H2A, H2B, H3, H4) and variant (H3.1, H3.3, and HTZ.1) histones are 
targets to an eclectic mix of PTMs, viz., acetylation, methylation, phosphorylation, 
poly(ADP)ribosylation, sumoylation, ubiquitination, biotinylation, hydroxylation, 
and citrullination [60]. PTMs of histones are readily reversible and principally 
affect the inter-nucleosomal interactions. They are vital for epigenetic regulation of 
gene expression as they regulate chromatin events such as histone eviction, nucleo-
some occupancy, positioning, and chromatin remodeling that define its transcrip-
tional competence [49, 60, 62, 63]. They instigate nucleosome remodeling in 
response to intracellular signals that in turn modulates the binding of TFs together 
with gene regulatory proteins and other cognate factors. This majorly accounts for 
the dynamicity of DNA-templated functions or chromatin-associated processes 
such as DNA replication and repair, site-specific recombination, and gene expres-
sion [49, 60, 62, 63]. The preeminent histone PTMs are acetylation and methylation 
which exhibit a predilection for Lys and Arg residues in the unstructured N-terminal 
tails that extend from the histone octamer, while phosphorylation is directed at ser-
ine and threonine residues [49, 60, 62]. Distinct patterns of histone PTMs identified 
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by genome-wide profiling can precisely delineate key regulatory regions including 
promoters, enhancers, gene bodies, and repetitive elements and define the transcrip-
tional competence of chromatin.

18.7.2.1  Histone Acetylation and Deacetylation
Histone acetylation is considered a hallmark for transcriptionally active chromatin, 
as euchromatin is enriched in acetylation islands and heterochromatin is associated 
with global hypoacetylation [184]. It is an ‘ephemeral’ mark, as it could be reversed 
in response to cell signaling pathways. It constitutes a persistent activation signal 
that has the imminent effect of decondensing the chromatin and facilitating the 
binding of transcriptional effector complexes. It populates the active chromatin 
domains and contributes preeminently to the dynamic regulation of transcription by 
the recruitment of transcriptional coactivator complexes such as p33/CBP (E1A 
binding protein, p300/CREB binding protein), PCAF (p300/CBP-associated fac-
tor), and TAFII250 (transcription initiation factor IID 250-KDa subunit) [185]. 
Histone acetylation and deacetylation events are imperative for the maintenance of 
cellular homeostasis and involve mutually antagonizing activities of two classes of 
enzymes, viz., HATs and HDACs. The gene promoters flip from transcriptionally 
“off” to “on” state following displacement of bound HDACs by HATs. This dual- 
enzyme system predominantly regulates histone turnover and is instrumental in 
evoking homeostatic and adaptive transcriptional responses [184–186].

Perturbations in histone acetylation and deacetylation are associated with vari-
ous coronary pathologies like atherosclerosis, systemic and pulmonary hyperten-
sion, coronary heart disease, cardiomyopathy, and heart failure [123, 124, 187–189]. 
In relation with this, ox-LDL-invoked chemokine (interleukin-8 [IL-8], MCP-1) 
gene expression requires H3K acetylation and phosphorylation with concomitant 
recruitment of HATs and NF-κB in cultured human ECs. This event is abrogated by 
pretreatment with statins which promoted binding of HDAC1/2 at these promoters 
[190, 191]. An altered acetylation of H3K9 and H3K27 occurs in SMCs and macro-
phages which is associated with cardiac hypertrophy, advanced atherosclerosis, and 
plaque severity [192, 193]. An unbridled production of ROS also increasingly asso-
ciates with H3 and H4 acetylation in varied cell types owing to an increased activa-
tion of HATs [187, 194]. SOD overexpression tenably links with an increased 
MMP1 expression that is implicated in atherosclerotic plaque instability, through an 
increased recruitment of HAT p300/CBP to MMP1 gene promoter and H3 acetyla-
tion by H2O2 [195, 196]. Conceivably, SOD deficiency that augments O2

.− levels 
decreases H3 acetylation at peroxiredoxin promoter, while GPx deficiency that 
elevates H2O2 levels reverses this event [197]. Insulin incites ROS production in 
hyperglycemic adipocytes that increases H3 acetylation, which can be abated only 
by catalase activity [198]. An acetylation event can also induce ROS production as 
exemplified by HAT p300/CBP-mediated H3K9 acetylation at NOX2 promoter 
[199]. Recruitment of HAT CBP/PCAF to the target inflammatory gene promoters 
in response to diabetic stimuli and RAGE ligand S100B so as to promote histone 
(H3K9/14) acetylation and an increased gene expression, is a decisive event in ECs 
and monocytes both in in vitro and in T1DM and T2DM individuals, which can be 
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stymied by curcumin [128, 200–202]. This results in an increased expression of a 
panel of inflammatory molecules like COX-2, TNF-α, extracellular matrix compo-
nents, and vasoactive factors and execution of oxidative stress-induced poly(ADP- 
ribose) polymerase-1 (PARP-1) and NF-κB signaling pathways that increasingly 
ally with atherogenesis [124, 193, 200–203].

Histone deacetylases class I (HDAC-1,2,3) and II (HDAC-4,5) are the perceived 
targets of oxidative stress in atherosclerotic disease [124, 187, 204]. ROS induce 
PTMs like S-glutathionylation, S-nitrosylation, acetylation, and phosphorylation of 
these enzymes that either directly dampen the activity of HDACs or indirectly 
impair their binding to DNA or recruitment to other regulatory complexes leading 
to an increased chromatin openness and an increased transcription [124, 204]. ROS 
like lipid peroxides or 4-hydroxynonenal can induce nitration of tyrosine residues 
or alkylation/carbonylation of HDAC1, HDAC2, and HDAC3 and also invoke 
casein kinase-induced phosphorylation of HDAC2 leading to its ubiquitination and 
proteasomal degradation [205–207]. Consequent of this, there is an increased H3 
and H4 acetylation and upregulated expression of proinflammatory cytokines in 
macrophages and other proinflammatory cell types. Hypophosphorylation of 
HDAC2 corepressor complex entailing Mi2/mSin3A is also conceivable during oxi-
dative stress [208]. HDACs can also contribute to the endophenotypes of cardiovas-
cular risk like inflammation and insulin resistance [209]. In this regard, low-grade 
chronic inflammation and IR augment HDAC3 expression and activity that correlate 
positively with IL-6 and TNF-α and negatively with sirtuin 1 (SIRT1) expression 
[210]. DBC1, a HDAC3 repressor, is also decreased in the peripheral blood leuco-
cytes of T2DM individuals [210]. Counteracting HDAC2 with pan-HDAC inhibitor 
like trichostatin A has been shown to elevate TNF-α, SRA, CD36, eNOS, and 
VCAM-1 expression [211]. It seems to be more pertinent to neointimal hyperplasia 
and maintenance of plaque stability as it precludes p21-mediated VSMC prolifera-
tion [212]. An upregulated eNOS expression by trichostatin is attributed to the loss 
of binding of HDAC2 to arginase gene promoter that promotes eNOS expression 
[213]. Yet another HDAC2 inhibitor, mocetinostat, was reportedly associated with 
ox-LDL-induced endothelial dysfunction [213]. Class II HDACs are less active than 
class I and are regulated by nucleus-cytoplasm shuttling that derepresses gene 
expression. Nuclear export of HDAC4 associates with cardiac hypertrophy as ROS 
potentiate oxidation of Cys667/669 and Cys274/276 of its coregulatory Dnajb5 [214]. 
NOX4 reportedly promotes nuclear exit of HDAC4 and NOX4 deficiency has been 
shown to protect against pressure overload-induced cardiac hypertrophy [188, 215]. 
ROS-induced increase in HDAC4 and 5 have been demonstrated in inflamed vessels 
in rats [216]. Nuclear accumulation of HDAC4 and 5 with a concomitant lowered 
expression of miR-424 and miR-503 can be purportedly linked with redox- 
associated pulmonary hypertension, as these miRs contribute towards maintenance 
of pulmonary vascular homeostasis [216, 217].

The NAD+-dependent class III HDACs, viz., sirtuins (SIRTs), present an inter-
esting premise for ROS-induced epigenetic regulation of metabolic programs [124, 
187–189, 218]. The target motif for ROS in SIRTs is the highly conserved zinc tet-
rathiolate cluster in the deacetylase domain that is essential for deacetylase activity. 
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Thiol oxidation or S-nitrosylation of these clusters in SIRT1 and SIRT3 by ROS or 
NO donors results in accentuated deacetylation of target proteins like eNOS, thereby 
contributing to endothelial dysfunction [124, 189]. SIRT1 inhibition is associated 
with increased expression of p22phox subunit of NADPH oxidase with an exacer-
bated O2

.− production resulting in increased DNA damage, apoptosis, and medial 
degeneration in human and animal models of atherosclerosis [219]. ROS-induced 
PTM of SIRTs can also stymie their activity resulting in varied repercussions like 
increased proteasomal degradation, altered binding to regulatory proteins (DBC1 
and AROS), or cytoplasmic sequestration and localization to caveolae that associate 
with varied pathologies [124, 189, 204, 218–220]. Cellular insults like oxidative 
stress and hypoxia reportedly upregulate the expression and activity of SIRT1 in 
vascular cells and cardiac milieu so as to abrogate the expression of redox-sensitive 
genes p53, FOXO3a, SOD2, GPX1, PGC-1 alpha, or NF-κB [124, 189, 190, 204, 
220, 221]. The expression of SIRTs can also be modulated by TFs like FOXO3A 
that potentiates SIRT1 expression, HIC1, E2F1, and miRs like miR-34a, miR-449a, 
and miR-199a in varied oxidative stress-related pathologies [218, 222, 223]. Another 
contender for NAD+ utilization apart from SIRTs is PARP-1 which competes with 
SIRT1 and lowers its activity during oxidative stress and ONOO−-induced nitrosa-
tive stress thereby significantly altering the target gene expression and hence tran-
scriptional cascades in a pathological milieu like diabetes and atherosclerosis [203, 
224–227]. The underlying epigenetic underpinnings and implications for a diabetic 
heart are yet to be delineated, which could constitute a therapeutic haven, given the 
promising nature of PARP-1 inhibitors and SIRT1 activators in alleviating various 
oxidative stress-related disease etiologies.

18.7.2.2  Histone Methylation and Demethylation
Histone lysine methylation is a nonobtrusive PTM in that it does not interfere with 
the tertiary structure of the protein and introduces slight hydrophobicity in protein- 
protein interactions [60, 62]. It differentially impacts gene expression, depending on 
the extent of methylation, the amino acid residue per se, and its location within the 
histone tail. Chromatinized templates that parallel transcriptional competence are 
distinguished by occurrence of H3K4me2 and H3K4me3 marks, with an enrich-
ment of gene bodies with H3K36me3 and H3K79me1 marks. Trimethylated H3K9 
(H3K9me3) and H3K27 (H3K27me3) are transcriptionally repressive as they popu-
late constitutive and facultative heterochromatin, respectively [173, 174]. H3K9me3 
initiates heterochromatin assembly and promotes the spatial spreading by recruiting 
adapters like heterochromatin protein 1 (HP1) dimers which provide the platform 
for the binding of other repressor proteins like DNMTs [49, 60, 62, 63]. The concur-
rent presence of activating and repressive histone marks, for instance, H3K4me3 
and H3K27me3, respectively, causes the chromatin to assume a “poised” state, 
which can either promote or attenuate the gene expression. H3K4me1 gains high 
representation in promoters, while enhancers are enriched in H3K4me3 residues. 
The genome context-dependent variation in the activity of histone modifications 
could be exemplified by H3K36 and H3K9 methylation marks which are gene- 
activating when present in coding regions and gene-repressing when occurring in 
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the promoter region [49, 60, 62, 63]. These methyl marks are written by HMTs, viz., 
(i) H3K4 HMTs, SET7/9, MLL, and Smyd3; (ii) K3K9 HMTs, Suv39H1 (suppres-
sor of variegation 3–9), Suv39H2, ESET/SETDB1, and EHMT1; and (iii) H3K27 
HMTs, EZH2 (enhancer of zeste-catalytic component or polycomb repressor com-
plex [PRC2]) and G9a [75, 228].

ROS impinge on the activity of HMTs through methionine metabolism in a simi-
lar manner as DNMTs, as HMTs subsist on SAM for methyl groups [229, 230]. 
ROS decrease the activity of SET7/9 and MYND domain-containing protein 1 
(SMYD1), the latter of which is a chromatin-binding protein and is seemingly 
restored by thioredoxin [231]. This could have therapeutic connotation as SYMD1 
averts cardiac hypertrophy in a model of cardiac pressure overload [232, 233]. In a 
hyperglycemic milieu, ROS-induced activation of SET7 enables an increase in 
H3K4me1 marks in the promoter of Kelch-like ECH-associated protein (Keap-1) 
that attenuates Nrf2 activity and activates antioxidant gene expression [234]. This 
could have cardiac implications as Nrf2 is associated with increased ROS produc-
tion in atherosclerotic setting [124, 235]. TNF-α-induced increased occupancy of 
SET7/9 that correlates with increased H3K9me occurs in a subset of inflammatory 
genes in monocytes [125]. As regards histone demethylation, ROS modulate Akt- 
dependent phosphorylation of H3K27 methyltransferase EZH2 that decreases its 
interaction with PRCs and decrease H3K27me3 marks, which in turn impinge on 
vascular function and atherosclerosis [124]. As regards HDMs/KDMs, an increased 
expression of LSD1 concomitant with reduced H3K4me1 mark was observed in 
hypertension and diabetes [236]. Incidentally H3K4me2, H3K9me2, and the cor-
responding eraser and writer enzymes, viz., LSD1 and SETDB1, have been impli-
cated in adipogenesis [124, 125]. Intercepting LSD1 with natural polyphenols like 
resveratrol, quercetin, and also curcumin could thereby constitute a therapeutic 
allure in this direction. As LSD1 activity generates H2O2 that propels the formation 
of 8-oxodG, a pertinent link between ROS and LSD1 could be conjectured [237]. 
Further, jumonji domain-containing (jmjdc) KDMs (JMHDs) have an obligatory 
requirement of Fe(II), O2, 2-OG, and ascorbate akin to TETs and PHDs and are 
affected by H2O2 and NO [166]. ROS, hypoxia, and NO have been shown to upregu-
late several KDMs [162, 238, 239]. Therein, a similar mode of regulation of JMHD 
activity by ROS and reactive nitrogen species like NO and ONOO- could be sur-
mised in a pathological milieu like hyperglycemia in a diabetic heart. A coordinated 
action comprising of transcriptional activation by demethylation of H3K9me2 and 
H3K27me3 by KDM3A, KDM4B, and KDM4C and transcriptional repression by 
demethylation of H3K4me2/3 by KDM2B and KDM5B is invoked by HIF-1 alpha 
as a compensatory maneuver in response to ROS and hypoxia [124, 162, 165, 239, 
240]. Also, two distinguished events of macrophage polarization and development 
of profibrotic phenotype are mediated by increased H3K27 demethylase KDM6/
JMJD3 in a STAT6-dependent manner in response to H2O2-induced SOD overex-
pression [239]. A decrease in H3K9me2 owing to upregulation of KDM2A associ-
ates hypertrophic cardiomyopathy in mice and humans [241].
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18.7.3  Molecular Tête-à-Tête: Cross Talk Between DNA 
Methylation and Histone Modifications

DNA methylation in combination with other PTMs of histones generates a remark-
able array of possibilities and combinatorial diversity collectively referred to  as 
“epigenetic indexing code” that provides a snapshot of homeostatic and pathologi-
cal states. There exists a reciprocal relationship between DNA methylation and his-
tone acetylation. However, there is no clear understanding on the preemptive role of 
either DNA methylation or histone modifications. Instead, they engage in mutual 
reinforcement as DNA methylation seems to provide a positive feedback for lysine 
modification. The interdependence of these two events is exemplified by the loss of 
H3K27me3 following the gain of 5hmC. DNA methylation can promulgate histone 
modifications in that it provides targets for HMTs and HDACs.

The endothelial-specific expression of eNOS serves as a prototype in this con-
text, as it is governed by a preemptive epigenetic indexing code that is predicated on 
the associative and coordinated action of DNA methylation and histone PTMs 
together with cognate factors [242]. This is characterized by the occurrence of a 
DMR  as detected by southern hybridization with methylation-sensitive isos-
chizomer mapping and nucleotide-resolution bisulfite genome sequencing strate-
gies, in the proximal promoter of eNOS gene (−361/+3). This DMR undergoes 
robust symmetrical methylation in VSMCs and remains un- or less methylated in 
ECs [243]. Further, chromatin immunoprecipitation combined with quantitative 
real-time PCR uncovered the specific recruitment of Sp1, Sp3, and Ets1 TFs and 
RNA polymerase II to eNOS gene proximal promoter in ECs [244] (Fig. 18.2a). 
This was absent in VSMCs albeit the occurrence of similar global levels of these 
TFs as in ECs. With respect to histone PTMs, robust acetylation of H3 and H4, di- 
and tri-methylation of H3 (HK4me2, H3K4me3), and selective enrichment of H3K9 
and H4K12 acetylation marks were detected in nucleosomes of eNOS proximal 
promoter and immediate downstream regions in ECs (Fig. 18.2a). Conversely, there 
was an increased localization of HDAC1 at eNOS proximal promoters in non-ECs 
[243, 245]. Binding of MeCP2 to methylated CpGs in eNOS proximal promoter is 
a vital cog in the epigenetic regulation of constitutively expressed eNOS gene in 
ECs [245]. MeCP2 recruits DNMTs, HDACs, and other requisite proteins that par-
ticipate in chromatin remodeling. This process entails histone deacetylation, higher- 
order compaction of chromatin, and formation of transcriptionally repressive 
conformations [246]. This in turn hinders the access of transcriptional machinery to 
the regulatory DNA sequences, thereby resulting in eNOS gene silencing in non- 
ECs (Fig. 18.2a). At variation with eNOS, inducible nitric oxide synthase (iNOS) 
gene that is induced by cytokines is explicitly repressed in human vascular endothe-
lium [242]. An augmented iNOS mRNA and protein expression has been docu-
mented in the neointima of atherosclerotic human blood vessels [247]. The 
hyporesponsiveness in iNOS gene is significantly attributed to the dense methyla-
tion of its proximal promoter, differential recruitment of MeCP2, and selective 
enrichment of H3K9me2 and me3 marks, all of which are refractory to cytokine 
stimulation in ECs (Fig. 18.2a). This is akin to the multimodal regulation of eNOS 
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in non-ECs [248]. iNOS gene promoter is distinct with a canonical TATA box, lack-
ing a CpG island and harbors multiple cis-elements essential for cytokine induc-
ibility of the gene, that includes, inter alia, NF-κB, interferon regulatory factor 1 and 
STAT-3 [249]. This modality of eNOS gene expression is prototypical of the genes 
expressed in vascular endothelium like von Willebrand factor (vWF), vascular 
endothelial cadherin (VE cadherin), ICAM2, and VEGF receptors (FLT-1/VEGFR1) 
which are significantly implicated in diabetic atherosclerosis.

In a putative context, epigenome-wide analysis of aortic ECs stimulated with 
high glucose uncovered a dossier of epigenetic changes impinged on vascular chro-
matin by transient HG [250]. In this regard, hyperacetylated H3K9/K14 discernibly 
correlated with me-CpG content in an inverse relation. These marks were character-
ized by proximal and distal patterns of regionalization that explicitly associate with 
expression of genes and pathways subsuming endothelial dysfunction which were 
identified by ingenuity knowledge-based pathway and gene ontology analyses. This 
form of epigenetic cross talk also determines VSMC phenotypic plasticity, wherein 
a formidable influence of DNA demethylation represented by TET2/5hmC on tran-
scriptional competence is exerted by its cross talk with repressive H3K27me3 and 
permissive H3K4me3, respectively, at the contractile and synthetic genes [169] 
(Fig. 18.2b). This subsequently affects the acquisition of the contractile or dedif-
ferentiated/proliferative phenotype by VSMCs that could impose a proatheroscle-
rotic phenotype. Another example is provided by HMT SET7/9 that regulates the 
stability of DNMT1 and demonstrates functional coupling of histone methylation 
with DNA methylation that enables it to effectively couple methylation of determi-
nants involved in signal transduction with gene regulatory events [251]. Another 
striking observation is ROS-induced CpG hypomethylation of p66shc promoter 
with a concomitant rise in H3 acetylation which will be discussed in detail in the 
next section.

Another interesting facet is cross talk and coordination between histone acetyla-
tion and methylation. Most of these entities also participate in β-cell proliferation 
and regeneration [250]. It follows that islet cell-specific TF Pdx1 promotes INS gene 
expression by recruiting HAT-p300 and SET7/9 to INS promoter that relaxes the 
chromatin following acquisition of H3Kac and H3K4me2 marks and renders it tran-
scriptionally active [250, 251] (Fig.  18.2c). Conversely, when glucose levels are 
limiting, insulin gene transcription is precluded by Pdx1-directed recruitment of 
HDAC-1/2 complexes [252]. Pdx also seemed to regulate beta cell-specific expres-
sion of SET7/9, regulating the genes involved in glucose-induced insulin secretion. 
TFs involved in islet differentiation are also regulated by acetylation events moni-
tored by HATs/HDACs [250]. More importantly, SET7/9 has been identified to be a 
critical mediator of persistent gene-activating epigenetic changes such as histone 
methylation (H3Kme2) and acetylation in a hyperglycemic milieu [112, 115, 125–
131]. Another pertinent example is the formulation of an epigenetic code, compris-
ing transcription-activating H3K9ac, H3K27ac, H3K4me3, H3K79me2, and 
transcription-repressive H3K9me2, H3K9me3, and H3K27me3 histone marks, 
which regulates distinct gene sets, in lieu of cooperative action in promoter regula-
tion in cardiac hypertrophy [192] (Fig. 18.2d).
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18.7.4  Metabolic Memory: A “Palimpsest” of Epigenetic Marks

Epigenetic changes during transient hyperglycemic epoch can act as loose cannon 
that attenuate the effects of subsequent euglycemia restoration [112, 115]. They can 
steer the transcriptional programs in an unwarranted direction. Core components of 
chromatin and their variants can serve as insignia for persistence of epigenetic 
changes invoked by hyperglycemia-specifying signaling cascades thereby generat-
ing persistent adaptive or deviant transcriptional responses following stimulus reex-
posure [125–131]. This is best exemplified by incorporation of histone variants such 
as H2A.Z into nucleosomes that is emblematic of adaptive epigenetic memory asso-
ciated with transcriptional activity. Robustness of ensuing transcriptional response 
following reexposure to environmental cues is in turn determined by future cell 
memories promulgated by chromatin structure-regulating transcriptional events 
[112, 115].

The epigenetic basis of “metabolic memory” or “legacy effect” can be formida-
bly explained by a putative dialogue between histone and DNA methylation on the 
chromatinized template. This interaction sculpts the transcriptional output and con-
sequence and is best illustrated by the gene regulatory response to hyperglycemic 
variability in a primary EC model. Changes in ambient glucose concentrations or 
hyperglycemic variability spur alterations in H3K4 and H3K9 methylation with an 
added dynamic cooperation between these marks to promulgate gene-activating 
events. Transient hyperglycemia invokes chromatinization of regulatory changes at 
the promoter of RELA gene encoding p65 subunit of NF-κB following exposure of 
aortic ECs to glucose [115, 116, 125–131]. The pivotal histone PTM in this scenario 
is H3K4me1 that protracts the transcriptional activation of NF-κB for 6 days follow-
ing withdrawal of hyperglycemia and restoration of normoglycemia [115, 116, 
125–131]. Two distinguished epigenomic events promulgate the effects of transient 
hyperglycemic excursions, viz., (i) sustained recruitment of SET7/9 to the endoge-
nous promoter region of NF-κB-p65 (RELA) subunit and mono-methylation of 
H3K4 [116, 125–131] and (ii) concurrent reduction in the H3K9me1 and H3K4me2 
marks by sustained recruitment of LSD1 on the NF-κB-p65 gene sequence 
(Fig. 18.3a). The exclusivity of this PTM occurrence is demonstrated by the absence 
of any change in the di- and trimethylation of this amino acid residue and the asso-
ciation of other HMTs like MLL1 with the NF-κB-p65 gene sequence in the hyper-
glycemic context. In essence, the above two events are indicative of a cooperative 
program that is emblematic of chromatinization of regulatory changes essential for 
perpetuation of hyperglycemic memory [115, 116, 125–131]. The ensuing height-
ened expression of proinflammatory or proatherogenic genes entails VCAM1 that 
fosters adhesion of monocytes to ECs and that of MCP-1, a chemokine that pro-
motes macrophage infiltration (Fig. 18.3a). The same effects were recapitulated in 
macrophages with reduced H3K9me marks on the genes implicated in vascular 
inflammation. Summing up, an extracellular signal of remarkable plasticity like 
transient hyperglycemic gradient incites epigenetic transactions typified by an 
asymmetrical lysine methylation of H3K4 and H3K9 residues [115, 116, 
125–131].
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Sustenance of atherogenic and proinflammatory phenotype imposed by hyper-
glycemia in VSMCs subsumes histone methylation. A protracted expression of IL-6 
and MCP-1 genes is observed in VSMCs from diabetic db/db mice for 8 weeks after 
removal of hyperglycemic stimulus and following culturing ex vivo in normal glu-
cose [253]. Epigenetically, this event is arbitrated by a decrease in repressive 
H3K9me3 mark and its HMT Suv39H1 at the inflammatory gene promoters. 
Hyperglycemia-induced upregulation of miR-125b that targets Suv39h1 mRNA is 
the vital cog in enabling long-lasting effect of hyperglycemia on VSMC phenotype 
and extending hyperglycemic memory beyond ECs [254] (Fig.  18.3a). Another 
putative example is augmentation of AngII-induced transcription-permissive H3K4 
and H3K36me3 marks that are contiguous with modulation of Lnc-Ang362 tran-
script which plays host to miR-221 and miR-222 that are crucial for VSMC prolif-
eration [255]. Another epigenetic feature underlying metabolic memory in diabetic 
atherosclerosis is presented by an accelerated overexpression of KDM3A. This is 
accompanied by a sustained loss of H3K9me2 in diabetic rats that potentiates vas-
cular neointimal hyperplasia through mediation of Rho/ROCK and AngII/AGTR1 
pathways in VSMCs [256] (Fig. 18.3b). Alternatively, a preponderance of H3K9Ac 
in the promoters of NF-κB-related genes correlates with increased HbA1c levels and 
presumably links with an increased propensity for microvascular complications as 
observed in the DCCT and EDIC cohorts [257].

A prototypical example of ROS-induced epigenetic changes that propel persis-
tent vascular dysfunction and hence legacy effect is provided by p66shc that engages 
in a feed-forward mechanism of hyperglycemic memory. p66shc is a mitochondrial 
adaptor protein that can regulate intracellular redox state with an ability to foment 
endothelial dysfunction and vascular damage through increased mitochondrial ROS 
production and sustained activation of PKCβII. An augmented expression of p66shc 
occurs in a hyperglycemic milieu as demonstrated in wild-type diabetic mice that 

Fig. 18.3 Epigenetic mechanisms implicated in hyperglycemic memory in varied cell types rel-
evant to diabetic coronary atherosclerosis (see text for details)
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activates PKCβII in ECs and remains activated even after restitution of normoglyce-
mia [258–261]. Epigenetic upregulation of p66shc is achieved by an increased 
GCN5-mediated H3 acetylation of p66shc gene which could be stymied by the 
coordinated action of deacetylating counterpart SIRT1 and upregulation of DNMT3b 
[262, 263] (Fig. 18.3c). Activated PKC begets elevated p66shc levels that in turn 
potentiate ROS-induced epigenetic changes by HMTs like SET7. Concomitant with 
p66shc-driven mitochondrial ROS production is downregulation of MnSOD that 
further exacerbates ROS accumulation in vascular endothelium [259]. Sustained 
p66shc-backed PKCβII activity decreases NO bioavailability owing to induced 
phosphorylation of eNOS Thr495. In endothelial-specific SIRT1 transgenic diabetic 
mice, p66shc expression is reined in compared to wild-type littermates that epige-
netically aligns with SIRT1-mediated deacetylation of p66shc gene promoter in the 
aortas [264] (Fig. 18.3c). The ensuing sequelae include abrogation of PKCβII acti-
vation and the ensuing vicious cycle, thereby ameliorating endothelial dysfunction 
by restoration of NO levels [261]. Alteration in DNMT1/SIRT1 axis underlying 
p66shc expression in hyperglycemic milieu has recently been shown to be regulated 
by miR-218 and miR-34a that portends cardiovascular dysfunction [262] 
(Fig. 18.3c). A recent study demonstrated that intensification of glycemic control in 
T2DM subjects does not alleviate the detrimental effects of adverse epigenetic 
remodeling as evinced from the independent association of mean amplitude of gly-
cemic excursion and postprandial incremental area under the curve (but not the 
HbA1c levels) with altered epigenetic profile at p66shc gene promoter [263]. This 
model of ROS-mediated hyperglycemic memory powered by epigenetic cues pro-
vided by the opposing action of GCN5 and SIRT1 in the vascular endothelium can 
be dwelt upon to formidably explain as to how the legacy of transient hyperglyce-
mic episodes is commuted to hyperglycemic memory that incites pathological 
sequelae.

Further, the downstream mechanisms of incident hyperglycemia such as ROS 
production are implicated in propagation of metabolic memory. Perhaps, ROS pro-
duction need not necessarily correlate with existing glycemia, as precedent hyper-
glycemia could instigate the production of AGEs, continued glycation of 
mitochondrial proteins, and other reactive species which are indeed capable of sus-
taining altered gene expression of inflammatory molecules like HMOX1 HMOX1, 
MMP10, SLC7A11, MMP1, MCP-1, and ICAM1 even after normalization of gly-
cemia [248]. This emphasizes on the need for an aggressive treatment of skewed/
strayed glucose levels with a combined targeting of reduction of cellular reactive 
species and glycation of mitochondrial proteins.

18.8  Conclusions and Future Directions

The human genome project, candidate gene association studies, and GWAS have 
been instrumental in explicating the contribution of genetic variation to interindi-
vidual variation in disease susceptibility. They generated a potpourri of genetic vari-
ants that could be capitalized upon for generating drug targets and developing 
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bespoke genotyping assays which heralded the era of personalized medicine. With 
the advent of epigenetics and initiation of epigenome-wide association studies, the 
aspect of missing heritability that seemed inexplicable from the genetic standpoint 
has begun to be understood. The pathologies of diabetes and associated macrovas-
cular complications like diabetic coronary atherosclerosis are increasingly governed 
by epigenetic modifications. Prolonged hyperglycemia constitutes the persistent 
glycemic cue that instigates activated or repressed gene expression events that asso-
ciate with epigenetic-context-dependent deviant signaling. It institutes adaptive 
molecular regimens that propagate adaptive or deviant transcriptional memory. A 
deeper understanding of such precise mechanisms in relation with oxidative stress 
could be translated towards developing necessary therapeutic regimens to alleviate 
the burden of diabetic coronary atherosclerosis. In line with this, currently available 
epigenetic therapy in the form of DNMT, HAT and HDAC inhibitors, and SIRT 
activators need to be harnessed for repurposing them to treat these ailments based 
on their suitability.

While gene polymorphisms in part offer an empirical explanation for inherent 
susceptibility to diabetes and attendant complications, the chasm of “missing heri-
tability” in complex diseases like DM is seemingly filled by stochastic epigenetic 
changes. Interconnection of epigenetic information with articulate gene sets in a 
metabolic program necessitates robustness in chromatin cross talk and transcrip-
tional coordination. Envisioning this as a splayed circuitry rather than as a linear on/
off closed circuit switch and also as a process network in lieu of disconnected linear 
regulatory events would enable further exposition of the breadth of covalent epigen-
etic modifications. Employing advanced technologies inclusive of chromatin immu-
noprecipitation (ChIP) and CpG assays, accompanied by massive parallel sequencing 
(ChIP-seq and CpG-seq) that allows for parallel sequencing by synthesis of 
immunopurified content,  and methods for analyzing chromatin interactions 
viz.,  Hi-C/3C-Seq/Capture-C, etc., can contribute immensely in this direction. 
Coupling this comprehension with the contribution of genetic variation to epig-
enome variation would institute an integrated approach in line with CDGE hypoth-
esis that would allow the formulation of robust therapeutic modalities for taming the 
shrew as ‘diabetic coronary atherosclerosis’.
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Abstract
The biggest cause of global mortality today is cardiovascular diseases. Not only 
old people, but even the younger generation gets afflicted now. This chapter will 
focus on the role of oxidative stress, mitochondrial dysfunction, and autophagy 
on the pathogenesis of the various forms of cardiovascular diseases including 
heart failure, atherosclerosis, hypertension, myocardial infarction, and ischemia- 
reperfusion injury. Various cell signaling pathways get modulated under external 
or internal stress stimuli to induce ROS which begets the oxidative stress condi-
tion. The antioxidant defense mechanisms by which the delicate balance between 
prooxidants and antioxidants in the cell is maintained in equilibrium get dis-
rupted, and the structural and functional entities of the cell collapse. Mitochondrial 
dysfunction is directly implicated in the above process, as it is both the cause and 
outcome of oxidative stress. When dysfunctional mitochondria accumulate 
inside the cell, autophagy comes to the rescue. But excessive autophagy again is 
a cause of concern as it paves the way for a second type of programmed cell 
death, distinct from apoptosis. Antioxidants have mostly been proven highly 
effective against the plethora of cardiovascular diseases, as they have been suc-
cessful in attenuating the oxidative stress in the vascular cells, as well as that in 
the myocardial cells, and have restored the physiological conditions close to the 
normal state. So they have been routed to be important drug leads for the devel-
opment of effective therapeutics against cardiovascular diseases. With minimal 
or no toxicity, natural molecules have remained in the forefront to be tested and 
tried in this regard. So this field has and will continue to have importance in the 
research fraternity for decades to come.
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19.1  Introduction

In today’s world, chronic diseases have come to be at par with acute ones and have 
even risen to become the dominant group contributing to the global burden of dis-
ease occurrence and mortality. Among them, cardiovascular diseases (CVDs) have 
been the largest contributor to world chronic disease epidemiology. This group, 
which includes atherosclerosis and cardiac ischemia, cardiomyopathy, coronary 
heart disease, heart failure, cardiac arrest, hypertension, and other related symp-
toms, claims around 17.9 million lives annually (Heart Disease and Stroke Statistics 
2018 At-a-Glance, American Heart Association), making it the cause of 31% of all 
global deaths; hence it is officially acknowledged by WHO to be the number one 
cause of death globally. With the advancement in diagnosis and treatment and bet-
terment of lifestyle and economy, death rates from cardiovascular diseases have 
declined significantly, but the situation in most low- and middle-income countries 
presents a stark contrast.

The total number of deaths from cardiovascular disease, mainly coronary heart 
disease, stroke, and rheumatic heart disease, had increased globally from 14.4 mil-
lion in 1990 to 17.5 million by 2005, out of which 7.6 million resulted from coro-
nary heart disease and 5.7 million were attributed to stroke. Not surprisingly, more 
than 80 percent of the deaths occurred in low- and middle-income countries [1]. The 
lowest age-adjusted mortality rates are in the advanced industrialized countries and 
parts of Latin America, whereas the highest rates today are found in Eastern Europe 
and a number of low- and middle-income countries, as reported by WHO in its 2008 
report of World Health Statistics. A report by Beaglehole and Bonita in 2008 states 
that by 2030, noncommunicable diseases will account for more than three-quarters 
of deaths worldwide; and cardiovascular diseases alone will be responsible for more 
deaths in low-income countries than infectious diseases (including HIV/AIDS, 
tuberculosis, and malaria), maternal and perinatal conditions, and nutritional disor-
ders combined, which numerically rounds up to nearly more than 23.6 million 
deaths across the world [2]. Ahead of every other major diagnostic group, cardio-
vascular diseases and stroke accounted for 14% of total health expenditures in 
2013–2014, and it is projected that the total direct medical costs of CVD would 
increase to 749 billion dollars by 2035 (Heart Disease and Stroke Statistics 2018 
At-a-Glance, American Heart Association). It could thus be extrapolated that this 
disease group will continue to dominate the global mortality trends in the future, 
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unless interventions come at par in the developing countries with the developed 
ones, and more efficient and low-cost interventional therapeutics are developed, 
tested, and put to use.

In India, the condition is even worse. The Global Burden of Disease study esti-
mated the age-standardized CVD death rate in India to be 272 per 100,000 popula-
tion. This is higher than the global average of 235 per 100,000 population. In India, 
this cardiovascular disease epidemic is of particular concern, as here in this country, 
it shows accelerated buildup, has an early age of disease onset in the population, and 
also has a high case fatality rate. Premature mortality in terms of years of life lost 
resulting from cardiovascular diseases in India increased from 23.2 million in 1990 
to 37 million in 2010, an increase of about 59%. In spite of the fact that the disease 
is widely heterogeneous in the prevalence of cardiovascular risk factors across dif-
ferent regions globally, cardiovascular diseases have emerged as the leading cause 
of death in all parts of India, across rural and urban areas as well as richer and 
poorer states without any distinction [3].

The main risk factors and causes of cardiovascular diseases, according to WHO 
as well as the American Heart Association, are smoking, physical inactivity, faulty 
nutrition, obesity, cholesterol, diabetes, and, last but not the least, high blood 
pressure.

Current therapeutic options encompass (a) interventional techniques ranging 
from cardiopulmonary resuscitation to heart transplant including angioplasty and 
stents, heart bypass surgery, valve disease treatment, cardioversion, EECP, pace-
makers, implantable cardiovascular defibrillators (ICDs), lead extraction, and left 
ventricular assist device (LVAD); (b) medications like angiotensin-converting 
enzyme (ACE) inhibitors, angiotensin II receptor blockers, antiarrhythmics, anti-
platelet drugs, aspirin therapy, beta-blocker therapy, calcium channel blocker drugs, 
clot buster drugs, digoxin, diuretics, nitrates, and warfarin and other blood thinners; 
and (c) therapeutic care involving plant-based diets for heart health, recovery after 
heart surgery, and finding strength during tough times.

This field of study would be of equal importance as has always been, if not more, 
owing to the fact that the younger age group is more afflicted with the disease, and 
the cumulative condition in developing countries is poor. Although people nowa-
days survive through one or more heart attacks with the wide variety of treatment 
options as discussed above, they are left behind with painful and dangerous heart 
failure with which they have to deal and live with, and hence, laboratories are 
obtaining more funds to understand how to repair a damaged heart efficiently to 
make it as healthy as possible.

This chapter will focus on the role of oxidative stress, mitochondrial dysfunc-
tion, and autophagy, in the pathogenesis of cardiovascular diseases, and how vari-
ous drug molecules have been developed over the years to target the stressed 
pathways to ameliorate the disease conditions. We would focus on the natural mol-
ecules which have been tested and tried in this regard, to use them as efficient medi-
ators of a healthier cardiovascular system.
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19.2  Oxidative Stress, Mitochondrial Dysfunction, 
and Autophagy: Some Basic Ideas

Oxygen is one of the basic requirements of life for most living organisms, be it for 
respiration or photosynthesis [4]. The oxidative phosphorylation (OXPHOS) path-
way takes place utilizing oxygen in the mitochondria to produce energy in the form 
of ATP. Oxygen has the tendency to generate transient but highly reactive free radi-
cals like the superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl 
radical (OH−) [5], nitric oxide (NO−), peroxynitrite (ONOO−), etc. [6] even in the 
steady state [7] and as natural by-products of normal oxygen metabolism. It can be 
released by the actions of lipoxygenase, reduced nicotinamide adenine dinucleotide 
phosphate oxidase or simply NAD(P)H oxidase, xanthine oxidase, or during the 
uncoupling of nitric oxide (NO) synthase inside the vascular cells, apart from the 
mitochondria [6] (Fig. 19.1). The electron transport chain (ETC) is the series of 
reactions which occur during the OXPHOS pathway, with electrons passing through 
a number of oxidation-reduction reactions where a number of protein complexes are 
reduced, ultimately reducing an oxygen atom to a water molecule and thus terminat-
ing the chain. But leakage of electrons from the ETC at a very low rate during the 
process sometimes causes the premature binding of electrons to the ultimate accep-
tor oxygen, thus producing superoxide radicals (O2−). This is classified as the 
endogenous pathway of ROS production, and this basal amount of ROS is always 
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Fig. 19.1 Schematic diagram showing production of ROS in the body. Basic chemical reactions 
that lead to their formation have also been illustrated
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present in our system and performs important functions as second messengers, 
mediates induction of host defense mechanisms, and controls mobilization of ions 
across transport systems. But a very large amount of ROS can wreak havoc in the 
cell system, disrupting cellular pathways and changing the nature of basic biomol-
ecules including proteins [8], lipids (peroxidation), [9] and nucleic acids (strand 
breaks and DNA damage) [5, 10, 11] with severe oxidative damage [12, 13] 
(Fig. 19.2). This condition is generally referred to as oxidative stress, and in excess, 
it kills the cell by induction of apoptosis. In order to prevent such catastrophic 
events, all cells have a protective system to keep the level of ROS under check dur-
ing normal physiological conditions, [14] which acts as an antioxidant defense sys-
tem. This system includes some vital enzymes like superoxide dismutase (SOD), 
catalyzing the conversion of O2− to molecular oxygen (O2) and water; catalase 
(CAT), which scavenges H2O2 and forms similar products as that of SOD; glutathi-
one reductase (GR), which converts oxidized GSSG (glutathione disulfide) to 
reduced GSH (glutathione); and also glutathione-S-transferase (GST) which helps 
in the radical scavenging of GSH [15]. There are also glutathione peroxidases 
(GPxs) which scavenge H2O2 along with GSH. ROS can also be induced by exog-
enous sources (exogenous ROS) by the action of environmental stress factors such 
as ionizing radiations [16], tobacco smoke [17], herbicides [18], heavy metals [19–
24], drugs [25–32] and xenobiotics, and pollutants [12, 33–35]. Pathophysiological 
conditions like diabetes [27, 36–38] and cancer [39] can also induce ROS formation 
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and outburst. Oxidative stress develops when the delicate balance between the pro-
oxidants and antioxidants gets disrupted and gets tilted in the favor of prooxidants, 
and then cell viability is compromised [4].

As the ETC takes place in the mitochondria, they are the primary sites of under-
going and detection of oxidative stress and damage. Generation of a huge amount of 
ROS under the influence of various prooxidants and development of a pathophysi-
ological condition, due to which again ROS overproduction occurs, this vicious 
cycle of ROS production and amplification goes on and on [40]. Mitochondrial 
DNA (mtDNA) is affected with strand breaks, deletions, and mutations (in the 
absence of protective histone proteins) [41] and poor DNA damage repair mecha-
nisms, [42] mitochondrial proteins are carbonylated, and translation is affected due 
to mtDNA mutations and transcriptional errors in producing tRNA and rRNA and 
posttranscriptional rearrangements [43]. The mitochondrial membrane potential 
drops and the mitochondrion starts to disintegrate. Before apoptosis, initially the 
cell drives an SOS response by trying to increase the number of mitochondria by 
biogenesis and hence mtDNA copy number increases with a concomitant increase 
in the expression of PGC-1α and its downstream components. These therefore are 
considered as markers for detecting mitochondrial dysfunction alongside mitochon-
drial membrane potential [40].

The cells’ established SOS response is autophagy. This process is an evolution-
arily conserved one which springs into action under external (like overcrowding and 
subsequent hypoxia, nutrient starvation, or high temperatures) or internal (like dam-
aged or surplus organelle accumulation) stress stimuli, to repair, recycle, and sustain 
cellular life by controlled degradation within lysosomes [44–47]. Thus it is mainly 
a life-saving process under normal conditions. But uncontrolled and continuous 
stimulation results in the cell leading to programmed cell death type II, which is 
distinct from apoptosis. Autophagic vacuoles (autophagosomes) are formed and the 
internal organelles are destroyed within them, most noticeably the mitochondria and 
endoplasmic reticulum, thus leading to a total breakdown of all cellular structures 
and processes [48, 49]. Hence, this process, although poorly understood due to the 
scarcity of availability of biomarkers, is a death pathway which significantly affects 
organ physiology [50].

19.3  CVDs and the Role of Oxidative Stress

Atherogenesis and CVD is marked by vascular inflammation with the accumulation 
of monocytes in the vascular endothelium to subsequently transform into macro-
phages or dendritic cells accumulating lipoproteins (fat) and forming foam cells, 
[51] along with surge in levels of proinflammatory cytokines. These inflammatory 
signaling pathways are mediated by ROS, and this is supported by various disease 
models in animals (and clinical trials in humans) that indeed, ROS does happen to 
play a big role in atherosclerosis and CVD.

In muscle cells, in general, oxidative stress can wreak havoc causing contractile 
dysfunction and fatigue by modulating basic stress proteins [52] and calcium ion 
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regulation [53]. In cardiac myocytes, similar deregulated signaling and desensitiza-
tion might occur to cause arrhythmias and myocardial infarctions (Fig. 19.3).

ROS has been regarded as one of the main culprits of CVD, due to the accumula-
tion of both direct and indirect evidences, including the fact that the level of ROS 
has been found to be elevated not only in the patients of CVD but also in people who 
are at high risk of developing CVD, like people with dyslipidemia, hypertension, 
diabetes, and smoking habits. Also the treatments with various antioxidants have 
not only found to decrease oxidative stress but also various cardiovascular disease 
clinical symptoms. When studied deeper, most of them revealed common mecha-
nisms of molecular and cellular damage (Fig. 19.4). So, with greater understanding 
of these molecular mechanisms of action, interventions have been possible and are 
still under intense research. 
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19.3.1  Endothelial Dysfunction

The major regulatory element of vascular homeostasis is the normal endothelium of 
vascular tissue. It is the site of metabolic processes, alongside mediating release of 
inflammatory cytokines and vasodilators and vasoconstrictors. So it has effects on 
the vascular tone, fibrinolysis, clot formation or thrombogenesis, and even prolif-
eration and migration of smooth muscles [54]. Any dysregulation in the above pro-
cesses leads to endothelial dysfunction, which underlines the pathogenesis of a 
plethora of cardiovascular disease pathophysiologies, including atherosclerosis 
[55], heart failure, [56] and hypertension [57]. Diabetes is also a major offset of 
endothelial dysfunction [58]. Nitric oxide (NO) is one of the known secondary mes-
sengers which aids in vasodilatation of vasculatures in animals; has antiplatelet, 
anti-inflammatory, antiproliferative, and permeability-decreasing properties; and 
also inhibits leukocyte rolling and adhesion to endothelial surface, besides inhibi-
tion of cytokine-induced expression of VCAM-1 (vascular cell adhesion protein-1) 
and MCP-1 (monocyte chemoattractant protein-1) [6]. The main culprit behind 
endothelial dysfunction is the low production or bioavailability of NO. ROS rapidly 
reacts with NO to produce peroxynitrite, itself a cellular toxin, while inactivating 
NO and reducing its bioavailability; this reaction occurs so fast that its rate exceeds 
the rate of dismutation of superoxide anions by superoxide dismutase. As has been 
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discussed above, uncoupling of eNOS by oxidation of BH4 inside the endothelial 
cells also releases ROS, thus amplifying the oxidative stress even further. The other 
sources of increase in ROS in vasculatures are NADPH and xanthine oxidases. 
Sometimes, even other sources might contribute synergistically although NADPH 
oxidase is the major contributor, [59] apart from mitochondrial ROS. With such 
high levels of ROS production inside the vasculatures and with the fact being estab-
lished that NO mediates so many functions, it can be stated with disambiguation 
that ROS definitely is a major player in the pathogenesis of cardiovascular diseases. 
Indeed, ROS activates matrix metalloproteinases via NF-κB, leading to plaque 
instability and rupture, which has been experimentally shown to be reversed by 
administration of antioxidants [6]. ROS causes inflammation via NF-κB by stimu-
lating the mitogen-activated protein kinase (MAP kinase) signaling (ERK1/2 and 
BMK1) pathway, tyrosine kinases (Src and Syk), and various protein kinase C 
(PKC) isoforms and also by stimulating the Rho-associated kinase or ROCK, which, 
along with its downstream components, have been found to be elevated in patients 
at high risk of developing CVD.

19.3.2  Hypertension

Oxidative stress has been recorded in genetic as well as experimental models of 
hypertension [54]. The p22phox promoter in humans with essential hypertension has 
been understood to be associated with endothelial dysfunction and an increased 
atherosclerosis [60] tendency. Several polymorphisms of this promoter have been 
found in spontaneously hypertensive rat (SHR) and stroke-prone spontaneously 
hypertensive rat (SP-SHR) models, [61] in which both the conduit and the resis-
tance vessels show elevated NADPH oxidase activity, [62, 63] partly owing to 
increased levels of expression of component subunits [64]. The involvement of ROS 
is further evidenced from the fact that the hypertension pathophysiology and vascu-
lar superoxide production in these models could be ameliorated by the administra-
tion of antioxidant vitamins and SOD mimetics and eNOS cofactor BH4 
(tetrahydrobiopterin) [65]. Also, treatment with the NADPH oxidase inhibitor apo-
cyanin and other free radical scavengers and antioxidant vitamins has attenuated 
hypertension in many models of hypertension, like mineralocorticoid-induced, 
angiotensin II-induced, obesity-induced, and hypertension in Dahl salt-sensitive 
rats, further evidencing the role of superoxides in hypertension development. 
Considering the fact that the renin-angiotensin system is an important pathway in 
various hypertension pathophysiological development and is the main pathway acti-
vating the NADPH oxidase, ACE inhibitors and angiotensin II receptor type 1 (AT1 
receptor) antagonists have also been implicated in treating hypertension, and it has 
actually shown reduction in NADPH oxidase activity [66] and reduction in superox-
ide levels [67].
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19.3.3  Atherosclerosis

The idea that oxidative stress is actually linked to hypertension and CVD as a whole 
had emerged from the fact that people having risk of developing CVD, for example, 
smokers [68], hypercholesterolemics, [69, 70] homocysteinemics, and diabetics, 
show elevated levels of the oxidative stress marker isoprostenes and also exhibit 
endothelial dysfunction. Numerous experiments conducted hold proof that ROS has 
to play a significant role in the development of atherosclerosis. All the components 
which comprise the atherosclerotic plaques have been shown to produce ROS at 
alarmingly high rates. NADPH oxidase activity, [71] uncoupling of eNOS, the 
renin-angiotensin system, [71, 72] and macrophages are the main sources identified 
which produce ROS in atherosclerotic disease models, apart from the classical 
mitochondrial ROS. In one experiment, cholesterol-fed rabbits showed superoxide 
production and low bioavailability of NO, [73] which was ameliorated by the 
administration of SOD mimetics [74] and L-arginine supplementation [75]. In 
another experiment, superoxide levels were found to be elevated in Watanabe heri-
table hyperlipidemic rabbits, [76] giving evidence for the involvement of ROS in 
hyperlipidemia as an upstream or downstream component. Also, ApoE (protein 
mediating cholesterol metabolism) and LDL receptor knockout mice showing ath-
erosclerosis showed high levels of isoprostanes, which are considered as biomark-
ers for systemic oxidative stress [77, 78]. In yet another experiment, where CD-36 
(oxidized LDL receptor)- and 12/15 lipoxygenase (enzyme effecting lipid 
peroxidation)-deficient mice were crossed with ApoE–/– mice, the progeny showed 
significantly smaller atherosclerotic lesions, providing insights into the role of 
macrophage- derived ROS in atherogenesis [79, 80]. The presence of fibrous tissue 
is a prominent feature of the atherosclerotic plaques, and ROS has been found to be 
crucial in modulating the matrix metalloproteinase (MMP) activity as discussed in 
the earlier section. The shoulder areas of atherosclerotic plaques show an overex-
pression of MMP-2 and MMP-9 [81, 82].

19.3.4  Heart Failure

Although the exact mechanisms which underlie heart failure are not completely 
understood yet, significant clinical and experimental evidences point to the fact that 
oxidative stress plays a major role in it. Oxidative stress has been found to have 
direct implications upon the conditions leading to heart failure such as cardiac 
hypertrophy and myocardial infarction.

19.3.4.1  Cardiac Hypertrophy
It is initially an adaptive process and minimizes wall stress, as an in vivo reaction to 
increased load initiated by a wide variety of stimuli, including mechanical stretch 
and hormones like angiotensin II, noradrenaline, and endothelin-I. However, con-
tinuous and maladapted responses have been shown to lead to heart failure. A part 
of the hypertrophic response in vascular smooth muscle cells (VSMCs) is due to 
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ROS, and the role of the p22phox subunit of NADPH oxidase has also been demon-
strated. ROS levels were found to increase during the progression from hypertrophy 
to heart failure, which could be attenuated and rate of progression delayed with the 
treatment with vitamin E [83]. The role of ROS in cardiac hypertrophy has also been 
studied in in vitro models where hypertrophy induced by TNF-α and angiotensin II 
in cultured cardiac myocytes could be inhibited by the treatment with vitamin E and 
catalase [84]. In a study with experimental guinea pig model of pressure overload, 
the progression to heart failure was marked by left ventricular hypertrophy along 
with increase in levels of NADPH oxidase and increased expression of the p22phox, 
p47phox, p67phox, and gp91phox subunits, besides diastolic dysfunction and inactivation 
of NO [85]. Also in an aldosterone infusion-induced cardiac hypertrophy model, the 
NADPH oxidase inhibitor apocyanin was able to block this response and caused 
reduced expression of p22phox [86].

It is also an established fact that excess interstitial fibrosis is a pathological 
symptom of hypertrophy, which has deleterious effects on cardiac function. It is 
interesting to note here that ROS is a major regulator of fibroblast collagen synthesis 
and causes increase in matrix metalloproteinase activity, thus causing distorted 
modeling unfavorable for the body [87]. That the superoxides have a role in fibrosis 
is also evidenced by the fact that fibrosis was absent in gp91phox knockout mice 
infused with angiotensin II, which implied a role of NADPH oxidase-derived super-
oxides in mediating the profibrotic effects of angiotensin II [88]. Increased NADPH 
oxidase has been directly reported in failing human hearts [89].

19.3.4.2  Myocardial Infarction and Ischemia-Reperfusion Injury
Myocardial infarction is the leading cause of heart failure, which causes either acute 
or chronic heart failure by a series of processes together known as cardiac remodel-
ing. This is marked by a series of alterations in the cardiac structure, geometry, and 
volume which produce adverse effects on cardiac functions and output [54]. Large 
amount of ROS production is associated with reperfusion of the ischemic myocar-
dium. There is also a decrease in antioxidant defense system activity with a con-
comitant increase in lipid peroxidation, [90] all leading to deleterious cardiac 
dysfunction. Malondialdehyde (MDA), which is a well-known marker of oxidative 
stress, shows marked increase along with decrease in catalase and SOD levels in 
hearts exposed to ischemia for 30  min [91]. Interestingly, separately conducted 
studies showed that in myocardial infarction models, the infarct size showed reduc-
tion and overall cardiac function improved upon treatment with SOD and catalase 
[92, 93]. Among the three forms of SOD (Mn, Zn, and Cu), Mn-SOD was shown to 
decrease ischemia-reperfusion injury in mice, [94] and when both Cu-SOD and 
Zn-SOD were disrupted, infarct sizes had increased and the recovery of contractile 
function after repeated ischemic periods was impaired [95]. Not surprisingly, when 
rats with myocardial infarction were treated with vitamin E, the infarct sizes reduced 
and levels of oxidative stress markers attenuated [96]. Oxidative stress not only 
leads to pathogenesis of myocardial infarction, but also affects the remodeling pro-
cess post the infarction. Involvement of ROS in this process is clearly depicted by 
the results of studies where left ventricular dilatation and contractile impairment in 
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a mouse model of myocardial infarction were attenuated by a superoxide radical 
scavenger dimethylthiourea (DMTU), [97] and an antioxidant probucol positively 
influenced the cardiac remodeling process in rats with myocardial infarction [98] by 
reducing cardiac fibrosis and preventing left ventricular dilatation thus improving 
left ventricular function, besides preventing wall thinning and increasing the thick-
ness of the scar. Excess extracellular matrix deposition occurs in non-infarcted areas 
during remodeling. Nonetheless, ROS has effects on matrix metalloproteinases, 
[99] as has been discussed in earlier sections, so its role in infarction and reperfu-
sion injury is further solidified.

But what is interesting to note here is that the signaling must be working both 
ways, i.e., it is self-regulatory. ROS has a role in the development of myocardial 
infarction, but at the same time, myocardial infarction and cardiac remodeling that 
follows produce greater amounts of ROS in a vicious cycle. This could be inferred 
from an experiment where cardiac inhibitor of metalloproteinase (CIMP) reduced 
NADPH oxidase activity besides decreasing matrix metalloproteinase activity and 
dilatation of left ventricles as expected [100].

19.4  Role of Mitochondrial Dysfunction and Autophagy 
in CVD

As already discussed above, mitochondrial dysfunction is the source of ROS and 
elevated ROS further causes mitochondrial damage, thus creating a vicious loop of 
mitochondrial destruction and breakdown of the cellular mechanisms as a whole. A 
damaged mitochondrion not only produces less ATP but also produces high amounts 
of ROS and thereby increases the propensity of the cell to undergo apoptosis [101]. 
All these phenomena are related to cardiac aging and subsequently cardiovascular 
disease development [102].

Continuous fusion and fission cycles regulate the function and morphology of 
mitochondrial networks. This is important as the basic functions of the cell which 
encompasses proper functioning of metabolic pathways, redistribution of proteins 
and metabolites, maintenance of mitochondrial DNA integrity, determination of 
organellar shape and integrity and transmittance of redox-sensitive signals, and 
quality control and cell death pathways are crucially regulated by these processes 
[103, 104]. The functional and morphological behavior of the mitochondrial net-
works thus largely determines the cellular, tissue, and organ bioenergetics [105] 
and, besides, imparts properties characteristic of complex systems, like redundancy 
of function, robustness, and plasticity, providing the cell the flexibility to adapt to 
the changing stresses and metabolic demands [106].

Mitochondria and autophagy form a quality control axis. When mitochondria are 
damaged, their functionality could be complemented and possibly even restored by 
their fusion with the neighboring intact mitochondria. But when they are severely 
damaged, they get separated from the mitochondrial network by fission and they are 
eventually eliminated by mitophagy [107]. The dysfunction of this quality control 
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axis is regarded as a contributing factor to cardiovascular aging leading to cardio-
vascular diseases [102].

The fission-fusion balance in mitochondria is maintained by a set of complex 
dedicated machinery, among which some are widely known and well-characterized 
in mammals. These include the fusion proteins mitofusin 1 and mitofusin 2 (Mfn1 
and Mfn2) [108, 109] and the fission proteins dynamin-related protein 1 (Drp1) 
[110] and fission protein 1 (Fis1) [111]. To elucidate the role of mitochondria on 
cardiovascular diseases, several studies have been conducted on vascular smooth 
muscle cells (VSMCs), neonatal cardiomyocytes, and primary vascular endothelial 
cells, [112] that is, some of the most rapidly metabolizing cells where the mitochon-
dria undergo continuous fission-fusion processes while being arranged into a fila-
mentous network within the cells. That mitochondrial dynamics might play a role in 
cardiac pathophysiology can be backed by the fact that excessive fission and/or 
reduced fusion has been found to have detrimental effects on ischemia, ischemic- 
reperfusion injury, [113] and heart failure, [114] besides diabetes [115] and hyper-
glycemia [116]. Several cardiovascular events rely on the disruption of this delicate 
balance and quality control checkpoints [117]. These include cardiac development 
and differentiation, [118] cardiomyocyte hypertrophy, [119] stem cell differentia-
tion, [120] VSMC proliferation, [121] and myocardial ischemia-reperfusion injury 
[112, 113, 122].

In studies with ischemic-reperfusion injury models, it has been found that mito-
chondrial fission inhibition has cardioprotective effects [113]; in the same grounds 
it has also been found that the mitochondrial fusion proteins Mfn1, Mfn2, and OPA1 
(mitochondrial dynamin-like GTPase) are not only required for proper health and 
functioning of mitochondria, but also their optimum expression aids in prevention 
of cardiac hypertrophy and heart failure [123–126]. Paradoxically, Mfn2, apart from 
mediating mitochondrial fusion, interacts with Bax and Bak to mediate apoptosis, 
[127, 128] is involved in mitophagy by acting as a substrate of Parkin which is a 
mitophagy-related protein, [129] and also acts as a tether between the mitochondria 
and endoplasmic reticulum [130] effecting the formation of the filamentous mito-
chondrial network. But contrary to its other functions, Mfn2 inhibits the prolifera-
tion of vascular smooth muscle cells under a variety of vascular proliferative 
conditions [131, 132] and induces oxidative stress-mediated apoptosis in these cells 
[133]. The understanding of the role that mitochondrial dynamics does play behind 
the pathogenesis of cardiovascular diseases is still in the preliminary stage. This 
area needs further research to develop this as a prospective target for treatment of 
cardiovascular diseases and related pathophysiological conditions [134].

As discussed above, autophagy is an evolutionarily conserved process which 
aids in the adjustment and survival of the cell under stress conditions. The process 
either could be selective, where protein aggregates and damaged or superfluous 
organelles are specifically targeted and removed from the cell, operating even in 
nutrient-rich conditions, or could be nonselective, which is primarily encountered in 
the classic definition of autophagy, where the process is activated in response to 
starvation and nutrient stress and serves to provide the cell with adequate nutrients 
necessary for survival by selective self-digestion. Each of the cargo-specific 
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autophagic processes discovered in animals so far have been named after the spe-
cific organelle that is removed in selective autophagy. Like when peroxisomes are 
removed, it is termed as peroxophagy; when ribosomes are removed, it is riboph-
agy; when aggregates are removed, it is termed as aggrephagy; and it is ERphagy 
when the endoplasmic reticulum is degraded and removed or recycled [135]. The 
term for when damaged mitochondria are removed by this process is termed as 
mitophagy [136].

Mitophagy is an essentially important process as it serves as one part of the qual-
ity control measures taken by the cell to match the demand-supply ratio of cellular 
energy, along with removing the damaged mitochondria after they have undergone 
fission and segregation, thus also providing a cleanup quality check [103]. The trig-
ger for mitophagy is provided by the loss of the Δψm, that is, the mitochondrial 
membrane potential, although the opening of the mitochondrial permeability transi-
tion pores (mPTP) provides a major trigger for the initiation of selective removal of 
damaged mitochondria by autophagy [137]. The mPT pore opening dissipates the 
mitochondrial membrane potential [138] that leads to a chain of reactions mediated 
by the mitochondrial fission proteins, culminating in the fission of the damaged 
mitochondria and their segregation from the filamentous network of which they are 
a part and their subsequent take-up by the autophagolysosomes. Although very little 
is understood as of yet of the complete molecular regulation of mitophagy and mito-
chondrial biogenesis, the mTOR/AMPK pathway seems to be a major regulator of 
both the processes [139]. It stimulates the removal of damaged mitochondria by 
mitophagy as well as aids in mitochondrial biogenesis by enhancing the activity of 
sirtuin 1 (Sirt1) and its downstream target peroxisome proliferator-activated recep-
tor coactivator 1 (PGC-1) [140].

Autophagy is a part of the vicious trio of pathogenesis of cardiovascular diseases 
along with ROS and mitochondrial dysfunction. If autophagy is experimentally 
inhibited, it results in the non-removal and subsequent accumulation of bioenerget-
ically inefficient and damaged and dysfunctional mitochondria, leading to malfunc-
tion of cellular energetics unit and further ROS generation [101, 141, 142]. 
Autophagy is regulated by the Atg family of genes, and in a study where cardiac 
cell-specific knockdown of the Atg5 gene was done, it led to structural disorganiza-
tion in sarcomere, reduced fractional shortening, left ventricular hypertrophy, and, 
most importantly, accumulation of damaged and dysfunctional mitochondria and 
resulting respiratory defects [143]. As discussed previously, it has been proposed 
that mitochondrial dysfunction could contribute to cardiomyocyte injury during 
ischemic-reperfusion by depletion of energy due to opening of mPT pores [144]. 
But among all these events, autophagy too is induced during ischemic-reperfusion 
to ensure cell survival by sourcing enough substrates to obtain energy from, during 
the time of reperfusion stress caused energy depletion [145]. This has been experi-
mentally proven by inhibiting autophagy in models by pharmacological (using 
autophagy inhibitors wortmannin or 3-methyladenine) or genetic intervention 
(knockdown of beclin1 by RNAi or overexpression of dominant negative Atg5 
gene) methods which resulted in cardiomyocyte death by apoptosis in ischemic- 
reperfusion simulated models. This condition could be reversed and cell survival is 
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ensured by autophagy upregulation mediated by beclin1 overexpression or rapamy-
cin treatment [146].

The role of both autophagy and diabetes in cardiovascular disease development 
can be reinforced from noting that the accumulation of dysfunctional mitochondria 
as a result of inefficient autophagy in the cardiac tissue has been proposed to be a 
major cause of development of diabetic cardiomyopathy. In diabetic mice, reduced 
AMPK activity and concomitant downregulation of cardiac autophagy have been 
recorded [147]. The ultrastructure of cardiac tissue in these models showed aberrant 
mitochondria with disrupted structure. The study was further extended to inquire 
whether AMPK downregulation was really the contributing factor in autophagy- 
mediated diabetic cardiomyopathy, and it was found that indeed, AMPK inhibition 
by a cardiac-specific dominant negative AMPK gene overexpression reduced 
autophagy even further, worsened the cardiac aberrations, exacerbated cardiac dys-
function, and caused mortality in diabetic mice. All of the above conditions were 
shown to be ameliorated upon metformin treatment, a widely known diabetes drug. 
Autophagy was enhanced while preserving the cardiac function and output. These 
results were not obtained from the diabetic rat group which overexpressed the domi-
nant negative AMPK gene thus inhibiting autophagy. So, it was clear that the car-
dioprotective effect of metformin was achieved by the AMPK-mediated upregulation 
of autophagy.

While all this time we have discussed the positive effects of autophagy on the 
cardiac tissue ensuring its good health, there have been studies where negative 
impact of autophagy on cardiac tissue has also been recorded. It has been already 
discussed in the earlier sections of this chapter that excessive or deregulated autoph-
agy led to cellular death. When diphtheria toxin was injected intramuscularly into a 
heart failure model comprising of transgenic mice overexpressing cardiac-specific 
diphtheria toxin receptor, the cardiomyocytes showed morphological signs of 
autophagic cell death and a degenerated heart phenotype [148]. Moreover, research 
done by another group of scientists also showed that upregulation of autophagy dur-
ing reperfusion does more harm than good; it is maladaptive and increases the 
infarct size in cardiomyocytes [145]. So it could be concluded that depending upon 
the setting and conditions, autophagy can either be beneficial for cardiomyocyte 
survival or may sometimes cause their destruction.

With the growing age, mitochondrial dysregulation increases not only in the 
heart but also in the vascular endothelium as well as the vascular smooth muscle 
cells. With that, the mitochondrial ROS production increases owing to ETC disrup-
tion, elevated NADPH oxidase 4 activity, and declining antioxidant defense capac-
ity, thus affirming the high probability of aged animals falling prey to cardiovascular 
diseases. Young animals are able to mount a powerful antioxidant defense driven by 
Nrf-2 (NF-E2-related factor 2)-mediated activation of antioxidant response ele-
ments or ARE transcription upregulation. This response is attenuated with growing 
age; thus older animals tend to have weaker antioxidant defense and concomitant 
oxidative stress resulting in a plethora of cardiovascular diseases [149]. But this 
trend is already changing. A significantly higher percentage of deaths resulting from 
cardiovascular diseases also happen to occur in the youth age group (35–64 years) 
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in the developing countries as compared to developed ones. For example, in 2004, 
Leeder et al. reported that in the said age group, the proportion of cardiovascular 
disease deaths is 41% in South Africa, 35% in India, and 28% in Brazil, compared 
to only 12% in the United States and 9% in Portugal. So this area needs further 
research to find out the exact molecular mechanisms involved for developing effi-
cient therapeutic strategies.
There also happens to be a causal relationship which could exist between insulin- 
like growth factor 1 (IGF-1) and the development of cardiovascular diseases via 
protection of mitochondria [150, 151]. It is interesting to note that in vitro treatment 
of cardiomyocytes as well as endothelial cells with IGF-1 decreased mitochondrial 
peroxide production [152]. Also the endothelial cells retained their mitochondrial 
membrane potential and inner cytochrome C and also reduced the exposure to cas-
pase- 3 upon H2O2 exposure [153]. It was even found that when IGF-1 was overex-
pressed in mice, they were protected from increase in ROS generation induced by 
feeding a high-fat diet, hence preventing mitochondrial damage [154]. Contrary to 
that, in Ames dwarf mice, low circulating levels of IGF-1 were associated with an 
increased production of mitochondrial ROS, both in the vasculature and the myo-
cardium, [152] thus mimicking the aging phenotype (Fig. 19.5). There have also 
been studies which have demonstrated that angiotensin II in the cardiovascular sys-
tem is critically mediated by mitochondrial ROS while mediating the cellular effects 
[155, 156]. As has been proposed, angiotensin II binds to angiotensin receptor 1 

Stress stimuli

IGF-R

AMPK/ERK

Nrf2

ARE

Antioxidant 
enzymes and 

molecules (CAT, 
SOD, GSH)

NADPH 
Oxidase

Xanthine
Oxidase

Oxidative 
Stress

Autophagosome Autophagosome 
engulfs mitochondria 
to initiate mitophagy

Mitochondrial 
dysfunction

Autophagy

Nucleus

Fig. 19.5 Representative image of the vicious cycle that occurs inside a cell under stress condi-
tions, mediated by oxidative stress and mitochondrial dysfunction and culminating in autophagy. 
Excessive autophagy leads to cell death

S. Chatterjee et al.



473

(ATR1), thus activating NADPH oxidases 2 and 4 (NOX2 and NOX4), further lead-
ing to an increase in the mitochondrial ROS production in both vascular endothelial 
cells and VSMCs as well as in the cardiac myocytes [136, 157, 158].

19.5  Amelioration of CVD by Small Natural Molecules

CVD had been treated symptomatically for a long time for angina and coronary 
blockages. Relief of symptoms and prevention of events which could lead to heart 
failure have been long standing for decades and are still in vogue. Even the early 
Romans used foxglove as treatment for heart failure, and leeches and letting out 
blood were also used historically. Until Sir William Harvey discovered circulation 
of blood in 1628, the understanding of the processes could not have been extant, and 
the discovery of X-rays by Röntgen and Einthoven’s discovery of echocardiogram 
in the 1890s paved the way for investigation of heart diseases. In the early twentieth 
century, diuretics were developed, but the early mercurial agents conferred substan-
tial toxicity. The later diuretics like thiazides were developed to combat that. Next 
came the angiotensin-converting enzyme inhibitors and the vasodilators [159]. With 
the advent of good surgical intervention techniques, stents and angioplasty and 
bypass surgeries became common. But as science progressed, the search for the root 
cause of cardiovascular diseases started and, as of today, has made quite a progress. 
Eliminating the root cause would probably be the best option for treatment against 
such a deadly disease with so many facets, and as toxicological studies report, mol-
ecules sourced from the nature itself would be the best option for executing this 
[160]. As has been discussed in the chapter, sources of oxidative stress, mitochon-
drial dysfunction, and autophagy mediated mainly by the AMPK pathway have 
remained the favorite targets of drug developers. The given table (Table 19.1) jots 
down some of the small natural molecules tested in this regard and their proposed 
mechanisms of action.

19.6  Conclusion

Cardiovascular diseases, being a deadly killer group, has needed and will continue 
to need serious attention for their treatment, increasing the options available while 
reducing the cost, and to successfully decrease the mortality rates. Deaths from 
CVD have no doubt declined since the last few years, but treatment costs and dearth 
in availability are still raging problems in developing countries, where age-adjusted 
mortality rates are quite high. There is a huge amount of scientific literature on this 
topic, but what we have really understood about the root causes of the diseases 
which fall in this category seems far from enough. The oxidative stress theory of 
aging [161] had given an idea about the role of free radicals, mainly superoxides, in 
cardiovascular aging. Since the diseased heart and vascular cells manifest signs of 
aging, it was hypothesized that oxidative stress might have some role to play in the 
development of CVD.  When oxidative stress is an alleged cause, mitochondrial 
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474

Ta
bl

e 
19

.1
 

A
m

el
io

ra
tio

n 
of

 C
V

D
 b

y 
na

tu
ra

l m
ol

ec
ul

es

B
io

ac
tiv

e 
m

ol
ec

ul
e

So
ur

ce
M

ec
ha

ni
sm

R
es

to
ra

tio
n 

of
 n

or
m

al
 p

hy
si

ol
og

y
M

od
el

C
ry

pt
ot

an
sh

in
on

e 
(C

T
S)

 [
16

2]
D

an
sh

en
1.

 B
lo

ck
in

g 
L

O
X

-1
-m

ed
ia

te
d 

si
gn

al
in

g 
pa

th
w

ay
2.

 S
up

pr
es

si
ng

 th
e 

R
O

S/
N

F-
κB

 
si

gn
al

in
g 

pa
th

w
ay

1.
 P

re
ve

nt
s 

fo
rm

at
io

n 
of

 a
th

er
os

cl
er

ot
ic

 le
si

on
2.

 R
ed

uc
es

 R
O

S 
ge

ne
ra

tio
n

3.
 R

ed
uc

es
 s

er
um

 le
ve

l o
f 

IL
-1
β,

 I
L

-6
, I

L
-1

7A
, I

FN
-γ

, a
nd

 
T

N
F-
α

4.
 D

ec
re

as
ed

 a
cc

um
ul

at
io

n 
of

 m
ac

ro
ph

ag
es

5.
 R

ed
uc

e 
L

O
X

-1
 e

xp
re

ss
io

n

A
po

E
−

/−
 

m
ic

e

R
ut

ae
ca

rp
in

e 
[1

63
, 1

64
]

E
vo

di
a 

ru
ta

ec
ar

pa
 

(C
hi

ne
se

 h
er

b)
1.

 I
nd

uc
in

g 
ov

er
ex

pr
es

si
on

 o
f 

A
B

C
A

1 
an

d 
SR

-B
I/

C
L

A
-1

 w
ith

in
 

R
C

T
 (

re
ve

rs
e 

ch
ol

es
te

ro
l t

ra
ns

po
rt

)
2.

 A
B

C
G

1 
ov

er
ex

pr
es

si
on

1.
 P

ro
m

ot
es

 c
ho

le
st

er
ol

 e
ffl

ux
 a

nd
 in

hi
bi

ts
 li

pi
d 

ac
cu

m
ul

at
io

n 
in

 v
itr

o
2.

 A
th

er
os

cl
er

ot
ic

 le
si

on
 a

tte
nu

at
io

n 
in

 a
or

tic
 s

in
us

3.
 R

ed
uc

es
 m

ac
ro

ph
ag

e 
ac

tiv
ity

4.
 L

ow
er

in
g 

T
C

, H
D

L
-C

, T
G

, a
nd

 L
D

L
-C

5.
 D

ec
re

as
es

 p
ro

du
ct

io
n 

of
 R

O
S 

an
d 

ac
tiv

at
io

n 
of

 N
A

D
PH

 
ox

id
as

e

A
po

E
−

/−
 

m
ic

e

Pa
lm

ito
le

at
e 

(P
A

O
) 

[1
65

]
B

re
as

t m
ilk

, a
ni

m
al

 
fa

ts
, v

eg
et

ab
le

 o
ils

, 
m

ar
in

e 
oi

ls
, 

m
ac

ad
am

ia
 o

il,
 a

nd
 

se
a 

bu
ck

th
or

n 
oi

l

1.
 B

lo
ck

in
g 

of
 li

pi
d-

in
du

ce
d 

N
L

R
P3

 
in

fla
m

m
as

om
e 

fo
rm

at
io

n 
an

d 
in

fla
m

m
at

io
n 

in
 m

ac
ro

ph
ag

es
2.

 R
em

od
el

in
g 

of
 E

R
 m

em
br

an
es

3.
 D

ec
re

as
e 

in
 h

ig
h-

se
ns

iti
vi

ty
 

C
-r

ea
ct

iv
e 

pr
ot

ei
n 

(h
um

an
)

1.
 A

lte
re

d 
co

m
po

si
tio

n 
of

 p
la

qu
e 

in
 le

si
on

s 
an

d 
pr

ev
en

ts
 

at
he

ro
sc

le
ro

si
s 

de
ve

lo
pm

en
t i

n 
m

ic
e

2.
 P

re
ve

nt
ed

 E
R

 s
tr

es
s 

in
 b

ot
h 

m
ic

e 
an

d 
hu

m
an

3.
 I

m
pr

ov
ed

 li
pi

d 
le

ve
ls

 in
 s

er
um

 (
hu

m
an

)

A
po

E
−

/−
 

m
ic

e 
an

d 
hu

m
an

Is
or

ha
m

ne
tin

 
(I

so
) 

[1
66

] 
(fl

av
on

oi
d)

C
hi

ne
se

 h
er

b 
H

ip
po

ph
ae

 
rh

am
no

id
es

 L
.

1.
 A

ct
iv

at
in

g 
th

e 
PI

3K
/A

K
T

 p
at

hw
ay

 
an

d 
el

ev
at

es
 H

O
-1

 e
xp

re
ss

io
n

2.
 I

nh
ib

iti
ng

 M
PO

 a
ct

iv
ity

 a
nd

 
el

ev
at

in
g 

G
SH

-p
x 

ac
tiv

ity
3.

 I
nh

ib
iti

ng
 o

x-
L

D
L

-i
nd

uc
ed

 R
O

S 
ge

ne
ra

tio
n 

an
d 

re
du

ci
ng

 N
O

X
 

ac
tiv

ity
 in

 m
ac

ro
ph

ag
es

1.
 D

ec
re

as
ed

 c
as

pa
se

-3
 e

xp
re

ss
io

n 
an

d 
pr

og
re

ss
io

n 
of

 
m

ac
ro

ph
ag

e-
in

du
ce

d 
ap

op
to

si
s 

in
 a

th
er

os
cl

er
ot

ic
 le

si
on

s
2.

 D
ec

re
as

ed
 in

tr
ac

el
lu

la
r 

lip
id

 d
ep

os
iti

on
 in

 o
x-

L
D

L
-i

nd
uc

ed
 

m
ac

ro
ph

ag
es

3.
 P

re
ve

nt
ed

 c
el

l a
po

pt
os

is
 in

 T
H

P-
1 

m
ac

ro
ph

ag
es

M
al

e 
C

57
B

L
/6

J 
m

ic
e

S. Chatterjee et al.



475
B

io
ac

tiv
e 

m
ol

ec
ul

e
So

ur
ce

M
ec

ha
ni

sm
R

es
to

ra
tio

n 
of

 n
or

m
al

 p
hy

si
ol

og
y

M
od

el
C

at
ec

hi
n 

[1
60

, 
16

7,
 1

68
] 

(fl
av

on
oi

d)

Te
a,

 a
pp

le
s,

 b
er

ri
es

, 
an

d 
co

co
a

1.
 S

ca
ve

ng
in

g 
R

O
S 

an
d 

m
od

ul
at

in
g 

R
O

S-
ge

ne
ra

tin
g 

en
zy

m
es

 (
iN

O
S 

an
d 

X
O

)
2.

 I
m

pr
ov

in
g 

th
e 

ra
tio

 o
f A

po
A

-1
/

A
po

B
 b

y 
re

du
ci

ng
 A

po
B

3.
D

im
in

is
hi

ng
 c

ho
le

st
er

ol
 a

bs
or

pt
io

n 
by

 f
or

m
at

io
n 

of
 in

so
lu

bl
e 

co
-p

re
ci

pi
ta

te
s 

of
 c

ho
le

st
er

ol
 a

nd
 

re
du

ci
ng

 b
ile

 a
ci

d-
m

ed
ia

te
d 

m
ic

el
la

r 
so

lu
bi

lit
y

1.
 D

ec
re

as
ed

 c
or

on
ar

y 
he

ar
t d

is
ea

se
 m

or
ta

lit
y

2.
 D

ec
re

as
ed

 b
lo

od
 p

re
ss

ur
e 

in
 c

ar
di

ac
 s

tr
ok

e-
pr

on
e 

hy
pe

rt
en

si
ve

 r
at

s
3.

 R
ed

uc
ed

 o
xi

da
tiv

e 
st

re
ss

4.
 D

ec
re

as
ed

 b
lo

od
 c

ho
le

st
er

ol
 le

ve
l a

nd
 p

re
ve

nt
ed

 it
s 

ac
cu

m
ul

at
io

n 
in

 h
ea

rt
 a

nd
 li

ve
r

5.
 R

ed
uc

ed
 h

ig
h 

ri
sk

 o
f 

C
V

D
6.

 P
re

ve
nt

ed
 d

ev
el

op
m

en
t a

nd
 p

ro
gr

es
si

on
 o

f 
at

he
ro

sc
le

ro
si

s

C
57

B
L

/6
J 

an
d 

A
po

E
−

/−
 

m
ic

e,
 r

at
s,

 
an

d 
hu

m
an

Q
ue

rc
et

in
 [

16
0,

 
16

9]
 (

fla
vo

no
id

)
Te

a,
 o

ni
on

, w
in

es
, 

ap
pl

es
1.

 S
ca

ve
ng

in
g 

fr
ee

 r
ad

ic
al

s 
an

d 
ha

ve
 

ch
el

at
in

g 
ef

fe
ct

 o
n 

tr
an

si
tio

n 
m

et
al

 
io

ns
2.

 I
nh

ib
iti

ng
 p

ho
sp

ho
lip

as
e 

A
2 

ac
tiv

ity
3.

 I
nh

ib
iti

on
 o

f 
am

in
o 

ac
id

 
m

et
ab

ol
is

m
 p

at
hw

ay
s 

(L
O

X
 a

nd
 

C
O

X
)

4.
 M

od
ul

at
in

g 
N

F-
κB

 g
en

e 
ex

pr
es

si
on

5.
 R

ed
uc

in
g 

th
e 

ac
tiv

ity
 o

f 
H

M
G

- 
C

oA
 a

nd
 e

le
va

tin
g 

ch
ol

es
te

ro
l a

cy
l 

tr
an

sf
er

as
e 

ac
tiv

ity
 in

 li
ve

r

1.
 D

ec
re

as
ed

 p
la

te
le

t a
cc

um
ul

at
io

n 
an

d 
su

pe
ro

xi
de

 p
ro

du
ct

io
n 

an
d 

el
ev

at
ed

 p
la

te
le

t-
de

ri
ve

d 
N

O
 r

el
ea

se
2.

 P
re

ve
nt

ed
 is

ch
em

ic
-r

ep
er

fu
si

on
 in

ju
ry

3.
 D

ec
re

as
e 

pl
as

m
a 

ch
ol

es
te

ro
l l

ev
el

4.
 P

re
ve

nt
ed

 a
th

er
os

cl
er

ot
ic

 p
la

qu
e 

fo
rm

at
io

n
5.

 R
ed

uc
ed

 li
pi

d 
pe

ro
xi

da
tio

n 
le

ve
l

R
at

N
ar

in
ge

ni
n 

[1
60

, 
17

0,
 1

71
] 

(fl
av

on
oi

d)

G
ra

pe
fr

ui
t a

nd
 o

ra
ng

e
1.

 I
nc

re
as

in
g 

ac
tiv

ity
 o

f 
no

ne
nz

ym
at

ic
 a

nt
io

xi
da

nt
s 

an
d 

an
tio

xi
da

nt
 e

nz
ym

es
2.

 I
rr

ev
er

si
bl

e 
in

hi
bi

tio
n 

of
 b

ot
h 

L
O

X
 a

nd
 C

O
X

 p
at

hw
ay

s
3.

 I
nh

ib
iti

ng
 H

M
G

-C
oA

 r
ed

uc
ta

se
 

ac
tiv

ity
4.

 S
up

pr
es

si
ng

 m
R

N
A

 e
xp

re
ss

io
n 

of
 

ca
sp

as
es

1.
 D

im
in

is
he

d 
lip

id
 p

er
ox

id
at

io
n 

le
ve

l a
nd

 o
xi

da
tiv

e 
st

re
ss

2.
 R

ed
uc

ed
 R

O
S 

ge
ne

ra
tio

n
3.

 P
re

ve
nt

ed
 c

ar
di

om
yo

pa
th

y
4.

 R
ed

uc
ed

 r
is

k 
of

 is
ch

em
ic

 s
tr

ok
e

M
ic

e,
 r

at
, 

ra
bb

it

(c
on

tin
ue

d)

19 Role of Oxidative Stress, Mitochondrial Dysfunction, and Autophagy…



476

Ta
bl

e 
19

.1
 

(c
on

tin
ue

d)

B
io

ac
tiv

e 
m

ol
ec

ul
e

So
ur

ce
M

ec
ha

ni
sm

R
es

to
ra

tio
n 

of
 n

or
m

al
 p

hy
si

ol
og

y
M

od
el

A
nt

ho
cy

an
in

s 
[1

72
–1

75
] 

(fl
av

on
oi

d)

B
er

ri
es

, c
he

rr
y,

 
eg

gp
la

nt
 p

ee
l, 

ub
e,

 
bl

ac
k 

ri
ce

, O
ki

na
w

an
 

sw
ee

t p
ot

at
o,

 C
on

co
rd

 
gr

ap
e,

 r
ed

 c
ab

ba
ge

, 
et

c.

1.
 I

nh
ib

iti
ng

 N
F-

kB
 a

nd
 T

N
F-
α 

pa
th

w
ay

s
2.

 S
eq

ue
st

ra
tio

n 
of

 tr
ac

e 
el

em
en

ts
 

an
d 

in
hi

bi
tin

g 
en

zy
m

es
 in

vo
lv

ed
 in

 
ox

id
at

iv
e 

st
re

ss
3.

A
ct

iv
at

in
g 

A
M

PK
➔

 in
hi

bi
tin

g 
H

M
G

-C
oA

 r
ed

uc
ta

se
 

➔
 lo

w
er

in
g 

ch
ol

es
te

ro
l s

yn
th

es
is

1.
 R

ed
uc

ed
 in

fla
m

m
at

io
n

2.
 S

up
pr

es
se

d 
R

O
S 

ge
ne

ra
tio

n
3.

 D
ec

re
as

ed
 c

ho
le

st
er

ol
 le

ve
l a

nd
 th

us
 lo

w
er

ed
 r

is
k 

of
 

at
he

ro
sc

le
ro

si
s

4.
 D

ec
re

as
ed

 f
at

ty
 a

ci
d 

sy
nt

he
si

s 
an

d 
en

ha
nc

ed
 it

s 
ox

id
at

io
n

M
ic

e,
 

hu
m

an

O
m

eg
a-

3 
fa

tty
 

ac
id

s 
(N

-3
 F

A
) 

[1
76

]

Se
af

oo
d 

(m
ac

ke
re

l, 
sa

lm
on

, t
un

a,
 h

er
ri

ng
 

an
d 

sa
rd

in
es

)
Se

ed
s 

(fl
ax

se
ed

, c
hi

a 
se

ed
, w

al
nu

ts
)

E
gg

s,
 y

og
hu

rt
, j

ui
ce

s,
 

m
ilk

, s
oy

 b
ev

er
ag

es

1.
 D

ec
re

as
in

g 
pr

od
uc

tio
n 

of
 

pr
oi

nfl
am

m
at

or
y 

m
ed

ia
to

rs
 b

y 
su

bs
tr

at
e 

co
m

pe
tit

io
n

2.
 I

nd
uc

in
g 

fa
tty

 a
ci

d 
β-

ox
id

at
io

n 
th

ro
ug

h 
ac

tiv
at

io
n 

of
 P

PA
R
α

3.
 I

nh
ib

iti
ng

 d
e 

no
vo

 li
po

ge
ne

si
s 

by
 

re
du

ci
ng

 th
e 

ex
pr

es
si

on
 o

f 
ac

et
yl

- 
C

oA
 c

ar
bo

xy
la

se
 (

A
C

C
) 

an
d 

fa
tty

 
ac

id
 s

yn
th

as
e 

(F
A

S)

1.
 R

ed
uc

ed
 in

fla
m

m
at

io
n

2.
 L

ow
er

ed
 r

is
k 

of
 C

V
D

 a
nd

 m
or

ta
lit

y
3.

 L
ow

er
ed

 a
th

er
os

cl
er

ot
ic

 p
la

qu
e 

in
fla

m
m

at
io

n 
an

d 
in

st
ab

ili
ty

4.
 D

ec
re

as
ed

 li
pi

d 
de

po
si

tio
n 

an
d 

R
O

S 
ge

ne
ra

tio
n

5.
R

ed
uc

ed
 tr

ia
cy

lg
ly

ce
ro

l (
TA

G
)

sy
nt

he
si

s➔
 d

ec
re

as
ed

 V
L

D
L

 s
yn

th
es

is
➔

 h
yp

ot
ri

gl
yc

er
id

em
ic

 
ef

fe
ct

H
um

an

R
es

ve
ra

tr
ol

 [
17

7,
 

17
8]

 
(p

ol
yp

he
no

lic
)

Pe
an

ut
s,

 p
is

ta
ch

io
s,

 
gr

ap
es

, r
ed

 a
nd

 w
hi

te
 

w
in

e,
 b

lu
eb

er
ri

es
, 

cr
an

be
rr

ie
s,

 c
oc

oa
 a

nd
 

da
rk

 c
ho

co
la

te

1.
 F

re
e 

ra
di

ca
l s

ca
ve

ng
in

g
➔

 b
lo

ck
in

g 
L

D
L

 o
xi

da
tio

n
2.

 U
pr

eg
ul

at
io

n 
of

 N
F-
κB

 in
 

in
fla

m
m

at
or

y 
ce

lls
3.

 A
ct

iv
at

in
g 

eN
O

S,
 N

rf
2,

 S
IR

T-
1,

 
an

d 
A

R
E

 a
nd

 in
hi

bi
tin

g 
T

N
F-
α 

pr
od

uc
tio

n
3.

 I
nh

ib
iti

ng
 H

M
G

-C
oA

 r
ed

uc
ta

se

1.
 P

ro
te

ct
ed

 f
ro

m
 a

th
er

os
cl

er
os

is
, c

or
on

ar
y 

he
ar

t d
is

ea
se

, h
ea

rt
 

fa
il

ur
e,

 c
ar

di
om

yo
pa

th
y

2.
 E

nh
an

ce
d 

en
do

th
el

ia
l c

el
l g

ro
w

th
3.

 R
eg

ul
at

ed
 c

ir
cu

la
tio

n 
in

 h
ea

rt
 fa

il
ur

e
4.

 P
re

ve
nt

ed
 R

O
S 

ge
ne

ra
tio

n
5.

 D
ec

re
as

ed
 p

la
sm

a 
le

ve
l o

f 
T

G
, L

D
L

-c
ho

le
st

er
ol

 le
ve

l
6.

 I
m

pr
ov

ed
 li

pi
d 

pr
ofi

le

R
at

, m
ic

e,
 

an
d 

hu
m

an

M
yr

ic
itr

in
 [

17
9]

M
yr

ic
a 

ru
br

a
1.

 I
nh

ib
iti

ng
 o

x-
L

D
L

 f
or

m
at

io
n 

an
d 

do
w

nr
eg

ul
at

io
n 

of
 L

O
X

-1
2.

 A
ct

iv
at

io
n 

of
 P

I3
K

/A
kt

 p
at

hw
ay

 
➔

 in
cr

ea
si

ng
 H

O
-1

 e
xp

re
ss

io
n 

vi
a 

N
rf

-2
 a

ct
iv

at
io

n

1.
 R

ed
uc

ed
 a

or
tic

 le
si

on
 s

iz
e 

an
d 

pr
ev

en
te

d 
at

he
ro

sc
le

ro
ti

c 
pl

aq
ue

 fo
rm

at
io

n
2.

 D
im

in
is

he
d 

en
do

th
el

ia
l a

po
pt

os
is

 a
nd

 in
cr

ea
se

d 
ce

ll 
su

rv
iv

al
3.

 R
ed

uc
ed

 o
cc

ur
re

nc
e 

of
 c

ar
di

om
yo

pa
th

y

A
po

E
−

/−
 

m
ic

e

S. Chatterjee et al.



477
B

io
ac

tiv
e 

m
ol

ec
ul

e
So

ur
ce

M
ec

ha
ni

sm
R

es
to

ra
tio

n 
of

 n
or

m
al

 p
hy

si
ol

og
y

M
od

el
V

ita
m

in
 C

 a
nd

 E
 

[1
80

]
V

ita
m

in
 E

: v
eg

et
ab

le
 

oi
ls

, n
ut

s,
 s

un
flo

w
er

 
se

ed
s,

 s
pi

na
ch

 a
nd

 
br

oc
co

li,
 m

an
go

, 
ki

w
if

ru
it,

 a
ba

lo
ne

, 
sa

lm
on

, e
tc

.
V

ita
m

in
 C

: b
ro

cc
ol

i, 
br

us
se

ls
 s

pr
ou

ts
, 

ca
ul

ifl
ow

er
,

sp
in

ac
h,

 c
ab

ba
ge

, 
sw

ee
t a

nd
 w

hi
te

 
po

ta
to

es
, t

om
at

oe
s

1.
 S

up
pr

es
si

ng
 p

ro
te

in
 k

in
as

e 
C

 a
nd

 
in

hi
bi

tin
g 

Ik
B

 d
eg

ra
da

tio
n 
➔

 
in

hi
bi

tin
g 

ox
-L

D
L

-i
nd

uc
ed

 N
F-
κB

 
ac

tiv
at

io
n

2.
 R

ed
uc

in
g 

ex
pr

es
si

on
 o

f 
ad

he
si

on
 

m
ol

ec
ul

es
3.

 R
ed

uc
in

g 
ch

em
ok

in
e 

se
cr

et
io

n 
an

d 
C

D
36

 o
n 

m
ac

ro
ph

ag
es

 a
nd

 
di

m
in

is
hi

ng
 m

on
oc

yt
e 

re
cr

ui
tm

en
t

4.
 D

ec
re

as
in

g 
ex

pr
es

si
on

 o
f 

in
te

rc
el

lu
la

r 
ad

he
si

on
 m

ol
ec

ul
e-

1 
ge

ne
5.

 P
re

ve
nt

io
n 

of
 a

po
pt

os
is

 o
f 

va
sc

ul
ar

 s
m

oo
th

 m
us

cl
e 

ce
ll

1.
 D

im
in

is
he

d 
in

fla
m

m
at

or
y 

re
sp

on
se

s 
th

at
 c

au
se

 C
V

D
2.

 P
re

ve
nt

ed
 f

oa
m

 c
el

l f
or

m
at

io
n 

an
d 

re
du

ce
d 

at
he

ro
sc

le
ro

ti
c 

pl
aq

ue
 f

or
m

at
io

n
3.

 P
re

ve
nt

ed
 m

on
oc

yt
e 

at
ta

ch
m

en
t t

o 
en

do
th

el
iu

m
4.

 E
nh

an
ce

d 
en

do
th

el
ia

l c
el

l p
ro

lif
er

at
io

n

E
th

an
ol

ic
 e

xt
ra

ct
s 

[1
81

]
C

it
ru

s 
m

ed
ic

a 
“O

tr
oj

”
U

nk
no

w
n

1.
 D

im
in

is
he

d 
se

ru
m

 le
ve

ls
 o

f 
T

C
, T

G
, L

D
L

, a
nd

 V
L

D
L

2.
 S

ig
ni

fic
an

t d
ec

re
as

e 
in

 M
D

A
 c

on
te

nt
s 

an
d 

in
cr

ea
se

d 
th

e 
N

P-
SH

 a
nd

 T
P 

le
ve

ls
 in

 h
ea

rt
 m

us
cl

e
3.

 D
im

in
is

he
d 

se
ru

m
 le

ve
l o

f 
ch

ol
es

te
ro

l
4.

 P
re

ve
nt

ed
 R

O
S 

ge
ne

ra
tio

n
5.

 I
m

pr
ov

ed
 c

ar
di

om
yo

pa
th

y 
co

nd
iti

on
s

M
al

e 
W

is
ta

r 
al

bi
no

 r
at

T
he

 t
ab

le
 a

bo
ve

 g
iv

es
 a

n 
id

ea
 o

f 
so

m
e 

of
 t

he
 s

m
al

l 
na

tu
ra

l 
m

ol
ec

ul
es

 t
es

te
d 

fo
r 

tr
ea

tm
en

t 
of

 c
ar

di
ov

as
cu

la
r 

di
se

as
es

 a
nd

 r
el

at
ed

 c
om

pl
ic

at
io

ns
. T

he
 m

ec
ha

ni
sm

(s
) 

of
 

ac
tio

n 
of

 t
he

se
 n

at
ur

al
 c

om
po

un
ds

 w
hi

ch
 h

av
e 

be
en

 p
ro

po
se

d 
fo

r 
ea

ch
 o

ne
 o

f 
th

es
e 

ha
ve

 a
ls

o 
be

en
 g

iv
en

. N
P

-S
H

 n
on

pr
ot

ei
n 

su
lf

hy
dr

yl
, M

D
A

 m
al

on
di

al
de

hy
de

, T
G

 
tr

ig
ly

ce
ri

de
s,

 M
P

O
 m

ye
lo

pe
ro

xi
da

se
, G

SH
-p

x 
gl

ut
at

hi
on

e 
pe

ro
xi

da
se

, H
O

-1
 h

em
e 

ox
yg

en
as

e,
 A

po
A

-1
 a

po
lip

op
ro

te
in

, A
po

B
 a

po
lip

op
ro

te
in

 B
, H

M
G

-C
oA

 3
-h

yd
ro

xy
- 

3-
m

et
hy

lg
lu

ta
ry

l-
co

en
zy

m
e 

A
, o

x-
L

D
L

 o
xi

di
ze

d 
lo

w
-d

en
si

ty
 li

po
pr

ot
ei

n,
 iN

O
S 

in
du

ci
bl

e 
ni

tr
ic

 o
xi

de
 s

yn
th

as
e,

 e
N

O
S 

en
do

th
el

ia
l n

itr
ic

 o
xi

de
 s

yn
th

as
e,

 C
V

D
 c

ar
di

ov
as

-
cu

la
r 

di
se

as
e

19 Role of Oxidative Stress, Mitochondrial Dysfunction, and Autophagy…

https://en.wikipedia.org/wiki/Glutathione_peroxidase
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315351/
https://en.wikipedia.org/wiki/Nitric_oxide_synthase


478

dysfunction and autophagy cannot stay far behind. It has indeed been proven again 
and again from multiple experiments conducted by research groups across the world 
that oxidative stress, mitochondrial dysfunction, and autophagy form a vicious trio 
that mediate the development of various cardiac pathophysiologies, with the 
ERK1/2, BMK, and AMPK signaling cascades in work via suppression of antioxi-
dant defenses.

History tells that cardiac problems have been occurring since the ancient ages. 
The Greeks, Indians, and Romans have taken attempts in treating them [159]. With 
subsequent discoveries of symptoms, diagnostic tools, interventions, molecular 
mechanisms, and biomarkers, treatment of cardiovascular diseases has come a long 
way, but still a longer path remains to be trodden. Nature has provided us with a 
plethora of chemical substances – magical molecules that act effectively without 
any significant toxicity to the healthy organs, to restore the normal physiology from 
a diseased state. So this field calls for further research in order to restrict this fatal 
epidemic within the human clutches.
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20Parkin Protein: The Missing Link 
Between Cardiovascular and Parkinson’s 
Disease

Angshuman Bagchi

Abstract
Parkinson’s disease and cardiovascular diseases are two of the most frequently 
occurring disasters. Though these two diseases are quite common, molecular 
mechanisms of the onsets of these two diseases are still obscure. Recently, scien-
tists have found an interrelation between these two diseases. One of the links 
between these two diseases is the Parkin protein. Mutations in Parkin lead to 
Parkinson’s disease and also cardiovascular diseases. In this review, an attempt is 
made to describe the link between the Parkin mutations and the two diseases. 
This review would therefore be essential for the understanding of the molecular 
mechanism of the diseases.

Keywords
Cardiovascular diseases · Parkinson’s disease · Parkin; Mutations

20.1  Introduction

Two of the most relevant and frequently occurring diseases are Parkinson ‘s disease 
(PD) and cardiovascular diseases. PD affects the motor functions, whereas cardio-
vascular diseases involve the heart. Interestingly, scientists recently found some 
links between PD and cardiovascular diseases. Recent studies have revealed that PD 
patients are nearly 50% more prone to getting cardiovascular diseases. It has also 
been proposed that damaged mitochondria have significant roles in the onset of both 
diseases [1–11]. Various studies revealed that PD patients who have a high or 
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medium risk of cardiovascular diseases would have more problems with motor 
movements and memory. PD and cardiovascular diseases generally appear in older 
people. However, increasing latest evidences suggest the onset of both diseases in 
young populations as well. It has also been observed that patients with poorer car-
diovascular health could have walking and memory issues, even in the early stages 
of PD [1–13].

20.2  A Few Words on Parkinson’s Disease (PD)

Parkinson’s disease (PD) is one of the most common age-related neurodegenerative 
disorders, with a prevalence rate of 1–2% [14–28]. Approximately 6.3 million peo-
ple suffer from PD worldwide but the prevalence rate is higher in the developing 
countries. Akinesia, rigidity, postural instability, resting tremor, and bradykinesia 
are the clinical characteristics of PD [14–32]. PD is the second most common move-
ment disorder caused by the progressive death of dopamine-producing neurons par-
ticularly located in the substantia nigra pars compacta region of the midbrain. The 
pathogenic aggregation of ubiquitin and α-synuclein-rich inclusion bodies called 
Lewy bodies is also produced. Such accumulation leads to the disease pathogenesis 
[33–40]. In 1817 James Parkinson first described the term Parkinson’s disease on 
the paper called “the shaking palsy.” In 1865 William Sanders coined the term 
“Parkinson’s disease.” Various environmental and genetic risk factors give rise to 
the sporadic, familial, and symptomatic form of PD [33–42]. Sporadic PD is the 
most common form of PD which appears due to a number of environmental and 
genetic influences [33–43]. Less than 10% familial PDs are caused by mutations in 
Parkin and PINK1 (PTEN-induced putative kinase protein 1 or PARK6) genes. 
Recent studies revealed that ubiquitylation and mitochondrial integrity are respon-
sible for the disease pathogenesis. Defects in the electron transport chain during PD 
suggest that damaged mitochondria may play a vital role in the disease prognosis. 
Two recessive PD genes, PINK1 and Parkin (PARK2), contribute to the removal of 
damaged mitochondria by inducing mitophagy and autophagy [44–53].

20.3  A Few Words on Cardiovascular Disease

Diseases that involve the heart or blood vessels are called cardiovascular disease. 
Mitochondria are energy currencies of the cell that supply most of the ATP mole-
cules required for cellular functions and integrity. Mammalian hearts also depend 
on mitochondrial oxidative phosphorylation process to fuel myocardial contraction 
and pump function. Damage, senescence, or diseases may disrupt the mitochondrial 
functionalities. The production of high levels of ATP can form superoxide and reac-
tive oxygen species (ROS) radicals that can damage the mitochondria. Several clini-
cal studies have reported that heart failure and increased risk of cardiovascular 
diseases are common in most of the PD patients [54, 55]. Although it is well char-
acterized that Parkin is associated with the onset of PD, but now recent research 
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deciphered its role in cardiovascular diseases as it plays as a central factor in medi-
ating selective mitophagy of damaged mitochondria for mitochondrial quality con-
trol [44–53]. Not only Parkin but also other PD proteins, such as PINK1, DJ-1, 
α-synuclein, and LRRK2, may play crucial roles in cardiovascular diseases. The 
presence of Parkin protein in the heart, skeletal muscle, testis, brain, kidney, liver, 
and various other subcellular locations supports the notion that Parkin can exert its 
functions in these organs as well [44–57]. However, the biochemical mechanism of 
the relationship between Parkin protein and cardiovascular disease is still not clear. 
It has been observed that Ergot-derived dopamine receptor agonists are generally 
used to treat PD, which is associated with heart valve disease. Medication as well as 
other factors like concurrent comorbidities and cardiac sympathetic denervation 
may lead to cardiovascular disease [58–64].

20.4  Different Aspects of Parkin: The Cytosolic E3 Ubiquitin 
Ligase

Autosomal recessive Parkinson’s disease (ARPD) is caused by mutations in Parkin, 
PINK1, or DJ-1 proteins. Parkin, also known as PARK2, is the most common gene 
responsible for early onset of PD. Parkin mutation is mostly associated with PD 
pathogenesis. Parkin protein, a RBR E3 ubiquitin-protein ligase which is coded by 
PARK2 gene, directly links to the ubiquitin-proteasome system and acts as a regula-
tor of protein breakdown. PARK2 collaborates with PINK1 to involve in mitophagy. 
PARK2 and PARK6 (PTEN-induced kinase-1) gene products play major roles to 
control mitochondrial quality.

20.5  Structural Details of Parkin

Parkin (PARK2), a 52-kDa protein, is found in the heart, skeletal muscle, testis, 
brain, kidney, and liver and is associated with autosomal recessive PD. It is located 
on the human chromosome no 6. Parkin is a 465 amino acid residue long protein 
containing RBR type E3 ligase domain and it consists of N-terminal ubiquitin-like 
(Ubl) domain and four zinc-coordinating RING-like domains, viz., RING0, RING1, 
IBR, and RING2, at the C-terminal end of the protein. More than 120 pathogenic 
PD mutations have been reported to be spread throughout Parkin protein, which 
affect the structure and function of these domains. N-terminal ubiquitin-like (Ubl) 
domain is a 76 amino acid residue long part and is involved in substrate recognition, 
proteasome association, binding of SH3 and ubiquitin-interacting motif (UIM) 
domains, and regulation of cellular Parkin levels and activity. In eukaryotes the 
cysteine- and histidine-rich RING-IBR-RING (RBR) domain architecture is highly 
conserved. Parkin is stabilized by multiple hydrophobic interactions and forms a 
compact arrangement, resembling a coiled snake. Low-resolution structure of the 
full-length protein is available in the literature. Parkin possesses two RING finger 
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domains and an in-between-RING (IBR) region. RING1 and RING2 are separated 
by an in-between-RING (IBR) domain as presented in Fig. 20.1.

The RING domains fold with distinct topologies. RING1 domain is the only 
domain with a classical cross-brace zinc-coordination topology, typical of other 
RING fingers. RING0 domain displays a hairpin topology, whereas the zinc- 
liganding residues are arranged in a sequential fashion in RING2 and IBR. RING0, 
RING1, IBR, and RING2 each coordinate two zinc ions. Primary amino acid 
sequences of RING0 and RING2 are similar but their structural topologies differ 
from a classical RING fold. The N-terminal Ubl domain binds to C-terminal RING1 
domain and RING0 domain is tightly associated with the C-terminal catalytic 
domain. Its catalytic activity is repressed under normal cellular condition. Parkin 
activation requires phosphorylation of serine 65 in Ubl by serine/threonine kinase, 
PINK1 [65–69].

20.6  Mechanism of Ubiquitination

Proteasomal degradation, endocytosis, endosomal sorting, and DNA repair are the 
posttranslational modification events of a target protein conducted by ubiquitin sig-
nals. Majority of proteins are destined to be degraded by the ubiquitin-proteasome 
pathway. Ubiquitination is a posttranslational modification process in which pro-
teins are marked by the covalent attachment of multiple ubiquitin molecules, and 
this ubiquitin provides a recognition signal for the 26S proteasome. Three enzymes – 
E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiq-
uitin ligases – carry out the ubiquitination process. First, E1 activates ubiquitin; it is 
an ATP-dependent process to conjugate the C-terminal carboxylic acid group of 
ubiquitin to an active site cysteine. By forming a thioester linkage, an active site 
cysteine residue of E1 gets covalently linked to ubiquitin. Activated ubiquitin is then 
transferred by transacylation reaction to a thiol group of an active site cysteine resi-
due of E2. Finally, the ubiquitin-charged E2 enzyme interacts with a specific E3 
ubiquitin ligase and transfers the ubiquitin to the amino group of a substrate protein. 
E3 ubiquitin ligases are of three types  – RING type (including U-box ligases), 
HECT type, and RING-HECT hybrid type – based on their chemistry and structure. 
Parkin is a member of RBR E3 ubiquitin ligases, which combine the chemistry of 
HECT-type ligases with structural similarity to RING-type ligases. In other words, 
Parkin belongs to the RING/HECT hybrid ligase-type protein family. Parkin con-
tains a RING domain that binds the E2 enzyme and a catalytic cysteine that trans-
fers ubiquitin to the substrate. Parkin activity is repressed in normal individuals 
although various conditions can activate this protein such as depolarization of mito-
chondria or epidermal growth factor signalling. Activation of Parkin protein is 

Fig. 20.1 Domain-wise representation of Parkin protein
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tightly regulated. It can perform the ligation of ubiquitin to various cytosolic and 
outer mitochondrial membrane proteins when mitochondrial depolarization occurs. 
K63, K48, K11, and K6 ubiquitin chains are formed by Parkin. Accumulations of 
these polyubiquitin chains on mitochondria act as the signals for recruitment of the 
autophagosome and proteasome machinery to initiate mitophagy [70–75].

20.7  Parkin Mutations: The Causative Agents of Diseases

Frameshift mutations, missense mutations, exon rearrangements, and point muta-
tions are the different classes of mutations that are spread over the different parts of 
the Parkin protein. Generally, frameshift mutations and nonsense mutations are con-
sidered as pathogenic ones which destabilize the protein structure by destroying the 
structural integrity of the protein. On the other hand, amino acid substitutions and 
nonsense mutation required more detailed analysis to determine pathogenicity. 
However, these mutations also affect the binding affinities of the protein with its 
partners. PDmutDB, Cosmic, and some other databases were developed to store the 
information about mutations, pathogenicity, and structure of the mutant Parkin pro-
tein. Mutations in Ubl and RING1 domain of Parkin lead to unfolding of the protein 
structure, thereby making changes to the binding affinities of Parkin protein. 
Mutations in zinc finger domain can prevent binding of this protein to the 
DNA. Heterogeneous and homogeneous mutations in Parkin protein are responsible 
for the onset of PD. Even a single mutation in the conserved domain of Parkin may 
lead to loss of functionality of the protein. In Ubl domain E28K mutation disrupts 
the domain architecture. The two other mutations, A379V and P437L, could destroy 
the RING2 domain architecture. Auto-inhibition is a general feature of RBR ligases. 
Parkin shows similar mechanism of auto-inhibition like other RBR ligases. 
Mutations in Parkin protein could change its function in the heart [76–80]. Mutations 
also result in the early activation of Parkin protein and also unfold the protein which 
results in the excessive removal of mitochondria. Removals of excess mitochondria 
are not good for cellular processes needed for the proper maintenance of the heart. 
Under basal conditions ubiquitin ligase activity of Parkin is inhibited by these muta-
tions. Under various stress conditions, PINK1 recruits Parkin from the cytoplasm to 
mitochondria and then PINK1-dependent Parkin ubiquitination occurs. This results 
in mitochondrial fragmentation, degradation, and mitophagy. The abundance and 
activity of PINK1 are maintained at very low levels in healthy mitochondria with 
normal membrane potential. However, in damaged mitochondria the depolarization 
of the membrane potential or activation of the unfolded protein allows PINK1 to 
stabilize the outer mitochondrial membrane. After accumulation of PINK1, it shows 
the kinase activity on the mitochondria, which helps to recruit and activate Parkin. 
PINK1 phosphorylates polyubiquitin and ubiquitin-like (Ubl) domain of Parkin 
protein [81–85].
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20.8  Mitochondrial Quality Control

The presence and function of Parkin protein in the brain is well understood. 
However, it is highly expressed in the heart as well. Interestingly, the functional role 
of Parkin in the heart is not yet fully explored. Parkin plays an important role in the 
removal of dysfunctional mitochondria via autophagy in neurons. Autophagy is also 
very important in the heart; it is associated with a wide variety of cardiovascular 
pathologies. Damaged mitochondria produce reactive oxygen species that can cause 
further damage to nearby mitochondria and result in the release of pro-apoptotic 
proteins. Pro-apoptotic proteins disrupt the normal cell death pathway. Activation of 
this type of protein may cause the death of healthy mitochondria, which may lead to 
the depletion of ATP. So, damaged mitochondria are quickly removed by the cell in 
different mechanisms. In acute and chronic myocardial ischemia, heart failure, and 
dilated cardiomyopathy conditions, autophagic mechanism is increased to remove 
the damaged mitochondria and it acts as a protective response by the cell. Deletion 
of Atg5 in the adult heart is known to develop cardiac dysfunction by accumulating 
damaged mitochondria. Some studies suggest that Parkin plays an essential role in 
adapting stress in the myocardium by enhancing autophagy. The gene expression of 
PARK2 is upregulated transcriptionally under stress conditions. In Parkin-deficient 
mice, loss of Parkin protein results in formation of disorganized mitochondria. 
Parkin adapts to the stress condition by activating myocardium mitophagy. In car-
diac and skeletal muscle, Parkin routinely removes dysfunctional mitochondria by 
autophagic mechanism. A disruption of this process accumulates damaged mito-
chondria which leads to heart failure or other multiple complexities. In Drosophila 
melanogaster, Parkin regulates mitochondrial function. The role of PINK1/Parkin 
pathway is important for marking and removal of dysfunctional mitochondria. 
Latest studies suggest that in mammalian cells Parkin does not contribute to mito-
chondrial function normally, but it comes into play under various stress conditions, 
such as infection (chronic systemic inflammation induced by lipopolysaccharide 
administration). It has also been observed that after translocation and ubiquitina-
tion, Parkin could activate several mitochondrial proteins. Parkin deficiency leads to 
loss of ubiquitination of mitochondrial proteins for their activations. This evidence 
suggests that Parkin plays crucial roles in the regulation of mitochondrial function-
alities. Parkin also interacts with autophagy-promoting protein Ambra1 which acti-
vates the PI3K complex to form a new autophagosome. Ambra1-mediated 
Parkin-dependent autophagy could reveal that Parkin may play important roles to 
maintain normal mitochondrial quality in the heart. In healthy mitochondria with 
functional membrane potential, PINK1 is cleaved by the protease 
PARL. Dysfunctional mitochondria upon changing membrane potential would lead 
to accumulation of PINK1  in the outer mitochondrial membrane. The serine/
threonine- protein kinase PINK1 then drags the cytosolic Parkin protein into the 
damaged mitochondria. After recruitment, Parkin activates several outer mitochon-
drial membrane proteins which then generate signals for autophagic clearance. 
Recent findings have revealed that Parkin serves as an important mediator to regu-
late mitochondrial degradation in the heart and cardiac myocytes. Although Parkin 
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mediates mitochondrial autophagy in response to myocardial infarction, mecha-
nisms of Parkin recruitment and activation of myocytes are not well understood. 
Parkin mediates selective mitochondrial clearance by autophagy in cells and also 
plays important roles in the mitochondrial dysfunction and disruption of autophago-
somal clearance, associated with autophagy-related marker LC3 I to LC3 II in car-
diomyocytes. In PD patients, oxidative damage of complex I subunits of mitochondria 
could disrupt the electron transport chain (ETC). In addition, in the case of PD 
patients, mitochondrial DNA is deleted in the dopaminergic neurons. It is reported 
that in Drosophila fruit fly, Parkin and PINK1 deficiency give rise to mitochondrial 
abnormalities in flight muscles and increased male sterility. PINK1-Mfn2-Parkin 
pathway is responsible for clearance of damaged mitochondria. Abnormalities in 
Mnf2 receptor give rise to nonspecific mitophagy. In mouse hearts Nix/Bnip3L and 
Bnip3 death proteins appoint autophagosome into the mitochondria in Parkin- 
dependent and Parkin-independent manners. The involvements of these proteins 
prove that mitochondrial quality is controlled in the heart by the direct involvements 
of Parkin [47, 72, 86–102].

20.9  Concluding Remarks

Recent studies have revealed that mutations in the Parkin protein are responsible for 
autosomal recessive inheritance of Parkinson’s disease. In this review we tried to 
analyze the link between PD and cardiovascular disease through the involvements 
of Parkin protein. Recent studies suggest that patients suffering from Parkinson’s 
disease are prone to heart failure. However, it is not well described how Parkinson’s 
and heart disease are linked. We are trying to provide an overview of how Parkin 
protein controls the mitochondrial quality. We are also trying to decipher the effects 
of mutations on Parkin in PD pathogenesis and how these mutations are responsible 
for the onset of cardiovascular disease. In Drosophila melanogaster, Parkin plays 
important roles to remove the dysfunctional mitochondria. In mammalian system 
the mechanism of Parkin is not clear. Ageing is the common factor that gives rise to 
Parkinson’s and cardiovascular disease. Recent data suggest that mitochondrial 
Parkin protein not only regulates the brain mitochondrial function but also is effec-
tive for cardioprotection. Due to the beneficial roles in the mitochondrial function, 
Parkin and its partners can be used as therapeutic agents for cardiac disease as well.
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21New Technologies in Drug Development 
Provide New Hope in Targeting 
of Dysregulated Redox Signalling 
in Cardiovascular Disease

Soloman Saleh, Kristen Bubb, and Gemma A. Figtree

Abstract
Ever-accumulating evidence supports the pivotal role of dysregulated redox sig-
nalling in a broad spectrum of cardiovascular disease and degenerative ageing. 
Until now, therapeutic strategies have involved non-specific dietary antioxidants 
which have failed to demonstrate clinical benefits. Indirect success has been seen 
in the context of effective receptor-based pharmacotherapies such as antagonists 
of angiotensin or β1-adrenergic signalling. A major challenge has been to suc-
cessfully target key subcellular compartments, each with separate redox micro-
environments, but communicating with each other through a network of 
signalling pathways and cascades. Caveolar, mitochondrial, inflammasome, and 
transcriptional regulation have all proven to have redox-sensitive elements. The 
expanding ‘tool box’ available in the modern drug development field has opened 
the door for new approaches to treating or even reversing dysregulated redox 
signalling in these microdomains. Small molecules, novel genetic vectors, and 
biologics combined with nanoparticle delivery mechanisms are all emerging 
approaches to tackle shortcomings of our existing pharmacological toolset. This 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8946-7_21&domain=pdf
mailto:gemma.figtree@sydney.edu.au


506

chapter reviews recent advances in molecular targets of cardiovascular therapy, 
emerging technologies for their delivery, and approaches in subcellular targeting 
of pharmaceuticals.

Keywords
Redox signaling · Reactive oxygen species · Caveolae · Drug development · 
Nitroso-redox balance · Mitochondria · Mitochondrial targeting · Inflammasome 
· Nanoparticles · microRNA · Gene therapy · Micropeptide therapy

21.1  Introduction: Heart Disease and the Shortcomings 
of Current ‘Antioxidant’ Therapies

Cardiovascular disease remains one of the leading causes of both death and morbid-
ity globally [77]. Despite widespread improvements in pharmacotherapy, health 
literacy, and minimally invasive intervention, the burden of disease remains massive 
in the face of a globally ageing population and in the context of an epidemic of 
obesity and metabolic abnormalities [30]. As such, accumulation of irreversible 
myocardial and vascular damage inevitably converges on the all-too-common fail-
ing cardiac phenotype of normal ageing and chronic disease.

A common mechanism implicated in CVD is dysregulated redox signalling. This 
occurs when there is excessive generation of oxidative free radicals. Pathological 
redox signalling is complex and variable within the heart and vasculature. This 
makes pharmacological intervention aimed at targeting dysregulated signalling 
domains difficult and no clear guidelines for specific antioxidant therapies exist for 
clinicians. Previous attempts to utilise antioxidants have been limited by their indis-
criminate tissue distribution, non-specific activity, and unpredictable pharmacoki-
netic profiles [85]. The initial excitement of promising small-scale trials of 
antioxidant therapies to target cardiovascular disease was met with disappointment 
in larger clinical studies, failing to meet clinically relevant endpoints despite solid 
preclinical grounds [37]. Investigations have been conducted into the reasons for the 
failures of antioxidant clinical trials, such as the highly anticipated HOPE Vitamin 
E trial. It was revealed that systemic and untargeted administration of antioxidants 
may not only fail to reach the biological target, but may in fact disturb otherwise 
intact redox signalling domains [59].

However, recent advances in our understanding of the redox state in cardiovascu-
lar disease, alongside new developments in the applications of biochemical engi-
neering, offer hope of a paradigm shift in the delivery of agents capable of modifying 
dysregulated oxidative signalling domains in the cardiovascular system. The advent 
of highly targeted drug delivery platforms offers the opportunity to exploit our 
growing knowledge of redox compartmentalisation to modulate these pathways 
with precision and specificity. In this chapter we explore promising subcellular 
redox targets in cardiac disease, in the context of recent successes with the tradi-
tional small-molecule approach. We then review the changing landscape of tech-
nologies with the potential to expand the scope of biological targets available for 
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pharmacological manipulation. Finally, the third subchapter discusses how these 
technologies may be used to precisely deliver therapeutic agents to specific subcel-
lular redox microdomains.

21.2  The Redox Subcellular Microdomains: Promising 
Molecular Targets and Small-Molecule Approaches

Dysregulated production of, or protection against, reactive oxygen species (ROS) – 
superoxide (O2

·−), hydrogen peroxide (H2O2), reactive nitrogen species (RNS), and 
nitric oxide (NO) – has been implicated in the origins of key pathological motifs 
common across cardiovascular disease [62]. Cardiometabolic, endothelial, post- 
translational, and immunological function have all been shown to have a redox com-
ponent to their progressive decline in cardiac impairment. To date, current 
pharmacological formulations to address these imbalances can be broadly divided 
into two categories: small-molecule drugs and biologics. Small molecules – such as 
receptor-based therapies and neurohormonal modulators – make up the overwhelm-
ing majority of established therapies in cardiovascular disease, including β-blockers, 
statins, and renin-angiotensin system (RAS) antagonists which act, at least in part, 
through redox-protective means [36, 67]. Conversely, larger but more complex bio-
logics – including antibodies, proteins, and genetic material – make up an emerging 
field showing great promise in manipulating redox signalling pathways. However, 
these often suffer from poor stability and trafficking through membranes and to the 
site of disease [41]. Here we discuss promising targets and small-molecule therapies 
to directly modulate these pathways implicated in the progression of cardiac ageing 
and chronic disease. We address key redox compartments within the cell: the caveo-
lae, the mitochondria, the inflammasome, and finally the nucleus.

21.2.1  Neurohormonal Pathways Regulate Nitroso-Redox 
Imbalance in the Caveolae

The cardiovascular system receives substantial neurohormonal input controlling 
heart rate, inotropy, and cellular growth [36]. Invariably, this signal is conducted via 
membrane hormone receptors anchored to flask-shaped plasma membrane invagi-
nations known as caveolae [19]. The capacity of these caveolae as a signalling 
domain is underpinned by tightly controlled ROS generation interacting with down-
stream effector proteins, kinases, and transporters in a highly targeted post- 
translational fashion [119]. Within relevant CV cells, including endothelial cells, 
vascular smooth muscle cells, and cardiomyocytes, the bulk of this originates from 
the NADPH oxidase (Nox) superfamily. This is a group of ‘primary ROS generator’ 
enzymes with the express function of localising synthesis of O2

·− or H2O2 for the 
purpose of adaptive signalling and reversible protein modifications [4]. More spe-
cifically, the Nox family contains seven members, four of which have been detected 
in cardiovascular tissue: Nox-1, Nox-2, Nox-4, and Nox-5. Of these, all but Nox-4 
have been shown to produce O2

·− in an inducible neurohormonal-sensitive manner, 
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whereas Nox-4 constitutively generates H2O2 and appears to act as an intracellular 
oxygen sensor [39]. Caveolar O2

·− levels in turn facilitate S-glutathionylation, a 
post-translational thiol modification process acting as a functional ‘switch’, revers-
ibly modulating the activity of target proteins within the caveolae, such as the Na+/
K+/ATPase pump, ion channels, and signalling kinases [11]. While important for 
adaptive physiological signalling, this leads to indiscriminate ROS production and 
inappropriate post-translational redox modification of caveolar contents in the set-
ting of the chronic neurohormonal overstimulation associated with decompensating 
cardiac disease.

Importantly, the position of Nox activity downstream of existing neurohormonal 
therapies, such as RAS antagonism, suggests that direct Nox inhibition may have 
synergistic effects with these established therapies. Pharmacological inhibition of 
Nox may be achieved through two main mechanisms: by targeting the membrane- 
bound catalytic subunits of Nox itself or by preventing the translocation and dock-
ing of regulatory subunits from the cytosol to the caveolae [21]. While the latter of 
these is the topic of peptide therapy technologies (see 21.3.5), the former has been 
employed in small-molecule form. GKT137831 is a direct Nox inhibitor with speci-
ficity to Nox-1 and Nox-4 isoforms. While the mechanism of action has not been 
formally elucidated, GKT137831 was designed through a rational structural analy-
sis of Nox itself, implying a direct inhibitory binding to the catalytic subunit [92]. 
Furthermore, treatment of apolipoprotein E knockout (atherosclerosis-prone) dia-
betic mice with GKT reduced atherosclerotic plaque size, reduced macrophage 
accumulation, and attenuated inflammatory response as well as a similar renal pro-
tective effect [38]. The association of all of these improvements with a reduced ROS 
in vascular and renal tissues leaves specific Nox inhibitors as a promising avenue 
for targeting caveolar ROS in a wide range of diseases, either alone or used syner-
gistically with upstream neurohormonal and downstream effector therapies.

Nitric oxide (NO) is another key player in the caveolae, and its downstream sig-
nalling more broadly influences cellular redox state. NO levels are closely coupled 
to Nox activity through multiple mechanisms and are intimately involved in control-
ling cardiac contractility, vascular tone, and remodelling [115]. At the heart of this 
circuit is endothelial NO synthase (eNOS), a caveolae-resident enzyme that co- 
localises with Nox and is the chief producer of NO within the compartment [35]. 
eNOS exists in one of two distinct states: ‘coupled’ to its substrate L-arginine and 
cofactor BH4, or in an uncoupled state in which O2

·− is generated in the place of 
NO. Several stimuli can trigger eNOS uncoupling, including substrate depletion, 
but also oxidative modification of either BH4 or glutathionylation of eNOS itself 
[63]. NO and ROS may have synergistic or antagonistic effects depending on their 
relative concentrations. At low/physiological levels, O2

·− potentiates NO’s ability to 
act in a cardioprotective manner via S-nitrosylation, a post-translational thiol modi-
fication analogous to glutathionylation and mediated by NO [45]. At higher concen-
trations however, O2

·− ‘quenches’ NO to form peroxynitrite which reduces NO 
bioavailability and subsequently compromises vasodilation, triggers inflammatory 
pathways, and promotes hypercoagulability [31]. This gives rise to the concept of 
the nitroso-redox balance – the ratio between NO and O2

·− levels – as an important 
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determinant of the post-translational status of caveolar proteins and, by extension, 
general cardiovascular health. Crucially, the position of eNOS both upstream and 
downstream of ROS generation, alongside its proximity to Nox within the caveolae, 
allows for a ‘spark’ of ROS to destabilise nitroso-redox balance. This can trigger an 
exacerbating cycle of eNOS glutathionylation, uncoupling, and spiralling O2

·− 
excess. This interplay between neurohormonal input, Nox activity, and eNOS state 
has been shown experimentally where angiotensin II treatment resulted in increased 
eNOS glutathionylation in a Nox-dependent manner in human endothelial cultures 
[34]. However, while this led to decreased bioavailability of NO and increased O2

·− 
levels, transfection with ‘non-glutathionylatable’ eNOS restored this imbalance, 
reinforcing the synergistic therapeutic potential of targeting redox dysfunction both 
at the level of Nox and in upstream neurohormonal pathways (Fig. 21.1).

It then comes as little surprise that neurohormonal therapies show promise in 
regulating eNOS state and restoring nitroso-redox balance within the caveolae. β3- 
adrenergic stimulation in particular has been shown to have an inhibitory impact on 
glutathionylation, both of eNOS and other key proteins. Notably, excessive gluta-
thionylation of the Na+/K+/ATPase pump is implicated in heart failure and vascular 
dysfunction [110, 16]. Infusion of a β3-agonist, CL316243, abolished elevated O2

·− 
levels and restored deficient NO levels in a hyperglycaemic rabbit model, alongside 

Fig. 21.1 eNOS uncoupling/Nox, downstream effects, post-trans mods. (Adapted with permis-
sion from [13])
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a normalisation of eNOS glutathionylation in the treated group [51]. This was 
accompanied by a restored endothelial relaxation capacity. The impact on heart fail-
ure was investigated in a clinical study, the phase II BEAT-HF trial where the β3- 
agonist mirabegron was given to a heart failure population. While there was no 
significant effect in major cardiovascular outcomes between the mirabegron and 
placebo-treated groups, there was a significant benefit in a subgroup with severe 
systolic dysfunction and an LV ejection fraction <40% [15]. These encouraging 
results suggest that rebalancing of NO and ROS in a caveolae-targeted manner may 
be a promising prospect.

21.2.2  Targeting Metabolic, Enzymatic, and Structural 
Components of the Mitochondria

The heart exhausts and replenishes its ATP reserves approximately once every 10 s 
[111]. As such, matching metabolic supply against the highly variable demand of 
daily life becomes a delicate balancing act between metabolic excess and ischaemic 
injury. Cellular machinery must be exquisitely ‘aware’ of the nutritional state of the 
tissue, and as the greatest source of intracellular ROS, the mitochondria are natu-
rally situated to convey this information to the cell proper via redox signals. 
Conversely, normal ageing, metabolic disarray, and chronic diseases are all associ-
ated with the accumulation of damaged mitochondrial networks and dysfunctional 
signalling [10]. This damage may manifest as (1) pathological metabolite accumu-
lation, (2) deranged electron transport chain function, and (3) redox modification of 
structural mitochondrial proteins.

Acutely, the mitochondria are implicated in IR due to the accumulation of succi-
nate, an intermediary in the ATP-generating citric acid cycle [86]. Typically, succi-
nate serves as an electron donor under the action of complex II, but in an ischaemic 
state complex II reverses to instead generate succinate in order to maintain ATP syn-
thesis during ischaemia. Upon reperfusion, this pool of succinate then passes back 
through complex II acting in its canonical direction, resulting in a massive ‘electron 
donation’ that overwhelms mitochondrial antioxidant capacity and excessively drives 
complex I activity. Such a burst in complex I activity in a context of depleted cofac-
tors and limited O2 results in a similar burst in ROS production. In line with both of 
these pathological developments, complex II inhibition by dimethyl malonate 
reduces (1) succinate accumulation if given prior to ischaemia, but more importantly, 
(2) succinate oxidation and ROS generation if given during reperfusion [20].

An alternative approach is improving the mitochondrial capacity to survive mal-
adaptive electron leak and ROS from the electron transport chain. Coenzyme Q10 
(CoQ-10) is a ubiquitous mitochondrial antioxidant that serves to ‘soak up’ excess 
electrons during oxidative phosphorylation, especially during elevated metabolic 
drive or ischaemia-reperfusion [56]. CoQ-10 supplementation has largely failed to 
prove useful, but this could be contributed to by poor absorption and delivery to 
mitochondria and low-powered studies. More promising recent results show that 
CoQ-10 can reduce major cardiac events compared to placebo, alongside reductions 
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in both cardiovascular and all-cause mortality [74]. Building on this is MitoQ, a 
CoQ-10 formulation tagged with TPP+, an ion that improves drug accumulation 
within the mitochondria (see  21.4.3). In a 6-week randomised controlled trial, 
MitoQ reduced aortic stiffness, improved brachial flow, and reduced oxidised LDL 
in an adult human cohort with impaired endothelial function [96].

More chronically, oxidative ageing of the mitochondria affects cell survival and 
inflammation through disruption of the structural protein cardiolipin. Cardiolipin is a 
phospholipid embedded in the inner mitochondrial membrane with a key role in 
enzyme integrity and mitochondrial turnover [100]. The best-characterised function 
of cardiolipin is as a structural component of the electron transport chain, where it 
stabilises oxidative phosphorylation enzyme super-complexes and promotes anchor-
ing of mitochondrial constituents to the inner membrane. Cardiolipin is also a potent 
regulator of the removal of damaged mitochondria through the organelle recycling 
process known as mitophagy, wherein cardiolipin localises to the outer mitochondrial 
membrane as a signal to trigger fusion with lysosomes and subsequent degradation 
[84]. However, its physical proximity to ROS generation puts cardiolipin at consider-
able risk of maladaptive oxidative modification. When disrupted, oxidised cardiolipin 
loses the ability to retain mitochondrial subunits to the inner membrane, compromis-
ing metabolic capacity and releasing the pro-apoptotic factor cytochrome C (Fig. 21.2). 

Fig. 21.2 Mitochondrial integrity in the healthy and aged heart. CL cardiolipin, CyC cytochrome 
C, ROS reactive oxygen species
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Accordingly, cardiolipin levels are known to decrease in the ageing or ischaemic 
heart – associated with increased apoptosis, decreased mitophagy, and accumulation 
of dysfunctional mitochondria [27].

Cardiolipin-based therapies have recently been met with success in both human 
and animal trials. Elamipretide is a tetrapeptide that localises to the mitochondrial 
inner membrane and stabilises cardiolipin, supressing its oxidative modification by 
binding to its hydrophobic domains and maintaining membrane cristae structure 
[8]. Cardiolipin, as well as cytochrome C and active caspase-3 (other associated 
regulators of mitochondrial kinetics), improved mitochondrial and cardiac func-
tional parameters in a preclinical heart failure model [101]. Improvements included 
normalisation of mitochondrial membrane potential, ATP synthesis, and ATP/ADP 
ratios which were accompanied by increases in expression of both eNOS and 
SERCA-2a activity – both associated with the heart failure phenotype. Cardiolipin 
(elamipretide) has also proven successful in a preclinical model of atherosclerosis 
[128]. Importantly, reduced plaque burden was not only associated with improved 
ATP synthesis but also the attenuation of a systemic inflammatory response seen in 
atherosclerosis, with reduced IL-6 and LOX-1 receptor downregulation reducing 
macrophage lipid influx and foam cell formation. This suggests that elamipretide 
restores a healthy cardiac metabolic phenotype through mitochondrial stabilisation 
and subsequently leads to a reduction in ROS-related immune dysfunction. Finally, 
human phase I trials of single-dose elamipretide for heart failure with reduced ejec-
tion fraction found no significant adverse events; however, it did not demonstrate 
appreciable improvement in ejection fraction following the single dosage [25].

21.2.3  Targeting Cellular Energetics: Sirtuins and the NLRP3 
Inflammasome

The atherosclerotic disease process begins with the compromise of the vascular 
endothelial wall by the accumulation of lipid crystals, smooth muscle proliferation, 
and cellular inflammatory infiltrate [50]. How and why this occurs is multifactorial, 
but it is becoming increasingly clear that the inflammatory elements of this patho-
genesis appear to be driving forces in disease progression. In health, the cellular 
response to tissue insult is mediated by inflammasomes, multi-protein complexes 
that detect danger signals produced by infection, metabolic derangement, or other 
cellular damage. This generally triggers an interleukin (IL)-mediated inflammatory 
response [22] and activates an apoptotic and healing response to clear the offending 
stimuli. However, inappropriate activation has also been implicated in the self- 
propagating inflammation of chronic disease.

One such inflammasome is the Nod-like receptor family, pyrin domain- containing 
3 (NLRP3) inflammasome. Highly responsive to ROS, the NLRP3 inflammasome 
provides a link between mitochondrial ageing and the inflammatory hyperactivity 
seen in cardiovascular disease [49]. The dysfunctional mitochondrion also activates 
the NLRP3 inflammasome through several indirect pathways. Ca2+ leakage from 
ageing mitochondria to the cytoplasm, mitochondrial NAD/NADH+ imbalance, and 
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cardiolipin translocation to the outer mitochondrial membrane can all activate 
NLRP3 cascades (Fig. 21.2) [42]. As the inflammatory response mounts, attempted 
phagocytosis of cholesterol crystals is followed by lysosomal rupture and release of 
pro-inflammatory enzymes that further exacerbate NLRP3 activation. The net effect 
is that as damaged mitochondria accumulate due to insufficient mitophagy, NLRP3 
is inappropriately activated and leads to the release of inflammatory cytokine IL-1β 
in a magnifying spiral of apoptosis and growing inflammation.

One endogenous target for the rectification of maladaptive NLRP3 inflamma-
some activity is the sirtuin (SIRT) family. The sirtuin family of enzymes are respon-
sible for cellular responses to metabolic fluctuation by catalysing de-acetylation 
reactions, a post-translational modification targeting proteins and DNA histones 
[120]. The endogenous substrates of sirtuins are broad – indeed, interactions with 
NLRP3 may be only one of many mechanisms by which sirtuins normalise cardio-
vascular tissue. In particular, SIRT1 and SIRT3 have both shown protective effects 
against mitochondrial overactivation of the NLRP3 inflammasome [24]. SIRT1 
resides primarily in the nucleus, where its targets include a regulator of mitochon-
drial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 
1-alpha (PGC-1a). Alternatively, SIRT3 – localised to the mitochondria – improves 
mitophagy, upregulates mitochondrial antioxidant manganese superoxide dismutase 
(MnSOD), and reduces IL-1β in the human aortic endothelium [58]. Conversely, 
ROS may directly inhibit sirtuins by reacting with and exhausting NAD+, an essen-
tial cofactor.

Unsurprisingly, sirtuin activators are a class of molecules with putative cardio-
protective effects through immunomodulatory, anti-remodelling, and endothelial- 
protective functions. One such molecule is SRT1720, a SIRT1 activator which has 
previously improved lifespan in obese mice and is suggested to have SIRT3 reactiv-
ity [70]. More recently, SRT1720 has been evaluated in a model of left ventricle 
pressure overload and successfully attenuated the left ventricular remodelling 
response and restored ejection fraction [14]. In light of the declining sirtuin levels 
found in heart failure, sirtuin activators stand as a promising therapy for rectifying 
mitochondrial and redox imbalances common to many cardiovascular diseases [32].

21.2.4  Targets in the Nucleus: Total Cellular Redox Protection 
by Nrf2-Dependent Transcriptional Regulation

Keeping these processes in check is the intracellular antioxidant defence network, 
which must be finely sensitive to ROS production as to prevent oxidative damage 
without perturbing physiological redox signalling. To this end, many endogenous 
protective enzymes rely on antioxidant response elements (AREs) for their tran-
scription [23]. The transcription factor nuclear factor erythroid-2-related factor 2 
(Nrf2) is a master regulator of antioxidant defences, translocating to AREs to pro-
mote the synthesis of key antioxidants [2]. However, at its basal state Nrf2 is bound 
to its inhibitor Keap1. It is only under the influence of excess ROS that Keap1 is 
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modified and releases Nrf2. This is a remarkable mechanism that allows the intra-
cellular antioxidant machinery fine temporal and spatial.

Dihydro-CDDO-trifluoroethyl amide (DH404) is a synthetic small molecule 
with the capacity to stimulate endogenous antioxidant defences through the Nrf2 
pathway [102]. DH404 disrupts the ubiquitination and subsequent degradation of 
Nrf2, increasing its translocation to antioxidant response elements (AREs) and 
upregulating antioxidant synthesis. In line with this, DH404 admission in a rat MI 
model markedly decreased infarct size and ameliorated ventricular remodelling 
post-infarct [12]. These changes were associated with a reduction of eNOS gluta-
thionylation. Given DH404’s interactions with Nrf2 and the antioxidant system, this 
implies a causative relationship through a stabilisation of eNOS in its coupled state, 
restoring caveolar health indirectly through therapeutic targeting of the nucleus.

21.3  Emerging Technologies in Drug Discovery and Moving 
Beyond Small Molecules

Our ever-increasing characterisation of the redox network in cardiac and vascular 
tissues leaves no shortage of molecular targets for novel therapeutics. Less sophis-
ticated, however, has been our ability to reach these molecules and pathways in a 
controlled and precise manner. To this end, cardiovascular pharmacotherapy has 
gravitated towards more intricate development strategies in recent years, pursuing 
both improvements in small-molecule discovery and novel alternatives capable of 
more complex pharmacological interactions [72]. As we move toward more power-
ful drug discovery techniques, biochemically engineered microstructures, and larger 
molecule therapies, we expand our ability to target individual cell populations, dis-
eased tissues, or even subcellular compartments with precision and specificity. In 
this section, we give an overview of advances in small-molecule discovery plat-
forms and move on to the growing role of nanoparticle formulations in cardiovascu-
lar redox therapy, before finally examining the various classes of biologics as they 
enter the preclinical and clinical spheres.

21.3.1  Small-Molecule Libraries and Fragment-Based Drug 
Discovery

Modern-day small-molecule discovery is typically library-based – that is, a diverse 
‘library’ of molecules is screened for those with the desired pharmacological action 
to use as starting points for drug formulations [29]. There are several techniques 
used in the discovery of small molecules, most prominently high-throughput screen-
ing and more recently fragment-based lead discovery (FBLD). Both techniques fol-
low a similar workflow; a library is generated, filtered for elements with a binding 
potential to the target, and finally analysed structurally to tweak into a final opti-
mised drug [75]. The difference between the two techniques lies in the size of each 
molecule in the library – where compounds screened in high-throughput screening 
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are restricted to 500 Da, each ‘fragment’ analysed in FBLD is generally kept below 
200 Da. Initially, these smaller fragments make for much lower-affinity compounds; 
however, FBLD brings with it a number of advantages that ultimately allow for the 
development of a more effective drug. More specifically, multiple promising frag-
ments may be combined into the one drug; thus even a small library makes for an 
exponentially larger number of potential permutations of several fragments [54]. 
Indeed, despite the use of libraries several orders of magnitude smaller than HTS 
libraries, FBLD more effectively mines its ‘chemical space’  – that is, it tests a 
greater proportion of all possible drugs for efficacy. Further, FBLD naturally favours 
the development of hydrophilic drugs, leaving greater potential for optimising affin-
ity through the addition of lipophilic adducts without resulting in an excessively 
lipophilic drug [97].

In turn, the chief challenge of FBLD methods is the need to detect binding activ-
ity at these initially low binding affinities. X-ray crystallography, nuclear magnetic 
resonance, and surface plasmon resonance (SPR) are all high-sensitivity methods 
that typically outperform biochemical assays at low binding affinities [122]. SPR in 
particular benefits from a low amount of target protein required and a resistance to 
drug aggregation; in this method, a metal surface is conjugated with the target pro-
tein and coated in a drug-containing solution. A light source is reflected off the 
metal surface, while ligand formation between drug and protein causes minute 
shifts in the metal plate and thus the oscillations of the reflected light [87]. SPR is 
sensitive over a wide range of affinities (min-max) and resistant to error from drug 
aggregation which limits detection of false positives. This is doubly important in the 
high drug concentrations needed to detect fragment binding. These recent advances 
in library-based methods and ligand detection pave the way for small-molecule for-
mulations to have a very real place in highly targeted redox therapy.

21.3.2  Nanoparticles for Targeted Drug Delivery

‘Nanoparticle’ is a catch-all term for a wide range of structures produced on a 
nanometre scale, often loaded with drugs or other small molecules, with designer 
pharmacokinetic profiles for use in treatment or diagnostics [48]. Functionally, 
nanoparticles are characterised by physical and chemical properties determined 
not only by their material but also by their structural arrangement. This allows for 
an overwhelming level of fine-tuning in the biological properties of these com-
pounds. Nanoparticles may serve several functions in pharmacology, but are most 
commonly used as carriers for other drugs. They are robust against degradation and 
exhibit other attractive qualities such as potential for tissue targeting and reduced 
toxicity [6]. A simplistic and familiar example is found in liposomes, which may 
be ‘loaded’ with a hydrophilic target that then inherits the membrane permeability 
of its lipid shell. Indeed, such liposomes are often used as non-viral vectors in 
genetic transfection to assist membrane traversal and shield genetic material from 
degradation [65].
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Lipid structures such as liposomes are just one class of nanoparticles. In addi-
tion, metallic, polymer, and non-metal lattices all have a solid proof of concept for 
use in targeted cancer therapy and are gaining traction in cardiovascular therapy 
[68]. Increasingly complex or novel structures may be manufactured from an 
organic or artificial scaffold, loaded with a bioactive payload, and finally function-
alised by stabilising or targeting moieties to improve half-life and tissue specificity 
(Table 21.1).

An example of this is the small-molecule pitavastatin. In vitro, statins are known 
to protect against cardiovascular disease by lipid-lowering activity, as well as by 
restoring redox balance. This leads to improved remodelling and decreased inflam-
mation at high doses [5]. Despite this theoretical backing however, statins have 
failed to demonstrate any clinically observable cardioprotective effect if adminis-
tered during acute infarct or ischaemia-reperfusion (ref). A series of preclinical 
studies have shown that combining pitavastatin with a polymeric nanoparticle 
increases atherosclerotic plaque stability and decreases vascular monocyte recruit-
ment. This strategy has also proven advantageous in preclinical work when admin-
istered during reperfusion of the ischaemic heart [47, 52]. These effects – at least in 
part due to the nanoparticle’s preferential uptake by monocytes – were not detected 
in the pitavastatin only group. Pitavastatin nanoparticles have undergone phase I 
trials with no significant adverse outcomes and are currently undergoing phase II 
trials in critical limb ischaemia and pulmonary hypertension [78].

21.3.3  miRNA Therapies May Offer Cardiac Regenerative 
Potential

MicroRNAs (miRNA or miR) are short non-coding nucleotide arrays with potent 
translational regulation of coding messenger RNAs [98]. miRNAs inhibit protein 
translation through both direct mRNA degradation and formation of an ‘RNA- 
induced silencing complex’, a protein complex capable of cleaving the miRNA tar-
gets. Both mechanisms allow a given miRNA up to hundreds of inhibitory targets, 
and roughly 40 miRNAs have been implicated in the progression or attenuation of 
cardiovascular disease through putative effects on the redox network [55].

AntagomiRs are synthetic oligonucleotides with an anti-sense sequence match-
ing their target miRNA, binding to and thus inhibiting their action [61]. Over the 
past 15  years, several side-chain modifications have been developed to protect 
against endogenous nucleases and encourage binding to the target miRNA. However 
even with these modifications, antagomiRs face pharmacokinetic challenges and 
naturally accumulate in the liver and kidneys, posing a hepatotoxic or nephrotoxic 
threat [57]. This poor targeting is doubly concerning – not only do lower concentra-
tions reach the target site, but delivery of potentially regeneration-inducing agents 
to unintended tissues may pose an oncogenic risk. Table  21.1 includes several 
nanoparticle formulations to circumvent these concerns with targeted antagomiR 
delivery to cardiovascular tissue and further reducing exposure to nuclease 
activity.
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Table 21.1 Classes of nanoparticles and examples of cardiovascular applications

Indication Class Contents Functional groups Outcomes
Heart failure Polyketal 

polymer
S100A1 N-acetylglucosamine Improved Ca2+ 

handling in 
cardiomyocytes [69]

Calcium 
phosphate

R7W-MP – Inhaled nanoparticles 
localise to 
myocardium and 
improve fractional 
shortening in 
diabetic 
cardiomyopathy [71]

Atherosclerosis PLGA 
polymer

Simvastatin High-density 
lipoprotein (improves 
endothelial uptake)

Preferential uptake 
by vessel wall, 
attenuated 
inflammation, 
marked decrease in 
atherosclerotic 
burden [28]

PEG/PEI 
polymer

miR-146a & 
miR-181b

E-selectin (improves 
endothelial uptake)

Reduced vascular 
inflammatory 
markers, 
chemokinetic 
response, plaque size 
[64]

PLGA 
polymer

Pioglitazone – Increased plaque 
stability, normalised 
macrophage 
differentiation [80]

Myocardial 
infarction/ 
ischaemia- 
reperfusion

PLGA 
polymer

Pitavastatin – Reduced left 
ventricle remodelling 
post-infarct, reduced 
infarct size – not 
seen in standard 
pitavastatin arm [47]

Liposome BH4 – Improved eNOS 
coupling during 
ischaemia and 
reperfusion, 
increased NO, 
reduced ROS [123]

PLGA 
polymer

VEGF gene – Increased vascular 
density, reduced 
infarct size, 
improved ejection 
fraction [83]

(continued)
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Despite these challenges, miRNA therapies have yielded promising results in 
vivo. miR-34a is a tumour suppressor with transcriptional inhibition of the cell cycle 
that controls protein B-cell lymphoma 2 (Bcl2), cyclin D1, and SIRT1 [126]. Both 
Bcl2 and cyclin D1 appear to play a role in the short-lived regenerative capacity of 
the neonatal heart, while SIRT1 has anti-apoptotic and redox-protective effects. 
Administration of a miR-34a inhibitor displayed a remarkable partial rescue of both 
function and tissue viability in infarcted myocardium in adult mice. It remains ques-
tionable as to whether miR-34a simply reduces post-infarct remodelling or truly 
reactivates myocardial regenerative machinery, and this warrants future 
investigation.

21.3.4  Gene Therapy

Over the past 15 years a plethora of genetic targets, from cancer to congenital muta-
tions, have been brought to clinical trial  – almost all of which have stubbornly 
remained in the sphere of research [121]. In fact, it was not until 2015 with Glybera, 
a treatment for lipoprotein lipase deficiency, that the first gene therapy entered clini-
cal use in the western world [73]. Each gene therapy consists of two parts – a genetic 
payload and a delivery vector. Of these, the latter takes chiefly one of three over-
arching approaches: (1) naked plasmid, (2) viral vector, or (3) nanoparticle carrier, 
each with its own profile of advantages and challenges. Viral vectors are the most 
commonly employed and best studied for their shielding of fragile genetic material 
and relative simplicity compared to nanoparticles [94]. More recently, however, on 
the platform of success in cancer therapy, nanoparticles have crossed over to cardio-
vascular gene therapy. They offer real promise for overcoming some of the road-
blocks that have held gene therapy back from clinical use.

The sarcoplasmic-endoplasmic reticulum Ca2+/ATPase (SERCA) is a critical 
regulatory pump controlling myocardial calcium homeostasis and contractility 
implicated in the progression of cardiac failure [44]. Built on the back of promising 
preclinical data, the recent CUPID-2 phase II trial delivered SERCA-2 gene therapy 
via adenoviral vector to a cardiac failure and cardiomyopathy population [40]. 
However, despite high expectations, CUPID-2 failed to demonstrate any significant 

Table 21.1 (continued)

Indication Class Contents Functional groups Outcomes
Cardiac 
regeneration

PLGA 
polymer

miR-132 Cyclic RGD (improves 
clathrin-mediated 
uptake)

Improved 
angiogenesis in vitro, 
followed by greater 
survival on 
transplantation [26]

Carbon 
nanotube

– – Improved 
conductivity in tissue 
engineering scaffolds 
[3]
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change in left ventricular ejection fraction, seemingly due to insufficient gene deliv-
ery by the viral vector. While disappointing, the results of CUPID-2 do not preclude 
a future for SERCA gene therapy, especially given the recent advances in non-viral, 
nanoparticle-based DNA delivery covered below. A genetic target with more clini-
cal success is vascular endothelial growth factor (VEGF). VEGF stimulates all of 
the major pro-angiogenesis pathways. It promotes redox balance by reducing Nox 
activity, promoting the coupling of eNOS, and improving Nrf-2-mediated antioxi-
dant expression [81]. Accordingly, the phase I/II KAT301 study administering per-
cutaneous intramyocardial injections of adenoviral VEGF in coronary artery disease 
demonstrated not only safety but improved myocardial perfusion at 1 year on PET 
scan [43].

Despite their complexity, nanoparticles have several advantages over adenovi-
ruses. Adenoviruses suffer from endogenous antibody resistance which can limit the 
drug viability and efficacy in an unpredictable manner and development of toler-
ance making subsequent dosing less effective [46]. Meanwhile nanoparticles offer a 
more controllable pharmacokinetic profile, targeting, and controlled release. 
Building on this is the delivery of a VEGF plasmid using a redox-sensitive heparin- 
loaded polymeric nanoparticle. The abundance of intracellular redox agents favours 
the reduction of the heparin elements in the nanoparticle, freeing them and displac-
ing the relatively less electronegative plasmid DNA in a self-accelerating feedfor-
ward loop [82]. This results in maximised drug unloading, but only after it has 
entered the intracellular space, where the particle may be exposed to a reducing 
agent and thus ‘unlocked’. A similar strategy has been employed in the delivery of 
the eNOS gene, using a redox-sensitive polymer nanoparticle [116]. However, in 
this case, the nanoparticle carrier was targeted to α2-adrenergic receptors, thus pref-
erentially targeting endothelial cells. Moreover, α2-receptors have been shown to be 
upregulated in atherosclerotic lesions, further improving precision towards diseased 
tissue. In vitro, this corresponded to increased endothelial NO production and a 
reduced inflammatory response and reduced plaque burden in an atherosclerotic 
mouse model. The observation of both a more selective uptake by diseased endothe-
lium and the apparent improvements in intracellular delivery make redox-sensitive 
nanoparticles a promising candidate for delivery of genetic materials.

21.3.5  Peptides and Micropeptides Regulate Cellular Functions

Over the past decade, progress in the fields of bioinformatics and genome-wide 
analysis have led to the discovery of previously unrecognised coding regions, mis- 
annotated as non-coding due to their small size [66]. These encode for short amino 
acid sequences known as micropeptides, a group of molecules with diverse regula-
tory function influencing cellular proliferation, organogenesis, and metabolic func-
tion. While relatively novel, micropeptides have garnered interest in the field of 
cardiovascular therapy as regulators of cellular and organelle function, including 
caveolar signalling.
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The Nox enzymes do not function in isolation – rather they require the transloca-
tion and docking of a number of subunits to facilitate their action [92]. This intrinsic 
assembled regulation system makes Nox a well-suited target for peptide therapies. 
The specific subunits vary from isoform to isoform, but each Nox complex may be 
largely considered as membrane-bound subunits, organisers that assist in enzyme 
complex assembly, and activators that promote catalytic activity. Several of these 
are shared across isoforms and may be used as broad inhibitors of Nox activity, such 
as the membrane-bound subunit p22phox required for the activity of Nox-1–4 [21]. 
The binding of p22phox with the Nox-2 activator subunit p47phox may be blocked with 
the peptide PR39, while structural similarities between various Nox-activating sub-
units give cross-activity to both Nox and non-Nox targets. More specific inhibition 
may be achieved by targeting subunits involved in the activation of individual iso-
forms, for example, Nox-1 activator (NoxA1) is a cytosolic subunit that translocates 
from the cytosol to activate Nox-1 and has not been observed to act on any other 
isoforms [89]. Based on this, NoxA1 docking sequence (NoxA1ds) is a peptide 
competitively binding to the Nox-1 site at which NoxA1 docks, resulting in a potent 
inhibition of O2

·− production specifically at Nox-1 without impacting other Nox 
isoforms in vitro. This approach appears to offer greater isoform control than simi-
lar small-molecule inhibitors, and application of these peptides in vivo will shed 
light on their effects in a more complex disease system. This is especially important 
in the context of the role of Nox-2 in neutrophils and the prevention of bacterial 
infections [90].

The small peptide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP) is a potent angiogenic 
and anti-fibrotic agent, acting in part as an angiotensin-converting enzyme inhibitor 
[95]. Chronic treatment in a preclinical cardiomyopathy model resulted in higher 
cardiomyocyte density, reduced fibrotic change and macrophage infiltration, and 
improved ventricular contractility [104]. There was synergistic benefit of combined 
Ac-SDKP and the stem cell chemotactic stromal-derived factor 1 (SDF-1) used in 
loaded hydrogels applied in an MI model [109], largely by further improvement of 
similar endpoints.

21.4  Overcoming Barriers to Reaching the Subcellular Redox 
Microdomains

The ability to target dysregulated oxidative signalling in specific subcellular com-
partments without disturbing homeostatic mechanisms remains the elusive ‘Holy 
Grail’ of redox therapeutics of high relevance to cardiovascular disease. The promise 
of greater efficacy and reduced systemic toxicity of this approach has not yet reached 
its potential, due to a series of bioengineering challenges. Here we discuss each of 
these challenges in turn – first, the drug must enter the cell, then it must localise to 
the appropriate subcellular location, and finally, the drug must cross structural sub-
cellular barriers or organelle membranes to reach its ultimate site of action.
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21.4.1  Penetrating the Cell Membrane and Escaping Lysosomal 
Degradation

Moving from the circulation and entering the cell is the first step to accessing the 
predominantly intracellular network of redox pathways. Where small-molecule 
drugs are typically small, uncharged, and hydrophobic enough to passively diffuse 
across the membrane, larger nanoparticles, peptides, and genetic material require 
active transport mechanisms [9]. Attempts to cross the cell membrane and reach the 
cytoplasm can broadly be considered under three strategies: clathrin-dependent 
endocytosis, caveolar-dependent endocytosis, and receptor-independent 
endocytosis.

Clathrin is a structural protein that mediates the formation of membrane invagina-
tions involved in endocytosis and the primary route of entry into the cell [125]. 
During endocytosis, clathrin rapidly accumulates at the cell membrane, pocketing 
and pinching off a part of the membrane as an endosome; this endosome is destined 
for lysosomal fusion, exposing its contents to high acidity and enzymatic degrada-
tion. Thus, utilising clathrin dependency requires overcoming two chief obstacles. 
First, the drug must interact with the membrane and trigger endocytosis. Following 
this, the drug must be able to enter the cytoplasm and avoid lysosomal degradation – 
a feat known as endosomal escape [60]. Neutral or cationic nanoparticles are ideally 
suited to interact with the membrane due to the negative charge of the cell, while 
pH-sensitive agents may be designed to undergo a conformational change as acidity 
rises in the endosome, triggering a permeability through the endosome. Lastly, mem-
brane-destabilising cations or peptides have also been employed to disrupt endo-
somal membranes, typically through conjugation with a nanoparticle carrier [105].

While we now know the caveolae as a potent signalling domain, their first 
described function in the cell was as a site of entry for key nutrients including folic 
acid and albumin [9]. Caveolin facilitates the pinching of the caveolar space to form 
the vesicular ‘caveosome’ in response to the binding of an extracellular receptor on 
the surface of the caveolae. Notably, caveolae-dependent endocytosis at least par-
tially bypasses lysosomal degradation, and the relatively neutral pH of the caveolae 
allows for significantly improved drug survival. Several strategies have been 
described to facilitate caveolar drug uptake. Most simply, drugs may be function-
alised with a canonical substrate of caveolae such as folic acid, ferritin, or albumin 
[93]. Alternatively, nanoparticles constructed of synthetic polyelectrolytes may be 
‘physiochemically tuned’ to have a customisable affinity for caveolae by modifying 
the polyelectrolyte backbone and charge, without the need for ligand targeting 
[117]. Whatever the strategy employed, targeting caveolar uptake has the conve-
nient side effect of affecting tissues proportional to the density of caveolae in their 
membranes – notably higher in cardiovascular tissues such as endothelial cells [18].

Lastly, cell entry may be independent of both clathrin and caveolae. Cell- 
penetrating peptides (CPP) are short amino acid sequences that, when conjugated 
with a target molecule, improve its ability to cross biological membranes [79]. This 
is thought to be through macropinocytosis – a receptor-independent endocytic path-
way for the absorption of fluids and non-specific solutes into an endosome similar 
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to the clathrin pathway. The exact pathway – or pathways – employed by the various 
CPPs is still the subject of debate, and it is quite possible that at least part of this 
membrane permeability comes from caveolar-mediated mechanisms [99]. 
Regardless of mechanism, CPPs are notable in that they may be directly conjugated 
onto proteins, small molecules, or even some nucleotide structures with or without 
the use of a nanoparticle carrier.

21.4.2  Physical and Chemical Barriers to Caveolar Therapy: Plvap 
Tagging, Flexible Nanoparticles, and Caveolin Scaffolding 
Domain Peptides

Caveolae were first described in 1953, and their signalling capacity elucidated in 
1994 [127]. Despite this, no pharmacotherapy directly targeting and localising to 
the caveolae has been brought into clinical use during the intervening 25 years. This 
seeming lack of progress may be explained by the difficulty of reaching the caveo-
lae pharmacologically – not only do caveolae form and dissipate dynamically in 
response to myriad stimuli, but also possess a restrictive geometry, blocking larger 
particles from entering [91]. With this in mind, three strategies have been employed 
with success in delivering pharmaceuticals to the caveolae, tagging with the 
caveolar- specific marker plasmalemmal vesicle-associated protein (Plvap), employ-
ing flexible nanoparticles, and modulating caveolin action with caveolin scaffolding 
domain (CSD) mimics.

Plvap is a caveolae-specific marker that has demonstrated preclinical potential 
[106]. Alternatively, platelet endothelial cell adhesion molecule 1 (PECAM-1) is 
expressed extensively across the endothelial membrane. To assess the relative effi-
cacy of Plvap over PECAM-1, human endothelial cells were stimulated at toll-like 
receptor 4 (TLR4) with lipopolysaccharide to trigger a caveolae-centred influx of 
O2

·− as a model or ROS excess [108]. In this model, treatment with MnSOD-loaded 
antibodies conjugated to either Plvap or PECAM-1 both significantly reduced the 
inflammatory response, with Plvap-associated SOD having a greater effect than 
those conjugated with PECAM-1. Interestingly, this was in the face of an overall 
reduction in binding to endothelial cells and greater effectiveness at lower doses, 
implying a reduction in non-specific endothelial uptake and a greater proportion of 
SOD reaching the caveolae.

While Plvap targeting has proven effective in concentrating small molecules 
such as MnSOD in caveolae, the ‘bottleneck’ of the flask-shaped caveolae restricts 
the size of drug formations to ~50 nm, sterically blocking any larger molecules – 
including most nanoparticles [107]. This may be addressed through the use of flex-
ible nanoparticles, capable of deforming to fit through the caveolar opening and 
interact with Plvap. In particular, a deformable lysozyme-dextran nanogel has 
allowed for the transport of drugs to the caveolar membrane, while analogous poly-
styrene nanoparticles failed to significantly enter endothelium [76].

Finally, caveolar signalling can be targeted in a specific manner by directly mod-
ulating interactions of caveolar constituents, chiefly of caveolin proteins. Beyond 
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their role in mediating caveolar endocytosis, caveolin proteins serve as functional 
regulators of the caveolar redox signalling network [17]. Caveolin-1 (Cav-1) in par-
ticular has been identified to interact through its CSD in an inhibitory manner, in 
turn reducing endogenous NO production [53]. CavNOxin is a synthetic peptide 
mimicking the CSD with key amino acid substitutions making for a non-inhibitory 
mutant and conjugated to a CPP allowing for greater membrane permeability. The 
net result is that CavNOxin competitively disrupts caveolin-dependent inhibition of 
eNOS, increases NO, and markedly reduces atherosclerotic burden in an eNOS- 
dependent fashion alongside reduced leukocyte recruitment and oxidative damage 
in vivo [103].

21.4.3  Delivery of Drugs, Antioxidants, and Genetic Material 
to the Mitochondria

Since supposedly symbiosing with eukaryotic life billions of years ago, mitochon-
dria have become essential not only in metabolic function but also in mediating 
inflammation, apoptosis, and autocrine signalling [118]. Despite this, in many ways 
the mitochondria still function as an independent entity from the cell. With highly 
selective organelle membranes, self-maintained genomes, and autonomous turnover 
kinetics, these mitochondrial properties provide both great challenge and opportu-
nity for targeted pharmaceutical therapy.

Pursuit of this has led to the discovery of ‘mitochondriotropics’, compounds that 
may be adducted to pharmaceutical agents to improve targeting of the mitochondria 
[112]. The most widely used mitochondriotropics are delocalised lipophilic cations. 
In a similar principle to crossing the cell’s own membrane, delocalised lipophilic 
cations such as triphenylphosphonium (TPP+) take advantage of the mitochondrial 
transmembrane potential – the negative charge within the mitochondria – allowing 
for drug accumulation within the inner mitochondrial membrane. TPP+ has been 
conjugated extensively with various antioxidant formulations, for example, MitoQ, 
discussed earlier. A mitochondriotropic which has had particular success in deliver-
ing DNA to the mitochondria is dequalinium (DQA) [7]. DQA may be built into 
liposome preparations known as DQAsomes, which are able to selectively unload 
their genetic payload only after crossing the mitochondrial membrane rather than 
the cellular membrane due to its relatively larger electrochemical gradient.

Even so, mitochondriotropics have a limitation; while cations such as TPP+ and 
DQA rely on the mitochondrial membrane potential for their function, this polarity 
is often diminished in disease, reducing efficacy and favouring accumulation only 
in healthy mitochondria [10]. MITO-Porter is a multilayered nanoparticle system 
designed for the delivery of drugs or genetic material to the mitochondria indepen-
dent of the size or properties of the payload [124]. The CPP octaarginine is expressed 
on the surface of a liposome facilitating endocytosis, followed by activation of a 
pH-sensitive fusogenic peptide as the endosome acidifies, to trigger endosomal 
escape. Finally, octaarginine interacts with the mitochondrial membrane in a similar 
fashion to the cellular membrane, offloading its payload. This system has been 
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tested in a number of preclinical studies with encouraging results, including small 
molecules, RNA, and antioxidants [1, 33].

Finally, mitochondrial peptides utilise their own intrinsic mechanisms to localise 
to the mitochondria and may act to improve their function through endogenous 
means; an example already familiar to the reader is the mitochondrial tetrapeptide 
elamipretide. Humanin  – a micropeptide encoded within the mitochondrial 
genome – has been shown to reduce cellular damage from the mitochondria during 
ischaemia-reperfusion injury [88]. Endogenously, humanin is secreted into the cir-
culation in response to certain stress stimuli and taken up by target tissues, including 
the myocardium. The mechanics of humanin trafficking from its cytosolic uptake to 
the mitochondria is still emerging, but it is known that humanin supresses complex 
I activity and reduces mitochondrial ROS generation [113]. Additionally, in a car-
diac ischaemia-reperfusion injury rat model, humanin supplementation reduced 
mitochondrial swelling and restored membrane potential, alongside reductions in 
infarct size, arrhythmia, and apoptosis [114]. Given the endogenous route of huma-
nin in the vascular circulation – and presumably subsequent subcellular targeting – 
humanin and similar mitochondrial peptides are particularly attractive as 
mitochondrial therapies.

21.5  Concluding Remarks: The Future of Targeted 
Cardiovascular Therapy

Disease processes that in the past have been defined as singular, blanket syndromic 
phenomena – cardiac failure, atherosclerosis, diabetes, and infarction – are being 
increasingly characterised as highly heterogenous states with phenotypic variability 
from patient to patient that has previously gone otherwise unappreciated. Until 
recently, considering individual patients in the context of these differences has 
seemed extraneous due to our inability to act on this information, and treatment has 
remained ‘one-size-fits-all’ across a range of disease patterns at the subcellular 
level. However, the targets and technologies discussed here represent an emerging 
toolbox available for correcting specific imbalances within diseased tissue and 
across a wider spectrum of systemic cardiovascular disease.

The next logical step then is taking on a personalised approach to antioxidant- 
based cardiovascular therapy. This demands a number of prerequisites: (1) an 
understanding and pharmacological isolation of the key motifs in cardiovascular 
disease, (2) ‘high-resolution’ diagnostic capacity to provide a snapshot of an indi-
vidual’s redox state at a compartment level, and (3) drug design and delivery plat-
forms capable of not only reducing but also rectifying imbalance and damage. In 
this chapter, we have seen that the first of these is an ongoing challenge, yet progress 
is steadily increasing. Similarly, the third is more quickly progressing due to rapid 
technological advances. As for the second point, advancements such as diagnostic 
and theranostic nanoparticles, microRNA signatures, and circulating redox bio-
marker panels may hold the key.
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Taken in combination, this paints a promising picture for the future direction of 
cardiovascular therapy, as the gap between our knowledge and our ability to gener-
ate change draws ever closer.
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Abstract

Numerous investigations performed over the last few decades clearly indicate 
that exercise leads to adaptations of the heart resulting in improved function and 
protection against various cardiovascular diseases (CVD) and is a powerful reha-
bilitation tool for cardiovascular patients. However, attaining the required inten-
sity of exercise for these cardiac adaptations may not be possible due to numerous 
constraints such as physical inability, mental unwillingness, stress, etc. Thus, an 
exercise mimetic drug (i.e., a drug that can mimic the effects of exercise at the 
cellular level) can be a novel therapeutic approach for cardiovascular patients. 
An increase in reactive oxygen species (ROS), known as oxidative stress, in the 
cardiomyocyte and vasculature initiates adverse signaling mechanisms causing 
numerous detrimental effects. This oxidative stress is a key contributor to the 
development of CVD. Unfortunately, antioxidant therapy has shown little clini-
cal benefit. In addition to the increased ROS, there is also a concurrent reduction 
in nitric oxide (NO) levels in CVD. Studies have shown that NO signaling has a 
protective effect in the cardiomyocyte and vasculature. Contrary to CVD, exer-
cise decreases ROS levels (i.e., antioxidant effect) and increases NO production. 
Recent studies have shown that ROS and NO do not function independently but 
work in tandem, known as the nitroso-redox balance, and help clarify the failure 
of antioxidant therapies. The nitroso-redox balance is critical to maintain a 
healthy cardiac state. In CVD, there is a detrimental shift in the nitroso-redox 
balance, while exercise results in a positive shift of this balance. A possible exer-
cise mimetic may be a drug that restores this nitroso-redox balance. We have 
developed such a drug (EMEPO) that can simultaneously decrease ROS levels 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8946-7_22&domain=pdf
mailto:ziolo.1@osu.edu
mailto:vikram.shettigar@osumc.edu


534

and increase NO levels. Studies at the cellular level and pre-clinical models of 
CVD have demonstrated that EMEPO, by restoring the nitroso-redox balance, 
improved cardiomyocyte and heart function. Thus, mimicking exercise effects 
on the heart via EMEPO may be a paradigm-shifting therapeutic strategy.

Keywords
Exercise · Nitric oxide · Reactive oxygen species · Excitation-contraction coupling

22.1  Introduction

Heart failure (HF) is the culmination of a wide spectrum of disorders that affect 
cardiovascular function. The clinical condition of HF is generally defined as the 
inability of the heart to support the metabolic demands of the peripheral tissues and 
organs [1]. This inability leads to conditions such as fatigue or dyspnea at rest [1]. 
HF has a significant worldwide impact on mortality and morbidity in the adult pop-
ulation. In the USA alone, HF is the largest cause of death responsible for as many 
as one in four fatalities and a significant proportion of all hospital admissions [2]. 
Unfortunately, even with our improved treatment strategies such as early diagnosis, 
prevention, and management of acute cardiovascular events, the prevalence of HF is 
gradually increasing [2]. Although newer pharmacological strategies were success-
ful in pre-clinical models of HF, these treatments provided little to no meaningful 
respite or improvement in the patient’s condition in the clinical setting [3]. With the 
increase of the aging population and the obesity pandemic, HF is only going to 
continue to grow [2, 3]. Thus, it is imperative to design novel treatment strategies 
that will be clinically useful. This approach may entail exercise or drugs that mimic 
exercise physiology [4, 5]. There exists a strong correlation between cardiac health 
and the ability to perform exercise (known as exercise tolerance) [6]. Hence, a dis-
eased heart’s function may be enhanced with the use of an exercise mimetic [7].

22.2  Exercise in Health

Several research investigations and clinical studies have been done over the last five 
decades to understand the effects of physical exercise on cardiovascular health [8, 
9]. Physical activity/fitness clearly decreases the risk of cardiovascular diseases, has 
favorable effects on risk factors, and improves overall health culminating in lower 
mortality [8, 9]. Conversely, a sedentary lifestyle has risen to become a top risk fac-
tor for the development of cardiovascular disease, especially in the developed coun-
tries [10]. Less than half of the population is involved in regular aerobic activity 
(including workplace physical activity) leading to an increased prevalence of diabe-
tes and coronary heart disease [11]. Thus, there is an ever-increasing need to deter-
mine the basic minimum exercise regimen tailored for an individual based on age, 
gender, race, and genetic predisposition [9]. There is also a need to determine the 
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physiological and molecular mechanisms of exercise to develop the next-generation 
therapeutics that can mimic the effects of exercise and help prevent cardiovascular 
disease.

22.3  Exercise: Benefits and Risks

Clinically, exercise is determined as any activity which requires more energy than 
in the resting stage. There are different types of physical activities or exercises 
which can be categorized as aerobic, muscle-strengthening, bone-strengthening, 
and/or stretching. In general, it is the aerobic exercises that have the most significant 
impact on the cardiovascular system [12]. Aerobic activities can vary from mild 
(such as walking or gardening) to intense (such as running, mountain-climbing, 
etc.). Generally, to derive the positive benefits of physical activity, the Centers for 
Disease Control and Prevention (CDC) and the American College for Sports 
Medicine (ACSM) recommend 30  min of continuous or accumulated moderate 
activity daily [12, 13]. Moderate activity is when the heart rate increases 40–50% 
above resting heart rate as achieved by walking briskly at 3–4 miles per hour, swim-
ming, dancing, etc.

Benefits of regular physical activity or exercise are hard to disregard. There is a 
direct connection between the effects of exercise and heart adaptations [14, 15]. 
Exercise increases stroke volume in trained subjects due to structural and myocyte 
adaptations (discussed further below) resulting in an increased cardiac reserve and 
VO2max [16–18]. VO2max is the maximal amount of O2 consumed during peak 
intensity of physical activity and is dependent on the ability of the cardiorespiratory 
system to deliver O2 to the exercising muscle. Cardiovascular benefits of physical 
activity begin to occur when the activity is performed at 50% VO2max. Studies have 
shown that the greatest benefit of exercise to the heart itself is observed at ~75–90% 
of VO2max. Regular exercise also dilates blood vessels leading to improved circula-
tion and decreased blood pressure. Additionally, it has been shown that VO2max 
mostly depends on cardiac stroke volume [19]. Thus, since the VO2max level cor-
relates strongly to cardiac fitness, it used as a predictor of cardiovascular mortality 
in clinics.

Additionally, exercise increases the cardiac reserve of the myocardium. Cardiac 
reserve is defined as maximum output the heart can provide over the resting stage. 
This increased cardiac reserve with exercise is a major contributing factor to the 
beneficial effects of exercise. This is especially true in cardiac patients as impaired 
cardiac reserve (leading to exercise intolerance) is one of the first indices that is 
depressed at the onset of cardiac disease [20, 21].

Some of the other commonly known effects of exercise are improvement in the 
strength of skeletomuscular system, maintenance of healthy weight, improvement 
in the proportion of high-density lipoproteins to low-density lipoproteins, and 
improvement in insulin sensitivity [9]. Apart from this, exercise also has positive 
effects on cognitive function, autonomic nervous system, and immune function 
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which can indirectly effect the heart. Thus, overall, exercise has an enormous impact 
on all the physiological processes in the body to improve the quality of life.

22.4  Risks of Exercise

Since heart adaptations are directly linked to the intensity of exercise, it should be 
mentioned that performing a strenuous exercise regimen can have certain serious 
complications. The effects of such exercises range from mild arrhythmia, fibrosis, 
myocardial infarction, and sudden cardiac death [22–24]. These effects of extreme 
exercise regimen have been recapitulated in a rodent study [25]. However, these 
cases are extremely rare and occur only in 1 in 800,000 of exercise hours. Also such 
outcomes generally occur in people with existing cardiac condition or in people 
who have congenital heart defects, myocarditis, or hypertrophic cardiomyopathy.

22.5  Exercise in Disease

In terms of exercise recommendations, the general population can be divided into 
four major categories: (i) people with no instance of CVD or any elevation in risk 
factors, (ii) people with elevated levels of risk factors but no clinical presentation of 
CVD, (iii) people with clinically evident CVD but without any major adverse event 
such as acute myocardial infarctions, and (iv) people with congestive HF. For peo-
ple with no evident CVD and with or without elevated risk factors (groups i and ii), 
there is enormous amount of literature affirming that regular exercise has a huge 
effect on cardiovascular health and overall constitution (as discussed above). 
Healthy individuals with a regular exercise regimen display better health indices 
and are the group with the least risk of getting CVD or associated chronic diseases 
such as obesity and diabetes [26]. Furthermore, regular exercise reverses many risk 
factors like hypertension, unhealthy weight gain, glucose intolerance, insulin resis-
tance, and inflammation. Interestingly, the biggest modification in health indices 
after exercise is seen in people who move from a sedentary lifestyle to implement-
ing regular exercise.

Even in people with mild to moderate cardiac dysfunction (group iii), exercise 
has shown to improve cardiac contractility and quality of life and reduce hospital-
ization and mortality. For people with advanced HF (group iv), cardiac function is 
severely impaired leading to trouble performing daily activities. This leads to fur-
ther inactivity which worsens the cardiac disease. Thus, their physical workout is 
generally supervised and is of minimal intensity owing to frequent events of short-
ness of breath, dizziness, chest pain, and arrhythmias. Nonetheless, patients who 
undergo supervised physical workout or cardiac rehabilitation programs demon-
strate increased VO2max and left ventricular ejection fraction (EF) without any 
serious cardiac complications [27]. Thus exercise has clear benefits across different 
stages of cardiac disease and other chronic diseases.
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22.6  Molecular Effects of Exercise

Exercise has profound effects on the cardiac muscle, vasculature, skeletal muscle, 
lung function, blood composition, and other internal organs function such as the 
kidney, liver, and GI tract [13, 28–30]. Owing to the advances in the field of molecu-
lar biology, it has been possible to understand numerous molecular events occurring 
in these different tissues [31–33]. Numerous studies have deciphered different 
aspects of cellular changes in response to stress and strain caused by exercise [34, 
35]. From an exercise physiology perspective, a comprehensive understanding of 
the molecular signaling and gene expression network will allow us to design thera-
pies which could not only reduce the impact of chronic diseases but also potentially 
mimic the effects of exercise and treat cardiovascular diseases.

22.6.1  Vascular Function

Exercise induces shear stress on the blood vessels [36]. Shear stress is the increase 
in the pressure induced on the blood vessel due to the increased flow of blood. An 
increase in shear stress has an enormous effect on the overall architecture of the 
vasculature [29, 37]. Studies have reported formation of new blood vessels after 
exercise [38]. The formation of new blood vessels or angiogenesis is mediated by a 
complex interplay of growth factors and other enzymes. Growth factors such as 
vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and 
angiopoietins along with matrix metalloproteases (MMPs) and tissue plasminogen 
activators orchestrate the formation of new blood vessels based on exercise intensity 
and training duration [39–41]. Additionally, there is a simultaneous change in vessel 
diameter of large and small arteries [42]. This phenomenon known as arteriogenesis 
is mediated by stimulation by VEGF, vascular cell adhesion molecules (VCAM-1), 
intracellular adhesion molecules (ICAMs), and integrins [41, 43]. Numerous stud-
ies in different disease models ranging from rodents to humans have highlighted the 
importance of arteriogenesis as an exercise adaptation of vascular function.

In the vasculature, the vascular smooth muscle cells are less affected by shear 
stress compared to the vascular endothelial cells. Endothelial cells display a variety 
of gene expression changes and protein posttranslational modifications. One of the 
important proteins to increase expression with exercise is endothelial nitric oxide 
synthase (eNOS or NOS3) [44]. eNOS oxidizes L-arginine to L-citrulline and 
releases nitric oxide (NO) [45]. Under normal circumstances eNOS undergoes 
dimerization with the help of the cofactor 5,6,7,8-tetrahydro-L-biopterin (BH4) 
[45]. NO released from dimerized eNOS diffuses to smooth muscle cells to stimu-
late guanylyl cyclase to increase cellular cyclic guanosine monophosphate (cGMP) 
resulting in vessel relaxation [46]. This dilates the blood vessels and lowers the 
resistance allowing better perfusion of tissues [47, 48]. Additionally, NO also has 
anti-apoptotic and antioxidant properties, hence improving the health and flexibility 
of blood vessels. This is why exercise-induced NO bioavailability and activity in the 
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endothelial cells are considered central to observe the beneficial effects of exercise 
on the whole body.

eNOS gene expression and enzyme activity are regulated by numerous factors. 
The expression of eNOS gene is modulated by factors such as shear stress and cyto-
kines [44, 49, 50]. Additionally, eNOS enzyme activity is subject to various post-
translational modifications, regulation of cellular localization, and activity of other 
proteins which change the efficiency of eNOS function [51]. One of the common 
modification leading to eNOS activation as a result of exercise is the phosphoryla-
tion of eNOS at residue serine 1177 [51]. This phosphorylation is modulated in 
response to shear stress by AMP-activated protein kinase (AMPK), protein kinase A 
(PKA), and Akt. Besides, eNOS undergoes acetylation, glutathionylation, 
O-glycosylation, S-nitrosylation, and acylation at different residues which affects 
eNOS subcellular localization and activity [51].

Contrarily, there is sufficient evidence that the absence of physical activity or a 
sedentary lifestyle has the reverse effect on eNOS expression and function [52]. 
Young healthy mice when forced into physical inactivity (5 weeks) showed drastic 
reduction in vascular eNOS expression and development of vascular dysfunction 
[29]. Additionally, the decrease in eNOS and NO is generally associated with an 
increase in cellular reactive oxygen species (ROS) levels (i.e., oxidative stress) [46]. 
ROS is a group of short-lived highly reactive compounds which include free radi-
cals, oxygen ions, and peroxides. These are formed during oxygen metabolism and 
determine key aspects of cell survival and death. Numerous studies have shown that 
the shift from a healthy vascular tone to a diseased state in endothelial cells is caused 
by oxidative stress [53]. In endothelial cells, ROS is mainly produced by nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidases such as Nox2 and Nox4, 
mitochondria, and xanthine oxidase [54]. Nox4 produces low levels of ROS which 
is essential for maintaining cell function [54]. Nox2 however, under conditions such 
as hypertension, generates large amounts of ROS and drives the endothelial cell into 
a pathological state [54]. Antioxidant enzymes such as superoxide dismutase (SOD) 
and catalase are not capable of countering the increased levels of ROS and alleviat-
ing oxidative stress. As seen in the myocardium (see below), ROS is pro-apoptotic 
and brings about a variety of detrimental gene expression and protein modification 
and degradation in the endothelial cell [55].

Additionally, ROS also reacts with NO to produce peroxynitrite. Peroxynitrite 
oxidizes BH4 and makes it less available for eNOS dimerization. Absence of BH4 
and reduced dimerization of eNOS change the enzyme activity of eNOS to produce 
ROS instead of NO. Thus, “uncoupled” eNOS is a critical aspect in the development 
of vascular oxidative stress [56]. eNOS uncoupling can also occur due to shortage 
of L-arginine and heat-shock protein 90. Such changes in vascular function or endo-
thelial dysfunction are observed as a consequence of smoking, aging, physical inac-
tivity, hypertension, diabetes, hypercholesterolemia, and genetic predisposition. 
Thus, the impaired nitric oxide and redox levels (also known as nitroso-redox 
imbalance) is the most critical factor of overall vascular health which directly cor-
relates with the cardiovascular health and the outcomes in diseases [57, 58].
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22.6.2  Myocardium

The myocardium is highly sensitive to activities of the human body and can acutely 
alter function to adjust to the required activity. For example, movement such as 
standing up from a chair will almost instantaneously change heart rate and preload, 
major determinants of cardiac output [59]. During exercise, the heart rate can 
increase up to threefold from the resting level. To constantly readjust as per the 
demand, the heart is equipped with an array of mechanisms which allows it to 
deliver the necessary work and power to meet the body’s requirements. The heart 
also has the ability for chronic adaptations. For example, with hypertension, the 
heart will initially undergo adaptive hypertrophy for the increased workload [60]. 
Additionally, the heart also has direct adaptions with exercise [14]. This is observed 
intrinsically at the level of the ventricular myocyte. The three major changes to the 
myocyte are (1) greater contraction and accelerated relaxation [61]; (2) increased 
size [62]; and (3) greater antioxidant properties [63].

22.6.3  Excitation-Contraction Coupling

Myocyte contraction is regulated by a process termed excitation-contraction cou-
pling (ECC) [64]. The greater contraction and accelerated relaxation with exercise 
occurs via changes in the ECC machinery [65]. Under normal circumstances in the 
myocyte, depolarization via an action potential triggers influx of Ca2+ via the L-type 
Ca2+ channel (LTCC) [66]. This Ca2+ stimulates the ryanodine receptor (RyR2) to 
open, which releases an enormous amount of Ca2+ from the intracellular organelle, 
the sarcoplasmic reticulum. This causes a sharp tenfold increase in the intracellular 
Ca2+ level which becomes available for the sarcomere assembly to power contrac-
tion and generate the required force to eject blood out of the chamber. At the end of 
contraction, Ca2+ is rapidly removed out of the cytosol allowing the sarcomeric 
contractile apparatus to relax [67]. The sequestration of free Ca2+ from the cytosol 
into the sarcoplasmic reticulum is conducted by the sarcoplasmic reticulum Ca2+ 
ATPase (SERCA2a) [67]. SERCA2a is one of the most critical proteins in the whole 
ECC machinery of the myocardium. Its expression and activity are tightly corre-
lated with overall heart function [68]. SERCA2a activity is regulated by various 
posttranslational modifications; however, its allosteric regulation by phospholam-
ban (PLB) is the most critical [69]. PLB is subject to critical phosphorylation which 
modifies its association with SERCA2a and modulates its Ca2+ uptake activity. 
Dephosphorylated PLB binds tightly to SERCA2a reducing its Ca2+ uptake rate, 
whereas upon phosphorylation, it dissociates from SERCA2a to enhance Ca2+ 
uptake into the sarcoplasmic reticulum [70]. This SERCA2a/PLB interaction forms 
a critical aspect in modifying heart function based on various demands and condi-
tions such as exercise and disease [70]. To maintain homeostasis, the Ca2+ that 
entered via LTCC must be extruded. The most important pathway to extrude Ca2+ 
from the myocyte is via the Na+/Ca2+ exchanger (NCX) [71].
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22.6.4  β-AR Signaling

Since every myocyte contracts with every heartbeat; the heart has designed signal-
ing pathways to alter its function to meet the metabolic demands of the body (i.e., 
moving from a resting stage to a state of physical activity/exercise). The most 
important pathway is activation of the sympathetic nervous system [72, 73]. The 
catecholamines norepinephrine and epinephrine or β-agonists (e.g., dobutamine) 
bind to the adrenergic receptors (AR) on the heart (mostly β1-AR and β2-AR in 4:1 
ratio) which are G-protein-coupled receptors that initiate the cascade of converting 
ATP into cyclic AMP (cAMP) 7 [73]. Within atria, activation of the sympathetic 
nervous system rapidly increases the heart rate, with the magnitude tightly corre-
lated with the intensity of the activity and the circulatory demand of the body [74]. 
In the ventricular myocyte, increased intracellular levels of cAMP via stimulation of 
β-AR receptors activate cAMP-dependent protein kinase (PKA) which phosphory-
lates numerous critical proteins in the entire excitation-contraction machinery [75]. 
It phosphorylates and stimulates LTCC and RyR2 to release higher amounts of Ca2+ 
from the sarcoplasmic reticulum. PKA phosphorylates ser16 PLB to disassociate it 
and SERCA2a to accelerate Ca2+ cycling rates [72]. The larger Ca2+ levels result in 
greater contraction (inotropy). Additionally, PKA also modifies key proteins of the 
sarcomeric assembly such as sites ser23/24 on troponin I (TnI) and ser270, ser282, and 
ser302 of myosin-binding protein C (MyBP-C), along with the faster Ca2+ cycling to 
accelerate relaxation (lusitropy) [76–78]. These inotropic and lusitropic modifica-
tions are necessary to achieve the force generating and hemodynamic change 
required to meet the increased systemic circulatory demand [79, 80].

22.6.5  Nitric Oxide

Nitric oxide (NO) is also an important signaling molecule involved in the regulation 
of ECC and is produced on a beat per beat basis within the heart [81, 82]. In cardiac 
myocytes, NO is produced by nitric oxide synthases (NOS) from the substrate 
L-arginine via the constitutively expressed isozymes nNOS and eNOS [45].

nNOS produces low amounts of NO in phase with the Ca2+ transient due to its 
regulation by Ca-calmodulin [83]. In nNOS knockout mice and with acute nNOS 
inhibition, myocyte contraction is blunted via a depressed Ca2+ transient and a 
slowed [Ca]i decline [84–87]. There is also a reduced functional response to β-AR 
stimulation. The NO produced from nNOS, which is localized to the SR by binding 
to RyR, targets PLB and RyR directly via protein S-nitrosylation and through regu-
lation of phosphorylation levels via the modulation of PKA and phosphatase 
activity.

As with nNOS, eNOS produces low amounts of NO in phase with the Ca2+ transient 
via regulation by Ca-calmodulin. eNOS knockout mice (vs wild type) had an increased 
functional response to β-AR stimulation; while transgenic mice with cardiac myocyte 
overexpression of eNOS showed a decreased response to β-AR stimulation [86, 88, 
89]. In addition, there does not appear to be an effect of eNOS in regulating basal 
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contractility or lusitropy (opposite of nNOS). Thus, it appears the main effect of eNOS 
is to reduce the β-AR response, possibly to protect against Ca2+ overload and the gen-
eration of arrhythmias. Indeed, this appears to be the case as eNOS knockout myocytes 
have increased early and delayed afterdepolarizations [90].

22.6.6  Heart Disease

ECC is altered in heart disease resulting in decreased contraction and slowed relax-
ation [91]. Changes in the ECC machinery are often observed such as downregula-
tion of SERCA2a [68]. In fact, reduction in expression of SERCA2a in clinical and 
experimental heart failure models is associated with loss of contractile function, 
impaired Ca2+ handling, and survival [92]. Therapeutic strategies have been 
designed to restore SERCA2a function (either directly via increasing SERCA2a 
expression levels or changing PLB function), in both animal experiments and clini-
cal trials, and have shown to improve contractile function, electrical remodeling, 
and energetics [93–96]. Other changes in ECC machinery are also observed such as 
upregulation of NCX and phosphorylation changes in PLB and TnI [97, 98]. With 
these changes, the myocardium is incapable of generating sufficient force and out-
put to meet the systemic circulatory demand. To compensate for the changes in 
ECC, the body resorts to mechanisms to maintain the necessary cardiac output to 
sustain survival. One of the primary modes of compensatory adaptation is increased 
sympathetic stimulation [79, 99]. As described above, enhanced sympathetic stimu-
lation increases contractility and heart rate to maintain the necessary cardiac output 
[79]. However, chronic stimulation or β-adrenergic hyperactivity overwhelms the 
heart and leads to numerous detrimental modifications [100]. Sustained sympathetic 
stimulation leads to internalization and desensitization of surface β1-AR [79]. 
Downregulation of β1-AR necessitates further elevation of catecholamine secretion 
to maintain the required output [79]. These elevated levels of catecholamines initi-
ate a complex set of signaling pathways (e.g., Ca-CaM-dependent protein kinase 
and calcineurin). These pathways activate numerous detrimental modifications that 
lead to myocardial fibrosis, inflammation, and apoptosis [101]. It also activates fetal 
gene reprogramming and drives the myocardium toward pathological hypertrophy 
(discussed further below).

Chronic catecholaminic stimulation is also strongly associated with increase in 
ROS production in the myocytes [102]. In the myocardium ROS is produced by 
mitochondrial NADH dehydrogenase, NADPH oxidase, xanthine oxidase, and a 
few other enzymes. In a healthy state, there are strong antioxidant mechanisms in 
the cell that keep the ROS level under check and negate its adverse effects [103–
105]. These antioxidant mechanisms include superoxide dismutase (cytosolic Cu/
SOD, mitochondrial MnSOD, and extracellular Cu/ZnSOD and ecSOD), catalase, 
glutathione peroxidases, and thioredoxin system [106]. There are also various com-
pounds (e.g., vitamin E, ascorbic acid) and peptides (glutathione) that are also anti-
oxidants [107, 108]. In disease states, however, the levels of ROS exceed the 
buffering capacity of the antioxidant mechanisms and cause oxidative stress [104, 
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105]. ROS activates a series of signal transduction mechanisms that have immense 
effects on the myocardium [109]. It activates various redox-sensitive transcription 
factors (such as NFkB, AP-1, and Ets) which express genes that cause inflammation 
and apoptosis [110, 111]. It also activates the matrix metalloproteinases that remodel 
the myocardium and enhance fibrosis [112]. It stimulates Akt, Src, and MAPK to 
enhance hypertrophy and cellular senescence [113]. Additionally, it also activates a 
variety of phosphatases that decrease phosphorylation levels of critical proteins 
such as LTCC, RyR, and PLB to decrease contraction and slow relaxation [16]. 
Thus ROS has an exceedingly enormous damaging effect on the myocardium and 
hastens the development of heart failure [103]. While there are β-AR overdrive and 
oxidative stress, there is actually a decrease in NO bioavailability in heart disease. 
Within the myocytes, there are a downregulation of eNOS and a translocation of 
nNOS from the SR to the caveolae [114, 115]. The net result is less production and 
different subcellular localization and signaling. This contributes to the contractile 
dysfunction observed in heart disease [58].

22.6.7  Exercise

The myocytes from trained animals exhibit greater SR Ca2+ cycling, stronger con-
traction, and faster relaxation kinetics. Contrary to heart disease, exercise, at the 
cellular level, modifies the ECC machinery in a beneficial way [80]. Studies have 
found that exercise results in increased expression of SERCA2a [116, 117]. As 
explained above, SERCA2a is a critical ECC protein and, thus, a major contributor 
to the greater inotropy and lusitropy of the trained myocyte. However, a study in 
SERCA2a knockout mice observed that there were still cardiac adaptations with 
exercise, suggesting that there are additional pathways besides SERCA2a [118]. We 
have found that increased expression of nNOS (neuronal NOS or NOS1) within 
ventricular myocytes is necessary for the exercise-induced inotropy and lusitropy 
[119]. Similar to eNOS (as explained above), nNOS and its cofactors produce 
NO. The increased expression of nNOS and the increased NO levels deliver the 
beneficial effects of exercise by directly enhancing contraction and accelerating 
relaxation by increasing Ca2+ transient amplitude and cycling rates [119]. This is 
consistent with the role nNOS plays in regulating SR Ca2+ handling. Interestingly, 
it has been shown in nNOS knockout mice that most of the exercise adaptations are 
ablated and the heart does not show improvement in function. In addition to changes 
in protein expression, it has been demonstrated that exercise shifts the balance 
toward greater protein phosphorylation of ECC proteins such as RyR2, PLB, and 
sarcomeric proteins. In fact, we have shown that exercise does result in a shift in the 
kinase/phosphatase balance within cardiac myocytes resulting in greater protein 
phosphorylation levels. We have previously shown that nNOS signaling can also 
regulate PKA activity. That is, nNOS (via the formation of peroxynitrite) can 
directly activate PKA, even in the absence of cAMP [120]. Conversely, nNOS sig-
naling has also been found to inhibit phosphatase activity. Thus, the greater protein 
phosphorylation observed with exercise is nNOS-mediated. Taken together, the 
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nNOS-mediated shift in kinase/phosphatase balance resulting in enhanced SR Ca2+ 
cycling and myocyte contraction will increase stroke volume and thus VO2max. 
The net effect of increasing nNOS with exercise is a decreased sympathetic tone at 
rest and reduced resting heart rate as seen in the athletic heart.

On the contrary, a sedentary lifestyle leads to the opposite of the beneficial adap-
tation of exercise on nNOS, that is, an altered localization of nNOS and decreased 
NO production. This directly affects the functioning of SERCA2a via PLB leading 
to lower systolic levels of Ca2+, reduced rates of Ca2+ uptake from the cytosol into 
the SR by SERCA2a, and overall reduced force generation. This will gradually 
result in myocyte apoptosis, fibrosis, arrhythmias, and quicker progression toward 
heart failure. These changes are similar to the effects seen in aging, after elevation 
of risk factors and/or after an acute cardiovascular event.

The detrimental changes in ECC and Ca2+ handling that have been observed in 
heart disease are the complete opposite of what is observed with exercise on ECC 
and Ca2+ handling. This can explain why exercise not only slows the progression of 
heart disease but is the only treatment that actually reverses the disease phenotype 
[121].

22.6.8  Athlete’s Heart

Long-term aerobic exercise is known to change the myocardium to a characteristic 
“athletic heart” [122]. Just as skeletal muscle, exercise can increase the size of heart 
(i.e., hypertrophy) resulting in bigger cardiac myocytes [123]. The athletic heart is 
very different from a normal or diseased heart in not only function but also struc-
ture. An athletic heart undergoes ventricular remodeling resulting in greater end- 
diastolic volumes [124]. Also based on the different types of exercises, the 
myocardium can hypertrophy in different ways. Endurance training will cause 
eccentric left ventricular hypertrophy, and resistance training will cause concentric 
left ventricular hypertrophy, while a mixture of both training causes eccentric- 
concentric left ventricular hypertrophy [122, 125, 126]. With the exercise-induced 
increase in ECC to increase contractility and the physiological hypertrophy result-
ing in larger end-diastolic volume (i.e., preload), the net result is an increased stroke 
volume [124]. As a consequence, the resting heart rate drops to between 40 and 60 
beats per minute. Molecular studies are being performed to identify the pathways 
involved in forming the athletic heart. To date, key mediators identified have been 
the insulin-like growth factor 1 (IGF1), phosphoinositide 3-kinase (PI3K)-Akt sig-
naling axis, and downregulation of C/EBPβ [62, 127, 128]. Similar to the effects on 
ECC, we have found that nNOS is also required for the observed physiological 
hypertrophy [119]. When nNOS knockout mice were trained, there was no physio-
logical hypertrophy observed. Furthermore, when inducible, myocyte-specific 
nNOS transgenic mice were studied, the mice had bigger hearts [16, 119].

Contrary to being beneficial, pathological hypertrophy reduces the chamber size 
and increases the wall stress on the myocardium [129, 130]. This wall stress eventu-
ally results in chamber dilation. Pathological hypertrophy also decreases cardiac 
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contractility and the inotropic reserve and increases the risk for the development of 
heart failure [131]. Interestingly, the signaling pathways for pathological hypertro-
phy are distinct from physiological hypertrophy [132]. Studies have shown that a 
key pathway is calcineurin/NFAT [130].

Hence, the molecular mechanisms of exercise result in activation of different 
signaling pathways resulting in an athlete’s heart. Along with the restored ECC 
(discussed above) and reduced heart rate, exercise negates the need for the compen-
satory sympathetic overdrive to reverse the adverse remodeling and reverse patho-
logical hypertrophy [129], once more highlighting the importance of exercise and 
nNOS as a therapeutic approach for heart disease [133].

22.7  Antioxidant Properties

During exercise, the increased energetic demand results in the mitochondria pro-
ducing more ROS [134]. As described above, increased ROS levels are detrimental 
to the heart and other organs [135]. Thus, the body enhances its antioxidant capa-
bilities. In the heart, exercise results in increased expression of mitochondrial SOD 
[135, 136]. This has been touted as the major pathway responsible for the beneficial 
effects of exercise on cardiac patients. Similar to the role of nNOS in the exercise- 
mediated effects on ECC and physiological hypertrophy, our study also found that 
nNOS is required for the enhanced myocyte antioxidant properties after exercise 
[16]. We observed that our trained myocytes had less ROS levels compared to myo-
cytes from sedentary mice. However, when we isolated myocytes from our trained 
nNOS knockout mice, this effect of exercise was absent. In fact, these myocytes had 
increased ROS levels, consistent with the enhanced ROS production of exercise 
[16]. Remarkably, in studies performed on our conditional nNOS overexpressing 
transgenic mouse (that were not trained), these myocytes also had decreased ROS 
levels. In cardiac disease, not only is ROS production increased (via NOX, XO, 
mitochondria, MAO); there is also a decrease in the ROS scavenging properties of 
the heart resulting in oxidative stress [137]. Hence, the effects of exercise are oppo-
site of that cardiac disease in terms of ROS levels in the heart, with nNOS playing a 
key role.

22.8  Nitroso-Redox Balance

The vast data demonstrates that exercise will prevent and possibly cure heart disease 
[26]. Unfortunately, many people are mentally unwilling or physically unable to 
reach the intensities needed (especially for the adaptions to the myocyte). So, we 
need to design a therapy that can mimic the effects of exercise on the heart. As dis-
cussed above, our data illustrate that the beneficial effects of exercise on the myo-
cyte (ECC, physiological hypertrophy, and antioxidant) are due to the upregulation 
of nNOS.  So what makes nNOS so important? While nNOS directly modulates 
protein function via S-nitrosylation and formation of cGMP [138], we believe the 
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importance of nNOS is it being the central hub to regulate the nitroso-redox bal-
ance, which is the balance between ROS and NO levels [105].

As it is apparent from the descriptions above, the dominance of either ROS or 
NO clearly tilts the balance toward either disease (ROS) or fitness (NO). Over the 
last decade, it has become increasingly clear that, irrespective of the risk factors, 
accumulation of ROS (or oxidative stress) is the predominant mechanism by which 
the heart progresses toward failure [103, 139]. At basal levels, ROS is essential for 
maintaining normal functioning and myocyte physiology. However, with age and 
other cardiac diseases, the antioxidant capacity gradually goes down and is over-
whelmed by the increased levels of ROS leading to oxidative stress and disease.

One may believe that reducing ROS may be an elixir to all the cardiac problems. 
However, clinical trials using potent antioxidants clearly disapprove this idea. 
Clinical trials (such as GISSI and HOPE) failed miserably and actually hastened 
death in the treatment group [140]. This could be because NO is the molecular 
opposite of ROS and offsets the detrimental effects. However, NO bioavailability is 
decreased in cardiac disease, and its levels will not be restored via antioxidant treat-
ment. ROS and NO activate almost complementary sets of pathways which deter-
mine if the cell moves toward apoptosis and dysfunction (ROS) or survival and 
healthy state (NO) [58]. The “proof in the pudding” would be to mimic the effects 
of exercise wherein the antioxidant mechanisms get upregulated to scavenge ROS 
while increasing the levels of NO [4]. Thus it is absolutely critical that newer and 
novel pharmaceutical therapies be developed along the lines of reduction of ROS 
levels and simultaneously increase in the NO levels to observe beneficial effects.

22.9  EMEPO

Along these lines, a novel strategy was adopted for the development of an exercise- 
mimetic therapeutic or an “exercise pill” [5]. The basic premise of this approach 
would be to reduce the level of cellular ROS and increase the cellular levels of 
NO. Nitrone spin traps, used in EPR measurements, have the biological potential of 
delivering these desired effects. Nitrone spin traps react with the superoxide anion 
(O2

-·) to “scavenge” it. Concomitantly, the nitrone spin trap will release NO as a 
chemical by-product [4, 141]. Such a pharmacological strategy would be ideal in 
various cardiovascular disease conditions. Nitrone spin traps such as 
5,5- dimethylpyrroline N-oxide (DMPO) have been shown to be effective in isch-
emia reperfusion injury of the heart and brain [142–144]. We made a novel modifi-
cation to DMPO by adding ester groups to enhance membrane-permeating abilities 
allowing for cell entry. We termed this new compound EMEPO, 2-(2-ethoxy-2- 
oxoethyl)-2-(ethoxycarbonyl)-3,4-dihydro-2H-pyrrole 1-oxide(4). Our data has 
shown that EMEPO is able to enter the myocyte and restore the nitroso-redox bal-
ance(4). Using a genetic model of nitroso-redox imbalance (nNOS knockout mice), 
EMEPO and antioxidants were able to decrease myocyte ROS levels. However, 
unlike antioxidants, only EMEPO was able to increase myocyte NO levels. Further 
characterization of EMEPO revealed that like exercise, EMEPO was able to enhance 
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myocyte contraction via improved Ca2+ handling. Interestingly, the effect of EMEPO 
on myocyte function was much greater than antioxidants. We believe that this is due 
to EMEPO restoring the nitroso-redox balance, unlike antioxidants which will only 
fix one side of this balance. Furthermore, we did not observe any effect of DMPO 
on myocyte function highlighting the importance of cellular entry. The molecular 
mechanisms of EMEPO are also similar to exercise by increasing PLB phosphory-
lation(4). We further demonstrated that, like exercise, EMEPO also shifts the kinase/
phosphatase balance. Thus, EMEPO’s effects on ECC, its antioxidant properties, 
and means to increase NO levels are able recapitulate the effects of exercise in the 
myocyte. These novel characteristics of EMEPO should improve in vivo heart func-
tion and relieve the need for compensatory catecholaminic stimulation observed in 
disease. Thus, theoretically, it should have profound effects on remodeling, fibrosis, 
inflammation, and apoptosis. These desirable benefits, even if provided to a moder-
ate extent, will go a long way in improving the health and outcome of numerous 
patients of CVD across the globe.

22.10  Conclusion

Exercise clearly has beneficial effects which cannot be ignored. Going by the old 
adage, “Prevention is the best medicine,” it is easy to say that a preventative exercise 
regimen will be undoubtedly desirable in reducing the impact of CVD worldwide. 
However, exercise during heart disease may not be possible (or reaching the intensi-
ties required) owing to the complexities associated with different cardiovascular 
diseases such as physical inability, anxiety, emotional stability, etc. Thus, we must 
also be better equipped with resources that will allow us to handle risks entailed 
with CVD particularly given that developed countries have a growing aging popula-
tion and the rise of obesity. The major molecular mechanism to the observed effects 
of exercise on the heart is upregulation of nNOS. The foremost influence of nNOS 
in the ventricular myocyte is to control the nitroso-redox balance to modulate ECC, 
antioxidant properties, and growth.

Thus, any drug that could bring a positive shift to the nitroso-redox balance 
should be able to provide the benefits derived from exercise alone. To highlight this 
point, HF patients were treated with isosorbide dinitrate (NO donor) and hydrala-
zine (vasodilator) in clinical trials (e.g., HeFT and A-HeFT). The HF patients treated 
with these drugs exhibited improved survival, greater ejection fraction, and enhanced 
quality of life. While the mechanisms of the beneficial effects of isosorbide dinitrate 
and hydralazine [145] are not completely understood, we postulate that this treat-
ment is partially mimicking exercise by correcting the nitroso-redox balance. 
However, these trials used a combination of drugs whose primary purpose is not to 
fix the nitroso-redox imbalance. We believe a superior approach will be the design 
of a single compound whose primary purpose is to target the nitroso-redox imbal-
ance (i.e., EMEPO). Hence, we believe that mimicking exercise effects on the heart 
via EMEPO will be a paradigm-shifting therapeutic approach.
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Abstract
The cardiovascular disease of atherosclerosis (myocardial ischemia and cerebro-
vascular disease) is the principal cause of death globally. Remote organ ischemic 
events or remote organ underlying disturbances and pathology may either injure 
the heart acutely or contribute to cardiovascular disease chronically. The most 
typical remote organ system that may provoke such effects to the heart is the 
intestine, either due to (a) thrombotic disease of its vasculature, producing 
acutely intestinal ischemia, or (b) gut-originated disturbance, deteriorating ath-
erosclerosis. In the first case, at reperfusion, the heart acutely becomes a victim, 
causing circulatory shock due to myocardial ischemic changes. In the second 
case, when the intestinal microbial community has altered from symbiotic to 
dysbiotic, metabolites are composed in the intestine, resulting to chronic advance 
of atherosclerosis and CVD worsening. Specifically, food phosphatidylcholine is 
metabolized to TMA (trimethylamine) in the intestine, which is transformed in 
the liver to TMAO (TMA-N-oxide). Interest about TMAO is rapidly growing. 
This substance is being studied thoroughly, in an effort to understand and explain 
its adverse cardiovascular effects, the so-called cardio-intestinal axis. It appears 
that there exist many sites for possible therapeutic interventions to limit its effect.
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Abbreviations

CVD Cardiovascular disease
FMOs Flavin-containing monooxygenases
I/R Ischemia/reperfusion
LPS Lipopolysaccharide
TMA Trimethylamine
TMAO Trimethylamine-N-oxide

23.1  Introduction

In the vast majority of medical literature, atherosclerosis and heart and stroke isch-
emic diseases are defined as cardiovascular disease (CVD), while myocardial isch-
emia and necrosis appear to constitute the main cause of heart failure. Reactive oxygen 
species may largely contribute to the beginning or evolution of CVD [1, 2] and the 
progression of atherosclerosis [3]. It seems that ROS-induced oxidation of LDL in the 
vessel wall contributes as pathogenetic factor to atherosclerosis [3]. Moreover, vessel 
plaque fissure, the link of thrombosis to atherosclerosis, may well correlate with the 
activation of matrix metalloproteinases (MMPs) that is ROS mediated [4].

However, a heart without any apparent previous disease may become a victim of 
a distally occurring damage or disturbance. The former (damage) may be repre-
sented by a distally occurring oxidative stress, e.g., secondary to intestinal ischemia, 
producing an injury that principally affects the myocardium, leading to acute car-
diogenic shock. The latter (disturbance) is the result of an altered intestinal micro-
bial community that has been associated with acceleration of atherosclerosis and 
CVD.

23.2  Cardiac Injury Secondary to Intestinal I/R

Intestinal ischemia-reperfusion is a well-described experimental model that consis-
tently leads to circulatory shock and multiple organ failure [5, 6]. It replicates most 
of the features of the multiple, progressive systemic failure that follows acute intes-
tinal ischemia in humans, which is characterized by a high mortality rate [5]. In the 
1980s intravascular volume depletion was considered to be the main mechanism for 
the circulatory derangement, but, at the time, intravascular volume had not been 
assessed by measurements of left heart filling pressures [7, 8]. The association 
between intestinal reperfusion and myocardial dysfunction has been experimentally 
delineated by the observation that cardiac contractile depression and increased lipid 
peroxidation of cardiac membranes occurred in rats after untreated intestinal reper-
fusion [9]. The fact that allopurinol pretreatment prevented ischemia-reperfusion- 
mediated deficits in cardiac contraction and relaxation [10] further confirmed the 
aforementioned association. Additionally, the cardiovascular consequences were 
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significantly attenuated and the survival rate improved after acute intestinal I/R, 
when animals were pretreated with anti-TNF-alpha [8]. These data suggested that 
myocardial contractility might be impaired, implying a cardiogenic component in 
the intestinal postischemic shock.

In an attempt to clarify the pathophysiology of intestinal postischemic shock, 
an experimental study [11] was carried out by our group, testing the effect of nor-
moxemic (control) over hypoxemic reperfusion (HR) after ischemia. Two pilot 
studies were comprised before the performance of the main experimental proto-
col. The first one included eight animals (four in each group), with reperfusion of 
120 min that followed a 120-min intestinal ischemia introduced by superior mes-
enteric artery clamping. Crystalloid fluids were given before the onset of reperfu-
sion to reach a pulmonary artery occlusion pressure (PAOP) of 10  mm Hg, as 
prevention against oncoming shock. However, severe irreversible shock followed 
and was the cause of death in three out of four control animals, which occurred 
within 15 min of reperfusion, and in one out of four HR animals, which occurred 
at 90  min of reperfusion. The myocardial histology showed severe ischemic 
lesions in all succumbed animals. A second pilot study that included another eight 
animals (all control) showed that prompt use of epinephrine substantially 
decreased mortality (two out of five) in contrast to its use when shock had been 
manifested (two out of three). These two pilot studies dictated that fluid load had 
no, or even negative, circulatory effect in contrast with early applied inotropes 
that exhibited a favorable effect.

In the main protocol, a complete hemodynamic study was realized [11]. Five 
of the 13 animals of the control group died in intractable shock; no animal of 8 
HR group died (p  =  .11). The decrease in the mean arterial pressure during 
reperfusion is shown in Fig. 23.1, lower panel; it was more pronounced in the 
control group (p < .008) despite the larger doses of epinephrine administered, 
compared with the HR group (p < .02, Fig. 23.1, upper panel). During reperfu-
sion, both groups exhibited a decrease in cardiac index (CI) (Fig.23.2, lower 
panel); this was more pronounced in the control group (p = .0007). Pulmonary 
artery occlusion pressure (PAOP) (Fig.  23.2, upper panel) increased during 
reperfusion in both groups and was more pronounced in the control group 
(p = .04 at 60 min). Although mixed venous blood oxygen saturation of the con-
trol animals was higher at 30 min of reperfusion (p =  .005), it declined after 
60  min and became lower than that of HR animals at the end of reperfusion 
(p < .02). Representative pictures of myocardial injury appear in Fig. 23.3, and 
the myocardial histopathologic injury score was higher in the control group 
(2.0 ± 0.69 and 3.4 ± 0.89 for the HR and control groups, respectively; p < .03). 
The concentrations of intestinal mucosa malondialdehyde were significantly 
higher in the control group at 60 min of reperfusion (p < .03).

It becomes evident that tissue-damaging effects of I/R are not limited exclusively 
to the tissue undergoing the initial ischemic insult [12]. In fact, a frequent occur-
rence of injury to other organ systems follows reperfusion of localized organ isch-
emia, the so-called distant or remote organ injury (ROI). Remote organs may suffer 
oxidative injury because their vascular bed becomes exposed to metabolites 
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contained in the postischemic blood, liberated during reperfusion of the primary 
ischemic organ. In most cases, the organs whose I/R may result in ROI are the gut 
[13–15], the aorta cross-clamping and reperfusion during graft replacement surgery 
[13], the lung [16], the liver [17], and the heart [18]. The cardinal expression of ROI 
is the multiple organ failure syndrome (MOFS). However, the most affected organ 
seems to be the lung, since respiratory dysfunction is one of the first symptoms 
preceding MOFS [14, 15].

23.3  Gut Hypothesis of Heart Failure

The human body contains ~1014 bacteria belonging to more than 2000 species, their 
larger part being in the gut [19]. Their weight is approximately 2 kg and their genetic 
material is 100 times more than the human, and importantly their population is 10 

Fig. 23.1 The variation of mean arterial pressure (lower panel) together with the need for epi-
nephrine infusion (upper panel) to maintain a mean arterial pressure of >60 mm Hg. HR, hypox-
emic reperfusion. Values are mean ± SE, from Ref. [11] with permission

E. E. Douzinas and A. Apeiranthitis



559

times more than the human cells. This population is self-renewed every 3 days, the 
same as the metabolically active human organs [20–22]. This diverse dynamic com-
munity of microorganisms is called microbiota (“gut flora”). The coevolution for 
years within the human intestinal environment has led to a reciprocity in coexis-
tence that exerts an effect to human’s essential life processes from digestion and 
absorption to the maintenance of physiology of the host [20], called symbiosis.

Changes of the composition of intestinal microbial community result in dysbio-
sis. In that case, a production of metabolites that may promote atherosclerosis and 
cardiovascular disease (CVD) may occur [23]. On the other hand, a mechanistic 
link is provided between therapeutic modifications of dysbiotic intestinal microbi-
ota that may result in a reduction of myocardial infarction in rats [24]. These obser-
vations have only recently been suggested, and therefore, the intestine, its microbiota, 
and their production of metabolites associated with the western diet have attracted 

Fig. 23.2 The variation of cardiac index (CI; lower panel) and pulmonary artery occlusion pres-
sure (PAOP; upper panel) in the various stages of the experiment. HR, hypoxemic reperfusion. 
Values are mean ± SE, from Ref. [11] with permission
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enormous interest in the field of CVD and atherosclerosis including leading causes 
of death such as myocardial infarction and stroke. Furthermore, gut hypothesis 
seems to represent a probable pathophysiological background to systemic disease 
processes, including susceptibility for obesity [25] and ease in developing resis-
tance to insulin and fatty liver disease of nonalcoholic origin [26].

The relationship between blood lipid levels and risk of CVD is well recognized. 
Interestingly, the role of phospholipids, the third class of lipids (the other two are 
triglycerides and sterols), in the pathogenesis of atherosclerosis and CVD had until 
recently escaped wide consideration. Particularly, in the gut, L-carnitine or phos-
phatidylcholine (lecithin), which is the principal source of choline in the food, may 
be metabolized by microbiota to trimethylamine (TMA) [23]. This substance, after 
its absorption in the gut, is converted to TMA-N-oxide (TMAO) in the presence of 
flavin- monooxygenases (FMOs) in the liver. Large quantities of phosphatidylcho-
line and choline are contained in foods, namely, eggs and meat, and have been 
related with higher levels of TMAO and betaine. Betaine comes from oxidation of 
choline in the kidney and the liver and also is converted to TMA by microbiota and 
to TMAO, consequently, in the liver. These metabolites have been correlated with a 
greater risk of severe cardiovascular insults in individuals who suffer from coronary 
heart disease [23, 27].

Similarly, an association was found between fasting plasma TMAO levels and inci-
dence of major cardiovascular events in a 3-year follow-up of 4007 patients who under-
went elective coronary angiography [27]. In this study, TMAO levels after the 
administration of antibiotics were significantly reduced but recovered after antibiotics’ 
withdrawal. These data strongly support the concept of association between the gut 
microbiota and TMAO production. The additional clinical significance, introduced by 
this study relative to the fasting TMAO plasma levels, was the potential of risk predic-
tion of major cardiovascular events, independently of risk factors regarded as traditional 
(age, sex, low-density and high-density lipoprotein cholesterol levels and triglyceride 
levels, smoking status, blood pressure, diabetes). The potential of TMAO levels for pre-
diction includes the subgroup of participants without angiographic stenosis in main 

Fig. 23.3 Left, large areas of ischemic pale myocytes (arrows) from a heart of a control animal 
graded as grade IV, hematoxylin and eosin staining. Right, scattered ischemic myocytes (arrows) 
from a heart of a hypoxemic reperfusion animal graded as II, hematoxylin and eosin staining. 
(From Ref. [11] with permission)
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coronary vessels or those with levels of apolipoprotein and lipids of low risk. Another 
study [28] showed that plasma TMAO levels predict both near- and long-term (30 days 
to 6 months and 7 years, respectively) risks of incident cardiovascular events, among 
patients presenting with chest pain, signifying an eventually important biochemical tool 
of clinical utility in risk assessment for coronary syndromes.

Choline given in excess to mice increases platelet responsiveness, an effect 
regarded as pro-thrombotic. This effect was not observed if choline preceded a 
period of orally given antimicrobial agents or was given to germ-free animals [29]. 
The identification of more than 15 taxa of bacteria was accompanied with amplified 
risk of thrombosis in mice. Also, it has been shown that germ-free animals trans-
planted with microbiota carry a higher threat of thrombosis, indicating that this 
threat is a transferable feature in mice. Unfortunately, in eukaryotes a receptor for 
TMAO has not yet been recognized.

The unfavorable effect of intestinal metabolites on atherosclerosis and CVD may 
also act inversely, namely, the failing heart may provoke risks to the intestine, lead-
ing to gut failure. For instance, congestion due to splanchnic stagnation because of 
heart failure may lead to transmural bowel edema, loss of barrier function, and 
enhanced permeability of intestinal wall, resulting in bacterial translocation. 
Bacterial and toxins, like LPS detected by Limulus test [30], travelling through the 
portal blood to the liver, stimulate Kupffer macrophages that produce mediators, 
thus increasing the body inflammatory state. These in turn are thought to further 
contribute to heart failure and atherosclerosis progression [31]. In particular, the 
case of impaired function of intestinal barrier, as it happens in sepsis, cirrhosis, 
postischemic intestinal reperfusion, severe acute pancreatitis, and burns, frequently 
results or aggravates sepsis and organ failure [32–36].

23.4  Therapeutic Targets

23.4.1  Restriction of Phosphatidylcholine and Choline-Rich Diet

The concept of TMAO reduction by dietic changes to reduce choline intake is wel-
come, up to a certain degree. Severe reduction in choline availability may be 
involved to several critical functions of the cell, such as synthesis of phospholipids 
which are essential parts of membrane structure and synthesis of the neurotransmit-
ter acetylcholine and methyl group metabolism. Safer therapeutic approaches than 
diet that decrease systemic TMAO levels are under investigation. In order to con-
clude whether decreasing dietary choline would be harmful or not, the enrollment 
of clinical studies would be helpful. However, the limited consumption of red meat, 
eggs, and cheese should be advised.

23.4.2  The Modulation of Microbiota

There are few studies for the modulation of microbiota. Nevertheless, the composition 
and the abundance of the intestinal microbial community may be modified in the 
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following ways: (a) diet [37], where strict vegetarian diet alters the gut microbiota and 
reduces intestinal inflammation, and (b) antibiotics [27], which, in short term, reduce 
the TMAO levels. However, recolonization of the gut occurs after the cessation of 
antibiotics and TMAO reappears. No favorable effect has been shown in studies after 
the administration of antibiotics for secondary prophylaxis of CVD insults [38–40].

However, rifaximin given in patients with alcoholic cirrhosis increased natriuresis 
and glomerular filtration rate and reduced plasma endotoxin, IL-6, and TNF-a levels 
[41]. These findings do not imply that the favorable effect exerted via the modulation 
of intestinal microbial population could dispose a chronic duration. Unpublished 
data of this author, however, show that there is a more protracted, sometimes perma-
nent, favorable effect of this nonabsorbable oral antibiotic at least on the normaliza-
tion of the bowel movements in the ambulatory patient. In any case, antibiotics 
should be given cautiously, since the bothersome complication of intestinal flora 
change or the severe one, selection of antibiotic-resistant bacteria, occurs often.

An important observation of structural modulation of microbiota comes from a 
study testing the effect of different diets in composition of fat or voluntary exercise in 
mice with or without calorie restriction. It was shown that calorie restriction in life-
long-fed mice changes significantly the structure of the gut microbiota enriching with 
genus of intestinal flora that is associated with longer life expectancy such as 
Lactobacillus. This effect was observed in both high-fat or low-fat diet, but not in 
mice with voluntary exercise and free feeding [42]. The modification of microbiota 
was associated with significant reduction of LPS-binding protein in the serum imply-
ing that calorie restriction may lessen the antigen load and prevent the intestinal 
mucosa integrity, reducing the inflammatory stress and exerting a health benefit to the 
host. Although calorie restriction is regarded as almost the only experimental approach 
in the elongation of life, the mechanism of its effect remains to be clarified.

23.4.3  Blocking FMOs to Prevent TMAO Production

Levels of FMO3 have been shown to be amplified in both insulin-resistant obese 
humans and male mice [43]. Mice FMO3 knockdown obviated to develop hypergly-
cemia, hyperlipidemia, and atherosclerosis [43]. Since FMO3 seems to be a central 
controller for the hepatic metabolism of cholesterol [44], therapeutic targeting of 
FMO3 eventually represents an effective alternative to diet for the limitation of 
atherosclerosis in the treatment of cardiovascular diseases.

23.5  Conclusion

The unfavorable effects exerted by the intestine as remote organ to the heart, either 
acute, as mesenteric vessel insult, or chronic, due to metabolite production resulting 
from microbiota change, contribute to cardiovascular disease. The common denomi-
nator of these unfavorable effects is atherosclerosis. For this reason, during the last 
decade, relevant research is focused in identifying methods to reduce the incidence 
of atherosclerosis.
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Atherosclerosis is a multifactorial process with oxidative stress being implicated 
in its pathophysiology. Aspirin and salicylates have pleiotropic effects. Among 
these pleiotropic effects, modulation of stress response by salicylates is quite 
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antioxidant mechanisms and epigenetic regulation of antioxidant enzymes. Thus, 
aspirin and salicylates are promising multi-target agents against oxidative stress 
implicated in atherosclerosis. Based on this evidence, the role of aspirin in the 
primary prevention of atherosclerosis should be revisited.
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24.1  Introduction

Atherosclerosis is a chronic inflammatory disease of the arteries that is character-
ized by the abnormal accumulation of lipids, inflammatory cells, matrix deposits 
and smooth muscle cell proliferation in the wall of medium- and large-calibre arter-
ies. Lipid deposition is the first step in the pathophysiology of atherosclerosis fol-
lowed by the development of a chronic inflammatory reaction [1]. Thus, lipid 
deposition leads to the proliferation of certain cell types within the arterial wall 
which gradually impinge on the vessel lumen and impede blood flow. Atherosclerosis 
starts early in life, even in the second decade of life, and is the main cause of cardio-
vascular disease and fatal cardiovascular events. Atherosclerosis has increased mor-
tality and morbidity in the western countries. Thus, modulation of atherosclerosis 
would have a beneficial effect in the population health. Modulation of atherosclero-
sis could result in reversal of atherosclerosis or in deceleration of its development. 
Modulation of atherosclerosis could be achieved through targeting the multiple fac-
tors implicated in its pathophysiology.

Pathophysiology of atherosclerosis is quite challenging. Atherosclerosis is a 
multifactorial process with oxidative/nitrosative stress, imbalance of vasoconstric-
tor–vasodilator production, platelet aggregation and modification of LDL choles-
terol being implicated in its pathophysiology. Among the above-cited factors, 
oxidative stress plays a critical role in the pathophysiology of atherosclerosis.

Since decades, research efforts have been focused on the primary and secondary 
prevention of atherosclerosis. Aspirin has an established role in the secondary pre-
vention of atherosclerosis, while its role in the primary prevention of atherosclerosis 
is still under investigation [2–6]. Although the antiplatelet effect of aspirin via 
cyclooxygenase inhibition is well established [7], there are a number of 
cyclooxygenase- independent mechanisms of action of aspirin, including inhibition 
of transcription factors, regulation of epigenetic targets, modulation of lymphangio-
genesis and modulation of oxidative stress, that are currently under investigation 
[8–15]. Aspirin and the other salicylates, especially in high doses, are well- 
recognized inhibitors of I(kappa)B kinase-beta, an enzyme complex that is involved 
in the propagation of the cellular response to inflammation and also part of the 
upstream NF-κB signal transduction cascade [15]. Given that aspirin and the other 
salicylates act via multiple mechanisms, it is expected that these agents are able to 
modulate a biological process through a multifactorial approach. This chapter aims 
to review evidence on modulation of oxidative stress in atherosclerosis through a 
multi-target approach via aspirin, salicylates and the other nonsteroidal anti- 
inflammatory agents.

24.2  Biology of Oxidative Stress

Cellular oxidative stress results from an imbalance between pro-oxidant and anti-
oxidant mechanisms due to either increased production of free oxygen radicals or 
deficiency of antioxidant mechanisms. Under physiological conditions, in a normal 
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cell, there is continuous production of free oxygen radicals. It is well known that 
free radicals are products of normal cellular metabolism and have a dual role being 
either beneficial or harmful for the cell [8–10].

Low levels of free oxygen radicals have beneficial properties including a crucial 
role in:

• Cell signalling
• Cellular stress response
• Cellular differentiation
• Gene transcription
• Cellular proliferation
• Apoptosis

On the other hand, high levels of free oxygen radicals lead to oxidative damage 
to cellular constituents as DNA, lipids, proteins and sugars.

The redox homeostasis that is quite crucial for the cellular physiology is defined 
as the balance between pro-oxidant and antioxidant substances. This homeostasis is 
kept through the antioxidant mechanisms.

24.2.1  Reactive Oxygen Species

Reactive oxygen species are produced in the mitochondria, in peroxisomes, in the 
cytoplasm as well as in the cell membrane. Molecular oxygen is mildly reactive, due 
to its chemical structure, being a biradical that includes two electrons in the orbits. 
ROS formation is derived from molecular oxygen through electron transfer or 
energy absorption processes. Reactive oxygen species include oxygen-free radicals 
as well as non-radical compounds [8–10].

Oxygen-free radicals are:

• The hydroxyl radical (HO)
• Superoxide anion (O2•−)
• Peroxyl (ROO•)
• Alkoxyl (RO•)
• Nitric oxide (NO)

In chemistry, superoxide anion is derived from the addition of one electron on 
molecular oxygen. The production of superoxide anion consists the first step in the 
chain of reactive oxygen species production. In vivo, superoxide anion is produced 
either enzymatically or non-enzymatically. Mitochondria constitute the main cel-
lular source of superoxide anion. Enzymatic sources of superoxide anion include 
NADPH oxidases that are situated in the cellular membrane of polymorphonuclear 
cells, macrophages and endothelial cells as well as cytochrome P450-dependent 
oxygenases. Another enzymatic source of superoxide anion is the proteolytic con-
version of xanthine oxidoreductase to xanthine oxidase.
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The hydroxyl radical (HO) with an extremely short in vivo half-life is the most 
highly reactive and therefore toxic form of oxygen. Hydroxyl radical reacts in the 
vicinity of its site of production.

Non-radical compounds are oxygen, hydrogen peroxide and transition metals 
such as copper.

Although hydrogen peroxide does not contain unpaired electrons and chemically 
it is not a radical, it is included in the reactive oxygen species due to its high reactiv-
ity. In addition to reactive oxygen species, reactive nitrogen species have similar 
effects on the cells being able to induce oxidative stress.

24.2.2  Antioxidant Mechanisms

Antioxidant mechanisms are divided into two broad categories. The first includes 
antioxidant enzymes and the second includes the non-enzymatic antioxidants 
[8–10].

24.2.2.1  Antioxidant Enzymes
• Superoxide dismutase

Superoxide dismutase and catalase are the more effective enzymatic antioxidants 
in vivo. Human superoxide dismutase can be classified into cytosolic CuZnSOD, 
mitochondrial MnSOD and extracellular SOD. Cytosolic SOD is an enzyme with a 
molecular weight of 32 kDa and is composed of two identical subunits. CuZnSOD 
contains copper and zinc in its active centre and has an enzymatic activity that is not 
dependent on pH, if the pH ranges from 5 to 9.5. MnSOD consists of four subunits 
and has a molecular weight of 95 kDa. Extracellular SOD, which is the major SOD 
in the vascular extracellular space, is highly expressed in the vessels, the heart, the 
kidney and the placenta. Extracellular SOD is a glycoprotein with four subunits. 
Extracellular SOD plays a vital role in endothelial function as it protects against 
inactivation of endothelium-released NO by the superoxide anion.

Superoxide dismutase catalyses the conversion of superoxide anion into either 
hydrogen peroxide or molecular oxygen. Dismutation of superoxide yields oxygen 
and hydrogen peroxide (202′  –  +  2H+ ~02  +  H202). Thus, protection by SOD is 
incompletely achieved if H202 is not subsequently degraded. The elimination of 
H202 can be achieved by catalase.

• Catalase

Catalase converts hydrogen peroxide to water and molecular oxygen in two steps 
(2H202 ~ 2H20 + 02). Catalase is a highly active enzyme that converts one million 
molecules of hydrogen peroxide per minute.

• Glutathione peroxidases
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Glutathione peroxidase family contains three groups. The first group contains 
human GPX1 and GPX2. The second group contains human GPX3, GPX5 and 
GPX6. The third group, named the phospholipid hydroperoxide GPX (PHGPX) 
group, includes human GPX4 as well as GPXs from a number of organisms 
including plants. Glutathione peroxidases catalyse the reduction of hydrogen 
peroxide or of lipid peroxides using glutathione as the reducing substance 
(2GSH + H202 = GSSG + 2H20).

• Glutathione reductase

Glutathione reductase is an enzyme, in humans encoded by the GSR gene, that 
maintains glutathione in its reduced form. Enzymatic (by glutathione peroxidases) 
as well as non-enzymatic neutralization of reactive oxygen species by reduced glu-
tathione (GSH) leads to the production of oxidized glutathione (GSSG).

GSSG is exported from the cell resulting in decrease of total intracellular gluta-
thione. In order to ensure a high level of antioxidant action of glutathione, it is 
essential to keep a high intracellular GSH/GSSG ratio. This is achieved through the 
action of glutathione reductase.

24.2.2.2  Non-enzymatic Antioxidants
• Non-enzymatic antioxidants, i.e. hydrophilic antioxidants including glutathione, 

ascorbate, and flavonoids and lipophilic antioxidants including tocopherol, 
carotenoid and ubiquinol.

24.3  Oxidative Stress and Atherosclerosis

Oxidative stress is implicated in the pathogenesis of atherosclerosis, arterial hyper-
tension, heart failure, diabetes mellitus, pancreatitis and carcinogenesis [8, 9].

In particular, in atherosclerosis, oxidative modification of low-density lipopro-
tein (LDL) cholesterol, which is initiated by a free radical-driven lipid peroxidation 
process, is considered to play a key role in the initiation as well as in the progression 
of atherosclerosis. Cardiovascular risk factors, such as smoking, hypercholesterol-
aemia and hyperglycaemia associated with atherosclerosis, are at the same time 
associated with oxidative stress. In the case of myocardial infarction, ROS-induced 
ischaemia/reperfusion injury plays a critical role in myocardial damage. However, 
although relative research evidence supports the impact of oxidative stress in the 
pathophysiology of atherosclerosis, a direct causative role of LDL oxidation for 
atherosclerosis has not been established.

Data derived from animal models of atherosclerosis suggest that reactive oxygen 
species released from nicotinamide adenine dinucleotide phosphate oxidases, xan-
thine oxidases and lipooxygenases as well as enhanced ROS production from dys-
functional mitochondrial respiratory chain indeed have a causative role in 
atherosclerosis. Furthermore, impairment of vascular function and enhanced ath-
erogenesis have been observed in animal models that have deficiencies in 
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antioxidant enzymes. Investigation in humans supports the oxidative stress hypoth-
esis of atherosclerosis.

Undoubtedly, since atherosclerosis is one of the leading underlying causes of 
death worldwide, there is need for novel approaches on the modulation of athero-
sclerosis. In that aspect, effective targeting of oxidative stress is a promising 
approach that is anticipated to have a clinical effect on atherosclerosis. More impor-
tantly, since atherosclerosis is a multifactorial process, a multi-target approach on 
the modulation of atherosclerosis would be anticipated to result in reduction of car-
diovascular events. This multi-target approach could be achieved through lifestyle 
modification, i.e. weight reduction, low-fat diet, smoking cessation and exercise, as 
well as through pharmacological approaches [16, 17]. These pharmacological 
approaches should target the factors implicated in the pathophysiology of athero-
sclerosis. In that aspect, there is ongoing research interest on the modulation of 
oxidative stress [18].

24.4  Modulation of Oxidative Stress in Atherosclerosis

Experimental evidence suggests that pharmacological modulation of oxidative 
stress response is feasible and might alter the natural history of relevant pathologi-
cal states [19–21]. Thus, initial efforts in the modulation of oxidative stress of ath-
erosclerosis have been attempted through treatment with antioxidants. Based on 
preclinical data, antioxidants were anticipated to inhibit initiation, progression and 
development of atherosclerosis via a number of mechanisms including inhibition of 
LDL oxidation, inhibition of leucocyte adhesion to the endothelium as well as inhi-
bition of vascular endothelial dysfunction.

Indeed, data derived from relevant epidemiological studies have suggested an 
inverse relationship between antioxidant vitamin consumption and cardiovascular 
disease. The National Health and Nutrition Examination Survey epidemiological 
follow-up study included 11,348 participants, aged 25–74 years. Based on the data, 
the authors expressed the conclusion that individuals who received a high dose of 
vitamin C (>50 mg/d) had lower overall total mortality rate after 10 years, and in 
particular, with mortality rate from cardiovascular diseases being lower [22]. In 
accordance with the previous study, data from the Health Professionals Follow-up 
Study showed that the participants whose vitamin C intake exceeded 50 mg/d tended 
to have a lower rate of death from all cardiovascular diseases [23].

Furthermore, in a number of prospective cohort studies of thousands of healthy 
men and women free of cardiovascular disease, cancer and diabetes followed for a 
long period of time ranging from 8 to 20 years, the authors have found that the con-
sumption of fruits and vegetables, particularly green leafy vegetables and vitamin 
C-rich fruits and vegetables, appeared to have a protective effect against coronary 
heart disease (i.e. nonfatal acute myocardial infarction or fatal coronary heart dis-
ease) [24, 25].

However, despite the favourable results of epidemiological studies, the beneficial 
effect of antioxidant supplementation has failed to be reproduced by randomized 
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clinical studies. Thus, data derived from clinical trials have been giving a more con-
fused picture than expected, with results ranging from a significant protective action 
to the absence of any effect.

Thus, a double-blind, randomized, placebo-controlled cardiovascular and cancer 
prevention trial of a combination of antioxidants (120 mg vitamin C, 30 mg vitamin 
E, 6 mg b-carotene, 100 mg selenium and 20 mg zinc) showed that long-term daily 
low-dose supplementation of antioxidant vitamins and minerals had no beneficial 
effects on carotid atherosclerosis and arterial stiffness.

Another clinical trial, the Physicians’ Health Study, a randomized, prospective, 
double-blind placebo-controlled study of 14,641 male physicians, investigated the 
effect of oral supplementation of 400 IU of vitamin E every other day and 500 mg 
of vitamin C daily. The results of the study did not show any significant difference 
on the clinical implications of atherosclerosis between the treated and control 
groups in respect to the risk of major cardiovascular events [26].

Therefore, there is a discordance between epidemiological studies and clinical 
studies in relation to the effect of exogenous antioxidants in atherosclerosis. This 
discordance could be attributed to the lack of knowledge on the effect of interaction 
of exogenous antioxidant supplementation with one another or on the effect of inter-
action of exogenously administered antioxidant vitamins with endogenous ones.

In that context, a relevant systematic review has investigated the possible syner-
gistic, additive or antagonistic effect of exogenous antioxidants in atherosclerosis 
[27]. This systematic review evidenced that the co-administration of exogenous 
antioxidants results in synergistic or additive antioxidant effect, while there was no 
evidence of antagonistic effect in the case of co-administration of exogenous anti-
oxidants. The main message of this systematic review is that targeting oxidative 
stress via multiple mechanisms might be the ideal approach [27]. This approach 
could be achieved either by targeting the oxidative stress in atherosclerosis with 
multiple antioxidants or by administering one multi-target agent. In fact, aspirin and 
salicylates provide the ideal agent for the multi-target approach of oxidative stress 
in atherosclerosis.

24.5  Aspirin and Salicylates: Multi-target Agents

Acetylsalicylic acid or aspirin is a prototype of nonsteroidal anti-inflammatory 
agents. In addition, acetylsalicylic acid belongs to the family of salicylates, having 
in common with the other members of the family the active agent salicylic acid. 
Salicylic acid is a benzene ring with two radicals, one carboxyl and one hydroxyl 
radical. In aspirin, the hydroxyl group of salicylates has been transformed into an 
acetyl group by esterification. In aspirin, both salicylate and acetyl groups are active 
and act at different sites independently of each other. Thus, aspirin shares common 
biological actions with salicylates, and in addition aspirin has biological effects that 
are modulated by the acetyl group.

Before 1970, knowledge on the mechanism of action of aspirin was quite 
restricted. At that time, it was known that aspirin has anti-inflammatory action and 
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that this action is qualitatively and quantitatively different from the action of anti- 
inflammatory steroids as well as analgesic action that differs from the action of 
opioid analgesics. In 1971, anti-inflammatory and analgesic actions of salicylates 
and other nonsteroidal anti-inflammatory agents were attributed to the inhibition of 
prostaglandin biosynthesis.

Nowadays, it is known that aspirin selectively acetylates the hydroxyl radical of 
the residue Ser-530 situated 70 amino acids before the carboxy-terminal of cyclo-
oxygenase. Acetylation leads to irreversible inhibition of cyclooxygenase, and thus, 
prostaglandin biosynthesis is feasible only if cyclooxygenase is newly synthesized. 
In low concentrations, aspirin acetylates the enzyme within minutes and acetylation 
is selective. Under high concentrations of aspirin and when exposure to aspirin is of 
long duration, aspirin acetylates non-selectively a large number of proteins and 
nucleic acids.

Although some decades have passed since the discovery of the mechanism of 
action of aspirin, there is still ongoing research interest on the mechanism of action 
of aspirin and salicylates. Experimental studies showing weak inhibition of prosta-
glandin biosynthesis by salicylates created doubts on the dogma that the anti- 
inflammatory action of salicylates was due to the inhibition of prostaglandin 
biosynthesis. Nowadays, it is well known that aspirin and salicylates have pleiotro-
pic effects. Among these pleiotropic effects, modulation of stress response by salic-
ylates is quite interesting. Salicylates modulate stress response in prokaryotic 
organisms as well as in eukaryotic cells [8, 9, 20]. Modulation of stress response by 
salicylates is due to the effect of salicylates on cell signalling pathways as well as to 
the pro-oxidant–antioxidant effects of salicylates [8, 9, 20].

24.6  Targeting Oxidative Stress by Aspirin, Salicylates 
and Other Non-steroidal Anti-inflammatory Agents

Salicylates, including aspirin and the other nonsteroidal anti-inflammatory agents 
(NSAIDs), apart from inhibiting cyclooxygenase enzymes are known to target mul-
tiple pathways. Experimental evidence suggests that aspirin and salicylates modu-
late oxidative stress.

Evidence suggests that salicylates and the other nonsteroidal anti-inflammatory 
agents have both pro-oxidant and antioxidant actions. The antioxidant actions of 
salicylates have been linked with the beneficial effects of these agents, while their 
pro-oxidant actions have been associated with the adverse reactions of these drugs. 
However, this approach is superficial and does not take into account the beneficial 
effect of low-level pro-oxidant action. Low levels of pro-oxidant modulate cell sig-
nalling pathways. Salicylates are known to modulate cell signalling pathways, pos-
sibly through their pro-oxidant action.

The mechanisms of antioxidant action of salicylates are not well delineated. 
Sodium salicylate acts as a chemical trap against hydrogen peroxide radicals, the 
most detrimental reactive oxygen species, thus reducing ischaemia/reperfusion 
injury [28, 29]. In addition, nonsteroidal anti-inflammatory agents including 
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indomethacin and sulindac have been reported to scavenge free oxygen radicals, 
thus exerting a protective effect against cellular oxidative stress. Although salicy-
lates trap free oxygen radicals, this action is weak and does not seem to interpret the 
antioxidant action of salicylates. Evidence suggests that aspirin and salicylates 
enhance the activity of cellular protective antioxidant mechanisms. In particular, 
aspirin elicits nitric oxide release by a direct activation of the endothelial NO syn-
thase. In addition, aspirin and salicylates downregulate superoxide production and 
enhance GSH-dependent antioxidant mechanisms [30, 31]. Sulindac protects nor-
mal cell by oxidative stress by initiating a preconditioning response. Furthermore, 
salicylic acid functions as a signalling molecule in plants involved in the expression 
of a number of genes [32].

The most direct evidence on the protective effect of salicylates against oxidative 
stress is based on experimental data from S. cerevisiae [8, 9, 20]. Post-logarithmic 
cell cultures of S. cerevisiae were exposed to hydrogen peroxide for 1 h. The authors 
investigated the effect of long-term pretreatment, the effect of short-term pretreat-
ment with salicylates as well as the effect of exposure to salicylates during the oxi-
dative stress. For chronic pretreatment, cells were exposed to salicylates for 22 h 
prior to oxidative stress. For the short-term treatment, cells were exposed to salicy-
lates 1 h prior to the oxidative stress.

Experimental data from Saccharomyces cerevisiae have shown protective effect 
of salicylates against hydrogen peroxide stress in yeast. Importantly, it has been 
shown that treatment with low-dose aspirin confers long-term resistance against 
hydrogen peroxide-induced oxidative stress in yeast. In addition, other non- 
inflammatory agents have shown to protect against hydrogen peroxide stress in 
Saccharomyces cerevisiae. In an attempt to investigate the mechanisms of this pro-
tection, the effects of antioxidants glutathione and N-acetylcysteine have been 
investigated in the same experimental model. NAC has been administered in the 
dose of 30 mM. Glutathione was administered in the form of oxidized glutathione. 
Both NAC and glutathione had protective action against hydrogen peroxide stress 
when administered concurrently with hydrogen peroxide. In addition, both NAC 
and GSSG exerted their protective pro-oxidant action when administered 1 h prior 
to oxidative stress. Given that NAC and GSSG exerted the same pattern of protec-
tion with sodium salicylate, it was suggested that the mechanisms of protection of 
sodium salicylate against oxidative stress included the induction of cellular antioxi-
dant mechanisms [8, 9, 20].

Sodium salicylate has been reported to inhibit the hydrogen peroxide-induced 
stress in HeLa cells and the effect was dose dependent. In addition, Oliveira et al. in 
a recently published paper have reported protective effect of acetylsalicylic acid 
against mitomycin C-induced carcinogenicity in Drosophila melanogaster through 
the antioxidant action of aspirin [33]. Wrobel et al. have investigated the effect of 
intraperitoneal injection of acetylsalicylic acid against mouse liver. The results of 
the study suggested that acetylsalicylic acid stimulates the GSH-dependent antioxi-
dant system, thus protecting liver cells from oxidative stress [31]. Furthermore, 
other investigators have shown that aspirin and salicylates exert their antioxidant 
actions by the stimulation of cellular antioxidant mechanisms, i.e. Cu/Zn 
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superoxide dismutase (SOD1) induction has been implicated in the antioxidative 
activity of aspirin in HCV-expressing cells [30]. In human melanocytes, it has been 
reported that aspirin protects against hydrogen peroxide oxidative stress through the 
induction of Nrf2-mediated transcriptional activation of haem oxygenase-1 [34]. 
Furthermore, antioxidant action has been reported for the willow bark extract that 
contains salicin, prodrug of salicylates [35–37].

In haemodialysis patients, aspirin has been shown to reduce inflammation 
through modulation of oxidative stress [38]. In addition, continued aspirin treatment 
until surgery in patients undergoing coronary artery bypass grafting has been shown 
to reduce surgery-associated oxidative stress [39]. On the other hand, preoperative 
withdrawal of aspirin has been shown to increase oxidative stress markers in patients 
undergoing coronary artery bypass grafting [40].

24.7  Aspirin and Atherosclerosis

The beneficial effects of aspirin in cardiovascular disease have well been estab-
lished. Currently, evidence supports the role of aspirin in the secondary prevention 
of cardiovascular disease. However, the role of aspirin for primary prevention 
remains controversial [2–6]. Recently published European guidelines on cardiovas-
cular disease prevention did not support prophylactic use of aspirin in individuals 
without established cardiovascular disease because the risk of major bleeding out-
weighs the minor decrease in rate of major adverse cardiac events. On the other 
hand, European guidelines on the management of arterial hypertension have sug-
gested consideration of aspirin use for primary prevention in patient with high car-
diovascular risk or reduced kidney function based on a more balanced risk-benefit 
profile in these categories of patients.

Recently, the US Preventive Services Task Force has published updated recom-
mendations on the use of aspirin for the primary prevention of cardiovascular dis-
ease and colorectal cancer. According to these recommendations, low-dose aspirin 
is now supported in men and women aged 50–59 years who have a predicted risk for 
myocardial infarction or stroke of at least 10% over 10  years, with no elevated 
bleeding risk, and are willing to take aspirin within 10 years or longer. In patients 
aged 60–69 years, a decision has to be made on an individual basis based on per-
sonal history and comorbidities No recommendations have been included for other 
age groups due to the lack of relevant evidence [6].

On the other hand, UK recommendations for aspirin use for primary prevention 
of cardiovascular disease have adopted similar principles. Aspirin has been recom-
mended in hypertensive patients over 50  years with a high cardiovascular risk, 
defined as 10-year risk of greater than 20%, or reduced renal function (e.g. esti-
mated glomerular filtration rate less than 45 mL/min/1.73 m2). There is also contro-
versy on the use of aspirin in the primary prevention of cardiovascular risk in 
diabetic patients.

Aspirin targets atherosclerosis through multiple mechanisms including antiplate-
let action, endothelial cell modulation and modulation of oxidative stress [41–54]. 
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A number of studies have shown that aspirin exerts an inhibitory effect on the gen-
eration of reactive oxygen species. Experimental data have shown that aspirin 
reduced ox-LDL-mediated LOX-1 expression, MMP-1 expression and activity, 
p38MAPK activation and superoxide anion generation in human coronary artery 
endothelial cells with the effect being time dependent and dose dependent. In addi-
tion, treatment of human coronary artery endothelial cells with salicylate has 
resulted in effects similar to those of aspirin.

Grosser and Schröder have showed that pretreatment of endothelial cells with 
aspirin, but not salicylate or indomethacin, protected them from hydrogen peroxide- 
mediated toxicity and increased their viability. The effect was concentration depen-
dent. In the same experimental model, pretreatment with salicylate or indomethacin 
failed to reproduce the protective effect of aspirin. This effect was abrogated in the 
presence of a NO scavenger and arginine analogs. Under the same experimental 
conditions, aspirin enhanced activity and intracellular cyclic GMP accumulation in 
endothelial cells [41, 42]. In addition, aspirin has also been shown to inhibit hydro-
gen peroxide-induced caspase-3, caspase-9 and NF-κB activation through inhibi-
tion of phosphorylation and degradation of IκB2 and IκBβ, with the effect being 
dose dependent. Heme oxygenase-1 induction via NO-dependent pathways has 
been suggested as another mechanism by which aspirin prevents cellular injury in 
cardiovascular disease [41].

In addition, the antioxidant action of aspirin has been shown in hypertensive rats. 
Aspirin has been shown to provide cerebrovascular protection from oxidant damage 
in salt-loaded, stroke-prone rats. Pretreatment of rats with aspirin and zinc complex 
has been shown to protect after the onset of myocardial injury through upregulation 
of antioxidant enzymes.

In humans it is not straightforward to prove the antioxidant action of any sub-
stance as the measurement of oxidative stress has not been standardized. In the 
majority of the papers, investigators measure a limited number of redox parameters 
that are inadequate for the valid estimation of the redox state. Despite that, the anti-
oxidant effect of aspirin has been evidenced in human cell cultures.

24.8  Conclusion

The role of oxidative stress is well established in the pathophysiology of atheroscle-
rosis. Aspirin and salicylates target oxidative stress in atherosclerosis through mul-
tiple antiplatelet-independent mechanisms of action, including scavenging of 
reactive oxygen species, enhancement of nitrous oxide release, inhibition of super-
oxide anion release and induction of GSH-dependent antioxidant mechanisms, epi-
genetic regulation of antioxidant enzymes. Thus, aspirin and salicylates are 
promising multi-target agents against oxidative stress implicated in atherosclerosis. 
Based on this evidence, the role of aspirin in the primary prevention of atheroscle-
rosis should be revisited.
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Abstract 
The cardiac tissue with its enormous task of continuous pumping relies heavily 
on the mitochondria. The different subpopulations of the mitochondria support 
the cardiac contractile function in various ways. These organelles are established 
as a continuous network in the cardiac tissue, i.e. in a highly dynamic state 
undergoing biogenesis, fusion, fission and degradation. This dynamic nature of 
the organelle helps in maintaining a healthy mitochondrial circuit which in turn 
is necessary for optimal cardiac functioning. There are increasing empirical evi-
dences suggesting that the cardiovascular diseases are primarily associated with 
the decrease in the mitochondrial capacity of ATP synthesis, ROS handling and 
calcium homeostasis. This implies that the quantity and quality of mitochondria 
is crucial for its optimal fucntion, particularly during energy challenges faced by 
heart. Available data suggest that for prevention and therapy for most of the car-
diovascular diseases, mitochondria could be an ideal target. There are various 
therapies that have focused on improving the mitochondrial efficiency through 
multifarious means, ranging from repairing the ROS-mediated damage to induc-
ing the mitochondrial biogenesis and degradation, thus ensuring a newer and 
adept network of mitochondria. The mechanisms behind the compounds hitherto 
believed to be beneficial for the heart are also examined. This chapter summa-

All the Authors are equally contributed to this Chapter

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8946-7_25&domain=pdf
mailto:srinivasg@sctimst.ac.in


580

rizes the importance of mitochondria and its quality control in the cardiac tissue 
and some of the therapeutic interventions targeting the same.

Keywords
Mitocondria · ROS · Mitochondrial dynamics · Mitochondrial biogenesis · 
Mitochondrial fission and fusion · Mitophagy · Mitochondrial therapies

25.1  Introduction

The onerous task of oxygenating the entire organ system in a living being proceeds 
through the incessant, rhythmic contraction and relaxation of a muscular organ, the 
heart. This fist-sized organ is no less than a wonder by way of its incredible work 
load, of pumping ~7500 l of blood a day in a healthy adult human being, and its 
amazingly resilient mechanical nature, together with the other components of the 
circulatory system, helping in maintaining the haemodynamic stability of the organ-
ism. The history of the discovery of the heart and its involvement in circulation 
dates back to ~2000 years, but more comprehensive knowledge on cardiovascular 
circulation and the functioning of the heart was deciphered by William Harvey, in 
the seventeenth century AD [1, 2].

The heart consists predominantly of muscle fibres, formed from a functional 
syncytium of cardiomyocytes widely connected via gap junctions, and these muscle 
fibres are intensely interspersed with blood vessels for optimal nutrient/oxygen sup-
ply. The functioning of the heart is highly energy demanding, and the reserve of 
energy currencies like ATP, creatine phosphate, etc. within the myocardial cells is 
nominal. This necessitates a tight coordination of metabolic production of ATP and 
the energy requiring process of contraction and relaxation [3]. The energy needs are 
met mostly by the oxidative metabolism of the fuels in specialized organelles called 
mitochondria.

Mitochondria are double membrane-bound symbiotic organelles residing in the 
cytoplasm of almost all eukaryotic cells, which acts as the epicentre of energy pro-
duction, by disposing organic substrates into electrochemical gradient. The com-
plex architecture of the ion-permeable inner membrane and the more porous outer 
membrane (permeable to particles ˂5 kDa) helps in devising the primary function, 
oxidative phosphorylation and other cellular events ranging from cellular differen-
tiation to cell death via integration of diverse signalling pathways [4] (Fig. 25.1). 
Mitochondria, often illustrated as small oval structures, are labyrinthine in nature 
with regard to composition, structure and function. In normal physiology, these 
organelles are dynamic, constantly fusing and dividing under the influence of cel-
lular stress. The contractile units of the heart, cardiomyocytes, are densely popu-
lated by mitochondria (~1/3 the cell volume) which ensure the preservation of 
metabolic need of the organ [5]. Thickly populated mitochondrial reticulum within 
the contractile apparatus of the myotubes appears to be a continuous scaffold, but 
irrespective of their propinquity, they continue to maintain their identity as single 
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entities connected by specific inter-mitochondrial junctions [6]. This segmentation 
of mitochondrial entities within the reticulum helps in rapid separation of dysfunc-
tional mitochondrial units even when they are highly interconnected and coupled 
[6, 7]. Even though the adult myocardium is competent in using all categories of 
energy substrates (which counts carbohydrates, lipids, amino acids and ketone bod-
ies) for ATP generation, ~70% of energy is derived from fatty acid substrates. 
Therefore under normal physiology, most of the reducing equivalents, NADH and 
FADH, that feed the mitochondrial complexes will be generated from fatty acid 
oxidation. But being a metabolic omnivore by nature, the myocardial metabolic 
network would be flexible enough to utilize the abundant fuel and supply energy for 
the process of contraction-relaxation cycle. For example, the use of lactate by myo-
cardial tissue is enhanced when lactate production from skeletal muscle increases 
by way of exercise; while ketone bodies released by way of fasting can result in its 
utilization, and this metabolic adaptability of myocardium is substantiated by 
experimental evidences from isolated heart [8, 9].

Alterations in substrate selection occur at the level of mitochondria, and this 
depends on the physiological condition, nutritional status of the cell and the pres-
ence or absence of any diseases; altogether determining the nature of the mitochon-
drial network that wires the cell. Thus, it is not surprising that heart diseases are 
associated with mitochondrial changes.

Fig. 25.1 Mitochondrial signalling: Mitochondria are involved in various cellular events like 
energy generation, maintaining redox homeostasis, playing a role in various signalling events 
mainly calcium- and ROS-mediated signalling and synthesis of various metabolites like phospho-
lipids, amino acids, etc. and programmed cell death event
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Here in this chapter, we will be focusing more on mitochondrial dynamics, on 
clearance of damaged mitochondrial structures in cardiomyocytes and on therapeu-
tic and interventional opportunities targeting the mitochondria.

25.1.1  Mitochondrial Subpopulations Within Cardiomyocytes

Ultrastructural analyses using electron microscopy have revealed the existence of 
spatially estranged mitochondrial subpopulations, with distinct structural and func-
tional characters in cardiomyocytes; these include subsarcolemmal mitochondria 
(SSM) that resides below the sarcolemma, interfibrillar mitochondria (IFM) that 
dwell between the myofibrils and, a specific population of this organelle that resides 
at the poles of the nucleus, the perinuclear mitochondria. Also, the diversity among 
these subpopulations is reflected in size, shape (from spherical to elongated and 
tubular) and cristae density (from structures with little cristae to structures densely 
packed with cristae) [10]. Studies using isolated mitochondria suggest that SSM are 
larger and have superior internal complexity compared to IFM which are smaller 
and compact.

But in terms of functional performance, Palmer et al. suggest that IFM possess 
higher respiration rates and enzyme activities (specifically succinate dehydrogenase 
and citrate synthase activity) compared with SSM. All lipid and nonlipid substrates 
are oxidized ~1.5 times faster by the IFM than the SSM [11].

IFM span the entire length of the sarcomeric unit from one Z-disk to another and 
are bordered by the sarcoplasmic reticulum. This positional arrangement of IFM is 
thought to favour calcium-mediated interaction with sarcoplasmic reticulum relat-
ing calcium signalling and mitochondrial function. Thus, IFM is hypothesized to 
effectively power contraction [12]. However, SSM are thought to be involved in 
active transport of electrolytes and metabolites across the sarcolemmal membrane. 
C. Crochemore et al. reported distinct superoxide production profiles of SSM and 
IFM, SSM producing more ROS on incubation with complex 1 substrates compared 
to IFM, and this difference in ROS production profile is attributed to their functional 
differences, IFM with higher respiratory activity than SSM [13]. Also, these distinct 
populations of mitochondria have been reported to have different effects on cardiac- 
related pathologies like hypoxia, pressure overload, diabetes and heart failure [14] 
(Table 25.1).

Although the perinuclear mitochondria are well observed as a different micro-
scopic subpopulation, their biochemical and functional properties are not well 
described. Nevertheless, it has been suggested to power mitochondrial metabolism 
close to the nucleus. The structural and functional differences between the members 
of different mitochondrial subpopulations can be attributed to their localization [11, 
15]. The molecular mechanisms underlying ultrastructural remodelling of mito-
chondrial population is a hot topic of research.
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25.2  Mitochondrial Dynamics: Structural and Functional 
Remodelling of Mitochondria

Mitochondrial network, a vital component of cardiac cell architecture, forms a 
highly dynamic and intricate structure, adopting diverse distribution patterns, mor-
phologies and functional roles in accordance with the cellular signals, both internal 
and external. This structural and functional plasticity of the organelle is proficiently 
maintained by orchestrating a proper balance between the counteracting forces like 
fission and fusion processes as well as the biosynthesis of new mitochondrial masses 
and the programmed elimination of the mitochondrial fragments, which depends 
heavily on the metabolic cues and changes in cellular stresses. The term mitochon-
drial dynamics encompass the structural and functional remodelling of the organelle 
network by way of fission and fusion, the subcellular mitochondrial mobility across 
the cell cytoplasm (to reach out to areas based on energy needs) mitochondrial bio-
genesis that helps increase mitochondrial mass and the programmed clearance of 
mitochondria, either damaged or functional. Together these processes form a qual-
ity control mechanism which ensures a healthy mitochondrial circuit [16, 17].

25.2.1  Mitochondrial Biogenesis

As discussed earlier, the cytoplasmic space of terminally differentiated cardiomyo-
cytes in adult myocardium is densely packed with high-capacity mitochondrial net-
works. And this assembly of complex mitochondrial structures starts with a surge in 
the process of mitochondrial biogenesis at birth, followed by dynamic restructuring 

Table 25.1 Different subtype of mitochondria found in myocyte

Type of 
mitochondria Location Size and shape ATP produced for
Perinuclear Poles of the nucleus Spherical in shape with 

diameter ranging from 0.8 
to 1.4 μm

Powers 
mitochondrial 
metabolism close to 
nucleusWell-developed cristae 

with very little matrix
Interfibrillar Longitudinally 

arranged in rows 
between the 
myofibrils

Elongated in shape with 
usually one mitochondrion 
existing per sarcomere

Powers muscular 
contraction

~1.5–2.0 μm in length
Curved cristae structure

Subsarcolemmal Beneath the plasma 
membrane

Observed in variety of 
shapes like oval, spherical, 
polygonal and horse-shoe 
patterns

Powers transport of 
solutes and 
metabolites

Sizes range from 0.4 to 
3.0 μm
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and distribution of matured mitochondria between sarcomeres (IFM), around the 
nucleus (perinuclear), and in the subsarcolemmal (SSM) regions.

Mammalian mitochondria contain ~1200 proteins, and these may vary signifi-
cantly according to the cellular environment and cell or tissue types [18]. 
Mitochondrial DNA (mtDNA) encodes 13 of these proteins, and the rest are encoded 
by nuclear genome, thus making it obvious that mitochondrial homeostasis is under 
strict nuclear control. The presence of a self-replicating genome for the organelle 
necessitates a tight coordination between the transcriptional and replication machin-
ery of nuclear and mitochondrial genome for the process of biogenesis. The com-
plex transcriptional network that choreographs these coordinated processes must 
not only be active during development but also be responsive to the physiological 
indications of changes in energy demands and substrate availability. Peroxisome 
proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α), a transcrip-
tional co-regulator, has emerged as a metabolic node and the master regulator of 
mitochondrial function and biogenesis [19] ever since its discovery in brown adi-
pose tissue as a key regulator of adipogenesis [20]. PGC-1α belongs to PGC-1 fam-
ily of transcriptional coactivators alongside the closest homolog, PGC-1β, and a 
more distant, PGC-1-related coactivator (PRC). Knockdown and overexpression 
studies of these factors have revealed their critical role in driving mitochondrial 
biogenesis in the mitochondria-rich tissues like cardiac muscle, skeletal muscle, 
adipose tissue, etc. (Fig. 25.2).

Fig. 25.2 The upstream inputs and downstream targets of PGC-1 α transcriptional coactivators: 
the PGC-1 α expression and activity is dependent on various physiological and metabolic stimuli 
which ultimately regulate mitochondrial biogenesis and function. PGC-1 α interacts with various 
transcriptional factors and controls mitochondrial dynamics and protein levels
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Cardiac-specific gene manipulation of PGC-1 coactivators in perinatal and post-
natal mouse models has helped in demonstrating their decisive and overlapping 
roles in cardiac mitochondrial biogenesis, maturation and maintenance of proper 
dynamics (fission, fusion), which helps in development as well as proper function-
ing of the organ especially under stress like pressure overload [21–24]. In contrast 
to these observations, the induced knockdown of PGC-1 coactivators in adult myo-
cardium shows no deleterious effects but exhibits a lower respiratory capacity which 
can be attributed to the reduced expression of components of metabolic pathways 
including fatty acid oxidation, TCA cycle, electron transport chain, etc. Also 
observed was a subset of mitochondrial population having an abnormal cristae 
structure by way of disrupted phospholipid (cardiolipin) synthesis. These observa-
tions along with the studies on mitochondrial fusion [25] suggest a lower rate of 
mitochondrial turnover in adult heart compared to developing myocardium. PGC-1 
coactivators coordinate their function by interacting with transcription factors of 
nuclear receptor superfamily, and most of the studies were focused on PGC-1 α, 
which interacts with the target transcription factors by means of specific LXXLL 
recognition domains. This helps in recruiting molecules that mediate chromatin 
remodelling via histone acetylation as well as recruitment of RNA polymerase II, 
via interaction with TRAP/DRIP complex [26]. The effector transcription factors 
that interact with PGC-1 coactivators include the members of the PPAR (PPARα, 
PPARβ and PPARγ), oestrogen-related receptor (ERRα, ERRβ and ERRγ) and 
nuclear respiratory factor (NRF-1 and NRF-2) transcription factor families 
(Table 25.2).

PGC-1 α is best known to be regulated by exercise and cold exposure, the effect 
mediated through the stimulation of β-adrenergic receptors and the cAMP/CREB 
(cyclic AMP response element binding protein) [44, 45]. Akimoto et al. have shown 
to induce PGC-1 α expression in skeletal muscle even with a single exercise session 
controlled through the ATF2 transcription factor mediated by the p38 MAPK sig-
nalling; the AMPK activation additionally regulates [46] the PGC-1 α in the skeletal 
muscle [47]. In the cardiac tissue, the proviral integration site for Moloney murine 
leukaemia virus (Pim) kinases is a prominent regulator of PGC-1 α as the studies on 

Table 25.2 Transcription factors regulated by PGC1 coactivators

Transcription factors Functions
NRF-1 and NRF-2 
[27–31]

Regulation of expression of protein complexes of ETC
Regulation of replication and transcription of mitochondrial 
genome via factors like TFAM and TFB2M

ERRα, ERRβ and ERRγ 
[32–36]

Regulation of the transcription of enzymes involved in fatty acid 
oxidation, TCA cycle and OXPHOS
Plays important role in metabolic maturation of postnatal 
myocardium
Shown to regulate the expression of genes that control contractile 
function of myocytes

PPARα, PPARβ and 
PPARγ [37–43]

Plays decisive role in the genesis of high-capacity mitochondrial 
network specialized for fatty acid oxidation
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site-specific deletions of Pim1, Pim2 and Pim3 kinases result in expedited ageing 
response in the heart concomitantly showing mitochondrial defects and depleted 
ATP levels [48]. Post-translational modifications of phosphorylation and acetyla-
tion govern the fine-tuned response of PGC-1 α especially through the phosphoryla-
tion by AMPK. Deactivated PGC-1 α through the acetylation of its multiple lysine 
residues form a substrate for NAD+ -dependent deacetylase sirtuin 1 (SIRT1) [49–
51]. With the upstream regulators constituting the AMPK, NAD+ and SIRT1 of 
PGC-1 α, the mitochondrial biogenesis can be appropriately regulated in response 
to the energy requirement and the redox status of the cell [49], helping the mito-
chondria adapt to the cues and determine the most apt course of action as to whether 
to undergo biogenesis or to dynamically remodel the mitochondrial network.

25.2.2  Mitochondrial Fusion and Fission

Mitochondrial morphology is intricately connected to most of its functions, which 
include oxidative metabolism, maintenance of calcium homeostasis, ROS genera-
tion and programmed cell death. And the changes in mitochondrial morphology are 
choreographed by mitochondrial fission and fusion processes; that are continuous 
processes essential for cell survival, cell development, cell division and cellular 
adaptation to different stress and also play a decisive role in the rewiring of mito-
chondrial network in physiology as well as pathology. Research outputs in this field 
evolving from pioneering studies in simple eukaryotes, yeast, prove that these pro-
cesses are mediated by a set of evolutionarily conserved proteins, most of which 
belongs to GTPase superfamily.

25.2.2.1  Machinery of Fusion
Mitochondrial fusion process brings together different mitochondrial units by way 
of membrane fusion and matrix integration. This process is a well-organized reac-
tion towards cellular signals than just a simple mixing of mitochondrial contents; 
making a single large network of mitochondria, for efficient production of energy 
currencies (both as ATP and GTP) rather than relying on individual isolated 
factories.

Being a fundamental process, the mitochondrial fusion and its associated mecha-
nism is evolutionarily conserved from yeast to mammals. The core machinery of 
mitochondrial fusion includes three proteins of dynamin family GTPases: 
Mitofusin1 and Mitofusin2 which act on outer mitochondrial membrane and optic 
atrophy1 (OPA1) that mediates inner mitochondrial membrane fusion (Fig. 25.3) 
(Table 25.3).

25.2.2.1.1 Mitofusins/Outer Membrane Fusion Proteins
Mfn1 and Mfn2, the mammalian orthologs of the protein components that coordi-
nate mitochondrial outer membrane fusion, are carved up in a similar molecular 
construction. Both the proteins possess an N-terminal catalytic domain with GTPase 
activity; two heptad repeat (HR) regions, HR1 and HR2; and two transmembrane 
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(TM) domains, sandwiched between the HR regions, which keep the mitofusins to 
be anchored to outer mitochondrial membrane (OMM). The heptad repeats HR1 
and HR2 project into the cytosol, where HR2 is shown to act as a go-between their 
counterparts in adjoining mitochondrial membranes.

Mitofusin expression and activity are regulated via transcriptional and post- 
transcriptional routes, and clearance of the protein proceeds through 

Table 25.3 Protein components, dynamin family GTPases, important in the mitochondrial fusion 
process

Protein Location Function
Mitofusin1/
Mfn1

Outer mitochondrial membrane Outer membrane 
fusion

Mitofusin2/
Mfn2

Outer mitochondrial membrane Outer membrane 
fusion

OPA1 L- 
OPA1

Inner mitochondrial membrane Inner membrane 
fusion

S- 
OPA1

Inner mitochondrial membrane & inter membrane 
space

Fig. 25.3 Mitochondrial fusion: Mitochondrial fusion process mediated by mitofusins (Mfn1/2- 
regulating outer membrane fusion) and OPA1 (regulating inner membrane fusion)
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proteasome- mediated mechanism, regulated by phosphorylation and ubiquitylation. 
Importance of Mfn1 and Mfn2 protein components was revealed by knockdown 
models, which resulted in the abrogation of mitochondrial fusion and consequential 
unopposed mitochondrial fragmentation that in  vivo studies have also shown to 
cause embryonic lethality in mice [52].

MFN2 mutation in humans is linked to a classic peripheral sensorimotor neu-
ropathy, Charcot-Marie-Tooth type 2A (CMT2A) disease, and it involves axonal 
degeneration and distal muscular atrophy [53, 54]. Also, defective MFN2 or its 
downregulation has been shown to be associated with pathologies like atherosclero-
sis, hypertension, diabetes and different types of malignancies [55–62]. Studies 
using tissue-specific gene manipulation models of mitofusin proteins in the nervous 
system, cardiovascular system, muscular system, or other major organs like liver 
have shown to impede the normal function as well as metabolism. For exam-
ple, knockdown/depletion leads to decreased efficiency of mitochondrial fuel oxida-
tion while overexpression leads to hyperactivation of mitochondria via increased 
expression of mitochondrial complexes as well as other proteins involved in energy 
generation. [25, 53, 54, 63–70].

Contrasting evidences of functional involvement and idleness of these proteins 
have been reported in some adult tissues which projects it as an interesting research 
endeavour.

25.2.2.1.2 OPA1/Inner Membrane Fusion Protein
OPA1, a dynamin-like GTPase, localized on the inner mitochondrial membrane as 
well as intermembrane space, mediates the process of inner mitochondrial mem-
brane (IMM) fusion. OPA1 is named after optic atrophy, an autosomal dominant 
optic neuropathy caused by mutations in the gene. The protein has also been shown 
to mediate several functions of mitochondria other than the fusion processes, which 
include cristae morphology and mitochondrial DNA stability [71–75].

OPA1 is originally expressed with an N-terminal mitochondrial targeting 
sequence, a transmembrane domain, a heptad repeat region, GTP binding domain 
and a C-terminal GTPase effector domain [76]. Depending on the tissue of expres-
sion, eight different OPA1 splice variants are generated by alternative splicing of the 
mRNA [77]. These long forms of OPA1 (L-OPA1) are susceptible for proteolytic 
cleavage by peptidases like PARL (presenilin-associated rhomboid-like protease), 
i-AAA metalloprotease Ymel, m-AAA metalloprotease paraplegin, metallopepti-
dase which localizes in the IMM OMA-1 and zinc metalloprotease [78–85]. 
Proteolytic modification occurs in the membrane-spanning region of long form 
which results in the generation of a soluble form, S-OPA1. Thus, the unprocessed 
long form of OPA1(L-OPA1) remains anchored to the IMM by its TM domain, 
while S-OPA1 which lacks the TM domain is targeted to the intermembrane space 
via its interaction with the IMM-anchored L-OPA1. Mammalian cells lacking OPA1 
processing enzymes have shown to exhibit balanced fission and fusion processes, 
and these studies claim the dispensable nature of OPA1 processing for maintaining 
structural and functional integrity of mitochondrial network.

A. Sivasailam et al.



589

Mitochondrial membrane potential disruption results in the accumulation of 
inactive OPA1 isoforms, by induced proteolytic cleavage, thereby inhibiting fusion 
and targeting the mitochondrial fragments for clearance by mitophagy. Also, pro-
apoptotic signals have shown to activate OMA1-mediated cleavage of OPA1, ulti-
mately resulting in excessive fragmentation of mitochondria, suggesting its role in 
programmed cell death. Knockdown studies in mouse embryonic fibroblasts have 
revealed the existence of hyperfused mitochondrial network even under stress, thus 
exposing their role as a stress sensor essential to maintain mitochondrial homeosta-
sis [81, 86, 87].

L-OPA1 cleavage serves as an important regulatory role in balancing mitochon-
drial fusion and fission processes, preserving mitochondrial architecture. OPA1 
expression and associated changes in mitochondrial morphology depend heavily on 
the metabolic alterations and the type of substrates available to the cell; and is tran-
scriptionally regulated by factors like NF-kB which serves as a master controller of 
metabolic reprogramming, cell survival, etc. [88].

Gene knockout models of Opa1 have fragmented mitochondria due to impaired 
fusion, and re-expression of L-OPA1 lacking the cleavage sites for the peptidases 
has shown to rescue  it, highlighting its importance for maintaining a balance 
between fusion and fission processes. In mice models, complete knockout of Opa1 
is lethal, but heterozygous expression makes them viable except showing 50% 
reduction in steady-state levels making them susceptible for tissue-specific patholo-
gies like slow-onset retinal degeneration and decline in vision, as well as cardiac 
hypertrophy and associated dysfunction [89, 90]. In the same line, overexpression 
studies with functionally active OPA1 have been shown to confer cytoprotective 
advantages in a range of pathophysiological conditions, emphasizing the signifi-
cance of OPA1 function and its regulation. However, it remains elusive as to what 
function of OPA1 confers the cytoprotective effect, whether it is the fusion activity 
or other functions that are yet to be discovered.

Current understanding of the process of mitochondrial fusion proposes it as an 
outcome of highly coordinated interaction between the outer membrane and inner 
membrane fusion proteins. The GTP powered fusion process occurs in various 
steps: tethering of different mitochondrial units via the interaction between the 
outer membrane proteins (Mfn1 and Mfn2), outer membrane fusion followed by 
inner membrane fusion mediated by OPA1. After the fusion of the outer and the 
inner mitochondrial membranes, the two separate mitochondrial entities fuse to 
either become a larger mitochondrion or the discrete mitochondria become part of 
the already formed network. The fusion process, though coalesces the mitochon-
drial units,  the mitochondria can nonetheless maintain some discontinuity; that 
safeguards the entire network from depolarizing when just a part of the network 
becomes damaged; thus making possible the severing of the damaged part of the 
network alone while maintaining the integrity of the network.

25.2.2.2  Machinery of Fission
Mitochondrial fission involves the fragmentation of existing mitochondrial entity 
into separate units, which can either be part of a programmed series of events like 
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embryogenesis, cell differentiation and development, apoptosis, etc. or can be an 
induced process to combat cellular stress resulting from mitochondrial dysfunction. 
Mitochondrial fission has been shown to be a part of numerous events, although the 
physiological significance of the process still remains elusive. In mammalian cells, 
the process of mitochondrial fission is regulated by dynamin-related protein (Drp) 
1, mitochondrial fission factor (Mff) and fission 1 (Fis1).

25.2.2.2.1 Dynamin-Related Protein (Drp1)
Dynamin-related protein, Drp1, is an 80 kDa protein that belongs to the GTPase 
family and is found in the cytosol of mammalian cells. Mitochondrial fission stimu-
lus induces the localization of this large protein to the outer mitochondrial mem-
brane eventually resulting in the fragmentation of the constricted organelle into 
separate entities [91, 92].

Drp1 consists of an N-terminal GTPase domain, followed by a middle domain, a 
variable domain/insert B and a C-terminal GTPase effector domain. Here, the insert 
B helps in interacting with the target membrane via membrane proteins, while 
GTPase effector domain helps in self-association to form oligomers. In its soluble 
form, Drp1 may occur as monomer, dimer or tetramer, but once recruited to OMM 
via interaction with other players like fission protein 1, mitochondrial fission factor 
and mitochondrial dynamics proteins of 49 and 51 kDa, they can oligomerize form-
ing higher-order structures [91, 93, 94].

25.2.2.2.2 Mammalian Fission Protein 1 (Fis1)
Fis1, a 17 kDa single pass transmembrane protein with C-terminal end anchored to 
outer mitochondrial membrane and an N-terminal tetratrico-peptide repeat motif 
facing cytosol, was the only protein thought to mediate the process of mitochondrial 
fission in mammals. The tetratrico-peptide repeat motif facing the cytosol facilitates 
protein-protein interaction and protein transport.

Recent research, like those with knockout models of Fis1, exposed the limited 
role of the protein in fission process [94, 95], thus suggesting that though Fis1 par-
ticipates in the process of fission, it acts as one among the array of adaptor proteins 
that helps in recruitment of Drp1 and its interaction with mitochondrial membrane 
and has a dispensable role in the process.

Alternative receptors for Drp1 include Mff, ganglioside-induced differentiation- 
associated protein 1 (GDAP1), Mid49 and Mid51/Mief1; knockdown studies of 
these factors suggest a dispensable association of these proteins as well with Drp1 in 
driving the process of mitochondrial fission [94, 96] (Table 25.4).

Current concept of mitochondrial fission process involves the recruitment of 
Drp1 to the OMM via interaction with various adaptor proteins on the membrane 
where they oligomerize to form spiral structures followed by GTPase-driven con-
striction of the structure forcing the severing of both inner and outer mitochondrial 
membrane, giving two separate mitochondrial units (Fig. 25.4).

As mentioned earlier, the turnover rate of the high-capacity mitochondrial net-
work in terminally differentiated cardiomyocytes is low. Irrespective of this, the 
protein components of fusion and fission machinery are highly expressed and are 
inevitable for proper functioning of adult heart. Emerging evidences suggest their 
imperative role in the mitochondrial quality control.
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25.2.3  Mitophagy: Pathway for the Clearance of Dysfunctional 
Mitochondria

Mitochondria are involved not only in the energy production but also in the signal 
transduction pathways ranging from calcium signalling in the cell to the cell death 
mechanisms through apoptosis. The damaged mitochondria can be a source of free 
radicals that cause damage to the cellular constituents; it can also be a source of 
calcium leaching into the cytoplasm and release of the caspases leading to the cell 
death cascade. To maintain the health of cell, it thus becomes imperative to clear off 
damaged mitochondria. Indeed, the stable number of mitochondria that is observed 
in the terminally differentiated cell types, like the cardiomyocytes, is rather in a 
dynamic flux with a balanced mitochondrial biogenesis and degradation of the 

Table 25.4 Protein components important in the mitochondrial fission process

Protein Location Function
Dynamin-related protein 
1 (Drp1)

Cytosol and outer 
mitochondrial 
membrane

Severs both outer and inner mitochondrial 
membranes; forms oligomeric structures 
that constrict the organelle in a GTP- 
dependent manner

Fission protein 1 (Fis1) Outer mitochondrial 
membrane

Helps in Drp1 recruitment to outer 
membrane fission

Mitochondrial fission 
factor (Mff)

Outer mitochondrial 
membrane

Helps in Drp1 recruitment to outer 
membrane fission

Mitochondrial dynamics 
proteins of 49/51 kDa 
(Mid49/51)

Outer mitochondrial 
membrane

Helps in Drp1 recruitment to outer 
membrane fission

Ganglioside-induced 
differentiation-associated 
protein 1; GDAP1

Outer mitochondrial 
membrane

Helps in Drp1 recruitment to outer 
membrane fission

Fig. 25.4 Mitochondrial fission process is mediated by Drp1 and associated proteins like mito-
chondrial fission factor (MFF), mitochondrial dynamics proteins of 49  kDa and 51  kDa (MiD 
49/51) and fission 1 protein (Fis1). The process requires the localization of Drp1 from the cytosol 
to the outer membrane of damaged/depolarized mitochondria which is mediated by the associated 
proteins, causing a constriction in the damaged part of the mitochondria and eventual budding off 
of the damaged mitochondria
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damaged or dysfunctional mitochondria, thus maintaining mitochondrial homeosta-
sis [97, 98]. A disruption of this balance can contribute to the pathologies of various 
disease conditions which ultimately could result in heart failure. The cellular clear-
ance of dysfunctional mitochondrial structures is achieved by the process of autoph-
agy, more specifically mitophagy, a term suggested in the last decade by Lemasters 
et al., for the degradation and recycling of the mitochondria [99].

25.2.3.1  Autophagy in Myocardium
Autophagy is a lysosome-dependent recycling mechanism that works at cellular 
level. It helps to maintain cellular homeostasis by way of recycling long-lived pro-
teins and damaged organelles by sequestrating them in double membrane vesicles 
called ‘autophagosomes’, which ultimately fuses with lysosome to degrade the 
cargo. So far, ~35 autophagy-related (ATG) genes have been identified in yeast 
along with their mammalian counterparts; and three different types of autophagy 
have been classified: macroautophagy, microautophagy and chaperone-mediated 
autophagy [100]. Microautophagy is the process by which small cellular fractions 
are degraded by indentation in the lysosomal membrane and engulfment of the 
adjoining cytoplasm into the lumen of the lysosome. In chaperone-mediated autoph-
agy, the macromolecules with the amino acid motif KFERQ (lysine-phenylalanine- 
glutamic acid-arginine-glutamine) associate with the Hsc70 which translocates to 
the LAMP molecule on the lysosomal membrane, while macroautophagy (hitherto 
referred to as autophagy) is the random and selective degradation of the bulk cyto-
plasmic constituents in a double membrane-bound vesicle that later fuses with the 
lysosome to recycle the cargo [100].

On induction of autophagy, many Atg proteins, including the lone kinase in the 
mammalian Atg family, Unc-51-like autophagy activating kinase 1 (ULK1), help in 
formation of autophagosomes by sourcing membranes from various cytosolic mem-
branous structures, primarily endoplasmic reticulum [101, 102], endosomes, trans- 
Golgi network [103, 104] and even in constrained conditions, nuclear envelope 
[105]. The isolation membrane, known as omegasome, is sourced from the ER net-
work, and autophagosomal structure gets assembled with the support of various 
protein factors. Ultimately the matured autophagosome with the cargo targeted for 
degradation fuses with the lysosome where degradation takes place. While bulk 
autophagy is a nonselective process, various types of selective autophagy have also 
been characterized, including mitophagy, pexophagy, chlorophagy and xenophagy. 
Of these, mitophagy or mitochondrial-specific autophagy is the most extensively 
investigated process, and some mitophagy-specific regulators have also been identi-
fied. Most of the molecular machinery of autophagosome formation are same 
between the nonselective form of autophagy and selective degradation process like 
mitophagy, but it also possesses some unique molecular mechanisms, like the 
PTEN-induced putative protein kinase 1 (PINK1)-Parkin pathway and some 
mitophagy receptor proteins that function as adaptors.

Under physiological conditions, basal level of autophagy helps in recycling long- 
lived proteins and dysfunctional organelles, having a significant role especially in 
an organ like the heart where terminally differentiated cardiomyocytes are the func-
tional players. In normal physiology, autophagy levels are increased in myocytes in 
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response to nutritional stress to cope with energy demands, providing adequate lev-
els of ATP to maintain myocyte contractile force. Here, the nutritional stress can 
either be starvation induced or exercise induced, both acting via adenosine 
monophosphate- activated protein kinase (AMPK). In addition, autophagy levels are 
also altered in pathological conditions like myocardial infarction and heart failure 
models like cardiac pressure overload. Also, chronic hyperactivation of autophagy 
has shown to damage the myocardium (Fig. 25.5).

Conditional knockdown of autophagy-related genes in myocardium results in 
rapid cardiac abnormalities demonstrating the importance of baseline autophagy for 
myocyte survival [106, 107]. Cardiac-specific knockdown of proteins like Atg5, 
LAMP-2 and anti-apoptotic protein BCL-2 has been shown to result in dysregulated 
autophagy and ultimately heart failure [107–109]. Most of the cardiovascular dis-
eases are associated with risk factors like diabetes, obesity, hypertension and hyper-
lipidaemia. And these risk factors have been experimentally proven to alter 
autophagic status of the myocardium which ultimately results in the accumulation 
of dysfunctional organelles and proteins or chronic hyperactivation and loss of car-
diac health especially in conditions like reperfusion after an ischaemic insult [110–
112]. Although autophagy was once thought to be a bulk, nonselective process, 
emerging evidences give more insights into the selective nature of autophagy in 
removing protein aggregates and dysfunctional organelles like mitochondria.

Mitochondria, with its vast variety of roles in processes ranging from cell sur-
vival to cell death, operate as a vital regulator of cellular homeostasis. Being the hub 
of oxidative metabolism in eukaryotic cells, mitochondria have to face the inevita-
ble challenge of managing enormous amount of oxygen and its reactive radicals 
while having its own as well as the cell’s redox status in check. Thus, if dysfunc-
tional, this organelle can be a major contributor for the increased cellular ROS levels 

Fig. 25.5 Autophagic flux: All tissues maintain a basal healthy level of autophagy that helps in 
keeping the essential resources in dynamic homeostasis. When the autophagy becomes defective, 
either more than or less than what is required for that tissue type in the given physiological setting, 
the proper functioning of the tissue gets hampered
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and thus to the pathology of many diseases which varies with the tissue type. 
Mitochondrial dysfunction can occur due to (a) the loss of membrane potential 
essential for its primary function, chemi-osmotic synthesis of ATP, (b) changes in 
the electron transport chain complexes or (c) reduction in the transport of key 
metabolites to mitochondrial matrix. Dysfunctional mitochondria are less efficient 
in terms of metabolism and can generate excessive reactive oxygen species (ROS), 
which can add to the quantum of damage to mitochondrial DNA and proteins.

In terminally differentiated cells like cardiomyocytes, accumulation of dysfunc-
tional or less efficient mitochondria can result in myocyte loss which ultimately 
leads to conditions like heart failure. To tackle this, these cell types are equipped 
with a quality check mechanism which ensures a functional network of healthy 
mitochondria. Damaged or dysfunctional mitochondria are selectively severed from 
the network, by way of mitochondrial fission, and are targeted for degradation in 
autophagosomes. This process is called mitochondrial autophagy or mitophagy. 
Evidence from research targeting the process of mitophagy confirms its indispens-
able role in maintenance of a healthy network of mitochondria in myocardium 
[113–117].

25.2.3.2  Molecular Mechanisms of Mitophagy
Mitochondrial autophagy or mitophagy depends on various molecular mediators 
like PTEN-induced putative protein kinase 1 (PINK1), Parkin, Bcl2/adenovirus 
E1B 19 kDa protein-interacting protein 3 (Bnip3), Nip3-like protein X (NIX, also 
known as Bnip3L), Fun14 domain containing 1 (FUNDC1) and cardiolipin. And the 
mediators involved in the process of mitophagy often vary with the kind of stress 
that serves as induction: PINK1/Parkin-mediated mitophagy targeting  depolarized/
damaged mitochondria and other identified receptors like Bnip3, NIX and FUNDC1 
involved mainly in the hypoxic induced clearance of mitochondria (Fig. 25.6).

25.2.3.2.1 PINK1/Parkin-Dependent Mitophagy
Mitophagy is intensively investigated by induction of mitochondrial damage/depo-
larization; perhaps for this reason, Parkin-mediated mitophagy remains one of the 
most thoroughly studied forms of mitochondrial clearance [118, 119].

PTEN-induced putative protein kinase 1, PINK1, is a mitochondria-targeted ser-
ine/threonine kinase; in healthy mitochondria, it is imported to the matrix via trans-
locase of outer membrane/TOM complex, processed by mitochondrial processing 
peptidase followed by digestion by presenilin-associated rhomboid-like (PARL) 
protease, marking it for degradation [118, 120]. However, in compromised mito-
chondria, with abated membrane potential and the electrochemical gradient or an 
inefficient antioxidant system, PINK1 accumulates in the OMM evading degrada-
tion and phosphorylating several OMM proteins. Mfn2, the fusion protein, is a key 
substrate of the PINK1 phosphorylation acting at both Thr111 and Ser442, lending it 
to function as a receptor for Parkin, phosphoubiquitin-dependent cytosolic 
E3-ubiquitin ligase, recruiting it to the mitochondrial membrane [121]. Mfn2 phos-
phorylation by PINK1 has been shown to have a dispensable role in recruitment of 
Parkin and hence mitophagy in MEF cells. Phosphorylation of Parkin at Ser65 and 
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ubiquitin at Ser65 by PINK1 activates these proteins recruiting them to OMM. This 
is followed by ubiquitination of OMM proteins like VDAC1, mitofusin and Miro, 
thus initiating the autophagic clearance of mitochondria [122–125]. Structural stud-
ies of the proteins reveal that Ser65 phosphorylation of ubiquitin interacts with 
Parkin via a conserved phosphate pocket triggering a conformational change in 
Parkin that causes the release of a ubiquitin-like domain from its core. This results 
in activation of Parkin through phosphorylation by PINK1 [126] (Fig. 25.6a).

Recent findings have shown that the increased expression of Parkin compensates 
for PINK1 deficiency in cardiomyocytes suggesting the existence of multiple routes 
of Parkin translocation and the replaceable nature of PINK1 involvement, despite 
the crucial role it has shown to play in Parkin-dependent mitochondrial clearance 
[127, 128].

Fig. 25.6 A graphical illustration of different mitophagic pathways. (a) In a healthy mitochon-
dria, PINK1 is processed by the mitochondrial peptidases, while in a depolarized mitochondria, 
PINK1 accumulates on the outer mitochondrial membrane and gets activated promoting Parkin 
translocation to the damaged mitochondria. Parkin, an E3 ubiquitin ligase, ubiquitinates different 
outer mitochondrial membrane proteins helping it to interact with the autophagic adaptor proteins 
like p62, thus targeting it for autophagic degradation. (b, c) BNIP3/NIX and FUNDC1 are alter-
nate pathways where they serve as receptors that tether mitochondria to LC3 in the autophago-
somal membrane
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Increasing evidences unveil the involvement of more upstream regulators of 
Parkin translocation to OMM. RNAi studies revealed that HSPA1L (HSP70 family 
member) positively regulates Parkin translocation while BAG4 inhibits it [129]. 
Further, heat shock protein (HSP) 72, a mitochondrial stress sensor, is shown to act 
via the regulation of Parkin recruitment and thus stress-induced mitophagy. Also, in 
cardiomyocytes, BAG3, a co-chaperone of HSP70, participates in mitophagy by 
co-translocating to OMM along with Parkin [130]. These results point towards the 
complexity of mitophagy signalling and its importance in maintaining cellular 
homeostasis.

25.2.3.2.2 Parkin-Independent Mitophagy
Emerging evidences rope in the idea of existence of Parkin-independent mecha-
nisms for mitochondrial clearance [131–134]. And these routes rely mainly on the 
interaction between OMM components, which serve as mitophagy receptors/
autophagy adaptors, and LC3 on autophagosomes, via LC3-interacting motifs. The 
mitophagy receptors on OMM include Bcl2/adenovirus E1B 19  kDa protein- 
interacting protein 3 (Bnip3), Nip3-like protein X (NIX, also called Bnip3L), Fun14 
domain containing 1 (FUNDC1), Bcl-2-like protein 13 (Bcl2-L-13), activating mol-
ecule in Beclin1-regulated autophagy (AMBRA1) and cardiolipin.

BNIP3 and NIX, these Bcl-2 family proteins are critical players in cell death 
pathways, but recent evidences suggest their involvement in cell survival by acting 
as mitophagy receptors [133, 134]. Both the proteins localize on the OMM where 
they act as receptors which directly interact with LC3/γ-aminobutyric acid receptor- 
associated protein (GABARAP) on the autophagosomal membrane. This eliminates 
the need for other adaptor proteins like P62 and can tether mitochondria to autopha-
gosomal membrane. Bnip3 and NIX are upregulated by hypoxia-inducing factor-1 
(HIF-1). Under hypoxic conditions, both these proteins act in the induction of 
mitophagy and help the cells in regulating ROS. Knockdown studies of Bnip3 and 
NIX reveal redundancy in their roles in mediating mitophagy, since both of them 
can compensate for each other’s loss while allowing for the progression of mitoph-
agy (Fig. 25.6b).

Recent evidences hint the existence of crosstalks between different mitophagic 
pathways. Bnip3 is found to interact with PINK1 promoting its accumulation on the 
OMM. Also, Bnip3 inactivation enhanced the proteolytic degradation of PINK1, 
thereby suppressing PINK1/Parkin-dependent autophagy. Thus, activated BNIP3 
not only causes mitophagy through the BNIP3-mediated route but also enhances the 
mitochondrial clearance by assisting the PINK1/Parkin-dependent autophagy.

FUNDC1, another mitophagy receptor protein, mediates hypoxia-induced 
mitophagy in mammalian cell [132]. It is an OMM protein and acts by interacting 
with LC3 through its LC3 interaction motif. Phosphoglycerate mutase family mem-
ber 5 phosphatase (PGAM5), a mitochondrially localized phosphatase, activates 
FUNDC1 during hypoxia or under elevated ROS levels by dephosphorylating the 
protein at Ser13. Wider role of this protein in modulation of mitophagy is evidenced 
by its interaction with mitochondrial fission and fusion proteins, Drp1 and OPA1, 
respectively. The mitochondria in a network better evade the autophagic 
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degradation as the growing phagophore; though a means of macrodegradation of 
organelles; has spatial constraints for its cargo, thus making the role of Drp1 critical 
as it severs the mitochondria from the network and makes it accessible for the 
autophagic engulfment. Hence, the interaction of FUNDC1 with Opa1, which keeps 
the mitochondrial membranes in a fused state and thus maintains the network, 
results in the suppression of mitochondrial fission inevitably suppressing mitophagy 
as well. But, when activated by PGAM5 through its dephosphorylation, FUNDC1 
dissociates from Opa1 and associates with Drp1, thereby promoting mitochondrial 
fission and, ultimately, mitophagy (Fig. 25.6c).

Cardiolipin, a phospholipid dimer, exclusively located in the inner mitochondrial 
membrane (IMM) is a critical component of functional mitochondria, and its impor-
tance in mitochondrial bioenergetics is evidenced by the intimate association it has 
with the energy-transducing membranes. Damage to mitochondrial membrane 
integrity results in the redistribution of cardiolipin to the outer mitochondrial mem-
brane resulting in the commencement of a cascade of events culminating in apopto-
sis, thus cardiolipin was initially thought to be associated only with cell death 
pathways. However, a recent finding demonstrated the capacity of externalized car-
diolipin to induce mitophagy by interacting with LC3 on autophagosomes [131]. 
The peroxidation status of externalized cardiolipin regulates both autophagy and 
apoptosis. Nonperoxidized cardiolipin on OMM can interact with LC3, thus pro-
tecting cells from cell death pathways, and this phospholipid is peroxidized in the 
absence of autophagy, giving way for apoptosis.

AMBRA1, an upstream autophagy regulator, was first identified as one among 
the Beclin1-interacting components that mediates Ulk1-Beclin interaction. It is 
found to be localized both in the cytosol and on mitochondria; and a recent study 
suggests that AMBRA1 plays a role in mitophagy through its interaction with 
Parkin in HEK293 cells, SH-SY5Y cells and adult mouse brain. Also, the strength 
of the interaction of endogenous Parkin and Ambra1 increased during prolonged 
mitochondrial depolarization [135, 136]. These evidences suggest the Parkin depen-
dence of mitochondrial clearance involving AMBRA1. More recently, Strappazzon 
et al. showed that OMM-localized AMBRA1 can stimulate a substantial amount of 
Parkin and p62-independent but LC3-dependent mitophagy.

Bcl2-L-13 is an OMM protein, assumed to be a functional homolog of yeast 
protein Atg32, which is a key player in orchestrating mitophagy in yeast, by local-
izing on mitochondria and interacting with mitophagic adaptors. A recent report has 
shown that the overexpression of Bcl2-L-13 protein induces mitochondrial frag-
mentation in neonatal cardiomyocytes and HEK293 cells, derived from human 
embryonic kidney cells [137, 138]. Involvement of this protein in the process of 
mitophagy in metazoans remains understudied, making this an alluring target for 
research.

Advances in research in the field of mitophagy helped in deciphering different 
routes as well as components involved in the clearance of mitochondria: in physiol-
ogy and pathology. Many of these pathways are shown to have a crosstalk establish-
ing their cumulative action and interdependence for an efficient clearance of the 
organelle.
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Mitophagy serves as the quality control mechanism in terminally differentiated 
myocytes, and if impaired, it results in the accumulation of dysfunctional mitochon-
dria, ultimately leading to aberrant cardiac function and associated pathologies. 
Mouse models deficient in key players of mitophagy like Parkin, Pink1, Bnip3 and 
Nix have shown to develop cardiac hypertrophy and ultimately heart failure with 
progression of age, demonstrating the imperative role played by the process of 
mitophagy in maintaining cardiac homeostasis  [218]. Also, removal of dysfunc-
tional mitochondria via autophagy is shown to decline with age, and overexpression 
of Parkin has shown to revert the age-associated effect [219]. These studies suggest 
a plausible target for therapies against various pathologies as well as age-associated 
cardiac dysfunction. A thorough understanding about the long-term as well as short- 
term modulation of autophagy on mitochondrial homeostasis, cardiac output and 
overall health of the organ system can help to develop a better intervention.

25.3  Therapies Targeting Mitochondrial Dynamics

The discussions in the previous sections suggest the importance of uninterrupted 
mitochondrial dynamics in maintaining proper functioning of myocardium. This 
highlights the tantalizing possibility of targeting these processes for therapeutic 
gain.

25.3.1  Mitochondrial Biogenesis as a Therapy

There are evidences emerging that nicotinamide riboside helps in mitochondrial 
biogenesis [139, 140]. Nicotinamide phosphoribosyltransferase (NPT) enzyme is 
under the control of PPAR, the family of transcription factors that are involved in a 
myriad of energy and metabolic signalling in the cell. PPAR as previously described 
is also involved in transcription of the transporters associated with shuttling of sub-
strates into the mitochondria. PPAR is associated with the major mitochondrial bio-
genesis switch in the cell, the PGC-1  α. Thus, if the nicotinamide 
phosphoribosyltransferase is acted upon by the transcription factor PPAR which 
also influences the PGC-1 α, through which it regulates the formation of new mito-
chondria in the cell, it seems plausible that NPT is influenced by the PGC-1 α and 
could be influencing it in return, in a feedback fashion. This, when looked at from 
the overall perspective of the cell, would make a beneficial alternative for the cell 
metabolism because the switch that causes mitochondrial biogenesis must in effect 
have a role in formation of the substrates in turn assuring the proper functioning of 
the newly generated mitochondria. Though still being empirically validated, a 
highly probable mechanism of the observed beneficial effects of dietary supplemen-
tation of NR could be mitochondrial biogenesis and providing the newly formed 
mitochondria with the major substrate required for electron shuttle in the ETC, 
along with handling the ROS generated in the process; thus reducing the damage to 
the new mitochondria and maintaining the overall mitochondrial health.
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25.3.1.1  Resveratrol/Pterostilbene
Pterostilbene (trans-3, 5-dimethoxy-4-hydroxystilbene) is a type of stilbene, an 
active compound found in many plants especially blueberries, grapes, hardwood of 
the red sandalwood tree, etc. [141]. It is secreted in response to environmental 
insults to the plant like bacterial infection and excessive ultraviolet light exposure. 
The stilbenes are thus compounds having anti-inflammatory and antioxidant effects. 
Resveratrol is a type of stilbene compound secreted from many grapevines and 
popularized recently as a beneficial agent for its anti-ageing and heart health-pro-
moting properties. Pterostilbenes have slightly different structures than resveratrol 
because of the two extra methoxy groups in its structure which makes it more bio-
available than resveratrol. The pterostilbene can be absorbed nearly 80% through 
oral supplementation as opposed to just 20% absorption of resveratrol; also it has 
longer half-life that makes it an interesting compound for therapeutic purposes 
[142] (Figs. 25.7).

Resveratrol (3, 4′, 5-trihydroxystilbene) is a type of stilbene and chemically a 
phytoalexin that is a common nutritional additive [143]. It was first discovered in 
the 1940s and isolated from the plant white hellebore (Veratrum grandiflorum) 
[144]. It is not just present in the fresh plant material like fruits, leaves, bark, etc. but 
is also found in the processed plant products like tea leaves, red wine, etc.

Resveratrol has been shown to affect many metabolic signalling events and has 
an effect on the mitochondrial function. It has also been shown to modulate the 

Fig. 25.7 Structure of resveratrol and stilbene

25 The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional…



600

expression of vascular cell adhesion molecules (VCAM) that along with its ability 
to induce anti-inflammatory effects by reducing the secretion of chemokines causes 
a decrease in the development of atherosclerosis [220]. It also affects the activity of 
vascular smooth muscle cells that helps in controlling vascular stiffness that is asso-
ciated with many forms of heart diseases and metabolic syndrome, leading to a 
controlled blood pressure.

25.3.1.2  Mechanism of Action of Resveratrol
Biochemically resveratrol causes its active effects through the activation of Sirt1 
which is one of the sirtuin family proteins in the mammalian systems and a tran-
scriptional regulator as it deacetylates histones [145]. Sirt1 is also a known regulator 
of NFĸB and through this affects various cellular processes involved in diverse cel-
lular functions from cell proliferation, metabolism and migration to inflammatory 
responses [146]. Sirt1 is a redox and energy-sensing molecule in the cell that senses 
the energy status and produces the appropriate responses. In the cell metabolism, 
Sirt1 has been shown to result in mitochondrial biogenesis in various cell lines [221]. 
The major mitochondrial biogenesis switch, PGC-1 α, controls mitochondrial bio-
genesis to meet the energy demands of the cell, thus establishing a fine-tuned mech-
anism of ensuring balanced energy demand and supply. This implies that PGC-1 α 
needs to constantly monitor the energy status of the cell. The means it adopts to 
sense the energy status is through AMPK and Sirt1. The reversible phosphorylation 
of PGC-1 α by AMPK and deacetylation by Sirt1 determine its activity status. The 
acetylated form of PGC-1 α deactivates the transcription factor, while the deacety-
lation by activated Sirt1 causes its activation and eventual mitochondrial biogenesis 
along with many other metabolic effects. Thus resveratrol and other stilbene com-
pounds like pterostilbene cause the beneficial effects in the energy utilization and 
oxidative free radical scavenging through the generation of healthy mitochondria.

25.3.1.3  Why Is Dark Chocolate and Red Wine Good for the Heart?
The famous French paradox had baffled the scientific community for long. The 
paradox is the reduced risk of heart diseases and development of cardiovascular ill-
ness among the French population, especially the southern French people as com-
pared to the average healthy European, even when their consumption of saturated 
fats is very high, way higher than found in the diets of the average European person 
[147]. The consumption of the cheese, dairy and meat products being high in the 
so-called unhealthy fats (trans-fats, saturated fats, etc.) among this group should 
have resulted in the increased incidence of atherosclerosis and metabolic syndrome. 
But they are surprisingly found to have healthy hearts. The most prominent correla-
tion in this group is the consumption of red wine. This results in the natural intake 
of essential stilbenes like resveratrol that would result in their mitochondria being 
better adept to handling the fatty acid oxidation and scavenging oxidative radicals.

Like red wine, the cocoa compounds are also high in the active resveratrol [148]. 
The cocoa trees are found in the tropical regions of the world which receive intense 
sunlight and thus intense ultraviolet exposure. To avoid any UV-related damage that 
the plant at its cellular and genome level would inevitable endure, it produces 

A. Sivasailam et al.



601

resveratrol. The cocoa and grape plant and their products are thus very high in their 
resveratrol content that helps in protecting the plant from oxidative damage caused 
by the high UV exposure. This resveratrol is not washed out or leached during the 
processing steps in making chocolate and wine, giving dark chocolate (which does 
not contain excessive sugar or dairy compounds that may have their own harmful 
effects for the heart and overall health) and red wine a natural capacity to promote 
mitochondrial health. As any defect in the mitochondria has a direct bearing on the 
organs that depend heavily on the continuous energy supply, like the heart and the 
nervous tissue; these compounds dark chocolate, red wine, etc. are heart friendly.

There are a number of studies validating the aforementioned association between 
heart health and these natural compounds [149–151].

25.3.1.4  Can PGC-1 α Be a Therapeutic Target?
If the PGC-1 α can have these many beneficial effects on the heart health, should it 
be a treatment modality for cardiovascular diseases? The issue with giving PGC-1 α 
or its precursors as supplements is that it would result in uncontrolled mitochondrial 
growth and other metabolic changes associated with the activation of this transcrip-
tion factor. The well-being of a cell or a tissue is dependent on the appropriate 
number of functional mitochondria; if in excess, it would lead to too much energy 
generation and depletion of the substrates and intermediates of the biochemical 
pathways that could be important signalling molecules for the maintenance of 
homeostasis. The unwanted increase in the mitochondrial content could lead to 
biogenesis-induced cardiomyopathy. By inducing the activation of PGC-1 α through 
its upstream regulators, it is subject to a stricter control and can be maintained with-
out adverse side effects.

Also, the mitochondria in an individual or in a single cell are not always uniform. 
It has its own genome that is subject to its specific mutations. The mutated mito-
chondria are intermingled among the population of healthy mitochondria, thus 
showing mitochondrial heteroplasmy. It has been observed that the mitochondrial 
DNA mutations are present at the rate of 1 in 200 individuals which is many times 
higher than the rate of occurrence of mitochondrial diseases (also believed to be 
caused by defective and mutated mitochondria) [152] postulated to be around 1 in 
5000 individuals in UK, which is a greater than 20-fold increase [140]. This implies 
that there is a critical threshold that needs to be reached for the damaged and mutated 
mitochondria to show any detrimental effects. Thus, if the mitochondrial biogenesis 
is enhanced, without directing the degradation of the damaged mitochondria, the 
mutated mitochondria will also divide causing there to be an increased population 
of the same and increasing the susceptibility of development of related disorders. It 
hence follows that a linear relationship between mitochondrial number and effi-
ciency in the cell is dependent on the level of heteroplasmy and the number of 
mitochondria that are healthy.
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25.3.2  Enhancing Mitochondrial Efficiency by Clearance 
of Damaged Mitochondria

There are various physiological events that lead to enhanced mitophagy and thus to 
an efficacious mitochondrial network in the cells. The various tissues and organ 
systems are affected simultaneously with the initiation of the autophagic process, 
and the benefits are not confined to a specific tissue alone. With respect to the gen-
eral cardiovascular salubrity and heart efficiency, it is also benefited as the mito-
chondrial population in the tissue remains efficient. The most common mechanism 
of enhancing mitophagy (and autophagy in general) is nutrient deprivation.

25.3.2.1  Calorie Restriction
Starvation is one of the most well-known and widely studied phenomena that 
induces autophagy. But it cannot be utilized on a regular basis for healthy, normal 
weight adults. Prolonged starvation can cause more harm than good becoming 
counterproductive for health promotion [153]. To assimilate the beneficial aspects 
of starvation without the detrimental side effects, the best method is restricting the 
food intake or calorie restriction (CR). This means to restrict calories in a particular 
meal or throughout the meals had during the day such that the total calories con-
sumed is slightly less than the total caloric requirement for weight maintenance of 
the individual, calculated as per the age, sex, physical activity performed on a regu-
lar basis, etc. These periods of CR are interspersed with the periods of normal 
caloric intake (as many calories as required for that individual) so that an absolute 
deficiency of nutrients is not created in the body. It is observed that calorie restric-
tion induces the clearance of pre-existing mitochondria through the process of 
mitophagy induction [154], and when the body is released off the stress of starva-
tion/CR, the mitochondrial biogenesis is enhanced [155]. This CR not only has 
proven to be helpful in the maintenance of the potency of the heart in normal weight 
healthy adults but has also shown to increase the cardiac efficiency in the diseased 
condition. CR has been claimed to be the means to halt the heart ageing and pro-
mote cardiac performance [156, 157].

The means by which CR leads to the mitophagy is through the blocking of the 
mechanistic target of rapamycin (mTOR) complex1 [158]. mOTR is a serine/threo-
nine kinase that functions as a major regulator of cellular growth, proliferation, etc. 
It is activated by the presence of growth factors, insulin and insulin-like growth 
factors, which initiate a cascade of signalling through the PI3K–Akt–mTOR axis. 
mTOR is also activated by the 5’ AMP-activated protein kinase (AMPK), thus com-
bining the growth factor cues with the cellular energy availability. mTOR negatively 
influences the autophagic machinery, so that the growth signals do not coincide with 
the cell recycling processes. With the reduction in the energy reserves in the cell, the 
AMP to ATP ratio gets increased, and this activates the AMPK, which in turn nega-
tively signals the mTOR complex1 [159]. The mTOR complex1 is an inhibitor of 
first of the autophagic proteins that get activated and are prerequisites for the initia-
tion of the process of autophagy, the ULK1/ULK2–ATG13–FIP200 complex that 
associates and forms the autophagic initiation membrane [160] (Figure 25.8). Thus, 

A. Sivasailam et al.



603

Fig. 25.8 Reduction in cellular levels of ATP stimulates AMP-activated protein kinase (AMPK) 
which induces the expression of REDD1 inhibiting TSC1-TSC2 complex. This subsequently 
inhibits mTOR complex 1 activity. Also AMPK phosphorylates TSC2 activating its GTPase activ-
ity converting Rheb GTP to Rheb-GDP and thus inhibiting mTOR complex 1. Similarly, AMPK 
can phosphorylate mTORC1 (in its Raptor domain on Ser722 and Ser792) inhibiting mTORC1 
activity. mTOR C1 negatively regulates autophagy and thus, the ATP depletion in the cell causes 
autophagic upregulation
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by inhibiting the activation of mTOR, the AMPK initiates the autophagy and also 
mitophagy in the cell, as the general increase of autophagy in the cell also causes an 
increase in selective autophagy (mitophagy).

25.3.2.2  Exercise
Exercise is a known source of mitochondrial renewal by the elimination of old exist-
ing mitochondria and the generation of new mitochondria during the periods of rest 
amidst the periods of intense exercise [161]. The exercising muscle is at a stress of 
intense energy requirement provided through the oxidative phosphorylation that in 
turn generates reactive oxygen species. With the depletion of the energy reserves of 
the cell and limited availability of the adequate oxygen necessary to sustain the fast 
burst of ATP generation through OXPHOS, the exercising muscle shifts from oxida-
tive phosphorylation to anaerobic glycolysis as the prime source of energy, in turn 
generating lactic acid. This quick burst of ATP generation from the mitochondria 
results in the membrane depolarization of the mitochondria. The depolarized mito-
chondria, with the ROS generated during exercise, furthermore mark the mitochon-
dria for the autophagic degradation [162]. The mitochondrial membrane 
depolarization results in the stability of the membrane molecule PINK1 which 
would in physiological basal conditions be degraded by the membrane proteosomal 
enzymes. This PINK1 recruits the Parkin assembly to the depolarized mitochondria, 
and this initiates a cascade of events with the signalling molecules like ubiquitin 
ligase and p62/SQSTM1 being recruited and activated that later associate with the 
autophagic membrane protein LC3, thus marking the depolarized mitochondria to 
be enveloped by the expanding autophagic membrane to be later merged with the 
lysosome, thus completing the degradation process [163].

There are numerous studies showing the positive effects that exercise, mild to 
moderate, can have on the overall well-being of the individual, not to mention the 
benefits on the cardiovascular health of not only the young adults but also the ageing 
population or the patients with cardio vascular disease [230]. Exercise thus provides 
the anti-ageing benefits that are observed in the numerous clinical trials through its 
direct regulation of the clearance of damaged mitochondria by initiating the process 
of autophagy.

25.3.2.3  Synthetic Means of Enhancing Mitophagy
Exercise and calorie restriction have been found to be of immense help to not only 
the cardiovascular health but the overall well-being of the individual, for both nor-
mal adults and ageing or diseased groups. Though difficult, it has been a lucrative 
task for the pharmacological industry to find an exercise and CR mimetic. The aim 
of having a mimetic is that it can provide the benefits in the population that cannot 
be on mild to moderate exercise and calorie restriction regimes, like the physically 
challenged individuals, stroke patients with lasting comorbidities, chronic hypogly-
caemic patients, underweight patients and patients with various forms of eating dis-
orders. The best known method of achieving this is to target autophagy with external 
compounds. As the mTOR complex is a negative regulator of the autophagic and the 
mitophagic processes, the compounds that inhibit mTOR have been promising. The 
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best known is the immunosuppressant and antifungal drug rapamycin. Rapamycin 
blocks the mTOR complex1 and thus activates autophagy; as the activation of the 
general process of autophagy also in turn activates the process of mitophagy, it can 
be considered as a pharmacological mitophagic inducer [158]. As this drug is an 
FDA-approved treatment modality for transplant rejection and antifungal properties 
and is now also being administered as an antitumour agent, the use of rapamycin 
instead of the development of novel targets to induce autophagy becomes easier for 
the medical community. The pharmacological intervention to find another potent 
mitophagy inducer is thus not a sound drug development strategy and has hence had 
unsubstantial enthusiasm from the pharmaceutical sector. Other compounds that 
have also shown to affect the mTOR pathway and that in turn would induce mitoph-
agy are far less utilized, but are nonetheless beginning to gain eminence in the sci-
entific and the pharmacological communities as they realize the necessity of an 
alternative before the use of rapamycin becomes so rampant that the recipient 
becomes tolerant, like the case with the traditional antibiotics.

25.4  Mitochondria and Reactive Oxygen Species

ROS is generated from the mitochondria during respiration (oxidative phosphoryla-
tion) by the flow of electrons through complexes I and II, through the NADH and 
succinate, respectively, and later by ubiquinone and complex III to complex IV 
ultimately reducing molecular oxygen to water. This is accompanied with the flow 
of protons through complex I, II and III generating an electromotive force across the 
mitochondrial membrane later utilized by complex V (ATP synthase) to produce 
ATP. Not all the oxygen consumed by the mitochondria is used for its reduction, and 
some gets partially reduced generating oxygen radical, O2

−. The ROS produced, 
although contributes as an intermediate in intracellular signals by activating MEKK1 
and NFĸB [164], is highly reactive and can induce damage to lipids, DNA, proteins, 
etc. Mitochondria are at an increased susceptibility of oxidative stress-mediated 
damage as opposed to the other subcellular organelles: first by the virtue of the 
proximity as mitochondrion is the chief ROS producer and second, the mitochon-
drial DNA lacks the protective histones and associated DNA coiling along with 
lacking many DNA damage repair enzymes.

The ROS is generated at either the NADH/NAD+ isopotential group or the ubi-
quinone/ubiquinol isopotential group. The ROS generation capacity is variable in 
these two systems based on the enzymes involved and the tissue localization. For, 
e.g. in the NADH/NAD+ isopotential group, the enzymes α-ketoglutarate dehydro-
genase and pyruvate dehydrogenase are high ROS contributors in the muscle and 
liver but not in the cardiac tissue, while complex I produces high ROS in the cardiac 
tissue but not in the muscle and liver [165, 166]. Within the ubiquinone/ubiquinol 
isopotential group, the complex II, complex III and glycerol 3-phosphate dehydro-
genase have high ROS generation capacity in the muscle, liver and heart [165, 167].

The oxygen free radical is reduced to H2O2 by mitochondrial superoxide dis-
mutase isozymes present in the mitochondria, the Mn-superoxide dismutase 
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(Mn-SOD) that is matrix bound, and the Cu/Zn-SOD predominant in the intermem-
brane space; H2O2 later being converted to water by catalase and glutathione peroxi-
dase. The major antioxidant systems in the mitochondria are the glutathione and the 
thioredoxin systems. Two glutathione molecules in the presence of H2O2 convert to 
glutathione disulphide (GSSG) through the enzyme glutathione peroxidase (GPX). 
The two GPX isozymes, GPX1 and GPX4, in the mitochondria have high Km val-
ues and thus high efficiency of H2O2 quenching (approx. Km of GPX1 = 6 × 107 M−s−; 
approx. Km of GPX4 = 3 × 106 M−s−) [168]. The restoration of the glutathione from 
GSSG is catalysed by glutathione reductase with NADPH as a coenzyme. The 
mechanism of H2O2 sequestration of the thioredoxin system is through the peroxire-
doxin (PRX), having two isozymes in the mitochondria PRX3 and PRX5. The per-
oxidiatic cysteine present in the active site of peroxiredoxin gets oxidized in the 
presence of H2O2 and reacts with a neighbouring cysteine moiety forming an intra-
molecular disulphide bridge (approx. Km of PRX3 = 2 × 107 M−s−; while approx. 
Km of PRX5 = 3 × 105 M−s−) [168]. Thioredoxin 2 helps in reactivating the PRX3 
and PRX5 through a disulphide exchange reaction, permitting another round of 
H2O2 neutralization through PRX. In the mitochondria the thioredoxin 2 is reacti-
vated by the thioredoxin reductase, with NADPH as a coenzyme. Thus, the antioxi-
dant buffering capacity of the glutathione and the thioredoxin systems is dependent 
on the availability of NADPH. The cellular NADPH is maintained by the pentose 
phosphate pathway, but predominantly by the mitochondrial inner membrane- bound 
nicotinamide nucleotide transhydrogenase (NNT) [169]. The NNT catalyses the 
production of NADPH by utilizing the electromotive force generated by the proton 
gradient across the inner mitochondrial membrane [170]. The loss of this proton 
gradient consequently reduces the antioxidant buffering capacity of the mitochon-
dria, increasing the overall ROS levels and ROS-mediated damage.

Mitochondria undergo ROS-mediated damage when either the ROS production 
exceeds the normal levels or the intrinsic ROS scavenging system becomes over-
whelmed and incompetent. Thus, the ROS generated in the mitochondria through 
oxidative respiration of energy substrates as a normal part of oxidative energy 
metabolism, if not regulated and appropriately quenched, would result in mitochon-
drial DNA damage and subsequent mutations in the mitochondrial genome. The 
DNA damage repair mechanisms in the mitochondria are not as well established as 
their nuclear counterparts and their role and mechanism of action has only recently 
emerged [171]. The mitochondrial division occurs through mitosis, resulting in the 
distribution of mutated mitochondrial DNA to the daughter mitochondria upon divi-
sion. The mutated copies of the mitochondria can co-exist with the non-mutated 
copies of the healthy mitochondria having no adverse effect to the cell until the 
mutated mitochondria reach a critical threshold beyond which the damaged mito-
chondria become the predominant population in the cell and prove detrimental. This 
tipping point is influenced by the nature of the insult to mitochondrial DNA, the 
severity of damage to the mitochondrial membrane and associated respiratory com-
plexes and the efficiency or lack thereof of the damage repair mechanisms.
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25.4.1  ROS Damage in Failing and Ageing Heart

Reactive species have been implicated in a lot of disease conditions, and heart dis-
ease is no exception. It is observed that the ROS levels are increased in patients with 
heart failure, both heart failure with reduced and preserved ejection fraction. 
Whether it is the cause of heart failure or the effect thereof is yet to be determined 
conclusively. But in preclinical models of heart failure, cardiovascular disease and 
metabolic syndrome, the ROS levels have been shown to be higher than that in con-
trols [222]. This implies that the ROS generation is a critical initial step preceding 
heart damage through ischaemia or infarct. Increased ROS levels have also been 
noted in ageing heart, implying that either the ROS generation exceeds critical (lev-
els to be taken care of by the antioxidant system) or the endogenous scavenging by 
the antioxidant system is compromised in preclinical models of heart failure, entail-
ing that efficient antioxidant defence systems are imperative for the maintenance of 
mitochondrial and, in effect, heart vigour.

25.4.2  Can Scavenging ROS Be the Solution?

If the ROS overproduction and/or the reduced capacity of the ROS handling sys-
tems of the cell contribute to the cardiovascular disease progression, it seems logical 
to believe that the exogenously given ROS scavengers could remedy the problem. 
Thus, there were clinical trials and research endeavours taken up to determine if the 
antioxidants like vitamin C or vitamin E supplementation could result in improve-
ment of symptoms and vital assessor measures in the cardiovascular patients [223]. 
It was observed that the antioxidant therapy could prove beneficial when given at 
low doses and played a more prominent role in the prevention of cardiovascular 
diseases rather than as a therapy. Although positive outcomes are observed in low 
doses, the higher doses instead had a negative effect in the treated versus the control 
group [224]. The antioxidant intervention also showed no beneficial effects when it 
was given as a treatment modality rather than a preventive strategy, especially so 
when the cardiovascular damage had progressed to a disease or to a myocardial 
infarct.

25.4.2.1  ROS as a Signalling Molecule
Physiologically, the ROS is generated in mitochondria as a by-product of the oxida-
tive metabolism of substrates and has shown to mediate pathways that are critical 
for organismal homeostasis, stress response, health and longevity, proving detri-
mental when in excess.

With a host of studies in the field, it has now become accepted the ROS in the 
form of H2O2 and superoxide form important signalling molecules [172]. With ear-
lier studies on growth factor-mediated ROS burst, it was demonstrated that the acti-
vation of receptor tyrosine kinase directs NADPH oxidase (NOX)-mediated ROS 
increase that bring about the downstream effects of growth factor stimulation. The 
NOX-mediated increase in H2O2 causes the inactivation of the tyrosine phosphatase 
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proteins, thereby affecting its downstream signalling, mediated through substrate 
dephosphorylation. This is brought about by the inactivation of certain thiol groups 
in the tyrosine phosphatases like cysteine residues. These cysteine moieties can 
undergo sequential redox-dependent oxidation reactions like sulphenic–sulphinic–
sulphonic acid, etc., thus modifying these regulatory proteins [173]. As with other 
post-translational modifications, these modifications alter the cellular response to 
external and intrinsic cues.

The intracellular ROS-mediated activities of some important intermediates like 
JNK are shown to be influenced by the cellular redox state mediated by inactivation 
of tyrosine phosphatases. ROS-induced damage in conditions like diabetes mellitus 
has been shown to be governed by its association of transcription factor NFĸB [174].

Being essential in a multitude of cellular signalling events, the elimination of 
ROS through synthetic scavengers is not always apt especially if the ROS levels 
start depleting beyond the basal essential levels. Thus, the use of dietary antioxi-
dants for the benefit of subjects with cardiovascular disease has been disputable. 
Although the excess ROS generation is detrimental, the basal levels are indispens-
able for the normal physiologic functioning of the cell.

25.4.3  Reducing ROS-Induced Damage Through Metabolic Shift

The oxidation of fatty acids results in generation of more ATP molecules than that 
produced by the oxidation of per molecule of glucose. The number of ATP produced 
depends upon the length of the fatty acid chain, wherein every two carbon moieties 
are converted to a molecule of acetyl co-A, through beta oxidation, that enters the 
TCA cycle of the mitochondria. For example, a molecule of palmitate (C16) gener-
ates a net of 129 molecules of ATP (taking into account the two ATP equivalents 
utilized during the conversion of palmitate to palmitoyl-CoA). While a molecule of 
glucose generates a net of 36 ATP molecules. This makes fatty acid oxidation a 
preferred source of energy production when the energy demands of the organ are 
high. The heart amounts to about 0.5% of the body weight but consumes about 8% 
of the total energy in the body. As the continuous beating of the heart is an immensely 
energy-intensive process, evolutionarily the heart depends on beta oxidation of fatty 
acids for its energy requirements. In a stark contrast to the metabolism in the heart, 
though highly energy consuming, the brain does not use fats as fuels and solely 
relies on glucose for meeting its requirements. This is to avoid the ROS-mediated 
damage to the non-dividing neurons that do not have a good antioxidant pool to 
cope with the inadvertent ROS generation caused by beta oxidation. On account of 
the more potent antioxidant system, the cardiomyocytes relay on fatty acid 
oxidation.
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25.4.4  The Reasons for the Metabolic Shift Under Diseased 
Condition

The scenario is different in failing heart. It has been shown that in the cardiovascular 
diseases that precede heart failure (ischaemia and/or congestive heart failure) like 
aortic insufficiency, aortic stenosis, coronary artery disease, dilated cardiomyopa-
thy, hypertensive heart disease, ventricular hypertrophies, etc., there is a reduction 
in the utilization of fatty acids as the main source of fuel. As much as the beta oxida-
tion of fatty acids would have been the preferred source of fuel for the energy- 
intense contractile activity of the heart, the resultant high ROS generation makes it 
more detrimental under the environment of reduced efficiency of ROS scavengers. 
The failing and diseased heart has inefficient mitochondria with reduced electro-
chemical gradient across the membrane, thus reducing its antioxidant capacity. With 
reduced ROS scavenging, the homeostatic mechanisms of the heart make arrange-
ments in preventing excessive ROS generation. As discussed previously, the cardiac 
disease or damage is accompanied with the abnormal clearance of damaged mito-
chondria, resulting in the build-up of inefficient mitochondria within the cardio-
myocytes. With plummeted mitophagy and subsequent increase in the number of 
damaged mitochondria, there is more mitochondrial ROS generation, creating a 
vicious cycle. This cycle could prove detrimental to the mitochondrial network 
resulting in their total damage and release of the cleaved caspases and other pro- 
apoptotic factors which could culminate into cardiomyocyte loss. To prevent this 
doom, the inefficient mitochondria shift their metabolic preference to glucose from 
fatty acids. Heart diseases and heart failure can hence be considered to be an afteref-
fect of metabolic disorder.

25.4.5  The Innate Precautions Taken by the Failing Heart

Not only does the failing cardiac cells show altered preference for the primary sub-
strate fuel (glucose instead of fatty acids); the cells actively take steps to avoid the 
utilization of any fatty acids through beta oxidation. The fatty acid oxidation starts 
with the transport of the same into the mitochondria through various transporters. 
The peroxisome proliferator-activated receptor-α (PPARα) is a transcription factor 
that aids the transport of fatty acids into the mitochondria and is abundantly found 
in the healthy heart, but is decreased in the diseased heart [225]. This reduction in 
its expression partly drives the altered substrate selectivity.

Carnitine o-palmitoyltransferase 1 (CPT1) is a rate-limiting enzyme in the uptake 
of fatty acids in the mitochondria, which later shunts these fatty acid moieties into 
the beta oxidation taking place inside the mitochondria, and its deficiency has been 
reported in various cardiovascular pathologies [175, 176]. CPT2 is also recently 
implicated in beta oxidation in heart [177]. The loss of cardiac-specific CPT2 
reduces the oxidation of long-chain fatty acids in the cardiac homogenates by 93% 
also demonstrating that the CPT2 functions to flux the fatty acid oxidation and sen-
sitized the heart cells to insulin-mediated signalling. As the significance of 
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CPT2- mediated flux through beta oxidation is recently elucidated, the upstream 
mechanisms are not as well established as that for CPT1. Malonyl-coenzyme A 
negatively influences the activity of CPT1. As malonyl CoA levels increase, the 
inhibition of CPT1 blocks the transfer of fatty acids into the mitochondria [178]. 
The levels of malonyl-CoA increase by either the overexpression of its synthesizer 
acetyl-CoA carboxylase or the inhibition of its degrading enzyme, malonyl-CoA- 
decarboxylase. These have been tried experimentally in animal models through tar-
geted gene overexpression and deletion, respectively. The clinical trials with the 
acetyl-CoA carboxylase overexpression face the intrinsic problems with any gene 
delivery treatment modality, whereas the inhibition of malonyl Co-A has not reached 
the clinical trials as the site-directed cellular inhibition is of paramount importance 
and the cross-reactions with its inhibitions in other organs could pose serious prob-
lems. Thus, more work on the translational sections need to be taken up by the 
pharmacological industry to remedy this problem.

25.5  Interventions for Enhancing Mitochondrial Efficiency

The damaged mitochondria with the ‘leaky’ membranes are a reservoir for the gen-
eration of reactive oxygen and nitrogen free radicals. During mitochondrial biogen-
esis, both the nuclear and mitochondrial genes are transcribed and the optimal 
electron transport chain enzymes assembly is ensured along with the new and func-
tional antioxidant enzymes produced. With the generation of new mitochondria, the 
ROS scavenging capacity of the organelle is enhanced and the cell can sustain high 
levels of metabolism without undergoing oxidative damage in the process. The mas-
ter regulator of the mitochondrial biogenesis is the transcription factor peroxisome 
proliferator-activated receptor (PPAR)-γ coactivator 1 α (PGC-1 α). It has been 
observed in animal studies that the level of this transcription factor is decreased in 
the heart failure models [179, 180]. It is yet to be conclusively established if this is 
the cause or the effect of the diseased condition; nevertheless it is proven beyond 
doubt that the lack of generation of new mitochondria has an association with the 
cardiovascular diseases [181]. It thus follows that the methods that enhance mito-
chondrial biogenesis and work upon the PGC-1 α would have beneficial effects on 
high risk population or patients with cardiovascular disorders.

25.5.1  Mitochondrial Permeability Transition Pores

Mitochondrial permeability transition pores (MPTP) are a group of pores associated 
with the mitochondrial membrane that open in response to calcium overload in the 
mitochondria. These pores have as yet unidentified components, but recent research 
points towards the complex V of the electron transport chain (ATP synthase) as 
being a part of it; and the way it is dependent on the mitochondrial matrix calcium 
content is through its association with cyclophilin D [182]. These were previously 
thought to be associated only with the pathological conditions related to the heart 
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disorders, but contemporary reports have confirmed their role in the normal physi-
ological response by showing that the MPTPs open in normal heart as well [226]. 
This has resulted in the hypothesis that these act as calcium vaults that open in 
response to calcium build-up within the mitochondrial matrix and not only help in 
maintaining calcium homeostasis but also contribute to the overall stability of the 
mitochondria by keeping the calcium levels within optimum ranges [183]. Previous 
work that focused on the MPTPs as therapeutic targets saw them in a negative light, 
and therapies were based on blocking these pores. The MPTPs are found to be open 
in both acute and chronic heart diseases that led to confirmation of the belief that 
these have a pathological outcome. The use of cyclosporin, NIM 811, and TRO 
40303 as some of the potential drugs which were used in the early trials to assess 
their beneficial action on heart diseases [184, 185] showed mixed results [186, 187].

But the recent work showing its importance in the normal physiological pro-
cesses of handling calcium overload in the mitochondria has brought some concerns 
in the use of MPTP blockers as therapy. The clinical studies undertaken have 
focused on the reduction of ischaemia-reperfusion injury with the delivery of cyclo-
sporin. There were studies with mild efficiency with this treatment modality [187, 
188], but the results from other studies have shown contradicting outcomes with no 
benefit in the ischaemia-reperfusion [186, 189]. Also, there have not been studies on 
the overall heart function or left ventricular efficiency in patients with heart dis-
eases. Furthermore, cyclosporin administration cannot be continued as a chronic 
treatment modality as its chronic delivery has shown association with immunosup-
pression and renal problems [190, 191]. A more comprehensive analysis of the 
potential of MPTP as a therapeutic target is possible only with more fundamental 
research into its components, functions and mechanism of action. Until then other 
mitochondrial targets must be the focus for drug development.

25.5.2  Coenzyme Q10

The coenzyme Q (ubiquinone/ubiquinone CoQ) is composed of an enzyme found in 
the electron transport chain that is involved in the redox shuttle. It is a part of the 
ETC and undergoes the two-electron reduction from the substrates of complex I 
(NADH-CoQ reductase) and complex II (succinate-CoQ reductase) of the ETC 
while getting oxidized as it transfers electrons to the complex III (CoQH2- 
cytochrome c reductase). This positions the CoQ as a redox cycler where it can 
either accept or donate the electrons to the respective complexes based on its own 
redox potential [192]. When the cellular concentration of CoQ reduces below a 
critical threshold, instead of shuttling electrons from complexes I and II to complex 
III, it can pump these electrons back to complex I causing the backflow of electrons 
that is a potent source of ROS generation in the mitochondria [193]. In some clinical 
studies the blood levels of CoQ were observed in patients with heart failure and 
preclinical heart failure, and the levels of CoQ were found to be much lower for the 
patient population as compared to the control group [194, 195]. It was thus believed 
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that heart diseases could have CoQ deficiency as an aetiology and the replacement 
of the deficient CoQ became an attractive endeavour.

Idebenone and EPI-743, synthetic analogues of CoQ10, are short-chain quinones 
that have been recently found use as dietary supplements as a treatment strategy for 
a number of diseases of not just cardiovascular nature. These CoQ10 analogues can 
not only  function as shuttler for electrons in the ETC much like the function of 
native CoQ10 but also as scavenger for free radicals generated at the mitochondria. 
It has received much attention as a potential therapy as it can be easily delivered 
non-invasively and has the potential to cross the blood–brain barrier, thus making its 
use more widespread. It has been used not only in mitochondrial dysfunctional dis-
eases and heart diseases but also in many neurological illnesses like Friedreich’s 
ataxia and Alzheimer’s disease [201–203].

Rosenfeldt et al. [196] published a systemic review on the effects of delivery of 
CoQ10 and its synthetic derivatives like idebenone. With their own randomized 
control trial and their meta-analysis of the available literature on trials, they came to 
the conclusion that the CoQ10 treatment resulted in significantly improved exercise 
times in the patients as compared to the non-treated group. It also suggested that 
though not statistically significant, there was a trend in the patients with heart failure 
towards improved ejection fraction and reduced mortality. In their own randomized 
placebo controlled trial of 3 months with 35 subjects on the effects on oral coen-
zyme Q10 in patients with heart failure, they observed significant improvements in 
symptoms in the treatment but not in the control group. When the studies evaluating 
the mean blood pressure were assessed, it was observed that the participants had a 
better outcome with their hypertension and their blood pressure decreased, the mean 
systolic decrease was around 16 mm Hg, while the mean diastolic decrease was 
around 10 mm Hg. Its mechanism of action is twofold, both by bypassing defective 
respiratory chain enzymes and in helping scavenge the oxygen free radicals.

25.5.3  Cardiolipin

The mitochondria produce ATP after the energy substrates are broken down in the 
TCA cycle and the electrons are shuttled to the electron carriers NADH and FADH2 
that later transport the electrons to the complexes of the electron transport chain in 
the inner mitochondrial membrane ultimately reducing molecular oxygen to water. 
Thus, the core of oxidative phosphorylation in the mitochondria is through the com-
plexes of the electron transport chain. The individual complexes of the ETC are 
composed of many subunits synthesized as a coordinated orchestrated event of 
expression of both nuclear and mitochondrial genes and then their correct assembly 
into supramolecular complexes that render them functional to carry out the process 
of electron shuttle. If the correct assembly of these molecular complexes to form the 
functional complexes of the mitochondrial ETC is disturbed, the mitochondrial sec-
tion becomes less efficient at ATP generation and more prone to having reduced 
electrochemical gradient, increased ROS generation and reduced membrane 
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stability and thus leaky nature of the mitochondrial membrane [197]. The molecule 
cardiolipin is shown to assist the correct assembly of these membrane complexes 
into their right supra-complex structures. Cardiolipin is found in the inner mito-
chondrial membrane and has four acyl tails instead of the normal two for most 
phospholipids. It’s named such after it was shown to be associated with the heart 
diseases of both neonatal origin [198] and adult onset [199, 200]. The loss or dam-
age of cardiolipin causes its dissociation from the complex III cytochrome C oxi-
dase, making the cytochrome C act as a peroxidase instead of its regular role of an 
electron carrier; resulting in loss of ETC efficiency. The presence of excessive ROS/
RNS causes damage to the mitochondrial proteins, lipids and DNA. The damage to 
extremely ROS-sensitive cardiolipin is more dangerous as it causes lowered effi-
ciency of respiratory complex assembly, leading to leaky mitochondrial membrane 
and more ROS generation, creating a vicious cycle. More research into this mole-
cule has established its role in a host of other important mitochondrial functions like 
ROS production, managing the activity of membrane transporters of the mitochon-
dria, mitochondrial ion homeostasis, etc.

After the deficiency of cardiolipin had been shown in many pathological condi-
tions associated with energy deficiency and myocardial diseases, it gained a promi-
nence as a drug target. A cardiolipin-associating compound was serendipitously 
discovered by Szeto and Schiller that was named SS-31. SS-31 and its analogue 
called MTP-131 have been used in many studies assessing cardiovascular and asso-
ciated functions. It was observed that the delivery of SS-31 and MTP-131 during 
reperfusion greatly reduces reperfusion-based necrosis in the cardiomyocytes. 
During the ischaemic attack, the mitochondria are damaged and the respirosomes 
(the respiratory complexes of the ETC) become disassembled. This makes the mito-
chondria inefficient and creates ATP decline, ROS generation, etc. associated with 
the ischaemic episode. With reperfusion, the substrate and oxygen again become 
available to the mitochondria, but as the respiratory complexes are disassembled 
and the membrane lacks the electeochemical gradient, mitochondria are unable to 
produce proportional levels of ATP and much of the oxygen is turned towards pro-
duction of ROS. But, when the cardiolipin associating SS-31, MTP-131 was given 
during reperfusion, as in the case of many trials [201–203], it was found to be ben-
eficial in ischaemia-reperfusion injury. The cardiolipin restores the damaged ETC 
supercomplex assemblies and reduces the membrane permeability and enhances the 
shuttle of electrons through the respiratory complexes, thus generating ATP effi-
ciently while reducing ROS production and associated cardiomyocyte damage.

The decrease in the functional capacity of the failing heart before it is afflicted 
with an infarct is associated with the decreased capacity of various energy-intensive 
organs like renal insufficiency and skeletal muscle inefficiency that results in heart 
disease-associated exercise intolerance. The trials that studied the effect of SS-31 
and MTP-131 also have shown improvement in patients with renal insufficiency and 
enhanced the exercise tolerance capacity of the subjects [204–206]. Cardiolipin is 
thus an attractive therapeutic target as it restores not only the cardiac function but 
alleviates associated deficiencies of the skeletal muscle and renal tissue.
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25.5.4  Phospholipid Replacement Therapy

The major damage to the mitochondria during the heart disease is to the integrity of 
their membranes. The mechanisms that are dealt with in the preceding sections talk 
about saving mitochondria from the additional burden of ROS and RNS so that their 
proteins, phospholipids and DNA do not undergo additional damage. The antioxi-
dant therapy has been widely used in the treatment of cardiovascular and other dis-
eases sharing the aetiology of oxidative stress; but that does not take care of the 
damage that the membrane phospholipids already underwent [207, 208]. The only 
means of correcting that damage is through the clearance of the damaged mitochon-
dria through mitophagy; as already mentioned this process is reduced in the dis-
eased and failing myocardium. The replacement of the damaged membrane 
phospholipids provides a reasonable means to compensate for the damaged mito-
chondrial membranes.

There are dietary means through which the membrane phospholipids of the mito-
chondria can be replaced. These have mainly been used in the management of mito-
chondrial illnesses resulting in chronic fatigue syndrome, with promising results. In 
a trial by Ellithorpe et al. [209], the subjects with chronic fatigue and fibromyalgia 
experienced a 40.5% decrease in fatigue with 8 weeks of therapy. Other trials with 
Propax and NT factor have also observed benefit in mitochondrial capacity. Though 
these trials focused on mitochondrial disorders, the alleviation of mitochondrial 
inefficiency shows great promise in trying these combinations of drugs along with 
antioxidant therapies for the treatment of heart diseases and failing myocardial 
capacity.

25.5.5  Vitamin B3 Precursor

One of the features of the inefficient mitochondria is that it has inefficient ATP pro-
duction for the particular cell or tissue type, thus making it energy deficient; and it 
performs its function at a less than optimal level. One of the ways to enhance the 
efficiency of mitochondria is to increase the substrate/cofactor concentration. The 
ultimate mechanism of energy production in the mitochondria is sequential passage 
of electrons through the electron transport chain that generates an electrochemical 
gradient across the mitochondrial matrix and the inner mitochondrial membrane, 
which causes the controlled return of the electrons back through the complex V 
(ATP synthase) driving the phosphorylation of ADP to ATP with the reduction of 
molecular oxygen to water. The electron carrier from the TCA cycle to the electron 
transport chain is through the NAD+/NADH (nicotinamide adenine dinucleotide) 
and FAD+/FADH2. The increase in the cellular NAD+ levels has shown to be ben-
eficial to the mitochondria and the overall well-being of the organism by reduction 
in the oxidative damage and an increase in the ATP-generating capacity of the cell 
and tissue [139, 210]. Dietary NAD+ is unstable; thus, a precursor of NAD+ has 
been widely used to elucidate the effects of NAD+ on mitochondria. The NAD+ is 
produced in the cell through the salvage pathway with the vitamin B3 (nicotinic 
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acid) as the prime precursor molecule. A variant of vitamin B3 is employed that has 
better stability and tolerability in humans, nicotinamide riboside (NR).

In human failing heart, it is observed that the levels of nicotinamide phosphori-
bosyltransferase, key enzyme required for the recycling of the NAD+, are reduced 
[211]. It is accompanied by the rise in the levels of another enzyme, nicotinamide 
riboside kinase 2, the enzyme that phosphorylates and thus makes unavailable the 
precursors for NAD+. This implies that in the failing heart, the levels of NAD+ are 
reduced and the generation of new NAD+ by the intrinsic mechanisms of the sal-
vage pathway gets restrained. It was thus considered a worthwhile endeavour to 
observe the effects of supplementation of NAD+ precursors through diet. Many 
studies attempted it in rodent models of heart failure and cardiovascular disease. 
The vitamin B3 (nicotinic acid) is a precursor of the NAD+, but a more stable 
dietary supplement is nicotinamide riboside (NR). NR supplementation enhances 
the levels of NAD+ in the tissues and blood of the recipients and is observed to 
enhance the mitochondrial efficiency [212, 213]. The ATP generation of the mito-
chondria increases with augmentation of the overall efficiency of the tissue. NAD+ 
is also a redox-sensitive molecule and can help reduce the overall oxidative damage. 
It thus has a dual role in helping in shuttling more electrons through the ETC for 
higher ATP generation while reducing the ROS load that might result from the 
process.

Diguet et  al. [214] created the murine models of heart failure by producing 
dilated cardiomyopathy through Serum Response Factor transcription factor deple-
tion (SRFHKO mice). A 30% reduction in the levels of NAD+ was observed in failing 
heart with dilated cardiomyopathy and a decline, but to a lesser extent, was observed 
in aortic constriction. The dietary supplementation of NR was delivered and 
the observed symptoms were alleviated  in cardiomyocytes by increase in NAD+ 
levels. Thus, NAD+ precursor intervention forms an attractive and easy model for 
the mitochondria-targeted cardiovascular therapy.

25.6  Mitochondrial Transplantation: A Magic or Menace?

The most recent development in the area of mitochondria-targeted therapy is mito-
chondrial transplantation, transplantation of healthy functional mitochondria from 
autologous sources to the diseased tissue. As we previously discussed, cardiomyo-
cytes are densely populated by mitochondrial structures (~1/3 of the volume), and 
many of the heart-associated diseases are coupled with mitochondrial dysfunction, 
especially myocardial ischaemia-reperfusion injury mainly related to surgical inter-
ventions. McCully’s group devised a new therapeutic approach towards the 
mitochondria- related problems which has been recently taken to clinical trials in 
paediatric patients with myocardial ischaemia [215]. This transplantation approach 
was first validated in animal models where the authors reported decreased ROS 
generation and cell death and a reduction in infarct size [216, 217]. But still, there 
remain a plethora of unanswered questions with regard to the uptake of perfused/
injected mitochondria into the functional cells where they have to power the 
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contractile filaments and other essential cell survival processes. Also, the high cal-
cium content in the blood raises questions about the viability of the perfused mito-
chondrial units. This array of unresolved puzzles raises questions on the rapid rush 
towards translation of the procedure.

25.7  Conclusion

The cardiac tissue, with its onus task of rhythmic contraction for a lifetime resting 
a mere 0.8 s in between, is dependent upon continuous and sustained levels of ATP, 
thereby being dependent upon its mitochondria. The labyrinthine and dynamic 
mitochondrial network in cardiomyocytes is maintained by the appropriate and 
counterbalanced biogenesis, dynamics and degradation, working at all times to 
respond to the energy and physiological demands. It thus follows that the regulation 
of the mitochondria is imperative to maintain the adeptness of the heart failing 
which, as is evidenced by many studies, is the damage to the mitochondria finally 
culminate in CVD progression (Fig. 25.9a, b).

Thereupon, many emerging therapies for CVD are aimed at the mitochondrial 
efficiency and quality control. The mitochondria-based interventions range from (i) 
bypass agents that bypass the defective ETC, like coenzyme Q10; (ii) replacement 
supplementation that replaces the defective components in the mitochondrial mem-
brane like the cardiolipin and membrane phospholipid replacement; (iii) antioxidant 
treatments; (iv) precursor supplementation, for, e.g. resveratrol and nicotinamide; 
(v) or the more natural and advantageous combination therapies that target various 
components in the mitochondria and its dynamics together, like exercise and calorie 
restriction. With more pinpointed therapies towards maintaining the efficient 

Fig. 25.9 Healthy vs damaged heart and their mitochondrial states
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mitochondria in cardiomyocytes, it may be possible to alleviate the failing myocar-
dium and rescue the cardiomyocytes without progression towards heart failure.

25.8  Future Perspectives

Cardiovascular disorders have a strong underlying metabolic dysregulation, hence 
it would be less surprising that the therapies to lower the global CVD burden will 
focus more on the mitochondria. The biggest problem that the mitochondrial- 
targeted therapies face is the specificity of the intervention. With the advancement 
in the tissue-specific delivery of pharmacological agents and gene delivery systems 
that employ an alternative to the viral delivery method, the core of the problem, i.e. 
organelle-specific therapy, can be accomplished. As the mitochondrial DNA dam-
age and mitochondrial depolarization cause the mitochondria to release calcium and 
caspases, targeting mitochondrial DNA repair through the gene delivery systems 
becomes attractive. With devising a means to degrade the damaged mitochondria 
alone while retaining and inducing genesis of their healthy counterparts, the effica-
cious mitochondrial network can be re-established. It can be hoped that the CVD 
epidemic can be targeted to the very root of the problem; at the damaging mitochon-
drial network, commencing the cascade of signals resulting in reduced cardiac effi-
ciency and eventually to heart failure; and the burden can be nipped at the bud.

References

 1. Friedland G (2009) Discovery of the function of the heart and circulation of blood. Cardiovasc 
J Afr 20:160

 2. Loe MJ, Edwards WD (2004) A light-hearted look at a lion-hearted organ (or, a perspective 
from three standard deviations beyond the norm) part 1 (of two parts). Cardiovasc Pathol 
13:282–292

 3. Kolwicz SC, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contrac-
tion, growth, and survival of cardiomyocytes. Circ Res 113:603–616

 4. Balaban RS (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am 
J Phys Cell Phys 258:C377–C389

 5. Hom J, Sheu S-S (2009) Morphological dynamics of mitochondria – a special emphasis on 
cardiac muscle cells. J Mol Cell Cardiol 46:811–820

 6. Glancy B, Hartnell LM, Combs CA et al (2017) Power grid protection of the muscle mito-
chondrial reticulum. Cell Rep 19:487–496

 7. Hoppel CL, Tandler B, Fujioka H et  al (2009) Dynamic organization of mitochondria in 
human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956

 8. Jeffrey FMH, Diczku V, Sherry AD et al (1995) Substrate selection in the isolated working rat 
heart: effects of reperfusion, afterload, and concentration. Basic Res Cardiol 90:388–396

 9. Schönekess BO (1997) Competition between lactate and fatty acids as sources of ATP in the 
isolated working rat heart. J Mol Cell Cardiol 29:2725–2733

 10. Woods DC (2017) Mitochondrial heterogeneity: evaluating mitochondrial subpopula-
tion dynamics in stem cells. Stem Cells Int 2017:1–7. https://www.hindawi.com/journals/
sci/2017/7068567/

 11. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and 
interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

25 The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional…

https://www.hindawi.com/journals/sci/2017/7068567/
https://www.hindawi.com/journals/sci/2017/7068567/


618

 12. Schwarzer M, Schrepper A, Amorim PA et al (2013) Pressure overload differentially affects 
respiratory capacity in interfibrillar and subsarcolemmal mitochondria. Am J Physiol Heart 
Circ Physiol 304:H529–H537

 13. Crochemore C, Mekki M, Corbière C et al (2015) Subsarcolemmal and interfibrillar mito-
chondria display distinct superoxide production profiles. Free Radic Res 49:331–337

 14. Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in 
spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. 
Am J Phys 307:H1–H14

 15. Shimada T, Horita K, Murakami M et al (1984) Morphological studies of different mitochon-
drial populations in monkey myocardial cells. Cell Tissue Res 238:577–582

 16. Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63
 17. Soubannier V, McBride HM (2009) Positioning mitochondrial plasticity within cellular sig-

naling cascades. Biochim Biophys Acta (BBA) – Mol Cell Res 1793:154–170
 18. Stefely JA, Kwiecien NW, Freiberger EC et al (2016) Mitochondrial protein functions eluci-

dated by multi-omic mass spectrometry profiling. Nat Biotechnol 34:1191–1197
 19. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mito-

chondrial biogenesis. Am J Clin Nutr 93:884S–890S
 20. Puigserver P, Wu Z, Park CW et al (1998) A cold-inducible coactivator of nuclear receptors 

linked to adaptive thermogenesis. Cell 92:829–839
 21. Arany Z, Novikov M, Chin S et  al (2006) Transverse aortic constriction leads to acceler-

ated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci U S A 
103:10086–10091

 22. He X, Sun C, Wang F et al (2012) Peri-implantation lethality in mice lacking the PGC-1- 
related coactivator protein. Dev Dyn 241:975–983

 23. Lai L, Leone TC, Zechner C et al (2008) Transcriptional coactivators PGC-1α and PGC-lβ 
control overlapping programs required for perinatal maturation of the heart. Genes Dev 
22:1948–1961

 24. Martin OJ, Ling L, Soundarapandian MM et al (2014) A role for peroxisome proliferator- 
activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal 
cardiac growth. Circ Res 114:626–636

 25. Yun C, Yingqiu L, Dorn GW (2011) Mitochondrial fusion is essential for organelle function 
and cardiac homeostasis. Circ Res 109:1327–1331

 26. Ge K, Guermah M, Yuan C-X et al (2002) Transcription coactivator TRAP220 is required for 
PPARγ2-stimulated adipogenesis. Nature 417:563–567

 27. Andersson U, Scarpulla RC (2001) PGC-1-related coactivator, a novel, serum-inducible 
coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol 
Cell Biol 21:3738–3749

 28. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription speci-
ficity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and 
PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

 29. Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and peri-implantation lethality 
associated with targeted disruption of nuclear respiratory factor 1  in mice. Mol Cell Biol 
21:644–654

 30. Ristevski S, O’Leary DA, Thornell AP et al (2004) The ETS transcription factor GABPα is 
essential for early embryogenesis. Mol Cell Biol 24:5844–5849

 31. Scarpulla RC (2008) Nuclear control of respiratory chain expression by nuclear respiratory 
factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147:321–334

 32. Dufour CR, Wilson BJ, Huss JM et al (2007) Genome-wide orchestration of cardiac func-
tions by the orphan nuclear receptors ERRα and γ. Cell Metab 5:345–356

 33. Huss JM, Torra IP, Staels B et  al (2004) Estrogen-related receptor α directs peroxisome 
proliferator- activated receptor α signaling in the transcriptional control of energy metabolism 
in cardiac and skeletal muscle. Mol Cell Biol 24:9079–9091

 34. Huss JM, Kopp RP, Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1α 
(PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α 

A. Sivasailam et al.



619

and -γ identification of novel leucine-rich interaction motif within PGC-1α. J Biol Chem 
277:40265–40274

 35. Sladek R, Bader JA, Giguère V (1997) The orphan nuclear receptor estrogen-related receptor 
alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydroge-
nase gene. Mol Cell Biol 17:5400–5409

 36. Vega RB, Kelly DP (1997) A role for estrogen-related receptor α in the control of mito-
chondrial fatty acid β-oxidation during brown adipocyte differentiation. J  Biol Chem 
272:31693–31699

 37. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor super-
family by peroxisome proliferators. Nature 347:645

 38. Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 
3:354–371

 39. Mascaró C, Acosta E, Ortiz JA et al (1998) Control of human muscle-type carnitine palmito-
yltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 
273:8560–8563

 40. McMullen PD, Bhattacharya S, Woods CG et al (2014) A map of the PPARα transcription 
regulatory network for primary human hepatocytes. Chem Biol Interact 209:14–24

 41. Prosdocimo DA, John JE, Zhang L et al (2015) KLF15 and PPARα cooperate to regulate 
cardiomyocyte lipid gene expression and oxidation. PPAR Res 2015:201625. https://www.
hindawi.com/journals/ppar/2015/201625/

 42. Prosdocimo DA, Anand P, Liao X et al (2014) Kruppel-like factor 15 is a critical regulator of 
cardiac lipid metabolism. J Biol Chem 289:5914–5924

 43. van der Meer DLM, Degenhardt T, Väisänen S et al (2010) Profiling of promoter occupancy 
by PPARα in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res 38:2839–2850

 44. Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid 
increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886

 45. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogen-
esis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

 46. Akimoto T, Pohnert SC, Li P et al (2005) Exercise stimulates Pgc-1α transcription in skeletal 
muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593

 47. Little JP, Safdar A, Cermak N et al (2010) Acute endurance exercise increases the nuclear 
abundance of PGC-1α in trained human skeletal muscle. Am J Phys Regul Integr Comp Phys 
298:R912–R917

 48. Shabana D, Konstandin MH, Bevan J  et  al (2014) Metabolic dysfunction consistent with 
premature aging results from deletion of Pim kinases. Circ Res 115:376–387

 49. Cantó C, Gerhart-Hines Z, Feige JN et  al (2009) AMPK regulates energy expenditure by 
modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

 50. Coste A, Louet J-F, Lagouge M et al (2008) The genetic ablation of SRC-3 protects against 
obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc 
Natl Acad Sci U S A 105:17187–17192

 51. Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of muscle mitochondrial 
function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 26:1913–1923

 52. Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate 
mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

 53. Misko A, Sasaki Y, Tuck E et al (2012) Mitofusin2 mutations disrupt axonal mitochondrial 
positioning and promote axon degeneration. J Neurosci 32:4145–4155

 54. Züchner S, Mersiyanova IV, Muglia M et al (2004) Mutations in the mitochondrial GTPase 
mitofusin 2 cause charcot-marie-tooth neuropathy type 2A. Nat Genet 36:449–451

 55. Chen K-H, Guo X, Ma D et al (2004) Dysregulation of HSG triggers vascular proliferative 
disorders. Nat Cell Biol 6:872–883

 56. Cheng X, Zhou D, Wei J et al (2013) Cell-cycle arrest at G2/M and proliferation inhibition 
by adenovirus-expressed mitofusin-2 gene in human colorectal cancer cell lines. Neoplasma 
60:620–626

25 The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional…

https://www.hindawi.com/journals/ppar/2015/201625/
https://www.hindawi.com/journals/ppar/2015/201625/


620

 57. Gao Q, Wang X-M, Ye H-W et al (2012) Changes in the expression of cardiac mitofusin-2 in 
different stages of diabetes in rats. Mol Med Rep 6:811–814

 58. Guo X, Chen K-H, Guo Y et  al (2007) Mitofusin 2 triggers vascular smooth muscle cell 
apoptosis via mitochondrial death pathway. Circ Res 101:1113–1122

 59. Rehman J, Zhang HJ, Toth PT et al (2012) Inhibition of mitochondrial fission prevents cell 
cycle progression in lung cancer. FASEB J 26:2175–2186

 60. Shen T, Zheng M, Cao C et al (2007) Mitofusin-2 is a major determinant of oxidative stress- 
mediated heart muscle cell apoptosis. J Biol Chem 282:23354–23361

 61. Wang W, Zhu F, Wang S et  al (2010) HSG provides antitumor efficacy on hepatocellular 
carcinoma both in vitro and in vivo. Oncol Rep 24:183–188

 62. Zhang G-E, Jin H-L, Lin X-K et al (2013) Anti-tumor effects of Mfn2 in gastric cancer. Int 
J Mol Sci 14:13005–13021

 63. Bach D, Pich S, Soriano FX et  al (2003) Mitofusin-2 determines mitochondrial network 
architecture and mitochondrial metabolism a novel regulatory mechanism altered in obesity. 
J Biol Chem 278:17190–17197

 64. Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegen-
eration in the cerebellum. Cell 130:548–562

 65. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heteroge-
neity and dysfunction. J Biol Chem 280:26185–26192

 66. Eura Y, Ishihara N, Yokota S et al (2003) Two mitofusin proteins, mammalian homologues of 
FZO, with distinct functions are both required for mitochondrial fusion. J Biochem (Tokyo) 
134:333–344

 67. Liu R, Jin P, LiqunYu, et al (2014) Impaired mitochondrial dynamics and bioenergetics in 
diabetic skeletal muscle. PLoS One 9:e92810

 68. Papanicolaou KN, Ryosuke K, Ngoh GA et al (2012) Mitofusins 1 and 2 are essential for 
postnatal metabolic remodeling in heart. Circ Res 111:1012–1026

 69. Pich S, Bach D, Briones P et  al (2005) The charcot–marie–tooth type 2A gene product, 
Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 
14:1405–1415

 70. Sebastián D, Hernández-Alvarez MI, Segalés J et al (2012) Mitofusin 2 (Mfn2) links mito-
chondrial and endoplasmic reticulum function with insulin signaling and is essential for nor-
mal glucose homeostasis. PNAS 109:5523–5528

 71. Elachouri G, Vidoni S, Zanna C et al (2011) OPA1 links human mitochondrial genome main-
tenance to mtDNA replication and distribution. Genome Res 21:12–20

 72. Frezza C, Cipolat S, de Brito OM et al (2006) OPA1 controls apoptotic cristae remodeling 
independently from mitochondrial fusion. Cell 126:177–189

 73. Meeusen S, DeVay R, Block J et al (2006) Mitochondrial inner-membrane fusion and crista 
maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383–395

 74. Tsutsui H, Kinugawa S, Matsushima S (2008) Oxidative stress and mitochondrial DNA dam-
age in heart failure. Circ J 72:A31–A37

 75. Varanita T, Soriano ME, Romanello V et al (2015) The Opa1-dependent mitochondrial cris-
tae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 
21:834–844

 76. Delettre C, Lenaers G, Griffoin J-M et al (2000) Nuclear gene OPA1, encoding a mitochon-
drial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210

 77. Delettre C, Griffoin JM, Kaplan J et al (2001) Mutation spectrum and splicing variants in the 
OPA1 gene. Hum Genet 109:584–591

 78. Baker MJ, Tatsuta T, Langer T (2011) Quality control of mitochondrial proteostasis. Cold 
Spring Harb Perspect Biol 3

 79. Ehses S, Raschke I, Mancuso G et al (2009) Regulation of OPA1 processing and mitochon-
drial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036

 80. Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin- 
like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764

A. Sivasailam et al.



621

 81. Head B, Griparic L, Amiri M et al (2009) Inducible proteolytic inactivation of OPA1 medi-
ated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966

 82. Ishihara N, Otera H, Oka T et al (2012) Regulation and physiologic functions of GTPases in 
mitochondrial fusion and fission in mammals. Antioxid Redox Signal 19:389–399

 83. Ishihara N, Fujita Y, Oka T et al (2006) Regulation of mitochondrial morphology through 
proteolytic cleavage of OPA1. EMBO J 25:2966–2977

 84. Pellegrini L, Passer BJ, Canelles M et al (2001) PAMP and PARL, two novel putative metal-
loproteases interacting with the COOH-terminus of Presenilin-1 and -2. J Alzheimers Dis 
3:181–190

 85. Song Z, Chen H, Fiket M et al (2007) OPA1 processing controls mitochondrial fusion and is 
regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755

 86. Jiang X, Jiang H, Shen Z et  al (2014) Activation of mitochondrial protease OMA1 by 
Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci U S A 
111:14782–14787

 87. Quirós PM, Ramsay AJ, Sala D et al (2012) Loss of mitochondrial protease OMA1 alters 
processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. 
EMBO J 31:2117–2133

 88. Laforge M, Rodrigues V, Silvestre R et  al (2016) NF-κB pathway controls mitochondrial 
dynamics. Cell Death Differ 23:89–98

 89. Piquereau J, Caffin F, Novotova M et al (2012) Down-regulation of OPA1 alters mouse mito-
chondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc 
Res 94:408–417

 90. White KE, Davies VJ, Hogan VE et al (2009) OPA1 deficiency associated with increased 
autophagy in retinal ganglion cells in a murine model of dominant optic atrophy. Invest 
Ophthalmol Vis Sci 50:2567–2571

 91. Smirnova E, Shurland DL, Ryazantsev SN et al (1998) A human dynamin-related protein 
controls the distribution of mitochondria. J Cell Biol 143:351–358

 92. Yoon Y, Pitts KR, Dahan S et al (1998) A novel dynamin-like protein associates with cyto-
plasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol 
140:779–793

 93. Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and 
disease. Physiol Rev 89:799–845

 94. Losón OC, Song Z, Chen H et al (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruit-
ment in mitochondrial fission. Mol Biol Cell 24:659–667

 95. Otera H, Wang C, Cleland MM et al (2010) Mff is an essential factor for mitochondrial recruit-
ment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

 96. Niemann A, Ruegg M, La Padula V et al (2005) Ganglioside-induced differentiation associ-
ated protein 1 is a regulator of the mitochondrial network. J Cell Biol 170:1067–1078

 97. Andres AM, Stotland A, Queliconi BB et al (2015) A time to reap, a time to sow: Mitophagy 
and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 78:62–72

 98. Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and 
mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22:1399–1401

 99. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense 
against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

 100. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. 
J Pathol 221:3–12

 101. Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticu-
lum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437

 102. Ylä-Anttila P, Vihinen H, Jokitalo E et al (2009) 3D tomography reveals connections between 
the phagophore and endoplasmic reticulum. Autophagy 5:1180–1185

 103. Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane 
compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to 
the endoplasmic reticulum. J Cell Biol 182:685–701

25 The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional…



622

 104. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabo-
lism. Annu Rev Nutr 27:19–40

 105. English L, Chemali M, Duron J et al (2009) Autophagy enhances the presentation of endog-
enous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 
10:480–487

 106. Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the 
basal state and in response to hemodynamic stress. Nat Med 13:619–624

 107. Nishino I, Fu J, Tanji K et al (2000) Primary LAMP-2 deficiency causes X-linked vacuolar 
cardiomyopathy and myopathy (Danon disease). Nature 406:906–910

 108. Tanaka Y, Guhde G, Suter A et al (2000) Accumulation of autophagic vacuoles and cardio-
myopathy in LAMP-2-deficient mice. Nature 406:902–906

 109. Thomas RL, Roberts DJ, Kubli DA et al (2013) Loss of MCL-1 leads to impaired autophagy 
and rapid development of heart failure. Genes Dev 27:1365–1377

 110. Sciarretta S, Hariharan N, Monden Y et al (2011) Is autophagy in response to ischemia and 
reperfusion protective or detrimental for the heart? Pediatr Cardiol 32:275–281

 111. Xu X, Kobayashi S, Chen K et  al (2013) Diminished autophagy limits cardiac injury in 
mouse models of type 1 diabetes. J Biol Chem 288:18077–18092

 112. Xu X, Hua Y, Sreejayan N et al (2013) Akt2 knockout preserves cardiac function in high- 
fat diet-induced obesity by rescuing cardiac autophagosome maturation. J  Mol Cell Biol 
5:61–63

 113. Dorn GW (2016) Parkin-dependent mitophagy in the heart. J Mol Cell Cardiol 95:42–49
 114. Gong G, Song M, Csordas G et al (2015) Parkin-mediated mitophagy directs perinatal car-

diac metabolic maturation in mice. Science:350–aad2459
 115. Moyzis AG, Sadoshima J, Gustafsson ÅB (2014) Mending a broken heart: the role of mitoph-

agy in cardioprotection. Am J Phys Heart Circ Phys 308:H183–H192
 116. Shires SE, Gustafsson ÅB (2015) Mitophagy and heart failure. J Mol Med 93:253–262
 117. Thomas RL, Gustafsson AB (2013) Mitochondrial autophagy–an essential quality control 

mechanism for myocardial homeostasis. Circ J 77:2449–2454
 118. Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization 

recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell 
Biol 189:211–221

 119. Narendra D, Tanaka A, Suen D-F et  al (2008) Parkin is recruited selectively to impaired 
mitochondria and promotes their autophagy. J Cell Biol 183:795–803

 120. Greene AW, Grenier K, Aguileta MA et al (2012) Mitochondrial processing peptidase regu-
lates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385

 121. Chen Y, Dorn GW (2013) PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling 
damaged mitochondria. Science 340:471–475

 122. Gegg ME, Cooper JM, Chau K-Y et  al (2010) Mitofusin 1 and mitofusin 2 are ubiquiti-
nated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 
19:4861–4870

 123. Geisler S, Holmström KM, Skujat D et  al (2010) PINK1/Parkin-mediated mitophagy is 
dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

 124. Poole AC, Thomas RE, Yu S et al (2010) The mitochondrial fusion-promoting factor mito-
fusin is a substrate of the PINK1/parkin pathway. PLoS One 5:e10054

 125. Wang X, Winter D, Ashrafi G et al (2011) PINK1 and Parkin target Miro for phosphorylation 
and degradation to arrest mitochondrial motility. Cell 147:893–906

 126. Gladkova C, Maslen SL, Skehel JM et al (2018) Mechanism of parkin activation by PINK1. 
Nature 559:410

 127. Deas E, Piipari K, Machhada A et al (2014) PINK1 deficiency in β-cells increases basal insu-
lin secretion and improves glucose tolerance in mice. Open Biol 4

 128. Kubli DA, Cortez MQ, Moyzis AG et  al (2015) PINK1 is dispensable for mitochon-
drial recruitment of parkin and activation of mitophagy in cardiac myocytes. PLoS One 
10:e0130707

A. Sivasailam et al.



623

 129. Hasson SA, Kane LA, Yamano K et  al (2013) High-content genome-wide RNAi screens 
identify regulators of parkin upstream of mitophagy. Nature 504:291–295

 130. Tahrir FG, Knezevic T, Gupta MK et al (2017) Evidence for the role of BAG3 in mitochon-
drial quality control in cardiomyocytes. J Cell Physiol 232:797–805

 131. Chu CT, Bayır H, Kagan VE (2014) LC3 binds externalized cardiolipin on injured mito-
chondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 
10:376–378

 132. Liu L, Feng D, Chen G et al (2012) Mitochondrial outer-membrane protein FUNDC1 medi-
ates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185

 133. Quinsay MN, Thomas RL, Lee Y et al (2010) Bnip3-mediated mitochondrial autophagy is 
independent of the mitochondrial permeability transition pore. Autophagy 6:855–862

 134. Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for nix in autophagic 
maturation of erythroid cells. Nature 454:232–235

 135. Strappazzon F, Vietri-Rudan M, Campello S et  al (2011) Mitochondrial BCL-2 inhibits 
AMBRA1-induced autophagy. EMBO J 30:1195–1208

 136. Van Humbeeck C, Cornelissen T, Hofkens H et al (2011) Parkin interacts with Ambra1 to 
induce mitophagy. J Neurosci 31:10249–10261

 137. Murakawa T, Yamaguchi O, Okamoto K et al (2015) The novel mitophagic receptor protein, 
Bcl2-like protein 13: new insights for the molecular mechanisms of the pathogenesis of heart 
disease. J Card Fail 21:S147

 138. Murakawa T, Yamaguchi O, Hashimoto A et al (2015) Bcl-2-like protein 13 is a mammalian 
Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 
6:7527

 139. Cantó C, Houtkooper RH, Pirinen E et al (2012) The NAD(+) precursor nicotinamide ribo-
side enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell 
Metab 15:838–847

 140. Nicotinamide Riboside and Mitochondrial Biogenesis – Full Text View – ClinicalTrials.gov, 
https://clinicaltrials.gov/ct2/show/NCT03432871

 141. Chen R-J, Lee Y-H, Yeh Y-L et al (2017) Autophagy-inducing effect of pterostilbene: a pro-
spective therapeutic/preventive option for skin diseases. J Food Drug Anal 25:125–133

 142. McCormack D, McFadden D (2012) Pterostilbene and cancer: current review. J Surg Res 
173:e53–e61

 143. Berman AY, Motechin RA, Wiesenfeld MY et al (2017) The therapeutic potential of resvera-
trol: a review of clinical trials. NPJ Precis Oncol 1

 144. Lightowlers RN, Chrzanowska-Lightowlers ZM (2014) Salvaging hope: is increasing NAD+ 
a key to treating mitochondrial myopathy? EMBO Mol Med 6:705–707

 145. Chung S, Yao H, Caito S et al (2010) Regulation of SIRT1 in cellular functions: role of poly-
phenols. Arch Biochem Biophys 501:79–90

 146. Kundu JK, Shin YK, Kim SH et al (2006) Resveratrol inhibits phorbol ester-induced expres-
sion of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activ-
ity. Carcinogenesis 27:1465–1474

 147. Ferrières J (2004) The French paradox: lessons for other countries. Heart 90:107–111
 148. Hurst WJ, Glinski JA, Miller KB et al (2008) Survey of the trans-resveratrol and trans-piceid 

content of cocoa-containing and chocolate products. J Agric Food Chem 56:8374–8378
 149. Galleano M, Oteiza PI, Fraga CG (2009) Cocoa, chocolate, and cardiovascular disease. 

J Cardiovasc Pharmacol 54:483–490
 150. (2009) Is cocoa good for the heart? Eur Heart J 30:2951–2952
 151. Saleem TSM, Basha SD (2010) Red wine: a drink to your heart. J  Cardiovasc Dis Res 

1:171–176
 152. Bioenergetics  – 3rd Edition. https://www.elsevier.com/books/bioenergetics/

nicholls/978-0-12-518121-1
 153. Lanza IR, Zabielski P, Klaus KA et  al (2012) Chronic caloric restriction preserves mito-

chondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 
16:777–788

25 The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional…

http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT03432871
https://www.elsevier.com/books/bioenergetics/nicholls/978-0-12-518121-1
https://www.elsevier.com/books/bioenergetics/nicholls/978-0-12-518121-1


624

 154. Ruetenik A, Barrientos A (2015) Dietary restriction, mitochondrial function and aging: from 
yeast to humans. Biochim Biophys Acta 1847:1434–1447

 155. López-Lluch G, Hunt N, Jones B et al (2006) Calorie restriction induces mitochondrial bio-
genesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 103:1768–1773

 156. Cruzen C, Colman RJ (2009) Effects of caloric restriction on cardiovascular aging in non- 
human primates and humans. Clin Geriatr Med 25:733–743

 157. Han X, Ren J  (2010) Caloric restriction and heart function: is there a sensible link? Acta 
Pharmacol Sin 31:1111–1117

 158. Bartolomé A, García-Aguilar A, Asahara S-I et al (2017) MTORC1 regulates both general 
autophagy and mitophagy induction after oxidative phosphorylation uncoupling. Mol Cell 
Biol 37:e00441-17

 159. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 
149:274–293

 160. Jung CH, Ro S-H, Cao J  et  al (2010) mTOR regulation of autophagy. FEBS Lett 
584:1287–1295

 161. Hood DA (2009) Mechanisms of exercise-induced mitochondrial biogenesis in skeletal mus-
cle. Appl Physiol Nutr Metab 34:465–472

 162. Adhihetty PJ, Ljubicic V, Hood DA (2007) Effect of chronic contractile activity on SS and 
IMF mitochondrial apoptotic susceptibility in skeletal muscle. Am J  Physiol Endocrinol 
Metab 292:E748–E755

 163. Huang C, Andres AM, Ratliff EP et al (2011) Preconditioning involves selective mitophagy 
mediated by Parkin and p62/SQSTM1. PLoS One 6:e20975

 164. Zhang J, Wang X, Vikash V et al (2016) ROS and ROS-mediated cellular signaling. Oxidative 
Med Cell Longev 2016:4350965. https://www.hindawi.com/journals/omcl/2016/4350965/

 165. Chalker J, Gardiner D, Kuksal N et al (2017) Characterization of the impact of glutaredoxin-2 
(GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mito-
chondria. Redox Biol 15:216–227

 166. Slade L, Chalker J, Kuksal N et al (2017) Examination of the superoxide/hydrogen peroxide 
forming and quenching potential of mouse liver mitochondria. Biochim Biophys Acta Gen 
Subj 1861:1960–1969

 167. Kuksal N, Gardiner D, Qi D et al (2018) Partial loss of complex I due to NDUFS4 deficiency 
augments myocardial reperfusion damage by increasing mitochondrial superoxide/hydrogen 
peroxide production. Biochem Biophys Res Commun 498:214–220

 168. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. 
Physiol Rev 59:527–605

 169. Zhang Q, Padayatti PS, Leung JH (2017) Proton-translocating nicotinamide nucleotide tran-
shydrogenase: a structural perspective. Front Physiol 8

 170. Nickel AG, von Hardenberg A, Hohl M et al (2015) Reversal of mitochondrial transhydroge-
nase causes oxidative stress in heart failure. Cell Metab 22:472–484

 171. Zinovkina LA (2018) Mechanisms of mitochondrial DNA repair in mammals. Biochem 
Mosc 83:233–249

 172. Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287:4434–4440
 173. Go Y-M, Chandler JD, Jones DP (2015) The cysteine proteome. Free Radic Biol Med 

84:227–245
 174. Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during 

NF-κB activation. Antioxid Redox Signal 11:2209–2222
 175. Martín MA, Gómez MA, Guillén F et  al (2000) Myocardial carnitine and carnitine pal-

mitoyltransferase deficiencies in patients with severe heart failure. Biochim Biophys Acta 
1502:330–336

 176. Pereyra AS, Hasek LY, Harris KL et  al (2017) Loss of cardiac carnitine palmitoyltrans-
ferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. J Biol Chem 
292:18443–18456

 177. Ellis JM, Hasek LY, Yurovich EJ et al (2016) Mouse carnitine palmitoyltransferase 2 (CPT2) 
is required to sustain cardiac function. FASEB J 30:684.8–684.8

A. Sivasailam et al.

https://www.hindawi.com/journals/omcl/2016/4350965/


625

 178. Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin 
Invest 122:1958–1959

 179. Sack MN, Rader TA, Park S et al (1996) Fatty acid oxidation enzyme gene expression is 
downregulated in the failing heart. Circulation 94:2837–2842

 180. Sihag S, Cresci S, Li AY et al (2009) PGC-1alpha and ERRalpha target gene downregulation 
is a signature of the failing human heart. J Mol Cell Cardiol 46:201–212

 181. Nisoli E, Clementi E, Carruba MO et al (2007) Defective mitochondrial biogenesis: a hall-
mark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806

 182. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore open-
ing during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385

 183. Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca(2+) release chan-
nel: new answers to an old question. Cell Calcium 52:22–27

 184. Sharov VG, Todor A, Khanal S et al (2007) Cyclosporine A attenuates mitochondrial perme-
ability transition and improves mitochondrial respiratory function in cardiomyocytes isolated 
from dogs with heart failure. J Mol Cell Cardiol 42:150–158

 185. Sharov VG, Todor AV, Imai M et al (2005) Inhibition of mitochondrial permeability transition 
pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP 
synthesis in failing cardiomyocytes. Heart Fail Rev 10:305–310

 186. Ghaffari S, Kazemi B, Toluey M et al (2013) The effect of prethrombolytic cyclosporine-A 
injection on clinical outcome of acute anterior ST-elevation myocardial infarction. Cardiovasc 
Ther 31:e34–e39

 187. Mewton N, Croisille P, Gahide G et  al (2010) Effect of cyclosporine on left ventricular 
remodeling after reperfused myocardial infarction. J Am Coll Cardiol 55:1200–1205

 188. Piot C, Croisille P, Staat P et al (2008) Effect of cyclosporine on reperfusion injury in acute 
myocardial infarction. N Engl J Med 359:473–481

 189. MITOCARE Study Group (2012) Rationale and design of the “MITOCARE” study: a phase 
II, multicenter, randomized, double-blind, placebo-controlled study to assess the safety and 
efficacy of TRO40303 for the reduction of reperfusion injury in patients undergoing percuta-
neous coronary intervention for acute myocardial infarction. Cardiology 123:201–207

 190. Naesens M, Kuypers DRJ, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am 
Soc Nephrol 4:481–508

 191. Tábara LC, Poveda J, Martin-Cleary C et al (2014) Mitochondria-targeted therapies for acute 
kidney injury. Expert Rev Mol Med 16:e13

 192. Guidelines for assignment to e-books | International ISBN Agency. https://www.isbn- 
international.org/content/guidelines-assignment-e-books

 193. Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls 
reperfusion injury through mitochondrial ROS. Nature 515:431–435

 194. Molyneux SL, Florkowski CM, George PM et  al (2008) Coenzyme Q10: an independent 
predictor of mortality in chronic heart failure. J Am Coll Cardiol 52:1435–1441

 195. Okonko DO, Shah AM (2015) Heart failure: mitochondrial dysfunction and oxidative stress 
in CHF. Nat Rev Cardiol 12:6–8

 196. Rosenfeldt F, Hilton D, Pepe S et al (2003) Systematic review of effect of coenzyme Q10 in 
physical exercise, hypertension and heart failure. Biofactors 18:91–100

 197. Maranzana E, Barbero G, Falasca AI et al (2013) Mitochondrial respiratory supercomplex 
association limits production of reactive oxygen species from complex I. Antioxid Redox 
Signal 19:1469–1480

 198. Chatfield KC, Sparagna GC, Sucharov CC et al (2014) Dysregulation of cardiolipin biosyn-
thesis in pediatric heart failure. J Mol Cell Cardiol 74:251–259

 199. Saini-Chohan HK, Holmes MG, Chicco AJ et al (2009) Cardiolipin biosynthesis and remod-
eling enzymes are altered during development of heart failure. J Lipid Res 50:1600–1608

 200. Sparagna GC, Lesnefsky EJ (2009) Cardiolipin remodeling in the heart. J  Cardiovasc 
Pharmacol 53:290–301

25 The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional…

https://www.isbn-international.org/content/guidelines-assignment-e-books
https://www.isbn-international.org/content/guidelines-assignment-e-books


626

 201. Frasier CR, Moukdar F, Patel HD et  al (2013) Redox-dependent increases in glutathi-
one reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. 
Cardiovasc Res 98:47–55

 202. Kloner RA, Hale SL, Dai W et al (2012) Reduction of ischemia/reperfusion injury with ben-
davia, a mitochondria-targeting cytoprotective peptide. J Am Heart Assoc 1:e001644

 203. Sloan RC, Moukdar F, Frasier CR et al (2012) Mitochondrial permeability transition in the 
diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented 
reperfusion injury. J Mol Cell Cardiol 52:1009–1018

 204. Eirin A, Ebrahimi B, Zhang X et al (2014) Mitochondrial protection restores renal function 
in swine atherosclerotic renovascular disease. Cardiovasc Res 103:461–472

 205. Siegel MP, Kruse SE, Percival JM et  al (2013) Mitochondrial-targeted peptide rapidly 
improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging 
Cell 12:763–771

 206. Szeto HH, Liu S, Soong Y et al (2011) Mitochondria-targeted peptide accelerates ATP recov-
ery and reduces ischemic kidney injury. J Am Soc Nephrol 22:1041–1052

 207. Agadjanyan M, Vasilevko V, Ghochikyan A et  al (2003) Nutritional supplement (NT 
Factor™) restores mitochondrial function and reduces moderately severe fatigue in aged 
subjects. J Chronic Fatigue Syndr 11:23–36

 208. Nicolson GL (2010) Lipid replacement therapy: a nutraceutical approach for reducing 
cancer- associated fatigue and the adverse effects of cancer therapy while restoring mitochon-
drial function. Cancer Metastasis Rev 29:543–552

 209. Ellithorpe RR, Settineri RA, Nicolson GL et al (2003) Pilot study: reduction of fatigue by use 
of a dietary supplement containing glycophospholipids. J Am Nutraceut Assoc 6(1):23-8

 210. Cantó C, Menzies KJ, Auwerx J  (2015) NAD(+) metabolism and the control of energy 
homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53

 211. Hsu C-P, Yamamoto T, Oka S et al (2014) The function of nicotinamide phosphoribosyltrans-
ferase in the heart. DNA Repair (Amst) 23:64–68

 212. Khan NA, Auranen M, Paetau I et al (2014) Effective treatment of mitochondrial myopathy 
by nicotinamide riboside, a vitamin B3. EMBO Mol Med 6:721–731

 213. Martens CR, Denman BA, Mazzo MR et al (2018) Chronic nicotinamide riboside supple-
mentation is well-tolerated and elevates NAD + in healthy middle-aged and older adults. Nat 
Commun 9:1286

 214. Diguet N, Trammell SAJ, Tannous C et al (2018) Nicotinamide riboside preserves cardiac 
function in a mouse model of dilated cardiomyopathy. Circulation 137:2256–2273

 215. Emani SM, Piekarski BL, Harrild D et al (2017) Autologous mitochondrial transplantation 
for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154:286–289

 216. Kaza AK, Wamala I, Friehs I et  al (2017) Myocardial rescue with autologous mitochon-
drial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 
153:934–943

 217. Masuzawa A, Black KM, Pacak CA et  al (2013) Transplantation of autologously derived 
mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ 
Physiol 304:H966–H982

 218. Bravo-San Pedro JM, Kroemer G, Galluzzi L (2017) Autophagy and Mitophagy in cardiovas-
cular disease. Circ Res 120(11):1812–1824

 219. Rana A, Rera M, Walker DW (2013) Parkin overexpression during aging reduces pro-
teotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci 
110(21):8638–8643

 220. Ferrero ME, Bertelli AE, Fulgenzi A, Pellegatta F, Corsi MM, Bonfrate M, Ferrara F, De 
Caterina R, Giovannini L, Bertelli A (1998) Activity in vitro of resveratrol on granulocyte and 
monocyte adhesion to endothelium. Am J Clin Nutr 68(6):1208–1214

 221. Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87–95
 222. Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of 

oxidative stress. Aging Dis 6(2):109

A. Sivasailam et al.



627

 223. Tribble DL (1999) Antioxidant consumption and risk of coronary heart disease: emphasis on 
vitamin C, vitamin E, and β-carotene. Circulation 99(4):591–595

 224. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2015) Antioxidant supple-
ments for prevention of mortality in healthy participants and patients with various diseases.
Sao Paulo Med J 133(2):164–165

 225. Kaimoto S, Hoshino A, Ariyoshi M, Okawa Y, Tateishi S, Ono K, Uchihashi M, Fukai K, 
Iwai-Kanai E, Matoba S (2017) Activation of PPAR-α in the early stage of heart failure 
maintained myocardial function and energetics in pressure-overload heart failure. Am J Phys 
Heart Circ Phys 312(2):H305–H313

 226. Pérez MJ, Quintanilla RA (2017) Development or disease: duality of the mitochondrial per-
meability transition pore. Dev Biol 426(1):1–7

 227. Cooper JM, Schapira AHV (2007) Friedreich’s ataxia: coenzyme Q10 and vitamin E therapy. 
Mitochondrion 7:S127–S135

 228. Koh S-H, Choi H, Park H-H, Lee K-Y, Lee YJ, Kim SH (2010) Neuroprotective effects of 
coenzyme Q10 against beta-amyloid–induced neural stem cell death. Alzheimers Dement 
6(4):S209

 229. Dumont M, Kipiani K, Yu F, Wille E, Katz M, Calingasan NY, Gouras GK, Lin MT, Beal MF 
(2011) Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic 
mouse model of Alzheimer’s disease. J Alzheimers Dis 27(1):211–223

 230. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair 
KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942

25 The Evolving Concept of Mitochondrial Dynamics in Heart: Interventional…



629© Springer Nature Singapore Pte Ltd. 2019
S. Chakraborti et al. (eds.), Modulation of Oxidative Stress in Heart Disease, 
https://doi.org/10.1007/978-981-13-8946-7_26

N. Shyamala · S. R. Hanumanth (*) 
Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India

26Pharmacogenetic Implications of Statin 
Therapy on Oxidative Stress in Coronary 
Artery Disease

Nivas Shyamala and Surekha Rani Hanumanth

Abstract
Coronary artery disease (CAD) remains the leading global public health burden 
in cardiovascular diseases. Atherosclerosis is a primary mechanism to cause 
CAD with the contribution of epidemiological, traditional, genetic, and epigen-
etic risk factors. Statins, prescribed drugs for lowering of cholesterol levels, also 
have pleiotropic effect on oxidative stress, inflammation, apoptosis, etc. Reactive 
oxygen species (ROS)-induced oxidative stress associates with risk factors and 
participates in initiation and progression of disease. ROS molecules generated as 
superoxides (O2

•ˉ), singlet/triplet oxygen, peroxides (H2O2, ONOO−), and 
hydroxyl radicals (HO•) via reactions catalyzed by endothelial nitric oxide syn-
thase, myeloperoxidase, NADPH oxidase, and xanthine oxidase enzyme are 
encoded by eNOS, MPO, NOX, and XO genes, respectively. Polymorphisms in 
eNOS, MPO, NOX, and XO genes influence the expression and attributes to 
interindividual variation in response to statin drugs. Differential response to 
statin drug insights into emerging of pharmacogenetic studies to understand the 
genetic makeup and treat the patient with suitable drug and dose. In clinical prac-
tice, pharmacogenetic approach toward oxidative stress is a future emerging 
trend in personalized medicine development.
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26.1  Introduction

Coronary artery disease (CAD) is the foremost leading cause of cardiovascular dis-
eases (CVD), and it is estimated that the CVD annual deaths may rise from 17.5 mil-
lion to 22.2  million from 2012 to 2030 [1]. In India, CAD is the second rising 
burden among the noncommunicable diseases, and the occurrence of ischemic heart 
disease is increased to 8.7% from 3.7% since 1990 to 2016 [2].

Coronary atherosclerosis is the chief underlying mechanism of the coronary 
artery disease. Atherosclerosis is preceded by fatty streak formation, accumulation 
of lipids and lymphocytes, inflammation, and thrombosis. Atherosclerotic plaque 
narrows the lumen of coronary artery and diminishes blood flow to the myocardium 
[3, 4]. CAD is a multifactorial disease influenced by epidemiological, traditional, 
and novel risk factors for its initiation and development [5–7]. Recent studies also 
implicate the importance of genetic and epigenetic factors in the pathophysiology of 
coronary artery disease. Evidences suggest oxidative stress (OS) is a key contributor 
to the initiation and exacerbation of atherosclerosis [8, 9] (Fig. 26.1).

Reactive oxygen species (ROS) are generated endogenously by mitochondria, 
peroxisomes, endoplasmic reticulum, and phagocytes and exogenously by cigarette 
smoking, ultraviolet rays, radiation, pesticides, alcohol, and metals as superoxides 
(O2

•ˉ), singlet/triplet oxygen, peroxides (H2O2, ONOO−), hydroxyl radicals (HO•), 
etc. [10]. Increased levels of ROS have various effects including endothelial dys-
function by loss of nitric oxide (NO) activity, increased lipid peroxidation by regu-
lation of oxidized low-density lipoprotein (oxLDL) production, inflammation by 
NF-kβ activation, and thrombosis by vascular smooth muscle cell apoptosis [8]. 

Fig. 26.1 Risk factors for 
coronary artery disease
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Regulation of ROS production is a potential mechanism to control CAD initiation 
and progression.

Statins (hydroxymethylglutaryl coenzyme A reductase inhibitors) are common 
drugs used for the treatment of coronary artery disease [11]. These drugs signifi-
cantly reduce the cholesterol levels by competitively inhibiting hydroxymethylglu-
taryl coenzyme A reductase (HMGCR) enzyme in hepatic cholesterol biosynthetic 
(mevalonate) pathway [12]. In clinical practice, statins show primarily cholesterol- 
dependent and additionally cholesterol-independent (pleiotropic) beneficial effects 
in CAD patients [13]. Cholesterol-independent beneficial effects include antioxi-
dant, anti-inflammatory, anti-angiogenic, and anti-apoptotic activities [14, 15].

However, pharmacogenetic studies revealed that there is a variability in clinical 
response to statin treatment in CAD patients depending upon their genetic varia-
tions and expression of genes involved in absorption, transportation, and metabolic 
pathways. Genetic variations in CYP, ABC, Apo, IL family genes, HMGCR, 
PCSK9, LDLR, SLCO1B1, ACE, CETP, SREBP1, MMP, eNOS, NOX, XO, MPO, 
etc. genes are significantly affecting pharmacokinetics and dynamic properties of 
statins [14, 15]. Pharmacogenetic investigation insights into response to statin drug 
and doses and novel treatment strategies in CAD patients based on the genetic 
makeup of an individual. The present chapter is focused to discuss the impact of 
oxidative stress-associated candidate gene polymorphisms and their relative expres-
sion on efficacy of statin drugs in the treatment of coronary artery disease.

26.2  Oxidative Stress in Atherosclerosis

Oxidative stress is a form of imbalance between oxidants (ROS) and antioxidants of 
cells. Oxygen (O2) is a major molecule for all the metabolic processes and generates 
as free radical by reduction. Enzymatic and non-enzymatic reactions, auto- oxidation, 
electron transport chain, etc. are the major sources for superoxide generation by 
transferring an electron to molecular oxygen [16].

Enzymatic and non-enzymatic reaction

 O e O superoxide2 2+ → ( )− −•  

Auto-oxidation

 O Fe Fe O superoxide2
2 3

2+ → + ( )+ + −•  

Accumulating evidence suggests that various metabolic pathways including 
enzymes like endothelial nitric oxide synthase (eNOS), myeloperoxidase (MPO), 
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NOX family enzymes (NOXs), xanthine oxidase (XO), etc are involved in the ROS 
production and imbalance between oxidants and antioxidants resulting in oxidative 
stress [10, 17–20].

Increased ROS has a vital role in initiation and progression of lesions at coronary 
arteries, for example, superoxide radical reacts with NO• forming peroxynitrite 
(ONOO−) which consequently reduces the bioavailability of nitric oxide (NO). In 
addition to superoxides, NO• reacts with hydroxyl (HO•) and lipid radicals (LO• and 
LOO•) forming OLNO and LOONO, respectively [10]. Peroxynitrite inactivates 
metal-centric eNOS enzymes, mitochondrial enzymes, and creatinine kinase and 
activates MMPs, NF-kβ, PARP, etc. by cysteine oxidation attributing to the pathol-
ogy of CAD [21].

Initially, ROS modifies phospholipids by lipid peroxidation and results in the 
formation of oxidized LDL (oxLDL). Further OxLDL activates immune cells such 
as T cells, dendritic cells, monocytes, and macrophages and evokes the synthesis of 
inflammatory cytokines like IL-1, 6, TNFα, etc. These OxLDL molecules are taken 
up by macrophage receptors CD36, scavenger receptor class A, and lectin-like 
oxLDL receptor-1 and develop into foam cells and further trigger the formation of 
thrombus in the arterial layers as plaque [22, 23]. The plaque fibrous cap made up 
of VSMCs, collagen, proteoglycans, and elastin. Apoptosis of VSMCs and macro-
phages ruptures the fibrous cap and releases thrombosis into the blood stream and 
obstructs the blood flow to the myocardium [3, 8, 24].

26.3  Statins (Hydroxymethylglutaryl Coenzyme A (HMGCoA) 
Reductase Inhibitors)

Statin drugs are commercially approved in 1987 by the Food and Drug Administration, 
USA; these drugs act as HMGCoA analogues to inhibit the HMGCoA reductase 
enzyme at mevalonate pathway and regulate the cholesterol biosynthesis in hepato-
cytes. As per the 2013 ACC/AHA Guidelines, statin therapy is the most predomi-
nant treatment to patients with increased CAD risk [25]. Lovastatin is the first 
commercialized statin in the market. Based on the synthesis, statins are synthetic 
and semisynthetic statins. Synthetic statins include fluvastatin, atorvastatin, rosuv-
astatin, and pitavastatin, whereas semisynthetic statins include mevastatin, lovas-
tatin, simvastatin, and pravastatin (Fig. 26.2) [26]. Among these, atorvastatin and 
rosuvastatin are worldwide chief drugs to treat CAD patients to reduce cholesterol 
levels.
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26.3.1  Cholesterol Biosynthesis and Its Inhibition by Statins

Cholesterol biosynthesis by mevalonate pathway includes mevalonate, isopentyl 
phosphate, squalene, and lanosterol synthetic reactions. Mevalonate pathway con-
verts acetyl coenzyme A to sterol (squalene) and non-sterol (farnesylated pyrophos-
phate and geranylgeranyl pyrophosphate) isoprenoids. Sterol isoprenoids participate 
in cholesterol synthesis while non-sterol in Rho, Ras, Rab, and nuclear laminin 
synthesis [27]. HMGCoA to mevalonate reduction is a rate-limiting step, catalyzed 
by HMGCR enzyme (Fig. 26.3). Statins are class of drugs designed to bind active 
site of HMGCoA reductase (HMGCR) and inhibit the enzyme activity in choles-
terol biosynthetic pathway. Three decades of research and clinical studies estab-
lished that statins have also antioxidant, anti-inflammatory, anti-angiogenic, and 
anti-apoptotic activities as pleiotropic effects [28].

26.4  Statins and Oxidative Stress

Statins apart from lowering the LDL also have other pleiotropic effects like regula-
tion of genes involved in ROS production and their expression by inhibiting various 
pathways [28–30]. Endothelial nitric oxide synthase (eNOS), myeloperoxidase 
(MPO), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), 
and xanthine oxidase (XO) genes are associated with reactive oxygen intermediate 
production. Studies show that genetic variations in these genes and their expression 
attribute to the interindividual differences in the efficacy of statins [31, 32]. The 
pharmacogenetic implications of statins on regulation of genes involved in oxida-
tive stress are summarized as below:

26.4.1  Endothelial Nitric Oxide Synthase (eNOS) Gene

Endothelial nitric oxide synthase (NOS3/eNOS) gene located on chromosome 
7q36.1 with 28 exons encodes endothelial nitric oxide synthase enzyme. eNOS 
enzyme couples with cofactors tetrahydrobiopterin (BH4) and oxygen to produce 
nitric oxide (NO) by oxidizing L-arginine to L-citrulline (Fig. 26.4). Coupled eNOS 
inhibits endothelial leukocyte adhesion, platelet aggregation, and VSMC migration 
and proliferation to prevent atherogenesis [33, 34]. Previous reports suggested that 
uncoupled eNOS generates superoxides (O2

•ˉ) which react with NO and form per-
oxynitrite (ONOO−) and inactivates NO [35, 36]. Endothelial dysfunction is also 
due to downregulation of eNOS expression in endothelial cells [37].

Studies evidenced that the statins attribute to upregulate the expression of endo-
thelium nitric oxide synthase gene by extending half-life of mRNA [38], inhibiting 
mevalonate pathway and Rho kinase activity [39–41]. In addition, statins activate 
phosphatidylinositol 3-kinase signal (PI3K)-Akt pathway to enhance the bioavail-
ability of nitric oxide [28].
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In our earlier study, we have reported significantly higher levels of nitric oxide 
and malondialdehyde (MDA) levels in CAD patients [37, 42]. Further when CAD 
patients were treated with ATV 40 mg/day for 6 months, there was a significant 
reduction in NOx and MDA levels in both men and women (unpublished data). 
Another study by Kureishi et al. suggested that simvastatin and pravastatin increase 
Akt serine 473 phosphorylation in endothelial cells to produce NO, which leads to 
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the improvement of endothelium function [43]. Besides cholesterol biosynthesis 
inhibition, statins also inhibit GTP binding proteins Rho/Rho kinase, Ras, and Rac 
synthesis in mevalonate pathway. Inhibition of these proteins decrease VSMC con-
traction and oxidative stress and increases NO bioavailability, which are favorable 
factors for the efficacy of statins in treatment [44].

Pharmacogenetic studies suggested that fluvastatin and atorvastatin are signifi-
cantly increasing eNOS gene expression in endothelial cells by regulating transcrip-
tional activity and mRNA stability. It has been reported that RPA1 binds to the 
promoter of eNOS to repress the expression and this activity of RPA1 is regulated 
by statin drugs [45]. Studies reporting functional implications of eNOS gene pro-
moter -786T>C polymorphism have been found that the individual with CC geno-
type has lower NO levels compared to TT genotype [29, 45].

Abe et al. treated human umbilical vein endothelial cells (HUVECs) with fluvas-
tatin and observed that the cells with eNOS -786CC genotype have improved eNOS 
mRNA levels [31]. Nagassaki et al. treated eNOS -786TT and -786CC genotype sub-
jects with 10 mg/day atorvastatin and placebo for 14 days. Interestingly they found 
that individuals with CC genotype have significantly reduced nitrite levels compared 
to TT genotype in subjects treated with ATV. Consequently nitrite level reduction in 
subjects with CC genotype implies the importance of genotype in modulating the 
response to drug [32]. These in vitro and clinical studies reported fluvastatin and ator-
vastatin to be associated with reduction of elevated levels of plasma nitrite concentra-
tions in CC genotype individuals. These results indicate statins have capacity to 
restore diminished nitric oxide production in those carrying CC genotype of -786T>C 
polymorphism and are good responders for statin drug treatment [31, 32].

26.4.2  Myeloperoxidase (MPO) Gene

Myeloperoxidase (MPO) gene localized at 17q22 with 12 exons translates as myelo-
peroxidase enzyme. It is synthesized as translational product with 80 kDa, subse-
quently converts into Apopro MPO (90 kDa) and proMPO (90 kDa), and undergoes 
proteolytic processing to produce homodimeric matured MPO (74 kDa) [46]. MPO 
enzyme is present in neutrophils, monocytes, macrophages, etc. and a key contribu-
tor for inflammation in cardiovascular diseases. MPO catalyzes various reactions in 

Fig. 26.4 Generation of NO• radical and peroxynitrite
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biological system and generates reactive oxygen species, cytotoxic hypochlorous 
acid, tyrosyl radical (Fig. 26.5) [6, 47, 48].

Studies on MPO gene polymorphisms have shown association with the risk of 
coronary artery disease. MPO promoter polymorphic variants potentially influence 
transcription factors binding and MPO levels. Yan Wang et al., in their meta- analysis 
study, have observed that the MPO -463G/A and -129G/A polymorphisms regulate 
the gene expression and A allele of -463G/A and A allele of -129G/A polymor-
phisms are associated with the lower levels of MPO [49].

Evidences suggest that the different concentrations of lovastatin, simvastatin, 
atorvastatin, and pravastatin are significantly downregulating the expression of 
MPO mRNA. Kumar et al. reported that 50 μM of lovastatin and simvastatin are 
showing greatest effect with 194 ± 8-fold and 45 ± 5-fold reduction in MPO mRNA 
expression, respectively, in peripheral blood monocytes [47]. Ndrepepa et  al. 
reported that the statins are significantly (p < 0.005) reducing the MPO levels by 
regulating expression of MPO gene in acute coronary syndrome patients [50]. 
Sygitowicz et  al. treated acute myocardial infarction (MI) patients with ATV 
40 mg/40 days and found significantly decreased MPO gene expression in 60.5% of 
MI patients. The differences in the efficacy of ATV might be due to the promoter 
polymorphism of MPO gene [51].

26.4.3  NADH/NADPH Oxidase (NOX) Gene

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX 1) gene, 
located at Xq22.1 with 14 exons, encodes NADPH family of enzymes. NOX enzyme 
is involved in the production of reactive oxygen species, i.e., superoxide, in the 
vascular system (Fig. 26.6).

NOX isoforms and component subunits are shown in Table 26.1. Among NOX 
isoforms, NOX1, 2, 4, and 5 isoforms catalyze to release superoxide/hydrogen per-
oxide influencing proliferation, differentiation, endothelial impairment, and vascu-
lar structure in coronary atherosclerosis [52, 53].

NOX enzyme has complex, membrane-bound subunits gp91phox and p22phox; 
cytosolic subunits p40phox, p47phox, and p67phox; and small GTP binding protein 
Rac to form complexes and transfer electrons in biological system as represented in 

Fig. 26.5 Generation of ROS by myeloperoxidase
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Fig.  26.7 [54]. NOX1, 2, and 5 are expressed in endothelial cells, VSMCs, and 
NOX4 in vascular cell walls [20, 55].

Guzik et  al. measured the NOX-produced superoxide in blood vessels, which 
reacts with nitric oxide and forms peroxynitrite, and found a proportionately deficit 
NO bioavailability leading to endothelial impairment in atherosclerosis [56]. Zhang 

Fig. 26.6 Superoxide generation by NADPH oxidase

Table 26.1 Isoforms of 
NADPH oxidase enzyme

NOX isoforms Component subunits
NOX1 Rac1, NOXA1, p22phox, 

NOXO1, p47phox
NOX2 Rac1 and 2, p40phox, 

p67phox, p22phox, p47phox
NOX3 NOXA1, p22phox, NOXO1
NOX4 p22phox, POLDIP2
NOX5 4 EF hands

NOX nicotinamide adenine dinucleotide phos-
phate oxidase

Fig. 26.7 Structure of NADPH oxidase
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et  al. evidenced that the mRNA expression of NOX subunits was significantly 
higher in endothelial progenitor cells in CAD. Out of all subunits, p47phox and 
p22phox regulate the activity of NADPH for production of superoxide radicals and 
hydrogen peroxide. Activation of p47phox occurs when it is translocated from cyto-
sol to plasma membrane of endothelial cells, and it was observed that the activation 
rate is enhanced in CAD patients (p < 0.05) [53, 57]. The genes encoding NOX 
enzyme subunits are shown in Table 26.2.

Genetic variations in genes encoding NOX subunits influence the activity of 
enzyme and generation of reactive oxygen species. One of the chief components of 
NOX is p22phox, encoded by CYBA/p22phox gene located at 16q24.2 with seven 
exons. Cahilly et  al. suggested that the  T-allele of C242T polymorphism in 
p22phox gene is significantly associated with 3- to 5-fold loss in minimum lumen 
diameter and disease progression [58]. Ito et  al. observed a high frequency of T 
allele of C242T polymorphism in CVD patients than the controls in Japanese popu-
lation [59].

Meta-analysis conducted by Xu et  al. included functional studies which sug-
gested the association of p22phox 640G allele with mRNA stability and processing 
in CAD patients and also found significant decrease in ROS formation. Further it 
has been suggested that the individuals with 640G allele might show protection 
against CAD [60, 61]. Antioxidant capacity of statins includes the regulation of 
ROS production in cells participating in coronary atherosclerotic process. A number 
of studies evidenced that the statins are reducing the ROS production by inhibiting 
the NOX enzyme and Rac. Hamilton et  al. evidenced 10/20 mg/day atorvastatin 
(ATV) reduces the Rac GTPases on membranes of platelet in hyperlipidemia 
patients, which may reduce the activity of NOX [62].

Antoniades et  al. treated preoperative coronary artery bypass-grafted patients 
with 40 mg/day atorvastatin for 3 days to find the redox rate in vein graft and found 
significant reduction in basal and vascular NOX stimulating O2

•ˉ and Rac1 activation 
in vein grafts. ATV treatment has no impact on NOX1/2/4 protein levels but signifi-
cantly reduced Rac1 and p67phox of NOX [63]. Studies have indicated that atorvas-
tatin and simvastatin were involved in downregulating the expression of Rac1 gene 
[30]. Furthermore, evidences by Inoue et al. have shown that HUVECs treated with 
different concentrations of fluvastatin, simvastatin, pravastatin, and cerivastatin 
showed a significantly downregulated expression of p22phox mRNA and decreased 
p47phox protein levels in response to fluvastatin and simvastatin [64].

Table 26.2 Genes encoding 
NOX enzyme subunits

NOX subunit Encoding genes
p22phox Cytochrome b-245 alpha chain (CYBA)
p40phox Neutrophil cytosolic factor (NCF) 4
p47phox Neutrophil cytosolic factor (NCF) 1
p67phox Neutrophil cytosolic factor (NCF) 2
gp91PHOX Cytochrome b-245 beta chain (CYBB)
Rac Rac family small GTPase

26 Pharmacogenetic Implications of Statin Therapy on Oxidative Stress in Coronary…



640

26.4.4  Xanthine Oxidase (XO) Gene

Xanthine oxidase (XO)/xanthine dehydrogenase (XDH) gene located at 2p23.1 
with 37 exons, encodes xanthine oxidase enzyme. It exists as a homodimer with 
approximately 290 kDa molecular mass [65]. Xanthine oxidase catalyzes the oxida-
tion of hypoxanthine to xanthine, followed by xanthine to uric acid in purine metab-
olism (Fig. 26.8). In the process of oxidation, XO reduces molecular oxygen (O2) to 
superoxide radical (O2

•ˉ) and peroxides (H2O2). Chung et al. reported that XO is 
highly expressed in endothelial, epithelial, and polymorphonuclear cells [66]. 
Previous studies evidenced that superoxides and peroxides were involved in a vari-
ety of clinicopathological conditions including endothelial dysfunction, elevated 
uric acid levels, and chemoattractant for neutrophils in coronary artery disease [66, 
67]. Landmesser et al. evidenced an enhanced expression of XO protein and subse-
quent XO-dependent endothelial superoxide production in response to the stimulus 
of angiotensin II hormone in bovine aortic endothelial cells [68].

Kudo et al. functionally characterized various polymorphisms in XO gene and 
observed the loss of enzyme activity for subjects with 445C>T (Arg149Cys) and 
2729C>A (Thr910Lys) variations and decreased enzyme activity for 1663C>T 
(Pro555Ser), 1820G>A (Arg607Gln), 1868C>T (Thr623Ile), 2727C>A 
(Asn909Lys), 3449C>G (Pro1150Arg), and 3953G>A (Cys1318Tyr) [65].

Recent study on rs2073316 (g.31583C>T), rs1054889 (g.85304C>T) and 
rs1042039 (g.84306A>G) polymorphisms of XDH gene revealed an association 
with hypertension. Frequency of C allele for rs1042039 is higher, while C allele of 
rs1054889 and A allele of rs2073316 are significantly lower in hypertensives com-
pared to controls. These polymorphisms may regulate the expression of XDH gene 
and might be associated with hypertension in Chinese population [69]. CAD patients 
had higher levels of XO protein and activity [68]; several studies evidenced that XO 
inhibition improved the endothelial function and decreased the free radical and uric 
acid production levels [70].

Greig et al. reported that 4 weeks of atorvastatin 20 mg/day treatment indepen-
dently decreased the levels of MDA, uric acid and flow-dependent endothelial- 
mediated vasodilation in heart failure patients. Possibly statins might have decreased 
the expression of endothelial XO by inhibiting Rac1 or NOX and transcription of 

Fig. 26.8 Superoxide generation by xanthine oxidase

N. Shyamala and S. R. Hanumanth



641

XO gene [70]. In addition, simvastatin prevented 50% superoxide anion production 
by angiotensin II-dependent ROS production in rats, which plays a pivotal role in 
XO activity and endothelial dysfunction [71]. The above reports suggest that 
increased expression of XO and angiotensin II genes might be key factors for the 
stimulation of enhanced ROS production to initiate the atherosclerotic plaque and 
inhibition of these genes may be additional therapeutic targets of statins.

26.5  Conclusion and Future Directions

Coronary artery disease is a devastating disease, and oxidative stress plays a crucial 
role in initiation and progression of disease. Statins, the prescribed drugs for lower-
ing of cholesterol levels, have also other pleiotropic effects on oxidative stress, 
inflammation, apoptosis, etc. The generation of oxidative stress is influenced by the 
genetic variations in eNOS, MPO, XO, NOX, etc. Differential response to statin 
drug insights into emerging of pharmacogenetic studies to understand the genetic 
makeup and treat the patient with suitable drug and dose. In clinical practice, phar-
macogenetic approach toward oxidative stress is a future emerging trend in person-
alized medicine development.
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Abstract
Produced free radicals exert their physiological function and thereafter become 
neutralized by antioxidants. In contrast, if they are produced in abundance, e.g., 
during ischemia/reperfusion (I/R), after they exhaust antioxidant reserves, they 
exert their harmful effect on cellular structures. The major significant reactive 
oxygen species (ROS) are the anion of superoxide (O2

•-), the hydrogen peroxide 
(H2O2), and the hydroxyl radical (OH•). The collective term reactive nitrogen 
species (RNS) mainly includes the radical of nitric oxide (NO•), the peroxynitrite 
potent oxidant (ONOO−), the radical nitrogen dioxide (NO2

•), and other nitrogen 
oxides. During ischemia, the tissue cells begin to suffer, when the oxygen deliv-
ery (DO2) to tissues decreases beyond the critical DO2 (cDO2) level, namely, 
when the metabolism becomes anaerobic. The cell suffering maximizes, when 
beta-oxidation of fatty acids is the last fuel that still feeds oxidative phosphoryla-
tion. Further drop of DO2 leads to severe ischemia with intracellular conversion 
of xanthine dehydrogenase to xanthine oxidase and increased concentration of 
xanthine and hypoxanthine. Upon reperfusion and abundant O2 reentry, free radi-
cal burst follows, with membrane destruction and massive cellular damage, 
mainly coming from the peroxidation of lipid bilayer arrangement. Suggested 
methods of I/R injury prophylaxis are the use of antioxidants, scavengers, and 
preconditioning techniques. The new approaches that seem to be promising 
focus on the progressive reentry of O2 to the thirsty for O2 ischemic tissues: ini-
tially in low concentrations of O2 to meet the low potentials of biochemical path-
ways to use O2 and thereafter in gradually increasing concentrations toward 
normal. Large, open, double blind, multicenter trials are still lacking.
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Abbreviations

ATP adenosine triphosphate
cNOS constitutive NO synthase
DO2 oxygen delivery
GR  glutathione reductase
GSH  glutathione reduced
GSSG  glutathione disulfide
iNOS inducible NO synthase
LTF  lactoferrin
MBPs  metal-binding proteins
MPO myeloperoxidase
NAD+/NADH oxidized/reduced adenine dinucleotide
NADP+/NADPH oxidized/reduced adenine dinucleotide phosphate
O2ER oxygen extraction ratio
RNS reactive nitrogen species
ROS reactive oxygen species
VO2 oxygen consumption
XDH xanthine dehydrogenase
XO xanthine oxidase
XOR  xanthine oxidoreductase

27.1  Introduction

Ischemia/reperfusion (I/R)-induced injury has been described as one of the main 
factors that contribute to the observed morbidity and mortality in a variety of clini-
cal entities. In these entities, tissue hypoxia due to ischemia is the common denomi-
nator of either regional distribution such as myocardial infarction and mesenteric 
embolism or of systemic involvement such as cardiac arrest and hemorrhagic shock, 
the latter representing the equivalent of whole body ischemia [1].

Cells utilize oxygen to produce energy by the mitochondria in the form of ATP 
molecules, and in this process, a number of free radicals are normally generated. 
These very active products may be involved in chain reactions, joining with differ-
ent radicals to produce other more harming species, a process called “oxidative 
stress” observed in various pathological clinical conditions [2, 3]. When free radi-
cals are produced in normal amounts, besides exerting their physiological functions 
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[4], they become neutralized by the inherent cellular defenses that are collectively 
termed as antioxidants. In contrast, if they are produced in abundance, e.g., during 
ischemic states, after they exhaust antioxidant reserves, they exert their harmful 
effect on cellular structures. Different types of oxygen and nitrogen reactive species 
(ions, molecules, and atoms) that possess unpaired electrons, react readily with 
DNA, proteins, and lipids, producing harmful products such as lipid peroxides and 
cause cellular damage. These rapidly evolving reactions characterize the so-called 
I/R injury.

The point of this chapter is to signify and indicate our present comprehension of 
the multifactorial systems that add to the I/R damage development, looking thor-
oughly toward possible therapeutic approaches that target to the root of pathologic 
processes in order to increase resistance of cellular death and/or eliminate or attenu-
ate injury.

27.2  Energy Production

The essential energy substrate for aerobic eukaryotic cells is adenosine triphosphate 
(ATP). Its hydrolysis produces 30.5 kJ per mole (Fig. 27.1), useful for the energetic 
needs of the cell. In the presence of oxygen, ATP production in these cells is particu-
larly effective when the glucose and fatty acid degradation are coupled with the 
oxidative phosphorylation through a hyper-molecular complex of mitochondrial 
inner surface [5].

Oxidative phosphorylation, without oxygen stops and the mitochondrial effec-
tive synthesis of ATP, is interrupted. During ischemia, coming up either by no tissue 
blood flow or by protracted low tissue blood flow, the aerobic glycolysis stops, and 
the main source of ATP production becomes the anaerobic glycolysis to metabolize 
the existent cytosolic glucose. This way of glucose metabolism is much less effec-
tive than aerobic glycolysis engaged with oxidative phosphorylation. The latter way 
of metabolism delivers 36 ATP molecules from 1 molecule of glucose in contrast to 
anaerobic glycolysis that delivers only 2 ATP molecules [5].

27.3  Reactive Species

These species include ROS (reactive oxygen species) and RNS (reactive nitrogen 
species), they possess one or more unpaired electrons, and they are particularly 
reactive and may include ions, atoms, and molecules [4].

During cellular oxygen metabolism, reactive species are normally produced and 
relate with a significant part of various biological processes such as the stimulation 

30.5 kJ•mol–1

Adenosine-triphosphate + H2O adenosine-diphosphate + Pi

Fig. 27.1 ATP breakdown to ADP with energy release
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of glucose transport into cells affecting inter- and intracellular signal transmission 
[6]. Additionally, in normal responses, they represent a vital component of the 
innate immune system, thus participating to the defense mechanisms against patho-
gens [7]. Reactive species may also become involved in abundant pathological pro-
cesses immune system guided, called “oxidative stress,” which is usually harmful 
for the cells.

27.3.1  Reactive Oxygen Species (ROS)

Normally, in aerobic conditions, the cellular metabolism constitutes itself an impor-
tant source of ROS. Their origin comes from some cellular systems located not only 
at organelles such as peroxisomes, membranes of endoplasmic reticulum, and mito-
chondria but also at plasma membrane and at cytosol. The three major significant 
reactive oxygen species (ROS) are superoxide anion (O2

•-), hydrogen peroxide 
(H2O2), and hydroxyl radical (OH•). During I/R the initially produced ROS is O2

•-, 
which is created by the addition of an electron to O2 [8], either enzymatically, e.g., 
NADPH oxidase and xanthine oxidoreductase, or non-enzymatically in the mito-
chondrial respiratory chain.

 (a) Enzymatic production of ROS via NAD(P)H oxidase: 2O2 + NADPH → 2O2
•- 

+ NADP+ + H+, where the electron is added in a univalent reduction using as 
electron donor the NADPH or NADH. This membrane-bound enzyme is located 
in different cells, e.g., fibroblasts, smooth muscle cells, the endothelial cells, 
monocytes, polymorphonuclear leukocytes, and macrophages [3]. These cells 
during phagocytosis liberate a burst of superoxide NAD(P)H oxidase-mediated 
that leads to bactericidal activity. Although it was considered that only phago-
cytic cells express this enzyme, a whole group of NAD(P)H oxidases exists, as 
recent data indicate, that is known as NOX family of NAD(P)H oxidases and 
mediates diverse biological reactions in various tissues they are expressed [9]. 
This group of multiprotein complexes comprises the oxidases from Nox-1 to 
Nox-5 and the Duox-1 and the Duox-2 (dual) oxidases, namely, seven enzymes 
in all [10]. Mainly the Duox enzymes along with Nox-4 generate hydrogen 
peroxide, though the other Nox isoenzymes mainly produce superoxide [11, 
12]. The most effective substance controlling NAD(P)H oxidase is angiotensin-
 II [13].

 (b) Enzymatic production of ROS via xanthine oxidoreductase (XOR): Probably 
the most studied ROS-producing enzyme is xanthine oxidoreductase (XOR), 
which is also an essential source of ROS [14]. The formation of uric acid 
through hydroxylation of xanthine represents the rate-limiting level of catabo-
lism of purine which is controlled by XOR, a complex molybdo-flavoenzyme. 
There are two interconvertible forms of XOR enzyme in mammals, the xanthine 
dehydrogenase (XDH) as prevalent form (about 90%) in normal condition and 
xanthine oxidase (XO). XDH preferably utilizes NAD+ as electron acceptor 
[12], as appears in the following reaction: xanthine  +  H2O  +  NAD+ →  uric 
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acid  +  NADH  +  H+. XDH, however, in hypoxic conditions converts to XO 
which, as the terminal electron acceptor, utilizes O2, showing therefore its 
capacity to create ROS [12]. This process has been regarded as the principal 
mechanism of the oxidative injury. Therefore, in the presence of hypoxanthine 
and XO, the profuse molecular oxygen reentry produces ROS as follows:

hypoxanthine (or xanthine) + H2O + O2 → xanthine (or uric acid) + O2
•- + H2O2 

[14, 15]. Besides, XO may reduce nitrite to nitric oxide [16], a reaction that pro-
vides a mechanistic base for the nitrite utility in the treatment of ischemic condi-
tions. The tissue redox state during ischemia changes from oxidative (increased 
concentration of NAD+ in relation to NADH) to reductive (increased concentration 
of NADH in relation to NAD+). The accumulation of xanthine intracellularly in the 
case of altered redox state increases the production of O2

•- from XDH [12, 17], con-
trary to the prevailing view.

 (c) Mitochondrial intracellular release of ROS: It has been shown that in physiolog-
ical condition, the mitochondrion represents the largest single source of intra-
cellular O2

•- release [18, 19]. Among the four complexes of the electron transport 
chain in mitochondria, those of NADH ubiquinone oxidoreductase and ubiqui-
none/cytochrome c reductase complexes represent the main sites of a physio-
logic electron leak that reduces about a 1–3% of oxygen volume consumed by 
the cell to superoxide; however, the great percentage of oxygen, i.e. about 90%, 
is converted to water by reduction in the mitochondrial chain. ROS production 
by the mitochondria increases significantly during I/R [20]. The decreased 
mitochondrial antioxidant capacity, due to increased endogenous consumption, 
represents another mechanism that contributes to increased ROS production 
[20]. In any case, the production of O2

•- in tissues during ischemia seems to 
involve purine metabolism alterations in ischemic cells [21]. In progressive 
ischemia, two products of purine catabolism, i.e., hypoxanthine and xanthine, 
accumulate in tissues. Specifically, it has been recently shown through studies 
of metabolomic analysis that only three metabolic products, hypoxanthine, xan-
thine, and succinate, were accumulated in different organ-tissues (heart, liver, 
kidney, and brain), exposed to I/R [12, 15]. This observation confirms the con-
sideration that purine metabolites represent the substrate of XO-catalyzed ROS 
generation at reperfusion.

Consequently, net ROS mitochondrial liberation likely mirrors the balance 
between generation and disposal/clearance [22]. The major part of ROS deliberated 
in I/R conditions becomes from mitochondria as it has been shown by many studies 
[18, 19, 22]. This knowledge was accumulated by studies that used inhibitors spe-
cifically directed to the various levels of the electron transport chain targeting spe-
cific antioxidants to the mitochondria or using CuZnSOD vs. MnSOD for the 
transgenic overexpression of cytosol vs. mitochondrial-specific isophorms of anti-
oxidant enzymes [19]. Mitochondrial ROS generation was found to become 
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inhibited in studies where agents, which defend the I/R-induced vascular and tissue 
injury, were given [19, 22].

 (d) The system of myeloperoxidase–halide– H2O2 release of ROS: The MPO 
(myeloperoxidase) enzyme is found in the granules of cytoplasm of neutro-
phils. The conversion of H2O2 to hypochlorous (HOCl), a potent oxidant and 
antimicrobial agent [23], is taking place in the presence of the ubiquitous chlo-
ride ion after the reaction: Cl− + H2O2 + H+ → HOCl + H2O.

Superoxide generated by the above principal sources produces hydrogen perox-
ide through SOD (superoxide dismutases) as follows: O2

•-  +  2H+ →  H2O2  +  O2. 
Hydrogen peroxide (H2O2) is easily diffused in the plasma membrane. Other ROS 
are additionally generated from O2

•- and H2O2 by Fenton reaction 
H2O2  +  Fe2+  →  OH•  +  OH−  +  Fe3+ and/or by Haber-Weiss reaction 
O2

•- + H2O2 → OH• + OH− + O2.

27.3.2  Reactive Nitrogen Species (RNS)

The term, reactive nitrogen species (RNS), collectively comprises nitric oxide 
(NO•), nitrogen dioxide (NO2

•), the potent oxidant peroxynitrite (ONOO−), and 
other nitrogen oxides and metabolites that result when NO• reacts with O2

•-, H•O•, 
and RO•. Endogenous synthesis of NO• is accomplished by several cells and endo-
thelial cells (ECs), in particular. L-Arginine reacting with molecular oxygen in the 
presence of NOS and NADPH [3, 24, 25] produces L-citrulline, NO•, and other 
products via a five-electron oxidation reaction as NOS  +  L-arginine 
+2O2 + 1.5NADPH → NO• + citrulline + 1.5NADP+ + 2H2O, or, in case of uncou-
pling states, these enzymes may additionally generate superoxide as NOS (Fe++ 
heme) + O2

•- → NOS (Fe+++ heme) + O•-.
The above reaction is evoked by the enzyme NOS (nitric oxide synthase). There 

are three isoforms of the enzyme that have been recognized: NOS-1 (nNOS, neuro-
nal), NOS-2 (iNOS, inducible), and NOS-3 (eNOS, endothelial). NOS-1 and NOS-3 
provide a more ubiquitous distribution, e.g., they are both found in cardiomyocytes 
though they are mainly expressed at the brain/neurons and endothelial cell, respec-
tively [26]. They are nominated as constitutive-NOS enzymes and become activated 
by their connection with the compound Ca2+/calmodulin after the intracellular 
increase of Ca2+.

Until the intracellular calcium concentration drops, small quantities of NO• are 
produced by the activated NOS. This fluctuating release of NO• allows normal phys-
iological functions to be carried out, like signal transmission and maintenance of a 
basal vasodilator tone [3, 26, 27]. The vasodilatory effect of NO• appears to be 
accompanied by an attenuation of leukocyte-endothelium interaction, of platelet 
aggregation, of cell adhesion, and of limitation of cell proliferation [28]. Another 
and last isoform of NOS is the iNOS (inducible or NOS 2). This enzyme is regulated 
by the inflammatory response and expressed therefore in various tissue cells and 
particularly in macrophages [29]. The expression of iNOS is regulated through gene 
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transcription and is not influenced by Ca2+/calmodulin levels [25, 28, 29]. For as 
long as the inflammatory challenge exists, the activation of iNOS continuously pro-
duces significant quantities of NO• that suppress and kill pathogens. Protein kinases 
control the activity of iNOS through phosphorylation/dephosphorylation with the 
former forming to represent the enzyme of diminished activity.

While signaling molecules exert their action via receptors, NO• in contrast passes 
through membranes and diffuses out of the cell where it was generated. It reaches 
the target cells where it exerts its physiological effects, i.e., signal transmission, 
chemical reactions with proteins, nucleic acids, ROS, and superoxide in particular, 
or reacts with its molecular targets [30]. The radical to radical chemical reaction of 
NO• with superoxide is of particular importance in the NO•-related toxicity since 
they form the extremely toxic oxidant (not radical) peroxynitrite quickly. It may 
attack and distract different biologic molecules and is produced in various patho-
logical and inflammatory processes [3]. In conclusion, all isoforms of NOS are 
homologous, simply as it has been shown, and they differ in the controls and activi-
ties and, particularly, in the amounts of NO• produced.

27.4  Endogenous Antioxidants

27.4.1  Enzymatic

As referred above, an important enzymatic antioxidant of first-line defense is super-
oxide dismutase (either SOD-Cu/Zn intra−/extracellular or SOD-Mn mitochon-
drial). It dismutates superoxide to hydrogen peroxide (H2O2) and oxygen. Hydrogen 
peroxide via Fenton reaction results either to hydroxyl radical (HO•) or under two 
other important enzymatic antioxidants, catalase (CAT of peroxysomes) and gluta-
thione peroxidase (GPx of mitochondria), and H2O2 is further reduced to water and 
molecular O2. The oxidized glutathione, termed glutathione disulfide (GSSG), turns 
by reduction to its reduced form (GSH), taking up the hydrogen from NADPH 
which converts to NADP+, by the intermediate of GR (glutathione reductase). Thus, 
the cysteine thiol group of a new GSH molecule is ready to react with next free radi-
cals. NADPH is regenerated at the oxidative pathway pentose phosphate, ready to 
reduce a GSSG to GSH again [24, 31].

27.4.2  Non-enzymatic

The non-enzymatic antioxidant substances are in common either proteins or mole-
cules of low molecular weight, and they offer efficient modes of intra- and extracel-
lular defense against both RNS and ROS. They are the following [23, 24]:

 1. a. Metal-binding proteins (MBPs) such as albumin (ALB), ferritin (FER), ceru-
loplasmin (CP), myoglobin (MB), metallothioneins (MTs), transferrin (TF), and 
lactoferrin (LTF)
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Cysteine contained in albumin and particularly in the low molecular weight MTs 
discloses sulfhydryl (-SH) groups that are capable of scavenging hydroxyl radicals. 
The abundant -SH groups they possess provide their principal antioxidant activity 
[32].

Conversely, by binding iron ions (Fe2+) and free copper (Cu2+), ceruloplasmin 
performs as an inhibitor of reactive species or, alternatively, as an antioxidant chain- 
breaking [33].

Albumin (ALB) is an antioxidant protein possessing multiple functions, i.e., it 
reacts with hydroxyl radicals as a true scavenger and may also bind with redox met-
als (Fe2+ and Cu2+) [34, 35]. An effective NO scavenger is myoglobin, another MBP 
[36]. The protection of cells from toxic metals, e.g., Cu, Zn, and Cd, is coming from 
metallothionein, a family of cysteine-rich proteins localized to the membrane of the 
Golgi apparatus; it is also effective against superoxide as scavenger [37].

Additionally, ferritin (FER), lactoferrin (LTF) and transferrin (TF) may be effi-
cient in inhibiting free radicals in the Fenton/Haber-Weiss reaction [38]. In this 
reaction, in a first step ferric ion reduces to ferrous ion via reaction with superoxide 
that is neutralized as follows: O2

•− + Fe3+ → Fe2+ + O2. In a second step, ferrous ion 
(Fe2+) reacts with H2O2 to form OH− anion and harmful OH• radical, converting fer-
rous back to ferric ion, as follows: Fe2++H2O2 → Fe3+ + OH− + OH•. Therefore, these 
MBPs are classified as antioxidants, because of their capacity to bind iron [39–41].

b. Glutathione (GSH) is a soluble antioxidant that its synthesis mainly occurs in 
hepatocytes and its high cellular concentrations are found in the cytoplasm and in 
cellular organelles such as nucleus and mitochondria [24]. Reduced GSH prevails 
by far over oxidized (GSSG) normally, representing till 98% of the total glutathione 
reserves. GSH, as an antioxidant, is capable of reducing ROS throughout both enzy-
matic and non-enzymatic reactions. This substance has the capability of defending 
the thiol groups of proteins from being oxidatively destructed, thanks to the thiol 
groups that possess participating in its molecule [42]. Its reduced levels reflect a 
good index of oxidative aggression [43].

c.  Uric acid (UA) scavenges different types of reactive species [44, 45]  as 
hydroxyl radical, lipid peroxides, and the oxidant substance peroxynitrite [24], 
despite some adverse effects [44]. Probably, it has also the ability to scavenge car-
bonate ions and nitrogen dioxide [42]. With copper and iron ions, it may form stable 
complexes, inhibiting by this way Fenton and the Haber-Weiss reactions which pro-
duce free radicals [43].

d. Coenzyme Q10 (CoQ10) generally participates in the transport of electrons in 
both places, outside mitochondria and in the mitochondrial respiratory chain [24, 
46]. CoQ10 participates in redox reaction particularly of dehydrogenases, in non- 
heme proteins, and in cytochromes, and its activity appears in the lipid profile [47].

e. Other non-enzymatic antioxidants are melatonin (MEL), bilirubin (BIL), poly-
amines (PAs).
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27.5  Ischemia: Cell Suffering-Cell Priming

In the clinical practice, tissue O2 deprivation may occur secondary to complete or 
relative blood flow impairment, representing the “no flow” or “low-flow” condition, 
respectively. “No flow” may concern either individual organs, e.g., intestine (sec-
ondary to mesenteric artery embolism), cardiac infarction (coronary artery occlu-
sion), or the whole body (cardiac arrest). “Low flow” may concern individual 
organs, e.g., angina (partial occlusion of coronary arteries), or the whole body, e.g., 
generalized tissue hypoperfusion and tissue hypoxia (continuing hemorrhage and 
hemorrhagic shock). Apparently, in low-flow conditions, the duration of the insult is 
of significant importance. Finally, the relative or complete ATP reserve exhaustion 
determines the reversibility or irreversibility of cell damage and parenchymal tissue 
destruction during evolutionary ischemia.

Continuous hemorrhage is one of the main causes responsible for the progressive 
impairment of tissue blood flow and, therefore, represents a good paradigm of the 
pathophysiologic biochemical consequences attributed to the progressively devel-
oped tissue hypoxia [48]. In cellular level during continuing hemorrhage, the bio-
chemical disorders run two phases, the cell suffering and the cell priming.

27.5.1  Cell Suffering

As the circulating blood volume decreases, oxygen delivery (DO2) decreases as 
well, but oxygen consumption (VO2) remains constant, for a considerable amount of 
blood loss, in a formerly healthy patient (solid line  - Fig.  27.2) [49]. This DO2 
reduction is balanced both by the increase of oxygen extraction ratio (O2ER – the 
ratio of VO2 over DO2) with a corresponding fall of mixed venous blood O2 satura-
tion and by the counterbalanced mechanisms (tachycardia, vasoconstriction, etc.).

Aerobic metabolism therefore is maintained, and VO2 remains independent of 
DO2 with no cell suffering. However, further reduction of the DO2 to that point level 

Fig. 27.2 Oxygen 
consumption to oxygen 
delivery relationship. 
(Modified from Ref. [49])
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where maximum O2ER is reached (60–70%) is called critical DO2 (cDO2) [50] and 
coincides with less than 10 mL of O2/kg of body weight.

Beyond this point, any further decline in DO2 signifies a blood volume loss of 
approximately 50% with a substantial reduction in cardiac output and in mixed 
venous oxygen saturation [48]. Anaerobic metabolism begins to take over from 
aerobic metabolism because of tissue hypoxia, and there is an abrupt increase in 
blood lactate concentrations. Cell suffering coincides with this mild to moderate 
ischemia, where ATP is consumed and reliant upon the span of the ischemic insult, 
and its consumption may exceed its production. Then, its intracellular concentration 
decreases, the extracellular glucose rapidly declines, and similarly the intracellular 
glycogen reserves rapidly consume. Besides, ATP reduces proportionally to the 
magnitude of ischemia, but it is produced in some degree from the fatty acid 
β-oxidation that still fuels oxidative phosphorylation [5].

27.5.2  Cell Priming

Further drop of DO2 leads to deep tissue hypoxia and the severely O2-deprived cell to 
prime for generation of ROS, upon O2 reentry during reperfusion. Specifically, cellu-
lar priming consists of ATP down-degradation, initially to the level of adenosine [48]. 
This is because as ischemia deepens and intracellular concentrations of ATP shrink, 
the cells draw the necessary energy from ADP, from the pyrophosphate bonds in par-
ticular, which degrade to AMP and finally to adenosine. The latter substance freely 
passes cell membranes diminishing noticeably the intracellular nucleotide reserves of 
adenine, which are the precursors of ATP synthesis [5]. The quantity of adenosine 
remaining in the cell downgrades to hypoxanthine with concurrent XO accumulation. 
Moreover, beta-oxidation of fatty acids runs out, since the key enzymes for its proper 
function are not produced due to the privation of the cofactors NADH, H+, and FAD+, 
which in normal condition are restored via oxidative phosphorylation.

Cell priming during severe ischemia, apart the hypoxanthine, xanthine, and xan-
thine oxidase intracellular high concentration, includes important other derange-
ments, some of which are the following:

27.5.2.1  Cell Membrane Destruction
Because beta-oxidation has stopped working, the cellular concentrations of amphi-
philic compounds fatty acids, acyl-CoA, and acylcarnitine increase progressively 
and readily dissolve into cell membranes. The functional properties of membrane 
proteins are affected, and a gap junction conductance reduction appears, which is 
time-dependent reversible [53].

27.5.2.2  Na+-/K+-ATPase-Reduced Activity
The activity of the pumps Na+-/K+-ATPase and Ca2+-ATPase decreases, and the 
same effect occurs for the activation of potassium channels, ATP-dependent. 
Therefore, the current which corrects potassium reduces, extending the Na+ channel 
opening, inhibiting their inactivation [5].
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27.5.2.3  Intracellular Acidosis
Cellular ischemia is accompanied by intracellular acidosis which represents one of 
its principal features [5]. The exhaustion of the buffering capacity of the cell comes 
rapidly on, because of the increased proton production secondary to metabolic 
changes. The proper functioning of the cell is directly and indirectly involved by 
intracellular acidosis by numerous ways: Increasing the production of free radical 
through the increases of the intracellular Na+, induced by Na+/H+ and Na+/Ca2+ 
exchangers activation; modifying the affinity of troponin C and various enzymes; 
changing the tertiary structure of proteins; suspending enzymes; and distracting the 
function of carriers and pumps of the sarcoplasmic reticulum [51]. In the presence 
of lactate dehydrogenase, pyruvate converts to lactate, and this reaction consists of 
the principal source of protons during ischemia. Since lactate’s extracellular concen-
tration increases, lactate/proton cotransporter is no more efficacious impeding thus 
the removal of protons. Moreover, the remaining metabolic activity further supplies 
acidosis, since a proton is released by the hydrolysis of each molecule of ATP [5].

27.6  Reperfusion: Free Radical Burst

The massive reentry of molecular oxygen in deprived from O2 cells but rich in hypo-
xanthine and xanthine oxidase upon reperfusion results in the following paradox: 
instead of ascending the route to establish resynthesis of ATP, the reaction diverts 
toward the conversion of hypoxanthine to uric acid and xanthine, releasing the gen-
eration of ROS (Fig. 27.3).

The high body concentration of ROS can modify the structure of DNA, of lipids, 
and of proteins, may activate some transcription factors induced by stress, and may 
produce both cytokine classes, pro-inflammatory and anti-inflammatory.

ROS may disorder the bilayer arrangement of membranes by its lipid peroxida-
tion and therefore, disable the activity of receptors and enzymes bound on the mem-
branes [31]. Either by adding on a polyunsaturated fatty acid (PUFA), an oxygen 
radical, or by removing a hydrogen, a chain reaction is begun designated as lipid 
peroxidation. Since PUFAs are more sensitive than the saturated fatty acids, they are 
easily affected and undergone oxidative destruction. A rearrangement of the double 
bonds stabilizes the free electron on the carbon, producing a conjugated diene and 
next, peroxyl radicals (ROO.) in combination with oxygen. Since this radical is in 
itself capable to remove an atom of hydrogen from another PUFA, the chain reac-
tion continues producing in each turn additional peroxyl radicals [52].

Alcoxyl (RO.) or hydroxyl (HO.) radicals are produced by complexes of peroxyl 
radicals with transition metals. The first relatively stable product of lipid peroxida-
tion chain reaction is lipid hydroperoxide (ROOH) [52, 53]. MDA and unsaturated 
aldehydes, products of lipid peroxidation, are efficient of deactivating cellular pro-
teins by creating protein cross-linkages [54]. 4-Hydroxy-2-nonenal and other 
hydroxyl-alkenals cause depletion of intracellular GSH, peroxide production, and 
induce fibronectin production [54, 55, 56, 57].
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Expression of genes engaged in signal transduction may become stimulated by 
increased ROS [58]. An increased GSH/GSSG ratio significantly protects the cell 
from oxidative attack which results in cell destruction. When this ratio decreases, 
the sensitive to intracellular redox transcription factors activate. These factors (NF- 
kB, AP-1, NFAT and hypoxia-inducible factor 1) are mainly involved in the inflam-
matory response [31].

The damage that ROS cause to proteins is serious since they may hit and frag-
ment the peptide chain, alter the protein electrical charge, and oxidize selective 
amino acids, making thus proteins sensitive to proteolysis by appropriate proteases. 
In the peptide chain, the sulfhydryl groups of methionine and cysteine are more eas-
ily oxidized resulting in changes of conformation and of folding, leading finally to 
protein degradation [59].

Molecular products, markers of oxidative aggression, such as nitrotyrosine, oxi-
dized glutathione (GSSG), H2O2, O2

•−, and MDA may be measured in samples of 
plasma or bronchoalveolar lavage fluid by established methods [31, 56, 57].

Tissue Damage
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Fig. 27.3 In severe cellular ischemic state, not only ATP synthesis has stopped but ATP degrades 
initially to adenosine and thereafter to hypoxanthine. XDH has been largely converted to 
XO. Abrupt and in abundance reintroduction of O2 at resuscitation results in xanthine and uric acid 
formation with burst of ROS and tissue damage. (Figure modified from Ref. [1])
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27.7  Therapeutic Trends of the I/R Injury

On all experimental studies on I/R injury, there are some common factors that need 
to be highlighted. Contemplating the experimental model, for tissue injury to occur 
on reperfusion, ischemia should be of sufficient intensity and duration for the fol-
lowing to be fulfilled: first, tissue cell priming; second, exhaustion of antioxidant 
capacity; and third, the substrate hypoxanthine and the enzyme xanthine oxidase to 
be accumulated. A forth factor needed, for injury to become ensured, is the presence 
of sufficient molecular O2 as an electron acceptor upon reperfusion. Then, ROS 
burst is elicited in a place where antioxidant defenses are lacking and tissue damage 
occurs. The knowledge of this sequence has led medical research to focus on the 
development of potential strategies, aimed at eliminating the effects of reactive oxy-
gen species, which are discussed below. However, studies manipulating the fourth, 
factor i.e., O2, are lacking.

27.7.1  Regional Insults: Organ System I/R

Suggested methods [1] include the use of antioxidants to minimize the oxidative 
stress [60–63], scavengers for the removal of metabolic waste, and preconditioning 
techniques (ischemic, hypoxic, pharmacologic, and remote ischemic precondition-
ing) to prepare cells to better respond to the forthcoming stress [64–73].

Despite the proven beneficial effects, all the above strategies share one common 
disadvantage: they lack effectiveness when they are applied after or during reperfu-
sion/resuscitation which limits their usefulness in the clinical setting [1]. Similarly, 
antioxidants should be administered ideally before ischemia and reperfusion in 
order to achieve their maximum effect. In fact, most available evidence regarding 
their favorable effects derives from studies in which antioxidants were used as pre-
treatment [61, 63]. Moreover, their use, even in combination with scavengers, does 
not completely abolish the ensuing injury. The same applies to the use of precondi-
tioning techniques. The rationale of these techniques is to “premedicate” the patient, 
an option which may not be feasible in all clinical scenarios [1]. Therefore, the 
application of these strategies in the clinical setting may be limited [70–72, 74, 75]. 
A recent meta-analysis questioned the efficacy of ischemic preconditioning in the 
setting of liver surgery [76]. Similarly, remote ischemic preconditioning, a tech-
nique that held great promise for its demonstrated favorable effects, did not exert the 
expected outcomes when tested in clinical trials [77–79]. An important thing that 
should be considered is that once reperfusion injury has begun, many pathways 
evolve. Whatever significant intervention, may moderate the injury temporarily or 
partially, because, even if one or more paths have been eventually blocked, however 
the others, remain evolving.

Nevertheless, in a victim with regional or generalized ischemia, the only influen-
tial factor, among those aforementioned, necessary to induce injury on reperfusion 
is the way that oxygen is given during the therapeutic management. Considering 
that the needs for O2 of the adapted to ischemia tissues are minimal, comparatively 
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excessive high tissue partial pressure of O2 (PtO2) could be created upon tissue 
reperfusion, leading to ROS burst, even if the victim breathes air atmosphere during 
resuscitation. In contrast, supplying initially very low and progressively increasing 
concentrations of oxygen coupled with effective tissue perfusion should permit, 
theoretically, the gradual restoration of energy resources, attenuating ROS genera-
tion and reducing the I/R injury.

We tested the above hypothesis in an experimental model of hemorrhagic shock. 
The intention was to give a sufficient tissue perfusion during resuscitation and, at 
the same time, to manipulate the oxygen content in the initial blood perfusate, in 
order to meet with the adapted – at low cellular energy state – needs during isch-
emia. It is about gradually increasing the O2 content of the reperfusate blood from a 
lower level corresponding to a PaO2 of 30–35  mmHg initially at reperfusion, to 
gradually achieve a PaO2 of 95–100 mmHg at the end of the resuscitation period [1]. 
It is thought that, resuscitating in this way, gradual restoration of cellular energy 
resources may occur, elevating the levels of ATP resynthesis (Fig. 27.4). By this 
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Fig. 27.4 Here is presented a possible mechanism of the favorable effect exerted by hypoxemic 
resuscitation. Low and progressively increasing O2 content to the tissues, combined with adequate 
tissue perfusion, reduces ROS generation. It is suggested that less hypoxanthine converts to xan-
thine and therefore accumulates intracellularly, eventually resulting to gradual restoration of cel-
lular energy resources. (Figure modified from [1])
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approach, the primed cells rather ameliorate turning to suffering cells, in a gradual 
process, before they finally become normal.

This hypothesis was initially tested in the most sensitive to oxygen devoid organ, 
i.e., the brain [56, 80]. Prior studies tested the effect of hypoxemic [81] or hyper-
baric [82] reperfusion reporting no improvement either of acute brain recovery the 
former or promotion of brain lipid peroxidation the latter. However, global cerebral 
ischemia was produced by raising intracranial pressure either to 100 mmHg above 
arterial pressure [81] or equal to MAP [82] with rapid infusion of artificial cerebro-
spinal fluid into a lateral ventricle. In this way, mechanical might overshadow isch-
emic injury of the brain, and besides, the post-resuscitative syndrome was not 
reliably reproduced since no systemic ischemia occurred, as it happens in cardiac 
arrest [77].

In male pigs, a different ischemic brain insult of 10 min was produced by ligation 
of both carotids, systemic shock with a mean arterial pressure of 15 to 35 mmHg, 
and disconnection from the respirator under paralysis [56]. A hypoxemic or hyper-
oxemic reperfusion of 60 min was tested thereafter. The hypoxemic animals had 
significantly better overall neurologic performance than hyperoxemic and was simi-
lar to the sham-operated animals. Also, the hypoxemic animals had less blood MDA 
and hydroxyalkelans compared with the hyperoxemic animals. Similarly, the histo-
pathological changes were significantly smaller, specifically the neuronal degenera-
tion [80]. These results may imply that the progressive reintroduction of O2 to the 
ischemic brain tissue ensured by hypoxemic reperfusion attenuates the oxidative 
injury after a severe global brain insult.

On the same issue [56, 80], there are at least three studies supporting the notion 
that ventilating with air atmosphere versus 100% O2 during resuscitation after car-
diac arrest may be advantageous with respect to neurological outcome. Mickel, for 
example [83], showed a threefold decrease in 14-day mortality in gerbils when 
exposed to an air atmosphere instead of to 100% O2 after ischemia. Zwemer et al. 
[84] similarly showed that hyperoxically resuscitated dogs sustained significantly 
worse neurological deficit at 12 and 24 h than did both antioxidant-pretreated hyper-
oxically resuscitated and normoxically resuscitated dogs after cardiac arrest. 
Similarly, Liu et al. [85] tested normoxic versus hyperoxic reperfusion after cardiac 
arrest showing a better outcome in the normoxically treated animals together with 
lower levels of oxidized brain lipids. It seems, therefore, that the normal – compared 
to the high – oxygen mixture ventilation during reperfusion favors diminished ROS 
formation and lower cerebral lipid peroxidation. These results may lead to the ratio-
nale that further diminishment of elemental tissue O2 concentration may further 
minimize the postarrest cerebral damage [56].

In the same line of evidence were the results of another study [86] with regional 
intestinal ischemia of 120 min introduced by superior mesenteric artery clamping, 
followed by a period of 120 min of hypoxemic or normoxemic reperfusion. At the 
end of reperfusion, significantly less hypoxemic animals had positive portal Limulus 
test (detection of endotoxin), less portal IL-1β levels, and higher PaO2/FiO2 ratio 
level. These results dictate that the intestinal mucosa and lungs of hypoxemic 
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animals were preserved since the intestinal barrier disruption, which induces muco-
sal permeability and bacterial translocation, was obviated. These results are further 
confirmed by the intestinal and pulmonary histopathologic scores. The intestinal 
scores, shown in Fig. 27.5 [86], at the 120 min of ischemia were high enough in 
both groups and reveal the severity of injury introduced by ischemia. However, the 
reversibility of this injury becomes apparent, since the scores differed significantly 
at 120 min of reperfusion being lower in hypoxemic animals and higher in normox-
emic. Similar findings were exhibited in pulmonary histology, highlighting the 
attenuation of injury in remote organs, as well.

From these initial experimental studies, it seems that severely ischemic cells, 
when they become well perfused but initially still devoid of oxygen, which is 
increasing gradually thereafter, divert to a lesser degree the accumulated hypoxan-
thine toward xanthine, uric acid, and generation of ROS, as it is suggested in 
Fig. 27.5. Since the regional ischemic experimental models carry almost no mortal-
ity because the injury caused is limited, mortality should be sought in a different 
experimental model.

27.7.2  Generalized Insults: Hemorrhagic Shock-Whole Body I/R

This could be a generalized model of injury introduced by severe hemorrhagic 
shock followed by resuscitation, to conclude about the importance of hypoxemic 
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Fig. 27.5 Box plots showing the median intestinal pathologic scores (line), interquartile range 
(box), and 5th–95th percentiles (whiskers) at the three conditions of the experiment. Circles denote 
outliers. HR, hypoxemic reperfusion; ISCH, ischemia; REP, reperfusion. Control-Group (n = 16), 
HR-Group (n = 9). ∗ Difference p = 0.03. (Figure modified from Ref. [86])
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resuscitation over the usual standard of care. Hemorrhagic shock/resuscitation may 
be considered as a global hypoxia/reoxygenation injury or, in other words, as a 
generalized I/R insult [57, 87]. In hemorrhagic shock, reoxygenation of previously 
ischemic organ-tissues follows the therapeutic process. On clinical and experimen-
tal grounds, controversy exists on the type of fluid selection (crystalloid vs. colloid), 
on fluid quantity (low volume vs. large volume), and on the resuscitation strategies 
(prompt vs. delayed, hypotensive vs. normotensive), for the effective restoration of 
hemodynamic stability [57, 88–93]. However, newer studies are more conclusive on 
the resuscitation pattern, indicating rather a trend toward small hypertonic volumes 
of saline, permissive hypotension, or delayed resuscitation; these are the limited 
patterns of resuscitation from hemorrhagic shock; certainly, resuscitation should 
have been accompanied or followed by prompt and definitive control of hemorrhage 
[91, 92, 94]. These strategies seem to tend over a model of progressive reintroduc-
tion of oxygen to ischemic tissues [43]. Additionally, delayed shock resuscitation of 
trauma patients has been associated with a reduction in mortality [89], and small 
volume (hypertonic saline) resuscitation has been shown to reduce systemic and 
pulmonary inflammatory response [95].

Studies of hemorrhagic shock resuscitation with a more direct method of ROS 
measurement, assessment of organ failure, and the incidence of ARDS and of 
hepatic involvement with mortality assessment were necessary. Incubating whole 
blood or collected fluids (e.g., bronchoalveolar fluid - BAL fluid) with dichloro-
hydrofluoresceine diacetate as a probe, geometric mean fluorescence intensity 
(GMFI) by flow cytometry [57] is measured. This is possible, since the probe is 
oxidized by ROS in cytoplasm to 2′-7′-dichlorofluorescein, a highly fluorescent 
compound thereafter ROS is measured, analyzing the GMFI. The GMFI in the 
blood of rabbits subjected to hemorrhagic shock to mean arterial pressure of 
40 mmHg for 60 min [57] was similar at baseline, and at the end of shock, while 
at resuscitation, it increased in a stepwise pattern reaching fivefold at 120 min of 
resuscitation in control animals but only 1.5-fold in hypoxemic animals 
(p < 0.001).

This was accompanied by complete hemodynamic restoration of hypoxemic ani-
mals at 120 min of reperfusion in contrast to normoxemic animals. The latter pre-
sented hemodynamic instability after 60 min of resuscitation, to unresponsive fluids 
(p < 0.05), with increased mortality (4/10 animals) in contrast to hypoxemic (1/10). 
Malondialdehyde (MDA) serum levels also achieved the same pattern (p < 0.001). 
The ratio of reduced to total glutathione was significantly greater at all time points 
of resuscitation in hypoxemic animals compared with controls (p < 0.05), while at 
the end of ischemia, it was similar between the groups and comparable to the sham 
animals.

Hemorrhagic shock and resuscitation promote the development of multiple organ 
dysfunction with the lungs to be among the most promptly and most commonly 
affected organs [96, 97]. Neutrophil accumulation increases generation of reactive 
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oxygen species (ROS), and the local release of proinflammatory cytokines contrib-
utes to the pulmonary inflammatory process that characterizes lung injury [96, 98]. 
Among cytokines, interleukin IL-8 has been shown to play a predominant role [96, 
99]. Apart from acting as a potent chemoattractant for neutrophils, IL-8 levels cor-
relate with lung function parameters in the setting of ischemia/reperfusion injury 
caused by lung transplantation [100] and may additionally enhance the oxidative 
burst produced by neutrophils [101].

Therefore, it was sought to investigate whether hypoxemic resuscitation from 
hemorrhagic shock moderates the development of lung injury and ARDS. Oxidative 
parameters of BAL fluid supernatant from animals, similarly subjected to hemor-
rhagic shock and resuscitation as aforementioned, were measured [96]. In the 
hypoxemic animals, the GMFI of polymorphonuclear cells and macrophages as 
well as the MDA was not increased, while GSH was significantly higher at resusci-
tation in contrast with the controls, in which GMFI values exhibited increases of 
five- to sevenfold (p < 0.05). Interestingly, there were similar findings when BAL 
fluid from these animals was co-intubated for cell-stimulation assays on monocyte- 
like cells, the human U937 cell line. In fact, the inflammatory cytokines (IL-1β, 
TNFα, and IL-6) were increased in both BAL fluid and U937 incubation superna-
tant, with IL-8 to increase excessively (p < 0.05).

Similarly, neutrophil infiltration of the lung interstitium and alveoli, lung paren-
chyma MPO, and wet-to-dry lung weight ratio differed significantly (p  <  0.05) 
being higher in the control group. Lung histopathology is delineated in Fig. 27.6, 
where the evidence of co-localization of IL-8 and nitrotyrosine (a footprint of RNS 
effect) in the lung appears. In Fig. 27.6D, there is a normal expression of IL-8, as 
the light brown staining is shown, which is not associated with nitrotyrosine detec-
tion (Fig. 27.6E). Cytokine IL-8 staining was lower in hypoxemic animals com-
pared with normoxemic animals. The more intense IL-8 staining in a slice of 
normoxemic animal (Fig. 27.6F) is in contrast to the mildly stained slice from a 
hypoxemic animal (Fig. 27.6H).

A respective difference in nitrotyrosine brown-colored staining between the two 
groups (Fig. 27.6G vs. I) was also observed, which colocalizes with IL-8 detection, 
and its intensity corresponds to the degree of IL-8 expression. Findings other than 
oxidative indices point to the same direction and also favor the hypoxemic group: 
(a) lower inflammatory state of the lungs, i.e., lower cytokine concentration in the 
BAL fluid as already mentioned, lower tissue MPO activity, and lower degree of 
inflammatory infiltration on tissue histology; (b) lower degree of pulmonary edema, 
evidenced by the lower wet/dry lung weight ratio; and (c) lower degree of protein 
nitration, immunohistochemically detected.

Continuing in the field of resuscitation from shock and lung injury, early signs 
of ARDS development were explored [102]. Comparisons of lung histology scores, 
semiquantitative expression of ICAM, and VCAM in inflammatory cells were 
studied. Similarly, the number of the same receptors’ expression in endothelial 
cells of rabbits subjected to hemorrhagic shock and normoxemic or hypoxemic 
resuscitation is presented in Table  27.1. In that study using indicator-dilution 
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Fig. 27.6 Evidence of colocalization of IL-8 and nitrotyrosine in the lung. Immunohistochemical 
IL-8 score of (A) bronchial or alveolar epithelium, (B) inflammatory cells, and (C) IL-8 gene 
expression in the lungs of sham-operated rabbits (n = 9), rabbits subjected to normoxemic resusci-
tation (NormoxRes, n = 10), and rabbits subjected to hypoxemic resuscitation (HypoxRes, n = 10). 
Immunohistochemical IL-8 expression and nitrotyrosine detection: (D, E) from sham-operated 
group, (F, G) from NormoxRes group, and (H, I) from HypoxRes group. ∗p < 0.05 comparing 
sham to HypoxRes group, §p < 0.05 comparing NormoxRes to HypoxRes group, and #p < 0.05 
comparing NormoxRes to sham group. (Figure from Ref. [96])

techniques by the substrate 3H-benzoyl-Phe-Ala-Pro, capillary endothelial angio-
tensin-converting enzyme activity was additionally measured. The increase of 
parameters presented in Table  27.1 and the decrease of angiotensin-converting 
enzyme were observed in the normoxemic animals and were significantly attenu-
ated in the hypoxemic animals.

In a similar experimental protocol of resuscitation from hemorrhagic shock 
[103], the nitrosative and oxidative stresses on ischemic liver injury were studied. 
Particular emphasis was given on the hepatic antioxidant capacity that may change 
in I/R injury. Briefly, on Fig. 27.7, the hepatic tissue levels of MDA and GSH and 
the percentile ratio reduced to total GSH (R/T) are presented. In panel D, the total 
antioxidant capacity (TAC)  is shown, that appears to be  coherent with the other 
parameters already referred.

Biopsies from normoxemic group demonstrated significant evidence of injury 
with severe sinusoidal/vascular congestion and marked vacuolization focally 
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Fig. 27.7 Indices of oxidative stress. Box plots showing the median (lines), interquartile ranges 
(boxes), and the 5 and 95 percentiles (whiskers) of the three groups at the end of the experiment. 
+p < 0.05 sham vs. Normox-Res; ∗p < 0.05 Normox-Res vs. Hypox-Res. (Figure from Ref. [103])

Table 27.1 Comparisons of cumulative lung histology scores, semiquantitative expression of 
ICAM and VCAM in inflammatory cells, and the number of the same receptors’ expression, in 
endothelial cells of positive vessels in rabbits subjected to hemorrhagic shock that subsequently 
received either normoxemic (Normox-Res) or hypoxemic (Hypox-Res) resuscitation. (From Ref. 
102)

Parameter
Normox-Res Median 
(25th–75th percentiles)

Hypox-Res Median 
(25th–75th percentiles) p

Cumulative lung 
histopathological score

10 (9–11) 7 (4–8.5) <0.01

VCAM-1 positive vesselsa 47 (33–56) 24 (21.5–27.5) <0.05
ICAM-1 positive vesselsa 88 (65–110) 25 (21–30) <0.01
VCAM-1 positivity in 
inflammatory cellsb

3 (2–3) 1 (1–1) <0.01

ICAM-1 positivity in 
inflammatory cellsb

2 (2–3) 1 (1–1) <0.01

VCAM-1 vascular cell adhesion molecule-1, ICAM-1 intercellular adhesion molecule-1
aTotal number of vessels with positively stained endothelial cells in five random fields at ×200
bsemiquantitative assessment (score 1–3) of extent of ICAM-1 and VCAM-1 expression in inflam-
matory cells
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associated with minimal hepatocyte necrosis, in contrast with hypoxemic animals. 
Hepatic mean nitrotyrosine score was significantly increased in normoxemic 
(2.7 ± 0.15) compared with hypoxemic (1.5 ± 0.14, p < 0.05) and sham (1.29 ± 1.18, 
p < 0.05) groups (Fig. 27.8).

27.8  Conclusions

Much knowledge has been accumulated on theoretical and physiological back-
ground, for the implication and importance of oxidative and nitrosative stresses on 
I/R injury. Basic research for many years has been concentrated on the clarification 
of the pathophysiology involved in the I/R injury, so that the prevention and man-
agement become possible. The interesting study of Bickel [89] is one with a clear 
decrease in mortality. Similarly, many studies assessing the effect of limited 

Fig. 27.8 The differences of histologic and NT scores of livers from animals subjected to hemor-
rhagic shock and resuscitation of normoxemic, hypoxemic, and sham animals are shown. +p < 0.05 
sham vs. Normox-Res; ∗p < 0.05 Normox-Res vs. Hypox-Res. (Figure from Ref. [103])
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resuscitation from hemorrhagic shock present favorable results in outcome. It 
should not escape our attention the fact that the results of the aforementioned stud-
ies represent a clear example of progressive oxygen re-entry to the ischemic tissues. 
However, many questions still exist on clinical grounds that should be resolved 
before methods with considerable theoretical interest become eventually considered 
for clinical evaluation.

References

 1. Tasoulis MK, Douzinas EE (2016) Hypoxemic reperfusion of ischemic states: an alternative 
approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 
23:7–13

 2. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or conse-
quence? Lancet 344(8924):721–724

 3. Dhawan V (2013) Reactive oxygen and nitrogen species: general considerations. In: Studies 
on respiratory disorders. Springer, New York, pp 27–48

 4. Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: 
oxidative stress versus signal transduction. Biomolecules 5(2):472–484

 5. Gourdin M, Dubois P (2013) Impact of Ischemia on Cellular Metabolism. Chapter 1, 
IntechOpen https://doi.org/10.5772/54509

 6. Łuszczewski A, Matyska-Piekarska E et al (2007) Reactive oxygen species physiological and 
pathological function in the human body. Reumatolog 45(5):284–289

 7. Rosen H, Klebanoff SJ, Wang Y et al (2009) Methionine oxidation contributes to bacterial kill-
ing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci 106(44):18686–18691

 8. Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “autoxidation” 
reactions. Free Radic Biol Med 8:95–108

 9. Sumimoto H, Miyano K, Takeya R (2005) Molecular composition and regulation of the Nox 
family NAD(P)H oxidases. Biochem Biophys Res Commun 338(1):677–686

 10. Kahles T, Brandes RP (2013) Which NADPH oxidase isoform is relevant for ischemic stroke? 
The case for nox 2. Antioxid Redox Signal 18(12):1400–1417

 11. Brandes RP, Weissmann N, Schrode K (2010) NADPH oxidases in cardiovascular disease. 
Free Radic Biol Med 49(5):687–706

 12. Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolu-
tion of a concept. Redox Biol 6:524–551

 13. Crosswhite P, Sun Z (2010) Nitric oxide, oxidative stress and inflammation in pulmonary 
arterial hypertension. J Hypertens 28(2):201–212

 14. Nishino T, Okamoto K, Eger BT et  al (2008) Mammalian xanthine oxidoreductase  – 
mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 
275(13):3278–3289

 15. Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls 
reperfusion injury through mitochondrial ros. Nature 515:431–435

 16. Golwala NH, Hodenette C, Murthy SN et al (2009) Vascular responses to nitrite are medi-
ated by xanthine oxidoreductase and mitochondrial aldehyde dehydrogenase in the rat. Can J 
Physiol Pharmacol 87:1095–1101

 17. Lee MC, Velayutham M, Komatsu T (2014) Measurement and characterization of superoxide 
generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in 
ischemic tissues. Biochemistry 53:6615–6623

 18. Lee HL, Chen CL, Yeh ST et al (2012) Biphasic modulation of the mitochondrial electron 
transport chain in myocardial ischemia and reperfusion. Am J Phys 302:H1410–H1422

E. E. Douzinas and A. Apeiranthitis

https://doi.org/10.5772/54509


667

 19. Perrelli MG, Pagliaro P, Penna C et  al (2011) Ischemia/reperfusion injury and cardiopro-
tective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 
3:186–200

 20. Stowe DF, Camara KS (2009) Mitochondrial reactive oxygen species production in excitable 
cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11:1373–1414

 21. Mc Cord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 
312:159–163

 22. Kalogeris T, Baines CP, Krenz M et al (2012) Cell biology of ischemia/reperfusion injury. Int 
Rev Cell Mol Biol 298:229–317. Review

 23. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476
 24. Mironczuk-Chodakowska I, Witkowska AM, Zujko ME (2018) Endogenous non-enzymatic 

antioxidants in the human body. Adv Med Sci 63:68–78
 25. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function 

and inhibition. Biochem J 357:593–615
 26. Bredt DS (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc 

Natl Acad Sci U S A 87(2):682–685
 27. Busse R (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated 

by calmodulin. FEBS J 265(1–2):133–136
 28. Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vas-

cular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 
92(3):639–646

 29. Chen K, Popel AS (2006) Theoretical analysis of biochemical pathways of nitric oxide 
release from vascular endothelial cells. Free Radic Biol Med 41(4):668–680

 30. Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP 
in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 25:171–191

 31. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. 
World Allergy Organ J 5(1):9–19

 32. Babula P, Masarik M, Adam V et  al (2012) Mammalian metallothioneins: properties and 
functions. Metallomics 4(8):739–750

 33. Hineno A, Kaneko K, Yoshida K et  al (2011) Ceruloplasmin protects against rotenone- 
induced oxidative stress and neurotoxicity. Neurochem Res 36(11):2127–2135

 34. Vincent JL (2009) Relevance of albumin in modern critical care medicine. Best Pract Res 
Clin Anaesthesiol 23(2):183–191

 35. Plantier JL, Duretz V, Devos V et al (2016) Comparison of antioxidant properties of different 
therapeutic albumin preparations. Biologicals 44(4):226–233

 36. Kreutzer U, Jue T (2004) Role of myoglobin as a scavenger of cellular NO in myocardium. 
Am J Physiol Heart Circ Physiol 286(3):985–991

 37. Irato P, Santovito G, Piccinni E et al (2001) Oxidative burst and metallothionein as a scaven-
ger in macrophages. Immunol Cell Biol 79(3):251–254

 38. Faisal AA, Al-Salih RMH, Assi AN (2015) Study of effect of thyroidectomy on serum oxi-
dant antioxidants status. Int J Curr Microbiol App Sci 4(4):1051–1060

 39. Anderson CP, Shen M, Eisenstein RS et al (2012) Mammalian iron metabolism and its con-
trol by iron regulatory proteins. Biochim Biophys Acta 1823(9):1468–1483

 40. Chauhan A, Chauhan V, Brown WT et al (2004) Oxidative stress in autism: increased lipid 
peroxidation and reduced serum levels of ceruloplasmin and transferrin the antioxidant pro-
teins. Life Sci 75:2539–2549

 41. Talebi R, Ahmadi A, Afraz F et  al (2016) Parkinson’s disease and lactoferrin: analysis of 
dependent protein networks. Gene Rep 4:177–183

 42. Samuelsson M, Vainikka L, Öllinger K (2011) Glutathione in the blood and cerebrospinal 
fluid: a study in healthy male volunteers. Neuropeptides 45(4):287–292

 43. Douzinas EE, Livaditi O, Xiarchos AG et al (2006) The effect of hypoxemic resuscitation of 
hemorrhagic shock on hemodynamic stabilization and inflammatory response: a pilot study 
in a rat experimental model. J Trauma 61(4):918–923

27 Basic Mechanisms of Ischemia/Reperfusion Injury Leading to Cellular and Tissue…



668

 44. Sautin YY, Nakagawa T, Zharikov S et al (2007) Adverse effects of the classic antioxidant 
uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Phys 
Cell Physiol 293(2):C584–C5C5

 45. Stinefelt B, Leonard SS, Blemings KP et al (2005) Free radical scavenging, DNA protection, 
and inhibition of lipid peroxidation mediated by uric acid. Ann Clin Lab Sci 35(1):37–45

 46. Bentinger M, Tekle M, Dallner (2010) Coenzyme Q–biosynthesis and functions. Biochem 
Biophys Res Commun 396(1):74–79

 47. Acosta JM, Vazquez Fonseca L, Desbats MA et al (2016) Coenzyme Q biosynthesis in health 
and disease. Biochim Biophys Acta 8:1079–1085

 48. Douzinas E (2009) Progressive hemorrhage: administer oxygen or early resuscitation? 
Intensive Care Med 35:1664–1666

 49. Vincent JL, De Backer D (2014) My paper 20 years later: effects of dobutamine on the VO2/
DO2 relationship. Intensive Care Med 40:1643–1648

 50. Schumacher PT, Cain SM (1987) The concept of a critical DO2. Intensive Care Med 
13:223–229

 51. Martin C, Riou B, Vallet B (2006) Physiologie humaine appliquée (First Editions, Chapter 
17:217–227)

 52. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and 
disease. Biochem J 218:1–14

 53. Repetto M, Semprine J, Boveris A (2012) Lipid peroxidation: chemical mechanism, biologi-
cal implications and analytical determination. IntechOpen https://doi.org/10.5772/45943

 54. Esterbauer H, Koller E, Slee RG et al (1986) Possible involvement of the lipid- peroxidation 
product 4-hydroxynonenal in the formation of fluorescent chromolipids. Biochem J 
239:405–409

 55. Tsukagoshi H, Kawata T, Shimizu Y et al (2002) 4-Hydroxy-2-nonenal enhances fibronec-
tin production by IMR-90 human lung fibroblasts partly via activation of epidermal growth 
factor receptor-linked extracellular signal-regulated kinase p44/42 pathway. Toxicol Appl 
Pharmacol 184:127–135

 56. Douzinas EE, Andrianakis I, Pitaridis MT et  al (2001) The effect of hypoxemic reperfu-
sion on cerebral protection after a severe global ischemic brain insult. Intensive Care Med 
27:269–275

 57. Douzinas EE, Livaditi O, Andrianakis I et al (2008) The effect of hypoxemic resuscitation 
from hemorrhagic shock on blood pressure restoration and on oxidative and inflammatory 
responses. Intensive Care Med 34:1133–1141

 58. Poli G, Leonarduzzi G, Biasi F et al (2004) Oxidative stress and cell signalling. Curr Med 
Chem 11:1163–1182

 59. Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J 
Biol Chem 262:9895–9901

 60. Ambler SK, Hodges YK, Jones GM et al (2008) Prolonged administration of a dithiol anti-
oxidant protects against ventricular remodeling due to ischemia-reperfusion in mice. Am J 
Physiol Heart Circ Physiol 295(3):H1303–H1310

 61. Dare AJ, Bolton EA, Pettigrew GJ et al (2015) Protection against renal ischemia-reperfusion 
injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol 5:163–168

 62. Song J, Park J, Oh Y et al (2015) Glutathione suppresses cerebral infarct volume and cell 
death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression. 
Oxidative Med Cell Longev 2015:426069

 63. Zhang Z, Yan J, Taheri S et  al (2014) Hypoxia-inducible factor 1 contributes to 
N-acetylcysteine’s protection in stroke. Free Radic Biol Med 68:8–21

 64. Chen CL, Zheng H, Xuan Y et al (2015) The cardioprotective effect of hypoxic and ischemic 
preconditioning in dogs with myocardial ischemia-reperfusion injury using a double-bypass 
model. Life Sci 141:25–31

 65. Ji YY, Wang ZD, Wang SF et al (2015) Ischemic preconditioning ameliorates intestinal injury 
induced by ischemia-reperfusion in rats. World J Gastroenterol 21(26):8081–8088

E. E. Douzinas and A. Apeiranthitis

https://doi.org/10.5772/45943


669

 66. Lu MJ, Chen YS, Huang HS et al (2014) Hypoxic preconditioning protects rat hearts against 
ischemia-reperfusion injury via the arachidonate12-lipoxygenase/transient receptor potential 
vanilloid 1 pathway. Basic Res Cardiol 109(4):414–428

 67. Chouker A, Ohta A, Martignoni A et al (2012) In vivo hypoxic preconditioning protects from 
warm liver ischemia-reperfusion injury through the adenosine A2B receptor. Transplantation 
94(9):894–902

 68. Qiao S, Mao X, Wang Y et  al (2016) Remifentanil preconditioning reduces postischemic 
myocardial infarction and improves left ventricular performance via activation of the 
Janus activated kinase-2/signal transducers and activators of Transcription-3 signal path-
way and subsequent inhibition of glycogen synthase kinase-3beta in rats. Crit Care Med 
44(3):e131–e145

 69. Savvanis S, Nastos C, Tasoulis MK et al (2014) Sildenafil attenuates hepatocellular injury 
after liver ischemia reperfusion in rats: a preliminary study. Oxidative Med Cell Longev 
2014:161942

 70. Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K et  al (2012) Ischemic preconditioning 
reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1alpha in 
ischemic kidney: the role of nitric oxide. J Biomed Sci 19:7–15

 71. Hu X, Yang Z, Yang M et al (2014) Remote ischemic preconditioning mitigates myocardial 
and neurological dysfunction via K(ATP) channel activation in a rat model of hemorrhagic 
shock. Shock 42(3):228–233

 72. Cai Z, Luo W, Zhan H et al (2013) Hypoxia-inducible factor 1 is required for remote ischemic 
preconditioning of the heart. Proc Natl Acad Sci U S A 110(43):17462–17467

 73. Abu-Amara M, Yang SY, Quaglia A et  al (2012) The hepatic soluble guanylyl cyclase- 
cyclic guanosine monophosphate pathway mediates the protection of remote ischemic pre-
conditioning on the microcirculation in liver ischemia-reperfusion injury. Transplantation 
93(9):880–886

 74. Frohlich GM, Meier P, White SK et al (2013) Myocardial reperfusion injury: looking beyond 
primary PCI. Eur Heart J 34(23):1714–1722

 75. Abu-Amara M, Gurusamy K, Hori S et al (2010) Systematic review of randomized controlled 
trials of pharmacological interventions to reduce ischaemia-reperfusion injury in elective 
liver resection with vascular occlusion. HPB (Oxford) 12(1):4–14

 76. O’Neill S, Leuschner S, McNally SJ et al (2013) Meta-analysis of ischaemic preconditioning 
for liver resections. Br J Surg 100(13):1689–1700

 77. Nicholson ML, Pattenden CJ, Barlow AD et al (2015) A double blind randomized clinical trial 
of remote ischemic conditioning in live donor renal transplantation. Medicine 94(31):e1316

 78. Meybohm P, Bein B, Brosteanu O et al (2015) A multicenter trial of remote ischemic precon-
ditioning for heart surgery. N Engl J Med 373(15):1397–1407

 79. Hausenloy DJ, Candilio L, Evans R et al (2015) Remote ischemic preconditioning and out-
comes of cardiac surgery. N Engl J Med 373(15):1408–1417

 80. Douzinas EE, Patsouris E, Kypriades E et al (2001) Hypoxemic reperfusion ameliorates the 
histopathologic changes in the brain after a severe global cerebral ischemic insult. Intensive 
Care Med 27:905–910

 81. Ulatowski JA, Kirsch JR, Traystman RJ (1994) Hypoxic reperfusion after ischemia in 
swine does not improve acute brain recovery. Am J Physiol 267 (Heart Circ Physiol 
36):H1880-H1887

 82. Mink RB, Dutka AJ (1995) Hyperbaric oxygen after global cerebral ischemia in rabbits does 
not promote brain lipid peroxidation. Crit Care Med 23:1398–1404

 83. Mickel HS, Vaishnav YN, Kempski O et al (1987) Breathing 100% oxygen after global brain 
ischemia in Mongolian gerbils results in increased lipid peroxidation and increased mortality. 
Stroke 18:426–430

 84. Zwemer CF, Whitesall SE, D’Alecy LG (1994) Cardiopulmonary-cerebral resuscitation with 
100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic 
cardiac arrest on dogs. Resuscitation 27:159–170

27 Basic Mechanisms of Ischemia/Reperfusion Injury Leading to Cellular and Tissue…



670

 85. Liu Y, Rosenthal RE, Haywood Y et  al (1998) Normoxic ventilation after cardiac arrest 
reduces oxidation of brain lipids and improves neurological outcome. Stroke 29:1679–1686

 86. Douzinas EE, Kollias S, Tiniakos D et al (2004) Hypoxemic reperfusion after 120 mins of 
intestinal ischemia attenuates the histopathologic and inflammatory response. Crit Care Med 
32:2279–2283

 87. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation 
injury. Am J Phys Cell Physiol 282:C227–C241

 88. Roberts I, Alderson P, Bunn F et al (2004) Colloids versus crystalloids for fluid resuscitation 
in critically ill patients. Cochrane Database Syst Rev CD000567

 89. Bickell WH, Wall MJ Jr, Pepe PE et al (1994) Immediate versus delayed resuscitation for 
hypotensive patients with penetrating torso injuries. N Engl J Med 331:1105–1109

 90. Cavanaugh BP, Meyer LJ (2005) Normalizing physiological variables in acute illness: five 
reasons for caution. Intensive Care Med 31:1161–1111

 91. Roberts I, Evans P, Bunn F et al (2001) Is the normalization of blood pressure in bleeding 
trauma patients harmful? Lancet 357:385–387

 92. Stern SA (2001) Low-volume fluid resuscitation for presumed hemorrhagic shock: helpful or 
harmful? Curr Opin Crit Care 7:422–430

 93. Shafi S, Kauder D (2004) Fluid resuscitation and blood transfusion in patients with poly-
trauma. Clin Orthop 422:37–42

 94. Alan HB (2011) Advances in resuscitation strategies. Int J Surg 9:5–12
 95. Gurfinkel V, Poggetti RS, Fontes B et al (2003) Hypertonic saline improves tissue oxygen-

ation and reduces systemic and pulmonary inflammatory response caused by hemorrhagic 
shock. J Trauma 54:1137–1145

 96. Douzinas EE, Betrosian A, Giamarellos-Bourboulis EJ et al (2011) Hypoxemic resuscitation 
from hemorrhagic shock prevents lung injury and attenuates oxidative response and IL-8 
overexpression. Free Radic Biol Med 50:245–253

 97. Sauaia A, Moore FA, Moore EE et al (1996) Early risk factors for postinjury multiple organ 
failure. World J Surg 20:392–400

 98. Abraham E, Carmody A, Shenkar R et al (2000) Neutrophils as early immunologic effectors 
in hemorrhage- or endotoxemia-induced acute lung injury. Am J Phys Lung Cell Mol Phys 
279:L1137–L1145

 99. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 
342:1334–1349

 100. De Perrot M, Sekine Y, Fischer S et  al (2002) Interleukin-8 release during early reperfu-
sion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 
165:211–215

 101. Mitchell GB, Albright BN, Caswell JL (2003) Effect of interleukin-8 and granulocyte 
colony-stimulating factor on priming and activation of bovine neutrophils. Infect Immun 
71:1643–1649

 102. Douzinas EE, Orfanos SE, Livaditi O et al (2009) Hypoxemic resuscitation prevents pulmo-
nary capillary endothelial dysfunction induced by normoxemic resuscitation from hemor-
rhagic shock. Crit Care Med 37:869–875

 103. Douzinas EE, Livaditi O, Tasoulis MK et al (2012) Nitrosative and oxidative stresses contrib-
ute to post-ischemic liver injury following severe hemorrhagic shock: the role of hypoxemic 
resuscitation. PLoS One 7(3):e32968

E. E. Douzinas and A. Apeiranthitis



671© Springer Nature Singapore Pte Ltd. 2019
S. Chakraborti et al. (eds.), Modulation of Oxidative Stress in Heart Disease, 
https://doi.org/10.1007/978-981-13-8946-7_28

B. Samanta 
Department of Cardiology, Medical College, Kolkata, West Bengal, India 

S. Banerjee 
Department of Environmental Management, William Carey University,  
Shillong, Meghalaya, India 

S. K. Nandy (*) 
Bioinformatics Infrastructure Facility (BIF), North-Eastern Hill University (NEHU),  
Tura, Meghalaya, India 

S. Chakraborti 
Department of Biochemistry and Biophysics, University of Kalyani,  
Kalyani, West Bengal, India

28Targeting Mitochondria for Therapy 
of Cardiovascular Disease

Biaus Samanta, Satabdi Banerjee, Suman K. Nandy, 
and Sajal Chakraborti

Abstract
Mitochondria play a crucial role in regulation of rhythmical contraction of myo-
cardium, myocardiocyte physiology, stress response and redox signaling cas-
cades, and overall heart function, principally by meeting the energy demand 
through oxidative phosphorylation. Mitochondrial dysfunction and subsequent 
imbalance in ATP supply often leads to diseased condition. Although cardiovas-
cular diseases are attributed to almost one third of annual global death, univer-
sally accepted strategies for treatment of myocardial cardiomyopathies are yet to 
be established. This review summarizes the classical and futuristic therapies for 
treatment of heart diseases.
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28.1  Introduction

The heart is the major pumping station or in the words of Aristotle is the body’s 
furnace, radiating energy in the form of heat [1]. The human heart pumps ≈10 tons 
of blood and contracts more than 1 million times per day to ensure the oxygen sup-
ply to each cell of the body. To meet the energy demand for this regular rhythmical 
contraction, the human heart hydrolyses ≈6 kg adenosine triphosphate (ATP), the 
fuel of the furnace, on a daily basis, and as a matter of fact, myocardium has evolved 
into a tissue with the highest metabolic rate but almost with no energy reserve [2, 3]. 
This huge amount of ATP is generated through mitochondrial metabolism, mostly 
by mitochondrial oxidative phosphorylation (OXPHOS). As a result, cardiomyo-
cytes are characterized with high mitochondrial density, accounting for almost one 
third of the cell volume [4]. Mitochondrial density might increase according to 
energy demand through mitochondrial biogenesis, while insufficient supply of ATP 
often leads to a variety of pathophysiological conditions.

28.2  Cardiac Energy Metabolism

The human heart manages energy supply through three different stages such as (1) 
catabolism of glucose and fatty acids (FAs) and generation of high-energy equiva-
lents, (2) ATP synthesis, and (3) utilization of ATP for myocardial contraction 
through coordination with various metabolic pathways. At first step, β-oxidation 
and glycolysis are mainly engaged in oxidation of FAs and glucose, originated from 
the consumed food through intestinal breakdown of carbohydrate and lipolysis of 
fat [2]. All kinds of carbohydrates are converted into pyruvate through glycolysis in 
cytosol and readily transported into mitochondrial matrix (MM) by specific mito-
chondrial pyruvate carrier, where pyruvate is irreversibly decaboxylated into acetyl- 
CoA by multimeric pyruvate dehydrogenase complex (PDHC) [5]. On the other 
hand, triglycerides form various animal and plant sources are digested into FAs by 
lipases and released in the bloodstream through the intestinal wall. While the short- 
and medium-chain FAs can passively diffuse through mitochondrial membranes, 
the long- and very-long-chain FAs are esterified with coenzyme-A by acyl-CoA 
synthase at the expense of ATP and transferred into mitochondria through carnitine 
shuttle, which accept carnitine in exchange of FAs [6, 7]. Fatty acid β-oxidation 
(FAO) is a spiral process, where the β-carbon of the FA serves as the reaction center, 
hence the name, and at the end of each spiral, the FA gets shortened by two carbons, 
releasing one molecule of acetyl-coA along with FADH2 and NADH. The process 
goes on till the FA is oxidized into two-/three-carbon group [8, 9]. Acetyl-coA, the 
intermediate metabolite of both carbohydrate and FA metabolism, can readily be 
directed to tricarboxylic acid (TCA) cycle in MM to generate the reducing equiva-
lents NADH and FADH2. FAO is observed to be the major contributor of ATP pro-
duction in healthy human heart despite its lower cardiac efficiency, i.e., higher 
utilization of O2 for ATP production compared to carbohydrate source. However, 

B. Samanta et al.



673

the equilibrium may shift in either ways depending upon the food intake, physiolog-
ical transition, and/or perturbation and cardiac development [8, 10].

The electron donors produced in TCA cycle, the common step in amino acids, 
glucose, and FA metabolism play important roles for the cardiac mitochondrial 
OXPHOS. The OXPHOS is tightly coupled to the high-energy-reducing equivalents 
synthesized in TCA cycle for ATP generation [11]. Different tissues illustrate dis-
similar OXPHOS capacity depending upon the concentration of electron transport 
chain (ETC) complexes and their activity, variation in mitochondrial content, etc. 
While the cardiac and skeletal muscle portrays the highest capacity as well as 
utmost sensitivity to OXPHOS defects, the liver and kidney record the least, and the 
brain tissue comes in between [12].

The third step documents transportation and dispersion of high-energy phos-
phates from mitochondria to cytosol and their consumption for muscle contraction. 
Several kinases such as creatine kinase (CK), adenylate kinase (AK), and nucleo-
side diphosphate kinase (NDPK) are present in between MIM and the outer mem-
brane region, which couple OXPHOS to ATP consumption for cardiac contraction 
and facilitate the maintenance of high-energy phosphate reservoir in cytosol. MtCK 
uses mitochondria-generated ATPs to reversibly phosphorylate creatine, synthe-
sized and transported from the kidney and liver to cardiomyocytes, into phosphocre-
atine (PCr) and ADP. Adenine nucleotide translocator mediates the ATP supply to 
mtCK and transfer of ADP back to MM. PCr holds the double advantage over ATP, 
its energy-efficient diffusibility through voltage-dependent anion channels, and the 
metabolically inert nature supports its accumulation in high concentration at cyto-
sol. Myofibril CK catalyzes the reverse reaction to generate ATP from PCr and helps 
to retain the normal ATP pool [13]. NDPKs reversibly exchange γ-phosphate 
between mitochondrial ATP and other nucleoside triphosphate (NTP) to preserve 
the NTP concentration necessary for protein synthesis, DNA replication, and supply 
of ATP through reverse reaction [14]. AK catalyzes phosphotransfer within the ade-
nine nucleotides. Recycling of ADP by the kinases helps to regulate OXPHOS. In a 
healthy heart, the mtCK shuttle serves as an energy buffer and is mostly responsible 
for the outward energy flux from mitochondria and successive utilization by myofi-
brillar ATPases to supply the mechanical energy for contraction.

28.3  ROS Formation and Its Effect in Cardiac Health

Superoxide radical (O2
•−), hydrogen peroxide (H2O2), and hydroxyl radical (OH•) 

are the primary reactive oxygen species (ROS). One of the major sources of ROS is 
mitochondrial ETC where ROS is produced as a byproduct of normal metabolism 
under standard physiological conditions through flavoenzyme complexes I, II, and 
III [15–17]. O2

•− produced at different steps of ETC can be converted to H2O2 by the 
mitochondrial Mn and cytosolic Cu/Zn superoxide dismutases (SOD) 
( 2 22 2 2 2O H H O O• )− ++ → + . Highly reactive OH• are produced from Fenton reac-
tion involving metal ions like Fe (II) or Cu (I) and H2O2(H2O2 + Fe2+ → OH− + OH
• + Fe3+), which causes localized damage to DNA, proteins, and lipids owing to their 
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exceptionally short lifespan (half-life ≈10−9  s) [18]. On the other hand, O2
•− and 

H2O2 can be diffused across mitochondrial membrane to cytosol. In mammals, the 
rate of mitochondrial superoxide generation is inversely correlated with the maxi-
mum lifespan potential of the species [19]. The ROS generation in mitochondria can 
be increased for several reasons like abnormality in ETC function and under patho-
physiological conditions like heart failure (HF) and ageing.

Cardiomyocytes are heavily affected by ROS-mediated carbonylation, nitration, 
and peroxidation of membrane proteins and phospholipids [20]. Fe-S clusters of 
enzymes are known to be targeted by O2

•−. Many in vivo and in vitro studies depict 
similar alterations in myocardial ETC complexes and loss of enzymatic activity 
[21]. Cardiolipin is another primary target of O2

•− damage – mainly through decline 
in complex I activity [22, 23]. Oxidative stress (OS) induced single- and double- 
strand breaks, base damage, and modifications in mitochondrial DNA (mtDNA). A 
modification of mtDNA-encoded subunits of flavoenzyme complexes I, III, and IV 
affects the electron transfer efficiency resulting in a vicious cycle of ROS generation 
and mitochondrial dysfunction [24–26].

In addition to the direct deleterious effects, ROS like O2
•− and OH. influence the 

regulation of multiple intracellular signaling pathways that regulate different cellu-
lar and subcellular events such as cardio protection, cell survival, apoptosis, and 
necrosis. Enhanced ROS generation could play a role in cardiac remodeling through 
overexpression of proapoptotic proteins and perturbation of mitochondrial signaling 
cascades by activating proteases like matrix metalloproteins (MMPs). Cardiac dam-
ages from ischemia/reperfusion or associated with Friedreich ataxia are also attrib-
uted to ROS level [27]. ROS is known to contribute to coronary artery diseases such 
as atherosclerosis, coronary thrombosis, cardiac hypertrophy, and failure by oxidiz-
ing the low-density lipoproteins and proteases like MMPs [28, 29].

28.4  Therapeutic Applications

Mitochondrial dysfunction plays a critical role in various cardiac disorders and their 
pathophysiology. A proper understanding of the molecular basis of the mitochon-
drial defects will ensure early diagnosis and better treatment of cardiovascular dis-
eases (CVDs). Till date, there are no known unanimously accepted therapies for 
cardiomyopathy (MCM); rather, the popular therapeutic approaches only provide 
some sort of relief at the initial stages of the disease [30]. Presently, diverse combi-
nations of vitamins and metabolic cofactors, such as folic acid, coenzyme Q10 
(CoQ10), thiamine (vitamin B1), riboflavin (vitamin B2), ascorbate (vitamin C), 
tocopherol (vitamin E), succinate, menadione, L-carnitine, etc., are used to amelio-
rate MCM in cases to some extent. These compounds possibly influence mitochon-
drial physiology in more than one way either by decreasing mitochondrial ROS 
generation or enhancing the activity of SOD to scavenge ROS [30–34]. Despite 
considerable improvement in conventional therapies over the last two decades, 
CVD still remains as one of the major causes of global morbidity and mortality, 
representing 31% of all global death [35]. This statistics not only portrays the 
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limitations of current therapies but also points out the urgent need of new strategies 
in treatment of heart diseases. Mitochondria-specific drug delivery systems, stem 
cell transplant, and gene therapy may have the answer.

28.4.1  Antioxidant Treatment

Increased levels of oxygen free radicals are one of the instrumental factors in patho-
genesis of heart diseases, and mitochondria itself serve as the prime source of 
ROS. Thus, antioxidants have gained interest among medical scientists as a choice 
for treatment of heart diseases [27, 36].

Chronic increases in ROS level initiate a vicious cycle of mtDNA damage and 
decline in mitochondrial function and in turn cause further increase in ROS genera-
tion leading to cellular injury. Tsutsui et al. [31] demonstrated that overexpression 
of endogenous mitochondrial antioxidant protein peroxiredoxin-3 (Prx-3) and mito-
chondrial transcription factor A (TFAM) can prevent mtDNA damage as well as 
restore mitochondrial function. Thus, activation of Prx-3 and TFAM gene expres-
sion have emerged as prospective therapies for HF patients for controling oxidative 
stress and mtDNA damage.

Prx-3, vitamin E, and dexrazoxane are the other known antioxidants that are used 
in addition to other drugs for treatment of different heart diseases [31–34]. CoQ10 
or ubiquinone, a potent antioxidant and a common lipophilic component of cellular 
membranes, depicts structural resemblance with vitamin K and is also be capable of 
boosting cardiac functions in multiple ways [37]. The recent controlled rosuvastatin 
multinational study (CORONA) and Q-YMBIO trial in heart failure patients with 
CoQ10 supplementation suggest the effectiveness of CoQ10 in controlling adverse 
cardiovascular events [38, 39]. Treatment with CoQ10 reduces cardiac conduction 
abnormalities in mitochondrial myopathy [40, 41]. Idebenone, the synthetic ana-
logue of CoQ10, has shown some improvement of different types of cardiac dis-
eases [42].

Vitamin E has been shown to prevent atherosclerotic plaque formation in mouse 
models. Consumption of foods rich in alpha tocopherol, the most abundant form of 
vitamin E found naturally, has been observed to be associated with lower risk of 
coronary heart disease in middle-aged to older population. However supplementa-
tion of vitamin E has failed to demonstrate any noticeable advantage in the primary 
and secondary prevention of CVDs; rather, it might be associated with an increase 
in total mortality, HF, and hemorrhagic stroke [43].

Dexrazoxane and metallothinonine protect cardiac tissue from oxidative damage 
by sequestering metal ions from reacting with hydrogen peroxide and superoxide. 
Efficacy of dexrazoxane has been proven in doxorubicin-induced heart failure both 
in animal and human trials. Metallothionein also provides additional protection by 
directly reacting with ROS. However, its cardioprotective potential is yet to be veri-
fied [44–46].

Xanthine oxidase inhibitor and poly (ADP ribose) polymerase (PARP) inhibitor 
prevent O2

•− formations and limit ROS-induced cardiovascular injury. PARP 
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inhibitors improve vascular relaxation and emerged as an exciting prospect for ther-
apeutic intervention in cardiac diseases [47, 48].

Glutathione, a naturally occurring antioxidant, also plays an important role in 
preserving the reduced state of the other antioxidants, for example, N-acetyl cyste-
ine and vice versa. Selenium-dependent glutathione peroxidase protects cells 
against the damage induced by products generated by lipid peroxidase [49]. Damy 
et al. [50] have shown that glutathione deficiency correlates with functional status 
of patients with cardiac diseases, which indicates that serum glutathione level could 
be considered as a prospective biomarker in asymptomatic heart patients.

HF patients often suffer from enhanced plasma catecholamine levels, atheroma 
formation, endothelial dysfunction, and higher ROS generation as a result of sym-
pathetic stimulation. β-blockers and angiotensin-converting enzyme (ACE) inhibi-
tors like captopril and enalapril and ANGII receptor blocker like olmesartan are 
recommended as effective medication for hypertensive and HF patients. β-blockers 
act as competitive antagonists to block the receptor sites of catecholamine. However, 
the antioxidative effect of β-blocker remains arguable due to the contradictory 
results reported by different groups [51]. ACE inhibitor therapy, on the other hand, 
increases nitric oxide (NO) bioactivity to modulate ROS generation and activates 
overexpression of endothelial NO synthase, which subsequently decreases endothe-
lial dysfunction and attenuates myocardial remodeling [52].

28.4.2  Metabolic Modulators

Normally mitochondria meet the high-energy demand of mammalian hearts through 
fatty acid and glucose metabolism by maintaining a dynamic balance between the 
myocardial energy substrates such as glucose and fatty acids according to physio-
logical and pathological demand. But, in diabetic heart patients, the glucose utiliza-
tion is heavily constrained due to insulin resistance, scarcity of glucose transporter 
content, and impaired pyruvate dehydrogenase (PDH) activity. Thus, fatty acid 
become almost the sole substrate for ATP synthesis for diabetic patients and that 
eventually leads to an increase in mitochondrial ROS generation, decrease in car-
diac efficiency, and onset of mitochondrial uncoupling by activating uncoupling 
protein and adenine nucleotide translocator [53].

Modulation of glucose and fatty acid oxidation (FAO) by various agents and 
protocols offer possible targets for therapeutic interventions. Partial FAO inhibitors 
mainly act by increasing glucose and pyruvate oxidation, controlling ROS genera-
tion, and restoring cardiac functions. For example, etomoxir, a transcriptional mod-
ulator, has shown promising results in animal trials by blocking the supply of fatty 
acids from cytoplasm to mitochondria through inhibition of the enzyme carni-
tine palmytoyltransferase-1 (CPT1) [54]. Perhexiline is an antianginal drug effec-
tive against refractory angina and chronic heart failure and also inhibits CPT1 and 
favors carbohydrate utilization but rarely used due to its associated hepatotoxicity 
and neurotoxicity, although recently it gained importance and reintroduced after 
dose modifications [55]. Ranolazine, another antianginal agent, favors glucose 
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oxidation (GO) over FAO by reducing acetyl-CoA content causing indirect activa-
tion of PDH [56]. Several clinical studies have demonstrated protective effects of 
trimetazidine against myocardial ischemia, angina, and diabetic cardiomyopathy 
through inhibition of long-chain fatty acid oxidation [56, 57]. Omega-3 fatty acid is 
used regularly as secondary prevention in coronary heart disease (CHD) and HF 
patients despite the contradictory reports about its beneficial effects [58–60].

28.4.3  Cardioprotective Agents

Repurposing of drugs has shown cardioprotective ability in various animal trials by 
modulating a variety of signaling pathways. Calcium channel blockers verapamil 
and diltiazem serve as anti-ischemic and anti-arrythmogenic agents and act by 
reducing the calcium overload in myocardial cells and protecting them from ROS- 
mediated cardiac diseases [61–64].

Volatile anesthetic agents like sevoflurane, isoflurane, and halothane offer car-
dioprotection (CP) by diminishing myocardial oxygen demand, triggering mito-
chondrial ATP-sensitive potassium (mitoKATP) channels, reducing ROS generation, 
and decreasing mitochondrial and cytosolic calcium overload, thereby shifting 
mitochondrial bioenergetics [65]. Restoration of myocardial functions by sevoflu-
rane has been confirmed by clinical trials in coronary artery bypass graft surgery 
patients [66].

MitoKATP channel opener nicorandil has shown to reduce myocardial cell apop-
tosis in CHD patients [67]. Sato et  al. [68] have demonstrated cardioprotective 
effect of nicorandil in rabbit ventricular myocytes by selective activation of mito-
KATP channels. Cyclosporin A and sanglifehrin A were shown to elicit CP in reperfu-
sion injury by reducing mitochondrial swelling and regulating mitochondrial 
permeability transition pore (mPTP)  – an early step in mitochondrial apoptosis. 
Chemical uncouplers like dinitrophenol and carbonyl cyanide 
m- chlorophenylhydrazone (CCCP) have been portrayed CP in animal model sys-
tems [69–71]. Grape seed proanthocyanin extract, known for its strong antioxidant 
property, has evidenced CP by decreasing ROS generation, apoptotic markers, and 
infract size [72]. Likewise, glucose-insulin-potassium infusion therapy in initial 
stages of reperfusion successfully limits infract size and offers CP through cell- 
survival pathways, mediated by protein kinase B (Akt) and ribosomal S6kinase 
(p70S6 kinase) [73]. Several growth factors such as insulin-like growth factor (IGF- 
1), fibroblast growth factor (FGF), and transforming growth factor (TGF) also offer 
CP against OS via attenuation of apoptosis of myocytes. IGF-1 activates various 
cardioprotective kinases like phosphatidylinositol-3-kinase and serine- threonine 
kinases. Somatic gene transfer of growth factors is considered safer in comparison 
to systemic delivery, as the latter might increase the concentration of growth factors 
in serum leading to cardiac hypertrophy and HF [74–76].

Coronary revascularization by stenting has shown definite mortality benefit in 
acute myocardial infarction but provides only symptomatic improvement in coro-
nary artery diseases [77]. Ischemic preconditioning therapy, causing stress by 
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exercise or adenosine and/or cariporide administration, provides mitochondrial CP 
by limiting infract size and has shown promising results in angina patients [78].

28.4.4  Gene Therapy

Success of gene therapy depends on two things: (1) proper identification of genetic 
defects that could lead to improved therapies and (2) selection of ideal vectors. 
Present understanding of molecular pathways and pathogenesis of various cardiac 
diseases have enabled us to find out specific targets for gene therapy.

28.4.4.1  Targets of Gene Therapy
Dysregulations of several calcium-handling proteins have been shown to link with 
HF.  Sarco/endoplasmic reticulum (S/ER) Ca2+ATPases (SERCA2a) transfer Ca2+ 
ion from the cytosol to the sarcoplasmic reticulum, thereby controlling cardiomyo-
cyte contraction/relaxation cycle. In a failing heart, decrease in SERCA2a and other 
calcium-binding protein levels as well as dephosphorylation of the regulatory pro-
tein phospholamban (PLB/PLN) promotes intracellular Ca2+ dysregulation. 
Overexpression of SERCA2a or PLN ablation has been beneficial for cardiac hemo-
dynamics and also in the prevention of ventricular dilatation in animal models. 
CUPID (Calcium Up-Regulation by Percutaneous Administration of Gene Therapy 
in Cardiac Disease) trial with advanced HF patients was launched in 2007. This 
showed promising results in the first phase of SERCA2a cDNA gene transfer, which 
elicited significantly ameliorated lesser number of cardiovascular disease events 
than placebo [79, 80]. But, a similar study using CUPID2 with a large population 
and long-term follow-up failed to recognize any significant improvement in patients 
with advanced heart failure [81]. Overexpression of S100 calcium-binding protein 
A1 (S100A1) by gene transfer also found to increase SERCA2a activity, induce bet-
ter systolic and diastolic activity, and improve calcium cycling plus mitochondrial 
ATP synthesis in rat and pig hearts [82].

In failing heart, mitochondrial apoptosis is the most prevalent form of cell death. 
Presently gene therapy is targeting several signal pathways that attenuate apoptosis 
and restore homeostasis in myocardium. Pathological heart is characterized by sig-
nificantly decreased expression of antiapoptotic protein BCL-2 (B-cell lymphoma 
2). Overexpression of BCL-2 decreases fibrosis, limits infarct size, attenuates cyto-
chrome C-induced caspase-9-dependent cardiomyocyte apoptosis, and preserves 
cardiac function [83, 84]. Caspase activation is often characterized by loss of con-
tractility in cardiomyocytes, destruction of sarcomeric organization, and subsequent 
inception of apoptotic pathway. Intracoronary delivery of p35, a caspase-3 inhibitor, 
has been shown to prevent the onset of heart failure by decreasing cell autophagy 
[85]. Mitochondrial uncoupling protein (UCP2) overexpression restores mitochon-
drial inner membrane potential by reducing ROS formation and calcium overload-
ing [86].

Gene products affecting aerobic metabolism in cardiac tissues have also recently 
proved to be an effective target of gene therapy and effectively treat HF, ischemia, 
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and hypertrophy. E1α segment of pyruvate dehydrogenase complex (PDHC) plays 
a regulatory role via reversible phosphorylation. In E1α-deficient patients, the seg-
ment has been transduced, and PDHC activity has been restored in part by decreas-
ing anaerobic metabolism and ROS injury [87].

Gene therapy-induced overexpression of critical antioxidant enzymes like super-
oxide dismutase and hemeoxygenase type 1 has shown to provide CP against myo-
cardial ischemia by reducing infract size, production of ROS, inflammation, and 
apoptotic cell death. Pre-event delivery of such gene as a preventive measure may 
be useful for long-term protection against CP [88].

In case of cardiac ischemic injury, trials with HF patients demonstrated the 
importance of  chemokine stromal cell derived factor 1 (SDF-1) and its receptor 
(CXCR4) in tissue repair by limiting remodeling. STOP-HF trail illustrated overex-
pression of SDF-1 leads to enhancement in ejection fraction (EF) and decrease in 
left ventricle (LV) size even in patients with lowest LVEF after 1 year of plasmid 
SDF-1 administration [89].

28.4.4.2  Selection of Vectors
Vectors of gene therapy can be of two types: viral and nonviral. Viral vectors are 
suitable in chronic diseases like HF where extensive and transgenic expression is 
needed. Viral vectors cause more widespread but slow transfection, activation of the 
immune system, possess higher biosafety risks along with prolonged transgenic 
expression and higher gene transfer efficiency. Among viral vectors, adenoviral vec-
tor, lentivirus, and adeno-associated virus have been shown to provide promising 
results [90, 91]. Nonviral vectors are suitable for transient expression of certain 
genes used in certain disease conditions where short-lived expression is sufficient 
for desired phenotypic effect. Nonviral vectors are easy to produce, have smaller 
cassette size, induce lower inflammatory response, remain localized, and cause 
short-lived transgenic expression due to intracellular degradation. Among nonviral 
vectors, naked plasmid DNA and small interfering RNA (siRNA) have shown 
promising results in animal studies [92, 93].

Several other strategies were employed to repair and replace defective mitochon-
drial genes that could be important for treatment of mitochondrial-mediated heart 
disease (CVD). However, none of them have been examined in vivo. Electroporation 
of nucleic acid is an effective gene delivery method for nucleus, but fall short in 
mitochondrial gene therapy [94]. Another promising strategy involves use of pep-
tide nucleic acid (PNA) as selective antisense inhibitor of pathogenic mtDNA. Initial 
studies have demonstrated decrease in replication of pathogenic allele 8344 respon-
sible for MERRF (myoclonic epilepsy with ragged red fibers) when tested in vitro, 
but failed to reciprocate the same in cultured cells [95]. After this setback, PNA- 
oligonucleotide construct in cationic liposome was created for selective mitochon-
drial targeting, which showed promising results in cultured cells [96]. Transfection 
effect was further enhanced by PNA-oligonucleotide polyethylenimine (PEI) [97]. 
Increasing ratio of wild- to mutant-type genome aka “gene shifting” using pharma-
cological and molecular approaches has gained interest in recent times. When cell 
culture containing both mutant- and wild-type allele for Leigh syndrome is grown in 
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the presence of the mitochondrial ATPase inhibitor oligomycin, a significant 
increase in wild-type allele is illustrated. DQAsome nanocarrier is another drug 
delivery system that can transfect cells with high efficiency and selectively target 
mitochondria [98]. Use of multifunctional multilamellar vesicles (MMV) have been 
found effective in mtDNA delivery [99]. Cell permeable synthetic antioxidants like 
metirosine, which have shown effectiveness in mitochondrial inner membrane and 
restore contractility of cardiomyocyte, might be beneficial for treating OS-related 
damages [100].

28.4.5  Stem Cell Therapy

In the last two decades, stem cell therapy has come up as a prospective alternative 
therapy for CVD patients mainly aimed to restore myocardial function through car-
diomyocyte regeneration. Once a myocardial cell dies in heart attack, scar tissue 
replaces it. A dominant myocardial scar leads to poor functional capacity and 
decreases EF. In a fibrotic environment, aggregation of type 1 collagen decreases 
expression of growth factors, angiogenic factors leading to further loss of myocar-
dial cells. Thus, reduction of fibrosis directly enhances endogenous myogenesis. 
Three mechanisms have generally been adopted for regeneration of cardiac muscle. 
These are (1) controlling fibrosis, (2) facilitating angiogenesis, and (3) improving 
contractile function [101]. Further, the notion of viewing adult heart as a terminally 
differentiated organ has changed with the discovery of endogenous cardiac stem 
cells (CSC), which can support myocardial regeneration in both normal and patho-
logical heart [102]. The current stem cell research is mostly focused on nuclear 
genes of stem cells. However, mutations and deletions in mtDNA as well as mito-
chondrial function and dynamics in stem cells and progenitor cells are relatively 
unknown [103–105].

Many studies have shown lower rate of apoptosis, increase in angiogenesis, and 
decrease in scar tissue following mesenchymal stem cell (MSC) transplant. Gnecchi 
et al. [107] showed that rat cardiomyocytes conditioned by hypoxic MSC impart CP 
by decreasing apoptosis and necrosis [106]. Amado et  al. [108] reported that 
improvement in EF and restoration of normal cardiac function after allogenic MSC 
implantation in swine. Markel et al. [109] have marked vascular endothelial growth 
factor (VEGF) as a significant paracrine factor in MSC-mediated CP for post- 
ischemic myocardial recovery. Adipose derived stem cells secrete angiogenic and 
antiapoptotic growth factors offer CP by reducing cell apoptosis. This cardioprotec-
tive effect was shown to be further augmented by engineered overexpression of 
Akt-1 in MSC, where growth factors, cytokines, and other paracrine factors influ-
ence the survival of existing cardiomyocytes [110]. Willems et al. [111] have dem-
onstrated that hydropyridine small molecules could play a key role in controlling 
cardiomyocytes differentiation through TGF-β signaling pathway.

Several studies have evidenced that for any meaningful posttransplant cardiac 
repair, neoangiogenesis is a must requirement. Neomyogenesis occurs by two 
related mechanisms: stimulation of endogenous cardiac stem cells (c-kit+ CSC and 
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other lineages) and enhancement of myocyte cell cycling. Neoangiogenesis in bone 
marrow (BM)-derived stem cell transplant is evidenced, where stem cells act as 
pericytes [112]. A 20-fold increase in the endogenous CSC population in MSC- 
treated pigs has been observed in comparison to the controls, and the cardiac stem 
cells (c-kit+) possess much greater capacity for myocyte lineage commitment [113]. 
Loffredo et al. [114] documented the capacity of BM-derived c-kit+ cells to stimu-
late the endogenous CSC in post-infract heart resulting increased progenitor activ-
ity  – a phenomenon that MSCs failed to achieve. Treatment with intracoronary 
injections of MSCs led to an improvement in regional wall thickening in hibernat-
ing myocardium BM progenitor cells and resident stem cells [101, 115].
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modulation in cardiac 
remodeling. ROS can 
modulate the miRNAs 
through posttranscriptional 
regulation of NRF2 and 
Sirt2 mRNAs. Green arrow 
indicates upregulatory 
pattern and red arrow 
indicated downregulatory 
pattern

S. Gupta
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Fig. 3.3 Overexpression of miR-21 attenuates H2O2-induced ROS level in neonatal cardiomyo-
cytes. The ROS level was measured in transfected neonatal cardiomyocytes with miR-21 mimetic 
and inhibitor followed by H2O2 treatment for 24  h by confocal microscopy and fluorimetry. 
(a) Representative confocal microscopy images of cardiomyocytes stained with DCFH-DA and 
DHE, respectively, showing the activity of H2O2 and O2

−. (b) Effect of miR-21 mimetic and inhibi-
tor on generation of ROS in cardiomyocytes treated with H2O2 by fluorimetry. The data presented 
are mean ± SE. ∗∗P < 0.01 vs. control, #P < 0.05 vs. H2O2 treatment (n = 3). (Adopted from Wei C, 
Li L, Kim IK, Sun P, Gupta S. Free Radic Res. 2014, Reference 28)
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