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and Challenges for the Treatment

of Renal Fibrosis
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Abstract Extracellular vesicles (EVs) are small lipid-based membrane-bound vesi-
cles secreted by most cells under both physiological and pathological conditions. A
key function of EVs is to mediate cell-cell communication via transferring mRNAs,
miRNAs and proteins from parent cells to recipient cells. These unique features of
EVs have spurred a renewed interest in their utility for therapeutics. Given the grow-
ing evidence for EV-mediated renal diseases, strategies that could block the release
or uptake of pathogenic EVs will be discussed in this review. Then, the therapeutic
potential of EVs predominantly from stem cells in renal diseases will be outlined.
Finally, we will focus on the specific application of EVs as a novel drug delivery
system and highlight the challenges of EVs-based therapies for renal diseases.
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34.1 Introduction

Extracellular vesicles (EVs) are nanoscale vesicles released by cells in physiological
and pathological conditions. Depending on their size and biogenesis, EVs are classi-
fied into three major categories: exosomes, microvesicles and apoptotic bodies (van
der Pol et al. 2012; Raposo and Stoorvogel 2013). Here, we focus on the first two
classes of EVs. Exosomes, ranging from 30 to 150 nm in diameter, are formed by the
fusion of intracellular multivesicular bodies with the plasma membrane (Colombo
et al. 2014), whereas microvesicles, 50-1000 nm in size, are shed directly from the
plasma membrane (Morel et al. 2011) (Fig. 34.1).

EVs were initially regarded as cell dust with no biological significance (Wolf
1967), but there is increasingly evidence for their important role in cell signalling
and communication in normal and disease states (Karpman et al. 2017; Erdbriigger
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Fig. 34.1 Biogenesis and characteristics of major classes of EVs. EVs can be classed as exo-
somes, microvesicles and apoptotic bodies based on their biogenesis and size. Exosomes are formed
by the fusion of intracellular multivesicular bodies (MVBs) with the plasma membrane, whereas
microvesicles are shed directly from the plasma membrane. EVs are taken up by cells by endo-
cytosis, phagocytosis, pinocytosis or membrane fusion, and subsequently transfer cell membrane
receptors or deliver effectors including mRNA, miRNA, DNA, lipid or protein into recipient cells.
In addition, EVs could serve as a therapeutic target by inhibition of their production, release or
cellular uptake
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and Le 2016; Morrison et al. 2016; Zhang et al. 2016b; Camussi et al. 2010). In kid-
neys, EVs have been tightly linked to inflammation, fibrosis, thrombosis, adhesion,
immune suppression, or growth and regeneration (Karpman et al. 2017; Erdbriig-
ger and Le 2016; Morrison et al. 2016; Zhang et al. 2016b; Camussi et al. 2010).
Therefore, EVs and their components could serve as the therapeutic targets, which
can be inhibited to alleviate disease progression. Moreover, as EVs are suggested
to participate in the tissue repair and immune modulation, they could be utilized
directly as therapeutic agents in regenerative medicine and the treatment of autoim-
mune diseases. For example, EVs from mesenchymal stem cells protected against
acute tubular injury and attenuated kidney inflammation (Bruno et al. 2009; Eirin
et al. 2017; Rani et al. 2015).

Finally, given the natural role in transporting bioactive entities of EVs, they also
have potential as drug carrier like a “Trojan horse” (van Dommelen et al. 2012;
Fuhrmann et al. 2015). Recent studies indicate that EVs can function as efficient
carriers of chemotherapeutic drugs (Tang et al. 2012; Yang et al. 2015), RNA drugs
(Kamerkar et al. 2017; Alvarez-Erviti et al. 2011) and anti-inflammatory drugs (Sun
etal. 2010; Zhuang et al. 2011). In this review, we will focus on recent developments
in EV-based therapy as potential targets and as novel therapeutic agents, especially
in the use of EVs as smart drug carriers.

34.2 Extracellular Vesicles as Potential Therapeutic Targets

Within the kidney, EVs can originate from blood cells, endothelial cells, podocytes
or tubular epithelial cells (TECs), which have been strongly implicated in the patho-
genesis of both acute kidney injury (AKI) and chronic kidney disease (CKD). Our
group demonstrated that in the setting of proteinuric kidney disease, albumin trig-
gered TEC:s to release exosomes packaged with CCL2 mRNA, which was delivered
to macrophages and leads to interstitial inflammation (Lv et al. 2018a). Borges et al.
identified that injured TECs released exosomes containing TGF-8 mRNA to activate
fibroblasts, contributing to the development of renal fibrosis in post-AKI kidneys
(Borges et al. 2013). Moreover, microvesicle-mediated delivery of miR-21 among
TECs could also drive the progressive renal fibrosis (Zhou et al. 2013a). Recent data
found that transglutaminase-2, a matrix crosslinking enzyme for fibrotic remodelling,
was secreted from TECs via exosomes (Furini et al. 2018). Thus, specifically inhibit-
ing the biogenesis or uptake of these pathogenic EVs could be a potential therapeutic
approach to alleviate disease progression (Fig. 34.1).

Various cellular components are known to be crucial for the biogenesis and release
of EVs, and a number of possible therapeutic targets have been identified. For exo-
somes, ceramide is an important component in endosomal sorting and exosome
biogenesis and its inhibition by GW4869 (neutral sphingomyelinase inhibitor) or
amiloride (an antihypertensive agent) decreases exosome production (Trajkovic et al.
2008; Chalmin et al. 2010). GTPases Rab27b can regulate exosome release in some
tumour cells, and this was demonstrated to be a therapeutic target (using RNA1) for
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reducing tumour progression (Peinado et al. 2012; Ostrowski et al. 2010; Bobrie et al.
2012). For microvesicles, the calpain inhibitor calpeptin or calpastatin can reduce
the shedding of microvesicles (Zafrani et al. 2012; Yano et al. 1993), as well as
blocking P2X receptors (Arvidsson et al. 2015). Furthermore, C1 inhibitor lessens
the release of endothelial microvesicles, alleviating inflammatory diseases such as
vasculitis (Mossberg et al. 2017). However, there are many limitations to target EV
biogenesis and release because the precise mechanism remains elusive and is likely
to vary among different cells.

In addition to reducing the level of EVs, inhibition of EV uptake into cells is
also possible by certain substances and antibodies (Mulcahy et al. 2014). Blocking
surface phosphatidylserine (which is important for cell adhesion) using Diannexin
decreases the uptake of EVs derived from tumour cells (Lima et al. 2009; Al-Nedawi
et al. 2009). Besides, an antibody to DEL1, annexin V, abciximab, chlorpromazine,
cytochalasin D or cytochalasin B also have been demonstrated to block the uptake
of EVs (Mulcahy et al. 2014; Dasgupta et al. 2012; Faille et al. 2012; Barres et al.
2010), but it is difficult to translate these into therapeutic intervention due to the lack
of specific mechanism regarding the key steps in EV trafficking and target definition.

34.3 Extracellular Vesicles as Therapeutic Agents

An increasing number of studies have demonstrated EVs, especially those derived
from stem cells, and have innate therapeutic potential by virtue of their intrinsic
cargoes, such as growth factors, soluble proteins and nucleic acids (Andaloussi et al.
2013). In kidney, mesenchymal stem cell-derived EVs of different origin also exhibit
encouraging renoprotective efficacy, as shown in models of AKI, diabetic nephropa-
thy, CKD and fibrosis. The application of these EVs in kidney diseases has been
summarized in Table 34.1. For instance, Wang et al. showed that exosomes derived
from bone marrow MSCs were able to transfer miR-let7c to damaged kidney cells
and attenuate renal fibrosis in UUO mice (Wang et al. 2016). Kholia et al. reported
that EVs derived from liver stem cells exhibited a regenerative, anti-inflammatory
and anti-fibrotic role in aristolochic acid-induced kidney fibrosis (Kholia et al. 2018).
In addition, EVs obtained from umbilical cord MSCs (Zhou et al. 2013b; Ju et al.
2015), Wharton’s jelly MSCs (Zou et al. 2014; Gu et al. 2016; Zhang et al. 2016a),
adipose-derived MSCs (Eirin et al. 2017; Lin et al. 2016), kidney MSCs (Choi et al.
2014; Ranghino et al. 2017; Choi et al. 2015), as well as urine-derived MSCs (Jiang
et al. 2016) also showed potential therapeutic benefits on kidney diseases.
Mechanistically, the protective effect of MSC-EVs on kidney diseases depends
on their transfer of genetic material including mRNA and miRNA (Rani et al. 2015;
Grange et al. 2017; Nargesi et al. 2017). This was confirmed in many studies when
degradation of the RNAs in MSC-EVs using RNase could abolish aforementioned
therapeutic benefits (Bruno et al. 2009; Choi et al. 2015; Zou et al. 2016), suggesting
RNA-dependent biological effect. EVs derived from the Drosha-knockdown MSCs
also showed global downregulation of miRNAs, resulting in ineffective renal repair of
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Table 34.1 Therapeutic application of extracellular vesicles in kidney disease
EV origin Kidney injury EVs doses Injection method | Effective
model molecules
BM-MSCs Glycerol- 15 ng Intravenous mRNA
induced AKI injection
2.2 x 108 EVs Intravenous miRNA
injection
IRI-induced 200 g Renal capsule CCR?2 protein
AKI injection
30 png Intravenous mRNA
injection
Cisplatin- 100 g Intravenous Not studied
induced injection
AKI
Diabetic 5.3 x 10" EVs Renal Not studied
nephropathy subcapsular
Unilateral 1 x 10 EVs Intravenous miR-let7c
ureteral injection
obstruction 30 pg Intravenous miRNA
injection
30 mg Intravenous miRNA
injection
UC-MSCs Cisplatin- 200 g Renal capsule Not studied
induced injection
AKI
IRI-induced 30 pg Intravenous HGF mRNA
AKI injection
WI-MSCs IRI-induced 100 pg Intravenous Not studied
AKI injection
100 pg Intravenous miR-30
injection
100 g Intravenous Not studied
injection
A-MSCs IRI-induced 100 pg Intravenous Not studied
AKI injection
Metabolic 1 x 10'9EVs Stenotic renal IL-10 protein
syndrome + artery injection
renal artery
stenosis
L-MSCs Glycerol- 1.88 £ 0.6 x Intravenous Not studied
induced 10° injection
AKI 5.53 £2.15 x
10°

(continued)
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Table 34.1 (continued)
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EV origin Kidney injury EVs doses Injection method | Effective
model molecules
Aristolochic 1 x 1019 EVs Intravenous Not studied
acid-induced injection
kidney fibrosis

K-MSCs IRI-induced 2 x 10" EVs Intravenous VEGF, IGF,
AKI injection FGF mRNA
IRI-induced 4 x 108 EVs Intravenous miRNA
AKI injection
Unilateral 2 x 107 EVs Intravenous mRNA
ureteral injection
obstruction

U-MSCs Type I diabetes 100 g Intravenous VEGF, TGF-p1,

injection angiogenin and
BMP7 protein

ECFCs IRI-induced 15 png Intravenous Not studied
AKI injection
IRI-induced 20 pg Intravenous miR-486-5p
AKI injection

EPCs IRI-induced 30 pg Intravenous miR-126
AKI injection miR-296
Anti-Thyl1.1 30 pg Intravenous Factor H, CD55,
glomeru- injection CD59 mRNA
lonephritis

Hypoxic TECs IRI-induced 100 pg Intravenous mRNA
AKI injection

Scattered TECs | Renal artery 30 pg Intravenous Mitochondria
stenosis injection

BM bone marrow; UC umbilical cord; WJ Wharton’s jelly; A adipose tissue; L liver; K kidney; U
urine; ECFC endothelial colony-forming cells; EPC endothelial progenitor cell

glycerol-induced AKI (Collino et al. 2015). Gene ontology analysis further showed
that those genes shuttled by MSC-EVs were involved in healing pathways associated
with renal regeneration (Collino et al. 2015). Moreover, EVs can also deliver proteins
from MSC:s to injured kidney cells. Proteins related to cell proliferation, adhesion,
migration and morphogenesis have been identified in the vesicles by extensive pro-
teomic analysis (Eirin et al. 2017; Shen et al. 2016; Jiang et al. 2016; Kim et al. 2012).
In this regard, an elegant study showed that adipose-derived MSC-EVs attenuated
renal inflammation in a porcine model of coexisting metabolic syndrome and renal
artery stenosis by their cargo of IL-10 (Eirin et al. 2017).

In addition to MSC-EVs, other sources of cell-derived EVs, such as endothe-
lial colony-forming cells (ECFCs), endothelial progenitor cells (EPCs) and hypoxic
TECs, have shown significant beneficial effects as well (Table 34.1). In models of
ischemic AKI, both ECFC-derived exosomes and EPC-derived EVs ameliorated
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renal injury via transfer of miRNAs (Vifas et al. 2016; Cantaluppi et al. 2012).
In anti-Thyl.1-induced model of glomerulonephritis, EPC-derived EVs alleviated
mesangial cell activation, leukocyte infiltration and apoptosis, which was related to
its content of mRNAs coding for anti-apoptotic factors and the complement inhibitors
(Cantaluppi et al. 2014). Interestingly, Dominguez et al. found that EVs derived from
hypoxic TECs significantly improved renal tubular damage, fibrosis and microvascu-
lar pruning in established renal IRT (Dominguez et al. 2017). However, paradoxically,
EVs from injured TECs also contribute to the progression of interstitial inflamma-
tion and fibrosis (Lv et al. 2018a; Borges et al. 2013; Zhou et al. 2013a; Furini et al.
2018), and the dual role of TEC-derived EV's needs to be further clarified.

34.4 Extracellular Vesicles as Smart Drug Carriers

Currently, the most preferred drug delivery systems are nanoparticle platforms based
on liposomes, albumin, polymeric micelles and nanosized polymer-drug conju-
gates, which effectively improve the pharmacokinetics and biodistribution of drugs
(Kamaly et al. 2016). However, their immunogenicity, stability and toxicity still
remain elusive. In this case, EV-based drug delivery—with many of advantages,
such as high permeability, less immunogenicity and non-cytotoxicity—appears to
be a superior choice, overcoming the limitations observed with nanoparticles (Ha
etal. 2016; Lv et al. 2018b). So far, EVs have been eloquently demonstrated to be as
therapeutic nanocarriers for delivering a variety of cargos, including siRNAs, miR-
NAs, proteins and drugs (van Dommelen et al. 2012; Fuhrmann et al. 2015). But the
application of EVs in kidney diseases has just begun its journey.

34.4.1 Cargo-Loading Techniques

In order to employ EV-based drug delivery, it is essential to consider the methods
of cargo loading and their suitability under different circumstances. In brief, cargo
encapsulation can be performed exogenously or endogenously (van Dommelen et al.
2012; Fuhrmann et al. 2015; Batrakova and Kim 2015) (Fig. 34.2). For exogenously
loading, the cargos were packaged into pre-assembled EVs ex vitro. A number of
methods, including electroporation, sonication, direct transfection and simple incu-
bation, are valid strategies for drug incorporation in this regard (Syn et al. 2017). For
example, simple incubation is a versatile and feasible approach employed in many
cases, through which several small lipophilic molecules, such as curcumin (antiox-
idant agents) (Sun et al. 2010; Zhuang et al. 2011), doxorubicin (Rani et al. 2015;
Tian et al. 2014) and paclitaxel (Yang et al. 2015) (anti-cancer agents), are passively
loaded into exosomes, but the loading capacity is low. Besides, potential limitations
of electroporation may include size-dependent loading efficiency, denaturation and
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Fig. 34.2 Flow of the production of EV-based drug formulations. EV-based drug delivery requires
the correct choice of source cell type for the specific application and should ideally be patient-derived
to avoid triggering immune response. The therapeutic cargo can include different types of siRNA,
miRNA, proteins or small-molecule compound such as curcumin or chemotherapeutics. Drug load-
ing can be carried out either endogenously or exogenously. Endogenous loading is achieved by
loading source cell with a therapeutic agent or transfecting source cell with drug-encoding gene
which is then released in EVs upon collection. Exogenous loading allows the isolation of EVs before
their loading with therapeutic cargo with the help of electroporation or by simple co-incubation.
Importantly, the generation process should meet the quality requirements

degradation of organic molecules and colloidal stability of the exosomal preparation
(Syn et al. 2017).

For endogenously loading, the drug-loaded EVs are isolated from the modified
parent cells through genetic engineering or medication with cytotoxic drugs. This
method is convenient and requires very few manipulation steps. It is reported that
paclitaxel is incorporated by MSCs and released in exosomes (Pascucci et al. 2014),
as well as other anti-cancer agents: etoposide, carboplatin, irinotecan, epirubicin
and mitoxantrone (Lv et al. 2012), which are loaded in exosomes with strong anti-
proliferative activity. Moreover, recent studies demonstrated that the therapeutic pro-
tein and its genetic material could be loaded into EV's when parental cells were trans-
fected with drug-encoding gene (Zeelenberg et al. 2008; Lee et al. 2015; Yim et al.
2016), but that might confer risks of genotoxicity and adverse host immune response.
Of note, each cargo-loading strategy has its advantages and limitations depending
on the type of therapeutic cargo and site of the disease, and thus further nuanced
understanding is needed to select the optimal approach for mass production.

34.4.2 EVs as Delivery Vehicles for Nucleic Acids

It is known that EVs naturally carry nucleic acids, making them stable in the circula-
tion and protecting from degradation. Given this, EVs may offer unique advantages
for genetic therapy, and key studies using EVs as carriers for genetic materials are
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highlighted below. The first report on EV-mediated transfer of exogenous nucleic
acids was published in 2010, when it was shown that THP-1 cells, which were trans-
fected with a miR-150 mimic, secreted miR-150-enriched EVs and that could be
functionally delivered to recipient cells (Zhang et al. 2010). Subsequent study con-
ducted by Akao et al. found that THP-1 monocytes transfected with miR-143 mimic
ex vivo secreted miR-143-containing EVs in nude mice after intravenous injection
(Akao et al. 2011). Furthermore, when injected intravenously into UUO mice, engi-
neered MSCs that overexpressed miR-let7c attenuated renal fibrosis via secreting
miR-let7c-loaded exosomes (Wang et al. 2016). All these studies have eloquently
corroborated such modes of miRNA transfer.

Small interference RNA (siRNA) is used to disrupt genes of interest and has
great potential for the treatment of a range of diseases. Several studies have been
conducted to test the usefulness of EVs as delivery vehicle for siRNA, and the
first study conducted by Alvarez-Erviti et al. found that by expressing a neuron-
targeting protein on the surface of exosomes, they could specifically deliver siRNA
to the brain and resulted in a specific gene knockdown (Alvarez-Erviti et al. 2011).
Importantly, the treatment displayed minimal toxicity and immune stimulation, even
following repeated administration, suggesting EVs are suitable to deliver vectors
in RNA interference therapy. This notion has been further confirmed by Wahlgren
et al. that the gene MAPK1 was selectively silenced in monocytes and lymphocytes
by using siRNA-loaded exosomes derived from human plasma (Wahlgren et al.
2012). More recently, an elegant research employed fibroblast-like mesenchymal
cell-derived exosomes to deliver siRNA or short hairpin RNA specific to oncogenic
KRAS, achieving enhanced therapeutic efficacy in suppressing tumour growth and
improving the overall survival (Kamerkar et al. 2017). Notably, the therapeutic effects
of engineered exosomes were greater than siRNA-loaded liposomes (Kamerkar et al.
2017). Beyond miRNA and siRNA delivery, EVs were also exploited to encapsulate
adeno-associated viruses (AAVs), which were substantially more efficient than free
AAVs for the delivery of genetic cargo into recipient cells (Maguire et al. 2012).
Collectively, these studies emphasize the potential of using EVs for the therapeutic
delivery of nucleic acids.

34.4.3 EVs as Delivery Vehicles for Proteins

In addition to delivering nucleic acids, EVs are also used to deliver large molecules
such as proteins. Haney and colleagues found that exosomes loaded with the antiox-
idant protein catalase were successfully delivered across the blood-brain barrier
(BBB) and provided significant neuroprotective effects in a model of Parkinson’s dis-
ease (Haney et al. 2015). In this study, catalase was incorporated into pre-assembled
exosomes ex vivo using different methods, and identified sonication and extrusion
approaches achieved better loading efficiency, sustained release and protein preser-
vation (Haney et al. 2015). Similar results were reported by Yuan et al., showing that
macrophage-derived exosomes efficiently crossed the BBB and delivered a cargo
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protein to the brain, further indicating the potency of EVs as nanocarriers for brain
delivery of therapeutic proteins (Yuan et al. 2017). The cargo protein in the study
was also loaded in an exogenous way by mixing with exosomes; in addition, the
therapeutic protein can be packaged into EVs by transfecting parental cells as well.
For example, HEK-293T cells transfected with suicide gene secreted EVs enriched
in suicide mRNA and protein, which were subsequently used to treat schwannoma
tumours in an orthotopic mouse model, leading to reduced tumour growth (Mizrak
et al. 2013). Overall, these studies suggest that EVs can serve as novel nanocarriers
to effectively deliver therapeutic proteins.

34.4.4 EVs as Delivery Vehicles for Drugs

EVshave been utilized as delivery vehicles for therapeutic drugs in extensive research
(Tang et al. 2012; Yang et al. 2015; Sun et al. 2010; Zhuang et al. 2011). Early stud-
ies from the Zhang group (Sun et al. 2010; Zhuang et al. 2011) demonstrated an
anti-inflammatory small-molecule compound curcumin could be incorporated into
exosomes by mixing curcumin with murine tumour cell line (EL-4) or microglia cell
(JST124)-derived exosomes, and found that exosomal curcumin exhibited enhanced
anti-inflammatory activity in LPS-induced septic shock mouse model. Interestingly,
exosomal packaging leads to an increase in the solubility, stability and bioavailability
of curcumin (Sun et al. 2010), suggesting EVs are capable to modify the bioavail-
ability of the native drug. For another natural phytochemical compound celastrol,
exosome-mediated delivery also improved drug biodistribution and subsequently
enhanced its anti-tumour efficacy (Aqil et al. 2016). This study further highlighted
the benefits of EVs in enhancing the properties of drugs, such as solubility, stability
and bioavailability.

Besides, the deployment of EVs encapsulating chemotherapeutics such as pacli-
taxel and doxorubicin has yielded promising results, representing encouraging anti-
cancer efficacy with minimal cytotoxicity towards non-cancerous cells (Tang et al.
2012; Yang et al. 2015; Syn et al. 2017; Tian et al. 2014; Pascucci et al. 2014; Jang
et al. 2013; Saari et al. 2015; Toffoli et al. 2015; Srivastava et al. 2016; Martins-
Marques et al. 2016). For example, anti-cancer drug-loaded exosomes or exosome-
like vesicles were shown to traffic to tumour tissue and reduce tumour growth in
mice without overt adverse effects (Tian et al. 2014; Jang et al. 2013). Importantly,
exosomes had superior therapeutic effects when compared to liposomes (Jang et al.
2013). Moreover, the administration of doxorubicin loaded in exosomes resulted in
significantly less drug accumulation in non-target organs and prevented the onset of
off-target cardiotoxicity compared with mice treated with unmodified doxorubicin
(Saari et al. 2015; Toffoli et al. 2015; Srivastava et al. 2016; Martins-Marques et al.
2016). Thus, the advantages of exosomes packaging may improve the safety profile
of cytotoxic agents and present further opportunities to address cancer therapy.



34 Extracellular Vesicles: Opportunities and Challenges ... 703

Table 34.2 Advantages and limitations of extracellular vesicle-based therapy

Advantages Limitations

© Nanoscale ® Biochemical composition of EVs unclear
© Natural lipid and surface protein ® Production or uptake mechanism yet
composition poorly described

© Stable in biological fluids ® Good manufacturing practice standards
© Low immunogenicity lacking

© Cell-to-cell communicators ® High scale and efficient production

© Unidirectional targeting or active targeting difficulty

by modification ® Difficult to package through renal barriers
© Suitable for multi-drug delivery ® (Pre)clinical evaluation lacking

© Various drug encapsulation method

© Translocation through physical barriers

34.5 Benefits and Challenges of Extracellular Vesicle
Therapy

Unarguably, the field of EV-based therapeutics holds significant promise to enable
targeted drug delivery with superior efficiency (Table 34.2). Compared with existing
liposomes or polymeric nanoparticles, the outstanding advantage of EV-based ther-
apy is their natural lipid and surface protein composition, which enable them to evade
phagocytosis, extend blood half-life and reduce long-term safety issues. Moreover,
the small size of EVs facilitates their extravasation, translocation through physical
barriers and passage through extracellular matrix (van Dommelen et al. 2012; van den
Boorn et al. 2011). Several studies have demonstrated that EVs successfully cross
the BBB and deliver cargos into the brain, but whether EVs are able to pass through
the glomerular filtration barrier remains unclear. In addition, EVs encapsulation also
makes the new drug candidates such as proteins and nucleic acids more stable and
targetable to treatment site (Zhu et al. 2012; Bruno et al. 2013).

However, before EV-based therapy can be translated to the clinic, several hurdles
need to be overcome (Table 34.2). First, many properties and mechanisms about EV
biology such as the biochemical composition of EV currently remain elusive, and the
production or uptake mechanism yet poorly described. Even though from the same
cell types, EVs may have contradictory effects as a consequence of differences in cell
culture conditions and differences in the purification protocols used or due to a lack of
robust extracellular vesicle characterization (Andaloussi et al. 2013; Zhu et al. 2012;
Bruno et al. 2013). In addition, a major bottleneck in the translation of EV-based
therapy into clinic is the lack of good manufacturing practice (GMP) standards. To
develop clinical-grade EVs, sterile generation, high scale and efficient production of
sufficient amounts of EVs with therapeutic payloads for clinical testing are required.
Very recently, Mendt and colleagues have illustrated the process and feasibility of
generating GMP-grade exosomes (Mendt et al. 2018). Finally, regarding the particu-
larity of kidney, the glomerular filtration barrier is the primary obstacle that excludes
EVs from accessing podocytes or tubular cells. The level of EVs accumulation in the
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kidney is highly restricted based on the injury degree of the glomerulus; thus, effec-
tive engineering of the size, shape and surface charge will conduce to EVs passing
through renal barriers and their advancement to the clinic.

34.6 Conclusions

EVs are important conveyers of information between cells and have been strongly
implicated in numerous biological and pathological processes. Targeting EVs directly
to inhibit their pathogenic effects or exploiting their innate potential for renal regen-
erative medicine is promising therapeutic strategy. Moreover, although EV-based
therapy has just begun its journey, they provide an enormous promise and a fresh
therapeutic area for delivery of different drugs such as small-molecule compounds,
particularly therapeutic nucleic acid delivery.
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