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Abstract
DNA and the machinery for gene expression have been discovered in chloro-
plasts during the 1960s. It was soon evident that the chloroplast genome is small, 
that many genes for chloroplast-localized proteins must reside in the nucleus, 
and that the expression of the genes in both cellular compartments must be coor-
dinated. In the 1970s, the first evidence for plastid signals controlling nuclear 
gene expression was provided for plastid ribosome-deficient mutants. This 
review describes the discovery and the first studies on plastid-to-nucleus signal-
ing. Today, many retrograde signals are known, which coordinate plastid and 
nuclear gene expression during the development of the organelle and in response 
to environmental changes. The nucleus receives information about the flux 
through the heme branch of the tetrapyrrole pathway, the expression of plastid 
genes, the metabolite stage in the organelle, and the efficiency of the photosyn-
thetic electron flow. Singlet oxygen generated during light stress and breakdown 
products of carotenoids initiate signaling events in the organelle which alter 
nuclear gene expression. Operational signals permanently coordinate gene 
expression in both organelles. The biosynthesis of phytohormones like jasmonic, 
salicylic, and abscisic acids or cytokinins starts in the plastids, and these hor-
mones became crucial players in coordinating plastid and nuclear gene expres-
sion under stress. Methylerythritol cyclodiphosphate, a biochemical intermediate 
of the methylerythritol phosphate pathway, alters the chromatin structure in the 
nucleus which in turn affects the expression of a particular subset of stress-
inducible genes. Dual targeted proteins with plastid and nuclear locations partici-
pate in the interorganellar communication. We discuss our current knowledge 
about retrograde signaling and address open questions.
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Abbreviations

ABI4	 abscisic acid insensitive 4
β-CC	 β-cyclocitral
GLK1/2	 golden 2-like 1/2
GUN1/4/5	 genomes uncoupled 1/4/5
EX1/EX2	 executer 1/2
HDS1	 hydroxymethylbutenyl diphosphate synthase
LHCB	 gene-encoding photosystem II chlorophyll a/b binding protein
MEcPP	 methylerythritol cyclodiphosphate
Mg-protop-IX	 Mg-protoporphyrin IX
ΔPET	 impairment of photosynthetic electron transport chain
PGE	 plastid gene expression
PhANG	 photosynthesis-Associated Nuclear Genes
PQ	 plastoquinone
PRIN2	 plastid redox-insensitive 2
PSI	 photosystem I
ROS	 reactive oxygen species
SAL1	 inositol polyphosphate 1-phosphatase
TFs	 transcription factors
STN7	 thylakoid protein kinase 7
WHY1	 whirly 1

18.1	 �Discovery of Plastid Retrograde Signals and Early Steps 
in Their Function

In the 1970s, it became clear that many genes for plastid proteins must be located in 
the nucleus, because the genetic information in the organelle is too small for the 
huge amount of functions that chloroplasts, etioplasts, leucoplasts, amyloplast, or 
chromoplasts fulfill in their different cellular environments (Kirk and Tilney-Bassett 
1967; Kirk 1971; Börner et al. 1973; Bogorad 1975; Taylor 1989). More than 3000 
different proteins were identified in plastids, and it is estimated that more than 95% 
of them are encoded by nuclear genes (Leister 2005, 2016; Tiller and Bock 2014). 
The plastome of higher plants contains only approximately 100 genes for photosyn-
thesis, fatty acid biosynthesis, components of the import machinery, ribosomal pro-
teins, and RNA polymerase subunits as well as rRNAs and tRNAs. Thus, the 
expression of the genes in both compartments have to be coordinated (Brunkard and 
Burch-Smith 2018; Van Dingenen et al. 2016; Greiner and Bock 2013). An obvious 
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idea was that the expression of these genes in the nucleus are only expressed when 
the gene products are required in the organelles, therefore the nucleus should be 
informed about the stage of the plastids in a particular organ, tissue, or cell. The first 
hints for the existence of such a control mechanism came from mutants defective in 
plastid development (Börner 2017). Plastid-ribosome-deficient mutants do not only 
lack the plastid-encoded components of multiprotein complexes (such as the 
ribulose-1,5-bisphosphate carboxylase, the photosynthesis complexes, or the 70S 
ribosomes of the plastids) but also the nuclear-encoded partners. Further analyses of 
these mutants, as well as plants which were chemically or physically treated to 
inhibit plastid gene expression or development showed that the absence of the 
nuclear-encoded proteins of these multiprotein complexes is caused by the absence 
or reduction of their expression. Tom Börner (2017) recently summarized early 
steps of the discovery of plastid retrograde signals and focused on the genetic evi-
dence based on mutants with lesions in plastid functions. The historical overview 
also described the contribution of the researchers in this field and their interaction 
across the iron curtain. We only summarize a few additional historical aspects which 
were not in the main focus of Börner’s review.

With the knowledge that the small subunit of ribulose-1,5-bisphosphate carboxyl-
ase is nuclear- and the large subunit plastid-encoded, early research focused on the 
identification of the mechanisms of how the expression of the genes in the two 
genetic compartments is coordinated (Bradbeer et  al. 1979; Criddle et  al. 1970; 
Givan and Criddle 1972; Chan and Wildman 1972; Blair and Ellis 1973; Ellis 1975, 
1977; Börner et  al. 1972, 1973, 1974, 1976; Hagemann and Börner 1987; 
Reichenbächer et al. 1978). Finally, mRNA measurements for RBCS transcript levels 
(for the small subunit of ribulose-1,5-bisphosphate carboxylase) in mutants impaired 
in plastid functions let to the hypothesis that the expression of the nuclear RBCS 
genes is controlled by signals from the plastids (Mayfield and Taylor 1984, 1987; 
Oelmüller and Mohr 1986; Harpster et al. 1984; Batschauer et al. 1986; Oelmüller 
et al. 1986a, b; Burgess and Taylor 1988; Giuliano and Scolnik 1988). The studies 
were extended to other nuclear-encoded genes for plastid proteins, with a main focus 
on genes for light-harvesting chlorophyll-a/b-binding proteins (LHCPs) (Mayfield 
and Taylor 1984; Oelmüller et  al. 1986b; Oelmüller and Schuster 1987; 
Johanningmeier and Howell 1984). Physiological experiments initially demonstrated 
that LHCP expression is far more sensitive to photooxidative damage of the plastids 
than RBCS gene expression, and comparable differences were observed when plas-
tids recovered from photodamage (Schuster et al. 1988). It appeared that more than 
one signal might be involved in the interorganellar cross talk and that there might be 
specificity for individual genes in their response to the information deriving from the 
plastids. Intermediates of chlorophyll biosynthesis have been postulated as signaling 
molecules mediating plastid-to-nucleus signaling, with the main focus on LHCP 
expression (Johanningmeier and Howell 1984; Kropat et al. 1997). Furthermore, also 
etioplasts are able to inform the nucleus about the stage of the organelle, as shown 
with inhibitor studies in etiolated mustard seedlings (Oelmüller et al. 1986b).
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Tom Börner (2017) already described the interesting observation that also the 
activity and expression of nitrate reductase, an enzyme located in the cytoplasm, is 
decreased in leaves with impaired plastids, suggesting that the organelle also con-
trols non-plastidal enzymes which require functional plastids (Börner et al. 1986; 
Oelmüller et al. 1988; Mohr et al. 1992; Hess et al. 1994; Oelmüller 1989; Oelmüller 
and Briggs 1990; Sherameti et al. 2002b). Nitrate reductase activity and expression 
is induced by nitrate and light, and both stimuli are only active when functional 
plastids are present. Besides effects in the cytoplasm (Reiss et al. 1983), also peroxi-
somal enzyme activities are controlled by the state of the plastids (Bajracharya et al. 
1987). How the interorganellar signaling could occur, how specific such a signal has 
to operate, and which are the targets of plastid-derived signals in the nucleus/cyto-
plasm or peroxisomes were a matter of intensive discussion. The original studies 
were performed with plants in which chloroplast development was severely impaired 
by either mutation (Börner 2017; Bradbeer and Börner 1978; Hagemann and Börner 
1987; Bradbeer et al. 1979), chemical (Oelmüller 1989) or heat (Feierabend 1977; 
Feierabend and Schrader-Reichhardt 1976; Feierabend and Mikus 1977) treatments. 
It was difficult to imagine that these badly damaged organelles, often without any 
detectable organelle structure, repress nuclear gene expression highly specifically, 
and that only one signaling molecule is responsible for the altered gene expression 
in the nucleus. Therefore, the discussions about the nature of the information flow 
from the organelle to the nucleus ranged from organellar cross talk with information 
exchange at many levels and multiple actors to highly specific plastid-derived sig-
nals which control the expression of individual genes in the nucleus. Quite early, it 
became obvious that the regulatory scenario must be somehow coupled to light 
signaling, since all known plastid-responsive genes were also light regulated (cf. 
Lepistö and Rintamäki 2012; Lepistö et al. 2012). However, at that time, we were 
only at the beginning to understand which signaling molecules mediate light respon-
siveness, and nobody could envision at that time that light-, hormone-, and other 
signaling processes share common signaling compounds, cross talk to each other 
and integrate the information from internal and external sources (e.g., Gollan et al. 
2015).

During the discovery of plastid retrograde signaling, a similar process was 
already discussed intensively for mitochondria, based on studies with petite mutants 
from yeast. These mutants were impaired in mitochondrial functions and had severe 
alterations in the nuclear/cytoplasm cross talk, including altered expression of 
nuclear genes. The petite mutants were already discovered in the 1950 (summarized 
in Bernardi 1979) in yeast, and besides mitochondrial retrograde signals which con-
trol nuclear gene expression, also many other processes in the cytoplasm were 
affected. The available information about these mutants stimulated the discussion 
about a comparable role of plastids for nuclear gene expression and plastid-related 
enzymes located in the cytosol. Even now, plant researchers can still learn from the 
cross talk between the mitochondria and the nucleus/cytoplasm, in particular with 
regard to signaling components which transfer the information from the plastids to 
the nucleus and integrate organelle information with those from other sources. 
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Butow and Avadhani (2004) described “mitochondrial retrograde signaling as a 
pathway of communication from mitochondria to the nucleus that influences many 
cellular and organismal activities under both normal and pathophysiological condi-
tions. In yeast it is used as a sensor of mitochondrial dysfunction that initiates read-
justments of carbohydrate and nitrogen metabolism. In both yeast and animal cells, 
retrograde signaling is linked to TOR signaling, but the precise connections are 
unclear. In mammalian cells, mitochondrial dysfunction sets off signaling cascades 
through altered Ca2+ dynamics, which activate factors such as NFκB, NFAT, and 
ATF. Retrograde signaling also induces invasive behavior in otherwise nontumori-
genic cells implying a role in tumor progression.” This short description by Butow 
and Avadhani (2004) also highlights that much more has to be discovered for plastid 
retrograde signaling even now (cf. Pesaresi et al. 2006, 2007).

Initially, the expression levels of nuclear genes for plastid proteins were detected 
by their translatability in vitro, Northern analyses, and run-on transcription assays. 
In particular, the experiments by Batschauer et  al. (1986) demonstrated that the 
plastid-derived signals must control transcriptional events in the nucleus. This 
implies the involvement of nuclear-localized transcription factors and responsive 
cis-regulatory elements in the promoters of the responding genes as targets of the 
signals from the plastids. Since light-responsive cis-regulatory elements in the pro-
moter regions of light-inducible genes were studied in many laboratories at that 
time, one research direction focused on the identification of plastid-responsive ele-
ments in the promoters of genes for plastid proteins. The overall results of these 
studies uncovered that light-responsive and plastid-responsive elements were either 
identical or at least overlapping. Apparently, signals from the plastids and those 
from light converge before regulation the expression of their target genes in the 
nucleus (Kusnetsov et al. 1996). For example, Bolle et al. (1996a) showed that the 
spinach AtpC and AtpD genes for two of the three nuclear-encoded proteins of the 
plastid ATP synthase contain elements for light-regulated, plastid-dependent, and 
organ-specific expressions in the vicinity of the transcription start sites. Bolle et al. 
(1996b) also demonstrated that intron sequences are involved in the plastid- and 
light-dependent expression of the spinach PsaD gene. A number of quite short addi-
tional promoter sequence of genes for thylakoid proteins were identified to be 
involved in plastid-dependent expression (Kusnetsov et al. 1996, 1999; Oelmüller 
et al. 1993; Lübberstedt et al. 1994; Bolle et al. 1994); however a common plastid-
responsive element which is present in the promoter region of more than one gene 
for plastid proteins could not be identified (Oelmüller et al. 1993; Bolle et al. 1996a, 
b). Overall, it appears that quite different target sequences are coupled to the signals 
from the plastids and that light signals and plastid-derived signals merge before 
controlling nuclear gene expression (Bolle et  al. 1994; Kusnetsov et  al. 1996). 
Finally, Kusnetsov et al. (1999) showed that the assembly of the CAAT-box-binding 
complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the 
stage of the plastids. Apparently, also hormone signals target the same or similar 
cis-elements as plastid signals.
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While these studies support transcriptional control by retrograde signals from the 
plastids, Sherameti et  al. (2002a) investigated polyribosome loading of spinach 
mRNA species. They found that in light-grown, but not in dark-grown, spinach 
seedlings, the mRNAs for the nuclear-encoded photosystem (PS) I subunits D, F, 
and L are associated with polyribosomes, and this association is prevented by the 
application of 3-(3′,4′-dichlorophenyl)-1,1′-dimethyl urea (DCMU), an inhibitor of 
the photosynthetic electron transport. To identify the cis-elements which are respon-
sible for this regulation, they generated a series of chimeric PsaD constructs and 
tested them in transgenic tobacco. The spinach PsaD 5′-untranslated region is suf-
ficient to confer light- and photosynthesis-dependent polyribosome association onto 
a reporter gene, while the tobacco PsaD 5′-untranslated region directs constitutive 
polyribosome association. These results suggest that signals from photosynthetic 
electron flow control also posttranslational events. Thus, retrograde signals may be 
involved in quite different steps of nuclear gene expression, from transcription in 
the nucleus to the efficiency of the translation of specific mRNAs in the cytoplasm. 
Since the main focus on the research was directed toward transcriptional control, 
and the nature of the signals from the plastids, posttranscriptional events controlling 
the translatability and stability of specific RNA species were only considered much 
later.

A breakthrough in the research on retrograde signaling came with the identifica-
tion of the gun (genomes uncoupled) mutants in Joanne Chory’s laboratory (Susek 
et al. 1993). They used Arabidopsis plants with an LHCP reporter gene construct 
and screened for mutants which express the nuclear gene in seedlings in which 
plastids were destroyed by photooxidative damage due to inhibition of carotenoid 
biosynthesis with Norflurazon, an inhibitor that blocks carotenoid biosynthesis and 
thus leads to photooxidative destruction of the plastids. The herbicide treatment 
results in the downregulation of LHCP gene expression, and the mutants thus 
uncouple the expression from the state of the plastids. Ultimately, six GUN genes 
were identified, five of them are related to tetrapyrrole biosynthesis. This showed 
that at least one retrograde pathway is based on Mg-ProtoporphyrinIX, the first 
intermediate in the chlorophyll branch of the tetrapyrrole biosynthetic pathway 
(Nott et  al. 2006; Pogson et  al. 2008; Woodson et  al. 2011). The sixth protein, 
GUN1, is a chloroplast-localized PPR protein (Nott et al. 2006, cf. below).

18.2	 �Nature of the Plastid Signal

Quite early after the discovery of chloroplast retrograde signaling, four different 
starting points in the organelle have been postulated: components of the tetrapyrrole 
biosynthesis, products deriving from chloroplast gene expression, chloroplast redox 
homeostasis, and photosynthesis-derived reactive oxygen species (ROS). Later, 
after the discovery that the whole scenario is more complex than anticipated that far, 
the retrograde signals were classified as those exerting biogenic control during early 
chloroplast development in seedlings which leads to the transition from etioplast to 
chloroplast development, and operational signals that inform the nucleus about the 
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state of the mature and functional organelle (e.g., in Brunkard and Burch-Smith 
2018; Kleine and Leister 2016; de Souza et al. 2017). This includes the efficiency of 
photosynthetic electron transport but also metabolite requirements of the cell from 
the plastids or compounds such as hormone precursors and secondary metabolites 
including volatiles to respond to stress or pathogens. Ultimately, with the identifica-
tion of specific metabolites as retrograde signals, such as methylerythritol cyclodi-
phosphate (MEcPP) (Xiao et al. 2012), the role of plastidal control on phytohormone 
synthesis and signaling for biotic stress responses became an important facet in the 
cross talk scenario. The nature of the plastid signals and the cross talk with nucleus 
in regulating the expression of genes is depicted in Fig. 18.1.

Plastid gene expression                          Redox status                                  Metabolites

Tetrapyrroles Reactive oxygen species Hormones

Biogenic and operational signals
Proteins, metabolites, ROS 

PQ pool
∆PET

1O2

H2O2

PAP
MEcPP
β-CC    

ABA
SA

Gene regulation
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Fig. 18.1  Schematic diagram depicting the retrograde signaling pathways originating from chlo-
roplasts. Plastid-to-nucleus retrograde signaling can be classified into two processes: “biogenic 
signals” that are relayed to the nucleus during early chloroplast development and “operational 
signals” that inform the nucleus about the state of the mature and functional organelle. Sensing and 
processing of plastid signals are mediated by diverse pathways, some of which appear to be inter-
connected through proteins, metabolites, and/or ROS. The pathways include various components 
of plastid genes expression, tetrapyrrole synthesis, redox state of photosynthetic electron transport, 
and chloroplast metabolite stage as well as different kinds of reactive oxygen species and hor-
mones (green arrowheads). Several regulatory proteins have been found to be involved in signal 
transduction (orange). The signals cause transcriptional responses and may influence chromatin 
modeling and/or post-transcriptional processes in the nucleus and cytoplasm. Targets of nuclear 
gene regulation (gray boxes) frequently include transcription factors (orange)
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18.2.1	 �GUN1, a Biogenic Control Signal

Functional plastid gene expression (PGE) is crucial to initiate the expression of 
Photosynthesis Associated Nuclear Genes (PhANG) during early chloroplast devel-
opment (Koussevitzky et  al. 2007). In this process, perturbation of plastid gene 
expression triggers retrograde signals that control nuclear gene expression. Evidence 
for this type of regulation comes from studies with inhibitors of plastid translation 
and transcription (Oelmüller et al. 1986a, b; Gray et al. 1995; Woodson et al. 2013). 
The inhibitory effect can be attributed to a decline in protein synthesis rate in plas-
tids or a blockade in chloroplast development. Genetic analysis placed GUN1 in the 
PGE pathway as an important factor (Koussevitzky et al. 2007). GUN1 is a pentatri-
copeptide repeat protein (PPR) that was originally identified in a screen with other 
gun mutants which were involved in the tetrapyrrole biosynthesis (Susek et  al. 
1993). However, GUN1 is not involved in this pathway and operates differently. It 
has been shown that only in gun1 mutants, mRNA levels of the photosynthesis-
related genes LHCB1 and RBCS are altered in the presence of lincomycin, whereas 
these genes are sensitive to the treatment in the gun2, gun3, gun4, and gun5 mutants 
(Susek et al. 1993; Mochizuki et al. 2001; Larkin et al. 2003).

Based on its evolutionary relationships with other members of the PPR family, a 
role in nucleic acid recognition can be assigned (Lurin et  al. 2004; Barkan and 
Small 2014), although the experimental evidence of such conclusion remains scarce 
(Koussevitzky et al. 2007; Tadini et al. 2016). Recent studies found now that it inter-
acts with multiple proteins, likely in a transient manner. Among the interacting part-
ners are those involved in plastid transcription, translation, and protein homeostasis 
as well as tetrapyrrole biosynthesis enzymes (Tadini et al. 2016). According to this 
work, GUN1 appears to modulate the formation of protein complexes in the chloro-
plast. The authors further suggested that retrograde signaling might be linked to 
GUN1-dependent formation of protein complexes (Tadini et  al. 2016; Colombo 
et al. 2016).

The GUN1 protein was associated with signals which are based on perturbations 
of plastid translation and transcription, as well as oxidative stress induced by carot-
enoid deficiency. The current model proposes that GUN1 integrates several signals 
originating from chloroplasts (e.g., signals related to the tetrapyrrole biosynthesis 
pathway, PGE-triggered retrograde signals, signals derived from the photosynthetic 
electron transport chain) and subsequently controls downstream nuclear gene 
expression (Koussevitzky et al. 2007; Woodson et al. 2011; Kindgren et al. 2012; 
Pfalz et  al. 2012; Hernández-Verdeja and Strand 2018; Colombo et  al. 2016). 
However, the exact mechanism of signal transduction by GUN1 and downstream 
components has not yet been fully understood. Recent work suggested that plastid-
derived signals upon stress induction direct the plant homeodomain transcription 
factor PTM from the chloroplast outer envelope membrane into the nucleus, where 
it regulates PhANG expression. Furthermore, genetic analysis provided a molecular 
link to GUN1-mediated responses (Sun et  al. 2011), although some controversy 
remains (Page et al. 2017). Downstream, the nucleus-localized transcription factors 
ABA INSENSITIVE 4 (ABI4) and Golden 2-Like1/2 (GLK1/GLK2) appear to be 
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major determinants for transcription (Brunkard and Burch-Smith 2018). GUN1 
activates ABI4, an ERF/AP2 transcription factor which negatively regulates the 
expression of PhANGs (Koussevitzky et  al. 2007). GUN1 also represses glk1/2 
transcription, which positively regulate expression of PhANGs and promote photo-
morphogenesis by antagonizing PHYTOCHROME-INTERACTING FACTORs 
(PIFs) (Waters et al. 2009; Martin et al. 2016). PIFs promote skotomorphogenetic 
development in dark-grown seedlings. Based on recent genetic information, activi-
ties of ABI4 and GLK1/2 represent two independent GUN1-mediated signaling 
events, in which phytochrome and retrograde signals converge antagonistically to 
control nuclear transcription during dark-to-light transition (Martin et al. 2016).

18.2.2	 �Redox, an Operational Signal

Imbalanced energy distribution between PSII and PSI generates redox signals 
within the plastoquinone (PQ) pool that controls both nuclear and plastid gene 
expression (Pfannschmidt et al. 1999; Fey et al. 2005; Dietzel et al. 2015). Likewise, 
it has been shown that redox states of acceptor or donor components of the PSI 
induce changes in the expression of nuclear genes for plastid proteins (Baier et al. 
2004; Piippo et  al. 2006; Barajas-López et  al. 2013). Tuning gene expression to 
fluctuating light condition is necessary to maintain the efficiency of photosynthesis 
and metabolism and allows plants to survive unfavorable conditions. In this per-
spective, plants have developed mechanisms for both short- and long-term regula-
tory adaptations. A rapid reaction, a so-called short-term response, is state transition 
for balancing light energy distribution between the PSs by lateral movement of the 
LHCII antenna (Bellafiore et al. 2005; Bonardi et al. 2005). It takes place in a range 
of seconds or a few minutes. The details of molecular processes during short-term 
adaptation have been reviewed elsewhere (Dietzel et al. 2008; Rochaix 2013a, b). 
Longer term acclimation responses, which proceed at a slower tempo, are related to 
cellular strategies keeping PS stoichiometry adjusted to external light variations. 
This includes complex sensing and signaling pathways which regulate gene expres-
sion. Here, we focus on the role of redox signals from photosynthesis in regulation 
of nuclear gene expression. For details of the redox-regulatory mechanism control-
ling plastid gene expression see reviews by Barajas-López et al. (2013) and Dietzel 
et al. (2008).

Light acclimation and the molecular mechanism underlying this process have 
been an intense focus in recent years (Karpiński et al. 2013). Early evidence that 
redox-signals emanating from the photosynthetic electron transport chain regulate 
nuclear gene expression (e.g., genes associated with photosynthesis) was first dem-
onstrated in the green algae Dunaliella tertiolecta (Escoubas et al. 1995; Maxwell 
et al. 1995). Escoubas et al. (1995) showed that light intensity alters the transcrip-
tional activity of LHCB genes during photoacclimation and concluded that the 
changes in gene expression are associated with changes of the redox state of the PQ 
pool, as LHCB expression levels increased or decreased upon application of the 
selective chemical photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl 
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urea (DCMU) or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 
respectively. A redox-regulatory mechanism on the expression of nuclear genes by 
the redox state of the PQ pool was also found in higher plants. In Arabidopsis, for 
example, an increase in transcript abundance of two cytosolic ascorbate peroxidase 
genes (APX1 and APX2) was measured in response to high light and DCMU treat-
ments (Karpinski et al. 1997). Subsequent studies revealed a link between cytosolic 
defense mechanism and the redox state of the PQ pool by which H2O2 might act as 
a systemic signal molecule (Karpinski et al. 1999). In the following decade, a few 
single nuclear genes related to photosynthesis have been identified to be regulated 
in response to light intensity as well as light quality by photosynthetic redox signals 
(Petracek et al. 1998; Pursiheimo et al. 2001; Eguchi et al. 2002; Pfannschmidt et al. 
2001). These signals effect nuclear gene expression on almost all levels, including 
the regulation of transcription, stability, and translational efficiency (Pfannschmidt 
et al. 2003). The application of array-based technologies combined with physiologi-
cal and genetic analyses have facilitated discovery of redox-responsive genes 
through comparison of the expression profiles of Arabidopsis plants exposed to 
wavelengths that preferentially excited either PSII or PSI (Fey et al. 2005; Piippo 
et  al. 2006; Bräutigam et  al. 2009; Pesaresi et  al. 2009). Besides transcriptional 
control of photosynthesis-related genes, light quality shifts also effected the expres-
sion of genes involved in regulation, signal transduction, gene expression, stress 
responses, transport, and metabolism. According to the observed dynamics of tran-
scriptional changes, redox signals rapidly (within 30 min to 2 h) alter the transcrip-
tome pattern, with significant temporal changes during the period of 48  h light 
acclimation (Bräutigam et al. 2009). Related efforts by Dietzel et al. (2015) exhib-
ited a set of early regulated genes. They fell into functional groups with defined 
processes including genes for the mitochondrial electron transport chain, tetrapyr-
role biosynthesis, photosynthesis, and lipid metabolism. The light shift experiments 
showed expression profiles that were clearly different from those in plants exposed 
to high light treatments (Jung et al. 2013). In summary, these studies emphasize that 
the mechanism triggering the changes in expression of nuclear genes involves 
diverse redox signals emanating from the photosynthetic electron transport chain 
(Barajas-López et al. 2013; Hernández-Verdeja and Strand 2018). The existence of 
different sets of regulatory genes suggest a complex relationship between sensing, 
signaling, gene expression, and adaptation to the environment and may reflect a 
high degree of variability in light acclimation capabilities.

Efforts in understanding the transduction pathway of signals in response to the 
redox state of the photosynthetic machinery have combined multiple genetic and 
physiological analyses, but an answer still remains elusive. In this context, a 
phosphorylation-mediated signal cascade has been suggested. Among the compo-
nents to be discovered, the STN7 kinase, which induces state transition to ensure 
balanced excitation within the photosynthetic system (Bellafiore et al. 2005; Bonardi 
et al. 2005), has been proposed to transduce signals due to its redox-sensitive kinase 
activity (Pesaresi et al. 2009, 2011; Bräutigam et al. 2009). However, studies by 
Tikkanen et al. (2012) have shown that the genetic disruption of stn7 in Arabidopsis 
does not fully inactivate the redox signaling pathway, indicating that STN7 is not 
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essential for this process. In this work, STN7 was proposed to exert its signaling 
effect by maintaining the steady-state phosphorylation of the light-harvesting II 
proteins and the redox balance in the thylakoid membrane, thereby controlling chlo-
roplast ROS homeostasis. In turn, alterations in redox homeostasis trigger signals 
that regulate the entire cellular network, probably by modification of hormone-
mediated pathways (Tikkanen et al. 2012).

18.2.3	 �Metabolite Stage of Cell in Retrograde Signaling

Besides highly specific signaling molecules (cf. below) which potentially leave the 
organelle and control nuclear gene expression, changes in metabolite concentra-
tions or intermediates of biochemical pathways are likely to be involved in the inter-
organellar cross talk (Estavillo et al. 2013; Brunkard and Burch-Smith 2018). The 
metabolite state in the cell or in a subcellular compartment permanently changes 
and is redirected according to the requirements of the organism. These changes 
result in the alteration of expression of the genes which are involved in the redirec-
tion of the metabolite pathways. Metabolite changes in the organelle, caused by, for 
instance, changes in light conditions, externally applied abiotic or biotic stresses or 
nutrient shortages, pathogen attack, and also developmental processes which result 
in a specific metabolite requirement at a particular place, time and organ, or circa-
dian rhythm, cause appropriate changes in the metabolite profiles outside of the 
plastid in the cytoplasm, and consequently altered expression of responsive nuclear 
genes (Kleine and Leister 2016). Therefore, it is reasonable to assume that the 
nucleus is permanently informed about metabolite alterations in the organelle, 
either directly or indirectly due to metabolite adjustments between the plastid and 
cytoplasmic compartments, and adjusts its gene expression profile according to the 
metabolomic situation. This is particularly striking since many essential metabolites 
required for cellular functions and plant development are synthesized in the plastids 
and are exported into the cytoplasm. Obviously, metabolite concentrations represent 
an additional source of retrograde signaling during plant growth and upon responses 
to stress (Chi et al. 2013, 2015). Metabolite fluxes with plastidal involvement have 
been reviewed repeatedly and include carbon (Demmig-Adams et al. 2017; Tamoi 
and Shigeoka 2015), sulfur (Przybyla-Toscano et  al. 2018; Eisenhut et  al. 2015; 
Hanke and Mulo 2013; Tripathy et al. 2010; Hawkesford and De Kok 2006), nitro-
gen (Otori et al. 2017; Dörmann et al. 2014), and phosphorous (Karlsson et al. 2015; 
Rausch and Bucher 2002). Recently, de Souza et al. (2017) summarized the cross 
talk of multiple signaling events from mitochondria and plastids to coordinate 
nuclear gene expression and proposed that retrograde signals act as integrators of 
interorganellar communication and orchestrators of plant development. 
Interorganellar communication signals mediate reallocation of metabolic resources 
and energy currencies to balance growth and development against adaptive 
responses. Kleine and Leister (2016) highlight genetic screens which have already 
been performed and should be extended in the future to identify additional compo-
nents in the cross talk. Metabolite profiling combined with bioinformatic tools is 
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also a promising approach to identify novel players which are directly involved in 
retrograde signaling. Overall, it is reasonable to assume that changes in metabolite 
concentrations integrate information from the plastids, peroxisomes, mitochondria, 
the cytosol, as well as extracellular regions to regulate the activity of already exist-
ing signaling pathways and molecules to adjust nuclear gene expression.

Metabolite transporters in the plastid envelope membrane play a crucial role in 
the connection of plastidal and cytoplasmic metabolite pools. One would expect 
that they are of prokaryotic origin; however, the story appears to be more complex 
(cf. Weber and Linka 2011). A connection between the organellar metabolism and 
the host cell was probably an important issue after establishment of the symbiosis, 
and it must have been established early in evolution. The plastidic phosphate trans-
locators were the first transporters identified in the plastid envelope. The discovery 
of triose phosphate/phosphate translocator, glucose 6-phosphate/phosphate translo-
cator, xylulose 5-phosphate/phosphate translocators, and phosphoenolpyruvate/
phosphate transporter highlights the important role of phosphate homeostasis 
between organelles and cytoplasm. Nucleotide carriers facilitate exchange of this 
essential metabolite across the organellar membrane. ADP/glucose, folate, 
S-adenoylmethionine, ATP and NAD carriers, dicarboxylate, glycolate and glycer-
ate, maltose and glucose, as well as amino acid transporters are well known. Some 
of them are members of the mitochondrial carrier family and were redirected to the 
plastid envelop in the evolution. The function and evolution of these transporters are 
summarized by Weber and Linka (2011). This also highlights the importance of the 
metabolite exchange between the plastids, cytoplasm, and other cellular subcom-
partments, which consequently affects the expression of metabolite-related genes in 
the nucleus (Eisenhut et al. 2015; Mehrshahi et al. 2014; Linka and Theodoulou 
2013; Flügge et  al. 2011; Linka and Weber 2010; Weber and Fischer 2007; 
Hawkesford and De Kok 2006; Weber 2004). Thus, plastid metabolite levels might 
have an indirect effect on nuclear gene expression.

18.3	 �Specific Plastid Metabolites Control Specific Sets 
of Nuclear Genes

18.3.1	 �Tetrapyrroles

The role of more specific metabolites located in the plastids for the expression of 
nuclear genes has been investigated intensively. As mentioned above, five gun 
(gun2–6) mutants affect the branch point in the tetrapyrrole pathway (Susek et al. 
1993; Larkin et al. 2003; Strand et al. 2003; Mochizuki et al. 2001, 2008; Moulin 
et al. 2008; Woodson et al. 2011; Thomas and Weinstein 1990). Protoporphyrin IX 
is chelated with iron by the ferrochelatase 1 or 2. The Fe-containing heme either 
remains in the plastids or further metabolizes to phytochromobilin, which is 
exported and associated with the apoprotein of phytochromes in the cytoplasm. The 
gun2 and gun3 mutants are affected in the conversion of heme to phytochromobilin. 
Alternatively, protoporphyrin IX is chelated with magnesium for chlorophyll 
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biosynthesis. The gun4 and gun5 mutations prevent the insertion of magnesium. 
GUN5 is the H subunit of Mg-chelatase, and GUN4 binds the substrate of the 
Mg-chelatase reaction and activates the enzyme. Independent evidence of the 
involvement of chlorophyll precursors in the retrograde signaling came from the 
analysis of LHCP gene expression in Chlamydomonas (Johanningmeier and Howell 
1984; Kropat et al. 1997, 2000). Whether one of the intermediates of the pathway 
triggers retrograde signaling and if so which of them is involved in it remains an 
open question. In the heme branch of the tetrapyrrole biosynthesis, the plastid fer-
rochelatase 1 synthesizes heme which results in the stimulation of nuclear gene 
expression. gun6 overexpresses the plastid-localized ferrochelatase 1, stimulates the 
flux through the heme branch of the tetrapyrrole pathway and the expression of the 
responsive genes in the nucleus. Therefore, it has been postulated that heme is a 
positively acting retrograde signal for nuclear genes (Woodson et al. 2011). Heme 
is also known to be released from the organelle (Thomas and Weinstein 1990), 
which further supports the idea. Finally, algae like Chlamydomonas synthesize bil-
lin, which might have a similar signaling function (discussed in Duanmu et  al. 
2013). In contrast, Mg-protoporphyrin IX represses the responding genes in the 
nucleus. Whether Mg-protoporphyrin IX acts as negative signal (Strand et al. 2003) 
or heme as positive signal (Woodson et al. 2011), or both metabolites are involved, 
remain an open question. Currently, it appears more likely that the flux through the 
two branches of the pathway might activate so far unknown signaling compounds in 
the plastids, which trigger retrograde signaling.

18.3.2	 �Singlet Oxygen (1O2) and Carotenoids

It is long known that reactive oxygen species (ROS) trigger nuclear gene expres-
sion (Galvez-Valdivieso and Mullineaux 2010), whereas the responding genes 
depend largely on the amount of location of ROS in and around the cell: low ROS 
levels have often signaling functions whereas high ROS levels are lethal. In photo-
synthetically highly active chloroplasts, singlet oxygen is produced in huge 
amounts, which is associated with the damage at the thylakoid membrane and 
altered gene expression in the nucleus (e.g., Kim and Apel 2013a; Ramel et  al. 
2012; Laloi et al. 2006). Originally proposed as retrograde signal, the short half-
life of singlet oxygen suggests that it is unable to leave the organelle; however, it 
reacts with numerous compounds in its direct environment including carotenoids 
which have ROS-quenching functions (Ramel et  al. 2012; 2013a). One of the 
carotenoid oxidation products is β-cyclocitral (β-CC), a volatile, which induces 
massive alteration of nuclear gene expression when applied to leaves in physiologi-
cally relevant concentrations (Ramel et al. 2012). The list includes 1O2-responsive 
genes (Ramel et al. 2012, 2013b), genes involved in light-stress acclimation (Lv 
et al. 2015), but also ISOCHORISMATE SYNTHASE 1 (ICS1), which synthesizes 
salicylic acid (SA) in the organelle. Elevated SA levels in the cell stimulate nuclear 
localization of NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 
(NPR1) which in turn activates SA-responsive genes (Lv et al. 2015). We are only 
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at the beginning to understand how the abiotic and biotic stress acclimation 
responses are linked (cf. Maruta et  al. 2012, 2016; Padmanabhan and Dinesh-
Kumar 2010) and what is the exact role of events in the plastid that affect the 
expression of the genes in the nucleus. Nevertheless, as lipid-soluble volatile β-CC 
appears to be an ideal candidate for retrograde signaling, β-CC is not the only or 
the most important singlet oxygen-derived signaling compound. Apocarotenoids 
as enzymatic cleavage products of carotenoids may also have signaling functions 
(Auldridge et al. 2006; Avendaño-Vázquez et al. 2014). However, there must be 
additional pathways involved in the cross talk between the two organelles which 
become activated after singlet oxygen generation. Klaus Apel’s group demon-
strated that the nuclear-encoded and plastid-localized EXECUTER1 and 
EXECUTER2 (Lee et al. 2007) are required for the activation of an independent 
plastid-localized signaling pathway by singlet oxygen, and the target genes in the 
nucleus differ from those responding to β-CC (Lee et al. 2007; Ramel et al. 2012). 
Single oxygen plays a crucial role in programmed cell death (PCD). Green leaves 
initiate PCD to restrict pathogen growth and distribution, a process that is stimu-
lated by or even dependent on light perceived by photosynthesis. The fluorescent 
(flu) mutants show these lesions in the absence of any pathogen in light, but not in 
the dark. They accumulate excess protochlorophyllide in the dark, which are pho-
tosensitizing agents after transfer of the plants from the dark to light where they 
synthesize the toxic single oxygen leading to PCD phenotypes (Meskauskiene 
et al. 2001; op den Camp et al. 2003; Kim and Apel 2013a, b). EXECUTER1 and 
EXECUTER2 are required for the transduction of the single oxygen signal to the 
nucleus to initiate the PCD responses (Wagner et  al. 2004). EXCECUTER1 is 
degraded in the flu mutants by the FtsH2 protease (Wang et al. 2016; Dogra et al. 
2017). Obviously, high EXECUTOR1 levels are necessary for retrograde signaling 
from the plastids to the nucleus (Wang et al. 2016; Dogra et al. 2017) and are cru-
cial for the survival of a cell.

18.3.3	 �3′-Phosphoadenosine 5′-Phosphate

3′-Phosphoadenosine 5′-phosphate (PAP) is proposed as a retrograde-active 
metabolite and accumulates, under stress conditions such as drought or high light, 
in plastids (Estavillo et al. 2011). The plastid- and mitochondria-localized enzymes 
SAL1 dephosphorylate PAP to AMP (Klein and Papenbrock 2004; Wilson et al. 
2009) and a mutant of the plastid SAL1 protein accumulate high levels of PAP, 
similar to exposure of wild-type plants to stress (Rossel et al. 2006; Estavillo et al. 
2011). In contrast, constitutively high levels of SAL1 in either the nucleus or the 
plastids result in lower PAP levels, even when the enzyme is expressed in the other 
compartment, suggesting that the metabolite can travel in the cell. Based on these 
and additional studies, it was proposed that accumulation of PAP stimulates the 
expression of nuclear-encoded stress genes, in particular those for antioxidant 
enzymes, including ascorbate peroxidase 2 (APX2), which was used for an initial 
mutant screen (Rossel et  al. 2006). Targeting of SAL1 to either the nucleus or 
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chloroplasts decreased the PAP levels and consequently APX2 expression (Estavillo 
et al. 2011). Since PAP appears to move between the plastid and cytoplasm, prob-
ably by a specific transporter (Gigolashvili et al. 2012), it fulfills a major criteria as 
retrograde signal. PAP is also produced during sulfonation reactions, whereby sul-
fate is transferred from PAPS to different metabolic substrates (Klein and 
Papenbrock 2004), and PAP is released during this reaction. However, quite inter-
esting is the observation that PAP binds irreversibly to yeast 5′-3′ exoribonucleases 
and inhibits their activities (van Dijk et al. 2011). It appears that also in plants, PAP 
can alter RNA metabolism and thus acts posttranscriptionally. Although there is no 
doubt that PAP fulfills all criteria to transfer stress information from the plastids to 
the nuclear/cytoplasmic compartment, there might be many more such metabolites 
with similar functions.

18.4	 �Methylerythritol Cyclodiphosphate (MEcPP) 
as Defense-Related Retrograde Signal

MEcPP is a biochemical intermediate of the methylerythritol phosphate (MEP) 
pathway for the isoprenoid synthesis in chloroplasts (Vranova et al. 2013; Banerjee 
and Sharkey 2014). Not surprisingly, inhibition of this pathway leads to severe 
lesions in growth and development. The stress-inducible metabolite was identified 
as a plastid retrograde signal, which alters the chromatin structure in the nucleus 
that in turn affects the expression of a particular subset of stress-inducible genes 
(Xiao et al. 2012, 2013). Expression of the hydroperoxide lyase (HPL) and isocho-
rismate synthase1 (ICS1) genes is altered in isolated mutants, and this results in 
increased SA levels, a phytohormone which confers resistance against biotrophic 
pathogens such as Pseudomonas syringae (Xiao et al. 2012). The authors showed 
that SA accumulation and the induction of the HPL gene are caused by the plastidal 
metabolite MEcPP and are not due to a general stress response due to the manipula-
tion of the MEP pathway in the mutants (Xiao et al. 2012). MEcPP application also 
regulates HPL expression directly, confirming that the metabolite is active and plays 
a role as stress sensor in plastids. MEcPP is also present in bacteria and accumulates 
upon exposure to oxidative stress (Ostrovsky et al. 1992, 1998), suggesting a con-
served mechanism of its occurrence and action during abiotic stresses (Walley et al. 
2015; Xiao et  al. 2012, 2013). Interestingly, MEcPP can disrupt histone H1-like 
protein interaction with DNA, which suggests that the metabolite remodels the 
chromatin structure to allow expression of stress-related genes (Grieshaber et al. 
2004, 2006). MEcPP is probably the most direct evidence for the existence of 
metabolites in the plastid that control transcription in the nucleus. Besides func-
tional conservation in evolution, it also differs from tetrapyrrole signaling, for which 
changes in flux rates play an important role for signal initiation. However, how 
MEcPP travels from the organelle to the nucleus is not known yet. Furthermore, 
MEcPP also highlights the important role of the plastid for biotic stress responses, 
in which SA and jasmonic acid (JA) are crucial phytohormones (Nomura et  al. 
2012; cf. below).
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18.5	 �Dual Targeted Proteins in Plastids and Nucleus: 
Function as Transmitters or Integrators of Information?

Retrograde signal transduction is initiated by signaling molecules that are produced 
in and exported from plastids and then enter the nucleus to regulate the expression of 
appropriate genes. Signal transduction from plastids (and/or mitochondria) to the 
nucleus may also occur through the movement of proteins (Krause et al. 2012), such 
as transcription factors like PTM (for PHD type transcription factor with transmem-
brane domains), a chloroplast envelope-bound plant homeodomain transcription fac-
tor with transmembrane domains (Sun et  al. 2011), PEND, a plastid envelope 
DNA-binding protein (Terasawa and Sato 2009), or WHIRLY1 (WHY1; Miao et al. 
2013; Ren et al. 2017; Desveaux et al. 2004; Foyer et al. 2014; Isemer et al. 2012), a 
protein with specific functions in both organelles. Distinct retrograde signals may 
converge at PTM in the plastids, which then transmit common signals to the nucleus 
(Sun et al. 2011). In the nucleus, PTM promotes ABI4 transcription upon high light 
treatments. ABI4 was proposed to be involved in the integration of three plastids as 
well as mitochondrial retrograde signals (Koussevitzky et al. 2007). Retrograde sig-
naling via members of the AP2/EREBP transcription factor gene family plays a role 
in the connection of metabolic, hormonal, and environmental signals during stress 
acclimation (Dietz et al. 2010). These examples demonstrate that signal information 
can also be transferred from plastids to the nucleus by traveling proteins. How this 
occurs is a matter of discussion. They might participate in signal integration in the 
plastids before transfer of the information to the nucleus (Koussevitzky et al. 2007). 
Others are part of signaling pathways or respond to them which are activated by dif-
ferent stimuli from outside of the plastids. This allows them to integrate information 
from plastids with those from other extraplastidic sources. Some of the proteins like 
WHY1 have defined functions in each of the organelle (Desveaux et al. 2004; Miao 
et al. 2013; Foyer et al. 2014; Isemer et al. 2012; Ren et al. 2017). As mentioned 
above, dual targeted proteins are often transcription factors or regulators of gene 
expression when they are in the nucleus. Since more and more dual targeted proteins 
with quite different functions are described (cf. Krause and Krupinska 2009; Nevarez 
et al. 2017; Mazzoleni et al. 2015; Gile et al. 2015; Langner et al. 2014; Ge et al. 
2014; Berglund et al. 2009; Rokov-Plavec et al. 2008; Millar et al. 2006), it appears 
that there is a need for intensive investigations, including the import of nuclear-
encoded proteins into the organelle (Inaba 2010; Inaba et al. 2011).

A well-studied example for a dual-targeted protein is WHY1. Like other members 
of the WHIRLY protein family, they perform numerous cellular functions in both 
locations (Krause et al. 2005; Grabowski et al. 2008; Miao et al. 2013; Ren et al. 
2017; Foyer et al. 2014). These proteins were first discovered as nuclear transcrip-
tional activators binding an elicitor response element in the promoter regions of 
pathogenesis-related genes in potato and Arabidopsis (Desveaux et al. 2000, 2004). 
They bind to various DNA sequences, including telomeres (Yoo et al. 2007), a distal 
element upstream of a kinesin gene (Xiong et al. 2009), the promoter region of the 
early senescence marker gene WRKY53 in a development-dependent manner in 
Arabidopsis (Miao et al. 2013), and the promoter region of the senescence-associated 
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gene HvS40 which was induced during natural and stress-related senescence in bar-
ley (Krupinska et al. 2013). In plastids, WHY1 is present in the transcriptional active 
chromosome (TAC, Pfalz et al. 2006) and nucleoid preparations although it can be 
purified away from the transcriptional activity (Melonek et al. 2010) and binds to 
both single-stranded DNA and RNA with a role in intron splicing in maize chloro-
plasts (e.g., Prikryl et al. 2008). In barley chloroplasts, WHY1 also was found to be 
associated with intron-containing RNAs (Melonek et  al. 2010). Moreover, the 
Brission group demonstrated that WHY proteins in organelles function as antirecom-
binant proteins favoring accurate DNA repair to maintain organellar genome stability 
(Cappadocia et al. 2010, 2012; Lepage et al. 2013). These results suggest that WHY 
proteins might function differently depending on their intracellular localization and/
or the developmental stage of the plant (Ren et al. 2017). Recently, the Miao group 
constructed “compartmental mutants” of WHY1 that differentially accumulate dif-
ferent isoforms of the WHY1 protein in plastids (pWHY1) or nuclei (nWHY1) of 
Arabidopsis. Based on these mutants, the group identified differentially expressed 
nuclear genes in plants with constitutive and inducible pWHY1 or nWHY1 versions. 
The results shine new light on the role of WHY1 in integrating metabolic, hormonal, 
and environmental signals in retrograde signaling. In particular, the group demon-
strates that WHY1-mediated retrograde signals involve ROS (H2O2)- and 
SA-dependent compounds and are integrated into known signaling events. The quite 
strong phenotypes of the compartmentalized WHY1 mutants generated in the Miao 
lab in response to external signals will be important tools to unravel the function of 
the dual targeted protein in the interorganellar cross talk.

18.6	 �The Role of Plastids in Stress Response: Importance 
for Retrograde Signaling?

Biogenic control signals inform the nucleus about developmental changes of the 
organelles, such as the development of chloroplasts from etioplasts or proplastids. 
Operational signals, such as redox signals inform the nucleus about the events that 
occur in functional plastids/chloroplasts such as the efficiency of the photosynthetic 
electron transport. Dramatic changes in nuclear gene expression occur also when the 
plants are exposed to stress (Fernández and Strand 2008). Abiotic stresses such as 
drought are counteracted by the synthesis of the phytohormone abscisic acid, biotic 
stresses involve SA and JA. Other plastid-related hormones such as cytokinins also 
participate in defense responses (Chan et al. 2010, 2016). Since the synthesis of these 
hormones starts in the plastids (SA is also synthesized in the cytoplasm), and is 
strongly stimulated upon stress, the organelle plays the essential role in the response 
of the cell to stress. Furthermore, SA accumulates in response to the retrograde sig-
naling metabolite MEcPP and in response to the plastid-localized isoform of WHY1, 
connecting phytohormones to other retrograde signaling. Finally, MEcPP is a regula-
tor of SA and JA cross talk (Lemos et al. 2016). Since these phytohormones strongly 
activate defense genes in the nucleus upon stress or pathogen attack, phytohormones 
also play a crucial role in retrograde signaling.
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18.6.1	 �Salicylic Acid

Salicylic acid (SA) in plants is synthesized via two biosynthetic pathways: the 
plastid-localized isochorismate synthase (ICS) and the cytosolic phenylalanine 
ammonia lyase (PAL) pathways. Both pathways use chorismate as precursor, which 
is synthesized via the shikimate pathway in plastids (Poulsen and Verpoorte 1991; 
Schmid and Amrhein 1995). The plastid-localized isochorismate pathway is the 
main source of SA upon exposure of the plant to abiotic stress or pathogen attacks 
(Vlot et al. 2009; Dempsey et al. 2011). Furthermore, SA is the main defense hor-
mone upon attack of plant by biotrophic pathogens, while necrotrophic pathogens 
activate the JA defense pathway. SA is also involved in a number of developmental 
processes (Martínez et al. 2004; Morris et al. 2000; Zhang et al. 2013; Abreu and 
Munné-Bosch 2009; Seguel et  al. 2018) in which not only chloroplasts but also 
other types of plastids participate. The plastid-localized enzyme ICS1 (Strawn et al. 
2007) converts chorismate to isochorismate which is subsequently converted to SA 
by a so-far unknown organellar enzyme. The SA biosynthesis is negatively regu-
lated by an autoinhibitory feedback loop operating around ICS1. Export of SA from 
the chloroplast to the cytoplasm is mediated by the multidrug and toxin-extrusion 
transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) in the chloro-
plast envelope. Interestingly, analysis of the eds5 mutant in Arabidopsis has demon-
strated that SA is trapped in the chloroplast of the mutant and inhibits its own 
accumulation by the autoinhibitory feedback mechanism which couples SA export 
to its synthesis (Serrano et al. 2013; Yamasaki et al. 2013).

The cross talk between plastids and cytoplasm is a result of the evolution of the 
two pathways. In Arabidopsis, the basal SA level is produced via the PAL pathway 
(Huang et al. 2010), whereas under pathogen attack or abiotic stress, the vast major-
ity of the SA is synthesized by the isochorismate pathway in the plastids (Wildermuth 
et al. 2001; Garcion et al. 2008). This appears to be species specific, since in soy-
bean, both pathways contribute equally to the SA production upon pathogen attack 
(Shine et al. 2016). Arabidopsis and soybean contain two genes for the key enzyme 
of the plastid ICS pathway. In other species, different ICS isoforms are produced by 
alternative splicing of a single ICS gene (Macaulay et  al. 2017). Apparently, the 
plastid-localized pathway for SA is highly sophisticated and an evolutionary result 
of intensive cross talk between the two organelles.

18.6.2	 �Jasmonic Acid

It is long known that Jasmonic acid (JA) precursors and, in particular, the JA precur-
sor 12-oxo-phytodienoic acid (OPDA) are synthesized in plastids. Jasmonates are 
derived from the α-linolenic acid (18:3) or 7(Z)-, 10(Z)-, and 13(Z)-hexadecatrienoic 
acid (16:3). A lipoxygenase catalyzes the addition of molecular oxygen to α-linolenic 
acid which initiates JA biosynthesis by providing the substrate for the formation of 
an allene oxide by the allene oxide synthase (AOS), which is further converted to 
OPDA. The reactions until OPDA formation take place in plastids, while the subse-
quent steps in the JA biosynthesis occur in peroxisomes. In the plastids, OPDA can 
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also be esterified to lipids. JA is converted to jasmonoyl-isoleucine (JA-Ile) in the 
cytoplasm, and after binding to its receptor, JAR1 activates specific defense genes 
in the nucleus (Huang et al. 2017; Zhang et al. 2017; Han 2017; Wasternack and 
Song 2017). Thus, besides being integrated into a complex hormone network, jas-
monate also functions as retrograde signals in concert with other signals and plastid 
metabolites.

Lemos et al. (2016) showed that the plastidial retrograde signal methyl erythritol 
cyclopyrophosphate is a regulator of SA and JA cross talk. Wang et al. (2018) identi-
fied two ABA-responsive plastid-localized lipases which are involved in JA biosyn-
thesis (cf. Mach 2018). Farmer and Mueller (2013), among others, proposed a link 
between jasmonate and ROS signaling. Thus, JA, SA, and ABA appear to be coupled 
to retrograde-active signals. Since not even the cross talk between the phytohormones 
is completely understood, it appears that their involvement in the cross talk between 
plastids and nucleus will become an interesting research field in the near future.

18.7	 �Concluding Remarks

Obviously, there is much more to be discovered in the interorganellar cross talk (cf. 
Godoy Herz et al. 2014). For instance, metabolites specifically responding to singlet 
oxygen in the organelle need to be identified. The redox signaling network is likely 
important for the distribution of information within the cell and entire organisms 
(Dietz 2016; Dietz et al. 2016) and does not only include redox signals from the 
photosynthetic electron transport but also other metabolic processes which are regu-
lated by internal and environmental signals. The flux rate in the tetrapyrrole path-
way needs to be translated into traveling metabolites or signals. Although much 
work has been performed to understand the role of light stress for retrograde signal-
ing, there are many open questions to be addressed with novel tools (Szechyńska-
Hebda and Karpiński 2013). For instance, little is known about processes balancing 
energy distribution and stress responses (Woodson 2016). Information transfer 
between organelles involves reversible phosphorylation events and Ca2+ signaling, 
and they have been barely investigated in this scenario (Chandok et  al. 2001; 
Pesaresi et al. 2011; Guo et al. 2016). Whether proteins or peptides leave the organ-
elle and inform the nucleus is also an open question. Finally, plastids play an essen-
tial role in phytohormone functions. They have a tremendous influence on gene 
expression profiles and developmental strategies (cf. Li et al. 2013; Serrano et al. 
2016). Phytohormones determine the response of the plant to environmental signals 
and the decision of the plant to invest in either growth and productivity or defense. 
Not all concepts could be covered in this brief overview. For instance, Burch-Smith 
et al. (2011) proposed an organelle-nucleus cross talk via plasmodesmata. Signaling 
via Ca2+ levels coordinates many responses and integrates cell’s internal and exter-
nal information (Guo et al. 2016; de Souza et al. 2017). The Ca2+ signaling network 
is well known to participate in mitochondrial retrograde signaling (cf. Butow and 
Avadhani 2004). Many volatiles and secondary metabolites are partially synthesized 
in plastids and have tremendous influences on nuclear gene expression. Considering 
the central role of plastids for all processes in the plant cell and entire plant, there 
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are probably many more communication systems that will be discovered in the 
future. Finally, the cross talk between plastid- and mitochondria-derived signals has 
been little investigated (Van Aken and Pogson 2017).
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