Chapter 13 ®)
Macrophages in Renal Fibrosis i

Xiao-Ming Meng, Thomas Shiu-Kwong Mak and Hui-Yao Lan

Abstract Monocytes/macrophages are highly involved in the process of renal injury,
repair and fibrosis in many aspects of experimental and human renal diseases.
Monocyte-derived macrophages, characterized by high heterogeneity and plasticity,
are recruited, activated, and polarized in the whole process of renal fibrotic diseases in
response to local microenvironment. As classically activated M1 or CD11b*/Ly6Chieh
macrophages accelerate renal injury by producing pro-inflammatory factors like
tumor necrosis factor-alpha (TNFa) and interleukins, alternatively activated M2
or CD11b*/Ly6Cintermediate macrophages may contribute to kidney repair by exert-
ing anti-inflammation and wound healing functions. However, uncontrolled M2
macrophages or CD11b*/Ly6C'°" macrophages promote renal fibrosis via paracrine
effects or direct transition to myofibroblast-like cells via the process of macrophage-
to-myofibroblast transition (MMT). In this regard, therapeutic strategies targeting
monocyte/macrophage recruitment, activation, and polarization should be empha-
sized in the treatment of renal fibrosis.

Keywords Macrophage * Renal fibrosis - Macrophage-myofibroblast transition -
Macrophage polarization

X.-M. Meng
School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China
e-mail: mengxiaoming @ahmu.edu.cn

T. S.-K. Mak - H.-Y. Lan ()

Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Chi
Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
SAR, China

e-mail: hylan@cuhk.edu.hk

T. S.-K. Mak
e-mail: thomak @hotmail.com.hk

© Springer Nature Singapore Pte Ltd. 2019 285
B.-C. Liu et al. (eds.), Renal Fibrosis: Mechanisms and Therapies,

Advances in Experimental Medicine and Biology 1165,
https://doi.org/10.1007/978-981-13-8871-2_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8871-2_13&domain=pdf
mailto:mengxiaoming@ahmu.edu.cn
mailto:hylan@cuhk.edu.hk
mailto:thomak@hotmail.com.hk
https://doi.org/10.1007/978-981-13-8871-2_13

286 X.-M. Meng et al.

13.1 Introduction

Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD)
and characterized by excessive extracellular matrix (ECM) deposition and myofi-
broblast accumulation (Meng et al. 2016a). Macrophages, firstly identified by Metch-
nikoff over one hundred years ago, are highly diverse and exhibit a wide range of
complex roles in host defense, tissue development, homeostasis, tissue injury and
repair, and fibrosis (Wilson et al. 2004; Wynn and Vannella 2016). In the kidney,
macrophages originate from yolk sac, fetal liver and bone marrow. It is noteworthy
that bone marrow myeloid progenitors-derived monocytes are the major source of
infiltrated macrophages (Huen and Cantley 2015). In the injured kidney, local produc-
tion of chemokines induces the infiltration of neutrophils and naive monocytes from
which differentiate into phagocytic macrophages, and then they are polarized and
activated in response to the local immune microenvironment (Yona et al. 2013). As
the major mediator for inflammatory response, monocytes/macrophages are highly
involved in the process of renal injury and repair in many aspects of experimental and
human renal diseases (Duffield 2010). They are regarded as a critical link between
renal inflammation and fibrosis (Meng et al. 2014). Macrophages, with high hetero-
geneity and plasticity, are activated and polarized into different phenotypes in the
progression of renal disease, they then secrete various cytokines and growth factors
accordingly, which may alter the microenvironment in diseased kidney in a feedback
loop, the interplay between macrophages and neighboring cells such as immune
cells and resident kidney cells may determine the fate of renal diseases (Anders and
Ryu 2011; Duffield 2010; Ricardo et al. 2008). In this setting, this chapter high-
lighted recent progress in the understanding of the role of monocytes/macrophages
in renal fibrosis, with a focus on the monocytes/macrophages recruitment, pheno-
types, functions, and regulatory mechanisms in progression of renal fibrosis, then
the therapeutic potential for macrophage-based or targeted therapy for renal fibrosis
were also discussed.

13.2 Recruitment of Monocytes/Macrophages
in the Kidney

Previous studies have shown that the recruitment of bone marrow-derived mono-
cytes into kidney is a critical step for renal inflammation (Braga et al. 2018), with
extensive discussion on the several key chemokines involved. CCR2 and its main
ligand, CCL2 (also called MCP-1), are indicated in various types of kidney diseases;
they are responsible for the recruitment of Ly6CH€" monocytes and regulation of
bone marrow-derived fibroblasts in injured kidney (Braga et al. 2018). Emerging
evidence further shows that knockout of CCR2 and 4, instead of CCR3 and 5, atten-
uates renal fibrosis (Braga et al. 2018), these results are further confirmed by the
finding that treatment of CCX140-B, a CCR2 inhibitor, protects against type 2 dia-
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betic nephropathy (Weir 2015). Transforming growth factor-g (TGF-f) is reported
to up-regulate the expression of CCL2 in macrophages and then promote monocyte
recruitment and macrophage accumulation (Border and Noble 1994). The inter-
action between CX3CL1 and CX3CRI is also responsible for the infiltration of
Ly6C-CX3CR1"£" macrophages, which contribute significantly to unilateral ureteral
obstruction (UUO)-induced renal fibrosis (Peng et al. 2015). Additionally, chemokine
CXCLI16 and its receptor CXCR6 play important roles in recruiting monocytes from
circulation to the injured kidney in UUO nephropathy, hypertensive nephropathy, and
ischemia-reperfusion acute kidney injury (AKI) (Chen et al. 2011; Xia et al. 2013,
2014a, b). Tubular-derived IL-34, being one of the macrophage differentiation and
growth factors, shares a common receptor with macrophage colony-stimulating fac-
tor (M-CSF). It fails to alter kidney macrophages’ activation phenotypes but induces
persistent tubular injury via macrophage recruitment and proliferation in the later
stages of tubular repair and fibrosis (Baek et al. 2015). Newer evidence shows that
the accumulation of B cells in the early stage of kidney injury enhances mono-
cyte/macrophage mobilization and recruitment, thereby accelerates renal fibrosis in
UUO nephropathy (Han et al. 2017).

13.3 Activation and Polarization
of Monocytes/Macrophages in the Kidney

As aforementioned, bone marrow myeloid progenitors-derived monocytes are the
major source for infiltrated macrophages (Duffield 2010; Wilson et al. 2004). Mono-
cytes could be categorized into different subsets as defined by lymphocyte antigen
6C (Ly6C), an antigen representing the stages of a continuous maturation pathway,
and chemokine receptor profiles like CCR2 and CX3CR1 (Ricardo et al. 2008;
Sunderkotter et al. 2004). For example, CCR2*Ly6C* monocyte recruited to the
site of inflammation has been identified as a specific monocyte subset that func-
tions in immune response and tissue remodeling (Geissmann et al. 2003). Mono-
cytes then differentiate into macrophages with distinct activation states in response
to local microenvironment. To represent the Th1/Th2 paradigm, classification of
M1/M2 macrophages has been widely used, although it may be a gross over-
simplification of representing the expanded phenotype diversity accurately (Guil-
liams et al. 2014; Martinez and Gordon 2014; Murray et al. 2014; Wermuth and
Jimenez 2015). Pro-inflammatory M1 macrophages, also termed as classically acti-
vated macrophages, are induced by interferon (IFN)-y and lipopolysaccharide (LPS)
in vitro, while wound healing/pro-fibrotic M2 macrophages, also called alternatively
activated macrophages, are generated by interleukin (IL)-4 and IL-13 incubation. M2
macrophages could be further subcategorized based on different stimuli and func-
tions: IL-4 and IL-13 trigger M2a macrophages; immune complexes induce M2b
macrophages; IL-10 plus TGF-f or glucocorticoids induce anti-inflammatory M2c
macrophages (Anders and Ryu 2011). In the injured kidney, macrophages are acti-
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vated by multiple factors, which include other types of immune cells like T cells
and NK cells, pathogen-associated molecular patterns (PAMPs), damage-associated
molecular patterns (DAMPs), and immune complexes (Anders 2010; Duffield 2010).
M1 macrophages are generally induced by pro-inflammatory cytokines like IFN-
v, LPS, and TNF-a while M2 macrophages are polarized by Th2 cytokines, and
macrophages gained M2 phenotype after engulfing apoptotic cells (Anders and Ryu
2011; Swaminathan and Griffin 2008; Vinuesa et al. 2008). Evidence shows that high
level of iNOS, instead of Arginase 1, is expressed in macrophages 24 h post-injury,
indicating that pro-inflammatory M1 macrophages become predominant in the early
stage of kidney diseases (Lee et al. 2011). Additionally, polarization between M1 and
M2 is also detectable in vivo, which is supported by the finding that IFN-y-stimulated
M1 cells can switch to M2 in the repaired kidney after being injected in the early
stage of AKI model (Lee et al. 2011).

Macrophages derived from circulating inflammatory Ly6CM#" monocytes could
also be divided into three subcategories depending on the level of Ly6C mark-
ers (Clements et al. 2016; Lin et al. 2009). CD11b*/Ly6CMeh macrophages are
associated with the initiation of renal injury, they mimic the function of Ml
macrophages by producing abundant pro-inflammatory cytokines (e.g., TNF-a)
and chemokines (e.g., MIP-1) (Meng et al. 2015). Deletion of circulating mono-
cytes and recruited Ly6CMe" macrophages attenuates renal fibrosis (Lin et al.
2009). The number of the CDI1b*/Ly6Cinermediate macrophages is significantly
increased during the repair stage. By contrast, CD11b*/Ly6C'®" macrophages
are predominant in renal fibrosis through producing pro-fibrotic factors includ-
ing platelet-derived growth factor (PDGF), insulin-like growth factor (IGF)-1, and
CCL17, which are highly correlated to wound healing and fibrogensis (Duffield
2010). Additionally, gene signature in CD11b*/Ly6C® macrophages has been
well defined and within the significantly altered genes, SPARC regulates the
production of ECM while TIMP2 prevents MMPs-mediated ECM turnover and
enhances matrix accumulation (Fan et al. 2014; Wang et al. 2010). Additionally,
Macrophages-derived IGF-1 attenuates myofibroblast apoptosis and enhances colla-
gen production (Wynes et al. 2004). In rhabdomyolysis-induced AKI mouse model,
macrophage polarization was detected during the disease progression, an abun-
dance of F4/80°YCD11b""Ly6bMenCD206'°Y macrophages was found in kidney
two days after rhabdomyolysis, whereas F4/80Me"CD11b*Ly6b!®"CD206"eh cells
became predominant by day 8 (Belliere et al. 2015). All these evidences indicate the
pro-fibrotic role of CD11b*/Ly6C!°" macrophages in renal fibrosis.

13.4 Role of Monocytes/Macrophages in Kidney Injury

Glomerular and interstitial macrophage infiltration is detectable in different types
of AKI and progressive CKD of both experimental models and human biopsies
(Wilson et al. 2004). Classically activated macrophages produce pro-inflammatory
factors like IL-1, TNF-a, IL-6, IL-23, ROS, NO, and iNOS, overproduction of these
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factors induces severe kidney damage. Pro-inflammatory macrophages infiltration is
highly correlated with the degree of renal damage in both AKI and CKD models.
By using different macrophage depletion and transfer techniques, pathogenic roles
of these pro-inflammatory macrophages have been determined in different kidney
disease models (Cao et al. 2013). Liposomal clodronate-mediated macrophage deple-
tion in early stage of ischemia-reperfusion injury (IRI) and rhabdomyolysis-induced
AKI significantly reduces renal injury and long-term renal fibrosis, indicating the
pathogenic role of M1 macrophages in the initiation of kidney injury (Belliere et al.
2015; Day et al. 2005; Jo et al. 2006; Ko et al. 2008). Additionally, depletion of
macrophages with clodronate liposome or CCR2 deficiency attenuates renal injury
and fibrosis in UUO nephropathy (Kitagawa et al. 2004; Kitamoto et al. 2009). Pro-
inflammatory macrophages also mediate renal injury in CKD model, macrophages
deletion or deactivation by clodronate, c-fms inhibitor, or JNK inhibitor prevents the
progression of crescentic anti-GBM glomerulonephritis (D’Souza et al. 1999; Han
et al. 2011; Ma et al. 2009). In contrast, adoptive transfer of bone marrow-derived
macrophages in early stage of the same disease model enhances renal injury (Ikezumi
etal. 2003). Taken together, pro-inflammatory M1 macrophages enhance renal injury
possibly through mechanism as follows: First, accelerating renal inflammation by
releasing an abundance of pro-inflammatory cytokines and chemokines (Cao et al.
2013); second, overproduction of ROS and TNF-a by macrophages induces apopto-
sis of renal resident cells, including tubular epithelial cells (TECs) and endothelial
cells, and prevents their proliferation, thereby increases renal injury (Kluth et al.
2004); third, a plethora of pro-fibrotic cytokines and growth factors released from
macrophages triggers abnormal wound healing and leads to renal fibrosis eventually
(Anders and Ryu 2011).

13.5 Role of Monocytes/Macrophages in Kidney Repair

Anti-inflammatory and reparative roles of macrophages have been well studied
(Day et al. 2005; Huen and Cantley 2015; Lee et al. 2011). M2 macrophages and
CD11b*/Ly6Cinermediae macrophages become predominant in the repair stage of
kidney disease models such as IRI and UUO nephropathy, and they serve as key
regulators for renal inflammation resolution and wound healing (Cochrane et al.
2005; Lee et al. 2011). Fluorescence-labeled cell tracing study shows that 6 days
after IRI, a majority of macrophages loss iNOS markers and gained high level
of Arginase 1, showing the phenotypic switch of macrophages toward M2 in the
repair phase of AKI (Lee et al. 2011). Depletion of macrophages in late stage of
IRI model reduces TEC proliferation and delays renal repair, but transferring IL-4-
polarized M2 macrophages induces the repair process (Vinuesa et al. 2008). IL-4/IL-
13-polarized M2a macrophages are essential for the recovery from ischemic AKI
(Zhang et al. 2017). Additionally, calcium-binding protein SI00A8/A9 complex,
as a typical DAMP, promotes M2 polarization, thereby increases renal repair fol-
lowing IRI (Dessing et al. 2015). M2 macrophages exhibit anti-inflammatory effect
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mainly through induction of anti-inflammatory factors and high endocytic capaci-
ties (Ricardo et al. 2008). M2 macrophages synthesize an abundance of IL-10 after
engulfing unwanted cells and their debris. They produce other anti-inflammatory
cytokines and trophic factors like TGF-g, IGF, and hepatocyte growth factor (HGF).
M2 macrophages can deactivate T cells and macrophages to alleviate renal inflam-
mation. It is noteworthy that M2c macrophages induce production of Tregs to exert
more powerful anti-immunological effects compared with other subtypes (Lu et al.
2013; Mu et al. 2005). Moreover, M2 macrophages stimulate angiogenesis and pro-
mote endothelial repair (Mantovani et al. 2013). Failure of polarization from pro-
inflammatory M1 to reparative M2 macrophages leads to progressive renal inflam-
mation and fibrosis after IRI (Lech et al. 2014). Macrophage-derived Wnt7b sig-
naling enhances epithelial response and accelerates renewal of stem cells or pro-
genitor cells, thereby induces renal repair following IRI directly (Lin et al. 2010).
BRP-39, a macrophage-produced chitinase-like protein, prevents tubular apoptosis
in a PI3K/AKT-dependent manner (Schmidt et al. 2013). Macrophage-derived HO-
1 also contributes to macrophage-mediated renoprotective effect (Ferenbach et al.
2010, 2011). Furthermore, cross talk between injured tubular cells and activated
macrophages via retinoic acid signaling also coordinates tubular repair (Chiba et al.
2016).

13.6 Role of Monocytes/Macrophages in Kidney Fibrosis
and Fibrolysis

Anti-inflammatory macrophages promote tubular re-epithelialization via the produc-
tion of trophic factors. However, unresolved or severe inflammation initiates renal
fibrosis (Anders and Ryu 2011). Evidence shows that depletion of macrophage atten-
uates renal fibrosis in most occasions, showing the pro-fibrotic effect of macrophages
in various renal diseases (Meng et al. 2014; Vernon et al. 2010; Zeisberg and
Duffield 2010). For example, depletion of monocytes/macrophages by liposome-
encapsulated clodronate (LEC) lowers blood pressure and reduces hypertensive renal
injury and fibrosis (Huang et al. 2018). Liposomal clodronate-mediated depletion of
macrophages prevents renal fibrosis following IRI and UUO nephropathy (Ko et al.
2008; Sung et al. 2007), this is further evidenced by the finding that mutation of
MCP-1 gene significantly suppresses renal fibrosis (Wada et al. 2004). Of note, large
numbers of M2 macrophages, detected in the active fibrotic area in renal biopsy
of IgA patients, are positively correlated with the severity of glomerulosclerosis
and interstitial fibrosis (Ikezumi et al. 2011). Consistently, glucocorticoid treatment
accelerates global glomerulosclerosis in rat thy-1 mesangial proliferative glomeru-
lonephritis, and it is correlated with increased numbers of M2 macrophages (Ikezumi
et al. 2010). Moreover, deficiency of macrophages in fibrotic phase prevents renal
fibrosis via reducing TGF-B1 expression and capillary rarefaction (Han et al. 2013).
Collectively, macrophages promote renal fibrosis possibly through mechanisms as
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followed: First, M2 macrophages produce numbers of pro-fibrotic factors, such as
TGF-B1, fibroblast growth factor 2 (FGF-2), PDGF, and galectin-3, which promote
myofibroblast proliferation, survival, and activation, and overproduction of ECM
(Floege et al. 2008; Henderson et al. 2008; Wynes et al. 2004), although macrophage-
derived TGF-$1 may not be essential for UUO-induced renal interstitial fibrosis
(Huen et al. 2013); second, macrophage-derived cytokines and factors, such as IL-1,
matrix metalloproteinases (MMP)-9, TGF-B1, angiotensin (Ang)-1I, PDGF, IGF-
1 and FGF-2, enhance myofibroblasts transdifferentiation or activation from tubu-
lar epithelial cells via epithelial-mesenchymal transition (EMT), endothelial cells
via endothelial-mesenchymal transition (EndoMT), pericytes, local fibroblasts, and
mesangial cells (Falke et al. 2015; LeBleu et al. 2013; Meng et al. 2013). Third,
macrophages produce fibronectin and collagen in response to pro-fibrotic microen-
vironment (Gratchev et al. 2001; Schnoor et al. 2008). Emerging evidence indicates
that monocytes/macrophages transdifferentiate into collagen-producing fibrocytes
(Duffield 2010) or directly into myofibroblast-like cells (Bertrand et al. 1992; Chen
et al. 2014; Mooney et al. 2010; Nikolic-Paterson et al. 2014; Pilling and Gomer
2012). Fourth, activated macrophages damage glomerular and peritubular capillar-
ies, and thereby promote hypoxia-driven fibrosis (Fine and Norman 2008; Han et al.
2013). However, we should note that M2 macrophages might not definitely con-
tribute to renal fibrosis (Anders and Ryu 2011). Inflammation and epithelial healing
characterize the first-line danger response program for wound healing. Fibrosis, a
major event in the second-line danger response program, only occurs when epithe-
lial healing is incomplete or insufficient, such as in the cases of sustained injury and
unresolved renal inflammation (Gurtner et al. 2008). During inflammatory response,
bone marrow-derived macrophages are recruited into the inflamed kidney and further
differentiate into collagen-producing myofibroblasts locally in the injured kidney via
newly identified phenomenon termed macrophage-to-myofibroblast (MMT) (Wang
et al. 2016, 2017; Meng et al. 2016b; Tang et al. 2018). The MMT cells can be rec-
ognized by their co-expression of macrophage (CD68) and myofibroblast (a-smooth
muscle actin, a-SMA) markers in the diseased kidney and account for more than
half of a-SMA-expressing macrophages in both human and experimental models
of chronic kidney diseases including chronic renal allograph rejection (Wang et al.
2016, 2017; Meng et al. 2016b; Tang et al. 2018). However, some studies show that
bone marrow-derived cells make only a small fraction of contribution to myofibrob-
lasts directly; these conflicting results warrant further investigation (Lin et al. 2008;
Roufosse et al. 2006; Kramann et al. 2018).

In the fibrolysis stage, macrophages could serve as a negative regulator for renal
fibrosis (Anders and Ryu2011). Evidence shows that fibrolytic macrophage promotes
resolution of renal fibrosis through producing matrix metalloproteinases (MMPs),
and thereby degrades ECM in fibrotic kidney (Anders and Ryu 2011; Ronco and
Chatziantoniou 2008). However, the exact phenotype for fibrolytic macrophage is
not fully understood. Regression of established fibrosis has been well studied in liver,
depletion of macrophages in the late stage of CCL4-induced liver fibrosis prevents
the clearance of liver scars, which may be caused by the loss of macrophage-triggered
hepatic stellate cell (HSC) apoptosis (Duffield et al. 2005a), Moreover, macrophage-
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produced MMP-13 removes fibrotic scar in liver (Fallowfield et al. 2007). Transfer of
bone marrow-derived macrophages reverses liver fibrosis and promotes liver recovery
(Thomas etal. 2011). In kidney, deficiency of angiotensin II type 1 receptor (AngllIr1)
reduces the phagocytic activity of macrophages, thereby promotes renal fibrosis as
compared with mice transplanted with AngIIr1** bone marrow cells in the late phase
of UUO nephropathy (Nishida et al. 2002). Additionally, urokinase-type plasminogen
activator receptor (UPAR) enhances macrophage infiltration and scavenger receptor
function, therefore increasing the resolution of renal fibrosis (Zhang et al. 2003). In
addition, adoptive transfer of macrophages 14 days after UUO surgery attenuates
renal fibrosis and enhances renal repair in a MMP-2-dependent manner (Nishida
et al. 2005, 2007). Of note, functions of MMPs vary in different stages of renal
diseases, for example, MMP-2 and MMP-9 are pathogenic by destroying glomerular
and tubular basement membranes and inducing EMT in early stage of renal diseases
(Cheng and Lovett 2003; Cheng et al. 2006; Rao et al. 2006; Ronco et al. 2007).

13.7 Regulatory Mechanisms of Macrophage Polarization
in Renal Fibrosis

Molecular mechanisms underlying the activation and polarization of macrophages
have been extensively investigated (Meng et al. 2015). Increasing evidence shows that
macrophage polarization is regulated by various transcriptional factors like STATS,
PPARs, KLFs, and C/EBP and multiple signaling pathways such as NF-«B, JNK,
JAK/STAT, PI3K/AKT, Wnt/B-catenin, and Notch signals (Kapoor et al. 2015; Pic-
colo et al. 2017; Zhou et al. 2014). Some other mediators have also been identified,
for example, high-mobility group box 1 (HMGBI1) protein produced by TEC and
infiltrated macrophages contribute to the M1 macrophage activation, as shown by the
high level of iNOS and suppression of IL-10 in macrophages. Blocking HMGB1 pro-
duction with a glycyrrhizic acid derivative reduced M1 polarization, kidney injury
and fibrosis in UUO nephropathy (Tian et al. 2015). Knockout of suppressor of
cytokine signaling-3 (SOCS-3), a critical intracellular negative regulator, enhances
cell proliferation and M2 activation in a JAK/STAT-dependent mechanism while
overexpression of SOCS-3 in TECs induces classical activation of the cocultured
macrophages, indicating its role in macrophage polarization (Susnik et al. 2014).
A recent study showed that myeloid-specific knockout of the transcription factor
recombination signal binding protein-Jk (RBP-J), a modulator essential for Notch
activation, decreased monocyte infiltration and macrophage activation, thereby alle-
viated renal fibrosis (Jiang et al. 2018).

Mediators for M2 polarization have also been extensively reviewed. CSF-1 is
an important inducer for macrophage polarization. Loss of CSF-1 reduces M2
macrophages, thereby inhibits TEC proliferation and tubular repair (Menke et al.
2009; Zhang et al. 2012). This is confirmed by the finding that CSF-1 pro-
moted renal crystals clearance in hyperoxaluric mice via increasing the number
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of CD11b*F4/80*CD163*CD206"e" M2 cells (Taguchi et al. 2014). Although
granulocyte-macrophage (GM)-CSF usually induces the differentiation of periph-
eral Ly6C"2" monocytes to pro-inflammatory M1 macrophages (Lenzo et al. 2012;
Murray and Wynn 2011), a recent in vivo study identified macrophages with a unique
alternative activation state in response to GM-CSF, they were found in macrophages
isolated from repair phase of injured kidneys in IRI model and promoted tubular pro-
liferation and repair (Huen et al. 2015; Takeda et al. 1996). Additionally, treatment of
IL-25, a novel cytokine for M2 polarization both in vivo and in vitro, prevents renal
injury in adriamycin nephropathy via a IL-4/IL-13-dependent manner (Cao et al.
2011). Netrin-1 is an anti-inflammatory molecule induced in TECs from IRI model;
it suppresses monocyte migration and function by targeting chemokines and NF-kB
signaling. Netrin-1 transgenic mice show an increase in M2 macrophages infiltration
with upregulation of IL-4, IL-13, and arginase-1 in a PPAR-dependent mechanism,
showing that Netrin-1 is a critical inducer for M2 polarization (Ranganathan et al.
2013). Calcitriol, a bioactive 1,25-dihydroxyvitamin D3, promotes M2 polarization
while inhibiting macrophage recruitment and activation, thereby attenuates protein-
uria and renal injury in diabetic nephropathy (Zhang et al. 2014). In addition, loss of
p53 from bone marrow accelerates renal injury and impairs renal repair caused by the
deficiency of KLF4 expression and M2 polarization (Sutton et al. 2013). Moreover,
paracrine effects of mesenchymal stem cells (MSCs) increases the infiltration of M2
macrophages which protects against renal acute injury, and the adoptive transfer of
MSCs-cocultured macrophages in macrophage depletion mice induces much milder
renal injury compared with control (Geng et al. 2014). The functions of MSCs on M2
polarization have also been reported in IRI injury (Wise et al. 2014). Additionally,
recent in vivo studies showed that Wnt/B-catenin signaling promoted renal fibrosis
by enhancing macrophage proliferation and M2 polarization in STAT3-dependent
mechanisms (Feng et al. 2018a, b).

13.8 Monocyte/Macrophage-Based or Targeted Therapy
in Treatment of Renal Fibrosis

Till now, therapeutic strategies by interfering with monocyte/macrophage recruit-
ment, activation and polarization, or adoptive transfer of polarized macrophages
have been extensively studied.

Previous studies showed that DNA vaccination or neutralized antibody-mediated
inhibition of chemokines, like CCL2 and CCLS5, prevents macrophage infiltration
and renal damage in adriamycin nephropathy (Wu et al. 2005; Zheng et al. 2006),
nephrotoxic serum nephritis (Lloyd et al. 1997; Tang et al. 1996; Wada et al. 1996),
and anti-thyl.1 nephritis (Wenzel et al. 1997). Inhibition of CX3CR1 or intercel-
Iular adhesion molecule-1 (ICAM-1) protects against crescentic glomerulonephri-
tis and nephrotoxic nephritis (Feng et al. 1999; Kawasaki et al. 1993). Addition-
ally, anti-macrophage serum-induced depletion of macrophage prevents experimen-
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tal glomerulonephritis (Holdsworth et al. 1981). Blocking c-fms, a receptor for CSF,
protects against UUO and diabetic nephropathy by reducing the recruitment and pro-
liferation of macrophages (Le Meur et al. 2002; Lim et al. 2009). Moreover, liposo-
mal clodronate-mediated clearance of macrophage alleviates renal fibrosis (Kitamoto
et al. 2009), this finding is further confirmed by the study showing that conditional
depletion of CD11b* cells attenuates crescentic glomerulonephritis (Duffield et al.
2005b; Wang and Harris 2011). Notwithstanding, inconsistent evidence shows that
blocking CCL2 or CCLS5 fails to attenuate renal injury, indicating that the success
of therapy by inhibiting macrophages recruitment might depend on the types and
stages of kidney diseases (Anders et al. 2003; Clauss et al. 2009).

Accumulating evidence shows that modification of macrophage activation states
could also prevent renal fibrosis. A recent study demonstrated that Beta-2 adrenergic
receptor (32AR) agonists increased the binding of B-arrestin2 and IkBa, leading to
the down-regulation of NF-kB and deactivation of macrophages, thereby protected
against diabetic renal complication (Noh et al. 2017). Blocking NF-kB signaling
by antisense oligonucleotides or its natural inhibitor IkB suppresses the classical
activation of macrophages but increases anti-inflammatory macrophages, thereby
limits kidney injury (Tomita et al. 2000; Wilson et al. 2005). By increasing IL.-4/IL-
13-mediated M2 polarization, IL-25 protects against adriamycin nephropathy (Cao
et al. 2011). Additionally, treatment of Quercetin reduced macrophage infiltration
and M2 polarization by preventing ECM production and interstitial fibrosis in a
TGF-B1/Smad-dependent mechanism in obstructive nephropathy (Lu et al. 2018).

Modified macrophages are directly used to treat renal diseases in some studies. IL-
4/IL-13-polarized M2a spleen macrophages were transferred into SCID mice where
functions of endogenous immune cells were excluded, results showed that renal
histology and function were both restored in adriamycin nephropathy (Wang et al.
2007). The protective effect of ex vivo polarized macrophages was further confirmed
in streptozotocin-induced type 1 diabetic nephropathy (Parsa et al. 2012). Of note,
IL-10 and TGF-B-induced M2c macrophages show high efficiency in reducing renal
damage and proteinuria compared with M2a, because they are capable of inducing
immunosuppressing regulatory T cells differentiation via a B7-H4-dependant mech-
anism (Cao et al. 2010; Lu et al. 2013). IL-10/TGF-f or IL-4/IL-13-modified bone
marrow-derived macrophages have limited protective effect due to the finite prolif-
eration capacity of bone marrow cells, so it may confine the clinical application of
macrophage-based therapy by modifying bone marrow cells from patients (Cao et al.
2014).

13.9 Conclusions and Perspective

Taken together, monocytes and macrophages are recruited into the injured kidney
by chemokines released from kidney, and then they are activated and polarized
into distinct phenotypes in response to the local microenvironment. Macrophages
with different activation stages exert distinct or even diverse effects in the processes
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Fig. 13.1 Polarization and function of macrophages in renal injury, repair, and fibrosis

of renal injury, repair, and fibrosis (Fig. 13.1). Uncontrolled M2 macrophages or
CD11b*/Ly6C'"°" macrophages promote renal fibrosis via paracrine effects or direct
transition to myofibroblast-like cells. In this regard, inhibiting monocyte/macrophage
recruitment, modifying macrophage activation and polarization, or adoptive transfer
of polarized macrophages may be promising therapies for renal fibrosis.
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