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Abstract
In the twentieth century, wastewater has emerged as one of the most appalling 
problems facing mankind. In recent times, numerous steps have been taken to 
conserve the water bodies, and a variety of wastewater treatment strategies have 
been developed to treat wastewater in order to make it reusable. The high opera-
tional cost associated with these strategies makes the process economically 
unfeasible. Therefore, looking into the high nutrient content of wastewaters from 
domestic and industrial establishments, it has been proposed that these treatment 
plants may be integrated with energy generation (bioenergy) and resource recov-
ery (N, P, K fertilizers and molecular intermediates as value-added products) for 
making the overall process self-sustainable. Overall, the man-made problem 
caused due to wastewater can be used as an opportunity for economic benefits 
through technological advancements. The present chapter evaluates technical 
and economic aspects of various wastewater treatment strategies with special 
emphasis on energy and value-added product recovery. It will not only highlight 
crucial features of each process but also suggest probable areas of improvements 
keeping in mind the future prospects for establishing self-sustainable wastewater 
treatment plants.
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7.1  Introduction

Air, water, and soil are some of the most important factors for the survival of life on 
earth. Water is vital for existence of life and also acts as universal solvent. It is a vital 
component of all living organisms, and without it, life is impossible. Leonardo da 
Vinci had rightly described water as “the vehicle of nature” (“vetturale di natura”). 
The entire human civilization has evolved around water like Nile River was lifeline 
for Egyptian civilization and Indus River for the Indus Valley civilization (Pradeep 
and Anshup 2009). It is truly said that accessibility to clean water is a clear sign of 
wealth, health, serenity, beauty, and originality. Water, which is free of hazardous 
chemicals and microorganisms, is considered as pure and also necessary for human 
health (Pradeep and Anshup 2009). However, due to different anthropogenic activi-
ties, water is being polluted and unfit for human use, leading to water crisis. Further, 
climate change causing irregular rainfall has added more woes to this escalating 
problem. Many countries in Africa and Asia are facing severe water crisis. This 
water shortage is also accompanied by the depletion of the resources (energy and 
important chemicals) available to growing human society.

Researchers are working on development of various technologies to utilize the 
wastewater. The conventional effluent and sewage treatment plants for reclamation 
of water resources are chemical and energy intensive and also require various post-
treatment approaches because of the unwanted by-products formed. These methods 
require high capital investment, operational and maintenance cost, including larger 
areas, larger infrastructures, or centralized systems (Capodaglio 2017). In order to 
tackle these problems, several integrated approaches for simultaneous wastewater 
treatment and resource recovery had been developed. It is an already established 
fact that microbes (bacteria, fungi, algae, cyanobacteria) play a crucial role in waste-
water treatment or water purification and can be pivotal in resource recovery. The 
sewage sludge, dairy wastewater, industrial and domestic effluents are some of the 
sources of wastewater. The huge amount of wastewater is available for application, 
and there is no lack of raw materials for development of integrated approach. The 
recovery of different resources from wastewater can minimize the environmental 
footprint of wastewater treatment (Yan et al. 2018b) and simultaneously result in 
recovery of resources such as energy, N, P, K fertilizers, different organic com-
pounds, and essential chemicals and nutrients.

The microbe-mediated wastewater treatment can help in generation of electricity 
and bio-methane; the wastewater can act as substrate for the growth of micro-algae 
and cyanobacteria for generation of bioethanol and biodiesel. In the last two decades, 
a concept of microbial nutrient recovery cell (MNRC) was derived which is used by 
the metallurgy scientist and microbiologist for generation of costly metals and 
industrially important chemicals, respectively. This book chapter gives an insight 
into types of wastewater available for resource recovery, different microbe-assisted 
techniques available, treatment and resource recovery, and cost analysis of the pro-
cess, thus giving a complete techno-economic perspective of microbe-mediated 
wastewater treatment strategy for resource recovery. There are different types of 
wastewater available for microbial assisted treatment for the generation of 
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bioenergy and extraction of value-added products. The wastewater can be broadly 
classified into three units as described below.

7.1.1  Domestic Wastewater

Rapid economic/industrial development and population growth have led to the 
increased migration of people to urban areas in search of jobs and financial stability. 
This has put severe pressure on fulfilling the need of food, water, energy, and other 
resources. Due to large population, the amount of domestic wastewater released to 
the environment has greatly increased. Human households generate enormous 
amounts of wastewater on a daily basis. The reports from several government agen-
cies suggest that an average household generates approximately 300–500 gallons of 
wastewater daily. The wastewaters are generated from washing, bathing, kitchen, 
and toilets, that are released to sewage systems. This wastewater is then treated, and 
then it is either reused or released to rivers, etc. The domestic wastewater consists 
of mostly kitchen waste, human fecal waste, etc., which are mostly biodegradable 
(Liu et al. 2018). Along with these biodegradable components are some non-degrad-
able plastic waste which increases pollution by choking the sewer and drainage 
system.

The established wastewater and sewer treatment plants are exposed to increased 
pressure, and their running cost is very high. Therefore, a large amount of domestic 
wastewater is discharged to water bodies such as rivers and lakes. This has led to 
deterioration of groundwater and surface water quality, which triggers several 
potential health and environmental hazards to both animals and mankind. Thus, in 
the last few decades, attempts are made to turn this crisis into opportunity as domes-
tic wastewater contains organic waste (from kitchen and toilet) and essential ele-
ments such as nitrogen, phosphorus, potassium, etc. Various research groups are 
working on different microbial treatment strategies for simultaneously treating this 
waste, generation of electricity, and recovery of different resources such as volatile 
fatty acids (Li and Li 2017), nitrogen, phosphorus, and potassium (Shin and Bae 
2018) and several other essential organic chemicals. The microbe-based systems are 
considered self-sufficient for energy requirement with involvement of less amount 
of chemical for recycling water and resources. To combat this problem, an efficient, 
economical, and feasible process needs to be developed. A number of techniques 
have been tested so far by several scientists and stakeholders; however, the best suit-
able process is yet to be established. The domestic wastewater is basically rich in 
carbon (C), nitrogen (N), and phosphorus (P) which can be recovered through dif-
ferent recovery mechanisms and techniques involved. After treatment of wastewa-
ter, a huge amount of sewage sludge is generated; these are a potential substrate of 
different organic matter with high nutritional value (proteins, lipids, and carbohy-
drates) and essential organic chemicals such as PHA for microbes which could be 
used as a raw material (Balasubramanian and Tyagi 2016; Cole et al. 2016) in dif-
ferent resource recovery techniques.
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7.1.2  Industrial Wastewater

Industrialization is considered as one of the major parameters to evaluate the prog-
ress of a nation. In the last century, rapid urbanization and industrialization have led 
to great socio-economic changes in several nations. Till the beginning of the eigh-
teenth century, rate of industrialization was very slow. With the introduction of 
industrial revolution in the late eighteenth century came the fossil fuel- based engines 
and an increase in number of chemical and textile industries. These industries use 
freshwater as one of the important raw materials from washing and cooling (heat 
absorption), thus leading to the entry of a large number of chemicals leading to 
water pollution (Han-chang 2002). This wastewater needs to be treated prior to its 
release to the environment. But the exponential growth of industries is not accom-
panied by the similar intensity of wastewater treatment setup. This is because the 
conventional processes are cost intensive and require big infrastructure, and the 
industrialists in order to make higher profits have neglected to follow the effluent 
treatment strategies which need to be implemented. Different combination of pol-
lutants is generated by different industries with different chemical and physical 
properties. On the basis of type of industries, the wastewater is divided into the fol-
lowing categories:

7.1.2.1  Agro-industries
A number of agro-industries, e.g., food processing units, use larger quantity of 
freshwater, resulting in the huge amount of wastewater after processing of the food 
items. Some of the important agro- industries are as follows:

 (i) Canning Wastewater

Canning is used to preserve processed food materials in an airtight sealed jar or 
can. The canning industries generates huge amount of cane processing water basi-
cally rich in phytochemical compounds released during processing of plants parts 
used as food materials. For example, citrus canning industries involve sequential 
acidic and alkaline treatment of the citrus membrane, which involves intermediate 
washing with water that results in huge amount of processing water with very high 
chemical oxygen demand (COD~10,000 mg/L). It is estimated that for the produc-
tion of 1 ton of peeled segment used in canning, it will result in generation of 3.6 
tons of effluent wastewater with high COD. These effluents contain beneficial phy-
tochemicals such as pectin, flavonoids, and oligosaccharides. These phytochemicals 
are of great commercial importance such as food, feed, and medicine. Therefore, 
wastewater treatment strategies may be developed to avoid environmental problems 
along with the recovery of phytochemicals as valuable organic food compounds 
(Yan et al. 2018a).

 (ii) Molasses Wastewater

One of the major by-products of the beet sugar and cane sugar refining industries 
is molasses wastewater with high chemical oxygen demand (COD) (80,000–130,000 
mgL-1), thereby making it one of the most polluted wastewaters released by any 
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food industry (Onodera et al. 2013; Ren et al. 2018). However, molasses wastewater 
has potential to act as medium for microbial growth as it mainly contains various 
natural sugars, along with nitrogen, salts, and vitamins added during sugar process-
ing from sugarcane and beetroot (Ren et al. 2018; Avci et al. 2014). The molasses 
act as an important raw material for production of alcohols, hydrogen, and several 
amino acids (Ren et al. 2018; Yan et al. 2012; Sirianuntapiboon and Prasertsong 
2008).

 (iii) Dairy and Livestock Wastewater

Dairy waste mainly consists of the cheese whey permeates, and livestock indus-
tries generate huge amount of wastewater containing cattle fecal waste (cow, buf-
falo, swine, etc.). Dairy waste has high BOD and COD, along with presence of 
antibiotics (i.e., tetracycline, sulfonamides, macrolides, and fluoroquinolones) 
which are used extensively in the dairy industries, thus making treatment or disposal 
a major obstruction. Dairy waste also consists of huge amount of casein which can 
be recovered as a value-added product during treatment. Similarly swine and cow 
fecal materials are rich in phosphorus and nitrogen; the manure which is a major 
type of agriculture waste is rich in ammonium and phosphorus (Chandra et al. 2018; 
Kim et  al. 2008). The direct releases of these fecal matters and livestock waste/
wastewater have several negative environmental consequences such as pollution of 
freshwater water bodies; hence, it should be properly treated prior to its discharge. 
Current treatment approaches for livestock waste/wastewater focus on removal of 
organics and nutrients via biological processes (Wu et al. 2018; Kim et al. 2008). A 
popular treatment method, i.e., anaerobic digestion (AD), can effectively reduce 
organic concentration and recover useful biogas as bioenergy.

 (iv) Brewery Wastewater

Several grains such as barley, oats, rice, wheat, and millets are used extensively 
in brewery industries. The freshwater is used in washing and rinsing of these grains, 
machines and barrels, filters, bottles, etc. The brewery industry wastewater consists 
of the suspended solids, detergents, and high concentration of COD and BOD due 
to soluble and insoluble inorganics (Han-chang 2002). The brewery wastewater 
does not consist of toxic effluents and mostly consists of biodegradable substances; 
thus, it can be subjected to microbial digestions for effluent treatments (Lu et al. 
2019; Han- chang 2002).

7.1.2.2  Paper and Pulp Wastewater
The demand of paper is very high throughout the world, which makes the paper and 
pulp industry one of the biggest industries. In 2016, as per the record of FAOSTAT, 
the world production of paper is 410.9 million ton (FAOSTAT). It is a common 
perspective that the larger the industry, the higher the amount of waste generated 
that eventually affects the environment. Paper and pulp industry is the largest con-
sumer of freshwater where it uses 5–100 m3 of water in different steps of pulping for 
1 ton of paper produced. The amount of water utilization depends upon the 
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characteristics of substrates, paper type/quality, and extent of water being reused 
(Doble and Kumar 2005). The overall process generates huge amount of wastewater 
during different stages of papermaking, which makes paper and pulp industry the 
third largest generator of wastewater after metal processing and chemical industries 
(Ashrafi et al. 2015; Savant et al. 2006). The standard industrial technologies and 
approaches for solutions of problems arising from the industries determine the con-
dition of surrounding environment and the quality of life. Mostly in developing 
countries, the wastewater generated is more as they are less aware about the water 
reuse, wastewater treatment plants are poorly regulated, and they lack strict guide-
lines for water quality measures before its release to environment, whereas in devel-
oped countries, they reuse the water more readily along with different technological 
advancements in treatment process; thus, the amount of wastewater generated has 
low toxicity (Toczyłowska-Mamińska 2017). However, now the world is getting 
aware about the toxicity and negative impact of paper and paper mill effluents, and 
so the governments are tightening the regulations related to wastewater treatment 
measures. The paper and pulping industry wastewater characteristics at different 
stages of the paper making depend on the type of process, the type of wood materi-
als, the process technology applied, the internal recirculation of effluent, and the 
amount of water reused. The paper mill effluents have high COD (1100–2000 
mg/L), high total suspended solids (TSS) (300–510 mg), several organic compounds 
and inorganic compounds such as organic halides (12.5 mg/L), chlorinated com-
pounds (chlorinated hydrocarbons, chlorate, catechols, dioxins, furans, guaiacols, 
phenols, syringols, and vanillins), volatile organic compounds (VOC), residual lig-
nin, and resin acid which mostly originate from lignins, resins, tannins, and chlorine 
compounds (Vashi et al. 2018; Farooqi and Basheer 2017; Ashrafi et al. 2015). The 
paper and pulp wastewater has detrimental impacts on the environment. There are 
several conventional methods such as physicochemical and biological treatment 
(aerobic granulation) methods and some hybrid technologies such as MFC-BES and 
pilot-scale column- type sequencing batch reactor (Farooqi and Basheer 2017). 
These hybrid methods are based on the concept to develop self-sustainable, energy-
efficient systems which make the wastewater reusable by removing pollutants and 
also help in recovery of energy (electricity) and value-added compounds.

7.1.2.3  Textile/Dyeing Industry Wastewater
Industrial revolution started with mechanization of the textile mills, and till date it 
contributes in large amount to the wastewater generated and released in the environ-
ment. Textile processing and dyeing involve use of several acids, alkalis, bleaching 
agents (peroxide), starch, surfactant, dyes, and metals (Ozturk and Cinperi 2018). 
As the process involves several washing and rinsing processes, some of these chem-
icals are washed away during each step, and thus, textile mill effluents consist of 
these components in less or higher quantity. Due to the presence of these chemicals, 
textile wastewater has relatively high toxicity, COD, BOD, intensity of color, and 
salts (Holkar et al. 2016). Various technologies have been developed in order to treat 
this wastewater for its reclamation and recovery of various industrially important 
compounds (Sahinkaya et al. 2018).
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7.1.2.4  Tannery Industry Wastewater
Leather tannery industries contribute largely to wastewater generation as the pro-
cesses involved in the tannery are water intensive. The quality of tannery wastewa-
ter depends on the different mechanical and chemical processes involved in the 
leather processing. The water-intensive process involved in these industries basi-
cally includes soaking and washing, liming, plumming, and batting followed by 
drumming and rinsing. The tannery wastewater has high COD (1500–2500 mg/L); 
high chloride content (5 g/L); highly alkaline, heavy metals such as chromium; and 
high quantity of settable substances (10–20 g/L), emulsified fat which causes foam-
ing in tannery wastewater (Han-chang 2002). The tannery wastewater can be effi-
ciently used for recovery of different biodegradable compounds and metals used 
during leather processing and generation of bioenergy (biogas).

7.1.2.5  Pharmaceutical Industry Wastewater
Several chemical manufacturing units such as pharmaceuticals, organic dyeing 
materials, glue, adhesives, soaps, synthetic detergents, insecticides, pesticides, and 
herbicides generate wastes based on the raw materials used and working process. 
The large chemical industries simultaneously produce several chemicals and phar-
maceutical products; thus, wastewater includes extraction from natural and syn-
thetic compounds, specific poisonous substances, nutrients, and several organic 
compounds (Stadlmair et al. 2018). Therefore, the BOD/COD is lower than 30% as 
COD is in the range of 5000–15000 mg/L and BOD is relatively low that results in 
poor biodegradability, varying range of pH, and bad color (Han-chang 2002). These 
wastewaters require intensive treatment strategies (Stadlmair et al. 2018; Shi et al. 
2017) and as they contain a wide range of chemicals so the recovery potential of 
these wastewaters is really high.

7.1.2.6  Petrochemical Industry Wastewater
Petrochemicals are group of compounds/chemicals derived from petroleum and 
natural gas. These widespread applications of petrochemicals have led to the con-
tamination of almost every natural resource, say, air, water, and soil. Areas near 
petroleum refineries have high rate of surface soil and water pollution 
(Shokrollahzadeh et  al. 2008). The animals and plants are adversely affected by 
products or by-products generated from these refineries. The petrochemical refiner-
ies generate huge quantity of the wastewater which has high COD, BOD, oil, grease, 
metal salts, volatile compounds (Behnami et  al. 2018), phenols, and mineral oil 
(Han-chang 2002). Several wastewater treatment strategies such as activated sludge 
treatment and membrane bioreactor (MBR) have been developed for reclamation of 
the depleting water resources.

It is very clear from the above discussion that water is very essential in almost all 
human activities such as household, industrial, and agricultural. But the clean water 
resources are depleting, and climate change has added more worries due to uneven 
rainfall. Therefore, there is urgent necessity to treat wastewater and extract all pos-
sible resources based on circular economy concept or best from waste. In the next 
part, we will discuss different microbe-based technologies developed for the achieve-
ment of the above-mentioned objective of clean water and resource recovery.
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7.2  Microbe-Assisted Technologies for Wastewater 
Treatment: Techno-Economic Evaluation

Several new umbrella concepts such as circular bio-economy and NEWEL 
(Nutrients-Energy-Water-Environment-Land) (Mo and Zhang 2013) are estab-
lished. Under these umbrella concepts, innovative research measures have resulted 
in development of broad spectrum of technologies for utilization of wastewater as 
resource rather than just another waste generated through anthropogenic activity. 
The development of these technologies has led to different comparative analysis and 
technical and economic evaluation in order to identify a self-sustainable technique, 
which is an economically feasible alternative to the physical and chemical pro-
cesses. Under this heading, we will discuss the different microbe-assisted process 
developed for wastewater treatment based on the literature survey, the technical 
steps involved in developed processes, and economic or market feasibility of the 
technique.

7.2.1  Microbial Fuel Cell (MFC) Technology: Bio-electrochemical 
System (BES)

The novel approach of microbial fuel cell (bio-electrochemical system) can be 
exploited for wastewater treatment in order to meet the energy and water crisis. The 
MFC involves microbial conversion of chemical energy stored in biodegradable 
organic materials by bio-electrochemical catalytic activity. This electrochemical 
energy involves transfer of electron between cathode and anode, which leads to 
generation of electricity (Kumar et al. 2018); similarly reaction between electron 
and proton results in formation of methane, hydrogen, hydrogen peroxide, and sev-
eral by-product recoveries such as redox chemicals, heavy metals, and different 
value-added compounds (Jadhav et al. 2017).

The MFC consists of anode (oxidative) and cathode (reductive) fuel cells to pro-
duce energy and other value-added products by integration of electrochemical and 
biochemical processes. Figure 7.1 represents the schematic design of MFC, where 
in anodic chamber, electrochemically active microbes catalyze the oxidation of 
organic electron donors and deliver the electrons to anode, where it is captured as 
electrical energy. In order to maintain the electro-neutrality, the catalytic conversion 
also results in generation of protons (H+) in anodic chamber, and in order to main-
tain the electro- neutrality, protons travel through semi-permeable cation exchange 
membrane to cathodic chamber (Kumar et al. 2018). In bio-electrochemical system 
under the influence of external potential, protons transferred to cathodic chambers 
are utilized for generation of value-added chemicals/compounds (Jadhav et  al. 
2017). Bio-electrochemical system offers a flexible platform for oxidation of pollut-
ants for energy generation and simultaneous reduction-oriented methods for prod-
uct recovery. Thus, it has provided an integrated solution for wastewater treatment 
and resource recovery in the form of clean water, bioenergy, and chemicals. The 
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recovery of different resources reduces the additional energy required in individual 
synthesis process of each resource. In the technological advancement of MFC, 
where an external voltage is applied in the MEC, this external voltage acts as the 
driving force in accelerating the microbial electro-catalysis for production of high-
value chemicals such as methane, hydrogen gas, hydrogen peroxide, and caustic 
soda at the cathode at very low energy cost (Sharma et al. 2014; Foley et al. 2010; 
Rabaey and Rozendal 2010; Rozendal et al. 2008a). This electricity-driven method 
is now also applied in the area of bioremediation and exploited for inorganic 
resource recovery as well. These chemicals have higher market value as compared 
to the external electricity applied, and several studies associated with life cycle 
assessment of BES suggested that BES is not only economical but also can help in 
providing several significant environmental benefits (Foley et al. 2010). Table 7.1 
contains details of different value-added products extracted during different waste-
water treatments along with the microbes involved in the process.

7.2.2  Economics of the BES system

The techno-economic feasibility of the BES system at larger scale beyond labora-
tory scale (few milliliters to liters) and pilot scale (30–50 l capacity) needs to be 
assessed. In the early twentieth century, most of the feasibility studies demonstrated 

Fig. 7.1 Schematic diagram of MFC/bio-electrochemical system
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in the literature are based on the pilot scales with simpler pollutants such as syn-
thetic wastewater which definitely does not consider the solid waste matters and 
environmental effect on the pollutants before its entry to the BES system. These 
studies are limited to a smaller span of operating time. As the BES technology was 
evolving in past 10–15 years, several attempts have been made to study the techni-
cal and economic feasibility in terms of key performance parameters such as elec-
trode material, electrode connections, flow modes, and different range of actual 
wastewater with different pollutant removal (Hiegemann et al. 2016; Liang et al. 
2013). The scale-up studies by Feng et al. (2014) and Cotterill et al. (2017) demon-
strated the scale-up with 1000-L stackable horizontal MFC and 175-L microbial 
electrochemical cell (MEC), respectively. It is evident from the observation made 
during these studies that the laboratory scale reactor design may not work at large 
scale as evidenced by the lower pollutant removal and hydrogen yield as compared 
to laboratory scale. It is a well-established fact that development of any technology 
on larger scale is driven by capital involvement in operation of the system such as 
land required for the setup, the cost of electrodes and reactors, etc. However, as per 
studies available in the literature, BES technology is more studied technology for 
simultaneous waste treatment and resource recovery. The amount of research going 
around on the BES technology suggests that BES will have lower operating cost 
than the traditional aerobic treatments as it involves anaerobic process in the anode 
section. But the cost of land required, electrode separator, membrane, and reactor 
material and its construction may lead to enhancement in the capital requirement; 
however, the concept of resource recovery during the process may balance the 
enhanced cost and help in development of a sustainable system. As demonstrated by 
Ge and He (2016), they suggested that 200-L MFC could be cost competitive to 
10000 gpd traditional wastewater treatment system in a decentralized system. The 
mass transfer balance in BES system is also very important. The mass movement 
must be limited to its own specific environment; any deviation from that may 
adversely affect the BES performance. Therefore, the reactors must be designed 
very carefully to prevent any leakage/overflow in substrate or liquid; the distance 
between the electrodes and separators must be precisely determined.

7.2.3  Microbial Enzyme-Based Wastewater Treatment

Microorganisms which are capable of generating different catalytic enzymes are 
used in bioremediation of the wastewater containments. However, direct application 
of microorganism is a slow process and an energy-intensive process as it requires 
ambient environment for the growth of microbes (Sharma et al. 2018; Ghosh et al. 
2017). Thus, in the last few decades, focus has been shifted to the microbial enzymes 
separated from microbes (Thatoi et  al. 2014). Enzymes are biologically derived 
macromolecules which act as catalyst for biochemical degradation of different pol-
lutants (Kalogerakis et al. 2017). The major advantages of application of enzymes 
are as follows: (a) high selectivity to specific substrate, (b) nontoxic by-product 
formation by enzymatic biotransformation, (c) high mobility due to small size, and 
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(d) limits the application of high energy and harsh chemical employed in the physi-
cochemical processes (Sharma et  al. 2018; Maloney et  al. 2015; Gianfreda and 
Bollag 2002).

Water Research Commission Project report (No:1170/1/04) by Rhodes University 
BioSURE Process® identified the active role of group of hydrolase enzymes such 
as endoglucanases, glucosidases, lipases, phosphatases, proteases, and sulfatases 
(Watson et al. 2004; Whiteley et al. 2002a, b, 2003). They demonstrated the pres-
ence of these hydrolase enzymes in biosulfidogenic reactors used for the industrial 
wastewater treatment. They also demonstrated that these enzymes could be used for 
treatment of the wastewater from acid mine drainage, abattoirs, textile dyeing, and 
tanneries (Agrawal et al. 2018; Mutambanengwe and Oyekola 2008). As per litera-
ture survey, it is much evident that very less work has been carried out on direct 
involvement of enzyme-mediated resource recovery. But the enzymes are highly 
selective and result in breakdown of several toxic organic and inorganic compounds 
into different nontoxic residues. These residues can be separated before their release 
from the treatment plants. The enzyme-mediated microbial fuel cell/biological fuel 
cell (Kumar et  al. 2018) is one such another approach for the involvement of 
enzymes in electricity generation. Therefore, enzyme is not directly involved in 
resource recovery but can be used as a biocatalyst of electricity generation and 
resource recovery.

7.3  Methodology Used for the Enhancement of Enzyme 
Performance in Wastewater Treatment

7.3.1  Immobilization

The application of enzyme-mediated transformation and valorization of raw materi-
als dates back 50 years. The enzymes were used in different batch reactors, which 
has major drawbacks such as high operating costs (enzyme production cost is more), 
loss of catalytic activity due to inactivation, etc. During the early twentieth century, 
the idea of enzyme mobilization has evolved as an interesting alternative to over-
come above-mentioned limitations. During the immobilization, biocatalysts are 
ensured in a localized space which helps in the prevention of loss of the enzyme, 
enhances the shelf life of the enzyme, and above all increases reusability of the 
enzyme. Different immobilization techniques have been proposed such as adsorp-
tion or covalent binding of enzyme on solid support like nanoparticles, inclusion in 
a capsule or magnetic beads, embedding in matrix, fiber, or resins, etc. Bayramouglu 
and Arica (2008) demonstrated that covalently immobilized horseradish peroxidase 
on magnetic beads showed higher phenol conversion, high activity, and stability as 
compared to its free enzyme. Thus, it can be suggested that HRP can be successfully 
used in a large-scale continuous enzymatic degradation of phenolic pollutants. HRP 
has wide substrate specificity from an azo dye Remazol Blue (Bhunia et al. 2001) to 
chlorinated dibenzodioxins and dibenzofurans (Köller et  al. 2000). Peroxidase-
based bioreactors can be designed to treat wastewater by immobilization into such 
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medium to allow efficient interactions with substrate/pollutants for its degradation. 
Several nano- based imbedding materials suggested are carbon nanotubes (Campbell 
et al. 2013, 2014b; Dinu et al. 2010), graphene oxide (Zhang et al. 2010), graphene 
oxide sheets (Campbell et al. 2014b), metal- oxide particles (Campbell et al. 2014a), 
nanotubular aluminosilicate (Zhai et  al. 2013), and nanodiamonds (Krueger and 
Lang 2012) on which the peroxidases are embedded through encapsulation into a 
gel (De Lathouder et al. 2008) or membrane (Zhang et al. 2012a; Shen et al. 2011). 
The material should be chosen such that it has minimum interaction with nanosup-
port or encapsulator in order to preserve the specificity and catalytic behavior of 
enzyme. However, improvement in stability, selectivity, and efficiency of nano-
based immobilized enzyme has provided ample opportunity for its application in 
wastewater treatment (Zhang et al. 2012b). Similarly, Jamie et al. (2016) demon-
strated covalent immobilization of lipase enzyme from Candida rugosa that was 
embedded in modified multiwalled carbon nanotubes (MWCNTs). These lipase-
based MWCNTs were used in oily wastewater treatment which showed enhanced 
resistance of enzyme to severe conditions under industrial applications. The CNT-
immobilized enzyme showed 93 times higher catalytic activity as compared to those 
immobilized on other support material. It also helped in retention of about 98% of 
biological activity. Laccase from Phoma sp. UHH 5-1-03 was cross-linked by elec-
tron beam irradiation to polyvinylidene fluoride membrane. The immobilized lac-
case addressed high removal efficiency of >85% for the acetaminophen and 
mefenamic acid from a municipal wastewater containing pharmaceutically active 
compounds (PhACs; applied as a mixture of acetaminophen, bezafibrate, indometa-
cin, ketoprofen, mefenamic acid, and naproxen). The immobilized laccase also dis-
played higher wastewater stability as compared to non-immobilized laccase 
(Jahangiri et al. 2018).

7.3.2  Biocatalytic Membrane Reactor/Enzymatic Membrane 
Reactor (BMR/EMR)

Enzyme-based membrane systems were introduced in order to overcome the limita-
tions of enzyme immobilization technique, i.e., decrease in enzyme activity due to 
steric hindrance effects that arise due to distortion of enzyme structure during 
immobilization process and the interfacial limitations. The enzymatic/biocatalytic 
membrane reactor (EMR/BMR) is a bioreactor in which a biochemical transforma-
tion takes place in the presence of enzyme and a selective membrane is used to sepa-
rate the enzymes and end product generated (Vladisavljević 2015; Rios et al. 2004). 
Different types of configurations of membrane catalytic bioreactors are based on 
relative positions of the catalyst such as the following: (a) the enzyme is separated 
with the help of a membrane; (b) the enzyme is incorporated within the membrane 
wall as a filter; (c) the enzyme is encapsulated in the core-shell microcapsule; and 
(d) a matrix is prepared where the enzyme is encapsulated (Vladisavljević 2015) 
(Fig. 7.2).
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7.3.2.1  Types of Enzyme-Based Membrane Bioreactors and Their 
Application in Wastewater Treatment

 (i) Immobilized Enzyme Membrane Reactor:
In this approach, enzymes are immobilized onto a membrane by covalent attach-

ment, electrostatic deposition, gel formation, and physical and chemical medi-
ated adsorption. Wastewater is transferred through the membrane where it 
interacts with the enzyme, and the products/treated water diffuses from the 
reaction side to the other side of the membrane, and there they are recovered as 
a permeate. A batch ultrafiltration cell-based bioreactor having flat polyacrylo-
nitrile membrane with crude enzyme from Pseudomonas sp. having catechol 
2,3-dioxygenase activity has been used in coke wastewater having phenolic 
effluent. The phenolic degradation of 40–80% was achieved with this system 
(Vladisavljević 2015; Bohdziewicz 1997; Bodzek et al. 1994). A capillary hol-
low fiber membrane bioreactor having polyphenol oxidase (EC 1.14.18.1) 
obtained from Agaricus bisporus immobilized in a polysulfone membrane was 
capable of removing up to 25% of phenolics in 8 h from coal-gas conversion 
plant effluents (Edwards et al. 1999). Lante et al. (2000) demonstrated applica-
tion of laccase from Pyricularia oryzae imbedded in a polyethersulfone mem-
brane of a SPIRA-CEL spiral wound module for treatment of synthetic 
wastewater with eighteen different phenolic substrates. The laccase immobili-
zation resulted in good operational stability and shows potential physico-chem-
ical properties for decreasing phenol substance concentration in a synthetic 
phenolic wastewater. Jolivalt et al. (2000) demonstrated immobilization of lac-
case obtained from a white rot fungus Trametes versicolor on a modified poly-
vinylidene difluoride (PVDF) microfiltration membrane of a frame plate reactor. 
This system resulted in efficient removal of phenylurea herbicide (N’,N’-
(dimethyl)-N-(2-hydroxyphenyl)urea) from wastewater.

 (ii) Extractive Membrane Bioreactor
The extractive membrane bioreactor consists of a separate membrane system and a 

biological component (enzyme/microbes). The wastewater first enters into the 

Fig. 7.2 Types of membranes used in EMR. (A). Enzyme not embedded in membrane. (B) 
Enzyme embedded in the membrane. (C) Enzyme is encapsulated within a core-shell capsule. (D) 
Enzyme is encapsulated in a matrix-type capsule (Adapted from: Vladisavljević 2015)
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membrane where the pollutants which are hostile to the enzyme or microbes are 
separated out. The pollutants separated through the membrane are recycled into 
the bio-medium where the biodegradation occurs. In the recycling unit, the nutri-
ent, pH, and temperature are regulated for proper activity of the biological sys-
tem (Livingston 1994). If enzyme- producing microbes are directly used, then 
nutrients, oxygen, and pH are regulated. Livingston (1994) has also given an 
insight into the technology where he explained about an integrated system in 
which a series of membranes may be used for different pollutants and the bio-
logical priority pollutants can be subjected to biodegradation. Kojima et  al. 
(1995) demonstrated an application of hollow fiber bioreactor fitted with poly-
ethersulfone membrane; the bio-medium is supplied with glucose oxidase 
enzyme obtained from the Aspergillus niger that helped in the removal of organic 
components (glucose) from the synthetic wastewater (Fig. 7.3).

 (iii) Membrane Separation Reactor (MSR)
It is a stirred tank reactor fitted with membrane module. The membrane is used to 

bound a dissolved or dispersed catalyst (may be enzyme molecules or cells) in 
the batch reactor vessel. The untreated permeate leaves the reactor through the 
permeable membrane, whereas the excess solvent and product are withdrawn 
regularly in feed and bleed fashion. MSR are used by Gallifuoco et al. (2001) for 
de-polymerization of polygalacturonic acid using pectolyase obtained from 
Aspergillus japonicus; the membrane material used was polyethersulfone. 
Similar reactor was used by Lopez et al. (2002) in dye decolorization by using 
the manganese peroxidase enzyme obtained from Bjerkandera sp. Soybean per-
oxidase obtained from ground soya bean hulls was used in reactors for degrada-
tion of phenols in an MSR; however, better results were obtained when soybean 

Fig. 7.3 Sketch of an extractive membrane bioreactor (Based on Livingston 1994; Vladisavljević 
2015)
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hulls were used directly that contributed to degradation of the phenols as well as 
adsorption of excess dye (Flock et al. 1999).

 (iv) Anoxic-Oxic Membrane Bioreactor (A/O MBR)
An anoxic-oxic membrane bioreactor is designed which consists of the modified 

activated sludge process, anoxic system coupled with contact stabilization, and 
membrane system (Komala et al. 2011). This system helps in overcoming the 
fouling of membrane system. Fouling is loss of membrane performance which 
occurs due to deposition of the suspended particle on its pore (Wang et al. 2017). 
Fouling causes increase in pressure and decrease in the flux (Komala et al. 2011). 
Different methods such as aeration and backwashing with water or permeate 
pump are applied to reduce fouling. Among them, aeration is one of the best 
suited methods as it increases the flow circulation by inducing shear stress on the 
membrane. Aeration also helps in providing oxygen to the biomass, maintaining 
the activated sludge suspension apart from reducing fouling by scouring the 
membrane (Le-Clech et al. 2006). This AO-MBR system was employed for the 
dye biodegradation of Remazol Black V (azo dye) with a co-substrate tempe 
industrial wastewater as carbon source (Komala et al. 2011). A long-term perfor-
mance of the system was tested for dye degradation. The effect of aeration on 
fouling of membrane was also evaluated, and it was reported that in long-term 
operation, for stable flux and membrane recovery, a filtration-backwash time of 
61 minutes with aeration intensity of 0.7–1 bar was optimum. Xu et al. (2014) 
demonstrated that Fenton-Anoxic-Oxic/MBR system can be successfully 
employed for reclamation of water from the pharmaceutical waste, i.e., avermec-
tin fermentation wastewater. The toxicity of the effluents was reduced signifi-
cantly along with pollutant removal and improved biodegradability. They also 
demonstrated that HCl + NaClO system with aeration is used for removing foul-
ing, increasing the flux of MBR and acceptable trans-membrane pressure (TMP). 
Xiang et al. (2003) demonstrated a pilot-scale (10m3/d) plant of AP-MBR for 
treating the dyeing wastewater of woolen mill (without wasting sludge) for 
125 days operation. The water obtained from the treatment plant is reusable in 
plant.

7.3.2.2  Economics of the Enzyme-Based Technologies
The enzyme-based reactors are dependent on biological catalyst which has certain 
advantages as well as disadvantages. The advantages are as follows: the processes 
used in the treatment of many pollutants are very specific in nature, so selective 
degradation can be done. However, cost of production, stability, and activity at spe-
cific temperature and pH require infrastructure or sophisticated setup and selection 
of the special membrane material so that stability is not hampered much by steric 
hindrance. Fouling is one of the major problems in the MBR, so A/O MBR is intro-
duced. Several other concerns limiting the application of the MBR on large scale are 
membrane flux, membrane life (adversely affected by fouling), and the high price of 
membrane price. Liu et al. (2010) had performed a case study of an A/O MBR-
based sewage treatment in Qingdao Liuting International Airport on the techno-
economic evaluation of the operation and maintenance. He suggested that the 
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relationship between the costs of MBR system is negative logarithm of membrane 
flux and membrane life while the relationship between membrane price and costs of 
running MBR system is in linear relationship. However, this is a highly efficient 
technique for the wastewater treatment, and resource can be recovered as byprod-
ucts of degraded organic pollutants. Different materials scientist and stakeholders 
are interested in developing this technology on larger scale and wider scale of pol-
lutants. With the improvement of membrane technology, reduction of the membrane 
prices and overall running cost may be decreased.

7.4  Direct Application of Microbes

7.4.1  High Rate Algal Pond (HRAP) Systems

The introduction of high rate algal ponds (HRAPs) for treatment of wastewater was 
discovered around 50 years ago; they are widely used for growing microalgae using 
wastewater as substrate for their growth and in turn treat the wastewater, and the 
algal biomass generated is used for recovery of value-added products and bioenergy 
(Craggs et al. 2014; Oswald and Golueke 1960) (Fig. 7.4).

HRAP consists of a shallow open pond (depth of 0.2-1.0 m) divided into a chan-
nel by central wall fitted with a paddle wheel for proper circulation of the water 
throughout the channel, where average water velocity ranges from 0.15 to 0.30 m/s 
(Sutherland et al. 2015; Craggs et al. 2014). This shallow depth attributed with high 
nitrogen (N) and phosphorus (P) content of wastewater along with the turbulent 
eddies resulting in vertical mixing by paddle wheel helps in algal growth by enhanc-
ing exposure of cells to sunlight, preventing sedimentation, and enhancing the dif-
fusion of nutrient across the cell boundary layer (Sutherland et al. 2015; Hadiyanto 
et al. 2013; Park et al. 2011). The appearance of dead zones is common in long 
channel of large-scale operations (Grobbelaar 2012). Carbon dioxide is added in the 
HRAP under carbon-limited situation to enhance algal growth (Craggs et al. 2012). 
The anaerobic ponds or gravity settlers help in removing and digesting the 

Fig. 7.4 Advanced pond system comprising of covered anaerobic pond, HRAP with CO2 supply, 
algal settling pond, maturation tank, and rock filter (Adapted from Craggs et al. 2014)
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wastewater solids (Craggs et al. 2013). HRAP systems require low energy (~1 kWh 
m3 of water treated) (Arashiro et al. 2018; Garfí et al. 2017; Passos et al. 2017), are 
less expensive, and require less maintenance as compared to conventional tech-
niques such as activated sludge system (Arashiro et  al. 2018; Garfí et  al. 2017; 
Molinos-Senante et al. 2014; Craggs et al. 2014;). HRAP is used for simultaneous 
wastewater treatment and the resource recovery; this process helps in generation of 
economically viable feedstock which can be subjected to different treatment strate-
gies for generation of biofuels such as biodiesel by trans-etherification of lipid frac-
tion (Rodolfi et al. 2009), bio-methane by anaerobic digestion of the whole biomass 
(Yen and Brune 2007), bio-oil by pyrolysis of dry biomass (Miao and Wu 2004) or 
hydrothermal liquefaction of wet biomass (Biller and Ross 2011), and bio-ethanol 
by fermentation of the polysaccharide/carbohydrate part (Harun et al. 2010). The 
HRAP also helps in recovery of NPK fertilizers; the protein extracted from the algal 
biomass is rich in different essential amino acids and phyto-hormones (Coppens 
et al. 2016; Garcia-gonzalez and Sommerfeld 2016; Uysal et al. 2015; Jäger et al. 
2010) which can be extracted as value-added product and help in making the entire 
process economically sustainable.

7.4.2  Anammox Process

Autotrophic anaerobic ammonium oxidation (anammox) bacteria have unique capa-
bility to metabolize ammonium and nitrate or nitrite to produce nitrogen gas. 
Anammox process was first observed by Mulder et al. (1995) in denitrifying fluid-
ized bed reactor designed to treat effluent of a methanogenic reactor, and they pat-
ented the process. Most of the genera of anammox bacteria have been discovered in 
wastewater treatment plants, and some are also identified from laboratory-scale bio-
reactors. The six different genera of the anammox bacteria are Anammoxoglobus, 
Anammoximicrobium, Brocadia, Jettenia, Kuenenia, and Scalindua, and they all 
belong to order Planctomycetales (Li et al. 2018). The discovery of anammox pro-
cess has led to understanding that half of the total nitrogen turnover in marine envi-
ronment was mainly mediated by these bacteria (Li et  al. 2018; Kuenen 2008). 
Thus, it was believed that anammox process has great potential in removal of 
ammonium from waste gas or wastewater (Kuenen 2008).

Different type of wastewater systems utilizes anammox process for wastewater 
treatment and resource recovery. Since the discovery of anammox system was 
observed in the wastewater treatment system, it has been proven that wastewater 
with highly contaminated nitrogen and low organic content can be treated with the 
help of anammox bacteria. Several already established wastewater techniques have 
employed the application of anammox for recovery of nitrogen. Table 7.2 describes 
different treatment strategies involving anammox-based treatment and its applica-
tions in nutrient recovery.
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7.4.3  Photosynthetic Bacteria

The photosynthetic bacterium uses light as source of energy and different organic 
materials as carbon substrate and proton donor in autotrophic and heterotrophic 
growth. The different photosynthetic bacteria are grouped under different family 
like groups of microbes such as Chromatiaceae, Chlorobiaceae, 
Ectothiorhodospiraceae, Heliobacteriaceae, and Rhodospirillaceae (Li et al. 2011; 
Dong and Cai 2001). These photosynthetic bacteria play a vital role in nutrient cycle 
and different biological processes, i.e., carbon sequestration, dehydrogenation, 
denitrification, sulfide oxidation, etc. (Han et  al. 2008). Photosynthetic bacteria 
have shown great prospective in area of simultaneous wastewater treatment and 
resource recovery. PSB helps in COD and ammonia nitrogen removal up to 85–99% 
(Meng et al. 2018; Yang et al. 2017; Saejung and Thammaratana 2016). PSB bio-
mass after cleaning wastewater can be used as by-products for feeding fish and 
livestock as feed or feed additive as they are rich in single cell protein, thus helping 
in reducing production cost of fish (Li et al. 2011). SCP have several health benefits 
for livestock and fish such as the following: it promotes growth, it enhances resis-
tance against diseases, etc. PSB biomass can be used as source for extraction of 
value-added products such as coenzyme Q10 (CoQ10) and carotenoids (Meng et al. 
2018; Hao et al. 2017; Jeong et al. 2008). Therefore, the PSB has evolved as an 
attractive tool for treating nontoxic wastewater for simultaneous wastewater treat-
ment and resource recovery. It has an added advantage over algal based technology 
as it can be used for wastewater with high COD (Meng et al. 2018). As compared to 
other conventional technology, PSB has several advantages during its application 
process such as the following: it can work with high organic loading, the space 
requirement for bacterial growth is less, thus leading to low investment involved as 
the nutrients are mostly available in wastewater, and it requires less power con-
sumption (Meng et al. 2018; Li et al. 2011). PSB can also be used in biological 
hydrogen production (Meng et  al. 2018). Different wastewater types have been 
reported to be treated by the action of PSB tabulated in Table 7.3. Photosynthetic 
microbes are used in different bioreactors such as membrane sequencing batch reac-
tor (Kaewsuk et al. 2010) (MSBR), photo-bioreactor, and photo anaerobic mem-
brane bioreactor (Hülsen et al. 2016).

7.5  Economics of the Direct Involvement of Microorganisms 
in Treatment of Wastewater

Microorganism-based biological treatment has been preferred over chemical-based 
traditional methods. Most of the reactors designed for wastewater treatment nowa-
days involve the microbes or the bio-molecules generated by the microbes. Some of 
the systems such as algal based system and photosynthetic-based system involve 
microbes directly. The applications of microbes in MFC have been explained in a 
separate section. Considering the economics of the HRAP and PSB systems, Harun 
et  al. (2011) demonstrated the techno-economic evaluation of the microalga 

B. Kumar et al.
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photo-bioreactor in biogas and biodiesel generation. They demonstrated that the 
biodiesel production was integrated with bio-methane production. The methane 
generated was able to surrogate for the energy required during different steps of 
biodiesel production from algal biomass such as micro-algal cultivation, extraction, 
dewatering, and trans-esterification. They theoretically calculated that the energy 
requirement for the overall process is reduced by 33% and the carbon emission is 
also reduced by approximately 75%. As evident that microalgae growth can be nur-
tured in wastewater where the wastewater will provide the essential nutrients such 
as carbon, nitrogen, etc., in turn the algal biomass results in pollutant treatment. 
Meng et al. (2018) suggested that HRAP design require one-fifth of the cost required 
by any other lagoon system for cleaning wastewater to acceptable water quality. The 
land requirement is smaller for construction of HRAP as compared to other lagoon 
system. The best advantage of the microbe-based system is that the microbe pro-
duces different metabolites, bio-molecules during the process which are of great 
economical value. Therefore, strategies may be designed/implemented to recover 
these components apart from wastewater units for making the process carbon neu-
tral and cost neutral and even generating revenues/profits in some cases.

7.6  Conclusion and Future Perspective

This chapter has elucidated in detail the role of microbes and how different microbe-
assisted products/systems can be used in wastewater treatment directly or in combi-
nation. Currently, the bio- electrochemical system is considered as one of the leading 
technologies due its potential for direct electricity generation apart from wastewater 
treatment with simultaneous recovery of economically important chemical interme-
diates. The scaling up of the system is a major hindrance and limited by loss in 
electricity yield, cost of electrodes, issues associated with the continuous running of 
the process, and sludge formation and its separation. The application of photosyn-
thetic microbes has also shown great potential but is limited due to cost involved in 
designing larger specialized photo bioreactors and the requirement of large land 
areas for HRAP. The application of microbial enzyme in different bioreactors for 
wastewater treatment has shown great potential; however, cost of enzyme produc-
tion, stability, and reusability are a major concern. Although various techniques 
such as immobilization and membrane-based technology have enhanced the reus-
ability of enzyme, these techniques are faced with decreased specificity and reactiv-
ity due to steric hindrance caused by immobilizing material. Thus, scientists have 
designed several nanoparticle-based immobilization systems, but the overall pro-
cess at larger scale is still costly.

It is evident that the microbial based technologies are in the naïve stage and need 
lots of scientific, economic, as well as social impact studies before their application 
as a large-scale technology. The incorporation of microbes with different treatment 
strategies has opened a new venture for scientist from different streams such as 
materialist, physicist, microbiologist, chemist, economist, and sociologist in order 
to take the technology from the laboratory to land, overcoming the above-described 
limitations associated with different developed techniques.
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