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Abstract
Plants are exposed to a plethora of microorganisms in their environment. A num-
ber of these microorganisms are plant pathogens. In order to defend themselves 
against pathogen attack, plants have evolved specialized sensory receptors to 
recognize some of the conserved molecular features (PAMPs, DAMPs, HAMPs, 
and NAMPs) as well as secreted effector molecules of pathogens. A cascade of 
signal transduction events are triggered which causes transcriptional rewiring 
leading to activation of defense responses. Closure of stomata, strengthening of 
cell wall along with accumulation of secondary metabolites, and induction of a 
hypersensitive response (HR) and pathogenesis-related (PR) proteins are some 
of the key defense strategies of the host. Interestingly, through secretion of vola-
tile organic compounds (VOCs), plants have the ability to induce defense 
responses in uninfected tissues as well as surrounding plants. In this chapter, we 
elaborate on the mechanisms by which plants perceive pathogen attack and 
transduce the signal to downstream signaling molecules, culminating in the acti-
vation of defense responses.

Authors Srayan Ghosh and Kamal Kumar Malukani have equally contributed to this chapter.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8922-1_20&domain=pdf
https://doi.org/10.1007/978-981-13-8922-1_20
mailto:jmsgopal@nipgr.ac.in


538

Keywords
Defense hormones · Effector-triggered immunity · Pathogen perception · 
Pathogen-triggered immunity · Plant defense responses · Resistance genes · 
Secondary messengers

20.1	 �Introduction

Plants are constantly exposed to a diverse array of microorganisms. Among them 
some are pathogenic on the host, whereas others grow in harmony with the host 
without causing any damage. Plants possess a proficient and dynamic sensory sys-
tem to distinguish between them. In case of beneficial interactions, plants have 
adapted to harbor these microorganisms in specialized compartments, thus main-
taining a suitable niche inside their tissue (Oldroyd 2013; Jones et  al. 2007). 
However, in case of a negative interaction, the microorganism tries to forcefully 
colonize to obtain nutrients from the host plant. Plants being sessile cannot evade 
from such harmful interactions but possess several robust defense mechanisms to 
inhibit the growth of such pathogenic organisms.

The first step in mounting an immune response lies in the ability of host to per-
ceive the pathogen attack, and this is achieved via a wide array of specialized extra-
cellular receptors that are present on the plant cell membrane. Generally, plants 
recognize bacterial pathogens by conserved structural components such as flagellin, 
lipopolysaccharides (LPS), peptidoglycans (PG), etc. or bacterial molecules such as 
EfTu or RaxX that are released into the extracellular milieu (Couto and Zipfel 
2016). Fungal pathogens are sensed by the recognition of chitin or fungal secreted 
proteins such as NLPs (NEP1 like proteins) (Kaku et al. 2006). These conserved 
microbe-specific molecules are known as PAMPs/MAMPs (pathogen-/microbe-
associated molecular patterns). Herbivory is perceived by the presence of certain 
herbivore-associated molecular patterns (HAMPs) present in the oral secretion of 
the insect at the time of attack (Mithofer and Boland 2008). Nematodes also secrete 
molecules that are known to elicit plant defense responses, and these molecules are 
known as nematode-associated molecular patterns (NAMPs) (Mendy et al. 2017). 
Besides these signals, plants can also sense molecules that are released from their 
own cells as a consequence of pathogen attack and use them as cues to mount an 
immune response (Bacete et  al. 2018). These molecules are known as DAMPs 
(damage-associated molecular patterns). Classic examples of DAMPs are degrada-
tion products that are released following the action of microbial enzymes on various 
components of the plant cell wall. Also, plants have cytoplasmic receptors to sense 
effector molecules secreted by potential pathogens to mount a robust immune 
response (Schreiber et al. 2016).

Plants possess a two-tiered detection system against pathogens (Zipfel 2014). 
The first tier comprises of receptors present on the surface of a cell called PRRs 
(pattern recognition receptors) that recognizes PAMPs, DAMPs, HAMPs or 
NAMPs. The PRRs can broadly be classified under two types, receptor-like kinases 
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(RLKs; comprising of a ligand-binding ectodomain, a transmembrane domain, and 
a cytoplasmic kinase domain) and receptor-like proteins (RLPs; comprising of a 
ligand-binding ectodomain and a transmembrane domain). The immune responses 
that are mounted upon recognition of the pathogen by PRRs are referred to as patho-
gen-triggered immunity (PTI). Moreover, the immune responses that are induced 
following recognition of DAMPs are known as DAMP-triggered immunity (DTI). 
The second tier of the pathogen recognition system comprises of intracellular 
immune receptors that can sense secreted pathogenic effectors either directly or 
indirectly. The immune responses that are mounted upon recognition of these effec-
tors are referred to as effector-triggered immunity (ETI). The receptors are classi-
fied into two types: nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins 
and Toll-like receptor (TLR) proteins. The major difference in the signaling events 
during PTI and ETI is the duration and amplitude of the defense response, which is 
more in ETI as compared to PTI. In this chapter, we elaborate on how plants recog-
nize various phytopathogens (bacteria and fungi) as well as herbivores and nema-
todes. We have described various players involved in the signal transduction events 
associated with pathogen perception and how the perceived signal is transduced to 
regulate host defense response pathways in host.

20.2	 �Perception of Pathogen Attack

Perception of danger is a key step in the activation of immune responses. However, 
induction of immune responses is an energy-consuming process that involves acti-
vation/deactivation of many molecular pathways, synthesis of new molecules, and 
alterations in basic metabolic processes (Andolfo and Ercolano 2015; Duan et al. 
2013). Hence, it is crucial for plants to distinguish between a potential pathogen/
pest and a random visitor to mount an appropriate immune response (Table 20.1).

20.2.1	 �Recognition of Bacterial Pathogens

Plants can recognize various structural components of bacteria or their secreted com-
pounds to mount an immune response. Flagellin-Sensing 2 (FLS2), a LRR repeat 
domain-containing receptor-like kinase in Arabidopsis can recognize a 22-amino 
acid long peptide named flg22 derived from the flagellin of Pseudomonas syringae 
(Gómez-Gómez and Boller 2000). The flg22 peptide binds to the extracellular 
N-terminal domain of FLS2 and acts as a molecular glue between FLS2 and its co-
receptor somatic embryogenesis receptor kinase 3 (SERK3) [also called as BAK1 
(BRI1-associated receptor kinase 1)] (Meindl 2000; Sun et al. 2013). This complex 
phosphorylates downstream interacting partners and activates the immune response 
(Couto and Zipfel 2016). Interestingly, different plant species have evolved diverse 
receptors to recognize different epitopes on flagellin. Solanaceous plants such as 
pepper, potato and tomato recognize flgII-28 (the flagellin peptide derived from 
Pseudomonas syringae) by another type of LRR receptor, FLS3 (Hind et al. 2016).

20  Pathogen Perception by Plants
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Plants can also recognize peptidoglycan (PG) and lipopolysaccharide (LPS) that 
are major components of either bacterial cell wall or the outer membrane, respec-
tively. Exogenous treatment with either LPS or PG activates plant immune responses 
(Erbs et al. 2010; Gust et al. 2007). PG is a polymer of N-acetylglucosamine and 
N-acetylmuramic acid linked by oligopeptides (Gust et  al. 2007). Plants possess 
LysM domain (lysin motif)-containing proteins that can recognize glycans in 
N-acetylglucosamine (Gust et al. 2012). In Arabidopsis, PG is recognized by recep-
tor-like proteins AtLYM1 and AtLYM3 where chitin receptor AtCERK1 serves as a 
key component in PG recognition (Willmann et  al. 2011). In rice, OsLYP4 and 
OsLYP6 are known to interact with both chitin oligomers as well as peptidoglycan 
(Liu et al. 2012). Additionally, OsCERK1 appears to be a key receptor/co-receptor 
for LPS perception in rice (Desaki et al. 2017). In Arabidopsis, bulb-type (B-type) 
lectin S-domain (SD)-1 containing RLK protein LORE (lipooligosaccharide-spe-
cific reduced elicitation) is thought to be the putative LPS receptor (Ranf et  al. 
2015). However, the physical interaction between LPS and putative receptors are 
yet to be established.

Plants can also sense various bacterial secreted proteins/peptides. Elongation 
factor Tu (Ef-Tu) is an abundant bacterial protein that is released upon cell lysis. 
Ef-Tu acts as an elicitor of immune responses in various plant species (Kunze 2004). 
Members of the Brassicaceae family recognize a conserved 18-aa long peptide 
(elf18) present at the N-terminal of EF-Tu by the LRR-RLK Ef-Tu receptor (EFR) 
(Zipfel et  al. 2006). Rice recognizes EFa50, comprising of a 50aa long peptide 
sequence from the middle of Ef-Tu amino acid sequence (Furukawa et al. 2014). 
Another secreted peptide recognized by plants is RexX21-sY, a sulfated peptide 
secreted by Xanthomonas oryzae pv. oryzae (Xoo) type 1 secretion system (Pruitt 
et al. 2015). This is recognized by rice LRR-RLK receptor Xa21. Here it is worth 
mentioning that Xa21 has been widely used to breed rice for bacterial blight resis-
tance (Williams et al. 1996).

20.2.2	 �Recognition of Fungal/Oomycete Pathogens

Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), is a major component of 
fungal cell walls. Plants can identify chitin oligomers by 40aa long globular LysM 
motif-containing receptor proteins (Kaku et al. 2006; Miya et al. 2007; Wan et al. 
2008). In Arabidopsis, AtCERK1/AtLYK1 (chitin elicitor receptor kinase) recog-
nizes chitin oligomers and mounts defense responses. Binding of 7–8-residue long 
chitin oligomer with AtCERK1 causes receptor homodimerization and transphos-
phorylation that lead to activation of defense signaling cascade (Liu et al. 2012). 
Rice recognizes chitin by a GPI-anchored RLP protein, OsCEBiP (chitin elicitor 
binding protein), that contains three extracellular LysM domains but lacks an intra-
cellular kinase domain (Kaku et al. 2006; Kouzai et al. 2014). Ligand (GlcNAc)8 
binding causes homodimerization of OsCEBiP and OsCERK1 leading to the forma-
tion of a GlcNAc8-2CEBiP-2CERK1 complex which in turn activates immune 
responses (Hayafune et al. 2014). Other plant receptors such as AtLYK4 (RLK), 
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OsLYP4 and OsLYP6 (both RLP) can also recognize chitin (Liu et  al. 2012; 
Petutschnig et al. 2010; Wan et al. 2012).

Some plants can sense presence of fungal xylanases to mount immune responses. 
A fungal protein ethylene-inducing xylanase (EIX) was found to activate plant 
immune responses in various host species (Bailey et al. 1990, 1993; Fuchs et al. 
1989; Ron et al. 2000). In tomato, LeEIX is recognized by LRR-RLP LeEix2 lead-
ing to activation of immune responses (Bar and Avni 2009; Bar et  al. 2009). 
Similarly, in Arabidopsis, LRR-RLP receptor AtRLP42 recognizes fungal endo-
polygalacturonases (PGs) and activates its immune responses (Zhang et al. 2014).

20.2.3	 �Recognition of Herbivores

The plants are exposed to different insects, some of which feed upon plant parts by 
a process known as insect herbivory. Herbivorous insects can activate plant defense 
mechanisms either through mechanical wounding caused during the process of 
chewing or by their oral secretions. Mechanical wounding caused during herbivory 
induces either the activation of defense mechanisms or secretion of plant volatiles. 
Production of chemical factors or relaying of electrical signals across distal parts of 
the host tissues are some of the early plant responses generated immediately after 
wounding (Maffei et al. 2007).

The herbivore-associated molecular patterns (HAMPs) that are present in the 
oral secretions of insects are recognized by plants (Mithofer and Boland 2008). 
Some orally secreted compounds like fatty acid amino conjugates (FACs) act as 
elicitors in priming of plant defense responses (Bonaventure et al. 2011). Perception 
of FACs induces a MAPK signaling cascade including SIPK (salicylic acid-induced 
protein kinase) and WIPK (wound-induced protein kinase) along with activation of 
NPR1 signaling (Wu et al. 2007; Seo et al. 2007; Bonaventure and Baldwin 2010), 
culminating in the activation of defense responses.

20.2.4	 �Recognition of Nematodes

Plants are continuously exposed to a plethora of microorganisms surrounding 
their rhizosphere. The different varieties of root exudates secreted by the plants may 
either attract or deter away these microorganisms. Plants secrete flavonoid com-
pounds that can attract symbiotic microbes like Rhizobia in case of beneficial inter-
actions, phytoalexins to deter pathogen growth or allelopathic phenolic compounds 
to alter the growth of other plants (Hirsch et  al. 2003). However, plant parasitic 
nematodes like root-knot nematode and potato cyst nematode can sense these host-
derived signals. Following penetration inside the host tissue, the nematode migrates 
to its feeding site inside the root, wherein it feeds upon the host nutrients resulting 
in altered root architecture and reduced crop yield. Since long it had been specu-
lated that plants could also mount a PTI response against nematodes, however not 
much was known about the compounds which elicit plant defense response. 
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Recently, a nematode pheromone, ascaroside has been identified that is perceived 
by host plants as a NAMP to mount a PTI response including activation of MAP 
kinase cascade, upregulation of plant defense hormones such as salicylic acid and 
jasmonic acid, and induction of defense responses (Manosalva et al. 2015; Holbein 
et al. 2016; Choi et al. 2016). Moreover, a nematode immune receptor NILR1 (nem-
atode-induced LRR-RLK 1) belonging to the LRR-RLK has been identified in 
Arabidopsis that perceives NAMP and mounts PTI responses (Mendy et al. 2017).

20.2.5	 �Recognition of DAMPs

The plant cell wall serves as a formidable barrier against pathogens. Pathogen 
secretes various proteins to degrade different components of the plant cell (Jha et al. 
2005). Moreover, plants have evolved the ability to sense this damage by recogni-
tion of the cell wall degradation products. Treatment of Arabidopsis with cellulose 
degradation products such as cellobiose, cellotriose, etc. or cellulose synthesis 
inhibitors (Engelsdorf et al. 2017) activates the host immune responses (Souza et al. 
2017). Similarly, the treatment of plant tissue with pectin degradation products such 
as oligogalacturonides (OG) can activate the host immune responses (Ferrari 2013). 
In Arabidopsis, wall-associated kinases (AtWAK1 and AtWAK2) can perceive pec-
tin and pectin degradation products (OG) (Brutus et al. 2010; Decreux and Messiaen 
2005; Decreux et al. 2006). The activation of immune responses by WAKs has also 
been reported in other plant species such as rice and maize (Delteil et al. 2016; Zuo 
et al. 2015; Hu et al. 2017).

In response to pathogen/damage perception, plants secrete various peptides and 
nucleotides in their apoplast to amplify the immune response and trigger an elabo-
rate defense mechanism in their neighboring cells (Boutrot and Zipfel 2017). 
Release of plant elicitor peptides (Peps, also known as danger peptides) derived 
from PROPEPs (precursor proteins) has been reported in Arabidopsis upon patho-
gen attack (Bartels et al. 2013; Klauser et al. 2015). Arabidopsis secretes 23aa long 
endogenous elicitor peptides known as AtPep1, which are recognized via LRR-RLK 
PEP receptor (PEPR) (Krol et al. 2010). Moreover, it has been reported that extra-
cellular ATP (eATP) can act as a DAMP in Arabidopsis (Weerasinghe et al. 2009; 
Wu et al. 2008). The eATP is recognized by a lectin receptor kinase-I.9 (LecRK-I.9) 
named DORN1 (Does not Respond to Nucleotides 1) in Arabidopsis which acti-
vates downstream defense-responsive genes (Choi et al. 2014).

20.2.6	 Recognition of Effectors

PTI and DTI form the first layer of plant immune responses. Pathogens can suppress 
these immune responses by secreting effector molecules directly into plant cells via 
the type-III-secretion system (Alfano and Collmer 2004). However, plants have 
evolved R gene-encoded proteins to recognize effector proteins to activate effector-
triggered defense (ETD) response  (Dodds and Rathjen 2010). Plants can 
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either directly recognize effector molecules via NB-LRR (or NLR) domain-contain-
ing receptor proteins or can indirectly sense their presence by monitoring their 
activity (Kourelis and van der Hoorn 2018). In both cases, plants mount a robust 
immune response that usually culminates in a hypersensitive response and localized 
death of plant tissue to limit spread of the pathogen. The NLR receptor proteins are 
usually comprised of either coiled-coil (CC) domain or toll/interleukin-1 receptor 
(TIR) domains at their N-terminal (Cui et al. 2015; Schreiber et al. 2016). However, 
there are exceptions, wherein certain effector proteins are not directly recognized by 
receptor proteins, instead are recognized when bound to an accessory protein 
(guardee). The guard model has been proposed to explain this phenomenon (Dangl 
and Jones 2001). Further, a modification of this hypothesis has been proposed as a 
decoy model, wherein certain effector targets have evolved to function as decoys 
(co-receptor) which bind to the effectors and cause activation of the defense response 
(van der Hoorn and Kamoun 2008). Due to a few limitations in the decoy model, an 
improved bait-and-switch model was proposed. In this model, a two-step recogni-
tion has been proposed wherein the accessory protein (bait) associated with the 
receptor protein interacts with the effector protein to mount a defense response 
(Collier and Moffett 2009). The current hypothesis states that the receptor protein 
instead of recognizing the accessory protein directly recognizes the effector protein 
only when it is bound with its accessory protein (Dodds and Rathjen 2010). We will 
now provide an outline of the different effector molecules that are secreted in differ-
ent pathosystems and how plants are able to recognize them.

20.2.6.1	 �Bacterial Effector Recognition
The AvrPto and AvrPtoB (also known as HopAB2) effectors secreted by pathogenic 
strains of P. syringae (Abramovitch et al. 2003; Ronald et al. 1992) are recognized 
by plants to mount immune responses. AvrPto and AvrPtoB bind to various PTI 
receptors and suppress immune responses. For example, AvrPto binds to various 
PTI receptors like FLS2 and EFR while AvrPtoB binds to FLS2, BAK1 and LysM 
receptor kinases and suppress immune responses (Cheng et  al. 2011; Gimenez-
Ibanez et al. 2009; Göhre et al. 2008; Shan et al. 2008; Xiang et al. 2008; Zeng et al. 
2012). Prf/Pto protein complex recognizes the presence of both of these effector 
molecules, whereas Pto has binding sites for both AvrPto and AvrPtoB as well as 
Prf. Prf acts as a positive regulator of ETI. In the native state, Pto binds to Prf along 
with some other kinases to form a large macromolecular complex that keeps Prf in 
its inactive state (Ntoukakis et al. 2013). In presence of cognate effectors, Pto binds 
to the effector, gets released from Prf/Pto complex and in turn activates ETI 
(Abramovitch et al. 2003; Dong et al. 2009; Mathieu et al. 2014).

Rin4 (RPM1 interacting protein 4) is a membrane-localized protein that lacks any 
functional domain but is a part of many PRR complexes (Selote and Kachroo 2010). 
Rin4 can activate as well as suppress PTI depending on the phosphorylation status of the 
protein (Chung et al. 2014). Pathogens have evolved effector molecules such as AvrB, 
AvrRpt2, AvrRpm1, and HopF2 to directly or indirectly target Rin4 to suppress PTI 
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(Lee et al. 2015; Russell et al. 2015; Wang et al. 2010; Wilton et al. 2010). In response, 
plants have also evolved R genes such as RPS2 (resistance to P. syringae) and RPM1 
(resistance to P. syringae pv. maculicola) to sense the activity of effectors on Rin4 and 
mount defense responses (Chung et al. 2014; Coaker et al. 2005; Kim et al. 2005).

20.2.6.2	 �Fungal Effector Recognition
Fungal pathogens are also known to produce effector molecules which can either be 
secreted into the host cytoplasm or localized into the apoplastic space (Giraldo et al. 
2013; Stotz et al. 2014). The recognition of apoplastic effectors is mediated by inte-
gral membrane proteins (RLPs) containing an extracellular leucine-rich repeat 
(eLRR) (Stergiopoulos and de Wit 2009). Induction of RLPs has been reported in 
tomato, apple, and oilseed rape against fungal pathogens like Cladosporium fulvum, 
Venturia inaequalis, and Leptosphaeria maculans, respectively (Rouxel and 
Balesdent 2013; Belfanti et al. 2004). However cytoplasmic effectors secreted by 
pathogens like Blumeria graminis, Bremia lactucae, Puccinia striiformis, 
Magnaporthe grisea, and Phytophthora infestans are recognized by NBS-LRR 
receptors that are present in the cytoplasm of respective host species (Bozkurt et al. 
2010; Bai et al. 2012; Bonardi et al. 2012; Larkan et al. 2013; Rooney et al. 2005).

20.2.6.3	 �Nematode Effector Recognition
Plants utilize NB-LRR immune receptors to recognize effectors secreted from root 
or cyst nematodes to activate host defense responses. Some common examples of 
immune receptors against nematodes are Gpa2, Gro1-4 and Hero (Goverse and 
Smant 2014). It has been observed that root-knot nematodes secrete a diffusible 
compound called NemF that is very similar to NF (nodulation factor) secreted by 
symbiotic bacteria. The NemF signal is perceived by the plant through primary 
receptor kinases NFR1 and NFR5 along with secondary receptor kinase 
SYMRK. Signal perception leads to root hair branching and waviness which in turn 
facilitate nematode penetration (Weerasinghe et  al. 2005). Plants also encode R 
genes to recognize effector proteins secreted by herbivores (Hogenhout and Bos 
2011). Examples of R genes which confer resistance against herbivores are Mi-1.2 
(Meloidogyne 1.2), Vat (Virus aphid transmission resistance) and Bph14 (Brown 
planthopper 14).

20.2.6.4	 �Miscellaneous
Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are plant immunogenic 
proteins with cytotoxic activity produced by a vast variety of bacterial, fungal, and 
oomycete species (Oome et al. 2014). Plants belonging to Brassicaceae family can rec-
ognize a conserved 20aa long fragment of NLP called nlp20 to activate their immune 
responses (Böhm et al. 2014; Oome et al. 2014; Oome and Van den Ackerveken 2014). 
In Arabidopsis, the LRR-RLP AtRLP23 recognizes nlp20 and activates immune 
responses by making a tripartite complex with two LRR-RLK, BAK1 (brassinosteroid 
insensitive 1 (BRI1)-associated kinase) and SOBIR1 (Albert et al. 2015).

20  Pathogen Perception by Plants



546

20.3	 �Players Involved in Transduction of a Perceived Signal

The PRR proteins present on the plant cell surface can recognize pathogen attack 
and mount a defense response against the pathogen. However, induction of defense 
responses involves an intricate signaling network that transduces the signal to down-
stream molecular players to trigger immune responses. These signaling molecules 
include protein kinases (CDPKs, MAPKs), Ca2+ burst, ROS burst, NO, lipids, 
14-3-3 proteins and various phytohormones (such as SA, JA and ethylene) (Bigeard 
et al. 2015).

20.3.1	 �Phosphorylation Events

Phosphorylation and dephosphorylation of proteins by kinases and phosphatases 
play an important role in the signal transduction process. After ligand binding, con-
formational changes in protein/binding with co-receptors lead to phosphorylation of 
the receptor. Somatic embryogenesis receptor kinase (SERK) family usually works 
as a co-receptor for many receptor kinases such as FLS2, EFR, BRI1, Xa21, PEPR, 
PSKR, etc. (Ma et al. 2016). In Arabidopsis, SERK3 [also called bri1-associated 
receptor kinase 1 (BAK1)] is a key co-receptor for many receptor kinases and is 
required for proper induction of immune responses (Ma et  al. 2016). In rice, 
OsSERK2 interacts with Xa21, Xa3 and FLS2 (Chen et al. 2014) and is required for 
receptor-mediated resistance against Xoo. SERKs are also involved in RLP-
mediated activation of immune responses such as nlp20-triggered immunity in 
Arabidopsis, csp22-triggered immunity in Nicotiana, Avr4- and Avr9-induced HR 
in tomato (Albert et al. 2015; Postma et al. 2016; Saur et al. 2016).

20.3.1.1	 �MAP Kinases
Mitogen-activated protein kinases (MAPKs) form signaling modules, which trans-
late extracellular stimuli of pathogen attack into appropriate defense responses. 
MAPK cascade typically contains three sequential kinases (Rasmussen et al. 2012):

•	 MAP kinase kinase kinase (MAPKKK or MEKK)
•	 MAP kinase kinase (MAPKK or MKK)
•	 MAP kinase (MAPK or MPK)

Usually receptor/co-receptor phosphorylates MAPKKK that phosphorylates 
MAPKK which phosphorylates MAPK. MAPK then phosphorylates downstream 
signaling components such as transcription factors and modulates defense responses 
(Meng and Zhang 2013). In a recent study, it has been shown that phosphorylation 
of OsMKK3-OsMPK7-OsWRKY30 leads to transcriptional activation of defense 
responses against X. oryzae in rice (Jalmi and Sinha 2016). Interestingly, in order to 
suppress PTI response, pathogens have evolved effector molecules that majorly tar-
get MAPK modules due to their primary role in defense signaling of plants (Feng 
et al. 2012).
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20.3.1.2	 �CDPKs
Calcium-dependent protein kinases (CDPKs) have a serine/threonine protein kinase 
domain at their N-terminal and CaM-like domain with EF-hand calcium-binding 
sites at their C-terminal (Boudsocq and Sheen 2013). They act as Ca2+ sensors and 
decode the signal to generate a swift response to the external stimulus (Seybold 
et al. 2014, 2017). CDPK response was found to be associated with changes in host 
physiology such as transcriptional reprogramming, ROS accumulation, and altera-
tion of phytohormone levels. CDPKs together with MAPKs have been found to 
orchestrate the transcriptional regulation of defense genes under pathogen attack 
(Boudsocq et al. 2010). Another group of kinases called AGC kinases, comprising 
of cAMP-dependent protein kinase 1 (PKA) and cGMP-dependent protein kinase 
(PKG) along with protein kinase C (PKC), have been shown to regulate MAPK 
signaling cascade upon pathogen attack (Garcia et al. 2012).

20.3.1.3	 �14-3-3
14-3-3 proteins act as phosphosensors which bind to phosphorylated proteins and 
regulate their functions. 14-3-3 proteins aid in phosphorylation of proteins thereby 
activating them (Chevalier et  al. 2009). They play a crucial role in strengthening 
plant defense mechanisms by interacting with MAPKK proteins involved in the 
defense signal transduction pathway (Oh et al. 2010; Oh and Martin 2011). Induction 
of 14-3-3 proteins was found primarily in the penetration stage and upper epidermis 
of barley infected with Blumeria graminis suggesting its involvement in early signal-
ing events (Lozano-Durán et al. 2015). 14-3-3 proteins have been found to interact 
with plant immune-responsive proteins such as receptor kinase BAK1 and WRKY 
transcription factor along with few R genes (Chang et al. 2009). 14-3-3 proteins have 
also been reported to regulate phytohormone levels in infected plants culminating in 
enhanced immune responses. (Chang et al. 2009; Camoni et al. 2018).

20.3.1.4	 �Heterotrimeric G proteins
G proteins have been found to play a critical role in defense signaling in animals. 
However plants lack the canonical G protein structure as observed in animals (Urano 
and Jones 2014). G proteins are known to activate plant defense signaling responses 
mediated by the action of multiple RLKs (Liu et al. 2013a, b; Maruta et al. 2015). 
The signals received from RLKs by G proteins are transduced downstream to differ-
ent MAPKs and ROS signaling genes (Nitta et al. 2015; Cheng et al. 2015). Studies 
have revealed direct physical association between the Gα, Gγ1, and Gγ2 subunits 
and RD-type kinases CERK1, BAK1, and BIR1 to activate the plant defense net-
work (Aranda-Sicilia et al. 2015).

20.3.2	 �Regulation of Immune Responses

Plant immune responses are metabolically costly affair; plants regulate the pro-
cesses in a tight manner to avoid non-specific activation and dampen the responses 
when they are no longer required. This is usually achieved by dephosphorylation or 
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degradation of receptors. After activation of immune responses, protein phospha-
tases (PP) such as PP2C and PP2A dephosphorylate the receptor and other interme-
diate kinases to negatively regulate immune responses (Durian et al. 2016; Fuchs 
et  al. 2013). Some examples of PP2C involvement in immunity include kinase-
associated protein phosphatase (KAPP), PLL4 and PLL5 of Arabidopsis, and XB15 
of rice (Holton et al. 2015; Park et al. 2008).

Another approach to regulate immune response is via vesicle-mediated internal-
ization of activated receptors or degradation of the receptor/signaling intermediate 
(Wang et al. 2016a, b). These proteins are polyubiquitinated by E3 ubiquitin ligases 
and degraded by 26S proteasomes. Some examples of this pathway include XB3 of 
rice and PUB12 and PUB13 of Arabidopsis (Lu et al. 2011; Wang et al. 2006).

20.3.3	 �Transcriptional Regulation

Activation of immune responses involves rapid transcriptional and translational 
changes (Li et al. 2016). Transcriptional events are modulated by transcription fac-
tors (TFs) which get activated by MAP kinases, Ca2+ signaling or hormonal response 
(Kang et  al. 2015; Li et  al. 2016). Some key TF families involved in defense 
responses include WRKY, MYC, TCP, ZIP, MVQ, AP2/ERF, etc. (Birkenbihl et al. 
2017). TFs enhance expression of various defense genes such as PR genes, second-
ary metabolism, and hormone biosynthesis as well as regulation of related genes.

20.3.4	 �Secondary Signaling Molecules

Many non-proteinaceous molecules are key signaling intermediates in plant innate 
immunity. These molecules include Ca2+, ROS, NO, etc.

20.3.4.1	 �Burst of Ca2+

Ca2+ ions play an important role in defense signaling during pathogen attack. Ca2+ 
burst occurs when MAMPs/DAMPs are perceived and Ca2+ from the extracellular 
milieu is transported into the cytoplasm (Jeworutzki et al. 2010; Ranf et al. 2011). 
The permeability of plasma membrane to Ca2+ is mediated by elicitor responsive ion 
channels. The calcium levels accumulate in distinct signature patterns and generate 
a particular defense response pathway against the pathogen (Lecourieux et  al. 
2006). Influx of Ca2+ is followed by opening of other membrane ion transporters 
such as H+, K+, Cl-, and NO3

- channels which lead to alkalization of extracellular 
space and membrane depolarization (Jeworutzki et al. 2010).

EF-hand motif-containing proteins are known to bind with calcium and serve as 
sensors of Ca2+ concentration (Schulz et al. 2013). These proteins mainly include 
Ca2+-dependent protein kinases (CDPK) and calmodulin (CaM). Ca2+ binding 
causes conformational changes in structure of these proteins leading either to phos-
phorylation or binding with downstream signaling intermediates (Ishida and Vogel 
2006; Wernimont et al. 2010).
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20.3.4.2	 �ROS Burst
Production of extracellular reactive oxygen species (ROS) also referred to as ROS 
burst has been found to be associated with pathogen attack (Ranf et  al. 2011; 
Chinchilla et al. 2007; Nühse et al. 2007). MAMP perception is often associated 
with ROS production by respiratory burst oxidase homolog D (RBOHD), a member 
of NADPH oxidase family in Arabidopsis (Bigeard et al. 2015). ROS can be present 
in membranes as impermeable superoxide (O2-) or as permeable hydrogen peroxide 
(H2O2) and it can be readily translocated from one cell to another. Also it is often 
associated with elevated Ca2+ levels in the cytosol (Ranf et al. 2011; Bigeard et al. 
2015). ROS signaling is accompanied by alteration in plant defense hormone levels 
such as JA, SA, and ethylene indicating a complex crosstalk between different path-
ways (Baxter et al. 2014).

20.3.4.3	 �NO Signaling
Nitric oxide (NO) along with its derivatives has also been involved in signal trans-
duction pathway upon perception of pathogen attack. The role of NO in activating 
plant defense was first reported in tobacco mosaic virus infection wherein increase 
in NO synthase (NOS) resulted in activation of several downstream defense genes 
(Klessig et al. 2000). Interestingly, NO together with ROS plays a synergistic role 
in activation of plant defense responses (Domingos et al. 2015). NO can cause a 
rapid change in cellular glutathione levels in the cell associated with accumulation 
of SA and activation of NPR1-mediated defense responses (Kovacs et al. 2015).

20.3.4.4	 �Lipid Signaling
Lipid-based signaling molecules are also known to play a crucial role in defense 
signaling upon pathogen attack. These lipid molecules are produced as a result of 
degradation/destabilization of the cell wall upon pathogen attack. For example, 
phosphatidic acid (PA) and ceramides have been found to be involved in signal 
transduction upon pathogen infection (Okazaki and Saito 2014). PA is also involved 
in release of other signaling intermediates such as DAG, free fatty acids, and lysoPA 
which in turn induce downstream defense signaling (Wang 2004). Phospholipase A 
(PLA) which catalyzes the hydrolysis of phospholipids is involved in release of free 
fatty acids which are utilized during biosynthesis of defense hormone jasmonic acid 
(Shah 2005).

20.3.4.5	 �Hormonal Signaling
Major phytohormones such as jasmonic acid (JA), salicylic acid (SA) and ethylene 
have been found to play an important role in coordinating cell-to-cell communica-
tion during perception of pathogen attack. Each of these phytohormones activates 
its own downstream targets which lead to diverse immune and signaling events. 
There are also reports that other phytohormones such as auxin, cytokinin, abscisic 
acid, gibberellins and brassinosteroids are involved in plant immunity. There is a 
complex crosstalk among different phytohormones occurring at the cellular level 
that tailors a specific defense response upon attack by a specific pathogen. Here we 
summarize the role of some key defense-related phytohormones.
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20.3.4.5.1	 Salicylic Acid
SA is a phenolic hormone that is synthesized from chorismate via phenylalanine 
ammonia pathway (PAL) or isochorismate synthase (ICS) pathway (Chen et  al. 
2009). It is a key component of PTI as well as ETI and is known to enhance toler-
ance against various biotrophic, hemi-biotrophic, and viral infections (Dodds and 
Rathjen 2010; Malamy et al. 1990; Shigenaga and Argueso 2016). It is also neces-
sary for the activation of various PR genes. Arabidopsis ICS1 mutant (ics1), also 
called SA deficient 2 (sid2), was compromised in SA-mediated immune response 
(Dewdney et al. 2000; Wildermuth et al. 2001). Interestingly, the non-expressor of 
PR genes 1 (NPR1) acts as a transcription co-activator and plays a key role in 
SA-mediated immune responses (Cao 1994). Generally at normal SA levels, NPR1 
is localized in the cytoplasm in oligomeric form (Mou et  al. 2003). However, at 
elevated SA level, the NPR1 binds to SA, adopts monomeric form, and gets trans-
ported to the nucleus (Kinkema et al. 2000; Mou et al. 2003). In the nucleus, NPR1 
binds to TGA transcription factors and activates expression of defense-related genes 
including PR genes (Kesarwani et al. 2007). Infection studies on ics1 mutant (that 
fails to increase SA level), NahG (salicylate hydroxylase that degrades SA) express-
ing transgenic lines (that fail to accumulate SA), and npr1 mutant (that does not 
respond to SA) indicate that although SA can enhance tolerance towards biotrophic 
and hemi-biotrophic pathogens, it reduces resistance towards necrotrophic patho-
gens (Delaney et al. 1994; Glazebrook et al. 1996; Thomma et al. 1998). It is worth 
noting that phytopathogens utilizes various effectors  (such as HopJ, HaRxL44, 
HopM1 and PsIcs1) to target SA signaling pathway during host colonization 
(Caillaud et al. 2013; DebRoy et al. 2004; Liu et al. 2014).

20.3.4.5.2	 Jasmonic Acid
JA is a lipid-derived hormone that is involved in many developmental and defense 
response pathways (Santino et al. 2013; Carvalhais et al., 2017). JA is synthesized 
by oxygenation of α-linolenic by lipoxygenase (Lox) enzymes and is converted into 
JA-Ile (JA-isoleucine; the active form of JA) by JA amido synthetase (JAR1) 
(Staswick 2004; Wasternack and Hause 2013). Coronatine insensitive 1 (COI1), an 
E3 ubiquitin ligase, is a receptor of JA, and a transcription factor jasmonate ZIM 
domain 1 (JAZ1) is a negative regulator of JA pathway (Sheard et al. 2010; Yan et al. 
2009). At low JA levels, JAZ1 represses JA-responsive genes (Pauwels et al. 2010). 
After perception of pathogen attack, JA-Ile binds to COI1, which ubiquitinates 
JAZ1 leading to degradation of JAZ1. Degradation of JAZ1 leads to enhanced 
expression of JA-responsive genes (Thines et al. 2007).

JA and SA are believed to play antagonistic roles against each other in very com-
plex plant defense response-activating pathways depending on the nature of the 
pathogen (Thaler et  al. 2012; Robert-Seilaniantz et  al. 2011). Pathogens have 
evolved mechanisms to utilize this crosstalk to suppress plant immune responses 
(Pieterse et al. 2012). A well-studied example is synthesis of the JA mimic molecule 
coronatine (COR) by Pseudomonas sp. COR activates the JA pathway and sup-
presses SA pathway leading to increased susceptibility towards biotrophic and 
hemi-biotrophic pathogens including Pseudomonas (Zheng et al. 2012). Interestingly 
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a hemi-biotrophic pathogen, i.e., Pseudomonas, utilizes effector molecules such as 
HopZ1 and HopX1 to induce JA pathway during pathogenicity process (Gimenez-
Ibanez et al. 2014; Jiang et al. 2013).

20.3.4.5.3	 Ethylene
Ethylene is a gaseous plant hormone known for its role in fruit ripening. However, 
it is also known to be involved in plant defense responses. ET and JA phytohor-
mones work in a synergistic manner (Robert-Seilaniantz et al. 2011). The activation 
of JA pathway leads to enhanced expression of ET pathway genes (Penninckx et al. 
1998; Zhu et al. 2011). Alike JA, ET also enhances tolerance towards necrotrophic 
pathogens but increases susceptibility towards biotrophic pathogens (Lawton et al. 
1994, 1995). Similar to other phytohormones, ET pathway is also targeted by patho-
gens to overcome immunity. For example, AvrPto and AvrPtoB effectors of 
Pseudomonas sp. and XopD effector of Xanthomonas sp. have been found to alter 
the ET pathway (Cohn and Martin 2005; Kim et al. 2013).

20.4	 �Plant Defense Responses

Upon perception of pathogen attack, plants mount a strong immune response to 
restrict the spread of pathogen/predator. These immune responses involve strength-
ening of the cell wall, localized cell death, production of antimicrobial compounds, 
etc. The strength of the immune response depends upon the type of danger. Many 
pathogens have evolved mechanisms to suppress PTI/ETI directly by secreting 
effector molecules into the plant cell. This is known as effector-triggered suscepti-
bility (ETS). However, recognition of effectors by host R genes leads to activation 
of ETI that includes robust defense responses such as programmed cell death to 
restrict the growth of the pathogen at the site of infection.

20.4.1	 �Stomatal Closure

Several phytopathogens use stomata to enter inside the host. Closure of stomata is 
one of the early defense responses used by the host to prevent pathogens from colo-
nization. Upon perception of pathogen cues (flg22, elf18, elf26, LPS, chitin, oligo-
galacturonan, etc.), plants close their stomata (Arnaud and Hwang 2015; Murata 
et al. 2015). This process involves various signaling events including activation of 
MAP kinase pathway, synthesis of hormones, Ca2+ influx, ROS and NO production, 
etc. (Desclos-Theveniau et al. 2012; Melotto et al. 2006, 2017). SA and ABA path-
ways are known to promote stomatal closure while JA-Ile serves as a negative regu-
lator of stomatal closure.

However, successful phytopathogens have evolved various mechanisms to avoid 
plant stomatal closure. For example, P. syringae secretes various effectors such as 

20  Pathogen Perception by Plants



552

HopM1, HopF2, HopZ1, HopZ1a, Hopx1 and AvrB to suppress closure of stomata 
(Gimenez-Ibanez et al. 2014; Hurley et al. 2014; Jiang et al. 2013; Lozano-Durán 
et  al. 2014; Zhou et  al. 2014, 2015). XopR, a Xoo-secreted effector, suppresses 
flg22-induced stomatal closure in rice (Wang et al. 2016a, b). On the other hand, 
some of the bacterial pathogens secrete phytotoxins to open stomatal pores to assist 
colonization. Some of the notable phytotoxins used by bacterium to open stomata 
are coronatin (COR) (Bender et al. 1999) and syringolin A secreted by P. syringae 
(Groll et al. 2008), plant natriuretic peptide-like (Gottig et al. 2008) and diffusible 
signaling factor (DSF) (Gudesblat et al. 2008) molecules secreted by Xanthomonas 
species.

20.4.2	 �Cell Wall Strengthening

Cell wall serves as a key barrier to phytopathogens. Pathogens need to degrade the 
cell wall to gain access to nutrients that are inside the plant cell. Strengthening of 
the cell wall is achieved by deposition of callose (β-1,3 glucan) and lignin (phenolic 
polymers). This is one of the basic mechanisms used by the host plant to suppress 
the growth of pathogen (Malinovsky et al. 2014). Treatment with various MAMPs, 
DAMPs or avirulent pathogen strains causes callose deposition in the infected tis-
sues (Luna et al. 2011). Synthesis of callose usually leads to papillae formation that 
contains antimicrobial compounds such as thionins, H2O2, etc. (McLusky et  al. 
1999; Thordal-Christensen et al. 1997; Voigt 2016). Besides callose, lignin is also 
deposited at the secondary cell wall to provide mechanical strength (Malinovsky 
et al. 2014). Loss of function mutations in various genes involved in lignin synthesis 
pathway makes the plants more susceptible to pathogens (Miedes et al. 2014).

20.4.3	 �Pathogenesis-Related Proteins

Expression of pathogenesis-related (PR) proteins is upregulated in plants after 
pathogen infection. These proteins are key components of plant immune responses. 
Many PR proteins are also observed to be upregulated after MAMP and DAMP 
treatment, wounding, ETI activation, and treatment with immune response-associ-
ated hormones (Sels et al. 2008). PR genes encode diverse classes of proteins which 
can be classified under 17 different families (van Loon et al. 2006). Most of the PR 
proteins have antimicrobial activities. PR3, PR4, PR8 and PR10 are chitinases 
which can degrade fungal cell wall, while PR2 proteins are β-1,3-glucanases. PR1 
is a most common PR protein accumulated in various plant species upon pathogen 
attack and is known to have antimicrobial activity (Ménard et al. 2005; Segarra et al. 
2013; Song et al. 2015). Some PR genes encode small peptides such as the PR6 
family containing proteinase inhibitor peptides (Green and Ryan 1972), PR12s are 
cysteine-rich defensins (Terras 1995), PR13 encodes thionins (Epple et al. 1995) 
and PR14 codes for lipid transfer proteins (LPT) (García-Olmedo et al. 1995).
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Interestingly, AtPR1, AtPR2, and AtPR5 are SA-responsive genes known to pro-
vide resistance against biotrophic and hemi-biotrophic pathogens in Arabidopsis. 
AtPR3 and AtPR4 are JA-responsive genes and provide tolerance against necrotro-
phic pathogens and herbivores (van Loon et al. 2006).

20.4.4	 �Secondary Metabolites

Plants produce various types of secondary metabolites upon infection by phyto-
pathogens (Piasecka et  al. 2015). These metabolites usually have antimicrobial 
activity and have a toxic effect on phytopathogens. One type of secondary metabo-
lites that are constitutively produced are called phytoanticipins (VanEtten 1994). 
These are usually produced in an inactive form and are activated by hydrolysis after 
perception of danger. Plants produce various kinds of phytoanticipins including 
saponins such as α-tomatine and avenacin, glucosinolates, cyanogenic glucosides 
and benzoazinone glucoside compounds (Faizal and Geelen 2013; Halkier and 
Gershenzon 2006; Burkhardt et al. 1964; Papadopoulou et al. 1999; Sandrock and 
VanEtten 1998). Secondary metabolites that are de novo synthesized in response to 
biotic stress are called phytoalexins. The major types of phytoalexins include cama-
lexins, phenylalanine-derived phytoalexins, and terpenoids (VanEtten 1994). 
Mutations in secondary metabolite synthetic genes make plants more susceptible to 
pathogens (Toyomasu et al. 2014; Xu et al. 2012).

20.4.5	 �Hypersensitive Response

Sometimes, plants undergo programmed cell death in the infected area to restrict the 
spread of a pathogen. This process is called hypersensitive response (HR). PCD is 
generally involved in developmental processes and stress responses including toler-
ance towards biotic stress (Bozhkov and Lam 2011; Pennell 1997). Upon pathogen 
perception by the host R gene, an intricate signaling cascade is triggered that leads 
to HR. This signaling cascade involves MAP kinase activation, SA production, ROS 
production, NO accumulation, cytosolic Ca2+ increase, membrane depolarization, 
etc. (Kadota et al. 2004; Kärkönen and Kuchitsu 2015; Kurusu et al. 2011). HR can 
be observed as the lesion phenotypes during  infection or elicitor treatment or as 
lesion mimic phenotype if the immune response is constitutively activated (Coll 
et al. 2011; Lorrain et al. 2003). Although HR is a strong immune response, some-
times it can act like a double-edged sword for plants as necrotrophic pathogens that 
flourish on dead plant tissues have evolved various pathways to utilize this immune 
response of plants to colonize host tissues (Mukhtar et al. 2016). These pathogens 
modulate plant signaling to enhance ROS production and induce HR (Shetty et al. 
2008).
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20.4.6	 �Secretion of Volatile Compounds

Upon pathogen attack, plants often emit gaseous compounds known as VOCs (vola-
tile organic compounds). Emission of volatile derivatives of certain plant hormones 
such as jasmonic acid and ethylene have been found to be responsible for the sys-
temic activation of plant defense responses (Champigny and Cameron 2009; Fiers 
et al. 2013; Wasternack and Kombrink 2010; Tamogami et al. 2008). Plants also 
secrete volatile components that can attract predators or parasitoids such as parasitic 
wasps to forage upon the feeding insects or induce a systemic defense response in 
distal uninfected plant parts (Heil 2008; Heil and Silva Bueno 2007; Frost et al. 
2007). Volatile compounds that are thus secreted are known as herbivore-induced 
plant volatiles (HIPV). Lima bean plants secrete certain compounds which are not 
only involved in attraction of predatory insects (natural enemies of herbivores) but 
also in production of certain extrafloral nectars (EFN) which serve as a food source 
for these predatory insects (Choh and Takabayashi 2010). Apple plants have been 
found to emit certain VOCs upon infection by the bacterial pathogen Erwinia amy-
lovora which can activate the defense responses even in surrounding healthy unin-
fected plants (Cellini et  al. 2018). Interestingly, it has been observed that VOCs 
produced upon infection by fungal pathogen Colletotrichum lindemuthianum in 
resistant bean plants can trigger defense responses in  neighbouring susceptible 
plants (Quintana-Rodriguez et al. 2015).

20.5	 �Conclusion

Plants have specialized receptors to sense pathogen attack and mount potent defense 
responses. Various conserved structural components, damaged cell wall products or 
effector molecules produced by the pathogens are recognized by these receptors. 
Generally, these receptor proteins are maintained in a dephosphorylated inactive state 
and get activated at the time of pathogen attack. Various signaling intermediates like 
MAPKs, CDPKs, 14-3-3 and heterotrimeric G proteins participate in interception, 
amplification and transduction of the signal from the receptor to the target defense 
genes. Also several secondary messengers such as ROS, Ca2+, NO, lipids, and hormones 
help in the relay of signal (Fig. 20.1). Interestingly, the induction of defense responses is 
not merely restricted to the infected tissue but it is also elaborated in uninfected as well 
as distal parts of the plant. Interestingly, phytohormones such as salicylic acid, jasmonic 
acid and ethylene play a significant role in activation of immune responses.
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Fig. 20.1  Schematic overview of cellular responses induced in host upon perception of pathogen 
attack. The pathogen possesses certain conserved structural components (MAMPS, DAMPs, 
HAMPs, NAMPs, etc.) which are recognized by cognate receptors present in host plant. Upon 
signal perception, a cascade of signal transduction events including induction of phosphorylation 
events (involving MAP kinases, CDPKs, etc.) as well as secondary signaling molecules (such as 
calcium, NO, ROS, etc.) are triggered. All these events culminate in activation of potent immune 
responses which combat most of the potential pathogens to cause disease. Notably, several phyto-
hormones such as SA, JA, ET, etc. also play important roles in elucidation of plant defense 
responses. Additionally, pathogens secrete effector molecules to inhibit plant immune responses, 
but plants have evolved resistance genes (R genes) to directly or indirectly recognize them and 
mount a strong defense response
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