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How Tubular Epithelial Cell Injury oo
Contributes to Renal Fibrosis
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Abstract The renal tubules are the major component of the kidney and are vulner-
able to a variety of injuries including ischemia, proteinuria, toxins, and metabolic
disorders. It has long been believed that tubules are the victim of injury. In this review,
we shift this concept to renal tubules as a driving force in the progression of kid-
ney disease. In response to injury, tubular epithelial cells (TECs) can synthesize and
secrete varieties of bioactive molecules that drive interstitial inflammation and fibro-
sis. Innate immune-sensing receptors on the TECs also aggravate immune responses.
Necroinflammation, an auto-amplification loop between tubular cell death and inter-
stitial inflammation, leads to the exacerbation of renal injury. Furthermore, TECs
also play an active role in progressive renal injury via mechanisms associated with
the conversion into collagen-producing fibroblast phenotype, cell cycle arrest at both
G1/S and G2/M checkpoints, and metabolic disorder. Thus, a better understanding
the mechanisms by which tubular injury drives AKI and CKD is necessary for the
development of therapeutics to halt the progression of CKD.

Keywords Tubular epithelial cells + Renal fibrosis + Renal inflammation + Chronic
kidney disease - Acute kidney injury

11.1 Introduction

The renal tubules and tubulointerstitium make up a significant portion of the kid-
ney and are the major sites in response to injuries. Increasing evidence shows that
tubular epithelial cells (TECs) play diverse roles in renal repair or progression to
chronic kidney disease (CKD). The innate immune characteristics demonstrate TECs
as immune responders to a wide range of insults, with the consequent production
and release of bioactive molecules that drive interstitial inflammation and fibrosis.
Accumulating evidence shows that renal function decline correlates better with tubu-
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lointerstitial damage than that of glomerular injury (Risdon et al. 1968; Bohle et al.
1979; Mackensen-Haen et al. 1981). Maladaptive repair of injured tubules after acute
kidney injury (AKI) also leads to the progression of CKD (Ferenbach and Bonventre
2015; Venkatachalam et al. 2015). Thus, TECs should be regarded not only as victims
in the context of kidney disease but also as key inflammatory and fibrogenic cells
that drive the progression from acute to chronic kidney disease, which will be the
focus in this review. It should be noted that due to the length limitations, this review
focuses on the emerging mechanisms by which TECs play a driving role in renal
injury, whereas other potentially important factors/pathways not directly related to
this topic are not discussed here.

11.2 Tubule-Derived Factors Associated
with Tubulointerstitial Inflammation and Fibrosis

In response to stress and injury, TECs can be transformed into a secretory phenotype,
with the consequent production and release of various bioactive molecules to favor
the recruitment of inflammatory cells, the activation of fibroblasts, and the loss of
endothelial cells, which eventually drive tubulointerstitial inflammation and fibrosis.

11.2.1 Pro-inflammatory Cytokines

In response to renal injury, TECs become activated and can actually facilitate the
inflammatory response through induction of a variety of pro-inflammatory cytokines
(e.g., interleukin, tumor necrosis factor, colony stimulating factor, and growth factor).
After the first report of TNF-a and IL-6 produced by TEC following IL-1 stimulation
(Jevnikar et al. 1991; Yard et al. 1992), a variety of cytokines produced by activated
TECs are known including IL-18, IL-18, IL-34, IL-16, CSF-1, TWEAK, VEGF,
CTGEF, and so on. In TECs, NLPR3 inflammasome activation causes the release of
mature IL-1p and IL-18 during kidney injury (Leemans et al. 2014; Anders 2016).
Observations by Menke and Wang showed that expression of CSF-1 is upregulated
in TECs during kidney injury and may be responsible for the polarization of renal
macrophages and recovery from AKI (Menke et al. 2009; Wang et al. 2015b; Huen
etal. 2015). Baek et al. identified that TEC-derived IL-34 plays a key role in recruiting
kidney macrophages and causing persistent kidney injury and the development of
CKD (Baek et al. 2015).
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11.2.2 Chemokines

Chemokines are a family of small molecular cytokines with chemotactic activity.
TEC:s are rich sources of CCL subfamily (including MCP-1/CCL2, RANTES/CCLS,
and MIP-1/CCL3) and CX3CL subfamily (fractalkine/CX3CL1), which have spe-
cific effects on monocytes and monocyte-derived lineages (Chung and Lan 2011).
MCP-1/CCL2 is one of the most widely studied chemokines in AKI and CKD (Wang
etal. 1997, 2000; Furuichi et al. 2003). CXCLS8/IL-8 and CLCL12/SDEF-1 are overex-
pressed after TECs injury and are chemotactic for a number of leukocyte populations
(Li and Nord 2002, 2009; Zuk et al. 2014). A recent study reported that CXCLS5 is
increased in tubular cells following the induction of nephrotoxic nephritis and is
responsible for the recruitment of neutrophils during acute renal tissue injury (Dis-
teldorf et al. 2015).

11.2.3 ROS

It has become clear that oxidative stress contributes to CKD progression via myriad
effects (Small et al. 2012; Massy et al. 2009; Nie and Hou 2012). Oxidative stress
implies an increased production of reactive oxygen species (ROS), including superox-
ide anion (O, ™), hydrogen peroxide(H,0;), and hydroxyl anion (OH™). In response
to multiple stimuli and agonists, mitochondrial dysfunction and NADPH oxidases
have been recognized as the major contributors to ROS generation in TECs (Tang
and Lai 2012; Sedeek et al. 2013). For instance, Ang II leads to tubular hypertrophy
and TECs apoptosis via ROS-dependent mechanisms (Wolf et al. 2001; Leung et al.
2011). Albumin acts through epidermal growth factor receptor to stimulate NADPH
oxidase and ROS production. ROS then activates NF-kB, which then ultimately leads
to activation of ERK1/ERK2 pathway (Reich et al. 2005). In addition, albumin has
also been shown to stimulate tubulointerstitial inflammation via the mROS-mediated
activation of Nlrp3 inflammasome (Liu et al. 2014).

11.2.4 CRP

C-reactive protein (CRP) is an acute-phase protein, which is rapidly synthesized by
the liver in response to infection, inflammation, and tissue damage. Besides its use as
a biomarker of inflammation, CRP has been recognized as a pathogenic mediator in
diabetic kidney disease (Liu etal. 2011), obstructive nephropathy (Li etal. 2011), and
AKI (Pegues et al. 2013; Tang et al. 2014; Lai et al. 2016). CRP is also inducible by
high glucose in human TECs and promotes renal inflammation and fibrosis through
activation of TGF-B/SMAD and NF-«B signaling pathways under diabetic conditions
and unilateral ureteral obstructive nephropathy (Liuetal. 2011; Lietal. 2011). Recent
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studies have demonstrated that CRP promotes AKI by causing TEC G1 cell-cycle
arrest via CD32-Smad3—-dependent p27-driven inhibition of the cyclin-dependent
kinase 2/cyclin E mechanism (Tang et al. 2014; Lai et al. 2016).

11.2.5 Growth Factors

Transforming growth factor (TGF-$), connective tissue growth factor (CTGF),
platelet-derived growth factor (PDGF), and vascular endothelial growth factor
(VEGF) are the best-described growth factors involved in the tubulointerstitial fibro-
sis, of which TGF- derived from injured TECs has long been considered as one of
the most important pro-fibrotic growth factors (Yang et al. 2010; Lan et al. 2012;
Geng et al. 2012; Meng et al. 2016; Wu et al. 2013; Grande et al. 2015). Both Ang
IT exposure and Snail 1 overexpression can induce TGF-B1 production by TECs
(Grande et al. 2015; Macconi et al. 2014). After the hypoxic injury, TECs undergo
cell cycle arrest. Particularly when cells are under arrest in the G2/M phase, these cells
produce large amounts of TGF-B1 (Yang et al. 2010). Increased TGF-$ production
by TECs can promote TIF through paracrine signaling to activate adjacent fibrob-
lasts and pericytes transforming into myofibroblast-type cells (Wu et al. 2013; Ignotz
et al. 1987; Roberts et al. 1986). Interestingly, TEC is also a target of TGF-g1. TGF-
B1 can induce cultured TECs to differentiate into cells with distinct myofibroblast
morphology and marked upregulation of collagen production (Zeisberg et al. 2003;
Fan et al. 1999). Meanwhile, autocrine TGF- signaling increases TEC production
of PDGF-B and CTGF/CCN? that can signal on neighboring fibroblasts (Geng et al.
2012).

11.2.6 Intrarenal RAS

Renal local renin—angiotensin system (RAS) activation plays a pivotal role in the
progression of CKD. Blockade of the RAS has become the mainstay therapy for the
preservation of CKD (Hou et al. 2006). Ang II is the major bioactive product of the
RAS driving renal fibrosis. There is substantial evidence that the major fraction of
Ang II present in renal tissues is generated from angiotensinogen (AGT) and subse-
quently delivered to the kidney, as well as from AGT produced by the PTECs. Ang
I delivered to the kidney can also be converted to Ang II (Kobori et al. 2007). Renin
mRNA and renin-like activity have been observed in cultured PTECs (Henrich et al.
1996). The brush border membrane of proximal human kidney tubules also expresses
abundant levels of angiotensin-converting enzyme (ACE) mRNA (Sibony etal. 1993)
and protein (Vio and Jeanneret 2003). ACE has been detected in the proximal and
distal tubular fluids (Casarini et al. 1997). Therefore, all of the major components
required to generate Ang II are expressed within the renal tubules (Urushihara and
Kagami 2017; Kobori and Urushihara 2013). And the upregulation of these RAS
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components may be in a Wnt/p-catenin-dependent manner (Zhou et al. 2015). Stud-
ies have demonstrated that Ang II stimulates TGF-B expression in cultured murine
PTECs and upregulates specific receptors for TGF-p to further enhance its pro-
inflammatory and fibrogenic action (Wolf et al. 1993, 1999; Liu et al. 2009). Ang
II is also able to induce CTGF to mediate the fibrotic phenotype change (Liu et al.
2006, 2007; Chen et al. 2006). Moreover, we also proposed the interaction of Ang
IT and inflammation might be the critical node in the pathogenic tubuloglomerular
feedback loop (Zhang and Liu 2011).

11.2.7 Wntand Hh

The Wnt pathway has been implicated in the epithelial repair process, but an abun-
dance of evidence also supports Wnt/B-catenin signaling in tubulointerstitial fibrosis
(Kang et al. 2016; Kawakami et al. 2013; Tan et al. 2016; Edeling et al. 2016). There
are 19 Wnt ligands, and all of them can bind to Frizzled and LRP5/6 receptors at the
cell surface, leading to canonical signaling through p-catenin activation (Tan et al.
2014). Wnt proteins and receptors are upregulated after renal injury, and B-catenin
activity appears to be increased in injured TECs (Zhou et al. 2012; He et al. 2009).
Overexpression of Wntl in proximal tubules is sufficient to cause TIF and acti-
vate myofibroblasts to produce ECM, suggesting paracrine signaling (Maarouf et al.
2016). It is likely that injured TECs can produce Wnt ligands which then activate the
neighboring fibroblasts to promote TIF (Gewin et al. 2017).

Hedgehog (Hh) signaling is a key mammalian developmental pathway and regu-
lates tissue patterning, cell growth, and differentiation (Cain and Rosenblum 2011;
Mao et al. 2010). Of three Hh ligands (Sonic Hh [Shh], Desert Hh [Dhh], and Indian
Hh [Thh]), Shh is well studied. Lineage tracing studies indicate that Shh and Thh
expression are upregulated in renal tubules after UUO (Fabian et al. 2012; Ding
et al. 2012; Zhou et al. 2014). Interstitial fibroblasts and pericytes are the cells sup-
posed to respond to these ligands. Shh induces fibroblast activation, manifested as
an expression of a-SMA, fibronectin, collagen, and desmin (Ding et al. 2012).

11.2.8 Exosomes

Exosomes are small (30—-100 nm in diameter), lipid bilayer membrane vesicles of
endocytic origin. They can shuttle bioactive molecules including proteins, lipids,
DNA, mRNA, and microRNAs (Zhang et al. 2016; Morrison et al. 2016). In kid-
neys, renal exosomes are produced and secreted by kidney cells which have been
implicated in renal function and diseases via cell-cell communication (Krause et al.
2015). It is known that injured TECs can release exosomes containing TGF- mRNA
to activate fibroblasts, contributing to the development of renal fibrosis in post-AKI
kidneys (Borges et al. 2013). We recently demonstrated that in the setting of pro-
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teinuric kidney disease, albumin triggered TECs to release exosomes packaged with
CCL-2 mRNA, which was delivered to macrophages and led to interstitial inflamma-
tion (Lv et al. 2018). In addition, we also found that the HIF-1a-dependent release
of miRNA-23a-enriched exosomes from hypoxic TECs activates macrophages to
promote tubulointerstitial inflammation (Li et al. 2019).

11.3 Abnormal Repair of TECs: The Central Pathology
Linking AKI to CKD

An increasing number of epidemiological studies have suggested that incomplete
recovery from AKI can lead to progressive CKD (Waikar and Winkelmayer 2009;
Okusa et al. 2009; Hsu 2012; Coca et al. 2012). This is supported by the finding that
the incomplete tubular repair is tightly associated with persistent tubulointerstitial
inflammation, proliferation of fibroblasts, and excessive deposition of extracellular
matrix (Yang et al. 2010; Grgic et al. 2012). A number of recent studies have also
demonstrated that tubule selective injury is sufficient to drive fibrosis, inflammation,
and capillary rarefaction, which is making it to be a central link between AKI and
CKD (Grgic et al. 2012; Takaori et al. 2016; Zhou et al. 2014; Humphreys et al.
2013).

In general, primary tubular injuries have a very good chance of recovery. The
surviving cells dedifferentiate, migrate along the basement membrane, proliferate to
restore cell number, and then restore the functional integrity of the nephron (Thadhani
et al. 1996). However, some damaged TECs become atrophic or gain the fibrotic
phenotype after AKI. This may be tightly associated with the abnormal repair process
in response to the injuries. For example, in the initial repair phase after injury, TECs
may become arrested in the G2/M phase, which may be associated with the activation
of JNK signaling production of pro-fibrotic cytokine (Yang et al. 2010; Ferenbach and
Bonventre 2015). This is confirmed by the ability of using pharmacological inhibition
of G2/M-arrested cells with histone deacetylase inhibitors or p53 inhibition to block
the process of fibrosis (Cianciolo Cosentino et al. 2013; Zhou et al. 2010). Recent
studies also found that aging can sensitize TECs to be arrested at the cell cycle G2/M
in response to cell stress and DNA damage, which provides a potential explanation
for the increased risk of CKD progression after AKI in the elderly (Ferenbach and
Bonventre 2015; Verzola et al. 2008; Liu et al. 2012; Yang and Fogo 2010). In
addition, CRP-induced G1/S cell cycle arrest may also contribute to progressive TIF
via the Smad3-p21/p27-dependent mechanism (Tang et al. 2014; Lai et al. 2016).

Wnt/B-catenin signaling is a pathway involving the recovery from AKI. In the
acute phase of injury, Wnt/B-catenin is likely to be protective. In both IRI and folic
acid nephropathy, tubule-specific ablation of B-catenin has been shown to aggravate
kidney injury by increasing TEC apoptosis (Zhou et al. 2012). Activation of Wnt-4/3-
catenin signaling allows entry into the cell cycle via the upregulation of cyclin D1
and cyclin A, two of the most crucial proteins in regulating cell proliferation and cell
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cycle progression (Terada et al. 2003; Angers and Moon 2009; Clevers and Nusse
2012). Therefore, an early and appropriate activation of Wnt/B-catenin signaling
is required for minimizing the initial renal damages after AKI (Zhou et al. 2016).
However, persistent activation of Wnt signaling has a decisive role in driving AKI
to CKD progression because sustained Wnt signaling causes uncontrolled fibroblast
activation, RAS activation, inflammation, and excessive deposition of ECM (Tan
etal. 2014; Xiao et al. 2016). It is well known that tissue injury and inflammation are
closely linked and interact with each other (Wallach et al. 2014). While initial renal
inflammation may be protective in favoring the repair process in response to AKI,
unresolved and prolonged renal inflammation may cause progressive renal fibrosis.
Thus, better understanding the mechanisms by which tubular injury drives interstitial
inflammation and renal fibrosis is of paramount importance.

11.4 Emerging Mechanisms of Tubule Injury Driving
the Progression of CKD

11.4.1 Inflammation: Innate Immune-Sensing Receptors
in TECs Activation

Uncontrolled or excessive inflammatory responses can lead to progressive kidney
injury. In view of the immune characteristics of TECs, substantial information indi-
cates that Toll-like receptors (TLRs), Nod-like receptors (NLRs) and the NACHT,
LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome have important
roles in the pathogenesis of multiple renal disorders (Leemans et al. 2014). TLRs are
a family of transmembrane receptors and the signal transduction initiated from TLRs
activates effector cells via several kinases and NF-kB-dependent mechanisms (Gluba
et al. 2010). TLRs are widely expressed in TECs. For instance, TECs are known to
express both TLR2 and TLR4, and both TLR2 and TLR4 signaling are activated
during IRI (Wu et al. 2010; Allam et al. 2012; Wolfs et al. 2002), sepsis-induced
AKI (El-Achkar and Dagher 2006; El-Achkar et al. 2006; Dear et al. 2006), diabetic
nephropathy (Lin et al. 2012, 2013; Mudaliar et al. 2013; Devaraj et al. 2011), uni-
lateral ureter obstruction (Pulskens et al. 2010; Leemans et al. 2009; Campbell et al.
2011; Skuginna et al. 2011). Necrotic tubular cells release high-mobility group box|1
protein (HMGB1), histones, heat-shock proteins, and other DAMPs that activate
TLR2 and TLR4 on renal parenchymal cells and drive inflammation (Wu et al. 2010;
Allam et al. 2012; Leemans et al. 2005). We also found that albumin might serve as an
endogenous DAMP to trigger the activation of TLR2-MyD88-NF-kB pathway and
pro-inflammatory cytokine TNF-a and IL-6 secretion (Ding et al. 2015) (Fig. 11.1).
NLRs are cytoplasmic receptors. Shigeoka and co-workers showed that Nod1 and
Nod?2 are present in TECs in both mouse and human kidneys and that the absence
of these receptors can protect the kidney from AKI by inhibiting TEC apoptosis and
inflammation (Shigeoka et al. 2010).
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Fig. 11.1 Landscape of interstitial inflammation caused by damaged TECs. In response to
injury, damaged TECs release various kinds of DAMPs that activate innate immunity through
identical pattern recognition receptors including TLRs and inflammasomes, with the consequent
production and release of cytokines and chemokines to recruit inflammatory cell infiltration in the
interstitium, which eventually drive interstitial inflammation and fibrosis. Some injury factors can
also be seen as DAMPs (such as albumin). In addition, TNF-a and possibly other cytokines drive
necroptosis as a secondary cell death category contributing to tubular necrosis and renal dysfunction.
This sets up the auto-amplification loop of necroinflammation

In addition, emerging evidence suggests an important role for NLRP3 inflam-
masome and IL-1B/IL-18 in the pathogenesis of acute and chronic inflammation
and tissue remodeling in the kidney (Anders and Muruve 2011; Chang et al. 2014)
(Fig. 11.1). Upregulation of the NLRP3 inflammasome is demonstrated in both clas-
sical immune cells as well as in TECs in a wide variety of tubulointerstitial disease
(Anders and Muruve 2011; Chang et al. 2014). We recently found that protein-
uria causes NLRP3 inflammasome activation and IL-1p/IL-18 maturation in a time
course and dose-dependent manner in the proximal tubules (Liu et al. 2014). Further
investigation indicated that megalin/cubilin-mediated albumin retention and lysoso-
mal rupture are involved in the activation of NLRP3 inflammasome and interstitial
inflammation (Liu et al. 2015). Moreover, Ang II has also been shown to induce
NLRP3 inflammasome activation in TECs, which is associated with mitochondrial
dysfunction or ER stress (Wang et al. 2015a; Wen et al. 2016). Thus, activation of
the inflammasome pathway may represent a new mechanism of tubulointerstitial
inflammation.
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11.4.2 Necroinflammation: An Auto-Amplification Loop
Between Tubular Injury and Tubulointerstitial
Inflammation

Necroinflammation is a new pathological auto-amplification loop driven by necrosis
(defined by cell death involving rupture of the plasma membrane) and inflammation
(defined by cytokine release, increased vascular permeability, and recruitment of
immune effector cells) (Linkermann et al. 2014; Mulay et al. 2016b). Following this
pathological process, ischemia, toxins, and proteinuria can trigger tubulointerstitial
inflammation, and in turn, tubulointerstitial inflammation causes TECs injury, which
leads to an aggravation of interstitial inflammation (Fig. 11.1).

How TECs necrosis induces tubulointerstitial inflammation? In the last decade,
it was unraveled that injured cells release DAMPs that activate innate immunity
through identical pattern recognition receptors including TLRs and inflammasomes
(Anders and Schaefer 2014). As mentioned above, this process is also involved in
kidney inflammation and immunopathology (Anders and Muruve 2011; Anders et al.
2004; Anders 2010). AKI is most frequently associated with cell necrosis that implies
DAMPs release. For example, ischemic, septic, or toxic forms of tubular necrosis
can induce HMGB1, histones, heat-shock proteins, and other DAMPs release, which
activate TLR2 and TLR4 on renal parenchymal cells and inflammatory cells to drive
inflammation (Allam et al. 2012; Leelahavanichkul et al. 2011; Rabadi et al. 2012;
Wu et al. 2010; Arumugam et al. 2009). Deficiency of receptor-interacting protein
kinase 3 (RIPK3) or mixed lineage kinase domain-like (MLKL), two core proteins
of the necroptosis pathway, blocks oxalate crystal-induced AKI and inflammation
(Mulay et al. 2016a).

How tubulointerstitial inflammation induces TECs necrosis? DAMPs released by
dying cells activate the pattern recognition receptors of infiltrating immune cells
and intrinsic renal parenchymal cells and induce the release of numerous pro-
inflammatory mediators. In particular, TNF-a and IFN-y can induce necroptosis
via two distinct pathways (Dannappel et al. 2014; Takahashi et al. 2014; Vanden
Berghe et al. 2014). Mulay et al. showed that oxalate crystal formation inside tubules
induced TNF-a secretion, which could activate the RIPK1, RIPK3, and MLKL path-
way of necroptosis via TNFR1. And blocking either TNF-a or TNFR1 could abro-
gate kidney injury and dysfunction (Mulay et al. 2016a). Furthermore, the NLRP3
inflammasome activation not only triggers cytokine release but also pyroptosis, as a
consequence of inflammasome-driven caspase-11 activation (Bergsbaken et al. 2009;
Case et al. 2013). But if pyroptosis can occur in TECs is under debate (Krautwald
and Linkermann 2014; Yang et al. 2014) (Fig. 11.1).
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11.4.3 Partial Epithelial-Mesenchymal Transition (EMT)

TECs might directly contribute to renal fibrosis via EMT, a phenotypic conversion
program that is characterized by the loss of epithelial markers (such as E-cadherin,
zonula occludens-1 [ZO-1] and cytokeratin) and gain of mesenchymal features
(including vimentin, a-smooth muscle actin [a-SMA], fibroblast-specific protein-
1 [FSP1], interstitial matrix components type I collagen, and fibronectin) (Liu 2004;
Strutz 2009). Historical data and recent new findings have suggested that renal fibro-
sis might occur as a result of the tubular epithelial cells injury. In response to this,
TECs produce various chemokines and cytokines around peritubular compartments
to attract and direct the influx of inflammatory cells to the tubulointerstitial space.
Infiltrating cells in turn activate and produce a mixture of soluble factors, includ-
ing pro-inflammatory, pro-fibrotic cytokines, and MMPs. Altered microenvironment
contributes to the reshaping of the mesenchymal cell phenotype, and rendering TECs
adaptable to changing cell phenotype for the sake of escaping apoptosis (Prunotto
et al. 2012; Liu 2010).

However, the precise contribution of the EMT to kidney fibrosis remains a subject
of debate, as studies using genetic cell lineage tracing could not find evidence of a
direct contribution of epithelial cells to the myofibroblast population in the fibrotic
kidney (Humphreys et al. 2010). Two studies recently addressed this dispute and
offered new insights into the potential role of tubular EMT in the development and
progression of renal fibrosis (Ovadya and Krizhanovsky 2015; Zhou and Liu 2016).
The transcription factors Snail 1 and Twist are the main regulators of the EMT
program. Grande et al. (2015) focus on Snail 1, whereas Lovisa et al. (2015) carried
out experiments with both Snail 1 and Twist. By conditional deletion of Snail 1 or
Twist in TECs, the EMT is specifically inhibited. As a result, fibrosis is reduced
in several CKD models, including unilateral ureter obstruction, nephrotoxic serum-
induced nephritis, and folic acid-induced nephropathy. And improvement of renal
fibrosis also led to the preservation of tubular cell integrity and function. Interestingly,
both studies found that TECs undergo incomplete EMT during renal fibrosis—the
cells express markers of both epithelial and mesenchymal cells and remain associated
with their basement membrane. In this respect, these observations are in harmony
with earlier genetic cell lineage tracing studies and demonstrate that partial EMT
is sufficient to induce tubular function impairment, triggering cell cycle arrest, and
promoting the release of critical fibrogenic cytokines, although evidence for partial
EMT in human CKD is rare.

11.4.4 Cell Cycle Arrest

A series of elegant studies have identified that G1/S and G2/M arrest in TECs is
an important driver of maladaptive TECs repair and renal fibrosis, providing a link
between AKI and CKD (Yang et al. 2010; Cianciolo Cosentino et al. 2013; Tang
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et al. 2013). Yang et al. demonstrated a causal association between epithelial cell
cycle G2/M arrest and a fibrotic outcome in toxic and obstructive models of AKI.
G2/M-arrested PTECs activate JNK signaling, which acts to upregulate pro-fibrotic
cytokine (TGF-B1 and CTGF) production (Yang et al. 2010). Canaud et al. further
identified PTECs in the G2/M phase form target of rapamycin—autophagy spatial cou-
pling compartments, which facilitate pro-fibrotic secretion similar to the senescence-
associated secretory phenotype (Canaud et al. 2019). Targeting the G2/M checkpoint
to maintain the proper progression of TECs through the cell cycle during the injury
phase has been proposed as an attractive therapeutic target to prevent the progression
of CKD (Canaud and Bonventre 2015). Cianciolo Cosentino et al. reported that a his-
tone acetylase inhibitor could reduce the number of cells in G2/M arrest and reduce
post-injury tubular atrophy and interstitial fibrosis (Cianciolo Cosentino et al. 2013).
Jenkins et al. suggested that miR-192 has an important role in aristolochic acid-
induced G2/M arrest (Jenkins et al. 2014). Interestingly, the induction of a transient
GO/G1 arrest in TECs with the CDK4/6 inhibitor PD0332991 before IRI ameliorated
kidney injury by preventing apoptosis and pro-fibrotic cytokine production (DiRocco
et al. 2014).

As previously discussed, the functional consequences of EMT during fibrotic
injury are the induction of the G2 phase arrest of TECs (Lovisa et al. 2015). Genetic
inhibition of EMT by knocking out Twist and Snail 1, resulted in a substantial
decrease in the G2/M-arrested TECs. In vitro induction of EMT with TGF- B1 also
induced G2/M arrest in TECs (Wu et al. 2013; Lovisa et al. 2015). Furthermore, it
was found that the G2 arrest was mediated by the cell cycle inhibitor p21 (Lovisa
et al. 2015). And it is in line with a finding that p21 in kidney proximal tubules
mediates fibrosis (Megyesi et al. 2015).

11.4.5 Metabolic Disorder

The intracellular accumulation of excess non-esterified fatty acid (NEFA) and
metabolites in TECs, namely lipotoxicity, can result in renal dysfunction, especially
in the context of diabetic nephropathy (Schelling 2016; Kimmelstiel and Wilson
1936; Oliver et al. 1954; Herman-Edelstein et al. 2014). Several groups have shown
that proximal tubule uptake of filtered NEFAs is the source of tubular toxicity in case
of glomerular damage. Tubulointerstitial damage can be induced in rats by infusion
of NEFA-loaded albumin and in vitro incubation with albumin-bound NEFAs stim-
ulate PTEC apoptosis (Thomas et al. 2002; Kamijo et al. 2002; van Timmeren et al.
2005). Tubular cells have a high level of energy demand and the ATP that they use is
mostly produced by fatty acid oxidation. New findings indicate that dysregulation of
fatty acid oxidation followed intracellular lipid accumulation profoundly affects the
fate of TECs, by promoting EMT, inflammation, and eventually interstitial fibrosis
(Kang et al. 2015). They also investigated the mechanisms behind the depressed
metabolic pathways in fibrotic kidney disease and further demonstrated that TGF-g1
inhibits the expression of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting
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Fig. 11.2 Schematic diagram illustrating cycle feedback interactions between tubule pathology
and interstitial pathology

enzyme in FAO, and thereby decreases fatty acid metabolism (Kang et al. 2015). Fur-
thermore, miR-21 is shown to be implicated in the regulation of metabolic pathways
recently (Trionfini et al. 2015; Chau et al. 2012). miR-21 promotes tubular injury
and fibrosis by downregulating PPAR«, with consequent alterations of TEC lipid
metabolism. Inhibition of miR-21 reduces TGF-B-induced fibrogenesis and inflam-
mation, preserves tubular integrity, as a result of enhanced PPARa/RXR activity and
improved mitochondrial function (Gomez et al. 2015).

11.5 Conclusion

In this review, we shift TECs from the victim of injury to a driving force in the
progression from AKI to CKD. Damaged TECs can contribute directly to interstitial
inflammation and fibrosis through various kinds of mechanisms (Fig. 11.2). Thus,
protecting tubules from repeated injury and restoring healthy tubular function may
be the priority of treatment of kidney diseases. Although the mechanisms of tubular
injury remain to be elucidated, the G1/S and G2/M cell cycle arrest may be a pivotal
obstacle to the adaptive repair of injured TECs and targeting the G1/S and G2/M
checkpoint to maintain the proper cell cycle transition may be an attractive therapeutic
target to prevent the progression of CKD.
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