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Abstract
Sustainable agricultural production is an urgent issue in response to global cli-
mate change and population increase. Furthermore, recent increased demand for 
biofuel crops has created a new market for agricultural commodities. One poten-
tial solution is to increase plant yield by designing plants based on a molecular 
understanding of gene function and on the regulatory networks involved in stress 
tolerance, development and growth. Recent progress in plant genomics has 
allowed us to discover and isolate important genes and to analyze functions that 
regulate yields and tolerance to environmental stress.
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10.1  Bioinformatics and Its Applications in Plant Biology

Bioinformatics refers to the study of biological information using concepts and 
methods in computer science, statistics and engineering and can be divided into two 
broad categories: Biological information management and computer biology. The 
boundaries of these categories are becoming more diffuse and other categories will 
no doubt surface in the future as this field matures. In our society, our economy and 
our global environment, plant life plays important and diverse roles. For modern 
plant biotechnology, feeding the growing world population is a challenge. Crop 
yields have increased during the last century and will continue to improve as agron-
omy re-assorting the enhanced breeding and develop new biotechnological- 
engineered strategies. The onset of genomics is providing massive information to 
improve crop phenotypes. Accumulating sequence data enables detailed genome 
analysis through the use of friendly access to database and retrieval of information. 
Genetic and molecular genome co linearity allows efficient transfer of data 
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revealing extensive conservation of genome organization between species. Genome 
research’s goals are to identify sequenced genes and deduct their functions through 
metabolic analysis and reverse genetic screens from gene knockouts. More than 
20% of the predicted genes occur as a cluster of related genes that generate a signifi-
cant proportion of gene families. Multiple alignments provide a method for estimat-
ing gene numbers in gene families to identify previously described genes. This 
information allows for new strategies in plants to study patterns of gene expression. 
Available news technology information, as the DNA microarray expression data 
stored in the database, will assist functional genomics of plant biology. Expressed 
sequence tags also provide an opportunity to compare digital northern gene expres-
sion levels that provide initial clues to unknown regulatory phenomena. Collections 
of databases and bioinformatics resources for crop plant genomics were built on 
crop plant networks to harness the extensive genome mapping work. This resource 
facilitates the identification of ergonomically important genes through comparative 
analyzes between crop plants and model species, enabling genetic engineering of 
selected crop plants by the quality of the resulting products. Resources in bioinfor-
matics have evolved beyond expectations, developing new biotechnologies in nutri-
tional genomics biotechnology tools to genetically modify and improve food supply, 
for an ever-increasing world population. Bioinformatics can now be leveraged to 
speed up the translation into agriculture of basic discovery. Farming will be affected 
by predictive manipulation of plant growth at a time when food security, land reduc-
tion available for agricultural use, environmental stewardship, and climate change 
are all issues of growing public concern.

10.1.1  Sequence Analysis

Biological sequence such as DNA, RNA, and protein sequence is the most funda-
mental object for a biological system at the molecular level. Several genomes have 
been sequenced to a high quality in plants, including Arabidopsis thaliana (The 
Arabidopsis Genome Initiative 2000) and rice (Goff et  al. 2002). Draft genome 
sequences are available for poplar (http://genome.jgi-psf.org/Poptr1/) and lotus 
(http://www.kazusa.or.jp/lotus/), and sequencing efforts are in progress for several 
others including tomato, maize, Medicago truncatula, sorghum (Bedell et al. 2005) 
and close relatives of Arabidopsis thaliana. Researchers also generated expressed 
sequence tags (ESTs) from many plants including lotus, beet, soybean, cotton, 
wheat, and sorghum (http://www.ncbi.nlm.nih.gov/dbEST/). Genome Sequencing 
Advances in sequencing technologies provide opportunities in bioinformatics for 
managing, processing, and analyzing the sequences. Shotgun sequencing is cur-
rently the most common method in genome sequencing: pieces of DNA are sheared 
randomly, cloned, and sequenced in parallel. Software has been developed to piece 
together the random, overlapping segments that are sequenced separately into a 
coherent and accurate contiguous sequence (Gibbs and Weinstock 2003). Numerous 
software packages exist for sequence assembly (Pop et al. 2004), including Phred/
Phrap/Consed (http://www.phrap.org), Arachne (http://www.broad.mit.edu/wga/), 
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and GAP4 (http://staden.sourceforge.net/overview.html). TIGR developed a modu-
lar, open-source package called AMOS (http://www.tigr.org/software/AMOS/), 
which can be used for comparative genome assembly (Patil et al. 2001). Current 
limitations in shotgun sequencing and assembly software largely remain in assem-
bling highly repetitive sequences, although the sequencing cost is another limita-
tion. Recently developed methods continue to reduce sequencing costs, including 
sequencing using differential hybridization of oligonucleotide samples, polymor-
phism ratio sequencing (Blazej et al. 2003), four-color chip-based DNA sequencing 
and the “454 method” based on high-density micro-fabricated picoliter reactors 
(Margulies et  al. 2005). In terms of experimental design, data interpretation and 
analysis, each of these sequencing technologies poses significant analytical chal-
lenges for bioinformatics in terms of experimental design, data interpretation, and 
analysis of the data in conjunction with other data (Di et al. 2005). Gene finding and 
Genome Annotation Gene finding refers to prediction of introns and exons in a seg-
ment of DNA sequence. Dozens of computer programs for identifying protein- 
coding genes are available (Zhang 2002). Some of the well-known ones include 
Genscan (http://genes.mit.edu/GENSCAN.html), GeneMarkHMM (http://opal.
biology. gatech.edu/GeneMark/), GRAIL (http://compbio.ornl.gov/Grail-1.3/), 
Genie (http://www.fruitfly.org/seqtools/genie.html), and Glimmer (http://www.tigr.
org/softlab/glimmer). Several new gene-finding tools are tailored for applications to 
plant genomic sequences (Schlueter et al. 2003). Ab initio gene prediction remains 
a challenging problem, especially for large-sized eukaryotic genomes. For a typical 
Arabidopsis thaliana gene with five exons, at least one exon is expected to have at 
least one of its borders predicted incorrectly by the ab initio approach (Brendel and 
Zhu 2002). Transcript evidence from full-length cDNA or EST sequences or simi-
larity to potential protein homologs can significantly reduce uncertainty of gene 
identification (Zhu et al. 2003). Several software packages have been developed for 
structural annotation (Allen et al. 2004). In addition, one can use genome compari-
son tools such as SynBrowse (http://www.synbrowser.org/) and VISTA (http://
genome.lbl.gov/vista/index.shtml) to enhance the accuracy of gene identification. 
Current structural annotation limitations include accurate transcript start sites pre-
diction and identification of small genes encoding less than 100 amino acids, non- 
coding genes) and alternative splicing sites. The analysis of repetitive DNAs, which 
are copies of identical or almost identical sequences present in the genome (Lewin 
2003), is an important aspect of genome annotation. There are repetitive sequences 
in nearly any genome and abundant in most plant genomes (Jiang et  al. 2004). 
Identifying and characterizing repeats is essential for shedding light on the evolu-
tion, function and organization of genomes and for filtering many types. A small 
library of plant specific repeats can be found at ftp://ftp.tigr.org/pub/data/TIGRPlant 
Repeats/; this is likely to grow substantially as more genomes are sequenced. One 
can use Repeat Masker (http://www.repeatmasker.org/) to search repetitive 
sequences in a genome. Repeats with poorly conserved patterns or short sequences 
are hard to identify using RepeatMasker due to the limitations of BLAST. To iden-
tify novel repeats, various algorithms were developed. Some widely used tools 
include Repeat Finder (http://ser-loopp.tc.cornell.edu/cbsu/repeatfinder.htm) and 
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RECON (http://www.genetics.wustl.edu/eddy/recon/). However, due to the high 
computational complexity of the problem, none of the programs can guarantee find-
ing all possible repeats as all the programs use some approximations in computa-
tion, which will miss some repeats with less distinctive patterns. Inevitably, a 
combination of repeat finding tools is required to obtain a satisfactory overview of 
repeats found in an organism. Comparing sequences provides a foundation for many 
bioinformatics tools and may allow inference of the function, structure, and evolu-
tion of genes and genomes. For example, sequence comparison provides a basis for 
building a consensus gene model like UniGene (Boguski and Schuler 1995). Also, 
many computational methods have been developed for homology identification 
(Wan and Xu 2005). Although sequence comparison is highly useful, it should be 
noted that it is based on sequence similarity between two strings of text, which may 
not correspond to homology, especially when the confidence level of a comparison 
result is low. Also, homology may not mean conservation in function. Methods in 
sequence comparison can be largely grouped into pair-wise, sequence profile, and 
profile-profile comparison. For pair-wise sequence comparison, FASTA (http://
fasta.bioch.virginia.edu/) and BLAST (http://www.ncbi.nlm.nih.gov/blast/) are 
popular. To assess the confidence level for an alignment to represent homologous 
relationship, a statistical measure was integrated into pair-wise sequence alignments 
(Karlin and Altschul 1990). Remote homologous relationships are often missed by 
pair-wise sequence alignment due to its insensitivity. Sequence-profile alignment is 
more sensitive for detecting remote homologs. A protein sequence profile is gener-
ated by multiple sequence alignment of a group of closely related proteins. A mul-
tiple sequence alignment builds correspondence among residues across all of the 
sequences simultaneously, where aligned positions in different sequences probably 
show functional and/or structural relationship. A sequence profile is calculated 
using the probability of occurrence for each amino acid at each alignment position. 
PSI-BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) is a popular example of a 
sequence-profile alignment tool. Some other sequence-profile comparison methods 
are slower but even more accurate than PSI-BLAST, including HMMER (http://
hmmer.wustl.edu/), SAM (http://www.cse.ucsc.edu/research/compbio/sam. html), 
and META-MEME (http://metameme.sdsc.edu/). In the detection of remote homo-
logues, a profile-profile alignment is more sensitive than sequence-based search 
programs (Yona and Levitt 2002). Because of its high false positive rate, however, 
the comparison between profile and profile is not widely used. It is helpful to cor-
relate the sequence comparison results with the relationship observed in functional 
genomic data, especially the widely available microarray data as discussed in the 
transcriptome analysis section below, given potential false positive predictions. For 
example, if a gene is predicted to have a particular function by sequence compari-
son, the prediction can be trusted if the gene has a strong correlation in gene expres-
sion profile with other genes known to have the same function. Proteins can be 
generally classified based on sequence, structure, or function. Several sequence- 
based methods were developed based on sizable protein sequence (typically longer 
than 100 amino acids), including Pfam (http://pfam.wustl.edu/), ProDom  (http://
protein.toulouse.inra.fr/prodom/current/html/home.php), and Clusters of 
Orthologous Group (COG) (http://www.ncbi. nlm.nih.gov/COG/new/).
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Other methods are based on fingerprints of small conserved motifs in sequences, 
as with PROSITE (http://au.expasy.org/prosite/), PRINTS (http://umber.sbs.man.
ac.uk/dbbrowser/PRINTS/), and BLOCKS (http://www.psc.edu/general/software/
packages/blocks/blocks.html). The false positive rate of motif assignment is high 
due to high probability of matching short motifs in unrelated proteins by chance. 
Other sequence-based protein family databases are built from multiple sources. 
InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates domain infor-
mation from multiple protein domain databases. Using protein family information 
to predict gene function is more reliable than using sequence comparison alone. On 
the other hand, very closely related proteins may not guarantee a functional rela-
tionship (Noel et al. 2005). One can use structure or function-based protein families 
(when available) to complement sequence-based family for additional function 
information. SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) and CATH (http://cath-
www.bio chem.ucl.ac.uk/) are the two well-known structure-based family resources. 
ENZYME (http://us.expasy.org/enzyme/) is a typical example of a function family. 
A protein family can be represented in a phylogenetic tree that shows the evolution-
ary relationships among proteins. Phylogenetic analysis can be used in comparative 
genomics, gene function prediction, and inference of lateral gene transfer among 
other things (Doolittle 1999). The analysis typically starts from aligning the related 
proteins using tools like ClustalW (http://bips.u-strasbg.fr/fr/Documentation/
ClustalX/). Among the popular methods to build phylogenetic trees are minimum 
distance, maximum parsimony, and maximum likelihood trees. Some programs pro-
vide options to use any of the three methods, e.g., the two widely used packages 
PAUP (http://paup.csit.fsu.edu), and PHYLIP (http://evolution.genetics.washing-
ton.edu/phylip.html). Although phylogenetic analysis is a research topic with a long 
history and many methods have been developed, various heuristics and approxima-
tions are used in constructing a phylogenetic tree, as the exact methods are too 
computationally intense.

10.1.2  Transcriptome Analysis

The primary goal of transcriptome analysis is to learn how an organism’s growth 
and development and response to the environment changes in transcript abun-
dance control. DNA microarrays have been shown to be a powerful technology for 
gene- wide gene transcription profile observation (Schlueter et  al. 2003). 
Microarray data is also combined with other information to infer coregulated pro-
cesses such as regulatory sequence analysis, gene ontology, and pathway informa-
tion. Whole-genome tiled arrays are used to detect transcription without prejudice 
to known or predicted structures of genes and alternative variants of splices. Other 
types of analysis include the analysis of ChIP-chip (chromatin immune precipita-
tion (ChIP) and microarray chip, combining microarrays with methods for detect-
ing chromosomal locations where protein-DNA interactions occur across the 
genome (Buck and Lieb 2004). DNA immune precipitation (DIP-chip) is used by 
a related technique to predict DNA-binding sites (Liu et al. 2005; Brenner et al. 
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2000). Microarray analysis makes it possible to measure transcript simultane-
ously measurement of transcript abundance for thousands of genes (Zhu and 
Wang 2000). Two general types of microarrays are high-density oligonucleotide 
arrays containing a large number of relatively short (25–100-mer) samples syn-
thesized directly on the surface of the arrays, or arrays of amplified polymerase 
chain reaction products or cloned DNA fragments mechanically located directly 
on the surface of the array. Many different technologies are being developed 
(Meyers et al. 2004). Competition between microarray platforms has resulted in 
lower costs and higher gene numbers per array. Unfortunately, the variety of array 
platforms makes it difficult to compare microarray results between microarray 
formats that use different probe sequences, RNA sample labeling, and data collec-
tion methods (Woo et  al. 2004). Even for standardized arrays like those from 
Affymetrix, the optimal statistical treatment for the sets of samples designed for 
each gene still has arguments. The Affycomp software, for example, compares 
Affymetrix results using two spike-in experiments and a dilution experiment for 
different standardization methods under different evaluation criteria (Cope et al. 
2004). You can use this information to select the appropriate methods for normal-
ization. There are many tools available for conducting a variety of analysis on 
large data sets of microarrays. Examples include commercial software such as 
Gene Traffic, GeneSpring (http://www.agilent.com/chem/genespring), 
Affymetrix’s GeneChip Operating Software (GCOS), and public software such as 
Cluster (Eisen et  al. 1998), CaARRAY (http://caarray.nci.nih.gov/), and BASE 
(Saal et al. 2002). A notable example is Bioconductor (http://www.bioconductor.
org), which is an open-source and open- development set of routines written for 
the open-source R statistical analysis package (http://www.r-project.org). 
Observing transcriptional activity patterns that occur under various conditions, 
such as genotypes or time courses, reveals genes that have highly correlated pat-
terns of expression. The correlation, however, cannot distinguish between genes 
under common regulatory control and those whose patterns of expression merely 
correlate. Recent microarray analysis efforts have focused on experimental analy-
sis of microarray data (Mockler and Ecker 2005). A Toxico genomics research 
consortium study indicates “microarray results can be comparable across multiple 
laboratories, particularly when using a common platform and set of 
procedures”(Bard and Rhee 2004). Meta-analysis can examine the effect of the 
same treatment on different studies in order to arrive at a single estimate of the 
true effect of treatment (Rhodes et al. 2004). Tiling arrays Known and predicted 
genes are typical microarray samples. Tiling arrays cover the genome at regular 
intervals to measure unbiased transcription to known or predicted gene structures, 
polymorphism discovery, alternative splicing analysis, and transcription factor-
binding sites identification (Mockler and Ecker 2005). Whole-genome arrays 
(WGAs) cover the entire genome with regular gaps overlapping samples or sam-
ples. The WGA ensures that the experimental results are not dependent on the 
level of current genome annotation, and those new transcripts and unusual forms 
of transcription are discovered. Similar studies for the entire genome of 
Arabidopsis (Stolc et al. 2005) and parts of the rice genome have been performed 
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in plants (Toyoda and Shinozaki 2005). These studies identified thousands of 
novel transcription units including centromer genes, significant transcription of 
antisense genes, and transcription activity in intergenic regions. Tiling array data 
can also be used to validate the predicted boundaries intron/exon boundaries 
(Toyoda and Shinozaki 2005). Further work is needed to establish the best prac-
tices for determining when transcription has occurred and how to normalize array 
data across the different chips. Visualization of the output from tiling arrays 
requires viewing the probe sequences on the array together with the sequence 
assembly and the probe expression data. The Arabidopsis Tiling Array 
Transcriptome Express Tool (also known as ChipViewer) (http://signal.salk.edu/
cgibin/atta) displays information about what type of transcription occurred along 
the Arabidopsis genome (Yamada et  al. 2003). Another tool is Affymetrix’s 
Integrated Genome Browser (IGB), a Java program that investigates genomes and 
combines annotations from multiple sources of data. Another option to view such 
data is collaborations such as those between Gramene (Ware et  al. 2002) and 
PLEXdb (Shen et al. 2005), allowing users to overlay probe array information to 
a comparative sequence viewer. The major limitations of WGAs include a 
sequenced genome requirement, the large number of chips required for complete 
genome coverage, and recent duplicated (and thus highly homologous) gene anal-
ysis. Regulatory sequence analysis Discoverin includes the interpretation of the 
results of microarray experiments involves discovering why genes with similar 
expression profiles behave in a coordinated fashion. Regulatory sequence analysis 
approaches this question by extracting motifs that are shared between the upstream 
sequences of these genes (van Helden 2003). Comparative genomics studies of 
retained non-coding sequences (CNSs) may also help to identify key motives 
(Inada et  al. 2003). There are several methods on the upstream of coregulated 
genes to search for over-represented motifs. Approximately two classes can be 
categorized: oligonucleotide-based frequency (van Helden 2003) and probabilis-
tic sequence-based models (Roth et  al. 1998). The frequency-based method of 
oligonucleotides calculates the statistical significance of a site based on the fre-
quency tables of oligonucleotides observed in all non-coding regions of the 
genome of the specific organism. The oligonucleotide length usually varies from 
4 to 9 bases. Hexanucleotide (6-length oligonucleotide) analysis is most widely 
used. It is then possible to group the significant oligonucleotides as longer con-
sensus motifs. Frequency-based methods tend to be simple, effective and compre-
hensive. The main limitation is the problem of identifying complex patterns of 
motifs. Regulatory Sequence Analysis Tools (RSAT), the public web resource, 
performs sequence similarity searches and analyzes the genome non-coding 
sequences (van Helden 2003). The motif is represented as a position probability 
matrix for probabilistic-based methods, where the motifs are supposed to be hid-
den in the noisy background sequences. One of the strengths of probabilistic 
methods is the ability to identify motifs with complex patterns. It is possible to 
identify many potential motives; however, separating unique motives from this 
large pool of potential solutions can be difficult. Also, probabilistic-based meth-
ods tend to be computationally intense, as they must be run multiple times in order 
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to obtain an optimal solution. AlignACE, Aligns Nucleic Acid Conserved 
Elements (http://atlas.med.harvard.edu/), is a popular motif finding tool first 
developed for yeast but expanded to include other species (Roberts et al. 2000).

10.1.3  Computational Proteomics

Proteomics is a leading technology for protein qualitative and quantitative charac-
terization and genome-scale interactions. The proteomics goals include large-scale 
identification and quantification of all protein types in a cell or tissue, post- 
translation modification analysis and association with other proteins, and charac-
terization of protein activities and structures. Proteomics application in plants is 
still in its initial phase, mostly in the identification of proteins (Newton et al. 2010). 
Other proteomic aspects such as protein-protein interaction identification and pre-
diction, protein activity profiling, local subcellular protein localization, and protein 
structure, have not been widely used in plant science. However, recent efforts such 
as the structural genomic initiative that includes Arabidopsis (http://www.uwstruc-
turalgenomics.org/) are encouraging. Electrophoresis Analysis Electrophoresis 
analysis can qualitatively and quantitatively investigate expression of proteins 
under different conditions (Gorg et  al. 2000). Several bioinformatics tools have 
been developed for two-dimensional (2D) electrophoresis analysis (Mao et  al. 
2005). SWISS-2DPAGE can locate the proteins on the 2D PAGE maps from 
SwissProt (http://au.expasy.org/ch2d/). Melanie (http://au.expasy.org/melanie/) 
can analyze, annotate, and query complex 2D gel samples. Flicker (http://open2d-
prot.sourceforge.net/Flicker/) is an open-source stand-alone program for visually 
comparing 2D gel images. PDQuest (http://www.proteomeworks.bio-rad.com) is a 
popular commercial software package for comparing 2D gel images. Some soft-
ware platforms handle related data storage and management, including PEDRo 
(http://pedro.man.ac.uk/), a software package for modeling, capturing, and dis-
seminating 2D gel data and other proteomics experimental data. Limited ability to 
identify proteins and low accuracy in detecting protein abundance are the main 
limitations of electrophoresis analysis. Protein Identification by Mass Spectrometry 
following protein separation using 2D electrophoresis or liquid chromatography 
and protein digestion using an enzyme (trypsin, pepsin, glu-C, etc.), proteins are 
typically identified using mass spectrometry (MS). MS provides a high-throughput 
approach for large-scale protein identification, unlike other protein identification 
techniques, such as Edman degradation microsequencing. The data generated from 
mass spectrometers are often complicated and the interpretation of computational 
analysis is critical in interpreting the data for protein identification (Gras and 
Muller 2001). The lack of open-source software is a major limitation in MS protein 
identification. Expensive commercial packages are the most widely used tools. 
Furthermore, current statistical models are generally oversimplified for matches 
between MS spectra and protein sequences. Consequently, confidence assessments 
are often unreliable for the results of computational protein identification. Two 
types of protein identification methods are available for MS: peptide mass finger-
printing (PMF) and tandem mass spectrometry (MS/MS).
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10.1.4  Peptide Mass Fingerprinting

Identification of PMF peptides/proteins compares the masses of peptides derived 
from experimental spectral peaks with each of the possible protein computationally 
digested peptides in the sequence database. The proteins in the sequence database 
are considered candidates for the proteins in the experimental sample, with a signifi-
cant number of peptide matches. MOWSE (Pappin et al. 1993) was a previous PMF 
protein identification software package, and Emowse (http://emboss.sourceforge.
net/) is the latest MOWSE algorithm implementation. Several other computational 
tools for PMF protein identification have also been developed. MS-Fit in the Protein 
Prospector (http://prospector.ucsf.edu/) uses a variant of the MOWSE scoring 
scheme that incorporates new features, including restrictions on the minimum num-
ber of peptides to match for a possible hit, the number of missed cleavages and the 
molecular weight range of the target protein. The MOWSE algorithm extension is 
Mascot (http://www.matrixscience.com/). It incorporates the same scoring scheme 
with a probability-based score being added. A limitation of the identification of 
PMF protein is that it can sometimes not identify proteins because multiple proteins 
in the database can fit the spectra of PMF. In this case, further experiments with MS/
MS are necessary to identify the proteins.

10.1.5  Tandem Mass Spectrometry

MS/MS further breaks each digested peptide into smaller fragments, whose spectra 
provide effective signatures of individual amino acids in the peptide for protein 
identification. Many tools have been developed for MS/MS-based peptide/protein 
identification, the most popular ones being SEQUEST (http://fields.scripps.edu/
sequest/) and Mascot (http://www.matrixscience.com/). Both rely on the compari-
son between database-derived theoretical peptides and spectrometric tandem spec-
tra of experimental mass. One of the earliest tools developed for this, SEQUEST 
produces a list of possible assignments of peptide / protein in a protein mixture 
based on a correlation scoring scheme (Yates et al. 1995). Mascot uses a similar 
algorithm to identify MS / MS peptide/protein together with its PMF protein iden-
tification capacity as SEQUEST. The limitations of these programs are that due to 
various factors, including sequencing and annotation errors in the search database, 
a significant portion of MS / MS spectra cannot be assigned. Furthermore, compu-
tational approaches are not currently used to handle post-translation modifications 
well. An active research area (Dancik et al. 1999) is the de novo sequencing approach 
based on MS / MS spectra. The algorithms typically match peak separations by the 
mass of one or more amino acids and infer the likely peptide sequences consistent 
with matched amino acids (Chen et  al. 2001). Several popular peptide de novo 
sequencing software packages are available using MS/MS data, including Lutefisk 
(http://www.hairyfatguy.com/lutefisk/) and PEAKS (http://www.bioinformaticsso-
lutions.com/products/peaks). One limitation of the current methods is that they are 
frequently used.
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10.1.6  Metabolomics and Metabolic Flux

Metabolomics is the analysis at any given time of a cell’s complete pool of small 
metabolites. Because of the proliferation of secondary metabolites, metabolomics 
may be particularly important in plants (van Helden et al. 2000). Metabolites are 
extracted from tissues, separated, and analyzed in a high-throughput manner in a 
metabolite profiling experiment (Dancik et  al. 1999). Metabolic fingerprinting 
examines a few metabolites to help differentiate samples by phenotype or biological 
relevance (Shanks 2005). Technology has now advanced to quantify >1000 com-
pounds from a single leaf extract semi-automatically (Ware et al. 2002). The key 
challenge in metabolite profiling is to identify metabolites from complex plant sam-
ples quickly, consistently, and unambiguously (Sriram et al. 2004). Identification is 
routinely carried out using time-consuming standard additional experiments using 
commercially available or purified preparations for metabolites. For gas chromatog-
raphy-mass spectrometry (GC–MS) profiles from various biological sources, a pub-
licly accessible database is needed that contains the evidence and underlying 
metabolite identification. Experimental metadata standards and metabolomi data 
quality standards are still in a very early stage and a large-scale public repository is 
not yet available. The ArMet (metabolomics architecture) proposal (Harris et  al. 
2005) provides a description and results of plant metabolomics experiments along 
with a database scheme. MIAMET (Minimum Information on a Metabolomics 
Experiment) (Gorg et al. 2000) provides reporting requirements with a view to stan-
dardizing descriptions of experiments, especially in publications. The Working 
Group on Standard Metabolic Reporting Structures (SMRS Working Group, 2005) 
developed standards to describe the biological sample origin, analytical technolo-
gies, and methods used in a metabolite profiling experiment. Metabolite data were 
used to build networks of metabolic correlation (Steuer et al. 2003). Such correla-
tions may reflect the net partitioning of carbon and nitrogen through transcriptional 
or biochemical processes resulting from direct enzymatic conversions and indirect 
cell regulation. Metabolic correlation matrices, however, cannot infer that a change 
in one metabolite in a metabolic reaction network led to a change in another metab-
olite (Steuer et al. 2003). The steady-state flow between metabolites is measured by 
metabolic flux analysis. However, fluxes are even more difficult to measure than 
metabolite levels because of complications in intracellular metabolite transport 
modeling and incomplete knowledge of in  vivo pathway topology and location 
(Shanks 2005). The most basic approach to metabolic flux analysis is stoichiometric 
analysis, which calculates the quantities of reactants and chemical reaction products 
to determine each metabolite’s flux (Edwards and Palsson 2000). However, for large 
networks, this method is numerically difficult to solve and it has problems when 
there are parallel metabolic pathways, metabolic cycles, and reversible reactions 
(Wiechert et al. 2001). FluxAnalyzer is a MATLAB package that integrates meta-
bolic network path and flux analysis (Klamt et al. 2003). Flux analysis using 13C 
carbon labeling data attempts to overcome some of the disadvantages of the above-
mentioned stoichiometric flux analysis (Sriram et al. 2004). In the 13C restricted 
flux analysis and the stoichiometric and isotopomer balances, more rigorous 
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analysis is needed to fully determine fluxes from all experimental data. Iterative 
methods were used to solve the resulting matrix of isotopomer balances, with the 
measurements of nuclear magnetic resonance or gas chromatography being used for 
consistency purposes. As more reliable data are collected, ordinary differential 
equations can be used for metabolic network dynamic simulations, combining 
information on connectivity, concentration balances, flux balances, metabolic con-
trol, and pathway optimization.

Ultimately, one may integrate all of the information and perform analysis and 
simulation in a cellular modeling environment like E-Cell (http://www.e-cell.org/) 
or CellDesigner (http://www.systems-biology.org).

10.1.7  Ontologies

Ontology is a set of vocabulary terms with explicit meanings and relationships with 
other terms used to annotate data (Ashburner et al. 2000). Bio-Ontology Types A 
growing number of common ontologies are being constructed and used in biology. 
Examples include ontologies to describe gene and protein function (Harris et  al. 
2004), cell types (Bard et al. 2005), anatomies and organism developmental phases 
(Garcia-Hernandez et al. 2002), microarray experiments (Stoeckert et al. 2002), and 
metabolic pathways (Mao et al. 2005). The Open Biological Ontologies Web site 
(http://obo.sourceforge.net/) provides a list of open-source ontologies used in biol-
ogy. A lot of ontology is under development on this site and is subject to frequent 
changes. Gene Ontology (GO) (www.geneontology.org) is an example of bio- 
ontology, which has gained acceptance from the community. It is a set of more than 
16,000 controlled vocabulary terms for the biological domains of molecular func-
tion, subcellular compartment, and biological process. GO is organized as a directed 
acyclic graph, a type of hierarchy tree that allows a term to exist as a specific con-
cept belonging to more than one general term. Other examples of ontologies cur-
rently in development are the Sequence Ontology (SO) project (Eilbeck et al. 2005) 
and the Plant Ontology (PO) project (www.plantontology.org). The SO project aims 
to explicitly define all the terms needed to describe features on a nucleotide 
sequence, which can be used for genome sequence annotation for any organism. 
The PO project aims to develop shared vocabularies to describe anatomical struc-
tures for flowering plants to depict gene expression patterns and plant phenotypes. 
A few challenges in the development and use of ontologies remain to be addressed, 
including redundancies in the ontologies, minimal or lack of formal, computer com-
prehensive definitions of the terms in the ontologies, and general acceptance by the 
research and publishing community (Bard and Rhee 2004). An international reposi-
tory of ontology standards is available to oversee the development and maintenance 
of ontologies. Ontology applications are mainly used to annotate data such as 
sequences, clusters of gene expression, experiments, and strains. Ontologies that 
have such annotations of data in databases can be used in numerous ways, including 
connecting different databases, refining search, providing a framework for interpret-
ing the results of functional genomics experiments, and inferring knowledge (Bard 
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and Rhee 2004). For example, one can ask which functions and processes in an 
expression cluster of interest are statistically significantly over-represented in an 
expression cluster of interest compared to the functions and processes carried out by 
all of the genes from a gene expression array. Since GO is one of the more 
 well- established ontologies, this section focuses on GO to illustrate ontology 
 applications in biology. Many model organism databases (http://www.geneontol-
ogy.org/GO.current.annotations.shtml, http://www.geneontology.org/GO.biblio.
shtml#annots) used ontologies to annotate genes and gene products. Function anno-
tations of genes using GO have been used primarily in two ways: predicting protein 
functions, processes, and patterns of localization from different data sources (http://
www.geneontology.org/GO.biblio.shtml#predictions) and providing a biological 
framework or benchmark set for interpreting large-scale sampling results such as 
genes expression profiles and protein-protein interactions (http://www.geneontol-
ogy.org/GO.biblio.shtml#geneexp). Furthermore, GO annotations were used to test 
the robustness of search methods for semantic similarity (Lord et al. 2003) and to 
study adaptive evolution. Using GO annotations to predict function and use them 
as a benchmark for large-scale data has several problems. One is the misuse or 
lack of use of evidence codes, providing the kind of evidence used to make the 
annotation (http://www.geneontology.org/GO.evidence.shtml). Only approxi-
mately half of the codes of evidence refer to direct experimental evidence. In 
addition, several codes of evidence are used for indirect evidence, indicating less 
certainty in annotation assertion than those made with direct evidence. Other 
codes are used for computationally derived annotations and do not have experi-
mental support and are more likely to be incorrect. Researchers and computer 
programs using the annotations to provide knowledge or analyze functional 
genomics data should be familiar with these codes of evidence to minimize data 
misinterpretation. For example, methods for evaluating the relationship between 
sequence conservation and gene co-expression and using GO annotations to vali-
date their results should ensure that no annotations are used to avoid circular argu-
ments using ISS and IEA evidence codes. Similarly, studies seeking to define 
biological processes and functions from gene expression data using the GO anno-
tations should ensure that no annotation with inferred from expression pattern 
(IEP) evidence code is used. The other caveat is that annotations to GO are not 
equivalently represented throughout GO. When looking for statistical over-repre-
sentation of GO terms in genes of an expression cluster, there is low statistical 
power for detecting deviations from expectation for terms that are annotated with a 
small number of genes (Khatri and Draghici 2005).

10.1.8  Emerging Areas in Bioinformatics

In this section the main focus will be on text mining, biology of systems, and seman-
tic web. Some other emerging areas, such as image analysis (Sinha et al. 2002), grid 
computing (Foster 2002), directed evolution (Dalby 2003), rational protein design 
(Looger et al. 2003), microRNA-related bioinformatics (Brown and Sanseau 2005), 
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and modeling in epigenomics (Fazzari and Greally 2004) are not covered due to the 
limitation of space. The Medline 2004 database had 12.5  million entries and is 
expanding at a rate of 500,000 new citations each year (Cohen and Hersh 2005). 
The goal of text mining is to allow researchers to identify needed information and 
shift the burden of searching from researchers to the computer. Without automated 
text mining, much of biomolecular interactions and biological research archived in 
the literature will remain accessible in principle but underutilized in practice. One 
key area of text mining is relationship extraction that finds relationships between 
entities such as genes and proteins. Examples include MedMiner at the National 
Library of Medicine (Tanabe et al. 1999), PreBIND (Donaldson et al. 2003.), the 
curated BIND system (Alfarano et al. 2005), PathBinderH (Ding et al. 2005), and 
iHOP (Hoffmann and Valencia 2004). Results on real-world tasks such as automatic 
extraction and assignment of GO annotations are promising, but they are far from 
achieving the required performance required by applications in the real world 
(Blaschke et al. 2005). A key challenge that needs to be addressed in this field is the 
complex nature of names and terminology such as the wide range of variants in free 
text for protein names and GO terms. The current system generation is beginning to 
combine statistical methods with machine learning to capture expert knowledge 
about how genes and proteins are referred to in scientific papers in order to create 
usable systems with high precision and to recall specialized tasks in the future. 
Computational Systems Biology Classical systems analysis in engineering treats a 
system as a black box whose internal structure and behavior can be analyzed and 
modeled by varying internal or external conditions and studying the effect of varia-
tion on external observables. The result is a comprehension of the system’s internal 
makeup and working mechanisms (Kell et al. 2005). Biology of systems is applying 
this theory to biology. The observables are measurements of what the organism are 
doing, ranging from descriptions of phenotypes to detailed metabolic profiling. A 
critical issue is how different data types, such as sequence, gene expression, protein 
interac, can be effectively integrated and phenotypes to infer biological knowledge. 
Some areas that require more work include creating coherent validated data sets, 
developing common formats for pathway data (SBML) (Hucka et  al. 2004) and 
BioPAX (http://www.biopax.org)), and creating ontologies to define complex inter-
actions, curation, and linkages with textmining tools. The Systems Biology 
Workbench project (http://sbw.kgi.edu/) aims to develop an open-source software 
framework for sharing information between different types of pathway models. 
Other issues are that biological systems are underdefined (not enough measure-
ments are available to characterize the system) and samples are not taken often 
enough to capture time changes in a system that may occur at vastly different time 
scales in different networks such as signaling and regulatory networks (Papin et al. 
2004). The long-term goal of creating a cell’s complete silico model is still a long 
way off; however, the tools being developed to integrate information from a wide 
variety of sources will be of short-term value. Semantic Web Semantic Web is a 
model for “creating a universal mechanism for exchanging information by giving 
meaning to the content of documents and data on the Web in a machine- interpretable 
manner” (Neumann 2005). This model will enable the development of search tools 
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that know what type of information can be obtained from which documents and 
understand how the information in each document relates to another, allowing the 
use of reasoning and logic by software agents to make decisions automatically based 
on the constraints provided in the query (e.g., automatic travel agents, phenotype 
prediction) (Berners-Lee et al. 2001). Bioinformatics could greatly benefit from the 
successful implementation of this model and should play a leading role in its imple-
mentation (Papin et al. 2004). Current efforts have focused on the development of 
standards and specifications for the identification and description of data such as 
Universal Resource Identifier (URI) and Resource Definition Framework (RDF) 
respectively (http://www.w3c.org/2001/sw). While implementation of web- based 
applications is scarce at this point, some useful examples are being developed, such 
as Haystack (a browser that retrieves data from multiple databases and allows users 
to annotate and manage the information to reflect their understanding) (http://www-
db.cs.wisc.edu/cidr/cidr2005/papers/P02.pdf) and BioDash (a drug development 
user interface that associates diseases, drug progression stages, molecular biology, 
and pathway knowledge for users) (http://www.w3.org/2005/04/swls/BioDash/
Demo/). Cellular Localization and Spatially Resolved Data Research in nanotech-
nology and electron microscopy enables researchers to select specific cell and tissue 
areas and to picture spatiotemporal distributions of signaling receptors, gene expres-
sion and proteins. Laser microdissection capture allows specific tissue types to be 
selected for detailed analysis (Emmert-Buck et al. 1996). In Arabidopsis, confocal 
imaging is used to model the patterns of auxin transport and gene expression (Heisler 
et al. 2005). Methods are applied in electron microscopy to image spatiotemporal 
signaling distribution of signaling receptors. Improved methods in laser scanning 
microscopes may allow measurements of fast diffusion and dynamic processes in the 
microsecond-to-millisecond time range in live cells (Digman et  al. 2005). These 
emerging capabilities will lead to new understanding of cell dynamics.

Bioinformatics integration will influence plant science and will lead to crop 
improvements in the following areas:

 (a) Identifying important genes through genomics, analysis of expression and func-
tional genomics. 

 (b) The design of agrochemicals based on the analysis of signal perception and 
transduction pathways components to identify targets and chemin-formatics 
compounds that may be used as herbicides, pesticides or insecticides.

 (c) Use of plant genetic resources to preserve genetic diversity in farming species. 
 (d) Efficient use of biological clone, cell, organism and seed repositories. 

10.1.9  Software’s for Microarray Data Analysis

Most statistical packages used in microarray experiment data analysis i.e. In gene 
expression studies, SAS, SPSS, MATLAB and R are not entirely unique. To analyze 
such experiments, many tools are available and much easier than the aforemen-
tioned pure statistical programs.
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10.1.9.1  FlexArray
FlexArray is a Windows software package designed to simplify expression micro 
array data analysis. FlexArray’s target audience is biological scientists. Currently 
the software supports Affymetrix Gene Chips, Nimble Gen, Illumina Bead Chips 
and various types of one-color and two-color arrays of expression. FlexArray is well 
suited to projects of small and medium size. FlexArray is on the programming lan-
guage of R. FlexArray is a tool that generates gene lists that is not suitable for data 
mining. This tool is suitable for algorithms for standardization, statistical testing 
and other complex data processing tasks. It is also an exploration tool for methods 
and algorithms of analysis (Blazejczyk et al. 2007). This software can be found at 
http://genomequebec.mcgill.ca/FlexArray. As an example, Khojasteh et al. (2017) 
used the FlexArray software in order to identify responsive genes against two main 
pathovars of Xanthomonas oryzae in different rice varieties.

10.1.9.2  BioConductor
The Bioconductor package in R (http://www.r-project.org/) is an open source and 
open software project that is used to analyze and understand genomics data, particu-
larly microarray data. Bio conductor is primarily based on the language of R pro-
gramming although it is friendly with different programming languages. For 
different types of microarray analysis, a large number of different packages are 
available. Readers should follow http://www.bioconductor.org/ (Drăghici 2011) for 
more details on the Bioconductor. There are many studies in which various 
Bioconductor packages have been used to analyze microarray data. For instance, in 
the expression study of the Dof1 transcription factor in wheat and sorghum, the Affy 
package from Bio conductor was used for to normalize microarray data (Peña et al. 
2017). Furthermore, for gene expression study of wheat leaves infected by 
Xanthomonas translucens, the DESeq2 package of Bioconductor was used to iden-
tify differentially expressed genes based on the Negative Binomial distribution. The 
Bioconductor q-value package was also used for p value correction (Garcia-Seco 
et al. 2017).

10.1.9.3  Gene ARMADA
For both cDNA and oligonucleotide (Affymetrix) microarray data, Gene ARMADA 
can provide a complete, open-source, flexible and handy platform. It was imple-
mented in the program for MATLAB. Gene ARMADA is an independent platform 
that can be used either as a MATLAB tool or as an application on its own. This 
software specializes in the visualization, standardization and statistical testing of 
data. Gene ARMADA has been successfully used to process several datasets of 
microarrays (http://www.grissom.gr/armada) (Chatziioannou et al. 2009).

10.1.9.4  Babelomics
Babelomics is an integrative web-based platform that includes a complete suite of 
methods for the analysis of gene expression data i.e. normalization, pre-processing, 
gene expression analysis, predictors, clustering and large-scale genotyping assays. 
Currently, Babelomics has an average of more than 200 experiments analyzed per day, 
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(http://bioinfo.cipf.es/webstats/babelomics/awstats.babelomics.bioinfo.cipf.es.html), 
distributed among many different countries (http://bioinfo.cipf.es/toolsusage). The 
current version of Babelomics (Babelomics 5.0) is freely available at: http://www.
babelomics.org (Alonso et al. 2015). In a comparison study of the transcriptomic and 
metabolomic profiles of six rice cultivars leaves under high night temperature condi-
tions, the background correction of microarray signal intensities and differential 
expression investigation were performed by class comparison methods in Babelomics 
tool (Glaubitz et al. 2017).

10.1.9.5  Maanova
MAANOVA refers to the Micro Array Variance Analysis. MAANOVA is suitable 
for the analysis of microarray experiments on both small and large scale. 
MAANOVA, implemented in Matlab, is the statistical language R add-on package. 
Friendly, to run this software on any platform that supports these packages. This 
package provides a complete workflow for different aspects of microarray data 
analysis i.e. data quality checks, ANOVA model fitting (both fixed and mixed effect 
models), statistical testing (F and Fs statistics), p-value (using sampling and resid-
ual shuffling permutation approach) and summarizes the results in tables and graph-
ics including. Volcano plot and bootstrapping-based tree cluster. Functions in 
MAANOVA have been developed and tested in Matlab Release 12 for Windows and 
Linux Redhat 7.0. Executable software and source code of mannova can be down-
loaded from the link http://churchill.jax.org/software/archive/maanova.shtml.R/
maanovapackage is also available from http://churchill.jax.org/software/rmaanova.
shtml (Wu et al. 2011). This software has been used in different plant species for 
microarray data analysis (Calla et al. 2009).

10.1.9.6  HD BStat
HD BStat (High-Dimensional Biology-Statistics) is a package for data analysis of 
microarrays. It was initially developed to analyze data on gene expression, but pro-
teomics and other aspects of genomics can also be used. This software uses a variety 
of methods to analyze microarray data for standardization, transformation, statisti-
cal, and quality control analysis. HD BStat can also perform a test of hypothesis. 
The results of preprocessing methods of data, analysis of quality control and test 
methods of hypothesis can be displayed in the form of Excel CSV tables, graphs and 
Html. HDBStat, please! It is freely available platform-independent software. The 
link for more details http://www.ssg.uab.edu/hdbstat/documentation.html is 
addressed to readers. This software has been used in a study with respect to gene 
expression in tomato (Windram et al. 2012).

10.1.9.7  Expander
Another useful integrated software platform for analyzing data on gene expression 
is EXPANDER (Expression Analyzer and Displayer). It is intended to support data 
preprocessing and standardization and identification of differentially expressed 
genes, clustering; downstream enrichment analyzes of (GO functional categories, 
TF binding sites in promoter regions, 3’-UTR micro RNA sites and biological 
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pathways and chromosomal locations) and network-based expression data analysis. 
Expander operates on platforms such as Windows and Linux and provides analysis 
for various types of organisms such as humans, animals, pests, plants and microor-
ganisms. This package is available free of charge for academic use at http://acgt.
cs.tau.ac.il/expander/ (Ulitsky et al. 2010). In a case study, Expander software was 
used for the hierarchical clustering of transcriptomic data of Lotus japonicus (Regel) 
Larsen cv. Gifu (B-129-S9) (Pérez-Delgado et al. 2016).

10.2  Integration of Transcriptomics, Proteomics 
and Metabolomics

Proteomics, defined as a high-throughput protein study, has taken the lead in plant 
biological research and response to stress, particularly due to the growing number 
of plant genomes being sequenced and released (Jorrín-Novo et  al. 2015). 
Additionally, advances in mass spectrometry (MS), quantitative methods and bioin-
formatics approaches have enabled a wide range of proteins from specific organ/
tissue/cells to be identified, quantified, validated and characterized (Glinski and 
Weckwerth 2006). The information obtained through these advanced approaches is 
useful for the deciphering of protein structure and complex mechanisms such as 
enzymatic and regulatory mechanisms functions of proteins coded by specific genes 
(Abdallah et al. 2012). In addition, proteomics approaches provide valuable infor-
mation such as levels of protein associated with stress tolerance, changes in stressed 
proteomes that link transcriptomics and metabolomics analyzes, as well as the role 
of expressed genes in functionally translated genome regions associated with traits 
of interest (Kosová et al. 2011). Many proteomics-based publications, particularly 
related to plant development and other biological phenomena such as leguminous 
symbiosis, can be found in model legumes and Arabidopsis thaliana, as well as in 
some plants such as rice (Oryza sativa), Triticum aestivum, Zea mays, Solanum 
lycopersicum and Nicotiana tabacum (Jorrín-Novo et al. 2015).

The evolution of the plant immune response has resulted in a highly effective 
defense system that can withstand microbial pathogens from potential attacks. The 
primary immune response is known as pathogen-related molecular pattern (PAMP) 
triggered immunity and has evolved to recognize common characteristics of micro-
bial pathogens (Janeway and Medzhitov 2002). In response to pathogen effector 
protein delivery, plants acquired Resistance (R) proteins to combat pathogen attack. 
R-dependent defense responses are important in understanding biochemical and 
cellular mechanisms and underlying these interactions will allow increased molecu-
lar and transgenic approaches for crops. A new research area, i.e. the analysis of 
more complex microbial communities and their interaction with plants, has been 
initiated by recent developments in the field of proteome analysis. Such areas have 
great potential to elucidate not only the interactions between bacteria and their host 
plants, but also the interactions between bacteria and bacteria between various bac-
terial taxa, symbiotic, pathogenic and commensal bacteria. Plant hormonal signal-
ing pathways give priority to defense over other cellular functions during biotic 
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stress. Some plant pathogens use the hormone-dependent regulatory system to 
mimic hormones that interfere with the immune response of the host to promote 
virulence (vir) (Woodward et al. 2010). The majority of bacteria are exposed to a 
constantly changing physical and chemical environment, unlike plant and animal 
cells. Phylogenetic diversity of plant-associated bacteria (PAB) can categorize them 
into commensals (acquire plant nutrients without harm), mutualists (influencing 
plant health positively) and pathogens (damaging plant). Notably pathogenic bacte-
ria, commensals, or mutualists have developed strategies for interacting with over-
lapping plants, an exceptionally modified physiology that reflects individual needs 
(Ozinsky et al. 2000). Bacteria respond to changes in their environment by adapting 
structural protein patterns, transporting proteins, toxins and enzymes which adapt 
them to a particular habitat (Torres et  al. 2004). Enzymes are either constitutive 
(always produced by cells independently of the medium’s composition) or inducible 
(produced in cells in response to a pathway’s end product). Regulation of enzyme 
activity, which is primarily used to regulate biosynthetic pathways and repression of 
catabolites is considered a form of positive control as it affects an increase in protein 
transcription rates. Plant immunity recognizing membrane protein pathogens is 
referred to as pattern recognition receptors (PRRs), which recognize pathogen- 
associated molecular pattern (PAMP) and is the basis of plant-inborn immunity(Witte 
et al. 2012). PAMP recognition also results in plant systemic acquired resistance 
and resistance (R) protein production leading to effector-triggered immunity (ETI), 
often accompanied by hypersensitive response (HR), and cell death programmed. 
Many R genes that confer resistance to various pathogens, including viruses, bacte-
ria, fungi, or nematodes, have been isolated over the past 10 years. These R-gene 
products are divided into intracellular protein kinases (Pto), proteins with an extra-
cellular leucine-rich repeat (LRR) domain and a cytoplasmic protein kinase region 
(e.g. Xa21), intracellular proteins containing a region of LRRs and a nucleotide bin, 
based on predicted protein sequences (e.g., Cf-4, Cf-9) (Zhang et  al. 2012). 
Proteomic analyzes made it possible to analyze complex microbial communities 
that had great potential to elucidate not only the interactions between bacteria and 
their host plants, but also the interactions between bacteria and bacteria. For various 
PABs, proteomic reference data sets were established using two-dimensional poly-
acrylamide gel electrophoresis (2-DE) gels, resulting in a few hundred identified 
proteins or multi-dimensional liquid chromatography-tandom mass spectrometry 
(LC-MS/MS) techniques leading to the detection of over 1000 proteins (Anderson 
et  al. 2006). Era is followed by gel-free proteomics, but before gel-based pro-
teomics, quantitation procedures must be optimized before the gel-based proteomics 
can be replaced by gel free procedures. Complete genome sequence of a Xylella 
fastidiosa is available which can be very helpful in genomics and proteomic studies 
of plant-bacterium interactions (Bagnarol et al. 2007). In order to understand the 
molecular signaling pathways involved in plant-bacterial interactions, more genomic 
data are needed for pathogenic and symbiotic bacteria. Because of the agricultural 
importance and intensity of scientific research, P. syringae and Xanthomonas camp-
estris are important PABs. On the model plant Arabidopsis, both are pathogenic 
(Andrade et al. 2008). There has been extensive study of pathogenic and mutualist 
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PAB (Jacobs et al. 2012). The mutualism process involved a significant change in 
the metabolism of the mutualists as well as the host, which involves a change in the 
metabolism of plant cells to support the mutualist’s ATP synthesis and nitrogen fixa-
tion for nodule development (Delmotte et  al. 2010). Transcriptomics data shows 
that pathogenic bacteria involve the hypersensitive reaction and pathogenicity (hrp) 
gene and different secretion systems (SS) for colonization and damaging host cells 
(Buttner and Bonas 2002). They typically exchange signals with their hosts and 
have a range of specific plant colonization adaptations. To understand the molecular 
mechanism by which bacteria adapt to live in association with plants for symbiosis 
and pathogenesis evolution is explored the importance of proteomics. This will 
open up new research areas on protein-based plant-microbe communication and 
provide important information on manipulating gene expression of specific proteins 
to modify plant behaviour associated with compatible or incompatible interactions. 
The use of proteomics for crop plant analyzes has increased rapidly over the last 
decade. While proteomic techniques are routinely used in plant laboratories around 
the world and are powerful study tools, considerable room for improvement still 
exists (Komatsu et al. 2013). The fraction of the plant proteome that can be detected 
using current approaches is significantly lower than that of other “Omics” tech-
niques and therefore does not fully represent the cellular proteins. The predominant 
technique used for separating proteins is the two-dimensional electrophoresis 
(2-DE) gel. However, proteome analyzes based on liquid chromatography (LC) are 
increasing in many common laboratories. Both techniques of protein separation 
have specific benefits. Protein modification and degradation can be quickly visual-
ized with a standard 2-DE approach, whereas LC-based methods require much 
lower starting material quantities. The limited availability of genomic information 
has hindered the application of crop proteomics. However, with the successful 
development of “next-generation” sequencing technologies, identification and 
annotation of proteins and their isoforms in a particular crop species is becoming 
much more straightforward (Komatsu et  al. 2013). A specific advantage of pro-
teomics over other “Omics” techniques is the capacity to reveal post-translational 
modifications (PTMs), which is a prerequisite to determine the functional impact of 
protein modification on crop plant productivity. To date, proteomic analyzes have 
identified approximately 300 PTMs. However, major efforts are needed to develop 
reliable tools and strategies to assess the impact of this growing number of different 
crop PTMs. Lastly, crop proteomics should become an essential part of integrated 
“Omics” approaches. A major challenge for crop proteomics, however, will be to 
keep pace with other “Omics” techniques’ throughput capacity. Advances in plant 
phenotyping will benefit the application of proteomics for plant functional analysis. 
In particular, improved techniques for automated, non-invasive plant collection phe-
notyping will help in the selection of appropriate genotypes for proteomics-based 
functional analyses aimed at characterizing the relevant traits for future crop breed-
ing (Wang et al. 2013).

Numerous proteins that play crucial roles in plant growth and development have 
been identified in proteomic studies. However, it is a major challenge to determine 
how this wealth of information can be applied to agriculture and artificial crop 
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regulation. As seed viability is related to crop yields, seed is one of the most impor-
tant factors in crop production. He and Yang (2013) applied proteomics to the study 
of rice seed germination regulation and demonstrated that starch is degraded in 
endosperm and subsequently biosynthesized in the embryo during germination, a 
process that appears to promote the gradual use of nutritional reserves. Wide spread 
use of heterosis in crop production where sterile male line is critical for hybrid 
breeding. Identifying the proteins involved in the regulation of male sterility repre-
sents a major target in crop proteomic studies (Wang et al. 2013). Unlike traditional 
breeding methods, transgenic techniques are becoming increasingly popular to 
obtain crops with desired qualities quickly. It is essential to evaluate these GM crops 
using proteomic methods (Gong and Wang 2013). Maintaining food safety is a seri-
ous challenge worldwide due to impending changes in global climate and ongoing 
industrialization. Effective methods to increase the efficiency of sunlight conversion 
are needed to sustainably feed the world population (Driever and Kromdijk 2013). 
In light conversion, C4 plants are more efficient than C3 plants because they contain 
two different chloroplasts. Comparative proteomic analyses of C4 chloroplastsmight 
help to determine the key components that influence the efficiency of sunlight con-
version (Manandhar-Shrestha et al. 2013). An important factor that influences crop 
growth and eventual crop yield is the interaction between crops and other organ-
isms. For example, the pathogen Fusarium graminearum causes small grain cereal 
head blight and dramatically reduces grain yield and quality, which has a major 
economic impact on the cereal industry. Proteomic analysis is expected to comple-
ment traditional approaches to molecular genetics to study the mechanisms by 
which this pathogen attacks cereal crops(Yang et al. 2013). It has also been demon-
strated the use of proteomics to analyze the interaction between crops and bacteria, 
especially the symbiotic interactions in legume root nodules. Most studies have 
been carried out on whole organs or tissues that do not allow spatial information to 
be collected. The use of MS imaging techniques, which have been successfully 
applied in the field of medicine, is therefore expected to help in obtaining informa-
tion on the spatial distribution of metabolites and proteins (Matros and Mock 2013). 
In addition to proteomics, metabolomics is another important approach to func-
tional genomics in which the identification and quantification of metabolomes (col-
lection of metabolites or small molecules) within a cell, tissue or organism produced 
through cellular metabolism connects the cellular biochemical activity with the phe-
notype. Major approaches to plant metabolomics include metabolic fingerprints, 
metabolite profiling, and targeted analysis (Weckwerth 2003). Different metabolo-
mic approaches or a combination of approaches are applied depending on the study 
objective. In addition, the use of MS, bioinformatics tools and software enables 
rapid measurement of metabolites at the same time, which are spatially localized 
within the biological material (Bhalla et al. 2005). As metabolites are closer to the 
phenotype, they more accurately reflect gene expressions and various regulatory 
processes, and metabolomics is a powerful tool for studying molecular phenotypes 
of plants in response to stress. For instance, the plant metabolism is affected under 
abiotic stress conditions due to factors such as metabolic enzyme inhibition, sub-
strate shortage, extreme demand for specific compounds and a combination of these 
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factors. The plant is thus subjected to metabolic reprogramming to adapt to the 
predominant stress conditions by producing anti-stress components such as compat-
ible solutes, antioxidants and stress-responsive proteins (Wienkoop et al. 2008). The 
use of metabolites as selection biomarkers has been of great interest in crop breed-
ing programs, as metabolites integrate the complex interaction between genotype 
and environment (Wienkoop et  al. 2008). With proteomics and metabolomics 
emerging as state-of – the-art functional biology disciplines for understanding plant 
adaptation mechanisms to stresses in different plant systems at cellular and devel-
opmental stages, there was great interest in applying knowledge to understand 
responses in different crop plants. These approaches, integrated with data obtained 
from genomics, enable accurate identification of candidate genes and pathways 
involved in important agronomic traits that can be applied in crop breeding pro-
grams (Langridge and Fleury 2011). PAMPs are the first layer of plant innate immu-
nity and failure to recognize them may lead to increased susceptibility to disease. 
PAMPs are ideal elicitors for “non-self” surveillance systems such as chitin, ergos-
terol and fungal transglutaminase, and/or bacterial lipopolysaccharides and flagel-
lin, which stimulate PAMP receptors encoded by plants (Chisholm et  al. 2006). 
Intracellular responses related to PAMP-triggered immunity (PTI), including rapid 
ion fluxes across the plasma membrane, kinase activation of mitogen-activated pro-
tein (MAP), production of reactive oxygen species (ROS), and rapid changes in 
gene expression and reinforcement of the cell wall. Suppression of PTI can be 
achieved through the pathogens ‘secretion of virulence (vir) effectors or plant sig-
naling suppression. ETI is accompanied by R protein or HR production, which 
illustrates the dynamic co-evolution between plants and pathogens (Jones and Dangl 
2006). Flagellin, elongation factor (EF) Tu, peptidoglycan, lipopolysaccharide, and 
bacterial cold shock proteins are important PAMPS and their induced plant responses 
are called “basal” defenses. Once the highly preserved amino terminus of flagellin 
(flg22) is recognized, flagellin sensing 2 (FLS2) induces a series of defense 
responses, including MAP kinase signaling, transcriptional activation and callose 
deposition a putative physical barrier at the site of infection (Gomez-Gomez et al. 
1999). EF Tu potent bacterial PAMP in Arabidopsis and other members of the 
Brassicaceae family, serves as an adhesion factor at the bacterial surface, in addition 
to its primary role in translation. Asparate oxidase is required for PAMP-triggered 
RBOHD-dependent (responsible for stomatal closure) ROS burst and stomatal 
immunity against the P. syringae (Macho et al. 2012). The LRR receptor kinases, 
EF-Tu receptor and FLS2 are PRRs, contributing to disease resistance against the 
hemibiotrophic bacterium P. syringae (Roux et al. 2011). The plant hormones, sali-
cylic acid (SA), jasmonic acid (JA) and ethylene, have emerged as key players in the 
signaling networks involved in plant immunity. Rhamnolipids are glycolipids pro-
duced by bacteria and are involved in surface motility and biofilm development and 
are considered as PAMPS. Ethylene is found to be involved in rhamnolipid-induced 
resistance to H. arabidopsidis and to P. syringae whereas JA is essential for the 
resistance to B. cinerea. SA participates in restriction of all bacterial and fungal 
pathogens, so involving in broadly rhamnolipid-mediated immunity (Sanchez et al. 
2012). PAMPS are sometimes succeeded and sometimes fails to induce PTI 
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depending upon the type of compatible and non-compatible interactions. Flagellin 
is capable of suppressing HR via PTI induction during an incompatible interaction 
(Wei et al. 2012). Type III secretion system (T3SSs) were essential components of 
two complex bacterial machineries: the flagellum, which drives cell motility and the 
non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. P. 
syringae use T3SS to deliver up to 40 effector proteins into host cells, inhibiting 
basal host defense responses, such as HR. PAMP induced PTI serves as a primary 
plant defense response against microbial pathogens, with MAP kinase cascade 
downstream of PAMP receptors. LRR-RLKs including PSKR1 act as PTI against 
pathogenic bacteria, and plants expressing this gene show enhanced PAMP 
responses and less lesion formation after infection with the bacterial pathogen P. 
syringae via jasmonate signaling pathway (McCann and Guttman 2008). 
Peptidoglycan, an important PAMP from Staphylococcus aureus results in PTI, 
such as medium alkalinization, elevation of cytoplasmic calcium concentrations, 
nitric oxide, and camalexin production, and the post-translational induction of MAP 
kinase activities. PAMP recognition also results in plant systemic acquired resis-
tance and production of R proteins such as SUMM2 that becomes active when the 
MAP kinase cascade is disrupted by pathogens, leading to ETI (Zhang et al. 2012). 
In rice, the LRR-RK Xa21 confers resistance to Xanthomonas oryzae pv. oryzae 
strains carrying the Avr gene AvrXa21. AvrXa21 as a type I secreted sulfated pep-
tide, is conserved among all Xanthomonas strains sequenced (P. Ronald, pers. com-
munication), suggesting that AvrXa21/Xa21 constitutes a PAMP/PRR perception 
system (Lee et al. 2008). Although many PAMPs recognized by plants have been 
described, number of known PRR and PTI is still in its infancy, constituting a highly 
active and competitive field of research. Protein analysis of asscoaited bacteria 
(PAB) either they are pathogenic or symbiotic bacteria adhere to plant surfaces, 
invade the intercellular space of the host tissue, counteract plant defense systems 
and acquire nutrients. However either there is establishment of a pathogenic interac-
tion or mutualist relationship develops. Cell surface proteins such as adhesions, 
polysaccharides, lipopolysaccharides, and degradative enzymes enable the degrada-
tion of the plant cell wall and also result in basal plant defenses (Newton et  al. 
2010). Proteins of PAB are studied either in planta, by means of bacterial responses 
to selected biomolecule or plant extracts, synthetic media, or secretome analysis to 
study the vir factor of the bacterial pathogens (Gourion et al. 2006). Analysis of 
proteomas is very tricky when dealing with bacteria separation from infected plants 
and additional steps are needed to avoid changes in the map of proteomas. Bacterial 
separation protocols for density gradient centrifugation using percoll or saccharose 
gradients had been proposed(Gourion et al. 2006). The transcriptomics profile of R 
was discussed by Jacobs et al. (2012). Solanacearum in vitro and the importance of 
T3SS in the Ralsotonia Vir Cascade (45% HR and Hrp gene regulated). Pathogenic 
bacteria X proteome analysis. Pv campestris. Campestris in conjunction with 
B.  Oleracea and savastanoipv Pseudomonas. Savastanoi led to a comprehensive 
analysis of expression analysis including stress and metabolic proteins (Andrade 
et al. 2008). Increased protein levels associated with xanthan biosynthesis, stress 
response, and induced metabolism in X. Unlike in vitro grown cells, campestris in 
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plant conditions Chaperonin is reported to be involved in stress responses, and EF, 
which acts in plants as an important PTI, is the key component of bacteria’s transla-
tion machinery. Xanthan is an extracellular polysaccharide likely to cause disease 
symptoms in planta growth through the mucoid appearance of bacterial colonies 
and host plant wilting by blocking water flow in xylem vessels (Andrade et  al. 
2008).

Methylobacterium extorquens differential proteome analysis of 45 metabolic 
proteins and proteins involved in stress response such as extracellular protease, 
SOD, catalases, and DNA protein (Gourion et al. 2006) resulted in the identification 
of 45 metabolic proteins and proteins involved in stress response. The protein analy-
sis of symbiosis-living cyanobacteria revealed several adjustments to a symbiotic 
lifestyle, including an increase in proteins involved in the production of energy and 
fixation of nitrogen. On the other hand, under symbiotic conditions, proteins 
involved in photosynthesis were reduced, pointing to a heterotrophic lifestyle. 
Bacteroids ‘general proteome analysis is compared with in vitro grown cells in 
order to identify nodule specific adaptations, over time or when plants were exposed 
to drought stress (Nomura et al. 2010). ABC-type transporters was present in nodule 
bacteria for transport of amino acids and inorganic ions along with proteins involved 
in vitamin synthesis, fatty acid, nucleic acid, cell surface synthesis, and stress- 
related processes. Integrated proteomics and transcriptomics data for B. japonicum 
bacteroids resulted in 2315 proteins involved in carbon and nitrogen metabolism, 
including a complete set of tricarboxylic acid cycle enzymes, gluconeogenesis and 
pentose phosphate pathway enzymes, along with other proteins important in sym-
biosis. Amino acids (Asn, Gln, Pro), organic acids (threonic acid), sugars (Rib, 
maltose), and polyols (mannitol) were reported to be more abundant in symbiotic 
roots (Delmotte et al. 2010).

Plant metabolites are involved in many responses to resistance and stress and 
also contribute to fruit and flowers colour, taste, aroma, and scent. Since an organ-
ism’s biochemical phenotype is the final result of genotype-environmental stimuli 
interactions, it is also modulated by intracellular physiological fluctuations that 
are part of homeostasis. Therefore, it is necessary to simultaneously identify and 
quantify metabolites to understand the metabolome dynamics analyze fluxes in 
metabolic pathways and decipher the role of each metabolite after different stim-
uli. Metabolomics ‘challenge is to find changes in biochemical pathways and 
metabolic networks that may correlate with a cell, tissue, or organism’s physio-
logical and developmental phenotype (Bino et al. 2004). The completion of the 
entire genome sequences of model plants like Arabidopsis thaliana and rice is one 
of the greatest achievements of plant biology. In Arabidopsis ~27,000 genes were 
predicted based on information about nucleotide sequence; however, only half of 
these genes were functionally annotated based on sequence similarity to known 
genes, and only ~11% of these genes were confirmed with direct experimental 
evidence (Pichersky and Gang 2000). Therefore, elucidating the function of 
unknown genes is currently a major challenge in plant research. Because there is 
very little information about the number of genes in a specific gene family of a 
non-model plant, the profile of expression of these genes under different 
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conditions and stimuli becomes necessary. Integrating metabolomics with tran-
scription profiles can provide clues for identifying the functions of the unknown 
genes, irrespective of whether they are from model or non-model plants (Fiehn 
2001). Plants produce over 200,000 metabolites, many of which have specific 
roles in adapting to specific ecological niches (Fiehn 2001). Therefore, the main 
problems encountered when characterizing the metabolome of the plant are due 
to the fact that the metabolome is highly complex in nature compared to the pro-
teome or transcriptome due to the huge chemical diversity of the compounds. 
Additionally, there is a wide range of concentrations of metabolites that can vary 
in magnitude over nine orders (pM to mM). These wide variations in the nature 
and concentration of analytes to be studied pose challenges to all the analytical 
technologies used in metabolomics strategies. Using metabolomics, it is possible 
to identify pathways that are responsible for producing important food metabo-
lites that could be important to human health improvement. There are several 
examples where the modification of some metabolic pathways has resulted in 
plant production with an increased nutritional value. This is the case with Golden 
Rice (GR), a genetically modified rice accumulating β-carotene in endosperm (Ye 
et al. 2000). Production of this rice variety has helped alleviate vitamin A defi-
ciency, a major global nutritional issue. GR’s nutritional value was subsequently 
enhanced by the overexpression of a phytoene synthase gene leading to obtaining 
GR2 variety, which accumulates higher amounts of carotenoids (84% of the total 
is β-carotene) (Paine et  al. 2005). Mehta et  al.(2002) expressed a 
S-adenosylmethionine decarboxylase gene in tomato under the inducible E8 pro-
moter. The transgenic variety shows higher levels of various polyamines during 
fruit maturation, including spermidine and spermine, leading to an increase in 
metabolite lycopene, which prolonged the life of the vine and increased fruit juice 
and nutrient quality(Mehta et al. 2002). Other examples include plant engineering 
to improve anthocyanin content. Anthocyanins are flavonoids, a pigment class 
that contributes to the plant’s colors and antioxidant properties. In addition, these 
metabolites were linked to protection against several human diseases, but their 
natural levels in plants are inadequate to confer optimal benefits. It has also been 
reported that the expression of two transcription factors in tomatoes has resulted 
in the accumulation of higher anthocyanin concentrations at concentrations com-
parable to those founded in high antocyanin-containing plants such as blackber-
ries and blueberries (Yeager 1927). The new variety has an intense purple coloring 
and an increased antioxidant capacity of 3 times. Plant metabolomics is increas-
ingly being used to understand other processes like cellular responses to stress 
conditions. An example of this is the metabolic adjustment to sulfur deficiency. 
There was a close relationship between the metabolism of sulfur, nitrogen, lipids 
and purine metabolism and enhanced photorespiration. Metabolomics has also 
been applied to the study of the cold stress response (Blake-Kalff et al. 1998 and 
Miyagi et  al. 2010). Other applications include metabolic engineering of bio-
chemical pathways, gene function discovery, and engineering pathways for phar-
maceuticals production.
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10.3  Omic Plant Development Database Approaches

Technological advances in each research area of omics have become essential 
resources for gene function research in association with phenotypic changes. Some 
of these advances include the development of high-throughput methods to profile 
thousands of gene expressions, identify modification events and interactions in the 
plant proteome, and simultaneously measure the abundance of many metabolites. 
Furthermore, large-scale bioresource collections such as mass-produced mutant 
lines and full-length cDNA clones and their integrative relevant databases are now 
available (Brady and Provart 2009). Arabidopsis thaliana’s entire genome sequenc-
ing was completed in 2000 (The Arabidopsis Genome Initiative 2000). Subsequently, 
the National Science Foundation (NSF) Arabidopsis 2010 project in the USA was 
launched with the stated goal of determining the functions of 25,000 genes of 
Arabidopsis by 2010. The genome sequencing project of japonica rice was com-
pleted in 2005, and the Rice Annotation Project (RAP), which was orchestrated via 
‘jamboree-style’ annotation meetings, aimed to provide an accurate annotation of 
the rice genome (International Rice Genome Sequencing Project 2005, Itoh et al. 
2007). In conjunction with the rice genome sequence and its related genomic 
resources, advanced development of mapping populations and molecular marker 
resources has allowed researchers to accelerate the isolation of agronomically 
important quantitative trait loci (QTLs) (Ma et al. 2007).

The aforementioned recent advances in high-throughput technology have pro-
vided opportunities for specific organisms to develop collections of sequence-based 
resources and related resource platforms. Each biological element comprehensively 
measured by a high-throughput method is depicted in a corresponding plane in a 
conceptual model with layers ranging from genome to phenome, a model called 
‘omic space’. Such comprehensive models often provide an excellent starting point 
for experiment design, hypothesis generation, or conceptualization based on the 
integrated knowledge found in a particular organism’s omic space. Such compre-
hensive models often provide an excellent starting point for experiment design, 
hypothesis generation, or conceptualization based on the integrated knowledge 
found in a particular organism’s omic space. In addition, the development of such 
omic resources and data sets for different species allows for the comparison of omic 
properties between species, which promises to be an effective way of finding col-
lateral evidence for preserved gene functions that could be evolutionarily supported. 
Bioinformatics platforms have become essential tools for accessing omics data sets 
for efficient mining and biologically important knowledge integration (Table 10.1).

Examples of resources related to each omics instance are presented as the model 
plant in Arabidopsis, rice and soybean, as well as a monocotype model and a 
sequenced crop, and as an important crop recently sequenced. These resources can 
be accessed from the above-mentioned URLs or links (Mochida et al. 2011).

An overview of several representative resources available for use in omics plant 
research is given above, with particular emphasis on recent progress related to crop 
species in addition to sequence related resources such as whole genome, protein 
coding and non – coding transcripts, and updates of sequencing technology.
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Table 10.1 Omic space and related resources in plants

1. http://www.arabidopsis.org/,
2. http://www.gramene.org/,
3. http://soybase.org/,
4. http://nazunafox.psc.database.riken.jp,
5. http://rarge.gsc.riken.jp/dsmutant/index.pl,
6. http://signal.salk.edu/tabout.html
7. http://tilling.fhcrc.org/,
8. http://www.postech.ac.kr/life/pfg/risd/,
9. http://tos.nias.affrc.go.jp/,
10. http://www.soybeantilling.org/psearch.jsp,

11. http://mulch.cropsoil.uga.edu/∼parrottlab/Mutagenesis/acds/index.php,
12. http://arabidopsis.org.uk/home.html,
13. http://abrc.osu.edu/,
14. http://www.shigen.nig.ac.jp/rice/oryzabase/top/top.jsp,
15. http://www.irri.org/grc/GRChome/home.htm,
16. http://www.legumebase.agr.miyazaki-u.ac.jp/index.jsp,
17. http://www.plantcyc.org:1555/ARA/server.html,
18. http://pathway.gramene.org/gramene/ricecyc.shtml,
19. http://www.plantcyc.org/,
20. http://mediccyc.noble.org/,
21. http://prime.psc.riken.jp/,
22. http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html,
23. http://ppdb.tc.cornell.edu/,
24. http://phosphat.mpimp-golm.mpg.de/,
25. http://cdna01.dna.affrc.go.jp/RPD/main_en.html,
26. http://proteome.dc.affrc.go.jp/Soybean/,
27. http://oilseedproteomics.missouri.edu/,
28. http://bioinfo.esalq.usp.br/cgi-bin/atpin.pl,
29. http://atpid.biosino.org/,
30. http://suba.plantenergy.uwa.edu.au/, 32. http://proteomics.arabidopsis.info/,
31. http://www.brc.riken.go.jp/lab/epd/catalog/cdnaclone.html,
32. http://rarge.gsc.riken.jp/,
33. http://cdna01.dna.affrc.go.jp/cDNA/,
34. http://rsoy.psc.riken.jp/,
35. http://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp,
36. https://www.genevestigator.com/gv/index.jsp,
37. http://bioinformatics.med.yale.edu/riceatlas/,
38. http://bioinformatics.towson.edu/SGMD/Default.htm,
39. http://soyxpress.agrenv.mcgill.ca/cgi-bin/soy/soybean.cgi,
40. http://mpss.udel.edu/at/,
41. http://mpss.udel.edu/rice/,
42. http://signal.salk.edu/,
43. http://rapdb.dna.affrc.go.jp/,
44. http://rice.plantbiology.msu.edu/,
45. http://www.phytozome.net/,

(continued)
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Comprehensively collected sequence data provide essential genomic resources 
to accelerate molecular understanding of biological properties and to promote the 
use of such knowledge. The recent accumulation of model plant nucleotide 
sequences, as well as applied species such as crops and domestic animals, has pro-
vided basic information for the design of functional genomics sequence-based 
research applications. Species-specific collections of nucleotide sequences also 
offer opportunities to identify the genomic aspects of phenotypic characters based 
on genome-wide comparative analysis and model organism knowledge (Tanaka 
et al. 2008).

10.3.1  Genome Sequencing Projects

The first genome sequence of a plant was completed for A. thaliana, which is now 
used as a model species in plant molecular biology due to its small size, short gen-
eration time and high efficiency of transformation. The Arabidopsis genome 
sequence project was performed as a cooperative project among scientists in Japan, 
Europe and the USA (Bevan 1997). The genome sequencing was completed and 
published in 2000 by the Arabidopsis Genome Initiative (AGI) (The Arabidopsis 
Genome Initiative 2000). The draft genome sequence of rice, japonica and indica, 
an important staple food as well as a model monocotyledon, was published in 2002 
(Goff et al. 2002). Subsequently, the genome sequence of japonica rice was com-
pleted and published by the International Rice Genome Sequencing Project in 2005 
(International Rice Genome Sequencing Project 2005).

There are a number of providers for sequences and annotations of plant genomes. 
Phytozome is a web-accessible resource of information that provides genome 
sequences and annotations of different plant species. This resource is a joint project 
of the Joint Genome Institute (DOE–JGI) of the Department of Energy and the 
Center for Integrative Genomics to facilitate comparative genomic studies among 
green plants (http://www.phytozome.net/Phytozomeinfo.php). Phytozome’s current 
version (ver. 5.0, January 2010) consists of 18 plant species sequenced by JGI and 

46. http://walnut.usc.edu/,
47. http://www.oryzasnp.org/,
48. http://www.soymap.org/,
49. http://1001genomes.org/,
50. http://rarge.gsc.riken.jp/rartf/,
51. http://arabidopsis.med.ohio-state.edu/,
52. http://datf.cbi.pku.edu.cn/,
53. http://drtf.cbi.pku.edu.cn/,
54. http://grassius.org/,
55. http://soybeantfdb.psc.riken.jp,
56. http://legumetfdb.psc.riken.jp/

Table 10.1 (continued)
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other sequencing projects. Gramene (http://www.gramene.org/) is a website-based 
information resource for grass species, and it provides various kinds of information 
related to grass genomics, including genome sequences (Liang et  al. 2008). The 
current version of Gramene (#30, October 2009) provides genome sequence infor-
mation for 15 plant species, including five wild rice genome assemblies. The release 
of sequenced genomes is expected to accelerate with ongoing innovations in 
sequencing technologies of the next generation (Ansorge 2009). Whole-genome 
sequence information allows us to derive sets of important genomic features includ-
ing identification of protein coding or non-coding genes and constructs such as gene 
families, regulatory elements, repetitive sequences, simple sequence repeats (SSRs) 
and guanine–cytosine (GC) content. These data sets have become the primary 
sequence material for designing genome-based sequence platforms such as micro-
arrays, tiling arrays or molecular markers, as well as reference data sets for integrat-
ing omics elements into a genome sequence. Chromosome-scale comparisons 
identifying conserved similarities of gene coordinates facilitate documentation of 
segmental and tandem duplications in related species (De Bodt et al. 2005). Whole- 
genome comparisons identifying chromosomal duplication and conserved synteny 
among related species provide evidence for hypotheses on comparative evolution-
ary histories with regard to the diversification of species in a related lineage (Paterson 
et al. 2009). ESTs are created through the partial one-pass sequencing of randomly 
selected gene transcripts converted into cDNA (Adams et al. 1993). Since cDNA 
and EST collections can be acquired irrespective of genomic complexity, due to 
polyploidy and/or their number of repetitive sequences this approach has been 
applied not only to model species but also to a number of applied species with large 
genome sizes. As of November 2009, dbEST, a public domain EST database 
(http:/www.ncbi.nlm.gov/dbEST/), which includes a number of plant species, has 
>63 million ESTs in the National Center for Biotechnology Information (NCBI) 
(Table 10.2) (Boguski et al. 1993).

Since EST data collected from a particular organism’s cDNA libraries consist of 
redundant sequence data derived from the same gene locus or transcription unit, it 
is often necessary to perform EST grouping by transcription units and assemble 
these groups to create a consolidated alignment and representative sequence of each 
transcript prior to further analysis. Such steps are carried out in a computational 
manner: a typical workflow consists of ‘base calling,’ i.e. converting the output trace 
of a sequencer to identified nucleotide data, followed by a cleaning step involving 
identification and removal of contaminated sequences, masking of cloning vector 
sequences, clustering of contaminated sequences, the masking out of cloning vector 
sequences, clustering of identical sequences and alignment of clustered sequences 
(Masoudi-Nejad et al. 2006). Then, the obtained data sets of representative tran-
scripts can be used as unified transcript data. There are several data resources that 
provide such unified data sets of plants, such as NCBI-UniGene, PlantGDB, TIGR 
Plant Gene Index and HarvEST (Duvick et al. 2008).

In addition to the mass volume data sets of their sequence tags, the comprehen-
sive and rapid accumulation of cDNA clones has become significant resources for 
functional genomics. ESTs derived from various tissue types, including tissues from 
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Table 10.2 Numbers of ESTs and unified transcripts in plants

Species
No. of ESTs 
(dbEST)

No. of entries 
(UniGene)

Physcomitrella patens 382,584 18,870
Picea glauca (white spruce) 299,455 22,472
Picea sitchensis (Sitka spruce) 175,662 18,838
Pinus taeda (loblolly pine) 328,628 18,921
Aquilegia Formosa×Aquilegia pubescens 85,039 8046
Arabidopsis thaliana (Thale cress) 1,527,298 30,579
Artemisia annua (sweet wormwood) 85,402 9462
Brassica napus (rape) 643,601 26,733
Brassica oleracea 59,946 5617
Brassica rapa (field mustard) 44,570 14,497
Capsicum annuum 116,541 8868
Citrus Clementina 118,365 9123
Citrus sinensis (Valencia orange) 208,909 15,808
Glycine max (soybean) 1,422,604 33,001
Gossypium hirsutum (upland cotton) 268,786 21,738
Gossypium raimondii 63,577 3297
Helianthus annuus (sunflower) 133,682 12,216
Lactuca sativa (garden lettuce) 80,781 7940
Lotus japonicas 195,385 14,493
Malus × domestica (apple) 324,308 23,731
Medicago truncatula (barrel medic) 269,237 18,098
Nicotiana tabacum (tobacco) 317,190 24,069
Populus tremula × Populus tremuloides (hybrid 
aspen)

76,160 9652

Populus trichocarpa (western balsam poplar) 89,943 14,965
Prunus persica (peach) 79,203 7620
Raphanus raphanistrum (wild radish) 164,119 18,788
Raphanus sativus (radish) 83,034 17,649
Solanum lycopersicum (tomato) 296,848 18,228
Solanum tuberosum (potato) 236,568 18,784
Theobroma cacao 159,320 24,958
Vigna unguiculata (cowpea) 187,443 15,740
Vitis vinifera (wine grape) 357,856 22,083
Selaginella moellendorffii 93,806 8810
Hordeum vulgare (barley) 501,614 23,595
Oryza sativa (rice) 1,249,110 40,978
Panicum virgatum (switchgrass) 436,535 20,973
Saccharum officinarum (sugarcane) 246,892 15,594
Sorghum bicolor (sorghum) 209,814 13,899
Triticum aestivum (wheat) 1,067,290 40,349
Zea mays (maize) 2,018,798 97,123
Chlamydomonas reinhardtii 204,076 11,310
Volvox carteri 132,038 5638

Source: (Boguski et al. 1993)
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organisms at various stages of development or under stress, could significantly 
facilitate gene discovery as well as structural gene annotation, large-scale analysis 
of expression, intra-specific and interspecific genome-scale comparative analysis of 
expressed genes and the design of expressed gene-oriented molecular markers and 
probing for microarrays.

10.3.2  Full-Length cDNA Projects

While partial cDNAs are useful in the rapid development of catalogs of expressed 
genes, they are not suitable for further gene function study. This is because the most 
popular method of preparing a cDNA library does not provide a complete cDNA 
that includes the sequence of the capped site. Hayashizaki’s RIKEN group devel-
oped the biotinylated cap trapper method, which uses reverse transcriptase trehalose- 
thermostabilized and is an efficient method of building full-length cDNA-enriched 
libraries about 10 years ago. Full-scale cDNA libraries and large-scale clone data 
sets have become invaluable resources for life science projects that study different 
species (Tanaka et  al. 2008). The sequence resources derived from full-length 
cDNAs can also help to identify transcribed regions in completed or draft genome 
sequences substantially. Full-length cDNA sequences were used in Arabidopsis and 
rice to identify genomic structural features such as transcription units, transcription 
starting sites (TSSs) and transcriptional variants (Yamamoto et  al. 2009). Full- 
length cDNA clones were sequenced to help consolidate genomic infrastructure in 
species for which we have draft genomes, such as Physcomitrella, soybean and 
poplar; this should also contribute to gene discovery (Umezawa et al. 2008). Also 
full-length cDNAs are useful for the three-dimensional determination (3D) struc-
tures of proteins by X-ray crystallography and nuclear magnetic resonance (NMR) 
spectroscopy and for functional biochemical analyses of expressed proteins in the 
molecular interactions of protein–ligands, protein–proteins and protein–DNAs. In 
addition, recent advances in proteomics infrastructure require extensive data sets on 
the full-length amino acid sequences used to assign a protein to peptides. These 
advances also require functional annotations to support systematic knowledge 
extracted from proteins to identify peptides and residues modified by, for example, 
phosphorylation for use in combination with comparative analysis of modified 
events between species. By creating overexpressors used in reverse genetics, the 
full-length cDNA library also contributed significantly to functional analysis. 
Systems such as full-length cDNA overexpressor (FOX) gene hu have developed 
function-based gene discovery by systems such as full-length cDNA overexpressor 
(FOX) gene hunting, which use full-length cDNA transgenic plants as overexpres-
sors, has provided an effective approach to high-throughput discovery of functional 
genes associated with phenotypic changes (Kondou et  al. 2009). A full-length 
enriched cDNA libraries have been constructed for non-sequenced crops or forestry 
species, such as wheat (Triticum aestivum), barley (Hordeum vulgare), cassava 
(Manihot esculenta), Japanese cedar (Cryptomeria japonica) and Sitka spruce 
(Picea sitchensis), as well as for plant species showing specific biological 
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characters such as salt tolerance in salt cress (Thellungiella halophila). These full-
length cDNA libraries have been used to identify biological features through com-
parisons of target sequences with those of model organisms such as Arabidopsis, 
rice and poplar. These libraries also serve as primary sequence resources for design-
ing microarray probes and as clone resources for genetic engineering to improve 
crop efficiency (Taji et al. 2008).

10.3.3  Emerging Layers in Plant Omics

10.3.3.1  Plant Epigenome Analysis
The epigenome, the genome-scale properties of epigenetic modifications, has 
attracted attention as a new area of omics that NGS technology-based solutions 
have advanced (Schmitz and Zhang 2011). Small RNAs (sRNAs) may direct and 
mediate epigenetic modifications in plants (Matzke et al. 2009). For the interpreta-
tion of genetic information, the epigenomic regulation of chromatin structure and 
genome stability is crucial (He et  al. 2011). NGS-based cytosine methylome 
(methylC- seq), transcriptome (mRNA-seq) and small RNA transcriptome (small 
RNA-seq) sequencing in inflorescences of arabidopsis revealed patterns of genome- 
scale methylation and a direct relationship between the location of sRNAs and DNA 
methylation (Lister et al. 2008). At the entire plant level, bisulfite sequencing using 
NGS technologies, the so-called BS-seq, has generated a genome-scale map of 
methylated cytosine in Arabidopsis (Cokus et al. 2008). These analyzes based on 
NGS methylome enabled a holistic understanding of patterns of genome-scale 
methylation at a single base resolution. In addition to DNA methylation, histone 
N-terminal tail modifications such as acetylation are crucial in plant development 
(He et  al. 2011) and mechanisms of defense (Kim et  al. 2008). A genome-wide 
nucleosome positioning analysis combined with DNA methylation profiles revealed 
10 basis periodicities in nucleosome-bound DNA methylation status of nucleosome- 
bound DNA (Chodavarapu et al. 2010). The Epigenomics of Plants International 
Consortium web site (https://www.plant-epigenome.org/) provides hyperlinks to 
plant epigenome data resources. In fact, numerous efforts have been made to acquire 
epigenome information from plant species (He et al. 2010).

10.3.3.2  Plant Interactome Analysis
Interactions between proteins are essential to nearly all cellular processes. The 
interactome, a comprehensive set of all protein-protein interactions within an organ-
ism, is crucial to our understanding of the cellular system’s molecular networks 
(Morsy et al. 2008). Analysis of interactomes was used to characterize plant cellular 
functions such as cell cycle, Ca2+/calmodulin-mediated signaling, auxin signaling 
and membrane protein-signaling interactions in Arabidopsis (Vernoux et al. 2011). 
Recently, the Arabidopsis Interactome Mapping Consortium presented a proteome- 
wide binary protein–protein interaction map of Arabidopsis with around 6200 
highly reliable interactions interactions between about 2700 proteins (Arabidopsis 
Interactome Mapping Consortium 2011).
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To generate the large-scale Arabidopsis interactome map, the consortium pre-
pared approximately 8000 open reading frames of Arabidopsis protein-coding 
genes and then analyzed all pairly protein combinations encoded by these constructs 
using an enhanced binary interactome-mapping pipeline based on the two-hybrid 
(Y2H) yeast system. A large-scale plant pathogen effector interactome network has 
been created using the Y2H pipeline method (Mukhtar et al. 2011). In rice, biotic 
and abiotic stress responses were addressed by a focused interactom analysis (Seo 
et al. 2011). A number of databases were available on the web for protein-protein 
interaction data sets (Aranda et al. 2010). In addition to the curated data sets, pre-
dicted protein–protein interaction data sets are a valuable complement to experi-
mental approaches (Li et al. 2011).

10.3.3.3  Plant Hormonome Analysis
Plant hormones play a critical role in regulating plant development and environmen-
tal responses as signaling molecules. A number of low molecular weight plant hor-
mones, including auxin, ABA, cytokinin, gibberellins, ethylene, brassinosteroids, 
jasmonates and salicylic acid, have been identified to date (Davies 2004). In addi-
tion, strigolactone, a novel plant hormone, has recently been identified as an inhibi-
tor of shooting branching (Umehara et al. 2008). A special issue of strigolactone 
plant and cell physiology has been published to gather current knowledge on the 
topic (Yamaguchi and Kyozuka 2010). Small peptides (peptide hormones) also 
work in plan regulation as signaling molecules in the regulation of plant growth and 
development (Fukuda et al. 2007). A special issue on peptide hormones was also 
published to describe recent advances in the area of plant peptide research (Fukuda 
and Higashiyama 2011).

Many remarkable advances have been made in our understanding of the molecu-
lar basis of plant hormones over the past decade, including biosynthesis, transporta-
tion, perception and response (Santner and Estelle 2009). Umezawa et  al. 2010 
reported that ABA response of recent exciting advances in understanding the molec-
ular basis of regulatory networks. A remarkable recent advance was the discovery of 
receptors for several important phytohormones, including auxin, gibberellins, ABA 
and jasmonates (Santner and Estelle 2009). Structural analysis of each complex 
revealed the structural basis of the interaction of each receptor with phytohormone 
and its signaling mechanisms (Sheard et al. 2010). According to a number of recent 
mutant analyses, it is almost certain that all plant hormones cross-talk with one or 
more other hormones depending on the tissue, developmental stage and environ-
mental changes (Depuydt and Hardtke 2011). A comprehensive analysis known as 
hormonal analysis based on high-throughput, high-sensitivity and simultaneous 
profiling of plant hormones is a key approach to a holistic understanding of the plant 
hormone network and its association with biological phenomena because of the 
interplay between multiple plant hormones. A recently developed analytical plat-
form for high-sensitivity, high-throughput plant hormone measurements enables 43 
molecular species of cytokinin, auxin, ABA and gibberellin to be measured simul-
taneously (Kojima et al. 2009). The platform was used to acquire hormonal profiles 
of plant hormones in rice organ distribution patterns. The hormonomal analysis of 
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endogenous levels of cytokinin, gibberellin, ABA and auxin in wild type and gib-
berellin signaling mutants indicated that cytokinin, ABA and auxin metabolism 
cross talk with the gibberellin signaling system. In Arabidopsis, comprehensive hor-
mone profiling was used to analyze the accumulation of ABA, gibberellins, IAA, 
cytokinins, jasmonates and salicylic acid in wild-type Arabidopsis seeds and an 
ABA-deficient mutant. The hormonal approach results suggested that ABA inter-
acts with other hormones to regulate the development of seed (Kanno et al. 2010).

10.3.3.4  Plant Metabolome Analysis
In system approaches to plant functional analysis and applied plant biotechnology, 
plant metabolomics now plays a significant role. There are many applications for 
functional genomics, system biology and molecular breeding, driven by advances in 
related technologies including metabolite measurement instruments, analytical meth-
odologies and information resources. A number of excellent metabolomics reviews 
describing emerging methodologies and attractive applications have been published 
(Sumner 2010). Here we will review recent developments in analytical platforms 
briefly and describe examples of practical applications for understanding plant metab-
olism systems. Analysis of metabolomes involves chemically diverse compounds. 
The metabolome of the plant consists of extremely large metabolite varieties with 
different dynamic ranges of concentration. Consequently, the integration of combined 
analytical techniques and data set from heterogeneous instruments was key to a com-
prehensive understanding of various metabolites. Simplified analytical platforms inte-
grating analytical steps such as sample preparation, data acquisition and data analysis 
allow us to address the complex plant metabolome (Saito and Matsuda 2010). 
Improved coverage and performance to detect large numbers of metabolites simulta-
neously expanded the practical application significantly. Ultra- performance liquid 
chromatography–tandem quadrupole mass spectrometry is used by a widely targeted 
metabolomics platform that provides coverage and throughput (Sawada et al. 2009a). 
The approach allows us to simultaneously acquire hundreds or more metabolites of 
accumulation patterns for large numbers of samples. The platform allows us to address 
complex metabolic plant systems and develop practical genetic and breeding 
approaches. For metabolic profiling of the Arabidopsis knockout mutants for methio-
nine chain elongation enzymes, the widely targeted metabolomics approach was used. 
The results suggest that the metabolism of these enzymes ranges from methionine to 
primary and related secondary metabolites (Sawada et al. 2009b).

Metabolome profiling provides a snapshot of metabolite accumulation patterns 
in response to different types of biological conditions such as treatments, tissues, 
and genotypes. For example, approaches to metabolome profiling were used to 
monitor changing accumulation of metabolites in response to stress conditions 
(Kusano et  al. 2011). Metabolome profiling was also used to evaluate genetic 
resources, not only for Arabidopsis and rice model plants, but also for metabolic 
phenotyping in different crop species (Fujimura et al. 2011). Metabolome profiling 
was also used to evaluate natural and/or segregation populations ‘metabolic pheno-
types. Several approaches in metabolite quantitative trait locus (mQTL) analysis 
have been performed in various plant species in recent years.
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10.3.4  Omics Resources in Emerging Plant Species

In a number of plant species, the development of genomic resources has progressed. 
At Phytozome (ver. 7.0, http://www.phytozome.net/), genome sequence data sets of 
25 plant species are available as a typical example. Recent sequenced plant species 
have typically been nominated for the development of genomic resources because: 
I they have specific systems not covered by’ conventional’ model plants; (ii) they 
are of evolutionary importance; or (iii) they provide a commodity resource such as 
food and energy. 

10.3.4.1  Solanaceae Species
The Solanaceae family includes a number of important crops, including tomato, 
potato, pepper, paprika, petunia, and tobacco. Tomato (Solanum lycopersicum) is a 
representative crop species for which genomic resources have made significant 
progress. Tomatoes are an important crop sold fresh and used in processed foods. 
Because of its small genome size and shared conserved synteny with other 
Solanaceae genomes, the tomato is a model plant to study Solanaceae species in 
addition to its agricultural importance. The tomato has also become a model plant 
to study fruit development, maturation, maturation, and metabolic systems. The 
International Tomato Genome Sequencing Project was initiated in 2004. Following 
the initial BAC-by-BAC approach for the euchromatic regions, a whole-genome 
shotgun approach was initiated in 2009. The International Tomato Annotation 
Group provided the official annotation of the tomato genome assembly (http://sol-
genomics.net/organism/Solanum_lycopersicum/genome). A full-length cDNA 
resource from the tomato cultivar Micro-Tom was recently launched (Aoki et al. 
2010; http://www.pgb.kazusa.or.jp/kaftom/). Transcriptome data from 296 samples 
of 16 series using the Affymetrix GeneChip tomato genome array can be found in 
NCBI GEO (September 8, 2011). The tomato GeneChip data deposited in NCBI 
GEO includes, for example, data sets acquired for co-expression analysis using cul-
tivar Micro-Tom (Ozaki et  al. 2010), for comparative transcriptome analysis 
between salt-tolerant and salt-sensitive wild tomato species (Sun et al. 2010) and for 
examining the transcriptome of the ripening process of an orange ripening mutant 
(Nashilevitz et al. 2010).

Significant progress has been made with metabolome analyses such as metabo-
lome profiling and mQTL analysis (Enfissi et al. 2010). Metabolome analysis infor-
mation resources are available and updated, providing data archives for tomato 
metabolome data sets and analytical platforms such as Plant MetGenMAP, 
Metabolome Tomato Database (MotoDB) (Moco et al. 2006), KaPPA- View4 SOL 
(Sakurai et  al. 2011) and KOMICS (Iijima et  al. 2008). The Tomato Functional 
Genomics Database provides data on gene expression, metabolites and microRNAs 
(miRNAs) via a web interface as an integrative information resource. TOMATOMA 
was launched as a tomato-mutant resource as a web-based database for a phenotypi-
cally classified Micro-Tom EMS mutant collection and a Targeting Induced Local 
Lesions IN Genomes (TILLING) resource (Saito et al. 2011). The potato genome 
was recently sequenced using a homozygous doubled-monoploid potato clone and 
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86% assembly of the 844 Mb genome revealed 39,031 protein-coding genes pre-
dicted (Xu et al. 2011).

10.3.4.2  Poaceae (Gramineae) Species
The Poaceae family includes staple food crops such as rice, maize, wheat and bar-
ley, as well as grasses used for lignocellulose biomass production, such as switch-
grass and Miscanthus (Lobell et al. 2011). Since the completion of the japonica rice 
(Oryza sativa) genome project (International Rice Genome Sequencing Project 
2005), whole-genome sequences have been completed in sorghum (Sorghum 
bicolor), maize (Zea mays) and Brachypodium (Brachypodium distachyon) 
(International Brachypodium Initiative 2010). Rice is a model species of monocot 
plants as well as one of the three major staple cereals in the world. To date, the 
japonica rice genome sequence with high-quality gene annotations has played an 
important role in promoting the development of a number of genomic resources for 
the discovery and isolation of important genes for molecular breeding application. 
The sorghum genome has been sequenced as a representative Saccharinae species 
that includes starch, sugar and cellulose plants from the source of biomass. Maize is 
another of the major staple food and feed cereals and is a model organism for basic 
research into complex heritage and genomic properties such as domestication, epi-
genetics, evolution, chromosome structure and transposable elements (Walbot 
2009). Accompanying the release of the maize B73 genome sequence, the ‘2009 
Maize Genome Collection’ was edited (Walbot 2009). Brachypodium is an emerg-
ing plant species of the Pooideae subfamily, a model plant for Triticeae crops such 
as wheat and barley, as well as for grass species understanding systems for the pro-
duction of cellulose biomass. Brachypodium has attracted attention since the release 
of the Brachypodium Bd21 genome sequence, and a number of genomic resource 
projects have been initiated at different institutions (Brkljacic et al. 2011). Therefore, 
we have access to published reference genome sequences of four species from each 
of the three major subfamilies of Poaceae. Wheat and barley were the subjects of 
ongoing attempts to regenerate their highly complex genomes through genome 
sequencing. A tentative linear order of 32,000 barley genes was recently regener-
ated by incorporating chromosome sorting, NGS, array hybridization and preserved 
syntenia with the brachypodium genome (Mayer et al. 2011). To introduce genetic 
and genomic resources and their applications, a special issue on barley has recently 
been published (Saisho and Takeda 2011). For several species of Poaceae, data sets 
of transcriptome profiles are available. For example, Genevestigator’s current ver-
sion provides processed transcriptome data from data sets of GeneChip hybridiza-
tion (1.626 for barley, 1275 for rice, 1000 for wheat and 458 for maize; https://www.
genevestigator.com/gv/). The transcriptome from primordial development through 
pollination / fertilization to zygote formation throughout the reproductive process 
was analyzed in rice using an oligomicroarray as an atlas for rice expression (Fujita 
et al. 2010). Accumulated transcriptome data sets have been made for co-expression 
analysis of the transcriptome in Poaceae species. The Rice ArrayNet and Oryza 
Express databases provide web-accessible co-expression data for rice. The 
ATTED-II database also provides co-expression data sets for rice in addition to 
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those for Arabidopsis. A co-expressed barley gene network was recently generated 
and then applied to comparative analysis to discover potential Triticeae-specific 
gene expression networks (Mochida et al. 2011). To analyze transcriptomes of the 
male gametophyte and tapetum in rice, microarray analyzes coupled with laser 
microdissection were used (Hobo et al. 2008). Recently, transcriptome data from 
rice grown in field environments has been collected. For example, the plant pro-
teome database (http://ppdb.tc.cornell.edu/) provides information about the pro-
teomes of maize and arabidopsis as a proteomics resource in Poaceae. The RIKEN 
Plant Phosphoproteome Database (RIPP-DB, http://phosphoproteome.psc.data-
base.riken.jp) has been updated with a large-scale rice phosphorylated protein iden-
tification data set. The OryzaPG-DB was launched as a shotgun-based rice proteome 
database on proteomics (Helmy et al. 2011).

10.3.4.3  Fabaceae (Leguminosae) Species
The large family of Fabaceae includes economically significant crops such as soy-
bean, common bean and alfalfa. A biological phenomenon, especially in legume 
species, is the symbiotic nitrogen fixation produced by the communication between 
plants and nitrogen-fixing bacteria. For plant and microbial biology as well as for 
agriculture, understanding this symbiosis is important. Recent progress in plant- 
microbe symbiosis research, including nitrogen-fixing symbiosis in legume plants, 
was presented in a special issue on plant-microbe symbiosis by Ikeda et al. (2010) 
and Kouchi et al. (2010) and (Kawaguchi and Minamisawa 2010). Lotus japonicus 
and Medicago truncatula served as models for molecular genetics and functional 
genomics studies to investigate the symbiotic system and carry out gene discovery 
in legume species (Stacey et al. 2006). In 2008, the genome sequence of L. japoni-
cus was released with a 315.1 Mb sequence corresponding to 67% of the genome, 
covering 91.3% of the gene space. The TILLING resource for L. japonicus is used 
to identify allelic series for symbiosis genes. Proteome analyses on pod and seed 
development were performed in L. japonicus (Dam et al. 2009,).In M. truncatula, 
a number of genome resources have become available in recent years (Young and 
Udvardi 2009). For example, a gene expression atlas provides an information 
resource for the transcriptome (Benedito et al. 2008). Insertional mutagenesis by 
the Tnt1 transposon system and the flanking sequence data set has provided a 
reverse genetics resource (Tadege et al. 2008). The web site of the Medicago trun-
catula Genome Project in JCVI/TIGR (http://medicago.jcvi.org/cgi-bin/medicago/
annotation.cgi) is an information resource that provides the current version of 
pseudomolecules (ver. 3.5) and an annotation of the M. truncatula genome. The 
web page of the Medicago truncatula HapMap Project (http://medicagohapmap.
org/index.php) provides not only a reference genome sequence but also NGS re-
sequencing data as a GWAS resource. sRNAs expressed in roots and nodules were 
analyzed using 454 pyrosequencing, and the MIRMED database (http://medicago.
toulouse.inra.fr/Mt/RNA/MIRMED/LeARN/cgi-bin/learn.cgi) was constructed as 
an informative resource for M. truncatula miRNAs (Lelandais-Briere et al. 2009). 
Large-scale analysis of the phosphoproteome in M. truncatula roots was performed 
using immobilized metal affinity chromatography and MS/MS followed by launch 
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of the Medicago PhosphoProteinDatabase (http://www.phospho.medicago.wisc.
edu/db/index.php) (Grimsrud et al. 2010). The world’s largest legume crop, soy-
bean (Glycine max), is widely grown for food and biofuel. A draft assembly of 
soybean genomes was released in 2010 and the first version of the Glyma1.0 
genome annotation was based on homology and gene predictions based ab initio 
(Schmutz et  al. 2010). Also in favor of homology-based gene prediction was 
applied a sequence data set of soybean full-length cDNAs (Umezawa et al. 2008). 
In order to improve productivity and stress tolerance, several genomic resources 
are available for soybean genomics as well as molecular breeding (Manavalan 
et al. 2009). Genome-scale gene exploration by using the soybean genome sequence 
and annotated gene models genome-scale exploration of gene families and those 
functional analyses have been performed to identify genes for molecular breeding 
(Mochida et al. 2010). A soybean transcriptome atlas (http://digbio.missouri.edu/
soybean atlas/) was developed using a NGS platform to perform sample RNA-seq 
from 14 different conditions (Libault et al. 2010). A genome- scale survey of sRNAs 
also included NGS-based approaches (Song et al. 2011). Soybase (http://soybase.
org/) has played a significant role as an information portal for soybean research in 
integrating various soybean research resources and analytical platforms (Grant 
et al. 2010).

10.3.5  Systems Analysis of Plant Functions

Analysis of systems based on a combination of multiple omics analyzes was an 
effective approach to determining the cellular system’s global image. From the 
early stages of plant metabolomics research, we have made significant progress in 
our understanding of gene function in metabolic systems through the integration of 
metabolome analysis with genome and transcriptome resources (Okazaki et  al. 
2009). Multi-omics-based system analyzes have improved our understanding of 
cellular plant systems following these successes. For example, recently integrated 
metabolome and transcriptome analyzes were used to analyze rice developing 
caryopses under high temperature conditions (Yamakawa and Hakata 2010), 
molecular events underlying pollination-induced and pollination-independent fruit 
sets (Wang et  al. 2009) and the effects of DE-ETIOLATED1down-regulation in 
tomato fruits (Enfissi et al. 2010). Integrated metabolome and transcriptome analy-
sis has also been applied to investigate changing metabolic systems in plants grow-
ing in field conditions, such as the rice Os-GIGANTEA (Os-GI) mutant and 
transgenic barley (Izawa et  al. 2011). In addition, a system approach combined 
hormonomal, metabolome and transcriptome analysis in transgenic lines of 
Arabidopsis, showing increased leaf growth to gain insight into the molecular 
mechanisms controlling leaf size (Gonzalez et al. 2010). To compare the differ-
ences in response to anoxia between rice and wheat coleoptiles, an integrated pro-
teome and metabolome analysis was applied (Shingaki-Wells et  al. 2011). To 
characterize the cascading changes in UV-B-mediated responses in maize, an inte-
grated transcriptome, proteome and metabolome analysis was conducted (Casati 
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et  al. 2011). These illustrative examples show the power to understand multi-
omics-based systems analysis for understanding the key components of cellular 
systems underlying various plant functions. GWAS identified genetic loci associ-
ated with enzyme activity, metabolome profiles, and biomass using a large set of 
accessions to Arabidopsis and data sets of genome- scale variation (Sulpice et al. 
2010). The hormonal responses of natural variations were addressed in order to 
find relationships between physiological hormonal response variations and other 
variations, such as in the genome and transcriptome (Delker et al. 2010). A combi-
natorial approach to population genomics using hormonome profiling would allow 
us to identify the link between genomic polymorphisms and plant hormone abun-
dance as quantitative features that could be closely linked to environmental adapta-
tion. Recently, in human population genomics, relational instances of epigenomic 
modification, gene transcription coding and non- coding RNAs were coupled with 
genome-scale nucleotide polymorphism data sets (Shoemaker et  al. 2010). In a 
comparable manner, plant epigenome analysis can also be integrated with genome-
scale variations to provide important clues to phenotypic diversity-related epigen-
etic and genetic regulation.

10.3.5.1  Ultrahigh-Throughput DNA Sequencing
The Sanger sequencing method has been used to complete microbial and higher 
eukaryote genomes sequencing over the past decade. A number of alternative tech-
nologies have become available in recent years, which are method adaptations such 
as pyrosequencing procedures, massively parallel DNA sequencing or single mol-
ecule sequencing (Ansorge 2009). In the fields of comparative genomics, meta- 
genomics and evolutionary genomics, such new sequencing technologies have 
provided us with new opportunities to address the entire genome level (Varshney 
et al. 2009).

10.3.5.2  Whole-Genome Re-Sequencing
Next-generation sequencing technology coupled with reference genome sequence 
data enables us to detect variations between individuals, strains and/or populations. 
Effectively identifies nucleotide polymorphisms by mapping sequence fragments to 
a specific reference genome data set, a capability of immense importance in all 
genetic research. A full-genome resequencing project to detect all-genome sequence 
variations in 1001 Arabidopsis strains (accessions) will result in a data set that will 
become a fundamental resource for the promotion of future genetic studies to iden-
tify allles associated with phenotypic diversity throughout the genome and through-
out the species (http://1001genomes.org/) (Weigel and Mott 2009). In rice, an 
Illumina Genome Analyzer generated high-throughput method for genotyping 
recombinant populations was performed (Huang et  al. 2009). The application to 
whole-genome de novo sequencing is one of the most anticipated innovations for 
next-generation sequencers. Although this approach has only been realized in bacte-
rial genomes to date (Moran et al. 2009), there are several attempts to realize this 
progress in higher species.
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10.3.5.3  Comprehensive Discovery of Small RNAs (sRNAs)
SRNAs, including microRNAs (miRNAs), short-interfering RNAs (siRNAs) and 
trans-acting siRNAs (ta-siRNAs), also play roles in plants as key components of 
epigenetic processes and gene networks involved in development and homeostasis 
(Ruiz-Ferrer and Voinnet 2009). These RNA molecules are important targets to be 
fully identified and their expression should be analyzed using genomic technologies 
of the next generation (Chellappan and Jin 2009). In maize, deep-sequencing sRNAs 
in the wild type and isogenic mop1–1 loss-of-function mutant were analyzed using 
Illumina’s sequencing-by-synthesis (SBS) technology to characterize maize com-
plement sRNA (Nobuta et al. 2008). In poplar, expressed sRNAs from leaves and 
vegetative buds were also discovered using Roche 454 high-throughput pyrose-
quencing, then genes from miRNA families were identified, including the novel 
ones (Barakat et  al. 2007). Deep sequencing of Brachypodium sRNAs was also 
performed at the global genome level, resulting in the identification of miRNAs 
involved in the response to cold stress. The miRNA plant database (PMRD) is a 
useful plant miRNA information resource available on the Web (http://bioinformat-
ics.cau.edu.cn/PMRD/).

10.3.6  Resources for Variation Analysis

Recent innovations related to DNA sequencing technology and the rapid growth of 
genome and cDNA sequence resources allow us to design various types of molecu-
lar markers covering entire genomes (Feltus et al. 2004). For high-throughput geno-
typing, a number of platforms have been developed that have been applied to genetic 
map construction, marker-assisted selection and QTL cloning using multiple segre-
gation populations (Hori et al. 2007). Such genotyping systems have also been used 
in post-genome sequencing projects such as genotyping of genetic resources, acces-
sions to evaluate population structure and association studies to identify genetic loci 
involved in phenotypic changes of species.

10.3.6.1  Molecular Markers
The accumulation and saturation of available genetic markers contributes to prog-
ress in marker-assisted genetic studies and is an important resource with a wide 
range of uses. Genetic markers designed to cover a genome extensively enable not 
only the identification by QTL analyzes of individual genes associated with com-
plex traits, but also the exploration of genetic diversity in natural variations (Caicedo 
et al. 2007). These sequence data sets have become quite efficient sequence resources 
for designing molecular markers with the advancement of genome sequencing and 
large-scale EST analysis in different species. A number of attempts to design poly-
morphic markers from accumulated sequence data sets have been made for various 
species. Several genome-wide rice (Oryza sativa) DNA polymorphism data sets 
have been constructed based on alignment between japonica and indica rice 
genomes (Shen et al. 2004). Large-scale EST data sets are also important resources 
for sequence polymorphism discovery, particularly for allocating expressed genes 
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to a genetic map. The computational discovery of ESTbase single-nucleotide poly-
morphisms (SNPs) and/or EST-SNP markers for the identification of sequence- 
tagged site (STS) markers has therefore progressed for many species, including 
barley, wheat, maize, melon, brassica, common bean and sunflower (Li et al. 2009). 
Several databases provide information about plant species molecular markers. 
PlantMarkers is a genetic marker database containing predicted molecular markers 
from different plant species, such as SNP, SSR and preserved orthology set (COS) 
markers (Heesacker et al. 2008). GrainGenes is a popular genomics site for Triticeae; 
it also provides genetic markers and mapping information on wheat, barley, rye and 
oat (Carollo et al. 2005). Gramene is a comparative plant genomics database that 
provides genetic maps of different species of plants (Liang et al. 2008). The Triticeae 
Mapped EST (TriMEDB) database provides information on mapped cDNA markers 
related to barley and their wheat homologs (Mochida et al. 2008).

Analysis of high-throughput polymorphism is a key tool for facilitating any 
approach based on genetic maps. To date, genome-wide genotyping using a 
hybridization- based SNP typing method has been used to analyze representative 
ecotypes of Arabidopsis and rice strains, and data sets have been released for each 
species containing the calculated genome-wide variation pattern. As typified by the 
project Arabidopsis 1001, the study of genome-wide variation is a key analysis that 
should be carried out for a particular reference strain after genome sequencing has 
been completed. Therefore, the demand for high-performance and cost-effective 
platforms for comprehensive analysis of variation or also known as variome 
analysis.

The whole-genome resequencing approaches are already being implemented in 
species whose reference genome sequence data are available as a direct solution for 
variable analysis. Diversity Array Technology (DArT) is a high-throughput geno-
typing system developed on the basis of a microarray (http://www.diversityarrays.
com/index.html) platform (Wenzl et al. 2007). DArT markers were used together 
with conventional molecular markers in various crop species such as wheat, barley 
and sorghum to construct denser genetic maps and/or conduct association studies 
(Mace et al. 2009).

Affymetrix GeneChip Arrays has been used in barley and wheat to discover 
nucleotide polymorphisms as single-function polymorphisms based on the differen-
tial hybridization of GeneChip samples (Bernardo et al. 2009). The Illumina Golden 
Gate Assay allows simultaneous analysis of up to 1536 SNPs in 96 samples and was 
used to analyze genotypes of segregation populations to construct genetic maps 
allocating SNP markers in crops such as barley, wheat and soybean (Close et al. 
2009).

10.3.7  Transcriptome Resources in Plants

Comprehensive and high-throughput gene expression analysis, called transcriptome 
analysis, is also a major approach to screening candidate genes, predicting gene 
function, and discovering cis-regulatory motives. The method of hybridization, such 
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as that used in microarrays and GeneChips, has been well established to acquire 
large-scale gene expression profiles for different species. The recent rapid accumu-
lation of data sets containing profiles of large-scale gene expression and the ability 
of related databases to support the availability of such large data repositories has 
given us access to large amounts of public domain information. This public domain 
data are an efficient and valuable resource for many secondary uses, such as co- 
expression and comparative analyses. Furthermore, as a next-generation DNA 
sequencing application, deep sequencing of short fragments of expressed RNAs, 
including sRNAs, is quickly becoming an efficient tool for use with genome- 
sequenced species (de Hoon and Hayashizaki 2008).

10.3.7.1  Sequence Tag-Based Platforms in Transcriptomics
An early approach to the acquisition of transcriptome profiles was the large-scale 
sequencing of ESTs from cDNA libraries. In this approach, sequencing and/or 
assembly methods are used to classify randomly sequenced ESTs in an unbiased 
cDNA library into clusters of transcript sequences. The abundance of transcripts 
expressed in each tissue is then estimated by counting the number of ESTs for each 
cDNA library and/or sequence cluster with identifiers. Human and mouse have 
applied the same methodological principle in the form of a’ body map’ to derive the 
transcriptome in different organs (Ogasawara et al. 2006). In addition, this principle 
was also applied in the digital field of differential display (DDD), which is a com-
ponent of NCBI’s UniGene database and has been applied in large-scale cDNA 
projects for various species, including plants (Zhang et  al. 2004). While this 
approach, coupled with clone resources from cDNA, has facilitated gene discovery 
and profiling of expression, its disadvantages include cost and limited resolution 
due to large-scale sequencing. Serial gene expression analysis (SAGE) is a method 
based on deep sequencing of short cDNA read tags. SAGE allows a large number of 
transcripts present in tissues to be identified and allows a quantitative comparison of 
transcriptomes (Velculescu et al. 1995). SAGE is designed to generate a short spe-
cific tag (13–15 bp) from the 3′ end of each sample mRNA, after which >10 tags are 
concatenated and cloned to generate a SAGE library. The sequencing of selected 
clones from the SAGE library allows efficient collection of transcript tag sequences. 
A data set of genome sequences or large-scale ESTs is required to identify genes 
corresponding to each SAGE tag. Some derivatives of the original protocol (MAGE, 
SADE, microSAGE, miniSAGE, longSAGE, superSAGE, deepSAGE, 5′ SAGE, 
etc.) have been developed to improve and expand the utility of SAGE (Anisimov 
2008). For example, superSAGE is an improved version of SAGE that produces 26 
bp fragment tags from cDNAs. This method has been applied to simultaneous and 
quantitative gene expression profiling of both host cells and their eukaryotic patho-
gens in rice (Matsumura et al. 2003). The 26 bp superSAGE tags have also been 
used to design probes directly for oligo microarrys (Matsumura et al. 2008).

Massively parallel signature sequencing (MPSS) is another technology based on 
sequencing. MPSS uses a unique method to quantify levels of gene expression; by 
sequencing 16–20 bp from the 3′ side of cDNA using a microbead array, it gener-
ates millions of short sequence tags per library (Brenner et al. 2000). Online (http://
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mpss.udel.edu) databases containing MPSS data on plant species, including 
Arabidopsis, rice, grape and Magnaporthe grisea (the rice blast fungus). In addition, 
the genome-scale discovery and expression profiling of sRNAs in Arabidopsis and 
rice was also carried out using the MPSS method (Nobuta et al. 2007). The CT-MPSS 
was a recently developed method for quantitative transcript 5′end analysis coupled 
with cap-trapper method for full-length cDNA cloning. This method was used to 
carry out TSS high-density mapping in Arabidopsis to identify plant promoter 
genome-scale instances (Yamamoto et al. 2009). Arabidopsis CT-MPSS tags data 
set can be accessed from ppdb (http://www.ppdb.gene.nagoya- u.ac.jp), a plant pro-
moter database providing promoter annotation of Arabidopsis and rice (Yamamoto 
and Obokata 2008).

10.3.7.2  Hybridization-Based Platforms in Transcriptomics
The DNA microarray history began with a paper from P O.  Brown University 
Laboratory in 1995 (Schena et al. 1995). Since then, technologies related to micro-
array and DNA chips have advanced rapidly and their application has expanded to 
a wide range of disciplines in life sciences. The methodological principle of the 
DNA microarray or GeneChip analysis is to acquire in a given sample a comprehen-
sive data set of the molecular abundance of each molecule based on its simultaneous 
hybridization with large numbers of molecular DNA species immobilized on a glass 
slide or on a silicon chip used as a sample set.

DNA microarrays can be classified into two main types: I the type of spotting 
developed at Stanford University; and (ii) the type of on-chip synthesis based on 
manufactured samples. During the early years of transcriptome research, spotting 
type was widely used. This method involved preparing microarrays of DNA by 
spotting a solution of cDNA on a glass slide. The on-chip (in situ) oligo synthesis 
method is a process of light-directed chemical synthesis combining solid-phase 
chemical synthesis with techniques of photolithographic manufacturing. This 
method was initially used only in conjunction with the GeneChip Array system 
manufactured by Affymetrix. In the Affymetrix GeneChip system, a known gene or 
potentially expressed sequence is represented on the chip by 11–20 unique oligo-
meric probes that are each 25 bases in length. Roche NimbleGen and Agilent 
Technology offer platforms to manufacture high-density DNA arrays based, respec-
tively, on Roche’s proprietary Maskless Array Synthesizer (MAS) technology and 
on a non-contact industrial inkjet printing process, both of which are also used for 
in situ oligo synthesis.

A number of DNA microarrays were also developed for transcriptome analysis 
in different plant species with the recent and rapid increase in the number of 
sequenced species in whole-genome and/or large-scale cDNA clones. For example, 
Seki and colleagues designed a custom DNA microarray that uses 7000 full-length 
Arabidopsis cDNA clones as samples and then screens genes successfully using a 
two-color method in response to abiotic stress (Seki et al. 2002). With the recent 
increase in commercially available DNA microarrays, laboratories can use a spe-
cific DNA microarray design to obtain transcriptome data from numerous experi-
ments to accumulate more comprehensive data. AtGenExpress was a multinational 
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effort designed to uncover the transcriptome of A. thaliana. The data sets collected 
in AtGenExpress have been one of the most comprehensive resources for the 
Arabidopsis transcriptome to date (Goda et al. 2008). The Gene Expression Omnibus 
(GEO) of the NCBI and the ArrayExpress of the European Bioinformatics Institute 
(EBI) were the primary public domain transcriptome archives (Barrett et al. 2009). 
There are also several more focused databases that provide user-friendly interfaces 
and annotations on probes with calculated transcriptome data. ATTED II (http:/
atted.jp/) is a database that provides data calculated from publicly available data on 
Arabidopsis ATH1 GeneChip for co-expression analysis (Obayashi et  al. 2009). 
Co-expression analysis data sets generated from extensively collected transcrip-
tome data sets have become an efficient resource that facilitates the discovery of 
transcriptome data sets have become an efficient resource capable of facilitating the 
discovery of genes closely correlated in their expression patterns. Genevestigator 
(https://www.genevestigator.com/gv/index.jsp), which is a reference expression 
database and meta-analysis system, also provides summary information from hun-
dreds of microarray experiments on various organisms, including Arabidopsis, bar-
ley and soybean, with easily interpretable results (Zimmermann et al. 2004a, b). The 
electronic fluorescent pictograph (eFP) browser provides gene expression patterns 
collected from Arabidopsis, poplar, Medicago, rice and barley via a user-friendly 
interface on the Web (http://www.bar.utoronto.ca/) (Winter et  al. 2007). The 
Arabidopsis Gene Expression Database AREX is a database that provides data sets 
of high-resolution gene expression patterns of root tissues in Arabidopsis (http://
www.arexdb.org/index.jsp) (Brady et  al. 2007). The RICEATLAS is a database 
housing rice transcriptome data covering various types of tissues (http://bioinfor-
matics.med.yale.edu/riceatlas/). Tiling arrays, which are high-density oligonucle-
otide samples spanning the entire genome in a particular organism, are a platform 
for analyzing expressed regions across a whole genome; an effective method for 
discovering novel genes and clarifying their structure. Seki and colleagues per-
formed transcriptome analysis in Arabidopsis using a whole-genome tiling array 
under abiotic stress conditions and discovered a number of transcripts of antisense 
induced by abiotic stress. The A. thaliana Tiling Array Express (At-TAX) is a 
whole-genome tiling array resource for developmental expression analysis and tran-
script identification in Arabidopsis (Zeller et al. 2009). Coupling this platform with 
the immune-precipitation method has recently extended the usefulness of tiling 
arrays. For example, the binding sites of AGAMOU-Like15, AGL15, a MADS 
domain transcriptional regulator promoting somatic embryogenesis, were identified 
using a chromatin immunoprecipitation (ChIP) approach coupled with the 
Affymetrix tiling array for Arabidopsis. This method found approximately 2000 
sites (Zheng et al. 2009). Using the methylcytosine immunoprecipitation (mCIP) 
method in combination with the Arabidopsis tiling array, a comprehensive DNA 
methylation map of the genome was constructed as an Arabidopsis methylome data 
set (Zhang et al. 2006a, b). Sequencing of co-precipitated DNAs together with a 
protein using the next generation sequencer, ‘ChIP-seq’, has also become an alter-
native approach (Park 2009).
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10.3.8  Combinatorial Approaches in Metabolomics and Other 
Omics Resources

Metabolome approaches also support understanding global relationships between 
cellular metabolic systems in combination with other instances of omics such as 
transcriptome and proteome profiles, as well as genetic variations. In the well- 
studied Arabidopsis, these combinatorial approaches have been successfully dem-
onstrated by taking advantage of the many other omics resources that currently 
exist, including the full-genome sequence with mature annotations, large-scale tran-
scriptome data sets and related co-expression data, and bioresources such as mutant 
collections and full-length cDNA clones. A conceptual scheme for the systematic 
clarification of molecules from gene to metabolites molecular networks through a 
combinatorial approach using transcriptome and metabolome resources has been 
demonstrated by Saito’s group in the RIKEN Plant Science Center. A batch-learn-
ing, self-organizing map (BL-SOM) was used to analyze data sets containing tran-
scriptome and metabolome changes of Arabidopsis under stress conditions induced 
by sulfur and nitrogen deficiency to identify genes involved in glucosinolate biosyn-
thesis (Hirai et al. 2004). For the investigation of an activation- tagged mutant and 
overexpressors of a MYB TF, PAP1 gene, an integrated approach involving metabo-
lome and transcriptome analysis was conducted to identify genes involved in antho-
cyanin biosynthesis in Arabidopsis (Tohge et  al. 2005). The Arabidopsis 
transcriptome co-expression data provided by the ATTED-II database was applied 
to the investigation of key genes involved in specific metabolic pathways and then 
to the configuration of a metabolome analysis coupled with mutant lines of the tar-
geted genes (Obayashi et al. 2009). The ATTED-II database was used to identify 
novel genes involved in lipid metabolism leading to the identification of a novel 
gene, UDP-glucose pyrophosphorylase3 (UGP3), which is required for the first step 
of sulfolipid biosynthesis (Okazaki et  al. 2009). Co-expression analysis has also 
been used to identify all genes associated with flavonoid biosynthesis, leading to 
further detailed analysis of two UGT78D3 and RHM1 flavonoid pathway genes 
(Yonekura-Sakakibara et  al. 2008). Approaches that have integrated metabolome 
and transcriptome data also have elucidated regulatory networks that respond to 
plant environmental stress. Metabolome analysis using different types of MS com-
bined with microarray analysis of gene overexpressors encoding two TFs, DREB1A/
CBF3 and DREB2A, investigated the metabolic pathways that act in response to 
cold and dehydration conditions in Arabidopsis (Maruyama et  al. 2009). 
Metabolomic profiling was also used under conditions of dehydration stress to 
investigate chemical phenotypic changes between wild-type Arabidopsis and a 
NCED3 gene knockout mutant. The metabolic data was then integrated into the 
transcriptome data to reveal ABA-dependent regulatory networks (Urano et  al. 
2009).

Metabolome profiling was also used simultaneously to evaluate chemical pheno-
types of natural variations and/or populations of segregation. A comprehensive 
exploration of the association between metabolic and genomic diversity will allow 
key genes involved in metabolic changes to be discovered and will also help to 
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identify genetic associations between metabolic and/or visible phenotypes (Fu et al. 
2009). Analysis of metabolite QTL (mQTL) using segregated populations has been 
applied in a popular forward genetic approach to different plant species such as 
Arabidopsis, poplar and tomato (Schauer et al. 2008). In addition, together with the 
recent availability of genome wide variation acquired by high-throughput genotyp-
ing methods including resequencing, interest in the discovery of the genetic associa-
tion between nucleotide variation and phenotypic changes has also increased, 
especially with regard to the identification of key genes that play significant roles in 
evolutionary histories. The attempts to mine correlative patterns between metabolic 
and genomic diversities have recently been applied to sesame and rice using seed 
stocks of natural variations (Mochida et al. 2009).

With the completion of genome sequencing in a number of plant species, com-
parative genome-scale analyzes can be used to produce and publish data sets that 
facilitate the identification of preserved and/or characteristic properties among plant 
species. Several efforts have been made to build comprehensive gene families using 
model proteome data sets deduced from sequenced genomes in establishing plat-
forms to verify gene content and elucidating the process of gene duplication and 
functional diversification among species (Sterck et al. 2007). Comprehensive gene 
family data sets are usually produced through computational procedures, including 
a step that performs an all-against-all sequence similarity search and then a step for 
building protein family clusters by methods such as Markov Clustering (MCL) or 
consideration of protein domain structures (Hulsen et al. 2006). The results of such 
studies can produce databases that are useful for further phylogenetic studies (Wall 
et al. 2008). Correlated gene arrangements between taxa along with chromosome 
allocation, also known as synteny and collinearity, have become valuable frame-
works for the inference of shared gene ancestry and the transfer of knowledge from 
species to another related species (Tang et al. 2008a). The plant genome duplication 
database (PGDD) provides a data set of intragenome or cross-genome syntenic rela-
tionships identified throughout genome-sequenced plant species (http://chibba.
agtec.uga.edu/duplication/) (Tang et al. 2008b).

Databases that contain focused data sets together with rich annotations and well- 
related cross-references are also very useful for better understanding of focused 
issues in particular gene families and/or specific cellular processes. Sequence- 
specific DNA-binding TFs are key molecular switches that control or influence 
many biological processes, such as development or responses to environments. The 
genome-wide identification of gene repertories encoding Arabidopsis genome TFs 
was first reported in plants and comparisons with other organisms revealed the prop-
erties of plant-specific TFs (Riechmann et al. 2000). Over the past decade, we have 
been able to compile catalogs describing the function and organization of TF regu-
latory systems in a number of organisms with the availability of complete genome 
sequences. In many plant species, there are many databases that provide data sets of 
genes that putatively encode TFs; these are usually predictions based on computa-
tional methods such as sequence similarity search and/or hidden Markov model 
search for preserved DNA-binding domains. Recently, there has been further inte-
gration of data sets of TF-encoding genes, thereby creating an integrative, 
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knowledge- based resource of TFs across related plant species in terms of compara-
tive transgenomics regulatory networks. GRASSIUS provides the first step toward 
building a comprehensive platform for integration of information, tools and 
resources for comparative regulatory genomics across the grass species. The Grass 
Transcription Factor Database (GrassTFDB) of GRASSIUS houses integrated 
information on MaizeTFDB, RiceTFDB, SorghumTFDB and CaneTFDB (http://
grassius.org/grasstfdb.html). The LegumeTFDB provides predicted TF- encoding 
genes annotated in the genome sequences of three major legume species: soybean, 
L. japonicus and M. truncatula (http://legumetfdb.psc.riken.jp/). This database is an 
extended version of the SoybeanTFDB (http://soybeantfdb.psc.riken.jp/) and is 
aimed at integrating knowledge on legume TFs and providing a public resource for 
comparative genomics of the TFs of legumes, non- legume plants and other organ-
isms (Mochida et al. 2010).

10.4  Integration of Interdisciplinary Approaches for Solving 
Biological Problem with Respect to Agriculture or Crop 
Improvements

The information and resources generated from various omic technologies offer 
prospects for the production of new biological knowledge. To describe and under-
stand complex biological phenomena, it is essential to integrate various types of 
biological information and large-scale omics data sets through systematic analysis. 
We have developed a web-based system, Plant MetGenMAP, for this purpose, 
which can integrate and analyze large-scale gene expression and data sets of metab-
olite profiles along with various biological information. Under certain conditions, 
significantly altered biochemical pathways and biological processes can be retrieved 
quickly and efficiently using this system, and transcriptional events and/or meta-
bolic changes in a pathway can easily be visualized. The system also provides a 
unique function that can identify candidate promoter motifs related to regulating 
specific biochemical pathways. Using data sets from Arabidopsis and tomato, we 
demonstrate the functions and application of the system. The results obtained by 
Plant MetGenMAP can contribute to a better understanding of the mechanisms 
underlying interesting biological phenomena and provide new insights into the bio-
chemical changes associated with them at the gene and metabolite levels (Thijs 
et al. 2001). Extensive insight into molecular mechanisms and the coordination of 
biological networks has been obtained after the application of several different 
methods. Our knowledge of how the cell’s different molecular entities interact with 
each other suggests that the integration of data from different techniques could nev-
ertheless lead to a more comprehensive understanding of the data emanating from 
different techniques. The main focus on the pairwise integration of large-scale 
metabolite data with that of the transcriptomic, proteomics, whole-genome 
sequence, growth- and yield-associated phenotypes, and archival functional 
genomic data sets (Gonzalez et al. 2010).
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The advances in high-throughput analytics have enabled us to gain insights into 
individual biomolecules using the various omics technologies. Any single omic 
approach, however, may not be sufficient to characterize the complexity and behav-
ior of biological systems as a whole (Gygi et  al. 1999). Therefore, molecular 
research gradually shifts towards the holistic perceptions of system biology, through 
the integration of the individual omics datasets, in order to obtain biologically 
meaningful interpretation of plant systems. The integration of multiple layers of 
biological information will therefore provide an accurate’ picture’ of the’ whole’ 
plant systems. Multiple omics datasets must be integrated after preprocessing (nor-
malization, attribution of missing value and selection of features). Data integration 
is a key to successful system philosophy development through the development of 
comprehensive plant system models. Given the enormous promise to integrate mul-
tiple omics data, there is a growing interest in logical input to designing different 
experiments and analyzing heterogeneous data (Choi and Pavelka 2011). The suc-
cessful integration of data will depend on appropriate experimental design, sound 
statistical analysis and correct interpretation of the results. The various aspects of 
successful integration of multiple heterogeneous omics datasets are to deposit indi-
vidual ‘omics’ data to respective public repositories, to generate relationships 
among various kinds of datasets, visualization of the data and application of statisti-
cal and bioinformatics resources, where and when needed. These aspects have been 
elaborately discussed in Joyce and Palsson (2006).

The literature contains several instances of omics data integration. There are a 
number of reports on gene function elucidation through the combination of metabo-
lomic analysis with genomic and transcriptomic data (Tohge et al. 2005; Okazaki 
et al. 2009). In maize hybrids, an integrated approach to transcriptomics and epig-
enomics has recently been used (He et al. 2013). Integrated use of transcriptomic 
and proteomic data has been reported in several recent studies involving whole plant 
nitrogen maize economy, growth to transition to dormancy in white spruce stems 
(Galindo González et al. 2012), phytohormone crosstalk (Proietti et al. 2013) and 
flour quality in wheat (Altenbach et al. 2010). Similarly, integrated metabolome and 
transcriptome analyses were recently applied in analysis of rice developing caryop-
ses under high-temperature conditions (Yamakawa and Hakata 2010), molecular 
events underlying pollination-induced and pollination- independent fruit sets, the 
effects of DE-ETIOLATED1 down-regulation in tomato fruits (Enfissi et al. 2010) 
and changing metabolic systems in plants growing in field conditions, such as the 
rice mutant and transgenic barley (Kogel et al. 2010). An integrated metabolome 
and proteome analysis was applied in wheat and rice coleoptiles to illustrate the dif-
ferences in response to anoxia (Shingaki-Wells et al. 2011) and characterization of 
starch and raffinose metabolisms to low and high temperatures in A. thaliana 
(Mostafavi et  al. 2008). An integrated transcriptome, proteome and metabolome 
approach was adopted to describe the cascading changes to UV-B in maize (Casati 
et al. 2011). Moreover, an integrated hormonome, metabolome and transcriptome 
analyses in Arabidopsis transgenic lines, displayed increased leaf growth to gain 
insight into the molecular mechanisms that control leaf size (Gonzalez et al. 2010) 
have been reported. The literature mining is also a useful approach to knowledge 
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integration in plant biology (Winnenburg et al. 2008). Apart from single problems, 
more complex problems like photosynthesis have been addressed by Weston et al. 
(2011), where they characterized a network for heat transcriptome of three plant 
species (Arabidopsis, Populus and Soybean) where expression of one heat respon-
sive module showed a negative correlation with leaf-level photosynthesis at a criti-
cal temperature. Later they proposed a conceptual model where traditional network 
analysis can be linked to whole-plant models (Weston et al. 2012). Also recently, 
Fouracre et  al. (2014), threw light on the application of systems approaches in 
understanding the Kranz anatomy of the C4 plants. Several web- based resources 
like PLAN2L (Krallinger et  al. 2009) and PosMed-plus (positional Medline for 
plant upgrading science) (Makita et al. 2009) are available to integrate literature-
derived bioentities and associated information. The integration of multiple omics 
data has several challenges (De Keersmaecker et al. 2006; Steinfath et al. 2007). 
One of the problems with complex annotation and integration is the lack of agreed 
formats across various omics datasets due to the primary data sources ‘heteroge-
neous repositories. The solutions to this problem include creating’ data warehouses, 
using extensible markup language (XML), navigating hypertext, Unmediated 
MultiDB queries, creating a federated database and using controlled vocabulary. A 
Data Warehouse collects data from multiple resources, translates the formats and 
places them in a single database. The examples of data warehouses include: Atlas, 
BioMart, BioWarehouse, Columba, SYSTOMONAS, BioDWH, VINEdb, Booly, 
GNCPro (Turenne 2011). The XML is a general-purpose markup language that 
helps in sharing data across heterogeneous systems. The development of Systems 
Biology Markup Language (SBML) (Hucka et al. 2003) is probably the first and 
most successful efforts in this aspect. The Plant Ontology Consortium is a collab-
orative effort between plant genome model databases and plant researchers to create 
a controlled vocabulary (ontology) for plants to be maintained and facilitated 
(Avraham et al. 2008). The other problem includes statistical analysis, i.e. evalua-
tion of integration complexity that differs from that of individual omics analysis and 
subsequently applying an appropriate method. Therefore, integrating omics data is 
far more than merely’ joining the pieces;’ it is actually a journey of exploring 
uncharted territories and transforming information into more useful biological 
knowledge.

10.4.1  Modeling and Simulation in Plant System Dynamics

The systems interest to biological sciences dates back to the days of von Bertalanffy 
(1933 1968), Wiener (1948) and Forrester (1958, 1961). In the context of biology, 
Biochemical Systems Theory (Voit 2000) and Metabolic Control Theory (Heinrich 
and Schuster 1996), proposed general mathematical models of biological systems at 
and around a steady state (equilibrium). Successful plant modeling is the ultimate 
goal of biology of plant systems. In a system, in mathematics, a model (Latin mode, 
meaning manner/measurement) usually represents the causal relationship. Cells or 
higher units of biological organization are understood as interacting element 
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systems in systems biology. The identity of the constituents, dynamic behavior and 
interactions between the constituents, of the biological system under study (Kitano 
2002) must be known for an explanation of the system level. Ultimately this infor-
mation can be combined into a model that is not only consistent with current knowl-
edge but can also predict system behavior under new unexplored perturbations. 
Modeling and simulation are central to bridge the gaps between theory and experi-
ment (Dhar et al. 2004). Experimental results usually require correct mathematical/
statistical input, and model hypotheses require experimental evidence to provide 
meaningful biological interpretations. Modeling usually begins with building bio-
logical networks from the molecular data sets available. Network building and anal-
ysis are key components of biology of systems. In system biology, a network/graph 
has two basic parts: the system elements are represented as graph nodes and the 
interactions are represented as edges, i.e. lines connecting pairs of nodes. Edges can 
be directed (from a source (start node) to a sink (end node) and represent unidirec-
tional flow of material or information) or non-directed (representing mutual interac-
tions where the directional flow of information is not known). In biological networks, 
nodes represent the molecules present inside a cell (e.g., proteins, RNAs and/or 
metabolites) and links (or edges) between nodes represent their biological relation-
ships (e.g., physical interaction, regulatory connections, metabolic reactions) (Blais 
and Dynlacht 2005). Activation or inhibition signs can be displayed on the edges to 
increase the network’s information content. The important characteristics of bio-
logical networks are the scale-free structure (the number of nodes that connect with 
other nodes is much lower than the number of nodes with few connections) and the 
relative scarcity of hubs that connect directly with each other (Barabasi and Oltvai 
2004). The interaction network nodes represent the biomolecular population whose 
abundance varies over time and in response to internal and environmental distur-
bances. The interaction network needs to visualize the changes and create a model 
which needs to be augmented by variables (expression, concentration, activity), 
thus indicate the state of each node and set of equations, signifying the how the state 
changes corresponding to the stimuli. Depending on their behavior in the system 
with time, models can be static or dynamic. The four common types of networks in 
plant biology systems include gene-to-metabolite networks, protein-protein interac-
tion networks, transcriptional regulatory networks, and gene regulatory networks in 
which the first three types are often static, whereas the gene regulatory network is 
often dynamic (Yuan et al. 2008).

10.4.2  Gene-To-Metabolite Networks

Gene-to-metabolite networks are derived under a given set of conditions from the 
analysis of the correlation of genes and metabolites. The genes and metabolites act 
as nodes here, and the edges represent the interactions between regulators. 
Depending on the distance between genes and metabolites, interactions are inter-
preted. Due to the enormous diversity and number of metabolites produced in cells 
corresponding to their sessile lifestyle, these types of networks are highly complex 
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and difficult to study in plants. Different new research dimensions such as interrela-
tion between biological processes, functional gene annotation, and discovery of new 
genes in biosynthesis, regulation and transportation of metabolites, have been added 
to plant science owing to the elucidation of gene-to metabolite networks (Yuan et al. 
2008). The gene-to- metabolite networks have been worked out in various studies 
like in stress responses, discovery of novel candidate genes for terpenoid indole 
alkaloid biosynthesis in Catharanthus roseus (Rischer et al. 2006), in the response 
to nitrogen deficiency and during diurnal cycles (Scheible et al. 2004) an so on.

10.4.3  Protein–Protein Interaction Networks

In protein-protein interaction networks, nodes are proteins that are connected by 
direct edges if the information flow direction is known during their interaction, or 
non-directed edges if there is strong evidence of their physical interaction or asso-
ciation without evidence of interaction directionality (Assmann and Albert 2009). It 
may be possible to have two types of interactions: genetic or physical. A protein- 
protein genetic interaction is a network of genes characterized by genetic interac-
tions in order to explain gene function in physiological processes (Boone et  al. 
2007). However, due to ploid levels and long life cycles, this approach is difficult to 
implement the ploidy levels and long life cycles of plants. On the contrary, physical 
interactions are easier to be characterized on the plant systems. In plants, interaction 
maps have been experimentally elucidated for homo and heterodimerization within 
two large classes of transcription factors: the MADS (MCM1, Agamous, Deficiens, 
SRF) box transcription factors (de Folter et al. 2005) and the MYB (myeloblastosis) 
transcription factor family (Zimmermann et al. 2004a, b). The further details regard-
ing interactome are furnished in a preceding section in the current review namely 
‘interactomics’.

10.4.4  Transcriptional Regulatory Networks

The transcription regulatory network explains the regulatory interactions between 
transcription factors and downstream genes. They have two types of nodes—tran-
scription factors and regulatory genes and two types of directed edged viz. tran-
scriptional regulation and translation (Babu et al. 2004). In addition, the regulatory 
edges can have two types of signs, corresponding to activation or repression. Despite 
the general organizational similarity of networks across the phylogenetic spectrum, 
there are interesting qualitative differences among the network components, such as 
the transcription factors (Babu et al. 2004). Transcription factors usually regulate 
multiple genes and hence transcriptional regulatory networks are unidirectional and 
do not have strongly connected components. The various approaches to deciphering 
transcriptional regulatory networks include genome-wide expression profiling, 
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genome-wide RNA interference (RNAi) screens (Baum and Craig 2004), transcrip-
tion rate assessment by measuring mRNA decline rates, pair evaluation of promoter 
co-occupancyand cis-element computational prediction. A transcriptional regula-
tory map for cold signaling mediated by the transcription factor of ICE1 was created 
in Arabidopsis (Benedict et  al. 2006). Recent transcriptional regulatory network 
reports include the role of oxidative signals in chilling stress in rice (Yun et  al. 
2010), those in response to abiotic stresses in Arabidopsis and grasses (Nakashima 
et al. 2009) as well as rice (Todaka et al. 2012), abiotic light-regulated transcrip-
tional networks in higher plants (Jiao et al. 2007) and so on.

10.4.5  Gene Regulatory Networks

The nodes correspond to genes, messengers or proteins in a gene regulatory net-
work and the edges represent the regulatory interactions (activation, inhibition, 
repression or other functional interactions) among the network components. 
Complex gene regulatory networks consist of genes, non-coding RNAs, proteins, 
metabolites and components of signaling (Long et al. 2008). This type of network 
includes all stages of gene expression regulation including DNA transcription regu-
lation, RNA translation, post-transcription RNA processing, as well as post- 
translation changes such as protein targeting and covalent protein modification. 
Unlike other static networks in nature, these networks are often used to display the 
dynamics of plant systems (Yuan et al. 2008). The ABC model, one of the first mod-
eled plant gene regulatory networks, explained the interactions between transcrip-
tion factors that regulate plant species-wide floral pattern formation (Coen and 
Meyerowitz 1991). In several studies, gene regulatory networks were reported to 
study plant developmental and physiological processes. The studies include the 
attempt to model the essential components controlling stomatal closure of the cell 
size, determining the cell fate during flower development in A. thaliana, microRNA 
(miRNA)-mediated gene regulatory networks (Meng et al. 2011) and recently in 
explaining land plant evolution (Pires et al. 2013).

Biological network construction and analyzes were therefore an important 
approach to explaining the organism or a biological process as a whole in the biol-
ogy of plant systems. In modern science, high-throughput technologies provide 
huge quantitative data. However, in systems where knowledge of mechanical details 
and kinetic parameters is scarce, the use of quantitative data is obstructed. In such 
cases, it may be helpful to model the system with a wealth of molecular data on 
individual constituents as well as interactions (Assmann and Albert 2009). The sys-
tem biology’s individual key components viz. Earl explained genomics, transcrip-
tomics, proteomics, metabolomics, etc. have been explained earlier. The biological 
networks along with these components are chief aspects of plant systems biology. 
Although the models could not exactly mimic the system with pure accuracy, still 
are highly capable to explain the intrinsic complexity of the plant systems.
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10.4.6  Softwares and Algorithms for Plant Systems Biology

Using software from bioinformatics is inevitable for the comprehensive study of 
biology of plant systems. In addition to the tools and resources used in the analysis 
of the individual omics platforms, it requires several resources to elucidate the’ com-
plete picture.’ Joyce and Palsson (2006) and Turenne (2011) list detailed discussion 
of various algorithms and software used for system biology. These include network 
visualization tools, modeling environments, pathway building and visualization 
tools, modeling platforms for systems biology, and model repositories. Visualization 
is a means for analyzing research data and a key method for analyzing networks. The 
purpose of omics data visualization should be to create clear, meaningful and inte-
grated resources without the inherent complexity of the data being undermined 
(Gehlenborg et al. 2010). There are several tools to help visualize’ omics’ data on a 
system scale such as Sungear (Poultney et al. 2007), MapMan (Thimm et al. 2004), 
Genevestigator (Zimmermann et  al. 2004a, b), Cytoscape (Shannon et  al. 2003), 
VirtualPlant (Katari et  al. 2010), REACTOME (Joshi-Tope et  al. 2005). Pathway 
databases are used for modeling systems as they provide a clear way to create net-
work topologies by the annotated reaction systems. The various pathway databases 
for systems analyses include KEGG (Kanehisa et  al. 2012), BioCyc (Caspi et  al. 
2010), Aracyc (Mueller et al. 2003), Pathway Interaction Database (PID) (Schaefer 
et al. 2009) and BioCarta (Nishimura 2001). Also, several comprehensive modeling 
environments are available, like Gepasi (Mendes 1997), Virtual Cell (Loew and 
Schaff 2001), Osprey (Breitkreutz et  al. 2003), Arabidopsis eFP browser (Winter 
et al. 2007), COPASI (Hoops et al. 2006), R (http://www.R- project.org),MatLab and 
InfoBiotics workbench (Blakes et al. 2011), E-Cell (Tomita et al. 1999), Systems 
Biology WorkBench (Sauro et al. 2003). The Systems biology model repositories 
include BioModels database (Le Novere et  al. 2006) or JWS (Olivier and Snoep 
2004). Both are public, centralized databases of curated, published, quantitative 
kinetic models of biochemical and cellular systems. The core systems biology net-
works include SynBioWave (Staab et  al. 2010), Cell Illustrator (Nagasaki et  al. 
2010), Moksiskaan (Laakso and Hautaniemi 2010), MEMOSys (Pabinger et  al. 
2011), Babelomics (Al-Shahrour et al. 2006), MetNet (Sucaet et al. 2012), etc.

10.4.7  Integrating Metabolite and Transcriptome Data

The initial integrative approaches with plant metabolism relevance included the 
combination of transcript data and metabolite profiling(Tohge et  al. 2005). Such 
studies were initially limited to model species for which ESTs or oligonucleotides 
were available; early transcriptomic approaches in fact relied on differential hybrid-
ization of complementary DNA samples to known immobilized sequences on solid 
supports. However, this barrier has been removed by the advent of next-generation 
sequencing technologies and far more exotic species are beginning to be studied 
using this approach (Gechev et al. 2013). By combining transcript and metabolite, 
two basic questions are commonly addressed by combining transcript and 
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metabolite data. The first concerns whether a gene functions within a given meta-
bolic pathway. When a better characterization of the pathway is achieved, it is also 
essential to examine the extent of transcriptional control (except in some cases, for 
example, by regulating post  – transcription modifications of the enzyme and by 
regulating positive/negative feedback by substrates/products) under different physi-
ological conditions and how it is distributed across the different enzymatic steps.

The initial focus of these investigations was specific pathways, such as hormone, 
glucosinolate, and flavonoid biosynthesis. For example, differential gene expression 
mechanisms helped clarify the involvement of two different genes of nitrilase in 
auxin synthesis in Arabidopsis. Similarly, the contributions of gene duplication and 
inducible gene expression (differential activation of biosynthetic gene subsets) have 
been shown to impact glucosinolates amount and composition. An additional early 
evidence of the role of specific transcript accumulation on a metabolic phenotype 
stemmed from the clarification of the role that various regulatory mechanisms affect 
Trp synthase α and β had on the amount of 2,4-dihydroxy-7-methoxy-1,4- 
benzoxazin- 3-one, a natural pesticide synthesized in maize (Zea mays) leaves. 
Another example of the coordination between transcripts and metabolite accumula-
tion was the maize anther analysis, where a strong correlation was found between 
the expression of a structural gene (flavanone 3-hydroxylase) and the appearance of 
specific flavonols (mainly quercetin and kaempferol). In this case, the comparison 
of sweet and hot pepper varieties made it easier to identify certain placenta-specific, 
differentially expressed genes that were directly correlated with the accumulation of 
capsaicinoids. One of the first examples of this approach focused on the identifica-
tion of transcripts strongly correlated with the abundance of given metabolites 
across tuber development, irrespective of whether the transcript was associated with 
the metabolic pathway under question or not (Urbanczyk-Wochniak et al. 2003).

Indeed, this approach was able to identify certain transcripts that exhibited very 
high correlations with the expression of certain genes and, as such, proved effective 
in identifying a number of biofortification candidate genes. The same approach can 
and has been used by corollary to elucidate the variation in gene-to-metabolite net-
works following short-and long-term nutritional stress in Arabidopsis or to identify 
gene expression metabolic regulators. For example, in Arabidopsis (Hannah et al. 
2010), cryptoxanthin was found to be highly correlated with a large number of genes 
across diverse environmental conditions, and organic acid malate was putatively 
identified (Carrari et al. 2006) and subsequently confirmedto be important in mediat-
ing the ripening process in tomato (Solanum lycopersicum). Such current studies are 
all examples of the guilt-by-association approach, which in essence postulates bio-
logical entities as being functionally related if they exhibit strong correlation or core-
sponse across a wide range of cellular circumstances. The power of this approach is 
that it may have great use in identifying novel metabolic integration and/or new regu-
latory mechanisms, given that it does not rely on a priori pathway knowledge. The 
main drawback of the approach, however, is that, in the absence of subsequent rounds 
of experimentation, it is difficult to gain insight into the mechanistic links underlying 
the behavior observed, given that correlation between biological entities does not 
always imply causation or the existence of functional links (Tohge and Fernie 2010). 
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In this respect, it becomes imperative to validate the resultsof co-expression analyzes 
using follow-up approaches to prove the existence of putting functional links. 
Arguably, the greatest advances made to date following approaches to integrate tran-
script and metabolite data have been achieved in gene annotation and the structural 
elucidation of plant intermediary and secondary metabolism.

Two early studies of particular note are those from the laboratories of Saito and 
Dixon investigating the metabolism of Arabidopsis anthocyanin and Medicago trun-
catula triterpene. In the case of the anthocyanin pathway, no late biosynthetic genes 
involved in anthocyanin decoration steps were identified in Arabidopsis prior to the 
study of (Achnine et al. 2005; Tohge et al. 2005), although visible phenotype screen-
ing characterized all early biosynthetic genes. A combination of transcript and 
metabolite profiling on an activation-tagged line of anthocyanin pigment1 along with 
validation experiments involving both heterologically expressed enzymes and knock-
out mutations resulted in the identification of five genes and the identification of up 
to 11 anthocyanins. Such confirmatory experiments are essential to assign gene func-
tion unambiguously. Combining reverse genetic strategies with enzyme activity 
characterization when the gene is expressed in a heterologous system remains the 
gold standard for molecular identification of novel enzyme-catalyzed reactions. 
Subsequent follow-up studies have identified some six genes associated with the 
metabolism of flavonol, and some 24 compounds of this class (among 35 compounds 
found) have now been identified in Arabidopsis While the expansion of the charac-
terized triterpenoid metabolism in M. Truncatula is not that impressive, Tohge et al. 
(2005)’s study enabled the functional annotation of 30 different saponins, and cur-
rently, over 70 metabolites of this compound class have been identified in M. trun-
catula. The usefulness of this approach is at its greatest for the relatively unchartered 
pathways of specialized metabolism; however, it should be noted that the gene 
encoding plant Thr aldolase(322–324) in Arabidopsis and 2,4-dihydroxy- 7-methoxy-
1,4-benzoxazin-3-one glucoside methyltransferase in maize was independently iden-
tified in this strategy(Meihls et al. 2013). The number of species and pathways for 
which this approach was adopted expanded massively to include several crops and 
medicinal plants a decade later. Strategies combining transcript and metabolite pro-
filing have been effective in shedding light on the structure of several metabolic path-
ways involved in the synthesis of primary metabolites, flavonoids, terpenoids, and 
alkaloids (Lin et al. 2015). The combination of transcript and metabolite profiling 
has been commonly used on a broader level for multi-layered descriptions of plant 
responses, especially those to abiotic stress. This has resulted in a number of studies 
assessing the combined transcript and metabolite responses to water stress, tempera-
ture stress, light stress, and nutrient supply limitations (Urano et al. 2009). Though 
descriptive by nature, such studies can provide insight into global metabolic varia-
tions under certain conditions as well as identify which pathways are under tight 
control and which are under loose transcriptional control. Given the highly intercon-
nected nature of the metabolic system and its nonlinearity of metabolic pathways in 
the global network structure, and even in the absence of flux profiling data, the inte-
gration of transcriptomics with wide metabolic profiling can, in any case, narrow 
down which metabolic steps could be active under specific conditions. Occasionally, 
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however, more mechanistic information can also be provided. A prominent example 
of this is the detailed analysis of several transgenic Arabidopsis lines with altered 
flavonoid levels through transcriptomic and metabolomic analysis, including hor-
mone analysis, which revealed that flavonoid overaccumulation with strong oxida-
tive capacity in vitro also gives oxidative stress and drought tolerance (Nakabayashi 
and Saito 2015). Moreover, a combination of transcript and metabolite profiles fol-
lowed a range of developmental processes at high resolution. Such studies are domi-
nated by fruit maturation and leaf development studies, but they are not limited to 
these processes, with studies also covering the development of various organs, lignin 
deposition, and the establishment of arbuscular mycorrhizal symbiosis (Nakamura 
et al. 2014). In this respect, these approaches prove informative in clarifying the rela-
tive importance of apparently redundant biosynthesis pathways and the degradation 
of specific metabolites or may also help to define the role of those primary metabo-
lites (e.g., aminobutyrate) for which a signaling role was assumed. For example, 
ascorbate biosynthesis has been revealed as the dominant route of ascorbate biosyn-
thesis during tomato maturation, which is one of the well-studied metabolisms in 
several higher plants, especially in Arabidopsis. Another example can be found in the 
elucidation of the arogenate pathway as an alternative route for Phe biosynthesis, a 
similar approach in Arabidopsis, based on feeding studies and analysis of co  – 
expression, suggested an alternative pathway to degradation of Lys in dark – induced 
senescent leaves (Araújo et al. 2010). However, despite the fact that these examples 
illustrate that combined transcriptome/metabolome studies increase our understand-
ing of metabolic network regulation, we argue that they remain at their most power-
ful in gene functional annotation and the elucidation of metabolic pathway structures 
specific to species and/or tissue.

10.4.8  Integrating Metabolite and Proteome or Enzyme  
Activity Data

The combination of proteome and metabolome analyzes is less commonly used to 
date than combined transcriptome and metabolome analyses. In addition, they are 
largely used in a manner similar to the more descriptive studies discussed above 
hence, this gained considerable insight into the structure of metabolic networks as 
well as general aspects of metabolic regulation. In the first of these examples, 
metabolite data were studied in parallel with enzyme data (and transcriptomics 
data) in different wild-type diurnal cycles and an Arabidopsis starchless mutant, 
revealing that rapid transcript changes are integrated over time to generate substan-
tially stable changes in many sectors of metabolism. The same group went on to 
apply this approach to tomato fruit development and natural variance in Arabidopsis. 
In tomatoes, enzyme profiles were sufficiently characteristic to distinguish develop-
mental stages and cultivars and wild species, but the comparison of enzyme activity 
and metabolites revealed remarkably little connectivity between enzyme develop-
mental changes and metabolite levels, suggesting the operation of mechanisms for 
post-translation modification. They documented highly coordinated changes 
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between enzyme activities in Arabidopsis, especially within those of the Calvin- 
Benson cycle, as well as significant correlations between starch and growth in spe-
cific metabolite pairs. On the other hand, there were few correlations and therefore 
low overall connectivity. On the other hand, few correlations were observed between 
enzyme activity and metabolite levels(Sulpice et al. 2010), and thus low overall con-
nectivity, but strong links were seen between starch levels and growth, which we 
describe below. In an alternative approach, proteomic and metabolic data were only 
used to extend the range of molecular entities to show that fascicular and extra fas-
cicular phloems are isolated from each other and functionally divergent (Zhang 
et al. 2010).

10.4.9  Integrating Metabolite and Genome Data

Assuming that the advent of metabolomics more or less paralleled the release of the 
first plant genome, the integration of metabolomics and data on the entire genome 
sequence may be unsurprising(van der Werf et al. 2007). Suffice it to say that in 
such combinations there are considerable complexities; tellingly, early studies 
aimed at computational prediction of the size of the Escherichia coli metabolome 
estimated a complement of about 750 metabolites, while subsequent experimental 
approaches revealed many metabolites that were not computed from the genome. 
This discrepancy could be explained by several potential reasons (Tohge et  al. 
2014). The most likely reason for this is the lack of linear relationship between 
genes, their protein products, and metabolites, and the fact that most genomes 
remain incompletely annotated, including those of model organisms. Despite this 
serious drawback, in this section, we hope to illustrate that the integration of metab-
olomics and genomic data can be incredibly powerful in understanding natural 
metabolism variation and its regulation. Whole-Genome sequences for over 100 
species of plants (including microalgae) are available. Metabolomics currently can-
not match this massive acceleration provided by next-generation technologies, par-
ticularly when high-quality species are being adopted optimized approaches 
(Fukushima et  al. 2014). The KNApSAcK database, which is one of the largest 
curated compendia of phytochemicals, contains over 700 compounds for early 
sequenced plants like Arabidopsis and rice (Oryza sativa) but no entries for recently 
sequenced species such as goatgrass (Aegilops tauschii) and wild tobacco (Nicotiana 
tomentosiformis). In this section, we will describe insight gained from combining 
metabolomic data with genome sequences in three different case studies: (1) a sim-
ple comparison of a reference genome with metabolomics data; (2) a comparison of 
natural allelic and metabolic variance; and (3) integrating genome sequence data 
into quantitative genetics approaches. The first of these has been covered in consid-
erable detail recently (Tohge et al. 2014) so we will only briefly describe it here. The 
starting point is to perform genome-wide ortholog searches using functionally 
annotated genes; best practice is to use cross-species cluster-based BLAST searches 
such as those housed in the PLAZA database (Proost et al. 2009) or, in the case of 
photosynthetic microbes, pico-PLAZA (Vandepoele et  al. 2013). Illustrations of 
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how such analyses have been performed for central, shikimate, phenylpropanoid, 
terpenoid, alkaloid, and glucosinolate metabolism have been presented. Important 
insights into pathway evolution can be gained from such approaches, as illustrated 
by the recent cross-kingdom comparison of ascorbate biosynthesis (Wheeler et al. 
2015). The second case study, which is similar in scope but far more targeted than 
genome-wide association studies to evaluate alllic and metabolic variance across 
natural diversity, is described below. Most recent examples of its usefulness are 
derived from the analysis of wild tomato species; however, it is important to note 
that the approach itself is essentially a modification of that adopted over decades in 
the cloning of natural color mutants. In recent years, this approach has significantly 
enhanced understanding of both primary and secondary and cuticular cell wall 
metabolism been enhanced considerably via this approach (Koenig et  al. 2013), 
Although the greatest insight into the latter was ultimately clarified, as described 
below, through the use of the introgression line population. In essence, this approach 
begins with the identification of metabolic variance within a population of ecotypes, 
cultivars, or similarly related species and attempts to link this with alllic diversity or 
gene duplication, as has been achieved with acyl-sugar metabolites (Schilmiller 
et al. 2015), terpenes, and isoprenoids (Kang et al. 2014), or even with the presence 
or absence of genes, as described recently for methylated flavonoids of glandular 
trichomes. The previous list documents the success of this approach; however, until 
recently, it has been constrained by the limits of our a priori knowledge needed to 
select the candidate genes in which we are searching for alllic variance. The devel-
opment of RNA sequencing technologies means that we are no longer limited by the 
amount of sequence data; however, there may still be a potential hurdle to these 
integrative approaches when comparing highly genetically divergent individuals, as 
the number of genetic polymorphisms is too large to be evaluated one by one. The 
quantitative trait loci approach is therefore a powerful alternative method of asso-
ciating phenotypes with their underlying genetic variance. The use of such 
approaches in plant metabolism has been the subject of several recent comprehen-
sive reviews (Scossa et  al. 2015), however, few examples of their usefulness to 
advance understanding of metabolite accumulation and metabolic regulation are 
as-. Tomato fruit, as the model species for fleshy fruit maturation, has been the 
subject of combined large-scale genomic, physiological, and metabolic investiga-
tions, often using specific biparental populations or large sets of unrelated indi-
viduals, in an attempt to understand the causal variants of metabolic variations 
(Sauvage et al. 2014). In particular, the use of introgression lines obtained from the 
cross between tomato and Solanum pennellii (a wild tomato species) has greatly 
helped to identify quantitative trait loci for a large number of physiological and 
metabolic traits. Profiling data of primary and secondary metabolites in this popu-
lation was collected over several years (along with some classical yield- related 
traits), revealing more than 1500 metabolic quantitative trait loci affecting levels of 
multiple sugars, amino acids, organic acids, vitamins, phenylpropanoids, and gly-
coalkaloids. In some selected metabolic quantitative trait loci, the availability of 
sequences of both parental genomes (Bolger et al. 2014) reduced the origin of the 
metabolic variation to specific genetic polymorphisms (Alseekh et al. 2015). The 
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integration of genotypic and metabolic variance can and has been applied to large 
collections of unrelated individuals (metabolite-based genome-wide association 
studies): as in the case of biparental populations, also with this strategy, several 
cases of polymorphological variants of genomic sequences have been identified 
and related to metabolic variation. These two approaches, based either on biparen-
tal populations or on large collections of natural accessions, have been used in 
Arabidopsis and crop species (maize, rice, wheat (Triticum aestivum), and fruit 
trees (Luo 2015).

10.4.10  Integration of Transcriptomic and Metabolomics Level 
Genome-Scale Models

In the first of these studies, Arabidopsis microarray data exposed to eight different 
conditions of light and temperature were integrated into a model on a genome scale 
(Töpfer et al. 2014). We first digress to give a brief description of how genome-scale 
models are generated before discussing the outcome of this integration. Essentially, 
a model on a genome-scale match’s metabolic gene with metabolic pathways in a 
way that generates a stoichiometrically balanced metabolic network that matches all 
gene functions annotated for that organism. In the turn of the century, these models 
were originally published for microbes, with many models for plant species subse-
quently available for Arabidopsis as well as crop species such as rice and maize 
(Simons et al. 2014). Returning to the superimposition of experimental data on the 
model, the addition of transcriptomic data has enabled flux capacities to be pre-
dicted and statistically assessed if these vary under the test conditions. In addition, 
this study introduced the concepts of metabolic sustainers and modulators, the for-
mer being metabolic functions that are differentially up-regulated with respect to 
the null model, while the latter are differentially down-regulated to control a certain 
flux and thus modulate the affected processes (Töpfer et al. 2013). In a follow-up 
study, predictions based on transcriptomics integration were complemented by 
metabolomics data from the same experiment. In doing so, the authors were able to 
bridge flux-centric and metabolomics-centric approaches and, in so doing, demon-
strate that, under certain conditions, metabolites serving as pathway substrates in 
pathways defined as either modulators or sustainers display lower temporal varia-
tion with respect to all other metabolites (Töpfer et al. 2013). In addition, substantial 
evidence suggests that levels of specific metabolites such as Ala, pyruvate, 2-oxo-
glutarate, Gln, and spermidine are exceptionally stable across a wide range of cel-
lular conditions. They also agree with observations that metabolite levels such as 
Ser coordinate the expression levels of genes encoding multiple steps of the path-
ways they themselves belong to (Timm et  al. 2013). The high stability of these 
metabolites over a range of different stresses is in line with their requirements. It 
also emphasizes the fact that the most biologically relevant metabolites may be for 
metabolic regulation; this is an important point, since it is at odds with the manner 
in which the majority of the metabolomics community assesses their data. This 
observation additionally highlights the potential difficulties and challenges in 
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interpreting data from a single level of the cellular hierarchy and thus provides fur-
ther grounds for integrated models.

The rapid proliferation of plant and other organism genome-scale data makes it 
possible to study various cellular processes systematically. Because heterogeneous 
high-throughput data sets have been acquired from various “omics” technologies 
such as genomics, transcriptomics, proteomics, and metabolomics, it has become 
necessary to develop computational tools that can effectively integrate and analyze 
them. Microarrays and recently developed RNA-Seq technology have proven to be 
crucial tools for generating transcription data sets by simultaneously detecting thou-
sands of gene expression. These data sets contain useful information to study gene 
functions in various ways including stress responses and developmental programs. 
Meanwhile, metabolomics, which investigates the profiles of all metabolites in an 
organism under specific conditions using techniques such as gas chromatography- 
mass spectrometry (GC-MS), has been regarded as an important research field in 
the postgenomic area, especially for plants due to their significant chemical diver-
sity. New functional gene annotations have been added to various biological net-
works in recent years, including regulatory networks, networks of protein-protein 
interaction, and metabolic pathways. Despite these advances, under specific condi-
tions, dynamic gene behaviors are still largely unexplored in specific pathways. 
Thus, in addition to integrating heterogeneous data sources, their analysis in the 
context of pathways is considered an essential step for functional studies of a com-
plex biological system. Transcriptomic data are normally mapped into specific met-
abolic pathways in this type of analysis to investigate a set of genes ‘coordinated 
behavior. It is important to develop effective tools for this type of analysis to sys-
tematically characterize and understand the dynamics of biochemical pathways by 
using multi-level information.

As detailed information on biological pathways has been developed, more com-
plete and accurate pathways have been mapped, both experimentally and computa-
tionally. MetaCyc (http://metacyc.org/) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; http://www.genome.ad.jp/kegg/) are currently representative 
biochemical pathway databases. MetaCyc contains experimentally verified meta-
bolic pathways and information on enzymes curated from scientific literature as 
well as predicted computationally predicted metabolic networks for more than 1600 
different organisms (Krieger et al. 2004). KEGG is a knowledge base in terms of the 
network of genes and molecules resulting from their activities (Kanehisa et  al. 
2006). These databases are the primary resources that can be utilized to understand 
how genes and molecules are connected in biochemical pathways. Moreover, they 
can be combined with new resources or technologies for genomic and functional 
analysis, making it possible to expand previous databases and obtain increased 
depth and range of functions. For example, the database EGENES was developed to 
place genomic information, including ESTs of many plant species, into metabolic 
pathways and was integrated into the KEGG suite of databases (Kanehisa et  al. 
2006). Several analytical tools were developed to identify gene expression patterns 
that are responsible for potent biological effects by integrating large-scale transcrip-
tomic data with various biological information such as pathways and related 
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metabolites. Pathway Processor is a tool for visualizing metabolic pathway expres-
sion data and evaluating which transcriptional changes affect metabolic pathways. 
Specifically for plant species, several similar tools have been developed recently. 
Another plant species analysis system is KaPPA-View, a web-based tool used to 
display quantitative data for individual transcripts and metabolites on stored plant 
metabolic track maps stored in KEGG.

The Omics Viewer package in the Pathway Tools enables scientists to visualize 
for any organism of interest the large-scale gene expression and metabolomics data 
sets on metabolic pathways predicted by the Pathway Tools. KaPPA-View and 
Omics Viewer, however, provide very limited statistical analysis or project manage-
ment functions. A web-based system, Plant MetGenMAP, has been developed that 
can identify significantly altered biochemical pathways and highly affected biologi-
cal processes and predict functional roles of pathway genes from transcript and 
metabolite profile data sets and potential pathway-related regulatory motifs. Plant 
MetGenMAP is a user-friendly, powerful system of analysis that supports many 
functions of system biology analyzes in the context of biochemical pathways and 
terms of gene ontology (GO). It provides an analytical platform that allows for rapid 
and efficient exploration of highly altered pathways through intuitive visualization 
and robust statistical testing. Because it allows simultaneous analysis of transcrip-
tional and metabolic changes for each pathway, the association between gene 
expression and biochemical changes in specific pathways can be easily inferred 
under specific conditions. Functional analysis of differentially controlled pathways 
can help define functional roles correctly of genes within pathways. Furthermore, 
the system embeds a function that can putatively identify major regulators related to 
changing transcripts and metabolites in specific pathways. Transcript and/or metab-
olite profiles of the model plant species Arabidopsis (Arabidopsis thaliana) and 
tomato (Solanum lycopersicum) have demonstrated the functions of Plant 
MetGenMAP. We present comprehensive results identified with Plant MetGenMAP, 
including differentially regulated metabolic pathways, pathway-related gene func-
tions, putative regulators associated with these genes, and probabilistic associations 
between genes, metabolites, and phenotypes. MetaCyc contains experimentally 
determined biochemical pathways that can be used as a metabolism reference data-
base. MetaCyc can be used together with the Pathway Tools software to predict the 
metabolic pathway complement of an annotated genome computationally. More 
than 60 plant-specific pathways have been added or updated in MetaCyc recently to 
increase the breadth of pathways and enzymes. Unlike MetaCyc, which contains 
metabolic data for a wide range of organisms, AraCyc is a species-specific database 
that contains only enzymes and pathways found in the Arabidopsis (Arabidopsis 
thaliana) model plant. The first computationally AraCyc (http://arabidopsis.org/
tools/aracyc/) was the first computationally predicted plant metabolism database 
derived from MetaCyc. AraCyc has been under ongoing curation since its initial 
computational construction to improve data quality and increase the breadth of 
pathway coverage. Recently, twenty-eight pathways were curated manually from 
literature. Also recently, AraCyc’s pathway predictions have been updated with the 
latest functional annotations of Arabidopsis genes using controlled vocabulary and 
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literature evidence. Currently, AraCyc has 1418 unique genes mapped with 1156 
literature citations on 204 pathways. The Omics Viewer, a user data visualization 
and analysis tool, makes it possible to paint a list of genes, enzymes or metabolites 
with experimental values on a diagram of AraCyc full path map. Other recent 
improvements to both MetaCyc and AraCyc include the implementation of an 
ontology of evidence used to provide data quality information, the expansion of the 
secondary pathway ontology metabolism node to accommodate the cure of second-
ary metabolic pathways, and the enhancement of the ontology of the cellular com-
ponent for the storage and display of enzymes and pathways within s The MetaCyc 
database’s goal is to catalog every experimental biochemical pathway for small 
molecule metabolism (Krieger et al. 2004). In EcoCyc(Keseler et al. 2005) a model 
organism database for Escherichia coli, MetaCyc was initialized with all the manu-
ally curated pathways. MetaCyc has subsequently added pathways from more than 
300 organisms, and more than 90% of its pathways are manually curated with litera-
ture quotations and species information. The other 10% of pathways originally 
imported from the WIT database (http://www.cme.msu.edu/WIT/) are manually 
curated. MetaCyc can be used as a reference database in conjunction with the 
Pathway Tools software to create new Pathway Genome Databases (PGDB) from 
annotated genomes or genes. The Pathway Tools software contains three compo-
nents: (1) PathoLogic, which matches an annotated genome’s gene product names 
against enzymes and reactions in a reference database such as MetaCyc, and pre-
dicts the organism’s pathways using a scoring algorithm; (2) Pathway/Genome 
Editor, which allows manual updating of the derived database and supports data 
sharing between derived d AraCyc was PathoLogic’s first plant metabolism data-
base to predict computationally using MetaCyc as the reference database(Mueller 
et al. 2003). AraCyc will eventually describe a complete set of metabolic pathways 
for Arabidopsis (Arabidopsis thaliana) and display genes and enzymes within their 
metabolic context with continued manual curation. Although there are still many 
pathways and enzymes to be manually curated in AraCyc, AraCyc is currently the 
most comprehensive genome-wide metabolic database available for a single plant 
species. Both databases can be accessed easily through the World Wide Web (http://
metacyc.org and https://www.arabidopsis.org/biocyc/). With the release of the fully 
sequenced plant genomes of Arabidopsis (The Arabidopsis Genome Initiative 2000) 
and rice (Oryza sativa; International Rice Genome Sequencing Project, http://rgp.
dna.affrc.go.jp/IRGSP) and the initiation of sequencing projects for many other 
plant species, there is a fast growing desire to place the sequenced and annotated 
genomes in a metabolic context. Indeed, the benefits of a species-specific metabolic 
pathway database are substantial: (1) it depicts the biochemical components of an 
organism; (2) it assists comparative studies of pathways across species and facili-
tates metabolic engineering to improve crop metabolism and traits; (3) it can be 
used as a platform to integrate and analyze data from large-scale experiments, such 
as gene expression, protein expression, or metabolite profiling; and (4) by present-
ing pathway steps lacking assigned genes or having genes assigned but solely based 
on computational prediction, we can discern what remains to be identified and 
experimentally characterized. Despite these advantages, it may be labor intensive 
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and time consuming to create a pathway database manual de novo. SoyBase (http://
soybase.agron.iastate.edu/), a soybean-specific metabolic pathway database 
(Glycine max), is the only other manually created species-specific plant pathway 
database. It is also possible to predict computationally species-specific plant path-
way databases as a way to jump-start manual curation. A precise and comprehensive 
reference database is key to the quality of the derived databases for the predictions 
to be useful. Examples of comprehensive pathway databases include Kyoto 
Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/; (Kanehisa and 
Goto 2000) and Enzymes and Metabolic Pathways (http://www.empproject.com/). 
As they stand, their usefulness as reference databases for plant genomes is some-
what limited for one or more of the following reasons: (1) pathways are not linked 
to literature quotations and therefore it is difficult to evaluate their accuracy; (2) 
individual path diagrams tend to be composites taken from several different species 
and are therefore not accurate for any single species; and (3) they are composites 
taken from several different species; The approaches taken, however, have been 
relatively straightforward to date and have generally not been carried out at a high 
level of spatial resolution. There are currently several methods for obtaining data 
from all the methods described here at the tissue, cellular, and even subcellular lev-
els (Aharoni and Brandizzi 2012) while still technically challenging, it seems con-
ceivable that such methods could provide data required to better understand the cell 
specialization of metabolism. In addition, methods to gain accurate metabolic flux 
estimates following 13CO2 labeling have recently been established (Ma et al. 2014) 
but are not yet fully integrated with protein or transcript data. However, it is impor-
tant to note that such experiments, albeit using (13C)Glc as a precursor, have already 
been carried out in in vitro-cultivated Brassica napus embryos, providing consider-
able insight into the systems-level regulation of this organ (Schwender et al. 2015). 
Moreover, it seems highly likely that future research will draw more heavily on 
archived genomics data than it has up to now; thus, the continued availability and 
quality-control curation of such data sets is imperative if their value is to be fully 
exploited. To facilitate our understanding of transcriptome and metabolome data, 
there are several metabolic pathway databases available. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG; http://www.genome.ad.jp/kegg/) has a pathway 
database (PATHWAY) containing metabolite and gene information, as well as 
graphical representations of metabolic pathways and complexes derived from 
 different biological processes. The metabolic pathways for 218 organisms, includ-
ing Arabidopsis and rice, have been constructed to date. Organism-specific meta-
bolic pathway maps can be generated according to assignment information on the 
KEGG/GENES database. The metabolic pathway reference database named 
MetaCyc (Krieger et  al. 2004) pathways from 302 organisms (December 2004; 
http://metacyc.org/). The Arabidopsis pathway database AraCyc (http://www.ara-
bidopsis.org/tools/aracyc/) was constructed by adding plant-specific pathways and 
reactions to basic pathway sets in the MetaCyc pathway collection (Mueller et al. 
2003). While the comprehensive database contains metabolic pathway data that is 
representative of the plant kingdom, the pathways and reactions involved in alka-
loid and isoflavonoid biosyntheses are not well represented, as these are not found 
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in Arabidopsis. A relatively common feature of plants is that a single enzymatic 
reaction is often attributed to several homologous gene products. Multigene fami-
lies in plant genomes are considerably more prevalent than in animal genomes 
(The Arabidopsis Genome Initiative 2000). Recent research has shown that multi-
ple genes are not simple repeats, but exhibit a variety of gene expression and there-
fore have a variety of functions. For example, in Arabidopsis and rice, 33 and 29 
member genes are the XTH gene family, a group of genes encoding xyloglucan 
endotransglucosylase/hydrolase involved in xyloglucan metabolism. In dicot and 
monocot plants, the individual gene members exhibit tissue-specific and stage-
dependent expression of growth. One of the tools on the AraCyc database is capa-
ble of painting transcript data values onto the metabolic overview diagram. 
However, only representative data are used for the painting when multigene fami-
lies are thought to be involved in single reactions. For painting, only representative 
data is used. On individual metabolic pathway maps, individual transcript data is 
not displayed. Also, a recent AraCyc version can represent metabolite data but only 
on the overview diagram. A user-driven tool, MAPMAN, has recently been devel-
oped to represent transcript data on pictorial diagrams, categorizing all genes of 
Arabidopsis on the basis of biological function (Thimm et al. 2004). Metabolites 
were also categorized to represent quantitative values of each metabolite on picto-
rial diagrams. However, since MAPMAN provides only several metabolic path-
ways, users need to use the user- driven tool to prepare their own diagrams. We 
created a set of comprehensive metabolic pathway maps for Arabidopsis as a com-
plementary approach to AraCyc and MAPMAN in which 1263 metabolic reactions 
were grouped together. We have also developed a web-based tool for analyzing 
plant metabolic pathways, KaPPA-View, to display quantitative data on the same 
set of metabolic pathway maps for individual transcripts and metabolites. We 
adapted Scalable Vector Graphics (SVG) to facilitate dynamic document genera-
tion with rich graphical features and pathway map editing by the user to represent 
data from the transcript/metabolite. We demonstrated the utility of the KaPPA – 
View tool by displaying the transgenic plant data set that overexpresses the 
PAP1gene encoding a MYB transcription factor on the metabolic pathway maps 
(Tohge et al. 2005).

10.5  Conclusion and Perspectives

Biological information management and computer biology are becoming more dif-
fuse and other categories will no doubt surface in the future as this field matures. 
In our society, our economy and our global environment, plant life plays important 
and diverse roles. For modern plant biotechnology, feeding the growing world 
population is a challenge. Crop yields have increased during the last century and 
will continue to improve as agronomy re-assorting the enhanced breeding and 
develop new biotechnological-engineered strategies. The onset of genomics is pro-
viding massive information to improve crop phenotypes. Accumulating sequence 
data enables detailed genome analysis through the use of friendly access to 
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database and retrieval of information. Genetic and molecular genome co linearity 
allows efficient transfer of data revealing extensive conservation of genome orga-
nization between species. Genome research’s goals are to identify sequenced genes 
and deduct their functions through metabolic analysis and reverse genetic screens 
from gene knockouts. 
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