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Abstract In the last couple of years, synthesis of quantum circuits has received
huge impetus among the research communities after the evolution of an efficient
and powerful computational technology called “quantum computing”. But physical
implementation of these circuits considers the nearest neighbor qubit interaction as
the desirable one otherwise a computational error can result. Realization of such
an architecture in which qubit interacts only with its adjacent neighbors is termed
as the Nearest Neighbor (NN) property. To attain such design architecture, SWAP
gates plays a significant role of bringing the qubits to adjacent locations. But this in
turn introduces design overhead so NN-based realization using limited number of
SWAP gates has become significant. In order to explore this area, in this article, we
introduced an efficient design technique for NN realization of quantum circuits in
2D architecture. The design algorithm has been partitioned into three phases of qubit
selection, qubit placement and SWAP gate implementation. To verify the exactness
of the stated design approach, its functionality has been evaluated over a wide set of
benchmark function and subsequently witnessed an improvement on its cost metrics.
By running our algorithm an overall improvement of about 17%, 3% against existing
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2D works and 35%, 22% against 1D works over SWAP gate count and quantum cost
metrics have been recorded, respectively.

1 Introduction

Quantum computing, a new computational technology has shown promise in making
the computation much easier by overcoming the limitations of conventional comput-
ing paradigm. Introduction of such computing technology not only finds solutions
for some intractable problems but also solves them within a reasonable time bound.

Due to such computational facilities, quantum computing has left a remarkable
footprint in the research community and thereby an effort has been evolved toward
the establishment of quantum devices [1]. Additionally, quantum algorithms are
required to be designed such that quantum computing architectures can be fabri-
cated using quantum circuits. In quantum paradigm, quantum circuits are designed
using a sequence of elementary quantum gates, representing quantum operators that
manipulate quantum data information. To this end, qubits are considered as the basic
quantum data units that acts similar to bits used in classical computing. However,
these quantum units differ from the conventional data units in the way they exist.
Unlike classical bits, qubits can be found to occur in multiple states simultaneously
which can be represented as the linear superposition of the basis states.

The states of the quantum units are delicate and can easily be modified by envi-
ronmental effects that can hamper the integrity of the quantum system. Therefore,
an essential requirement toward attaining a practical and reliable quantum opera-
tion is by conducting fault-tolerant computation. For this purpose, quantum error
correction codes turns out to be useful and thereby becomes acceptable [2]. How-
ever, application of these codes depends upon the nearest neighbor interaction of the
qubits. Additionally, such a restriction in qubit interaction has also been considered
as the limiting design constraint for the synthesis of certain quantum implementa-
tion technologies like ion trap [3], quantum dots [4], superconducting qubits [5] and
nuclear magnetic resonance [6]. To make it more precise, the need toward realiza-
tion of a nearest neighbor qubit interaction can be warranted due to the limitations
of J-coupling force [7] required to enable multi-qubit operations (2-qubit or more)
and can only be achieved effectively for adjacent neighboring qubits.

This design architecture can be obtained by making the quantum gates to act only
on qubits located at adjacent positions, which can be realized via. SWAP gates. It
can be made possible by exchanging the states of the qubits till the desired qubits
become adjacent. Realization of NN architectures with the help of SWAP gates in
turn causes an impact on the resultant architecture by enhancing the circuit depth
and gate count. Therefore, NN optimization in terms of reduction in the number of
SWAP gate requirements has become an essential design challenge such that the
resulting overhead in the circuit can be checked. To address this, several articles
related to efficient NN realization has been declared where the authors mainly con-
sidered SWAP gate reduction by following different design solutions. To realize NN



An Efficient Nearest Neighbor Design for 2D ... 217

design architecture, qubits need to be mapped onto the desired topological layout
structure and the most commonly used structure is the qubit chain or 1D layout.
Such an arrangement of qubits is referred to as the Linear Nearest Neighbor (LNN)
architecture. Several contributions toward the development of LNN architecture have
been made and detailed review of those works is presented next.

The importance of NN design networks along with the discussion of various design
methodologies has been stated in the article [8]. In [9], a couple of efficient transfor-
mation schemes related to LNN synthesis is introduced that reduces the additional
circuit and time complexity of the resultant structures. To produce cost-effective
NN architectures, the authors of [10] suggested a transformation approach where
mapping of circuits into lattice structure representations has been presented. The use
of graph partitioning algorithm to form improved linear NN design architectures is
stated in [11]. To improve the design further, two reordering techniques viz. global
and local has been discussed in the work [12], where exact NN design solutions
for each of the two reordering schemes are introduced so that the resultant solution
becomes optimal. In pursuit of having an efficient NN realization, the authors of [13]
presented a design methodology based on local reordering approach in which SWAP
gate optimization is achieved by exploiting look-ahead strategies. To obtain efficient
NN solutions for larger circuits, a heuristic approach using the look-ahead policy has
been stated in the work [14]. Furthermore, an optimal linear NN architecture using
global-based scheme has been obtained in [15], where an exact design algorithm
based on A* approach is employed.

However, the stated research contributions discussed so far are based on LNN syn-
thesis of quantum circuits where the qubits are arranged to form a chain like structure
in which it can hardly have more than two adjacent neighbors to communicate. To
maximize this nearest neighbor communication, the qubits need to be mapped to
higher dimensional topological structures like 2D, 3D, and even on multidimen-
sional layout. In other words, 2D organization of qubits facilitates to communicate
with a maximum of four neighbors while such nearest neighbor communication can
extend up to six in case of 3D structures. But such an increase in communication
makes it difficult in controlling the qubits especially in 3D representations. There-
fore, in this work, we have considered only on synthesis of 2D NN architectures. In
the recent past, many research articles related to NN representations in 2D layouts
have been reported and a few of them are stated below.

In the work [16], a mixed integer programming approach has been undertaken in
which the design problem is formulated by mapping it into a 2D architecture and
provides better design structures than 1D representation. An optimal 2D solution
with respect to SWAP cost is derived in [17] whereby an exact design strategy has
been employed. Despite the algorithm produces an optimal structure but it was found
infeasible for large benchmark circuits as a result of extensive computational cost.
In [18], the authors reduce the design overhead by arranging the qubits in such a
manner that they are placed at suitable grid positions. To obtain a better NN repre-
sentation, a heuristic design scheme has been undertaken in [19] in which a couple of
grid selection approaches is employed followed by an efficient qubit placement strat-
egy where the circuit’s qubits are mapped based on their corresponding interaction
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count. To optimize the design further, the authors of [13] exploited a heuristic-based
look-ahead design methodology that determines the appropriate movement of the
qubits resulting in a significant reduction in SWAP cost. To provide an improved and
scalable 2D NN representation, a better heuristic model based on generalization for
a combined local and global reordering scheme has been investigated in the work
[20].

Here, in this article we have employed a heuristic qubit mapping strategy to trans-
form a quantum circuit to its corresponding 2D NN representation using less number
of additional SWAP gates. Our design methodology has shown better performance
over some of the existing research articles.

The remaining content of the article is formulated as follows. In Sect. 2, we
discuss about the elementary quantum gates along with the nearest neighbor property.
A detailed discussion of our design methodology has been presented in Sect. 3.
An experimental evaluation of our approach against the related works has been
summarized in Sect. 4. Finally, the article ends with concluding remarks in Sect. 5.

2 Background

In quantum technology, qubits are considered as the elementary quantum data units
whose states undergo modification through execution of a sequence of quantum gates.
Qubits share a similar characteristic of bits is that it can occur in one of the basis
states like |0) and |1), which can be considered equivalent to 1 and 0 in conventional
computing. In addition to these basis states, qubits can even occur in superimposed
states of |0) and |1) that can be interpreted in the form of a state vector expression as

W) = «|0) + B[1) (D

where the notations « and f in the above expression denotes the complex numbers
indicating the probability amplitudes of the corresponding basis states that satisfy
the condition a2 4+ 2 = 1. While measurement causes this state vector to degenerate
into one of the basis states of |0) and |1).

The operations performed by the quantum gates on the qubits can be defined
in the form of unitary matrices. In this context, the quantum functionality of an
n-qubit quantum system can be realized via multiplication of distinct 2n x 2n unitary
matrices.

Definition 1 Quantum gates represent the elementary quantum operators that manip-
ulate the qubits and when a collection of such gates are arranged over any group of
circuit lines then the formed circuit is termed as quantum circuit.

The gates that have been most popularly used in the implementation of a quantum
circuit are CNOT, NOT, and V/V+ and their corresponding symbolic representa-
tion have been represented in Table 1. These quantum gates form the constituent
elements of the NCV gate library [21, 22] that help to map specific quantum into
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Table 1 Symbolic representations of some quantum gates

Gates Representation Gates Representation
NOT o Controlled-V ®
o
CNOT . —V —
\% | Controlled-V'
Ve .
VT = FF
V=

its corresponding gate level representations. In this chapter, our work is formulated
using only the quantum gates from NCV library.

Despite the fact that quantum gates can be used to transform any function into
a relevant circuit representation but there exist some physical limitations for the
implementation of these circuits. To this end, realization of such circuits requires the
quantum gates to interact only with its qubits physically placed at adjacent positions.
In order to satisfy this design constraint, the process of implementing SWAP gates
before any gate with non-neighboring qubits becomes essential that alters the posi-
tions of the qubits till the desired qubits become adjacent. Such a requirement for the
physical design of quantum circuits is regarded as the Nearest Neighbor condition
and it can be further described as follows:

Definition 2 Nearest Neighbor Cost of any 2-qubitgate g(c, t) can be interpreted as
the distance separating the positions of its control (c) and target (t) qubits and this
difference can be computed mathematically as

NNC(g) = [c —1[ =1 @)

The above expression determines the nearest neighbor cost (NNC (g)) of an individual
gate g and the combination of such costs of the respective gates produces the overall
cost (NNC (QCQ)) of the corresponding quantum circuit QC. It can be represented
mathematically as follows:

NNC(Qc) = )  NNC(g) 3)

This interpretation indicates that a given circuit holds the nearest neighbor condition
provided either all the 2-qubit quantum gates act on adjacent qubits or it is having
only 1-qubit gates. In other words, if the nearest neighbor expression represented
above evaluates to zero then the resultant circuits are said to be NN-compliant.
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Fig. 1 a Toffoli gate
structure, b NCV realization
of Fig. la

Fig. 2 a SWAP gate, b NN
structure of Fig. 1b

Suppose, consider a Toffoli gate represented in Fig. la, whose corresponding
NCV gate level realization obtained after decomposition is depicted in Fig. 1b. By
inspecting Fig. 1b, it can be observed that the NCV realization of Toffoli gate does
not hold the nearest neighbor condition as its overall NNC holds a positive (NNC
(Qc)=1).

To make the circuit as NN-compliant, SWAP gates (diagrammatically represented
in Fig. 2a) needs to be inserted before the first gate with nonadjacent interacting
qubits which changes the qubit positions till they are placed adjacent. The resulting
NN circuit post SWAP injection is depicted in Fig. 2b.

To get a clear understanding of the purpose of SWAP gate, another example has
been considered in which transformation of a non-NN-complaint into its correspond-
ing NN representation using SWAP gates is illustrated.

Example 1 Let’s consider the circuit as depicted in Fig. 3a that fails to meet the
nearest neighbor criteria as all the 2-qubit gates does not have their interacting qubits
placed adjacent. SWAP gates are needed to transform the given circuit to its equivalent
NN design. The resultant NN circuit is obtained after inserting ten SWAP gates as
depicted in Fig. 3b.

The transformation process we have discussed so far is related to NN architectural
design of 1D quantum circuit. It is also possible to obtain a much better NN repre-
sentation for the corresponding circuit by projecting it in a 2D architectural format in
which the qubits are mapped from a linear chain like structure to a two-dimensional

(a) (b)
qi a

[v ]
N M~
q3 N q3 M ;
qa4 \'% H‘V

1w T

Fig. 3 a Quantum circuit with NNC = 5, b NN-compliant representation of Fig. 3a

q2




An Efficient Nearest Neighbor Design for 2D ... 221

Fig. 4 a Orientation of circuit in Fig. 3a into 2D structure, b NN representation of Fig. 4a

grid structure. Such a mapping process produces an improved NN architecture over
its linear counterpart by reducing the SWAP gate requirement. Now, we will discuss
about the NN representation of quantum circuits in 2D architecture. The transfor-
mation process of quantum circuit into a two-dimensional topological layout can
be carried out by mapping the qubits from linear format into a grid-like structure
whereby the qubits are permitted to interact with four adjacent neighbors while only
two nearest neighbor interaction can be allowed in 1D layout. Such an increment
in nearest neighbor communication of qubits minimizes the number of nonadja-
cent gates and thereby leads to an efficient representation of NN structure with fewer
SWAPS overhead in the circuit. Moreover, optimization of the resultant design struc-
tures depends on the selection of an appropriate 2D configuration grid used in the
qubit mapping process.

Consider the following mapping of a five-qubit circuit into a 2D structure. There
exist several possible solutions in which such a mapping process can be conducted
depending upon the availability of grid configurations. Likewise, a five-qubit circuit
can be represented in 2 x 3,3 x 2, 0r 3 x 3.

Example 2: Considering the circuit shown in Fig. 3a, transformed into 2D structure
in which a2 x 2 configuration is chosen for arranging the qubits randomly as depicted
in Fig. 4a. After inserting the necessary SWAP gates the resultant NN circuit realized
in 2D topological layout is shown in Fig. 4b.

3 Proposed Approach

In this chapter, an improved heuristic qubit mapping scheme for the synthesis of
NN circuits in 2D configuration has been described. This design workflow realizes
an efficient NN architecture in which the circuit overhead is reduced by control-
ling SWAP gate implementation. For this purpose, our synthesis mechanisms are
developed based on some heuristic policy that can be used for making some design-
oriented decision and thereby formulated a unique qubit placement strategy for better
mapping of qubits.
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In this regard, our design workflow has been segmented into three phases namely
qubit selection, followed by qubit placement and then SWAP gate insertion. For better
realization, all the aforementioned stages have been explained with an illustrative
example and for this any circuit specification such as the one shown in Fig. 5a is
considered as the input on which all the desired operations pertaining to the synthesis
approach are conducted.

Phasel: Qubit Selection Policy

The purpose of this phase is to arrange the qubits in a suitable manner on the 2D
grid structure. To fulfill this objective, we have used some qubit preference metrics
in which two metric tables viz. time interaction and time costing are computed by
reading the gate level specifications of the given circuit.

Total interaction time of each individual qubit is estimated and recorded the results
in a time interaction table. The values stored in this table constitute the interacting
timestamps of the operating qubits and their corresponding overall interaction time
is determined by aggregating the timestamps for each individual qubits in the given
circuit. For the circuit shown in Fig. 5a, its time interaction table is estimated and
represented in Table 2.

(a)
LV ] >

a3

|

N

N

P
3

Time >
(b) (©) (d)
a
ap as ap as aj as
a3

Fig. 5 alInputcircuit, b a; inserted in the center of 3 x 3 grid, ¢ a5 placed on the left of a;, d Qubits
a4, ap, a3 placed around a;

Table 2 Qubit time

. . Qubits Time instants Total interaction
interaction table

a 1,3,4,5,8,9 30

a 2,4,7,8 21

a3 3,6 9

ay 1,5,6,7,10 29

as 2,9,10 21
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Table 3 Qubit time costing table

Qubits Time instants Total interaction | Time instants Total costing

aj 1,3,4,5,8,9 30 1,3.5,9 18

a 2,4,7,8 21 2,7 9

a3 3,6 9 3 3

ay 1,5,6,7,10 29 1,5,7 13

as 2,9,10 21 2,9 11

E;)ll);e 4 Qubit preference Qubits Total interaction Tota.l Preference index
costing

aj 30 18 18/30 = 0.6
a 21 9 9/21 = 0.42
a3 9 3 3/9=0.33
a4 29 13 13/29 = 0.44
as 21 11 11/21 =0.52

After resolving the qubit interaction metric discussed above then we work on the
time-related cost of all the interacting qubits in the circuit. Computation of this cost
parameter involves evaluation of the total costing time of the qubits and for this cal-
culation purpose, the previous qubit interaction (time interaction) table determined
is needed. Finally, the computation ends by recording the qubit costing results in a
table called fime costing (see Table 3). This parameter is determined by identifying
the time steps in which a qubit of any 2-qubit gate is not interacting with an adja-
cent neighboring qubit using the respective qubit interaction time values and in this
manner, such timestamp evaluation is carried out for all the individual qubits of the
circuit provided.

After deriving these two tables, we merge the information contained in them and
stored the combined result in a new table called qubit preference table is tabulated in
Table 4. This preference table contains the qubit preference index evaluated using the
ratio between the costing and interaction time values for all the qubit acting as inputs
in a given circuit. Next, this preference table is sorted in decreasing order using the
qubit index values computed earlier in which the qubit with largest indexing value
is stored at the beginning of the table as displayed in Table 5. Now the index entries
in the sorted preference table represent the qubit priority values used in the decision
making purpose related to qubit placement as discussed in the next phase.

Phase2: Qubit Placement Policy

At the end of the previous workflow process, a preference table providing the
sequence to be followed for qubits mapping on a 2D grid structure is considered
as the input of this phase on which our mapping algorithm is executed as discussed
next.
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Table 5 Sorted qubit Qubits Total interaction | Total Preference index
preference table costing

a 30 18 0.6

as 21 1 0.523

a 29 13 0.448

ap 21 9 0.428

o 9 3 0.33

The qubit mapping process works by picking the appropriate qubits from the
preference table (PT) (see Table 5) based on their preference index values and thereby
arranges the qubits on the chosen grid position. To be precise, the process starts by
selecting the qubit with highest priority index from PT table and positioned the
corresponding qubit at the center of the grid structure. After allocating the position
of this qubit then a searching process is applied on the resultant grid to look for an
empty cell having maximum number of adjacent vacant locations. After detection of
such a desired position, the algorithm selects the next preferred qubit from preference
table and places it in the identified location. If our search results does not generate
a unique vacant cell then the qubits from PT table are placed in these locations by
selecting them in the order of left, top, right and bottom with respect to the position of
the last placed qubit depending on the space availability and carried out till a definite
location is found. Following this algorithmic policy, ordered qubits from preference
table are selected and settled on the 2D grid structure.

Now, this same mapping function is employed on the preference table generated
in the previous phase to arrange the qubits on a proper 2D network. As a result,
the qubit with high priority, a; is taken and placed at the center of the chosen grid (3
x 3) as shown in Fig. 5b. After placing qubita;, we initiate a search to look for cells
surrounded with large number of adjacent empty locations on the corresponding grid.
In this case, we have determined eight such possible cells surrounded by a maximum
of two vacant cells and to solve this the remaining qubits from the preference table
are selected orderly and placed by following the convention like left, top, right and
bottom of the last qubit a; till a unique empty cell is identified. Hence, the next
ordered qubit as in PT is fetched and then placed at a location occurring to the left
of a; as represented in Fig. Sc. In this manner, the remaining qubits viz. a4, ay, a3
are mapped to the positions locating at the top, right, and bottom of a;, respectively.
The resultant grid structure obtained after placing all the qubits appear as shown in
Fig. 5d.

Phase3: SWAP gate insertion

In the previous design phase, our mapping function has organized all the qubits on
the given grid and thereby the circuit has been transformed into a 2D representation.
Now, we consider the resultant 2D grid obtained in phase 2 and examine the gates
with their qubits arranged on a grid and in this process if we identify a one with
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Fig. 6 Steps of SWAP gate insertion

nonadjacent qubits then a SWAP gate is applied to bring those qubits at adjacent
positions.

Considering the circuit shown in Fig. 5a, execution of phase 2 generates the
structure represented in Fig. 5d and now in this phase we work on this grid and
apply SWAP gates at required positions so that an equivalent NN circuit is formed
as depicted in Fig. 6. It can be noticed that overall of five SWAP gates are needed to
transform the circuit into its corresponding NN form.

To have a better interpretation of the entire design mapping process, we have
provided another illustrative example.

Example 3 Here, we have considered a benchmark function, 4gt11_84 as shown in
Fig. 7, to describe the transformation mechanism used in our qubit mapping process
is represented from Tables 6, 7, 8, 9, 10 (Figs. 8, 9).

4 Experimental Results

The qubit mapping algorithm has been developed using C and executed the function
on a machine having Intel i5 processor with 4 GB RAM and 3.30 GHz clock. The
performance analysis of our mapping scheme has been made by conducting experi-



226

A. Bhattacharjee et al.

et HE ey
a 519—$ D
a3 l T
aq
as *—OD
1 2 3 4 5 6 7
Time >
Table 6 Qubit time interaction table
Qubits Time instants Total interaction
aj 1,2,4,6,7 20
a 1,345 13
az 2,35 10
as _ _
as 6,7 13

Table 7 Qubit time costing table

Qubits Time instants Total interaction | Time instants Total costing
aj 1,2,4,6,7 20 2,6,7 15
a 1,345 13 0
a3 23,5 10 0
as _ _ _ _
as 6,7 13 6,7 13
;I:;)ll);e 8 Qubit preference Qubits Total interaction Tota} Preference index
costing
aj 20 15 15/20 = 0.75
a 13 0/13=0
a3 10 0 0/10=0
ay - _ _
as 13 13 13/13 =1
Table 9 Sorted preference Qubits Total interaction | Total Preference index
costing
as 13 13 1
aj 20 15 0.75
a 13 0
a3 10 0
ay - — —
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Fig. 8 Qubits arranged on
grid (2 x 3)
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b) ap

as

as

mental evaluations over a set of various benchmark functions taken from [23]. The
experimental data set has been summarized in two result tables Tables 10 and 11
respectively. The result sets for small and medium size benchmark specifications are
recorded in Table 10 while the other table contains the data of large size functions.
In each of these tables, two cost metric values namely quantum cost and SWAP cost
are evaluated for all the benchmark functions and compared the estimated results
against some existing 1D and 2D design approaches.
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Fig. 9 Stages of SWAP insertion policy
Table 11 Comparison over higher size benchmarks
Benchmark’s | Initial QC Total lines Gate Grid size | QCin NN No. of
name incurred present count design SWAPs
rev_17 136 17 136 6x3 443 214
hm_20 73 20 73 S5x4 142 69
ac_21_1 130 21 130 6 x4 246 116
rev_18 153 18 153 S5x4 374 221
ac_21 2 67 21 67 6 x4 120 53
rev_19 171 19 171 4 x5 427 256
hm_21 79 21 79 6 x4 181 102
ac_21_3 42 22 42 6 x4 93 51
hm_22 85 22 85 6 x4 179 94
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Table 10 contains a comparison analysis of our mapping algorithm with the results
of the reported work [19] and against the best results of [16]. From this comparison,
our proposed mapping approach has shown better performance over the reported
works.

From the analysis of the result tables, an overall improvement of about 28.71%
and 10.18% with respect to the previous 1D and 2D works has been estimated. In
addition to this, a best case improvement of about 37.73% and 35.71% is noticed over
the reported 2D articles [16] and [19] whereas an improvement of about 67.56% is
attained in case of 1D [16] representation. Investigation of our result tables suggests
that our design algorithm provides an improved resultant structure for majority of the
benchmark functions. But for few circuits, our mapping approach has not provided
a better NN realization than the reported ones.

5 Conclusion

In the present work, an improved heuristic qubit mapping scheme for NN realization
of 2D quantum circuits is discussed. The design algorithm has been divided into three
segments starting with qubit selection process followed by placement strategy and
then SWAP insertion policy. To justify the functionality of our mapping scheme, it
has been evaluated over a various set of benchmark circuits and has shown improved
results. The computed values are compared with some of the existing 1D and 2D
research articles. Based on our evaluation, it can be inferred that the proposed design
mapping scheme attains a significant improvement around 35.32%, 22.10% over
SWAP and quantum cost metric in 1D whereas an improvement of 17.09%, 3.28%
over the same metrics is registered in case of 2D. In spite of having an improvement
over the existing articles but the computed results may not be optimal because of
implementing heuristic design policy in qubit mapping process and thereby in the
future we work on optimizing the design structure further by investigating more
efficient design mapping workflow.
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