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Abstract In recent time, efficient implementation of reversible logic circuits has
come out as an important research area before the design industry. With the advance-
ment in reversible logic synthesis, developing mechanism for identification of faults
finds importance. Though there exist well-known testing techniques, but develop-
ing improved testing algorithms is the need of the hour. Aiming to develop efficient
testing technique, here in this work, we show an improved testing scheme based on
Boolean logic function. Two different testing approaches are presented here, where
in the first work, by using Boolean difference method SMGFs in reversible circuit
are tracked successfully, where a test vector generator is derived to find the faults.
In the second work, a Reed–Muller (RM) form based testing approach is developed
that not only detects the faults but also locates the exact position of the faulty area.
A limitation for the second testing scheme is that it can only be employed over a
specific type of reversible circuit known as Exclusive-Or Sum-Of-Product (ESOP)
design. Both the testing techniques have been executed over different benchmark
suites and a comparative study with state-of-the-art testing approaches have been
included in the work.
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1 Introduction

Heat dissipation is considered as the essential concern in modern day’s VLSI circuit.
As per Launder’s principles [1], loss of information generatesKTlog2joule amount of
heat, where k is Boltzmann constant andT is absolute temperature. Hence, alternative
technology is required so that heat generation can beminimized in the circuit. Bennet
[2] claimed that dissipation of energy can be made zero only when the circuit is
constructed with reversible gates. Therefore, reversible logic design is considered
as the prerequisite needed to minimize heat dissipation during logic computation.
On the other side, as the quantum circuit [3] follows the principle of reversibility,
the implementation of quantum functionality using reversible circuit is possible.
Reversible circuit not only has the dominance in the field of quantum circuit design,
but it too has applications in adiabatic computing [4, 5], Cryptography and Optical
Computing. In the last couple of years, several progresses have beenmade on efficient
design strategies of reversible circuit.

Synthesis algorithms have been developed formaking the designs of reversible cir-
cuit generic. But, not only designing the cost-efficient circuits get the high importance
but simultaneously developing testing algorithms [6–11] for checking the correctness
of such designs find popularity. In recent time, some promising works on efficient
testing strategies have been developed where improved algorithms are formulated to
make the testing process easier.

Here, in this work, we show two different approaches to find faults in reversible
circuit. In the first work, a Boolean difference-based testing technique is developed,
where a Boolean generator is formulated to produce test vectors and then the faults
are tracked. This approach is very generic as it can be employed over any type of
circuits. The second testing scheme is not very generic like the first one as it can
only operate over ESOP-based designs. In this testing scheme, the functional power
of Reed–Muller expression is used to find and locate the faults.

The remaining portion of the article is formulated as follows: preliminaries asso-
ciated with reversible testing are stated in Sect. 2. Section 3 summarizes previous
research works on reversible testing. The developed methodologies are presented in
Sect. 4. The experimental data of our work are summarized in Sect. 5. Finally, the
chapter is concluded in Sect. 6.

2 Preliminaries

2.1 Reversible Circuits and Gates

Definition 1 A circuit Cnf over a set of circuit lines L = {c1, c2, …, cn} is said to be
reversible if it satisfies the following three criteria:

(i). input (m) lines are equal with the output (n) lines
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Fig. 1 a 2-control Toffoli
gate, b CNOT gate, c NOT
gate

(a) (b) (c)

(ii). if the circuit is fan-out free
(iii). circuit consists of reversible gates only.

Definition 2 A reversible gate G can be described as G(C; T), where parameters C,
T represents the control and target connection inputs. In that gate G, the control input
set C may contain an empty value but the set T must have a minimum of one target
line in such that C∩T = �.

In classical circuit different logic gates are used to implement a circuit, similarly
there are well-known reversible gates like Toffoli [12], Fredkin [13], Feynman [14]
that are used to construct reversible circuits. Some examples of reversible gates are
depicted in Fig. 1.

2.2 ESOP-Based Design

A reversible circuit may have different designs and such variations in design depend
on the type of algorithm deployed or heuristic employed. Among the several design
models, due to the scalable feature property, ESOP (Exclusive Sum-Of-Products)
[15]-based representation has been found as one of the widely used design model for
reversible circuit. Now in the following, we introduce this special type of circuit.

ESOP can be represented in the form of Sum-Of-Products (SOP) form except
that the SOP product terms which are separated by ‘+’ operator, it is separated
by “⊕” operator. To express any n-input, m-output reversible function in ESOP
representation, it requires (n + m) numbers of input lines in the circuit, where n
represents the control set and the rest m lines operate as functional output lines.

Cube list a special data structure from which the ESOP designs are formed. Such
cube list contains the detail gate specification and control structure for the ESOP
circuit. Each cube in the cube list denotes a gate in the design. For an ease of under-
standing, cube list and its corresponding ESOP expression are given in Fig. 2a and
b, where it can be seen that each of the cubes from the list has been mapped to an
equivalent gate and finally a complete design is formed Fig. 2b.
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(a) (b)

Fig. 2 a Cubelist for f (a1, a2, a3, a4) = a2a3⊕a4⊕a1⊕ ā1a2a4⊕ ā1a2a3ā4, b ESOP expression
of Fig. 2a

2.3 Reed–Muller Form

For efficient design and testing of reversible circuit, the concept of Boolean algebra
operator is usedwidely. Themodulo-2 arithmetic is applied and anyBoolean function
can be realized using this algebra. For implementation purpose, Reed–Muller expan-
sion can be represented using sum-of-products expression of modulo-2 arithmetic.
Reversible circuit based on module-2 expansion can be realized using only exclusive
OR (EXOR) gates. For any Boolean function f (x1x2 . . . xn), it is expressed in the
form of Reed–Muller expansion [16, 17].

PPRM: The positive polarity based Reed–Muller (PPRM) expression can be
realized in the form of an EXOR canonical sum-of-products expression in which
each variable represents a positive polarity (un-complimented). A PPRM expression
of n variable can be expressed as

f(x1x2 . . . xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x1x2 ⊕ . . . ⊕ a2n−1x1x2 . . . xn, where ai ∈
{0, 1}. The variable ai in the above expression represents coefficient vector, where
xi denotes input variables. If the coefficient becomes zero, then the corresponding
product term is not present in the PPRM expression otherwise the product term is
included in the given expression.

FPRM: In fixed polarity Reed–Muller (FPRM) expression, the n variable function
can be represented as

f(x1x2 . . . xn) = a0 ⊕ a1ẋ1 ⊕ a2ẋ2 ⊕ a3ẋ1ẋ2 ⊕ . . . ⊕ a2n−1ẋ1ẋ2 . . . ẋn where
ai ∈ {0, 1} and ẋ ∈ {x, x̄}, where x denoted un-complemented literals and x̄ denotes
complemented literals.

GRM/MPRM: The Mixed polarity Reed–Muller (MPRM) expression can be
considered as the generalization of FPRM expression in which there is hardly any
limitation in the polarity of each variable. The Boolean function having n variable
can be represented by a number of 2n2

n−1
GRM form. The MPRM expression for n

variable function is represented as
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f(x1x2 . . . xn) = a0 ⊕ a1ẋ1 ⊕ a2ẋ2 ⊕ a3ẋ1ẋ2 ⊕ . . . ⊕ a2n−1ẋ1ẋ2 . . . ẋn where
ai ∈ {0, 1} and ẋ ∈ {x, x̄}.

The association among various Reed–Muller configurations can be represented
as PPRM ⊂ FPRM ⊂ GRM/MPRM.

2.4 Different Fault Models and Their Properties

Faults in a circuitmayoriginate due to several reasons [18–20].Depending on the type
of errors, there are four types of faults such as—single missing gate fault (SMGF),
repeated gate fault (RGF), partial missing gate fault (PMGF) and multiple missing
gate fault (MMGF).

Definition 3 Complete disappearance of a gate from a given circuit results in a single
missing gate fault.

The Fig. 3a shows an SMGF in a benchmark circuit ham3\design#, where the
faulty area has been marked with a dotted box. In the dotted region, the first 2-CNOT
gates are missing. A SMGF fault can be detected by providing value 1 to all the
control line set of the gate and either 0 or 1 at the target node of corresponding gate.

Definition 4 A fault can be considered as repeated gate fault if the same gate con-
secutively reappears in the design and may change the functionality of the circuit.

In Fig. 3b, the RGF is shown in the first gate of the ham3\design#1. It can be
ascertained that if a gate reappears even number of times then its effect becomes
equivalent to an SMGF fault while odd occurrence makes the RGF fault as redundant
indicating the circuit functionality remains unchanged.

Definition 5 Disappearance of control connection input of a gate results in a fault
in a circuit known as partial missing gate fault (PMGF).
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Fig. 3 a SMGF fault in circuitham3\design#, b RGF in ham3\design#1 circuit, c PMGF in cir-
cuitham3\design#1, d MMGF in ham3#design#1
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In Fig. 3c, a PMGF fault is shown in the first gate of the circuit. It is considered
that a PMGF fault can only be uncovered by applying value 0 to at themissing control
inputs and a value 1 is set for other control lines.

Definition 6 Missing of two or more successive gates from the circuit generates a
fault known as multiple missing gate fault (MMGF).

Consider the circuit shown in Fig. 3d, where the first two gates enclosed within
the dotted box are missing.

Still so far we have seen the fundamentals related to reversible circuit and its
associated fault models. Now, here we are discussing some of the works in testing
and highlighting their contributions.

3 Related Works and Contributions

An efficient approach of stuck-at-fault detection by the adaptive tree-based technique
is proposed in [6]. Here, in this technique at first the fault in half of the circuit is
detected and then by applying the reversible property, amirror image of the remaining
part of the circuit is developed to detect faults in the remaining part of the circuit.

Furthermore, a generalized approach of “stuck-at” fault detection for all k-CNOT
based circuit has been reported in [7], where a universal test of size 3 has been used
for the fault detection.

Taking one step more, a novel technique for fault detection is shown in [8], where
an (n × n) reversible circuit constructed with k-CNOT gates is tested for possible
faults. In this method, a testable design has been developed by copying gates along
with an additional line. Though some overhead is incurred to transform the original
circuit into the testable form, but themodified testable design becomes very sufficient
and easy to detect all existing fault models in the given circuit.

To make the faults detection easier, not only fault specific test vectors have been
generated but theway ofmaking simpler testable designs also have been explored and
such a work is reported in [9], where extra inputs and additional k-CNOT gates are
added in the design to make the design testing friendly. This modified testing design
methodology determines a universal test set of size (n + 2) and thereby identifies the
said faults in the given circuit.

Insteadof applyinghugenumber of test vectors in fault detection and also to reduce
the design complexity, testing of SMGFs and RGFs andMMGFs in reversible circuit
with minimum number of test vectors is presented in [10].
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4 Proposed Testing Methods

Here we state both the testing schemes with examples. The first testing scheme is
based on Boolean difference method, whereas the second one relies on Reed–Muller
expansion.

4.1 Boolean-Based Testing Method1

Here we state the technique to determine the existence of SMGF in a circuit. The
proposed approach is divided into three phases. At first, Boolean difference of the
circuit is computed for each of the missing gate. In the second phase, a Boolean
generator for the entire circuit is constructed and in the third phase, test vectors are
constructed from the Boolean generator which finally checks the presence of SMGF
in the circuit. All three phases are stated next in detail.

4.1.1 Computation of the Boolean Difference for Missing Gate Faults

Let us assume a reversible circuit having n number of input lines and N number of
gates.

Definition 7 TheBoolean expression generated at the jth line of a fault-free circuit is
known as theOriginalExpressionj, where (0≤ j≤ n− 1). For any given reversible cir-
cuit with n inputs can be represented by OriginalExpression0, OriginalExpression1,
OriginalExpressionn−1.

Definition 8 For a faulty circuit, the Boolean expression produced at the jth line as
a result of the gate missing from the ith level of circuit can be represented as the
FaultyExpressioni,j, where (0 ≤ i ≤ N − 1), (0 ≤ j ≤ n − 1).

For any reversible circuit with n lines can be expressed as FaultyExpressioni,0,
FaultyExpressioni,1, … , FaultyExpressioni,n−1 for the detected fault occurring at ith
gate. The computed Boolean expression of the jth line in the faulty circuit may not
be identical to the one generated at the jth line of the corresponding fault-free circuit.

Boolean difference method [21] is basically used to determine the complete test
set for detecting stuck-at faults. We have employed the same it in reversible circuit
for identifying SMGF faults.

Definition 9 The Boolean difference
(

dFj
dGi

)
estimated at the jth line for the gate

missing from the ith level can be expressed as dFj
dGi

= Foj ⊕ Fij, where Foj is the

OriginalExpressionj, Fij is the FaultyExpressioni,j, (0 ≤ i ≤ N − 1) and (0 ≤ j ≤ n −
1).
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Definition 10 The Boolean difference resulted due to removal of gate located at ith
level is represented as dF

dGi
which can be determined as follows:

dF

dGi
=

∑ dFj
dGi

=
(
dF0
dGi

)
+

(
dF1
dGi

)
+ · · · +

(
dFn−1

dGi

)
, (0 ≤ i ≤ N − 1), (0 ≤ j ≤ n − 1)

In this way, at first the Boolean difference for themissing of each gate in the circuit
is computed and then the Boolean difference of the circuit is constructed using the
Boolean difference for each gate of the given circuit.

Definition 11 The Boolean generator can be defined as the Boolean expression
needed for the test set construction so as to identify all the possible SMGFs in
the circuit.

Lemma 1 For a reversible circuit of n number input lines and N number of gates,

then computation of individual Boolean difference
(

dF
dGi

)
enables to identify SMGF

at the ith level.

Proof For the reversible circuit with n lines and N gates, the Boolean difference(
dF
dGi

)
for detecting the gate missing at the ith level is computed as:

dF

dGi
=

∑ dFj
dGi

, (0 ≤ i ≤ N−1), (0 ≤ j ≤ n − 1) (1)

� denotes the OR operation and

dFj
dGi

= Foj ⊕ Fij, (0 ≤ i ≤ N − 1), (0 ≤ j ≤ n − 1) (2)

From the expression given at Eq. (1), it can be noticed that the possible values
for dF

dGi
can be either 0 or some other Boolean representation. Furthermore, it can be

determined that the estimated result of dF
dGi

becomes zero provided each of the terms
dFj
dGi

evaluates to “0” as logical OR is being performed between any two successive

terms of dF
dGi

.

By analyzing the expression given in Eq. (2), it can be observed that the term dFj
dGi

returns the value “0”, if both Foj and Fij are becomes identical only if the circuit is
fault free. This in turns suggests that, if the expression dF

dGi
returns 0 then the circuit

is said to be fault free.
For any SMGF in the circuit, it is obvious that the output expression obtained at

any of the n input lines varies with the one derived for fault-free circuit. It means
that at least a single line say j must be present for which the terms Foj and Fij turns
out to be different due to existence of fault. It implies that dF

dGi
cannot be equal to 0 in

the faulty reversible circuit as logical OR is implemented between the consecutive
terms dF

dGi
and dFj

dGi
.
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4.1.2 Implementation of Boolean Generator for Detection of Single
Missing Gate Fault

In the proposed method, the Boolean generator of the given circuit is estimated using
the function BGen = dF

dG0
∧ dF

dG1
∧ . . . ∧ dF

dGN−1
, where ∧ represents the logical AND

operation and N represents number of gates in the circuit. For BGen �= 0, the BGen
is minimized to construct the Boolean generator of the circuit. For BGen = 0, the
expressions B1

Gen and B
2
Gen need to be computed to determine the Boolean generator

of the given circuit. The computation method of the expressions B1
Gen and B2

Gen are
as follows:

Let S = (so, s1, … , sN − 1) be the set of all dF
dGi

, where si = dF
dGi

for (0 ≤
i ≤ N − 1). Let S1 ⊆ S contains maximum number of si’s such that B1

Gen =
Si1�Si2� · · · �Sik �= 0, where Sik ∈ S1. B2

Gen are remaining si’s of S. For each of
the B2

Gen, the B
1
Gen = 0.

After the formation B1
Gen and B2

Gen, the expression B1
Gen is upgraded to compute

the final form of the Boolean generator as follows:

(i) If any term of B2
Gen completelymatches or is subset of any term of B1

Gen , no need
to upgrade the B1

Gen , else compare different terms of the B1
Gen with each term

of the B2
Gen and upgrade the B1

Gen as: B1
Gen = B1

Gen+ highest matching term
[i], i = 0 to (number of highest matching term – 1). Repeat the same procedure
between upgraded B1

Gen and other available B2
Gen , if exist.

(ii) The minimized form of B1
Gen is the Boolean generator of the circuit.

4.1.3 Test Vector Construction from the Boolean Generator
of the Circuit

Theminterms and their corresponding decimal values for the generator are calculated
and the collection of those decimal values is the test set of the circuit that will be
used for the detection of SMGF.

Example 1 The ham3tc benchmark circuit of Fig. 4a is considered here. The circuits
consisting of three lines (n = 3) and five gates (N = 5).

As per the first phase of the proposed technique, output expressions Original-
Expression0, OriginalExpression1 and OriginalExpression2 are computed from the
fault-free circuit of Fig. 4a.

The output expression generated for each circuit line is OriginalExpression0 =
(a ⊕ b · c), OriginalExpression1 = ((b ⊕ c) ⊕ ((c ⊕ (b ⊕ c)) ⊕ (a ⊕ b · c))),
OriginalExpression2 = ((c ⊕ (b ⊕ c)) ⊕ (a ⊕ b · c)).

Now, let us assume that the gate G0 at the level0 is removed from the circuit.
Hence, the circuit ham3tc becomes a faulty circuit (as shown in Fig. 4b) and its output
expressions are FaultyExpression0,0, FaultyExpression0,1, FaultyExpression0,2.
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level1 level2level0
level3

level4

G1 G2
G0 G3 G4

a

b

Original Expression0

Original Expression1

c Original Expression2

level1 level2level0
level3

level4

G1 G2
G0 G3 G4

a

b

Faulty Expression0,0

Faulty Expression0,1

c Faulty Expression0,2

(a)

(b)

Fig. 4 a Fault free ham3tc circuit, b testable circuit for SMGF (Faulty ham3tc circuit where dotted
box indicates missing of that gate)

Each expression of the faulty circuit are FaultyExpression0,0 = (a), FaultyExpres-
sion0,1 = ((b ⊕ c) ⊕ ((c ⊕ (b ⊕ c) ⊕ (a))), FaultyExpression0,2 = ((c ⊕ (b ⊕ c)) ⊕
(a)).

After finding out fault free expression of each line and the faulty expression of
each line of the circuit, the Eqs. 1 and 2 as discussed earlier are used to compute the
Boolean difference of the circuit. The Boolean difference of the circuit for the miss-
ing of the gate G0 is as dF

dG0
=

(
dF0
dG0

)
+

(
dF1
dG0

)
+

(
dF2
dG0

)
, dF
dG0

= (OriginaIExpression0

⊕ FaultyExpression0,0) + (OriginalExpression1 ⊕ FaultyExpression0,1) + (Origi-
nalExpression2⊕ FaultyExpression0,2)= ((a⊕b·c)⊕a)+(((b⊕c)⊕((c⊕(b⊕c))
⊕(a ⊕ b · c))) ⊕ ((b ⊕ c) ⊕ ((c ⊕ (b ⊕ c) ⊕ (a))))) +(((c ⊕ (b ⊕ c)) ⊕ (a ⊕ b · c))
⊕((c ⊕ (b ⊕ c)) ⊕ (a))) = bc

Similarly, each gate is removed at a time and the Boolean difference of the given
circuit for the remaining gates is computed.

So, dF
dG1

= c, dF
dG2

= bc̄ + b̄c, dF
dG3

= ābc + ab̄ + ac̄, dF
dG4

= ābc̄ + ab̄ + ac.
Now as per the second phase of the proposed testing method, the Boolean

generator of the circuit is computed by the statement BGen, where BGen =
( dF
dG0

)AND( dF
dG1

)AND( dF
dG2

) AND( dF
dG3

)AND( dF
dG4

) = (bc)AND(c) AND(bc̄ +
b̄c)AND(ābc+ ab̄+ ac̄) AND(ābc̄+ ab+ ac) = 0. As BGen is 0, we have to find
out the B1

Gen and B2
Gen to calculate the final form of the Boolean generator.

For this example, as gate count is N = 5, we need 5 iterations to generate the
resultant Boolean generator of the circuit.

First Iteration: Let us assume B1
Gen = dF

dG0
= bc.

Second Iteration: Here B1
Gen is upgraded as follows: B1

Gen = B1
Gen AND( dF

dG1
) =

(bc)AND(c) = bc.
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Third Iteration: Similarly, B1
Gen = B1

Gen AND( dF
dG2

) = (bc)AND(bc̄ + b̄c) = 0.

That means the term (bc̄+ b̄c) converts the term B1
Gen to 0 and therefore, the B

2
Gen(0)

is computed and B1
Gen will not be upgraded. Now, B

2
Gen(0) = (bc̄ + b̄c).

Fourth Iteration: B1
Gen = B1

Gen AND( dF
dG3

) = (bc)AND(ābc + ab̄ + ac̄) = ābc.

Fifth Iteration: B1
Gen = B1

Gen AND( dF
dG4

) = (ābc)AND(ābc̄ + ab̄ + ac) = 0.
Once again as per the third iteration, the B2

Gen (1) is computed and the function B1
Gen

will not be modified. Now, B2
Gen(1) = (ābc̄ + ab̄ + ac).

Now, we need to compare B1
Gen with B2

Gen (0) and B2
Gen (1) once again to upgrade

the B1
Gen. At First, the expression B1

Gen(ābc) is compared with both the terms of
B2
Gen (0). The term (ābc) of B1

Gen contains a single literal matching with both the
terms of B2

Gen (0) and hence, B1
Gen(0) = (ābc + bc̄) and B1

Gen(1) = (ābc + b̄c).
Now,we need to compare both the B1

Gen with the B
2
Gen(1) to determine the updated

value of B1
Gen (0) and B1

Gen (1). The B1
Gen (0) is compared with the B2

Gen (1) and the
term (ābc) of B1

Gen (0) and the term (ābc̄) of B2
Gen (1) has the highest literalmatching.

So, the B1
Gen (0) is upgraded to B1

Gen(0) = (ābc + bc̄ + ābc̄). Similarly, the B1
Gen

(1) is upgraded to B1
Gen(1) = (ābc + b̄c + ābc̄).

After the minimization, the B1
Gen(0) = (āb + bc̄) and B1

Gen(1) = (āb + b̄c).
As both B1

Gen (0) and B
1
Gen (1) contains similar number of literals, therewill be only

two generators to identify all the possible SMGF in the given circuit. generator(0) =
B1
Gen(0) = (āb + bc̄) and generator(1) = B1

Gen(1) = (āb + b̄c)
Now as per the third phase, the test vector formation from the Boolean generator

is explained as follows:
Mintermgenerator(0) = āb(c + c̄) + bc̄(a + ā) = ābc + ābc̄ + abc̄ + ābc̄ =

ābc + ābc̄ + abc̄ = {3, 2, 6} = {2, 3, 6}. The test set derived from the generator(0)
is {2, 3, 6}. Similarly, Mintermgenerator(1) = āb(c+ c̄)+ b̄c(a+ ā) = ābc+ ābc̄+
ab̄c + āb̄c = {3, 2, 5, 1} = {3, 2, 5, 1}.

The test set derived from the generator(1) is {1, 2, 3, 5}. As the generator(0)
contains lesser number of test vectors, the generator(0) will be used to uncover the
SMGF fault.

4.2 Boolean Based Testing Method2

In this method, the ESOP-based reversible circuit is considered for the detection of
SMGF fault and also to diagnosis the detected fault. Let us assume that Ctest is the
testable circuit in which the test has to be performed. To test the Ctest circuit, initially
a fault-free ESOP-based circuit (Ctrue) is read from a given specification files (Tspec)
and then the logical XOR is performed between Ctrue and Ctest .

But the design of fault-free ESOP circuit from the Tspec creates problem because
number of distinct ESOP circuits can be generated from the Tspec and due to this
reasonMPRM can be considered as the subclass of an ESOP expression. A fault-free
ESOP circuit (Ctrue) can be identified from a number of distinct ESOP circuits by
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the help of some complex calculation. To solve the said problem, we have used the
PPRM class from which only one circuit can be designed.

The proposed testing method is segmented into two stages. At first, fault detection
is performed in the Ctest and after that in second stage, identification of the detected
fault in the Ctest is performed and proper diagnosis is done in the Ctest to transform
the circuit from faulty to fault-free circuit.

4.2.1 Detection of SMGF

Here in this phase, a PPRM expression f P PRM
true from the given circuit specification

fileTspec is obtained for the circuit, Ctest. After that the MPRM expression f MPRM
test

is derived from testable ESOP circuit Ctest. Now, for each variable contained within
MPRM expression (fMPRM

test ), the polarity of such variables is converted to positive
form and thereby a FPRM form ( f FPRM

test ) can be derived. Now, the LXOR is computed
as follows: LXOR = f P PRM

true ⊕ f FPRM
test , where⊕ denotes the XOR operation. If LXOR

is zero that means fault is not detected in the Ctest else SMGF is detected in the Ctest.

4.2.2 Detection and Correction of SMGF

Here, both fault identification and correction of the specified fault in a given circuit.
The output expression obtained fromLXOR is considered as the specification details of
the corresponding missing gate and represented in the form of a Boolean expression
and the variables containedwithin such expression LXOR designates the control inputs
for the gate Mg, where Mg denotes the missing gate in Ctest circuit.

To make the circuit function correctly, if the identified missing gate (Mg) is
attached to the input circuit Ctest to convert it to a fault-free circuit.

Now, the proposed method of SMGF identification and medication in an ESOP
based circuit has been discussed with supportive examples below.

Example 2 The benchmark ESOP circuit 4gt4 [22] is used here for testing the pro-
posed methodology. The Tspec of 4gt4 is represented in Fig. 5a. The testable circuit,
Ctest for the given circuit 4gt4 is also shown in Fig. 5c. Now, the PPRM cover
of the fault-free circuit is obtained from file Tspec employing [23]. In Fig. 5b, the
corresponding PPRM cube can be observed and the derived PPRM expression is
f P PRM
true = a⊕bd⊕bc⊕bcd⊕abd⊕abc⊕abcd. Now, the obtained expression from

the circuit Ctest is f MPRM
test = a⊕ ābc̄d̄ ⊕ āb and changing the polarity of each literal

in the expression f MPRM
test to positive value is required to derive the corresponding

FPRM expression (( f FPRM
test = a⊕ bd⊕ bc⊕ bcd⊕ abd⊕ abc⊕ abcd). Now LXOR

is computed as LXOR = f P PRM
true ⊕ f FPRM

test = ∅.
Hence, it can be confirmed that there an SMGF does not exist in the circuit Ctest

as LXOR is null.
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(a)

(b) (c)

Fig. 5 Illustration of Example 2. a Input specification file of 4gt4 b Equivalent PPRM cube list of
4gt4 c Testable input ESOP circuit for function 4gt4

Example 3 The benchmark circuit 4mod5 [22] is considered here once again to
explain the proposed technique. The specification file Tspec for 4mod5 and Ctest

circuit are represented in Fig. 6a and b, respectively. Initially, f P PRM
true = 1 ⊕ ad ⊕

ab ⊕ bc ⊕ cd ⊕ a ⊕ b ⊕ c ⊕ d is obtained from Tspec. Then, MPRM expression
( f MPRM

test = 1⊕ ad̄ ⊕ āb⊕ b̄c) is derived from the circuit Ctest. Now, an FPRM logic
expression ( f FPRM

test = 1⊕ad⊕ab⊕bc⊕a⊕b⊕c) is formed. The equivalent ESOP
structure of derived f FPRM

test and f P PRM
true expressions are represented in Fig. 6c and

d, respectively. Now, LXOR = f P PRM
true ⊕ f FPRM

test = cd ⊕ d = c̄d.

Hence, it is confirmed that a SMGF fault is present in Ctest exists as LXOR is equal
to some Boolean value. As per the proposed method, the expression LXOR represents
the control lines of the gateMg (as depicted in Fig. 6e) which is completely missing
in the testable circuit. Thereafter, it can be described that theMg is having a negative
control and positive control at lines c and d, respectively.

The circuit can be made fault free if the corresponding missing gate (Mg) is
adjoined to the input circuit Ctest and the resultant original ESOP structure of 4mod5
is depicted in Fig. 6f.

5 Experimental Results

We have tested both of our approaches against different benchmark suites [22]. The
results obtained from first testing approach is summarized in Table 1, where first
three columns represent the circuit name, the number of lines (n) and the number
of gates (N) present in a benchmark function. The Boolean generator is shown in
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a
b
c
d

t=1

# Function:4mod5 
.input a b c d
.output   f 
a b c d f
0000 1
0101 1
1010 1
1111 1

a
b
c
d

t=1

a
b 
c
d

t=1

a
b
c
d

t=1

a
b
c
d

t=1

XOR

a
b
c
d

t=1

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Illustration of Example 3. a Specification file Tspec for circuit 4mod5 b Testable input
circuit 4mod5 c f FPRM

test function equivalent ESOP circuit d f FPRM
test function equivalent ESOP

circuit e Detected missing gate details f Fault free circuit of 4mod5

column 4 and the set of test patterns produced from the generator are tabulated in
column 5 of Table 1.

The second testing technique is also checked over several benchmark circuits and
the effectiveness of RM form also has been verified for successful detection and
localization of faults.
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Table 1 Boolean generator for the detection of SMGF

Name of
benchmark
function

Number of
lines (n)

Number of
gates (N)

Boolean generator of the
circuit

Derived test set from the
boolean generator

rd32d1 4 4 (ab + ābc)
or
(ab + ab̄c)

{6, 7, 12, 13, 14, 15}
or
{10, 11, 12, 13, 14, 15}

xor5d1 5 4 (ab̄c̄d̄) {16, 17}

ham3tc 3 5 (āb + bc̄)
or
(āb + b̄c)

{2, 3, 6}
or
{1, 2, 3, 5}

3_17tc 3 6 (ab̄c + abc̄)
or
(ab̄c + āb̄c̄)

{5, 6}
or
{5, 0}

mod5d1 5 8 (abcd) {30, 31}

mod5d2 5 9 (abcd) {6, 7}

4_49d3 4 12 (abd + acd) {3, 7, 13, 15}

hwb4d1 4 17 (abcd + cd + acd) {1, 5, 9, 10, 11, 13, 14}

2of5d1 6 15 (ace + abde + abde +
abcdf)

{8, 9, 12, 13, 20, 21, 23,
24, 25, 28, 29, 34, 35,
42}

mod5adders1 6 21 (abcēf̄ + abc̄d̄ē + ad̄ēf̄ +
b̄c̄ēf̄)

{0, 4, 32, 36, 40, 48, 49,
56, 60}

6 Conclusions

This work has presented two Boolean based approaches for testing of SMGF faults
in reversible circuit. In the first method, a Boolean generator has developed for a
reversible circuit and in later time, from this generator test vectors are constructed to
a test a circuit. The second testing technique hasmainly targeted to test a special class
of reversible circuit known as ESOP designs. But, the first testing technique is very
generic and can be employed over any type of circuits. In both the testing approaches,
we have addressed SMGF only, but other types of faults like RGF, MMGF also can
be tracked by following the same strategy as used to find SMGF. The presented
techniques have successfully tested over a wide spectrum of benchmarks also.
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