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Abstract Reversible logic is one of the alternatives to meet the requirement of
power, speed and size in EDA (Electronic Design Automation) industry because
these circuits are theoretically proven for providing nearly energy free computation
by preventing the loss of information during operations. This chapter describes about
theory of reversible logic, basic gates, cost matrices used for synthesis and testing of
these circuits and connection of reversible logic with quantum computation.

1 Introduction

Energy loss is a significant constraint in digital circuit design. It is involved in each
phase of design cycle starting from the logic level to the technological level of
development. Since the evolution of electronic devices, starting from the centimeter
scale vacuum tubes to the present nanometer scale CMOS: theminimization of power
dissipation, lowering the size and enhancing the speed are major challenges in the
pursuit of cutting-edge technology. Higher degree of on-chip integrated circuits and
type of fabrication processes have dramatically reduced the energy levels over the

H. M. Gaur (B)
Department of Electronics & Communication Engineering, ABES Institute of Technology,
Ghaziabad (Delhi NCR) 201009, India
e-mail: leoharimohan84@gmail.com

T. N. Sasamal
Department of Electronics and Communication Engineering, NIT Kurukshetra,
Kurukshetra, India
e-mail: sasamal.trailokyanath@gmail.com

A. K. Singh
Department of Computer Applications, NIT Kurukshetra, Kurukshetra, India
e-mail: ashutosh@nitkkr.ac.in

A. Mohan
Department of Electronics Engineering, IIT-BHU, Varanasi, India
e-mail: profanandmohan@gmail.com

D. K. Pradhan
Department of Computer Science, University of Bristol, Bristol, UK
e-mail: pradhan@compsci.bristol.ac.uk

© Springer Nature Singapore Pte Ltd. 2020
A. K. Singh et al. (eds.), Design and Testing of Reversible Logic, Lecture Notes
in Electrical Engineering 577, https://doi.org/10.1007/978-981-13-8821-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8821-7_1&domain=pdf
mailto:leoharimohan84@gmail.com
mailto:sasamal.trailokyanath@gmail.com
mailto:ashutosh@nitkkr.ac.in
mailto:profanandmohan@gmail.com
mailto:pradhan@compsci.bristol.ac.uk
https://doi.org/10.1007/978-981-13-8821-7_1


4 H. M. Gaur et al.

Fig. 1 Computing technologies

last decades. Today, we have achieved in reducing the size to some nanometers
scales providing clock speed more than 3GHz. But if we further minimize the size,
we have to compensate with speed and power dissipation. This statement limits the
evolution of Moore’s law and it may saturate by 2020 [46]. Another factor of power
dissipation is the loss of information as highlighted by Landauer [45]. According to
this, every bit loss in logic circuits is involved in a loss of kBT ln 2 Joules of heat in the
environment, where kB is Boltzmann’s constant and T is the absolute temperature at
which operation is performed. For instance, the heat dissipation per bit is 2.9 × 10−21

Joules [45]. However, it is very small but cannot be ignored where the rate of the
processor frequency is very high. This problem propel the engineers and researchers
to develop such a logic that does not involve information loss. It is possible only by
the inclusion of reversible gates in logic design process. Quantum computation is
also known for saving power on the top of several emerging technologies like trapped
ion, magnetic resonance etc. Moreover, all the quantum computation are inherently
reversible in nature [59].

Reversible logic is one of the promising techniques to reduce the power require-
ments, as these circuits are theoretically claimed for producing nearly energy free
computation systems by preserving the loss of information [6]. These circuits have
the capability of producing ultra high speed and compact electronic devices [59].
However, the logic can be applied to traditional logic circuits [93], but its applica-
tions to quantum computation have been proven for achieving excellence in terms
of power consumption, speed and size. The identification and implementation of
reversible quantum circuits have been achieved using several probabilistic methods
and ideas [5, 15, 59, 70, 91]. Figure1 shows some dominating technologies where
the researchers are currently exploring the possibilities for employing this logic at
physical foregrounds [13, 43, 64, 73, 81].

The construction of reversible logic circuits design and synthesis techniques [14,
22, 26, 31, 48, 55, 65, 66, 78, 79, 92] are based on fundamental Toffoli and Fredkin
gates [18, 19, 86]. These gates can be further extended to nth order gates, known
as Multiple Control Toffoli (MCT) and Multiple Controlled Fredkin (MCF) gate
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libraries. Numerous other reversible gates have also been proposed in the literature
[7, 32, 33, 39–41, 52, 63, 71, 74, 75, 77, 82, 84], but the primary components of
these gates are MCF and MCT [28]. Moreover, the final quantum decomposition of
the reversible circuits are based on them. The efficiency of the designs are governed
by several performancemetrics defining their operating cost. Thesemetrics arewires,
gates, quantum stages and garbage [50].

2 The Logic

Currently, all digital logic circuits are physically irreversible because they comprise
of irreversible gates. The energy provided by the source is eventually converted into
heat with every bit loss. For example, there is a loss of a bit per clock in a two input
AND gate as shown in Fig. 2a. Moreover, irreversible logic does not traverse the state
sequences in the reverse direction to achieve the initial state after the completion of
logical functions. In the I/O of AND gate shown in Table1, the output permutation
is 0 for three input permutations 0, 1 and 2. The output cannot be unique because
there are only two logic states (0 and 1) where at least two output will be same, the
reverse computation cannot be achieved. The statement cannot be true number of
inputs greater than the number of permutations. Hence, there should be same number
of inputs and outputs. For two inputs there will be two outputs as shown in Fig. 2b.
But assuming two output will not provide the solution. Consider the example circuit
of 2 × 2 AND gate shown in Fig. 2c whose I/O is listed in Table2. Here, again the
output permutation is 0 for two input permutations 0 and 1. There is a need to develop
a logic to settle this situation, where we can conserve output bits.

In this situation, information lossless computing presents an option, where a log-
ical operation does not yield loss of information called reversible operation. There

(a) (b) (c)

Fig. 2 Irreversible computation

Table 1 I/O of AND gate

Input Output

A B Permutation Y = A·B Permutation

0 0 0 0 0

0 1 1 0 0

1 0 2 0 0

1 1 3 1 1
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Table 2 I/O of 2 × 2 AND gate

Input Output

A B Permutation X Y = A·B Permutation

0 0 0 0 0 0

0 1 1 0 0 0

1 0 2 1 0 2

1 1 3 1 1 3

(a) (b) (c)

Fig. 3 Reversible computation

are two approaches to attain reversibility; they are logical and physical reversibility.
The first one corresponds to the bijective relation between inputs and outputs, so
inputs can be inferred from the outputs [45]. The later means that there must be
some conditions for computation in reverse order [6]. Logical reversibility can be
achieved by following two different criteria. First, when intermediate information’s
are retained during computation from input to output. Here, the reverse computation
can be obtained in backward direction, i.e., from output to input by considering the
retained information. Second, when logical reversible gates are used for computation
without storing intermediate results. However, logical reversibility in turn implies
physical reversibility which bards the dissipative effects in computation process.
For a computation to be physically reversible, it must be logically reversible. The
unsuspecting erasure of a bit of information must always incur a cost of kBT ln 2 in
thermodynamic entropy in irreversible computation. Hence, reversible logic entails
the reduction of increment in physical entropy by saving the input information and
prevent the information loss in the form of heat to the environment.

Consider the example circuit of 2 × 2 XOR gate shown in Fig. 3a. Its I/O listed
Table3 shows the same results as required for a reversible 2 × 2 function where there

Table 3 I/O of 2 × 2 XOR gate

Input Output

A B Permutation X = A Y = A⊕B Permutation

0 0 0 0 0 0

0 1 1 0 1 1

1 0 2 1 1 3

1 1 3 1 0 2
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is a unique correlation between input and output permutations called as bijectivity
or logical reversibility. Moreover, it can also be observed from Table3 that, if the
output is again used as an input, which results in original input permutation, called
as physical reversibility. For instance, for input permutation 2 the output is 3 and if
we use 3 as an input permutation, the output is the original input permutation i.e. 2.

The mathematical equivalence circuit of 2 × 2 XOR gate shown in Fig. 3b. Its
corresponding reversible/quantum representation is shown in Fig. 3c, which is called
as reversible Controlled NOT (CNOT) gate. It is having a control input k and target
output T . The output function f (k, T ) is controlled by the input k. For instance, if
k = 0, f (k, T ) = T and if k = 1, f (k, T ) = T , i.e., controlled NOT operation. The
concept was very theoretical in the beginning. Many mathematical equations were
used to prove its feasibility and strengths. Since the past two decades, this topic drew
more attention and improved in design, synthesis and testing. Mainly, there are two
categories of current research in this area, physical implementation and designing
where a number of research groups in leading research labs around the globe are
working.

2.1 Reversible Function

A Boolean function produces p outputs (y1, y2, . . . , yp) with respect to n inputs
x1, x2, . . . , xn , where the output y is the function of inputs yp = f (x1, x2, . . . , xn).
A Boolean logic function with n variables is reversible if it generates unique output
for each input permutations [86]. The necessary conditions for a Boolean function
with n variables to be reversible can be stated as:

• The number of inputs and outputs should be equal.
• There should be bijective mapping between input and output.

2.2 Reversible Gates

A reversible gate recognizes a reversible function. If a n × n input output gate pro-
duces distinct output for its distinct input functions, it is called as n × n reversible
gate. Thebasic buildingblocks for designing any functional circuits are the logic gates
and synthesis schemes based on them. Alike irreversible AND, OR and NOT logic
gates, there are two fundamental Controlled NOT and Controlled SWAP reversible
gates. These gates are commonly known as Toffoli and Fredkin gates, which are
further extended into n × n gates which form Multiple Control Toffoli (MCT) and
Multiple Controlled Fredkin (MCF) gates libraries.

Multiple Controlled Toffoli

An MCT gate has m control inputs (k1, k2, . . . , km) and one target input T to form(
m + 1

) × (
m + 1

)
reversible Boolean function. The control input directly mapped
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(a)

(b)

(c)

Fig. 4 Schematic representation of MCT gates

to their respective outputs and the function f (km, T ) is given byEq. 1. The illustration
is also provided in Fig. 4a. A 3 × 3 gate shown in Fig. 4b is called a Toffoli gate. The
least member of this family shown in Fig. 4c is known as a NOT gate, whose output
is inversion of the input applied to it.

f (km, T ) = (k1 · k2 · . . . km) ⊕ T (1)

Multiple Controlled Fredkin

An MCF gate has m control inputs (k1, k2, . . . , km) and two target inputs T1 and
T2 to form a

(
m + 2

) × (
m + 2

)
reversible function as depicted in Fig. 5a. The gate

passes all the control inputs directly to respective outputs and the target outputs
f1(km, T1, T2) and f2(km, T1, T2) are given by Eqs. 2 and 3 respectively. Here, kPR =
k1 · k2 · . . . · km . A 3 × 3 gate shown in Fig. 5b is called a Fredkin gate, whose respec-
tive outputs are given by f1(k, T1, T2) = kT1 + kT2 and f2(k, T1, T2) = kT1 + kT2.
The least member of this family is shown in Fig. 5c is known as a SWAP gate which
interchange its applied target inputs at the outputs.

f1(km, T1, T2) = kPR · T1 + kPR · T2 (2)

f2(km, T1, T2) = kPR · T1 + kPR · T2 (3)

(a)

(b)

(c)

Fig. 5 Schematic representation of MCF gates
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Table 4 Input-output of 3 × 3 gates

Gates Output

P Q R

Peres A A⊕B AB⊕C

R A⊕B A C’⊕AB

TR A A⊕B AB’⊕C

URG A A⊕B AB⊕C

PPRG A⊕B AC+B’C’ A’C+B’C’

Table 5 Input-output of 4 × 4 gates

Gates Output

P Q R S

R1 A⊕C B⊕C⊕AB⊕BC A⊕B⊕C D⊕C⊕AB⊕BC

TSG A A’B’⊕B’ (A’C’⊕B’)⊕D (A’C’⊕B’)D⊕(AB⊕C)

OTG A A⊕B A⊕B⊕D (A⊕B)D⊕(AB⊕C)

PAOG A A⊕B AB⊕C ((A⊕B)⊕D)⊕(AB⊕C)

SMS A⊕C⊕D D⊕BC C D⊕B⊕C⊕BC

Others

There are many n I/O gates has been projected in the last two decades other than
fundamental MCT and MCF gates, [7, 32, 33, 39–41, 52, 53, 63, 71, 74, 75, 77,
82, 84], which are projected for special functions efficiently. The purposes includes
universality, addition, parity preservation etc. The schematics of some popular 3 × 3
and 4 × 4 gates are shown in Table4, where the inputs {A, B, C} and outputs {P, Q,
R} are revealed. The schematics of some popular 4 × 4 gates are shown in Table5,
where the inputs {A, B, C, D} and respective outputs {P, Q, R, S} can be seen.
The gates Peres, R and URG are known for their universality. TR, TSG and PAOG
gates are projected for addition purposes. The gates SMS, R1, OTG and PPRG
are having parity preservation and generation capabilities which can be used for
testability purpose. The properties of nearly all commonly used 3 × 3 and 4 × 4
gates are summarized and analyzed at two significant experimentation levels in [28].

2.3 Fundamental Properties of Reversible Gates and Circuits

Depending on the functionality of reversible gates, they can be categorized into two
different classes:

• Conservative: The gates which retain the number of logic values from the input
to output are known as conservative gates. In other words, the number of 1s and
0s are same at both ends of the circuit.
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(a) (b)

(c)

Fig. 6 Reversible circuits

• Parity preserving: The gates in which the sum of logic 1s in their inputs and
outputs are even are called parity preserving gates. Scientifically, the exor of all
inputs and outputs result a null value. If these properties are closely analyzed it
can be concluded that the conservative gates are parity preserving but vice-versa
is not always correct.

The construction of all reversible logic circuits design and synthesis techniques
are based on fundamental MCT and MCF gates. Since the operations in reversible
logic circuits are linear, i.e., all the outputs of one gate stage varies the operations of
next gate stages. The input signal is once propagated from the input, will not be taken
back and cannot be taken as inputs to multiple gates and there is no loss of logic
bits which maintains the information entropy. The synthesis of reversible circuits
is restricted to ‘FANOUT’ and ‘FEEDBACK’. In reversible circuits, these factors
are not allowed [6, 59]. It results in the only condition to form a reversible circuit
by means of cascading reversible gates, Fig. 6a, b, c illustrated the three reversible
circuit networks by using MCT, MCF and MCTF gates respectively.

2.4 Cost Metrics

In designing reversible circuits, certain cost measures has been considered to evalu-
ate the efficacy of proposed methodologies. These measures are can be considered
as operating cost of the circuits [23, 24, 50]. A brief explanation and respective illus-
tration using a reversible full adder (rd32 benchmark circuit [16] shown in Fig. 7) of
these metrics is given as follows:
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Fig. 7 Reversible full adder

Fig. 8 Schematic of
reversible full adder

Gate Cost:

The number of gates required to construct a circuit refer its gate count. It is a direct
measure to calculate the cost of a circuit, which is commonly called as gate cost
(GC). The number of gates used to construct a full adder shown in Fig. 7 are four,
hence its gate cost is equal to 4.

Quantum Cost:

A complete reversible circuit can also be realized in corresponding quantum real-
ization using elementary quantum gates (1 × 1 NOT, 1 × 1 CNOT, Control V and
Control V+). The sum of these elementary quantum gates are termed as quantum
cost (QC) of the circuit. The full adder (Fig. 7) can be decomposed using twelve
quantum gates as shown in Fig. 8, hence its quantum cost is 12.

Ancilla Input:

There are the requirement of additional constant inputs to convert an irreversible into
reversible circuit. These additional inputs are referred as ancilla inputs (AI). The last
input is taken as constant 0 to construct SUM and CARRY functions as shown in
green colour in Fig. 7, hence number of ancilla input is 1.

Input:

The number of inputs directly impact on the qubits in a reversible circuit and increases
the size of the circuit. These number of input or wires (n) including ancilla input can
also be taken to evaluate the performance of any design methodology. There are four
wires needed to implement a full adder circuit shown in Fig. 7, hence n = 4.

Garbage Output:

To maintain the bijectivity property in the realization of reversible circuits, some
outputs are left unused. These outputs are referred as garbage outputs (GO). It can be
seen that, two output are left unused to realize a full adder circuit depicted in Fig. 7,
written as garbage in red colour. Hence GO for this circuit is 2.
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The discussed parameters show a direct connection with area/size and complexity
of a circuit. The more values of these parameters raise the size and complexity
and enhance the power dissipation and physical cost of circuits and devices. Hence
the minimization of these measures should be the major subject all through the
development of design and test strategy for reversible logic circuits. The quantum
cost has a proportionate association with delay, while ancilla inputs are the extra
source of input power and garbage depicts the loss of power. Moreover, there are
some technology-dependent measures are also exist like input to output delay which
can be used to compute the speed.

3 A Door Step Towards Quantum Computation

A traditional computer circuits comprised of wires and logic gates, where the wires
transfer the information which is further manipulated by logic gates to perform some
operations. In quantum computers, the information is switched with the help of
change in quantum states. These states are defined using linear combinations, called
as superposition for a single qubit system as given in Eq. 4. Where, α & β are the
two complex numbers and |0〉, |1〉 shows the Dirac notations of the two states.

|ψ〉 = α|0〉 + β|1〉 (4)

Out of the infinite quantum information space (Hilbert Space) in the superposition,
there are two quantum states |0〉 and 1〉 that can be easily recognizable for performing
any operation. These states refers the ground state and excited state of electrons in
an atom respectively, as demonstrated in Fig. 9. The qubit is once propagated from
the input will not be taken back and cannot be taken as inputs to multiple stages in
a quantum system.

A quantum circuit contains elementary quantum gates to hold and manipulate the
quantum information. The smallest (and trivial) member of this family is elementary
NOT gate whose functionality is as usual. Rather than a truth table, these gates
are represented in form of a matrix, which pursue the linearity of quantum gates.
ControlledNOT, Z, H, SWAP are the elementary quantumgates that can be derived to
multiple qubit gates. Similar to reversible gates a quantum controlled NOT gate used
to invert a state and SWAP gate is used to interchange any two states. The change of

Fig. 9 qubit representation
as two electronic levels
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states in quantum NOT gate can be given by α|0〉 + β|1〉 → α|1〉 + β|0〉. The swap
and copy operations are process for minimum of two qubit system. The archetypal
multi-qubit quantum gates are controlled NOT gates, similar as that of reversible
MCT and MCF gates and all the quantum operations are inherently reversible in
nature.

Hence, regardless of the physical implementation, the research in design and syn-
thesis of reversible logic circuits will be the foundations of quantum computers.
The implementation of reversible logic will be formulated in conjunction with quan-
tum technology. The full scope of potential technologies has not been imagined yet
nor it will be, until definite quantum information hardware is obtainable for future
generations of computation. The reversible logic designs and synthesis methods are
independent of the implementation technique. Once the implementation becomes
more stable for fabrication, the design can be set into a real hardware device.

4 Summary of the Chapter

However, physical implementation is limitedly experimented, a healthy research has
been accomplished in the area of reversible logic circuits. Following are the key
points that are discussed in this chapter:

• Description of the theory of reversible logic
• Basis definitions and notations
• Explanations of reversible gates and their properties
• Explains all the cost metrics used for analysis
• Efficacy of Toffoli and Fredkin gates for reversible and quantum circuit imple-
mentations ihas been emphasized

• Connections of reversible logic with quantum computation
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