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Abstract Color helps to understand the semantic information of the image more
accurately and reveals a lot more details which grayscale images cannot. By look-
ing at an image, humans can automatically segment different objects present in an
image making it easier for us to color an image. We propose a completely automated
system to colorize grayscale images which learns to segment and color images in
a realistic manner. We leverage the recent advancements in deep learning, Genera-
tive Adversarial Networks and improved cost functions, to overcome the problems
of traditional Convolutional Neural Networks with image colorization. Given the
unconstrained nature of the problem, we propose this algorithm to make a coloriza-
tion model that achieves realistic colorizations. We have experimented different deep
network architectures with various training algorithms and cost functions to come
up with this network where we can clearly see realistic colors for given gray scale
image and differentiate the characteristics of generative adversarial network from a
traditional convolutional neural network.
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1 Introduction

Colorization is a task that is very simple for humans; with impressive imagination
skills built on a composite platform of experiences and the brains power to abstract,
the complexity of the problem is not even realized. With a machine, without these
human skills, coloring an image without any manual input is a increasingly chal-
lenging task. Image colorization can make an image lively, but current techniques
demand major user-interaction and involvement. Moreover, users can find it difficult
to provide consistent and coherent color models/scribbles.

Generally classifying, there have been two directions in which colorization meth-
ods have been developed. The first approach focus more to reduce the effort and
speed up the process of using tools with a need for human interaction, thus low-
ering the cost of colorization process. The later focus mainly to eliminate the user
inputs completely from the system. Our objective is to eliminate user involvement
completely, while improving the end result to be consistent, coherent and as natural
looking as possible, doing it in a way thats computationally feasible.

Features are rich piece of information extracted from images in terms of numerical
values that are difficult to understand and correlate by human. Several features can
be extracted from a single image, such as corners, edges and blobs. The extraction
of these features are the major overheads in processing an image.

To color an image accurately, different types of features on different scales
are needed. Local features like, segmentation information and global features like,
weather on the image are necessary to color an image. Global image features describes
an image as whole whereas local feature represents more of pixel level information.
Global features are generally used in image retrieval, object detection and classifica-
tion, while the local descriptors used for object recognition/identification. A combi-
nation of both has served as a good input for a number of applications in computer
vision.

In recent times, Convolutional Neural Networks (CNN) have served as an excel-
lent tool to extract both global and local features, with various applications like
object class recognition [2] and image retrieval [3]. Recent systems have used dif-
ferent approaches to embed and merge these features into the pipelines. Maintaining
completely different networks to extract global and local features [4], constructing a
new 3D layer called hypercolumns [1] by merging higher layers for semantic details
and lower layers for localization details are significant examples. In both ways, the
results have been improved and merging of global and local features played a crucial
role in achieving them.

Some of the approaches like [5-11], are more of semi-automatic way, in which
some or the other form of user input is required such as sparse inputs in the form of
colors, or regionality of colors and color histograms. These systems require human
intervention, but usually have more accurate results. For example, the approach
followed in [5] requires a huge amount of color details from the user, which enables
the system to generate variety of vibrant color images. However, designing a system
which is completely independent and which wouldn’t require any user inputs is a
promising problem.



Surpassing Traditional Image-Colorization Problems ... 39

2 Approach

2.1 LAB Colorspace

In 1976, CIE defined a new colorspace named LAB. It expresses color as three
numerical values L* represents the lightness channel while a* and b* represents
the color channels. The three channels can represented in a three dimensional space
where each channel is located at one of the axis. The vertical L* axis ranges from
0-100 depicting lightness. The other (horizontal) axes are represented by a* and b*.
The a* is a green-red component being green at one extremity of axis (represented
by —a) and red at other (+a). Similarly, b* is blue-yellow component. In practice,
the values of horizontal axis ranges from —128 to +127 (256 values).

In colorizing grayscale images, the LAB colorspace is preferred over RGB as LAB
encoded image has one layer of grayscale (lightness channel L*) and have packed
three color layers namely RGB, into two (a* and b*). This means we can utilize
raw grayscale images in colorization and only need to predict only two channels.
Additionally, LAB colorspace encompasses the entire spectrum, resulting in more
realistic color predictions.

2.2 Generative Adversarial Networks

Firstly proposed by Ian J. Goodfellow [12], Generative Adversarial Networks is an
example of adversarial learning from generative models. A GAN [13] comprises of
two competing neural network models, G a generative model that learns to generates
new data and a discriminative model D that computes the probability that whatever
sample data G produces to feed it, whether it is from training data or from G itself.

The two models play a minimax game against each other—minimizing a max-
imum possible loss that one of two players can make. G is fed with noise and it
generates new data based on the discriminations of discriminator; every time G gen-
erates a new sample, D will try to determine if the sample is from the model or the
training set. Ultimately G will learn to create data which is nearly impossible for the
discriminator D to distinguish.

To reproduce images that looks similar to images in the sample, generator G is
fed with noise z. The mapping can be represented as G(z) where G is a differential
function. The output is then fed to discriminator D along with the ground truth
image x represented as D(G(z)) and D(x) respectively. D is trained to maximize the
probability of assigning correct labels while simultaneously G is trained to minimize
the same. This can be expressed mathematically using a value function V(G, D) [12]
as shown in Eq. 1.

mén m]'§1x V(G, D) = Exxpypa0logD(xX)] + Eonp [log(1 — D(G(2)))] (1)
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In value function V(G,D), the first term is entropy that the data x is from real
distribution (pdata(x)) and is fed to discriminator. Discriminator tries to maximize
D(x) to 1. The second term is entropy that the data from random noise p(z) is
input to generator, which generates a sample using z and feed it to discriminator.
Discriminator tries to maximize D(G(z)) to O (i.e. the log probability that the data
from generator is fake and therefore is equal to 0). Overall discriminator tries to
maximize function V. On the other hand, generator tries to minimize this function so
that both real and fake images become indistinguishable. Figure 1 depicts the basic
algorithm for a GAN.

2.3 Conditional GAN

In ordinary GANS, the input to generator is only the randomly generated noise z, and
for that reason we have no control in directing the data generation process. Mirza et
al. [14] extended idea of GAN and proposed a conditional model called Conditional
Generative Adversarial Networks (CGAN). Using the conditional version of GAN,
one can direct the data generation process of generator and restrict it to a desired
subset.

Basically, in CGAN both generator and discriminator are conditioned on addi-
tional information y, which could be any auxiliary information such as class labels
or data from other modalities [14]. The conditioning is performed by feeding y into
both discriminator and generator as an additional input layer. We can think of this



Surpassing Traditional Image-Colorization Problems ... 41
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information y as a particular setting or mode in which the model will be working.
The consequence of making model work in a particular mode is that we can directly
control the output of generator. Altogether it’s like restricting generator in it’s output
and discriminator in it’s input.

As a result of conditioning input y, the generator function G(z) now becomes
G(z,y) and similarly discriminator function D(x) becomes D(x, y) where z is random
noise and x is an input from dataset. The objective function will be transformed to:

minmax V(G, D) = Ex~p,,, 10§ DX, ]+ Eixp, o) [l0g(1 = D(G(z, y)))]
@)
Figure 2 illustrates basic structure of conditional GAN. In contrast with the con-
ventional GANs, we now has an additional input layer in both generator and dis-
criminator network.

2.4 Network Architecture

Colorization with CGAN s have shown success in overcoming the problem of picking
average colors from the training dataset which is a major problem faced by a CNN
network. We propose training a CGAN with condition as a gray scale along with the
noise making generator produce LAB colorspace images. Discriminator is trained
to classify between fake and real images with LAB image along with the condition,
a grayscale image, as input. Figure 3 represents the overview of the network.
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Fig. 3 Overview of GAN Grayscale
for image colorization
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Initially, generator network produces fake color images which can be easily dif-
ferentiated from real color images making the job too easy for the discriminator.
Receiving strong gradients at this phase, generator starts to get better at produc-
ing fake color images making the job gradually difficult for discriminator. As the
generator gets fully trained, it produces fake color images which are almost indis-
tinguishable from the real color images making it impossible for discriminator to
differentiate between fake and real color images. As a result, discriminator makes
random guesses for predictions and its loss keeps oscillating around 0.5 making the
GAN fully trained.

Generator is a convolutional neural network with 17 convolutional layers and zero
pooling layers. Strides of length more than one is used instead of pooling layers to
make network to learn the effective downsampling. As the number of layers increases,
the localization, or pixel information is lost and upper layers are more likely to learn
global features [15]. To effectively color the images pixel level information is very
much need in the upper layers of the CNN. As the Generator predict colors on pixel
level, the localization information present in the lower level layers of the network is
crucial to segment different objects in the image and draw accurate boundaries for
the colors. To assist the network to pass this localization information to higher level
layers, skip connections are added in the generator network (Fig.4).

Initially filter maps are downsampled gradually with stride length of two and Batch
normalization with Leaky ReLu as an activation function is used for all convolutional
layers except for the last layer of the generator which uses hyperbolic tangent function
as the activation. At the skip connections, the filter maps are upscaled by resizing
them with bilinear interpolation technique and added to the corresponding upper
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Fig. 5 Discriminator network

layers of the network. Figure 5 shows the architecture of the generator network. Skip
connections play a very important role in passing the localization information to upper
layers of the network and it is found that the generator is incapable in producing color
samples without them. Even concatenating the grayscale image to filter maps of last
few layers couldnt help overcome the problem. Hypercolumns [5] can also be used
to preserve the localization information till the output layer [12]. Concatenating all
the filter maps and adding convolutional layers on top of this huge number of filter
maps require a lot of memory and computational power. By downsampling the image
for only four times, a hypercolumn containing 932 filter maps has to be generated
which couldnt be trained on 4GB Nvidia Quadro M1000M GPU. However, skip
connections are known to perform better compared to hypercolumns.

Discriminator is a simple classification network which tries to classify based on
the condition and color image fed to it. Figure5 shows the architecture of the dis-
criminator network. Discriminator network can be very easily trained and once it
becomes very confident about its predictions, the gradients for the generator net-
work vanishes. To avoid this, discriminator is trained once for every three times the
generator is trained.

min J@ (6. ) = min —E.(logD(G@)] + 1IG@) =yl ()

The above cost function explained in [14] has been used with A as 100. From
the loss plots of both generator and discriminator networks, the characteristics of a
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Fig. 6 GAN loss plots

GAN can be clearly observed. Figure 6a shows the generator loss and Fig. 6b shows
the combined loss for fake and real images of discriminator during the training. As
the generator network gets better at producing fake color images, as the loss of the
generator decreases, the discriminator gets more confused about its predictions.

(a) Gray scale Image (b) Original Image

(c) CNN Output (d) GAN Output

Fig. 7 Color comparison between GAN and CNN
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3 Results

To compare results between a normal CNN and a GAN, only the generator network is
trained with Least Absolute Deviations (/ 1) cost function. After training with around
4000 images of wind farm from place 365 [16] dataset the characteristics of GAN
is clearly observed and could be differentiated from the results of normal CNN. For
instance, from Fig.7d it can be observed that GAN network colored the sky with
more of sky blue color but the normal CNN colored with a shade of blue which
appears to be an average from dataset. The same can be observed with the color of
grass in Fig. 9d.

The CNN network also didn’t learn to pass on the localization information to the
high level layers. From Fig. 8 it can be observed that some part of the image is lost
and covered with a uniform color trying to reduce the loss. This effect is not seen in
the GAN as the discriminator is trained to discriminate these type of images as fake.

(a) Gray scalel mage (b) Original Image

(c) CNN Output (d) GAN Output

Fig. 8 Localization problem with CNN network
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(a) Gray scale Image (b) Original Image

(c) CNN Output (d) GAN Output

Fig. 9 Localization problem with CNN network

4 Conclusion

Auto colorization of gray scale images has seen rapid research in recent years with
new papers being published each month; although the limited realism and accuracy
of these implementations leaves further scope of more novel and complex iterations
of improving results. Our implementation offer a novel addition to the techniques
that can be used for colorization by incorporating skip connections and modified cost
functions, features at different scales and GANs which have significantly overcome
the problem of picking average colors and color localization in general.

GANSs are capable of producing high quality images at higher resolution [13].
When it comes to problems like images colorization, where there a conditional input,
localization information becomes crucial. As seen in the Figs. 8c and 9c, the objects
are not accurately localized because of which the colors are incorrectly spread across
different objects. Building a RNN network on top of the CNN would be one of the
solutions to address this problem.

The loss function for generator network includes L1-norm as one of the compo-
nents which makes the network to produce average colors to a small extent. Removing
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this component made the generator network more sensible and as the discriminator
became more confident of its predictions the generator network couldn’t receive any
gradients. To rectify this, 11 weight can be decayed over iterations which helps gen-
erator network to initially train properly and regain its GAN characteristics as the 11
weight decreases.

Coloring a gray scale image with desired qualities is also more important. Global
features of the image such as whether it is cloudy, landscape, portrait will affect the
colorization to a large extent. To achieve this, more than one condition can be fed to
generator network. Additional conditions such as color histograms, hue, saturation,
weather and camera mode will help to achieve desired colors for a gray scale image.
Video colorization would be the next appendage to image colorization. Instead of
colorizing a video frame by frame using a CNN model, LSTM networks can be used
to store the color histograms and semantics of a buffer of frames and use them to
color the adjacent or similar frames.
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