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Abstract The world’s oceans represent an enormous resource for the discovery of
potential therapeutic agents. During the last decades, numerous novel compounds
have been isolated from marine organisms and many of them have been applied
for phamacological industry. Notably, marine algae are known to be one of the
most important producers of variety of chemically active metabolites. Among them,
phlorotannins, a polyphenol from brown algae, have been revealed to possess numer-
ous biological activities such as UV-protective, anti-oxidant, anti-viral anti-allergic,
anti-cancer, anti-inflammatory, anti-diabetes, and anti-obesity activities. Therefore,
phlorotannins are considered as promising agents for the development of pharma-
ceuticals. This contribution focuses on phlorotannins from brown algae and presents
an overview of their biological activities and health benefit effects.
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11.1 Introduction

The marine environment represents approximately half of the global biodiversity.
It is a rich source of structurally diverse and biologically active metabolites, which
are important for the discovery of potential therapeutic agents [1, 2]. During the last
decades, marine organisms have received much attention in screening marine natural
products for their biomedical and pharmaceutical potentials [3–5]. Various marine
organisms such as algae, tunicates, sponges, soft corals, bryozoans, sea slugs, mol-
lusks, echinoderms, fishes, microorganisms, etc. have been subjected for isolation
of numerous novel compounds. Consequently, numerous active agents such as lipid,
protein, peptide, acid amine, neurotoxins, polysaccharides, chlorophyll, carotenoids,
vitamins, minerals, and unique pigments have been discovered. Many of these sub-
stances have been demonstrated to possess interesting biological activities [6–14].

Notably, marine algae are known to be one of the most important producers of
biomass in the marine environment. Algae are very simple chlorophyll-containing
organisms composed of one cell or grouped together in colonies or as organisms
with many cells [15]. Therefore, they vary greatly in size from unicellular of 3 to
10 μm to giant kelps up to 70 m long [16]. Algae are identified as the microalgae,
which are found in both benthic and littoral habitats and also throughout the ocean
waters as phytoplankton and the macroalgae (seaweeds) which occupy the littoral
zone. Phytoplankton comprises diatoms, dinoflagellates, green and yellow–brown
flagellates, and blue–green algae while seaweeds are classified into green algae,
brown algae, and red algae.

Marine algae are known to be a good source of healthy food due to their low con-
tent in lipids, high concentration in polysaccharides, natural richness in minerals,
polyunsaturated fatty acids and vitamins. Especially, seaweeds are able to produce a
great variety of secondary metabolites characterized by a broad spectrum of biologi-
cal activities such anti-coagulation, anti-virus, anti-oxidant, anti-allergy, anti-cancer,
anti-inflammation, and anti-obesity, anti-diabetes, anti-hypertension, neroprotection,
immunomodulation [17–20]. Therefore, marine algae are believed to be a promising
source to provide not only novel biologically active substances for the development
of pharmaceuticals but also essential compounds for human nutrition [21].

The Phaeophyceae (brown algae) is a large group of marine multicellular algae,
including of many seaweeds. They play an important role in marine environments,
both as food and for the habitats they form.Although the divisionPhaeophyta consists
of 13 orders according to the classification of Bold andWynne [15], only three orders
namely Laminariales, Fucales, and Dictyotales have been extensively researched
for their phytochemicals. The most studied species of these orders are Laminaria,
Ecklonia,Undaria,Himanthalia, Sargassum, andDictyota. Brown seaweeds are rich
in polysaccharide, polyphloroglucinol phenolic compounds, and other secondary
metabolites such as terpenes, carotenoids, and oxylipins [21] Notably, marine brown
algae accumulate a variety of phloroglucinol-based polyphenols, as phlorotannins.
These pholorotannins consist of phloroglucinol units linked to each other in various
ways, and are ofwide occurrence amongmarine brown algae [22, 23]. Amongmarine
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brown algae,Ecklonia cava,Ecklonia stolonifera, Ecklonia kurome, Eisenia bicyclis,
Ishige okamurae, Sargassum thunbergii, Hizikia fusiformis, Undaria pinnatifida,
and Laminaria japonica have been reported for phlorotannins with health beneficial
biological activities [23]. This review focuses on phlorotannins from marine brown
algae and presents an overview of their chemical properties as well as potential
pharmaceutical applications.

11.2 Phlorotannins

11.2.1 Sources and Distribution

Phlorotannins have only been found to exist within brown algae and may constitute
up to 15% of the dry weight of brown algae [24, 25]. The concentration of phlorotan-
nins is highly variable among different brown seaweeds as well as among different
geographical areas. The fucoid species from the Atlantic and the temperate Pacific
contain higher concentration of phlorotannins as compared to those obtained from
the tropical Pacific [26]. It was found that phlorotannnins have mostly focused on
Fucaceae (Ascophyllum nodosum and Fucus vesiculosus), Sargassaceae (Sargassum
spinuligerum and Carpophyllum angustifolium), and Cystoseiraceae (Cystophora
retroflexa and C. torulosa) with concentrations ranging from 20 to 250mg/g drymat-
ter [27–31]. They tend to be concentrated within the outer cortical layers, physode,
and the mitotic meristematic and meiotic sporogenous tissues [24, 32]. In addi-
tion, Laminariaceous brown algae, such as Eisenia bicyclis, Ecklonia cava, Ecklonia
kurome were also found to contain a significant amount of phlorotannins [33, 34].

11.2.2 Structural Diversity and Classification

Phlorotannins are formed by the polymerization of phloroglucinol (1,3,5-
trihydroxybenzene) monomer units. They are highly hydrophilic components with a
wide range of molecular sizes ranging between 126Da and 650 kDa. Themonomeric
units are linked through aryl-aryl bonds and diaryl ether bonds forming different sub-
groups of phlorotannins [35]. Phlorotannins can be grouped according to the criteria
of interphloroglucinol linkages into three primary types including fucols, phlorethols,
and fucophlorethols. Fucols is formed by only phenyl linkages, while phlorethols is
formed by only arylether bonds and fucophlorethols is formed by both arylether and
phenyl linkages.

The structural diversity of phlorotannins increases by adding the number of
phloroglucinol units. Each of the primary groups can be grouped into linear
phlorotannins, if all extension units have only two interphloroglucinol connections,
or branched, if they bind to three or more. In fucols, the interphloroglucinol links
at meta-relative position construct of the linear phlorotannin such as tetrafucol-A
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and the branched phlorotannin such as tetrafucol-B, which were isolated from Fucus
vesiculosus [36, 37].

Moreover, longer oligomers of phlorotannin such as pentafucols and heptafucols
were purified from Scytothamnus australis [38] and Analipus japonicas [39]. The
linear phlorethols may have ortho-, meta- or para- oriented biphenyl ether bridges or
combinations such as triphlorethol C and tetraphlorethols A and B from Laminaria
ochroleuca [40]. The branched phlorethols include tetraphlorethol C from Ecklonia
maxima [41], pentaphlorethol B and hexaphlorethol A from Cystophora retroflexa
[29].

Furthermore, an additional hydroxyl group on the terminal monomer unit forms
other structural motifs of phlorethols such as bifuhalol, trifuhalol A, and trifuhalol
B [42, 43]. If an extension unit is bound between meta-oriented phloroglucinol units
and it bears the additional hydroxyl group, these are called isofuhalols such as isotri-
fuhalol [44]. Some fuhalols with more than one additional hydroxyl group have been
called hydroxyfuhalols, such as hydroxytrifuhalol B [45]. In addition, another sub-
group of phlorethols, the eckols, includes a 1,4-dibenzodioxin system, such as the
trimers eckol and dioxinodehydroeckol [41, 46], the tetramers 2-phloroeckol and
7-phloroeckol [47–49], and the hexamer dieckol [50].

In fucophlorethols, the combinations of C–C and C–O–C linkages allow the
formation of various compounds in linear, branched and heterocyclic fashions.
The linear fucophlorethols is fucodiphlorethol-B [27], meanwhile the branched
fucophlorethols is bisfucotriphlorethol A [51], and heterocyclic fucophlorethols is
phlorofucofuroeckol A [52].

11.2.3 Biosynthesis of Phlorotannins

Phlorotannins are biosynthesized via the acetate-malonate pathway, also known as
the polyketide pathway, in a process which may involve a polyketide synthase-type
enzyme complex [53]. However, the exact biosynthetic pathway for phlorotannins is
unknown up to now. Therefore, methodologies that monitor phlorotannin synthesis
at the genetic or enzymatic levels could be useful to reveal some of the uncertainties
regarding phlorotannin biosynthesis [54]. Firstly, twomolecules of acetyl co-enzyme
A are converted into malonyl co-enzyme A through the addition of carbon dioxide.
This addition changes the acetyl methyl group into a highly reactive methylene.
Secondly, the process of polymerization is assisted to occur with the low required
energy. During further synthesis steps, the carbon dioxide, which was added as an
activator, is lost. Thirdly, a polyketide chain consisting of an acid moiety is formed,
and the co-enzyme is lost. The polyketide chain is transformed by intermolecular
ring closure and elimination of water to produce hexacyclic ring systems. Triketide,
the cyclization product, is not stable and thus undergoes transformation into the
thermodynamically more stable aromatic form, phloroglucinol, consisting of three
phenolic hydroxyl groups [55]. The polymerization of phloroglucinol in different
ways results in formation of various phlorotannins.
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11.2.4 Physiological Properties

Phlorotannins are found in physodes, which contribute to the development of the cell
wall of brown algae [56]. It has suggested that phlorotannins are likely to be integral
structural components of brown-algal cell walls [57]. They are bound to the cell
wall during maturation of the plant [58]. Phenolic compounds are bound with four
major types of bonds including hydrophobic, hydrogen, ionic, and covalent bond to
increase the strength [59]. The cell wall (alginic acid) and phlorotannins are linked
via covalent bonds including the ester bond and the hemiacetal bond, thus requiring
strong conditions to degrade. Moreover, phlorotannins have a putative role in brown
algal reproduction due to exposing on the surface of the recently fertilized zygotes
where theymay prevent multiple fertilizations by inhibiting spermatozoidmovement
[56].

A characteristic of phlorotannins is their plasticity to a variety of environmental
factors including nutrient environment [60], light [61], depth [62], salinity [63], graz-
ing [64] or other mechanical wounding [65]. Such plasticity may represent inducible
defense against herbivory [25]. Suggestions for other adaptive roles for phlorotan-
nins include protection against ultraviolet radiation [66] or function as anti-fouling
substances [67]. The suggested defensive role of phlorotannins is due to deterring
feeding by herbivores [68] and decreasing their assimilation efficiency by binding
with proteins in the gut [69, 70].

11.3 Potential Health Benefits

11.3.1 Antioxidant and UV-Protective Activities

The oxidants such as superoxide anion radicals, hydroxyl radical species, and hydro-
gen peroxide are often generated by biological oxidation reactions of exogenous
factors [71]. It is well known that oxidants are involved in signal transduction and
gene activation, and can contribute to host cell and organ damage [72]. Therefore,
scavenging of oxidant is considered important in controlling various diseases. Inter-
estingly, phlorotannins frommarine brown algae have been evidenced to be effective
to scavenge oxidants in non-cellular and cellular systems. According to Ahn and
colleagues, the antioxidant activities of three phlorotannins including phlorogluci-
nol, eckol and dieckol purified from Ecklonia cava collected in Jeju Island have been
investigated [73]. It reported that all the phlorotannins have the potentialDPPH, alkyl,
hydroxyl and superoxide radical scavenging activities. Eckol exhibit the most strong
antioxidant activity via scavenging 93% of DPPH. Moreover, these phlorotannins
were effective to protect DNA against H2O2-induced damage.

In the same trend, Kang and colleagues have also investigated the cytoprotective
effect of eckol from E. cava against oxidative stress induced cell damage in Chinese
hamster lung fibroblast (V79-4) cells [74]. Eckol was effective to reduce H2O2-
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induced cell death in V79-4 cells, inhibit radiation-induced cell damage, and scav-
enge intracellular ROS production. Moreover, eckol was able to increase the activity
of catalase and its protein expression via increasing phosphorylation of extracellular
signal-regulated kinase and activity of nuclear factor κB. In another study by Kang
et al. triphlorethol-A from E. cava was found to reduce intracellular hydrogen per-
oxide generated by gamma-ray radiation, thus protecting against radiation-induced
membrane lipid peroxidation, cellular DNA damage, and cell death [75]. Further-
more, triphlorethol-A augments cellular antioxidant defense capacity through induc-
tion of HO-1 expression via ERK-Nrf2-ARE signaling pathway, thereby protecting
cells from oxidative stress [76].

Notably, Li and colleagues have isolated several phlorotannins from E. cava
such as phloroglucinol, eckol, fucodiphloroethol G, phlorofucofuroeckol A, dieckol,
and 6, 6′-bieckol. All phlorotannins were found to possess antioxidant properties
via scavenging free radicals, protecting membrane protein from oxidant-induced
damage, enhancing cellular glutathione level in RAW264.7 cell line [77]. Like-
wise, several phlorotannins including phloroglucinol, eckol, dieckol, eckstolonol
and triphloroethol A from E. cavawere investigated for their activity against AAPH-
induced oxidative stress toxicity in zebrafish embryos [78]. All phlorotannins were
able to scavenge intracellular ROS, prevent lipid peroxidation and reduce AAPH-
induced cell death in zebrafish embryos. In an in vivo study, the role of eckol from E.
cava as a radioprotective agent against the gamma ray-induced damage has been
investigated by Park et al. [79]. It has been determined that eckol significantly
decreased the mortality of lethally irradiated mice via improving the hematopoietic
recovery, repairing the damaged DNA in immune cells and enhancing their prolifer-
ation. Therefore, eckol is considered as a potential candidate for adjuvant therapy of
radiation-exposed cancer patients.

UV radiation has a strong oxidative component, and photo-oxidative stress has
been directly linked to skin photodamage, and associated with abnormal cutaneous
reactions such as epidermal hyperplasia, accelerated breakdown of collagen, and
inflammatory responses. Herein, dieckol from E. cava has been found to be able to
inhibit melanogenesis and protect against photo-oxidative stress induced by UV-B
radiation [80]. The inhibitory activity on melanogenesis was evidenced via sup-
pression of tyrosinase and melanin synthesis. Meanwhile, protective activity was
observed via scavenging intracellular ROS, preventing DNA damage, and increas-
ing cell viability. Additionally, Fucofuroeckol-A from E. stolonifera was also found
as protective agent against UVB-induced allergic reaction in RBL-2H3 mast cells
[81]. It was revealed that F-A significantly suppress mast cell degranulation via
decreasing histamine release as well as intracellular Ca2+ elevation induce by UVB.
Notably, the protective activity of F-A against mast cell degranulation was found
due to scavenging ROS production. These results indicated that phlorotannins from
brown algae have potential protective effects against UV-B radiation, which might
be applied in cosmeceutical industries.
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11.3.2 Antimicrobial Activity

Infectious diseases caused by bacteria and fungi are still a major threat to pub-
lic health, despite the tremendous progress in human medicine. Increasing resis-
tance of clinically important bacteria to existing antibiotics is a major problem
throughout the world [82]. The discovery of novel antimicrobial compounds for
clinical application is necessary to check the global crisis of antibiotic resistance.
In this regard, phlorotannins from brown algae have been found to possess antimi-
crobial effect against food-borne pathogenic bacteria, antibiotic resistance bacteria,
and pathogenic fungi. According to Nagayama and colleagues, the oral administra-
tion of phlorotannins from E. kurome on mice results in effective inhibition against
methicillin-resistant Staphylococcus aureus (MRSA). The minimum bactericidal
concentrations (MBCs) of eckol, phlorofucofuroeckol A, dieckol, and 8,8′-bieckol
against Campylobacter jejuni were 0.08, 0.08, 0.03, and 0.03 μmol/ml, respectively.
At twice the MBCs, all Vibrio parahaemolyticus were killed within 0.5–2 h, while
catechins showed little bactericidal activity within 4 h [83]. Furthermore, Lee and
co-workers have determined that dieckol from E. stolonifera exhibited antibacterial
activity against methicillin-susceptible S. aureus (MSSA) and MRSA in a range of
minimum inhibitory concentrations (MICs) of 32 to 64 μg/ml [84]. The MICs of
ampicillin against two standard strains of MRSA were dramatically reduced from
512 to 0.5 μg/ml in combination with 1/4 MIC of dieckol (16 μg/ml). Likewise,
Phlorofucofuroeckol-A from E. bicyclis were also showed anti-MRSA activity with
MIC of 32 μg/ml and synergistic action against MRSA in combination with β-
lactam antibiotics ampicillin, penicillin, and oxacillin [85]. Thereby, phlorotannins-
β-lactam antibiotics combinations exert a synergistic effect against MRSA, indi-
cating the promising treatment of MRSA infections. In addition, it has shown that
phlorofucofuroeckol-A from E. cava and E. bicyclis exhibited effective inhibition
against Propionibacterium acnes, which may be useful as natural additives in anti-
acne cosmetic products [86, 87]. Although the relationship between the structure and
anti-bacterial activity of the phlorotannins is limited, their inhibitory activity may be
suggested to depend on the degree of polymerization of phlorotannin derivatives.

Besides, the purified phlorotannins extracts from three brown seaweeds including
Cystoseira nodicaulis, C. usneoides, and Fucus spiralis displayed their antifungal
activity against human pathogenic yeast and filamentous fungi [88]. It was revealed
that C. albicans ATCC 10231 was the most susceptible among yeast, while Epi-
dermophyton floccosum and Trichophyton rubrum were the most susceptible among
dermatophytes. It was found that C. nodicaulis and C. usneoides seem to act by
affecting the ergosterol composition of the cell membrane of yeast and dermato-
phyte, respectively. Meanwhile, F. spiralis influenced the dermatophyte cell wall
composition by reducing the levels of chitin. Moreover, phlorotannins from F. spi-
ralis inhibited the dimorphic transition ofCandida albicans, leading to the formation
of pseudohyphae with diminished capacity to adhere to epithelial cells. On the other
hand, the potential fungicidal activity of dieckol from E. cava was also found due to
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inhibition of Trichophyton rubrum associated with dermatophytic nail infections in
human [89].

11.3.3 Anti-HIV Activity

Human immunodeficiency virus type-1 (HIV-1) is the cause of acquired immune
deficiency syndrome (AIDS) which has been a major human viral disease with about
33.2 million people infected worldwide up to now [90, 91]. Antiviral agents that
interferewithHIVat different stages of viral replicationhavebeendeveloped [92, 93].
However, failure in anti-AIDS treatment is observed by the emergence of resistant
virus, cross-resistance to drugs and cell toxicity [94, 95]. Therefore, the search for
potential candidates containing higher inhibitory activity against various HIV strains
is increasing in pharmaceutical industry. Accordingly, phlorotannins from brown
algae have been revealed to possess anti-HIV activity.

For the first time, Ahn et al. [96] reported that 8,8′-bieckol and 8,4′′-dieckol from
E. cava exhibited an inhibitory effect on HIV-1 reverse transcriptase and protease.
The inhibition against reverse transcriptase of 8,8′-bieckolwith a biaryl linkage (IC50,
0.5 μM) is ten-fold higher than that of 8,4′′-dieckol with a diphenyl ether linkage
(IC50, 5.3 μM), although these two phlorotannis are dimmers of eckol. They have
suggested that the steric hindrance of the hydroxyl and aryl groups near the biaryl
linkage of 8,8′-bieckol caused to the potent inhibitory activity.Moreover, 8,8′-bieckol
selectively inhibits reverse transcriptase over protease and inhibitory effect is com-
parable to the positive control nevirapine (IC50, 0.28 μM). Moreover, kinetic study
showed that 8,8′-bieckol inhibited the RNA-dependent DNA synthesis activity of
HIV-1 reverse transcriptase noncompetitively against dUTP/dTTP with a K i value
of 0.78 μM. Meanwhile, this compound also exhibited an uncompetitive inhibition
(K i, 0.23 μM) with respect to a homopolymeric template/primer, (rA)n(dT)15. A
possible suggestion for this phenomenon is that 8,8′-bieckol binds to HIV-1 reverse
transcriptase only after the template/primer initially binds to the enzyme. Further-
more, their study has also revealed shown that diphlorethohydroxycarmalol from
I. okamurae also has inhibitory effect on HIV-1 [97]. This compound exhibited
inhibitory effects on HIV-1 reverse transcriptase and integrase with IC50 values of
9.1 μM and 25.2 μM, respectively. However, diphlorethohydroxycarmalol did not
show an inhibitory activity against HIV-1 protease.

In the same trend, 6,6′-bieckol from E. cava has been found as a potent wild
inhibition against HIV-1 induced syncytia formation, lytic effects, and viral p24
antigen production [98]. This phlorotanins has selectively inhibited the activity of
HIV-1 reverse transcriptase enzymewith an IC50 of 1.07μMwithout any cytotoxicity.
Recently, Kwon and colleagues have found that phlorotanins including eckol, 7-
phloroeckol, phlorofucofuroeckol, and dieckol possessed antiviral activities with
IC50 range of 10.8–22.5 μM against porcine epidemic diarrhea virus [99]. These
phlorotanins were completely blocked binding of viral spike protein to sialic acids
at less than 36.6 μM by hemagglutination inhibition. Notably, phlorofucofuroeckol
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and dieckol inhibited viral replication with IC50 values of 12.2 and 14.6 μM in the
post-treatment assay, respectively. Interestingly, phlorofucofuroeckol and dieckol
inhibited both viral entry by hemagglutination inhibition and viral replication by
inhibition of viral RNA and viral protein synthesis, but not viral protease.

11.3.4 Anti-allergic Activity

Allergic disease including allergic rhinitis, asthma, and atopic eczema are among the
commonest causes of chronic ill health. It is caused by an exaggerated reaction of
the immune system to harmless environmental substances, such as animal dander,
house dust mites, foods, pollen, insects, and chemical agents [100, 101]. Allergic
reaction is characterized by the excessive activation of mast cells and basophils by
immunoglobulinE (IgE) fromBcells, resulting in the release of preformed inflamma-
tory mediators from secretory granules such as histamine and β-hexosaminidase, the
generation and secretion of the newly synthesized substances such as leukotrienes,
prostaglandins, and cytokines [102]. These mediators cause allergic inflammatory
responses due to airway constriction, mucous production, and recruitment of inflam-
matory cells. So far, a large number of anti-allergic agents from natural products
have been identified based on the specific assay system or screening approaches.

Recently, phlorotannins from brown algae have been determined as potential
natural inhibitors of allergic reactions due to suppression of allergic degranula-
tion, inhibition of hyaluronidase enzyme, and blockade of FcεRI activities. Several
bioactive phloroglucinol derivatives including fucodiphloroethol G, eckol, dieckol,
6, 6′-bieckol, phlorofucofuroeckol A, and 1-(3′,5′-dihydroxyphenoxy)-7-(2′′,4′′,6-
trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin were isolated from E. cava
and evidenced againstA23187 or FcεRI-mediated histamine release fromKU812 and
RBL-2H3 cells [34, 103]. Especially, dieckol, 6,6′-bieckol, and fucodiphloroethol
G exhibited a significantly inhibitory activity with IC50 range of 27.80–55.12 μM.
The inhibitory mechanism of these compounds was determined to be due to block-
ing the binding activity between IgE and FcεRI. Similarly, Shim et al. [104] have
proved that phlorotannins of dioxinodehydroeckol and phlorofucofuroeckol A from
E. stolonifera induced a suppression of the cell surface FcεRI expression, and total
cellular protein and mRNA levels of the FcεRI α chain in KU812 cells. Further,
both of these compounds exerted inhibitory effects against intracellular calcium ele-
vation and histamine release from anti-FcεRI α chain antibody (CRA-1)-stimulated
cells. In another study, phlorotannin PFF-B obtained from E. arborea exposed strong
inhibitory activity against histamine and β-hexosaminidase release with IC50 value of
7.8 μM [105, 106]. Obviously, PFF-B had a 2.8–6.0 times greater inhibitory activ-
ity than those of epigallocatechin gallate (IC50 = 22.0 μM) or Tranilast (IC50 =
46.6μM), a clinically used anti-allergic drug [107]. Thus, these bioactive phloroglu-
cinol derivatives were suggested as a promising candidate for the design of novel
inhibitor of FcεRI-mediated allergic reaction.
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Hyaluronidase depolymerizes the polysaccharide hyaluronic acid in the extra-
cellular matrix of connective tissue, which is found both in organs and in body
fluids. It is mainly known to be involved in the permeability of the vascular system
[108] and allergic reaction [109, 110]. Interestingly, various phlorotanins such as
phlorofucofuroeckol A, dieckol, and 8,8′-bieckol from E. bicyclis are able to inhibit
hyaluronidase enzyme with IC50 values of 140, 120, and 40 μM, respectively [111].
The effect of these phlorotannins against hyaluronidase enzyme is stronger thanwell-
known inhibitors such as catechins (IC50 = 620μM) and sodium cromoglycate (IC50

= 270 μM). Notably, 8,8′-bieckol, the strongest hyaluronidase inhibitor among the
tested phlorotannins, acted as a competitive inhibitor with an inhibition constant of
35 μM. Likewise, several phlorotannins of 6,6′-bieckol, 6,8′-bieckol, 8,8′-bieckol,
PFF-A, and PFF-B from E. arborea were also confirmed as strong inhibitors of
hyaluronidase [112, 113].

11.3.5 Anti-inflammatory Activity

Inflammation is a critically important aspect of host responses to various stimuli
including physical damage, ultra violet irradiation, microbial invasion, and immune
reactions [114, 115]. It is associated with a large range of mediators that initiate
the inflammatory response, recruit and activate other cells to the site of inflam-
mation [116]. However, excessive or prolonged inflammation can prove harmful,
contributing to the pathogenesis of a variety of diseases, including chronic asthma,
rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, psoriasis, and
cancer [115]. Currently, several classes of drugs such as corticosteroids, nonsteroidal
anti-inflammatory drugs, and aspirin are used to treat the inflammatory disorders. All
these therapeutics help to alleviate the symptoms but, especially after long-term and
high-dose medication, they can have quite substantial side effects. Therefore, there
is still a vital need for the development of new anti-inflammatory drugs with satis-
factory tolerability for long-term use. Herein, phlorotannins have been evidenced as
potential agents for down-regulation of inflammatory responses. Phlorotannin-rich
extracts ofE. cava showed significant suppression of PGE2 generation in LPS-treated
RAW 246.7 cells, and significant inhibition of human recombinant interleukin-1α-
induced proteoglycan degradation [117]. Moreover, the phlorotannin-rich the fer-
mented E. cava processing by-product extract was reported to inhibit NO and PGE2

production, suppress the inducible nitric oxide synthase (iNOS) and cyclooxygenase-
2 (COX-2) expressions, and attenuate interleukin-1β and interleukin-6 production in
lipopolysaccharide stimulated RAW 264.7 cells [118]. Additionally, pretreatment
of phlorotannin-rich extracts of Ascophyllum nodosum caused reduction of LPS-
induced TNF-α and IL-6 release in macrophages [119]. Recently, phlorotannin 6,6′-
bieckol from E. cava was found to inhibit NO and PGE2 production by suppressing
the expression of iNOSandCOX-2 at themRNAandprotein levels inLPS-stimulated
primary macrophages and RAW 264.7 macrophage cells [120]. Moreover, 6,6′-
bieckol down-regulated the production and mRNA expression of the inflammatory
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cytokines TNF-α and IL-6. The pretreatment of 6,6′-bieckol decreased LPS-induced
transactivation of nuclear factor-kappa B (NF-κB) and nuclear translocation of p50
and p65 subunits of NF-κB, thus inhibiting LPS-induced NF-κB binding to the TNF-
α and IL-6 promoters. On the other hand, Kim and collaborators have evidenced that
phlorofucofuroeckol A from E. stolonifera attenuated the productions and expres-
sion of NO, PGE2, and pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α
in LPS-stimulated microglia. Profoundly, phlorofucofuroeckol A treatment showed
inactivation of c-Jun NH2-terminal kinases (JNKs), p38 mitogen-activated protein
kinase (MAPK), Akt, and NF-κB [121]. Similar observations were also made in
their earlier study related to the inhibitory activity of this phlorofucofuroeckol A
on NO and PGE2 production and iNOS and COX-2 expression in RAW 264.7
murine macrophage cells [122]. Besides, phlorotanins from E. arborea also exhib-
ited inhibitory effect on NO production in LPS-stimulated RAW 264.7 cells [123]
and mouse ear edema induced by arachidonic acid, 12-O-tetradecanoyl phorbol-
13-acetate, and oxazolone [124]. Notably, 8,8′-bieckol from E. bicyclis showed the
pronouncedly inhibitory effects on soybean lipoxygenases and 5-lipoxygenases with
IC50 values of 38 and 24 μM, respectively. Meanwhile, dieckol presented a signifi-
cant inhibition of COX-1 with inhibition rate of 74.7% [125]. Similarly, 6,6′-bieckol,
6,8′-bieckol, 8,8′-bieckol, PFF-A, and PFF-B from E. arborea were also confirmed
as strong inhibitors of phospholipase A2, cyclooxygenase, and lipoxygenases, which
correlated to suppression in synthesis and release of leukotoriene and prostaglandin
from RBL cells [113].

11.3.6 Anti-cancer Activity

Cancer can be defined as a disease in which a group of abnormal cells grows uncon-
trollably by disregarding the normal rules of the cell division [126]. Cancers may
be caused in one of three ways, namely incorrect diet, genetic predisposition, and
via the environment. At least 35% of all cancers worldwide are caused by an incor-
rect diet. Meanwhile, genetic predisposition caused about 20% of cancer cases, thus
leaving themajority of cancers being associatedwith a host of environmental carcino-
gens [127]. It is necessary to avoid exposure to cancer-causing biological, chemical,
and physical agents, and consume chemopreventive agents to reduce cancer risk. A
promising approach is associated with natural products that are available as anti-
cancer agents against commonly occurring cancers occurring worldwide [128, 129].
Recently, phlorotannins have been reported as novel promising anti-cancer agent for
breast cancer. Kong et al. [130] has indicated that dioxinodehydroeckol fromE. Cava
exerted anti-proliferative activity against human breast cancer cells via induction of
apoptosis. Dioxinodehydroeckol treatment caused the increase in caspase (−3 and
−9) activity, DNA repair enzyme poly-(ADP-ribose) polymerase (PARP) cleaved,
and pro-apoptotic gene (Bax, p53, and p21) and the decrease in anti-apoptotic gene
Bcl-2 and NF-κB activation. Moreover, phlorotannins-rich extracts from Palmaria,
Ascophyllum and Alaria also inhibited the proliferation of colon cancer cells [131].
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On the other hand, the anti-cancer activity of S. muticum polyphenol-rich seaweed
was shown via inhibiting the proliferation of breast cancer cells with IC50 of 22μg/ml
and inducing apoptosis from 13 to 67% by accumulation of cells at sub-G1 phase
[132]. Parys et al. [133] reported that trifucodiphlorethol A, trifucotriphlorethol A
and fucotriphlorethol A from Fucus vesiculosus were the potential chemopreventive
agents due to their capacity to inhibit the activity of aromatase related to carcino-
genesis from breast cancers. For the first time, Kim and colleages have determined
the inhibitory effects of phlorotannins isolated from E. cava on MMP activities in
cultured human cell lines without any cytotoxic effect [134].

11.3.7 Anti-diabetic Activity

Diabetes mellitus is a chronic metabolic disorder involved in hyperglycaemia, result-
ing from thedeficiency in the productionof insulin by the pancreas.Up to now, numer-
ous therapeutics has been proposed to control hyperglycaemia in diabetic patients.
Especially, α-amylase and α-glucosidase are enzymes related to hyperglycaemia due
to the starch hydrolysis and release of the glucose monomers for subsequent absorp-
tion by the small intestine. Therefore, the inhibition of these enzymes reduces the
availability of free glucosemonomers and consequently decreases blood glucose lev-
els [135]. Rengasamy et al. [136] has isolated three phlorotannins including dibenzo
(1,4) dioxine-2,4,7,9-tetraol and eckol from E. maxima and evaluated their alpha-
glucosidase inhibitory activities. The inhibitory activities of dibenzo (1,4) dioxine-
2,4,7,9-tetraol and eckol on enzyme alpha-glucosidase were 33.7 and 11.2 μM,
respectively. A phenolic-rich extract from Ascophyllum was effective to inhibit α-
amylase and α-glucosidase with IC50 of 0.1 μg/ml GAE and 20 μg/ml GAE [131].
The presence of fucophloroethol structures with degrees of polymerization from
3 to 18 monomer units in Fucus distichus is responsible for its inhibition on α-
glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/ml [137]. More-
over, dieckol and eckol from Eisenia bicyclis exhibited the inhibitory activity on
α-amylase up to 97.5 and 87.5% at 1 mM [138]. Meanwhile, α-glucosidase was
inhibited by phlorofucofuroeckol-A, dieckol, and 7-phloroeckol from E. stolonifera
and eckol and dioxinodehydroeckol from E. bicyclis with IC50 of 1.37, 1.61, 6.13,
22.78, and 34.6 μM, respectively [139]. The ingestion of methanolic extract of E.
stolonifera suppressed the increase in plasma glucose and lipid peroxidation lev-
els in unfasted KK-A(y) mice [140]. Furthermore, various phlorotannins from E.
stolonifera exhibited the inhibitory activities on aldose reductase, which are highly
implicated in hyperglycemia and oxidative stress. The IC50 values of phloroglucinol
derivatives are 21.95–125.45μM[141]. Besides, dieckol fromE. cava has evidenced
prominent inhibitory effect against alpha-glucosidase and alpha-amylase with IC50

values of 0.24 and 0.66 mM, respectively. The increase of postprandial blood glu-
cose levels was significantly suppressed in the dieckol administered group in the
streptozotocin-induced diabetic mice [142]. Recently, three phlorotannins, eckol,
dieckol and phlorofucofuroeckol-A from E. bicyclis were revealed for their anti-
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diabetic activity of alloxan-induced type1 and insulin-induced type 2 in the zebrafish
model [143].

11.3.8 Anti-obesity

Obesity is a major obstacle in human health and life quality, resulting in many
chronic diseases. It is due to a chronic imbalance between energy intake and energy
expenditure, leading to the increased fat storage [144]. Interestingly, a series of
anti-obesity components derived from marine origin have been found, especially
phlorotannins. Herein, three phlorotannins from E. stolonifera including phloroglu-
cinol, eckol, and phlorofucofuroeckol A significantly inhibited lipid accumulation in
3T3-L1 cells via reducing the expression of adipocyte marker genes such as prolifer-
ator activated receptor γ and CCAAT/enhancer-binding protein α [145]. Meanwhile,
phlorotannin dieckol from E. cava exhibited great potential adipogenesis inhibi-
tion and downregulated the expression of peroxisome proliferator-activated receptor-
γ, CCAAT/enhancer-binding proteins, sterol regulatory element-binding protein 1
(SREBP1) and fatty acid binding protein 4 [146]. Moreover, diphlorethohydroxycar-
malol (DPHC) from Ishige okamurae was showed to inhibit population growth and
induce apoptosis in 3T3-L1 preadipocytes [147]. The peptidyl prolyl cis/trans iso-
merase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts
into adipose cells in response to insulin stimulation. However, phlorotannin called
974-B from E. kurome was showed to inhibit the differentiation of mouse embry-
onic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity,
suggesting a lead drug candidate for obesity-related disorders [148].

11.3.9 Other Biological Activities

According to Ahn et al. [149], phloroglucinol from E. cava possesses the activa-
tion activity on immune response. The phloroglucinol elicited the proliferation of
lymphocytes without cytotoxicity and enhanced IL-2 production by activating the
nuclear factor-kappaB (NF-κB) signaling pathway.

Inhibition of angiotensin I-converting enzyme (ACE) activity is themost common
mechanism underlying the lowering of blood pressure. Dieckol from E. cava was
found as potent ACE inhibitor with IC50 value of 1.47 mM. It is a non-competitive
inhibitor against ACE according to Lineweaver-Burk plots [150]. Meanwhile, eckol,
phlorofucofuroeckol A, and dieckol from E. stolonifera were also determined to
manifest the marked inhibitory activity against ACE, with IC50 values of 70.82,
12.74, and 34.25 μM, respectively [151].
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11.4 Conclusion

Finding the safe and efficient agents from natural products for prevention and treat-
ment of chronic diseases are always necessary. Herein, phlorotannins from brown
algae have been identifiedwith various biological activities and health benefit effects.
The extensive discoveries of phlorotannins underlying structure-activity relationship
will provide a clear evidence on their actions against diseases. Moreover, the further
studies due to the bioavailability involving in liberation, absorption, distribution,
metabolism, and elimination phases will ensure the bioefficacy of phlorotannins.
Collectively, phlorotannins from brown algae are believed to play an important role
in the development of novel products that can prevent and/or treatment of chronic
diseases.
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