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Preface

As CMOS scaling is likely to reach its technological barrier in the near future, novel
design paradigms are being proposed to keep in pace with the ever-growing need
for computational power and speed. Reversible logic circuits (RLCs) provide an
alternative and attractive solution to enter into a new era of computation which
assists in realizing the imaginations of building ultra-low-power, high-speed, and
compact devices and systems. Since all the quantum operations are inherently
reversible, these circuits enable the quantum phenomenon of physics in realizing
logic circuits, where the measurements can be performed with a higher degree of
precision. These circuits are theoretically proven for providing nearly energy-free
computation by preventing information loss during operations. The full scope and
potential of this technology has probably not yet been imagined, nor will it be until
actual hardware is available for reversible computation. A number of physical
systems, spanning much of modern physics, are being developed for reversible and
quantum computation. Among others, the testing of these circuits has also been a
major concern to validate their functionality.

The book provides efficient design, synthesis, and test methodologies for the
implementation of reversible logic circuits. The author’s contributions in this book
are addressed through 14 chapters which meet several challenges stimulated during
each work cycle. Also, it has covered several optimal logic designs for quantum dot
cellular automata-based circuit. The chapters are organized into four parts, viz.
(i) fundamentals of reversible logic, (ii) design and synthesis, (iii) test method-
ologies, and (iv) quantum cellular automata.

The editors would like to extend their sincere thanks to Dr. Satish Kumar,
Director, National Institute of Technology Kurukshetra, India, and Prof. P. K. Jain,
Director, IIT (BHU), Varanasi, India, as well as Prof. V. N. Mishra, Head,
Department of Electronics Engineering, IIT (BHU), Varanasi, India, for their
encouragement and facilitating the access to institutional resources. We also thank
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Jitendra Kumar, Ishu Gupta, Rishab Gupta, Deepika Saxena, and Navreet Kaur of
Department of Computer Applications, National Institute of Technology, for their
constant support in the editorial process.

Kurukshetra, India Ashutosh Kumar Singh
Tokyo, Japan Masahiro Fujita
Varanasi, India Anand Mohan
March 2019
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Reversible Logic: An Introduction

H. M. Gaur, T. N. Sasamal, A. K. Singh, A. Mohan and D. K. Pradhan

Abstract Reversible logic is one of the alternatives to meet the requirement of
power, speed and size in EDA (Electronic Design Automation) industry because
these circuits are theoretically proven for providing nearly energy free computation
by preventing the loss of information during operations. This chapter describes about
theory of reversible logic, basic gates, cost matrices used for synthesis and testing of
these circuits and connection of reversible logic with quantum computation.

1 Introduction

Energy loss is a significant constraint in digital circuit design. It is involved in each
phase of design cycle starting from the logic level to the technological level of
development. Since the evolution of electronic devices, starting from the centimeter
scale vacuum tubes to the present nanometer scale CMOS: theminimization of power
dissipation, lowering the size and enhancing the speed are major challenges in the
pursuit of cutting-edge technology. Higher degree of on-chip integrated circuits and
type of fabrication processes have dramatically reduced the energy levels over the
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4 H. M. Gaur et al.

Fig. 1 Computing technologies

last decades. Today, we have achieved in reducing the size to some nanometers
scales providing clock speed more than 3GHz. But if we further minimize the size,
we have to compensate with speed and power dissipation. This statement limits the
evolution of Moore’s law and it may saturate by 2020 [46]. Another factor of power
dissipation is the loss of information as highlighted by Landauer [45]. According to
this, every bit loss in logic circuits is involved in a loss of kBT ln 2 Joules of heat in the
environment, where kB is Boltzmann’s constant and T is the absolute temperature at
which operation is performed. For instance, the heat dissipation per bit is 2.9 × 10−21

Joules [45]. However, it is very small but cannot be ignored where the rate of the
processor frequency is very high. This problem propel the engineers and researchers
to develop such a logic that does not involve information loss. It is possible only by
the inclusion of reversible gates in logic design process. Quantum computation is
also known for saving power on the top of several emerging technologies like trapped
ion, magnetic resonance etc. Moreover, all the quantum computation are inherently
reversible in nature [59].

Reversible logic is one of the promising techniques to reduce the power require-
ments, as these circuits are theoretically claimed for producing nearly energy free
computation systems by preserving the loss of information [6]. These circuits have
the capability of producing ultra high speed and compact electronic devices [59].
However, the logic can be applied to traditional logic circuits [93], but its applica-
tions to quantum computation have been proven for achieving excellence in terms
of power consumption, speed and size. The identification and implementation of
reversible quantum circuits have been achieved using several probabilistic methods
and ideas [5, 15, 59, 70, 91]. Figure1 shows some dominating technologies where
the researchers are currently exploring the possibilities for employing this logic at
physical foregrounds [13, 43, 64, 73, 81].

The construction of reversible logic circuits design and synthesis techniques [14,
22, 26, 31, 48, 55, 65, 66, 78, 79, 92] are based on fundamental Toffoli and Fredkin
gates [18, 19, 86]. These gates can be further extended to nth order gates, known
as Multiple Control Toffoli (MCT) and Multiple Controlled Fredkin (MCF) gate
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libraries. Numerous other reversible gates have also been proposed in the literature
[7, 32, 33, 39–41, 52, 63, 71, 74, 75, 77, 82, 84], but the primary components of
these gates are MCF and MCT [28]. Moreover, the final quantum decomposition of
the reversible circuits are based on them. The efficiency of the designs are governed
by several performancemetrics defining their operating cost. Thesemetrics arewires,
gates, quantum stages and garbage [50].

2 The Logic

Currently, all digital logic circuits are physically irreversible because they comprise
of irreversible gates. The energy provided by the source is eventually converted into
heat with every bit loss. For example, there is a loss of a bit per clock in a two input
AND gate as shown in Fig. 2a. Moreover, irreversible logic does not traverse the state
sequences in the reverse direction to achieve the initial state after the completion of
logical functions. In the I/O of AND gate shown in Table1, the output permutation
is 0 for three input permutations 0, 1 and 2. The output cannot be unique because
there are only two logic states (0 and 1) where at least two output will be same, the
reverse computation cannot be achieved. The statement cannot be true number of
inputs greater than the number of permutations. Hence, there should be same number
of inputs and outputs. For two inputs there will be two outputs as shown in Fig. 2b.
But assuming two output will not provide the solution. Consider the example circuit
of 2 × 2 AND gate shown in Fig. 2c whose I/O is listed in Table2. Here, again the
output permutation is 0 for two input permutations 0 and 1. There is a need to develop
a logic to settle this situation, where we can conserve output bits.

In this situation, information lossless computing presents an option, where a log-
ical operation does not yield loss of information called reversible operation. There

(a) (b) (c)

Fig. 2 Irreversible computation

Table 1 I/O of AND gate

Input Output

A B Permutation Y = A·B Permutation

0 0 0 0 0

0 1 1 0 0

1 0 2 0 0

1 1 3 1 1
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Table 2 I/O of 2 × 2 AND gate

Input Output

A B Permutation X Y = A·B Permutation

0 0 0 0 0 0

0 1 1 0 0 0

1 0 2 1 0 2

1 1 3 1 1 3

(a) (b) (c)

Fig. 3 Reversible computation

are two approaches to attain reversibility; they are logical and physical reversibility.
The first one corresponds to the bijective relation between inputs and outputs, so
inputs can be inferred from the outputs [45]. The later means that there must be
some conditions for computation in reverse order [6]. Logical reversibility can be
achieved by following two different criteria. First, when intermediate information’s
are retained during computation from input to output. Here, the reverse computation
can be obtained in backward direction, i.e., from output to input by considering the
retained information. Second, when logical reversible gates are used for computation
without storing intermediate results. However, logical reversibility in turn implies
physical reversibility which bards the dissipative effects in computation process.
For a computation to be physically reversible, it must be logically reversible. The
unsuspecting erasure of a bit of information must always incur a cost of kBT ln 2 in
thermodynamic entropy in irreversible computation. Hence, reversible logic entails
the reduction of increment in physical entropy by saving the input information and
prevent the information loss in the form of heat to the environment.

Consider the example circuit of 2 × 2 XOR gate shown in Fig. 3a. Its I/O listed
Table3 shows the same results as required for a reversible 2 × 2 function where there

Table 3 I/O of 2 × 2 XOR gate

Input Output

A B Permutation X = A Y = A⊕B Permutation

0 0 0 0 0 0

0 1 1 0 1 1

1 0 2 1 1 3

1 1 3 1 0 2
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is a unique correlation between input and output permutations called as bijectivity
or logical reversibility. Moreover, it can also be observed from Table3 that, if the
output is again used as an input, which results in original input permutation, called
as physical reversibility. For instance, for input permutation 2 the output is 3 and if
we use 3 as an input permutation, the output is the original input permutation i.e. 2.

The mathematical equivalence circuit of 2 × 2 XOR gate shown in Fig. 3b. Its
corresponding reversible/quantum representation is shown in Fig. 3c, which is called
as reversible Controlled NOT (CNOT) gate. It is having a control input k and target
output T . The output function f (k, T ) is controlled by the input k. For instance, if
k = 0, f (k, T ) = T and if k = 1, f (k, T ) = T , i.e., controlled NOT operation. The
concept was very theoretical in the beginning. Many mathematical equations were
used to prove its feasibility and strengths. Since the past two decades, this topic drew
more attention and improved in design, synthesis and testing. Mainly, there are two
categories of current research in this area, physical implementation and designing
where a number of research groups in leading research labs around the globe are
working.

2.1 Reversible Function

A Boolean function produces p outputs (y1, y2, . . . , yp) with respect to n inputs
x1, x2, . . . , xn , where the output y is the function of inputs yp = f (x1, x2, . . . , xn).
A Boolean logic function with n variables is reversible if it generates unique output
for each input permutations [86]. The necessary conditions for a Boolean function
with n variables to be reversible can be stated as:

• The number of inputs and outputs should be equal.
• There should be bijective mapping between input and output.

2.2 Reversible Gates

A reversible gate recognizes a reversible function. If a n × n input output gate pro-
duces distinct output for its distinct input functions, it is called as n × n reversible
gate. Thebasic buildingblocks for designing any functional circuits are the logic gates
and synthesis schemes based on them. Alike irreversible AND, OR and NOT logic
gates, there are two fundamental Controlled NOT and Controlled SWAP reversible
gates. These gates are commonly known as Toffoli and Fredkin gates, which are
further extended into n × n gates which form Multiple Control Toffoli (MCT) and
Multiple Controlled Fredkin (MCF) gates libraries.

Multiple Controlled Toffoli

An MCT gate has m control inputs (k1, k2, . . . , km) and one target input T to form(
m + 1

) × (
m + 1

)
reversible Boolean function. The control input directly mapped
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(a)

(b)

(c)

Fig. 4 Schematic representation of MCT gates

to their respective outputs and the function f (km, T ) is given byEq. 1. The illustration
is also provided in Fig. 4a. A 3 × 3 gate shown in Fig. 4b is called a Toffoli gate. The
least member of this family shown in Fig. 4c is known as a NOT gate, whose output
is inversion of the input applied to it.

f (km, T ) = (k1 · k2 · . . . km) ⊕ T (1)

Multiple Controlled Fredkin

An MCF gate has m control inputs (k1, k2, . . . , km) and two target inputs T1 and
T2 to form a

(
m + 2

) × (
m + 2

)
reversible function as depicted in Fig. 5a. The gate

passes all the control inputs directly to respective outputs and the target outputs
f1(km, T1, T2) and f2(km, T1, T2) are given by Eqs. 2 and 3 respectively. Here, kPR =
k1 · k2 · . . . · km . A 3 × 3 gate shown in Fig. 5b is called a Fredkin gate, whose respec-
tive outputs are given by f1(k, T1, T2) = kT1 + kT2 and f2(k, T1, T2) = kT1 + kT2.
The least member of this family is shown in Fig. 5c is known as a SWAP gate which
interchange its applied target inputs at the outputs.

f1(km, T1, T2) = kPR · T1 + kPR · T2 (2)

f2(km, T1, T2) = kPR · T1 + kPR · T2 (3)

(a)

(b)

(c)

Fig. 5 Schematic representation of MCF gates
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Table 4 Input-output of 3 × 3 gates

Gates Output

P Q R

Peres A A⊕B AB⊕C

R A⊕B A C’⊕AB

TR A A⊕B AB’⊕C

URG A A⊕B AB⊕C

PPRG A⊕B AC+B’C’ A’C+B’C’

Table 5 Input-output of 4 × 4 gates

Gates Output

P Q R S

R1 A⊕C B⊕C⊕AB⊕BC A⊕B⊕C D⊕C⊕AB⊕BC

TSG A A’B’⊕B’ (A’C’⊕B’)⊕D (A’C’⊕B’)D⊕(AB⊕C)

OTG A A⊕B A⊕B⊕D (A⊕B)D⊕(AB⊕C)

PAOG A A⊕B AB⊕C ((A⊕B)⊕D)⊕(AB⊕C)

SMS A⊕C⊕D D⊕BC C D⊕B⊕C⊕BC

Others

There are many n I/O gates has been projected in the last two decades other than
fundamental MCT and MCF gates, [7, 32, 33, 39–41, 52, 53, 63, 71, 74, 75, 77,
82, 84], which are projected for special functions efficiently. The purposes includes
universality, addition, parity preservation etc. The schematics of some popular 3 × 3
and 4 × 4 gates are shown in Table4, where the inputs {A, B, C} and outputs {P, Q,
R} are revealed. The schematics of some popular 4 × 4 gates are shown in Table5,
where the inputs {A, B, C, D} and respective outputs {P, Q, R, S} can be seen.
The gates Peres, R and URG are known for their universality. TR, TSG and PAOG
gates are projected for addition purposes. The gates SMS, R1, OTG and PPRG
are having parity preservation and generation capabilities which can be used for
testability purpose. The properties of nearly all commonly used 3 × 3 and 4 × 4
gates are summarized and analyzed at two significant experimentation levels in [28].

2.3 Fundamental Properties of Reversible Gates and Circuits

Depending on the functionality of reversible gates, they can be categorized into two
different classes:

• Conservative: The gates which retain the number of logic values from the input
to output are known as conservative gates. In other words, the number of 1s and
0s are same at both ends of the circuit.
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(a) (b)

(c)

Fig. 6 Reversible circuits

• Parity preserving: The gates in which the sum of logic 1s in their inputs and
outputs are even are called parity preserving gates. Scientifically, the exor of all
inputs and outputs result a null value. If these properties are closely analyzed it
can be concluded that the conservative gates are parity preserving but vice-versa
is not always correct.

The construction of all reversible logic circuits design and synthesis techniques
are based on fundamental MCT and MCF gates. Since the operations in reversible
logic circuits are linear, i.e., all the outputs of one gate stage varies the operations of
next gate stages. The input signal is once propagated from the input, will not be taken
back and cannot be taken as inputs to multiple gates and there is no loss of logic
bits which maintains the information entropy. The synthesis of reversible circuits
is restricted to ‘FANOUT’ and ‘FEEDBACK’. In reversible circuits, these factors
are not allowed [6, 59]. It results in the only condition to form a reversible circuit
by means of cascading reversible gates, Fig. 6a, b, c illustrated the three reversible
circuit networks by using MCT, MCF and MCTF gates respectively.

2.4 Cost Metrics

In designing reversible circuits, certain cost measures has been considered to evalu-
ate the efficacy of proposed methodologies. These measures are can be considered
as operating cost of the circuits [23, 24, 50]. A brief explanation and respective illus-
tration using a reversible full adder (rd32 benchmark circuit [16] shown in Fig. 7) of
these metrics is given as follows:
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Fig. 7 Reversible full adder

Fig. 8 Schematic of
reversible full adder

Gate Cost:

The number of gates required to construct a circuit refer its gate count. It is a direct
measure to calculate the cost of a circuit, which is commonly called as gate cost
(GC). The number of gates used to construct a full adder shown in Fig. 7 are four,
hence its gate cost is equal to 4.

Quantum Cost:

A complete reversible circuit can also be realized in corresponding quantum real-
ization using elementary quantum gates (1 × 1 NOT, 1 × 1 CNOT, Control V and
Control V+). The sum of these elementary quantum gates are termed as quantum
cost (QC) of the circuit. The full adder (Fig. 7) can be decomposed using twelve
quantum gates as shown in Fig. 8, hence its quantum cost is 12.

Ancilla Input:

There are the requirement of additional constant inputs to convert an irreversible into
reversible circuit. These additional inputs are referred as ancilla inputs (AI). The last
input is taken as constant 0 to construct SUM and CARRY functions as shown in
green colour in Fig. 7, hence number of ancilla input is 1.

Input:

The number of inputs directly impact on the qubits in a reversible circuit and increases
the size of the circuit. These number of input or wires (n) including ancilla input can
also be taken to evaluate the performance of any design methodology. There are four
wires needed to implement a full adder circuit shown in Fig. 7, hence n = 4.

Garbage Output:

To maintain the bijectivity property in the realization of reversible circuits, some
outputs are left unused. These outputs are referred as garbage outputs (GO). It can be
seen that, two output are left unused to realize a full adder circuit depicted in Fig. 7,
written as garbage in red colour. Hence GO for this circuit is 2.
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The discussed parameters show a direct connection with area/size and complexity
of a circuit. The more values of these parameters raise the size and complexity
and enhance the power dissipation and physical cost of circuits and devices. Hence
the minimization of these measures should be the major subject all through the
development of design and test strategy for reversible logic circuits. The quantum
cost has a proportionate association with delay, while ancilla inputs are the extra
source of input power and garbage depicts the loss of power. Moreover, there are
some technology-dependent measures are also exist like input to output delay which
can be used to compute the speed.

3 A Door Step Towards Quantum Computation

A traditional computer circuits comprised of wires and logic gates, where the wires
transfer the information which is further manipulated by logic gates to perform some
operations. In quantum computers, the information is switched with the help of
change in quantum states. These states are defined using linear combinations, called
as superposition for a single qubit system as given in Eq. 4. Where, α & β are the
two complex numbers and |0〉, |1〉 shows the Dirac notations of the two states.

|ψ〉 = α|0〉 + β|1〉 (4)

Out of the infinite quantum information space (Hilbert Space) in the superposition,
there are two quantum states |0〉 and 1〉 that can be easily recognizable for performing
any operation. These states refers the ground state and excited state of electrons in
an atom respectively, as demonstrated in Fig. 9. The qubit is once propagated from
the input will not be taken back and cannot be taken as inputs to multiple stages in
a quantum system.

A quantum circuit contains elementary quantum gates to hold and manipulate the
quantum information. The smallest (and trivial) member of this family is elementary
NOT gate whose functionality is as usual. Rather than a truth table, these gates
are represented in form of a matrix, which pursue the linearity of quantum gates.
ControlledNOT, Z, H, SWAP are the elementary quantumgates that can be derived to
multiple qubit gates. Similar to reversible gates a quantum controlled NOT gate used
to invert a state and SWAP gate is used to interchange any two states. The change of

Fig. 9 qubit representation
as two electronic levels
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states in quantum NOT gate can be given by α|0〉 + β|1〉 → α|1〉 + β|0〉. The swap
and copy operations are process for minimum of two qubit system. The archetypal
multi-qubit quantum gates are controlled NOT gates, similar as that of reversible
MCT and MCF gates and all the quantum operations are inherently reversible in
nature.

Hence, regardless of the physical implementation, the research in design and syn-
thesis of reversible logic circuits will be the foundations of quantum computers.
The implementation of reversible logic will be formulated in conjunction with quan-
tum technology. The full scope of potential technologies has not been imagined yet
nor it will be, until definite quantum information hardware is obtainable for future
generations of computation. The reversible logic designs and synthesis methods are
independent of the implementation technique. Once the implementation becomes
more stable for fabrication, the design can be set into a real hardware device.

4 Summary of the Chapter

However, physical implementation is limitedly experimented, a healthy research has
been accomplished in the area of reversible logic circuits. Following are the key
points that are discussed in this chapter:

• Description of the theory of reversible logic
• Basis definitions and notations
• Explanations of reversible gates and their properties
• Explains all the cost metrics used for analysis
• Efficacy of Toffoli and Fredkin gates for reversible and quantum circuit imple-
mentations ihas been emphasized

• Connections of reversible logic with quantum computation
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Design of Reversible Hardware BinDCT

I. Gassoumi, L. Touil and B. Ouni

Abstract Recently, reversible logic computation has attracted researchers’ attention
for implementing low-power digital logic designs. In fact, no information is wasted
in this approach, i.e., it performs a bijective function. This chapter introduces a
hardware design of reversible BinDCT. It is a new proposal in reversible approach.
In this study, we dealt with a variety of sub-modules, which have a better performance
in terms of constant inputs (CIs), garbage output (GO), power and quantum cost (QC)
as well as the delay than that of existing designs. This work can offer a vital step
in the design of reversible designs for in the field of image processing. It could also
be present as an essential step in this area since the image processing systems are
known to be the biggest energy consumers.

1 Introduction

As we integrate more and more logic elements into lower volumes and pilot them at
high frequencies, the system dissipates more andmore heat. This creates many issues
like portable systems exhaust their batteries, energy costs money, systems overheat,
and others. In the classical digital circuits, significant energy dissipation appears, i.e.,
irreversible devices could losses some information over the treatments. Information
waste produces because the outputs signals do not uniquely define its inputs signals.
In fact, fromLandauer’s principle, the energy transferred in the form of heat is at least
0.6931 K.T joules where “T” is the temperature of the environment [1]. In reversible
logic computation, there are no erased bits [2]. One of the emerging technologies
that can be used for building partially low-power digital systems is reversible logic.
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Thus to save power dissipation, systems should be performed from gates reversible
in nature. A circuit is reversible if its output values define its input values, i.e., it
performs a bijective function since it can return to its initial state [2–5].

Synthesis of reversible designs imposes more design constraints than traditional
irreversible synthesis. Reversible circuit is a circuit that is able to return to any previ-
ous state in reverse order. In recent years, several efforts have been made toward the
design of many arithmetic circuits such as adders/subtractors, BCD adders, multipli-
ers, and other digital circuits [6–17]. On the other hand, for numerical circuits, video
processing systems are one of the most energy consumers’ applications. Discrete
Cosine Transform (DCT) is one of the most important modules of several signal
processing systems such as image and audio compression [18]. It consumes large
amounts of energy because of the intensive computations required [18, 19]. There-
fore, to further reduce the complexity of the DCT module, some approximations
have been proposed by researchers to tackle this problem [20]. The BinDCT is fast
multiplierless approximations of DCT [21], which is composed of adders and shift
registers. In the last few years, several works are devoted to VLSI implementation of
the BinDCT algorithm [22–24]. Most of these works are concerned in the classical
implementation of this algorithm. However, the semiconductor/VLSI industry faces
problems in the domain of device density, short channel effects, and scaling along
with power consumption. Consequently, these truths motivate designers to study new
solutions to grant low power consumption for image processing systems. Reversible
approach is one of themost promising technologies, which can present a fundamental
step toward the design of future digital circuits.

Recently, some interesting reversible designs have been proposed for image pro-
cessing applications [25, 26]. All these above factors motivate us to investigate a
new architecture around reversible logic, which can efficiently perform BinDCT
operation.

This chapter is organized as follows: In Sect. 2, basic reversible systems are
introduced. In Sect. 3, the architecture of BinDCT algorithm is presented. Section 4
describes the implementation of reversible BinDCTmodule. Results and comparison
of the proposed design are reported in Sect. 5.

2 Basic Reversible Logic Gates and Literature Overview

Till now, researchers/designers are devoted to propose reversible gates [27–38]. Each
gate has a related quantum cost (QC). The NOT gate is a 1-q-bit gate and it has a QC
of zero. The N-bit Controlled-Gate has QC of n–1. The Feynman gate can function
as a CNOT. It is extensively utilized to surmount the fan-out issue since it is not
permitted in the reversible approach. The QC of Feynman gate is one. The QC of
a Double Feynman gate is 2. In addition, TR gate, Peres gate, and Fredkin gate are
3* 3 reversible gates. The QCs of mentioned gates are, respectively, five, four, and
four. On the other hand, the delay presents a fundamental metric of a logic design. It
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Table 1 Reversible logic
gates

Gate Quantum cost Delay

Feynman gate 1 �FG = 1�

NOT gate 1 �NG = 1�

TR gate 5 �TRG = 4�

Toffoli gate 4 �TG = 5�

Peres gate 4 �PG = 4�

Fredkin gate 5 �FRG = 5�

BHA gate 4 �BHA = 4�

may be determined by the utmost number of gates in the critical path [39]. The total
delay of the circuit is Delay = Depth*�

Reversible gates (1*1 and 2*2) are generally used to determine the logical depth
[39, 40]. The quantum gates (V and V+) can be determined by the subsequent prop-
erties:

V*V = NOT
V*V+ = V+ = V = I
V+*V+ = Not

Table 1 shows the QC and the delay of some reversible gates. Figure 1 depicts
some reversible gates and its quantum realization. These reversible gates help
researchers/designers to design higher complex computing circuits.

The goodness of a reversible circuit is specified by certain criteria as follows:

• Constant inputs (CIs): Some inputs values (“0” and “1”) are added in the circuit
to perform desired function.

• A complete reversible design may also be realized in corresponding quantum
implementation using elementary quantum gates. The sums of these gates are
noted as quantum cost (QC) of the system.

• Garbage outputs (GOs): To retain the bijectivity property in the achievement of
reversible designs, some outputs are unused. These outputs are known as garbage
outputs.

• Gate count (GC): The whole number of reversible gates needed to realize a
reversible system corresponds to its gate count.

3 BinDCT Algorithm

As the DCT computation imposes complicated calculation, its hardware implemen-
tation consumes further power and area [41]. The BinDCT approximation reduces
the complication of the DCT module. Several algorithms for BinDCT have been
proposed in the literature. These configurations present a difference in the number
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Fig. 1 Reversible gates and its quantum implementations
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Fig. 2 Structure of the BinDCT

of arithmetic operations. Each one of these configurations has a dissimilar approxi-
mation of “P” and “U” values and a different number of addition and shifts. In this
chapter, the configuration called C7 has been exploited as mentioned in Fig. 2.

4 Proposed Reversible BinDCT Design

The used configuration of the BinDCT, which is proposed in our previous work
[42], is composed of four stages. This architecture requires 28 additions/subtractions
and 28 shift operations. In this section, we discuss in detail the reversible BinDCT
architecture

4.1 Study of the First Stage

In the first stage, we use Fan-out generator circuit (FG), 8-bit parallel adder, and 8-bit
parallel subtractor as shown in Fig. 3.

Fan-Out Generator Circuit (FG)

In the first stage, the role of Fan-out generator sub-module (FG) is used to create
replications of the eight inputs line X0–X7 (8-bit each line). Here, Feynman gate
is used as Fan-out generation by setting zero to the B input. Figure 4a shows the
proposed circuit which is composed of eight Feynman gates.

Corresponding simulation result of this sub-circuit is depicted in Fig. 4b. Hence,
the total quantum cost of the Fan-out generator circuit is 8. The critical path for this
circuit contains one FG gate (�FG = 1�).
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8-bit Full-Adder/Subtractor

Recently, various methods have been utilized to perform reversible adder/subtractor
circuits [42, 43]. Here, we present a modified version of adder design presented in
[42]. The designing of this sub-module can be accomplished with the use of PG gate
and FG gate. Figure 5a shows the implementation of the designed adder/subtractor
with the timing diagram in Fig. 5b. The reversible adder/subtractor executes a sub-
traction or addition according to the control line (Ctrl). The QC of the designed
circuit is 9. The critical path for this circuit contains one FG and two PG gates.
An 8-bit adder/subtractor can easily be constructed by cascading eight reversible
adders/subtractors as shown in Fig. 6. The total QC of this module is 72, the number
of garbage outputs is 16, and Depth = 72.

As can be seen from Fig. 3 that eight Fan-out generator circuits, four 8-bit full-
adders, and four 8-bit full subtractors have been used. Consequently, this stage needs,
respectively, 72 constant inputs, 128 GOs, and it has a QC of 612. The delay of the
first stage = delay of fan-out circuit + delay of 8-bit adder/subtractor = 1� + 72�
= 73�.
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Fig. 5 a A full-adder/subtractor circuit, b its timing diagram
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4.2 Etude of the Second Stage

This stage is formed of four Fan-out generator circuits (Fig. 5), two 8-bit Full-Adders,
two 8-bit Full-Subtractors, and four 8-bit universal shift registers (USRs). The Full-
adder/subtractor design is proposed in the first stage (Fig. 6). The schematic of stage
two is shown in Fig. 7 where

• P4 = 1/2
• Z0 = a5−1/2 × a6
• U4 = 3/4 = 1/2 + 1/4
• P5 = 1/2

Reversible Universal Shift Register (USR)

The 8-bit USR is a register, which is composed of eight 4:1 multiplexers to drive the
input signals of eight flip-flops in the register which are also connected to the clock
input.
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Fig. 9 a Proposed D Flip-Flop, b timing diagram

The proposed design of 4:1 reversible multiplexer is performed using three BHA
gates [25] as depicted in Fig. 8a. The corresponding timing diagram of the designed
4:1 multiplexer is illustrated in Fig. 8b. According to Fig. 8a, we find that this design
generates five garbage outputs and zero constant input. The QC of this structure is
12. The delay of the 4:1 multiplexer circuit is 8�. On the other hand, the realization
of D Flip-Flop can be done using single BHC gate [25]. The output of D Flip-Flop
is computed as follows:

Q(t + 1) = Clk ′.Q(t) + Clk.D (1)

The structure and the timing diagram of this design are presented in Fig. (9a, b).
The block diagram of the designed universal shift register is depicted in Fig. 10.
Table 2 presents the truth table of the USR. The quantum cost of the proposed 8-bit
universal shift register (USR) is 158. It has 30 ancilla inputs and 57 GOs. The delay
of the proposed USR is �MUX + �DFF + �FG = 8 + 5 +1 = 14�.
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Table 2 Truth table of the
USR

S1 S0 Final output

0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

Therefore, the total quantum cost (QC) of this stage is 952, 292 garbage outputs,
and 184 constant inputs. The critical path of this stage is 348�.

4.3 Etude of Stage 3

The stage 3 is formed of 8 fan-out generator circuits, four 8-bit full-adders, and four
8-bit full-subtractors as depicted in Fig. 11. The same F-G circuit, USR, and 8-bit
Full-Adder/Subtractor circuit in stage 1 and 2 are used in this stage. Clearly that
stage 3 generates a total number of 128 CIs, 128 GOs. The total QC of this stage is
640. It has a delay of 73�.
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Fig. 11 Architecture of the stage 3

4.4 Etude of Stage 4

The stage 4 requires ten FG circuits, two 8-bits parallel adder, six 8-bits parallel
subtractors, and eight USR as illustrated in Fig. 12. It generates a total number of
384 CIs and 584 GOs. The total QC of stage 4 is 1920. It has a delay of 174�.
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5 Comparative Analysis and Simulation Results

In this work, the Microwind DSCH 3.5 tool is used to verify the functionality of
the designed reversible circuits [44] to check the correctness of the proposed sub-
modules. The simulation results indicate that the outputs of the designed sub-modules
are correctly obtained.

Tables 3, 4, 5, 6, and 7 demonstrate the comparative results between our proposed
sub-modules and other existing sub-modules.We find that the proposed sub-modules
of reversible BinDCT design outperform the existing ones.

Table 3 Comparison of various 1-bit full-adder designs

Design Garbage
output

Constant
input

Quantum
cost

Delay Power(µW)

[42] 5 3 21 21� N.A

[25] 4 2 18 N.A 13.7

[45] 1 2 14 8� N.A

[46] 5 3 19 19� N.A

[42] 3 1 14 14� N.A

[42] 3 1 10 10� N.A

Proposed
design

2 1 9 9� 11.29

Table 4 Comparison of various 8-bit full-adder designs

Design Garbage
outputs

Constant inputs Quantum cost Delay Power
(µW)

[42] 42 34 192 N.A N.A

[42] 48 34 168 N.A N.A

[34] 24 16 138 N.A N.A

[25] 25 16 124 N.A 204

[42] 23 8 76 N.A N.A

Proposed
design

16 8 72 72� 172.64

Table 5 Comparison of 4-to-1 reversible multiplexer designs

Design Number of
gates

Garbage
outputs

Quantum cost Delay Power
(µW)

[47] 3 5 15 15� N.A

Proposed
design

3 5 12 12� 22.3
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Table 6 Comparison of reversible D-Latch

Design Number of
gates

Garbage
outputs

Quantum
cost

Delay Power(µW)

[47] 2 2 7 7� N.A

[48] 2 2 6 6� N.A

Proposed
design

1 2 5 5� 7.16

Table 7 Comparison of proposed of universal shift register with previous works

Design Garbage
outputs

Constant
inputs

Quantum
cost

Delay Power(µW)

[48] 55 49 288 N.A N.A

Proposed
design

57 30 158 14� 269.33

6 Conclusion

Designing a fast and highly efficient architecture based on BinDCT algorithm is of
great importance for low-power image and video compression systems. Reversible
logic is the way to future computing technologies. It can be become obligatory
because of the necessity to reduce power consumption better than the classical cir-
cuits. In this chapter, a novel design of BinDCT module based on reversible logic
is obtained by combining the different implementations of reversible sub-modules,
which is first ever proposed in the literature. The proposed circuit can be used in
image and video compression in order, to meet the real-time constraints particu-
larly on mobile devices. Future extensions such as various applications based on this
reversible BinDCT module could be investigated.

References

1. Landauer R (1961) Irreversibility and heat generation in computing process. IBM J Res Dev
183–191

2. Bennett CH (1973) Logical reversibility of computation IBM J Res Dev 525–532
3. Shende VV, Prasad AK, Markov IL (2003) Synthesis of reversible logic circuits. IEEE Trans

CAD 710–722
4. Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with

linear optics. Nature 46–52
5. Chandana S, Navya C, Nagamani AN (2016) Design of register file using re versible logic.

IEEE Int Conf Circuit Power Comput Technol (ICCPCT)
6. Chenga CS, Singh AK, Gopala L (2015) Efficient three variables reversible logic synthesis

using mixed polarity Toffoli gate. Procedia Comput Sci 362–368
7. Maslov D, Dueck GW, Miller M (2008) Quantum circuit simplification and level compaction.

IEEE Trans Comput-Aided Des. Integr. Circuits Syst 436–444



34 I. Gassoumi et al.

8. Saeedi M, Markov IL (2014) Synthesis and optimization of reversible circuits a survey. ACM
Comput Surv (CSUR) 1–34

9. Cheng CS, Singh AK (2015) Heuristic synthesis of reversible logic–a comparative study. Adv
Electr Electron Eng 210–225

10. Babu HM, IslamMR, Chowdhury AR, Chowdhury SMA (2004) Synthesis of full-adder circuit
using reversible logic. In: 17th International conference on VLSI design, pp 757–760

11. Thapliyal H, Ranganathan N (2013) Design of efficient reversible logic-based binary and BCD
adder circuits. ACM J Emerg Technol Comput Syst 1–31

12. Biswas AK, Hasan MM, Chowdhury AR, Babu HMH. (2008) Efficient approaches for design-
ing reversible binary coded decimal adders. Microelectron J 1693–1703

13. Nagamani A, Ashwin S, Vinod KA (2014) Design of optimized reversible binary
adder/subtractor and BCD adder. In: International conference on contemporary computing
and informatics (IC3I)

14. Moghadam MZ, Navi K (2012) Ultra-area-efficient reversible multiplier. Microelectron. J
377–385

15. MorrisonM, Ranganathan N (2011) Design of a reversible ALU based on novel programmable
reversible logic gate structures. In: IEEE computer society annual symposium on VLSI

16. RangarajuHG,HegdeV, RajaKB,MuralidharaKN (2012) Design of efficient reversible binary
comparator. In: International conference on communication technology and system design, pp
897–904

17. Morrison M, Lewandowski M, Ranganathan N (2012) Design of a tree-based comparator and
memory unit based on a novel reversible logic structure. In: IEEE Computer Society Annual
Symposium on VLSI, pp 331–336

18. Antonino T, Matteo M, Gianluca P, Fabrizio F, Donatella S (2007) Pipelined fast 2D-DCT
accelerator for FPGA-based SoCs. In: IEEE Computer Society Annual Symposium on VLSI,
pp 9–11

19. Primechaev S, Frolov A, Simak B (2007) Scene changedetection using DCT features in trans-
form domain videoindexing. In: 14th International workshop systems, signals and image pro-
cessing and 6th EURASIP conference focused on speech and image processing, multi media
communications and services, pp 369–372

20. Murphy C, Harvey M (2002) Reconfigurable hardware implementation of BinDCT. Electron
Lett 1012–1013

21. Liang J, Tran T (2001) Fast multiplierless approximations of the DCT with the lifting scheme.
IEEE Trans Signal Process 3032–3044

22. Philip PD, Paul MC, Truong QN (2005) BinDCT and its efficient VLSI Architectures for
real-time embedded applications. J Imaging Sci Technol 124–137

23. Mahmoud FK (2007) Image compression using BinDCT for dynamic hardware FPGA’s, thesis.
Liverpool John Moores University

24. Abdessalem BA, Ichraf C, Abdellatif M (2016) Efficient BinDCT hardware architecture explo-
ration and implementation on FPGA. J Adv Res 909–922

25. LamjedT,BouraouiO (2017)Design of hardwareRGB toHMMDconverter based on reversible
logic. IET Image Process 646–655

26. Bikash D, Jadav CD, Debashis D (2017) Reversible logic-based image ste ganography using
quantum dot cellular automata for secure nanocommunication. IET Circuits Devices Syst 1–10

27. Toffoli T (1980) Reversible computing. Technical memoMIT/LCS/TM-151, MIT lab for com-
puter science

28. Feynman RP (1985) Quantum mechanical computers. Opt News 11–20
29. Chanderkanta AB, Santosh K (2017) Ultrafast optical reversible double Feynman logic gate

using electro-optic effect in lithium-niobate basedMach Zehnder interferometers. In: Proceed-
ing of SPIE, oxide-based materials and devices VIII, vol 10105, pp 1010520

30. Moraga C (2014) Mixed polarity reversible peresgates. IET Electron. Lett 987–989
31. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computing Oxford Uni-

versity Press, Oxford, eBook-LinG, ISBN 0-19-857000-7
32. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theoreical Phys 219–253



Design of Reversible Hardware BinDCT 35

33. Mohammadi M, Eshghi M, Haghparast M, Bahrololoom A (2008) Design and optimization
of reversible BCD adder/subtractor circuit for quantum and nanotechnology based systems.
World Appl Sci J 787–792

34. HaghparastM,NaviK (2008)Anovel reversibleBCDadder for nanotechnology based systems.
Am J Appl Sci 282–288; Peres A (1985) Reversible logic and quantum computers. Phys Rev
A 3266–3276

35. Ali NB, Sajjad W, Nazir H (2015) A new approach of presenting reversible logic gate in
nanoscale. SpringerPlus 153

36. GuowuY, HungWNN, Xiaoyu S (2005)Majority-based reversible logic gates. Theor. Comput.
Sci, 259–274

37. Lenin G, Nor S, Mohd M (2014) Design and synthesis of reversible arithmetic and logic unit
(ALU). In: IEEE conference computer, communications, and control technology (I4CT)

38. Stolze J, Suter D (2004) Quantum computing: a short course from theory to experiment. Wiley,
Weinheim

39. Bruce J, ThorntonM, Shivakumaraiah L,Kokate P, LiX (2002) Efficient adder circuits based on
a conservative reversible logic gate. In: Proceedings IEEE computer society annual symposium
on VLSI, pp 74–79

40. Murphy C, HarveyM (2002) Reconfigurable hardware implementation BinDCT. Electron Lett
1012–1013

41. Rangaraju HG, Venugopal U, Muralidhara KN, Raja KB (2010) Low power reversible parallel
binary adder/subtractor. Int J VLSI Des Commun Syst 23–34

42. Shekoofeh M, Mohammad R, Reshadinezhad (2015) A Novel 4x4 Universal reversible gate
as a cost efficient full adder/subtractor in terms of re versible and quantum metrics. Int J Mod
Educ Comput Sci 28–34

43. Microwind DSCH—schematic editor and digital simulator. http://www.microwind.net/dsch.
ph

44. Thersesal T, Sathish K, Aswinkumor R (2015) A new design of optical reversible adder and
subtractor using MZI. Int J Sci Res Publ 1–6

45. Gupta A, Singla P, Gupta J, Maheshwari N (2013) An improved structure of reversible adder
and subtractor. Int J Electron Comput Sci Eng 712–718

46. Shamsujjoha MH, Hasan M, Lafifa J (2013) Design of a compact reversible fault tolerant
field programmable gate array: a novel approach in reversible logic synthesis. Microelectron J
519–537

47. Nazma TH, Hasan, BM, Lafifa J (2017) Power efficient optimum design of the reversible
plessey logic block of a field-programmable gate array. J Sustain Comput 1–35

48. Dastan F, Haghparas M (2012) A novel nanometric reversible signed divider with overflow
checking capability. Res J Appl Sci Eng Technol 535–543

http://www.microwind.net/dsch.ph


Novel Approaches for Designing
Reversible Counters

T. N. Sasamal, H. M. Gaur, A. K. Singh and A. Mohan

Abstract Reversible logic offers an alternative computation for future low-power
computing devices. In this paper, an efficient and potent universal 33 and 44 reversible
gates are considered to implement 4-bit counter. Performance of the proposed 33
gate is verified using thirteen standard three variables Boolean functions, which
demonstrate from 17.8 to 45.2% superiority in term of gate counts obtained with
other reversible gates. New structures for T flip-flop andDflip-flop, which utilize two
efficient reversible gates are presented. These flip-flops and some existing gates are
utilized to implement the Mod-16 counter and 4-bit Up/down counter. The reported
architectures are modeled using VHDL and functional simulations are done using
ISIM.

1 Introduction

Reversible logic offers a new computational paradigm for low power and high-speed
nano scale device. As stated by Landauer [1], there will be at least KBTln2 Joules
of heat dissipated out of the system for one bit of information erasure during com-
putation. Bennett [2] showed dissipation close to zero is attendable, if information
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processing are carried out without erasing the information, i.e, by utilizing reversible
gates. Reversible gates are the basic constituents of the reversible logic which allow
a bijective relationship between input and outputs. Whereas the traditional gates
cannot recover the input states from the generated output states due to its inherent
irreversibility property. In this aspect, reversible logic design plays an important role
in development of nanotechnology. Various research works have been offered in the
direction including reversible computing [3–8], but less work has been reported for
reversible sequential circuits. This paved the way to design new efficient structure for
counters. The counters are the essential components of a digital system. The counter
outputs depends on current input and previous state of the system, which drives the
counter through predefined states. This feature helps to compute the number of clock
pulses, timer and frequency divider, etc. In this work, we have presented synchronous
Mod-16 counter and Asynchronous Up/Down counters by utilizing reversible gates.
The rest of the chapter is organised as follows: Sect. 2 provides quick introduction
to various exiting reversible gates along with two efficient reversible gates. Section3
introduces two novel structures for 4-bit counter and corresponding performance
analysis. Section4 showcases the functional simulation results. Section5 concludes
the presented work.

2 Novel Reversible Gate

Reversible logic designutilizes reversible gates as the fundamental blocks.Reversible
gates result bijective mapping between input and the output vectors. Hence, the
number of inputs and outputs are equal. Several efforts have been made for efficient
reversible gate designs [9–16]. Figure1 depicts schematic of some of the primitive
3 × 3 reversible gates.

In [17], authors reported a universal parity preserving 4 × 4 reversible gate. It
maps inputs (A, B, C) to outputs (P = A ⊕ C ⊕ D, Q = D ⊕ BC, R = C, S = D ⊕
B ⊕ C ⊕ BC). Figure2 depicts the quantum realization of corresponding gate. The
QC is 10 and quantum gate count 6. The SMS gate is utilized to design T flip-flop.
A novel 3 × 3 reversible gate is proposed in [18]. It consists of 3 inputs (A, B, C)
and 3 outputs (P = A ⊕ B ⊕ C, Q = A.C+B′.C′, R = A.C+B.C′). The quantum
implementation of the PRG gate is given in Fig. 3. The QC is 9 and quantum gate
count 5. The PRG gate is utilized to design D flip-flop. To evaluate the efficacy of
PRG with respect to the other primitive gates, the 13 standard 3-variable Boolean
functions have been considered among the 256 possible functions. The GC needed
to realize the standard functions considering existing reversible gates is depicted in
Table 1. Comparison displays the suitability of PRG to implement various logical
functions in term of gate count (GC).
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Fig. 1 Block diagram of a
Toffoli [9] b Fredkin [10] c
Peres [11] d QCA1 [12] e
RUG [13] f RM [14]

(a)

(b)

(c)

(d)

(e)

(f)
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B

Fig. 2 Quantum realization of SMS gate

Fig. 3 Quantum
representation of PRG gate

Table 1 Comparison of the 13 standard functions in terms of gate counts

Sr.No. Functions Toffoli Peres QCA1 Fredkin RM RUG PRG

1 F1 = ABC 2 2 2 2 2 3 2

2 F2 = AB 1 1 1 1 1 1 1

3 F3 = ABC+A′B′C′ 3 3 2 3 2 2 3

4 F4 = ABC+AB′C′ 5 4 3 4 3 3 2

5 F5 = AB+BC 2 2 2 2 2 3 2

6 F6 = AB+A′B′C 5 3 3 5 2 3 2

7 F7 = A′BC+A′B′C′+ABC′ 6 4 3 6 3 3 3

8 F8 = A 1 1 1 1 1 1 1

9 F9 = AB+BC+AC 5 4 1 5 5 1 2

10 F10 = AB+B′C 3 3 3 1 1 3 1

11 F11 = AB+BC+A′B′C′ 5 1 4 6 2 4 2

12 F12 = AB+A′B′ 2 1 2 2 2 2 1

13 F13 = ABC+A′B′C+ 2 3 2 3 2 2 1

AB′C′+A′BC′

Total 42 32 29 41 28 30 23

Improvement (%) 45.2% 28.1% 20.6% 43.9% 17.8% 23.3% –

3 Reversible Counter

3.1 Traditional Counters

Conventional counters are broadly categories into two types: (1) Synchronous;
(2) Asynchronous. In synchronous counters, all the flip-flops are activated simul-
taneously without adding delay incurred by individual flip-flop. Therefore the
counter works at a higher frequency as compared to its counterpart ripple counter/
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(a)

(b)

Fig. 4 Conventional counters a Mod-8 counter b 4-bit Up/Down counter
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Fig. 5 Block diagram of reversible D flip-flop

asynchronous counter. A Mod-8 synchronous counter is depicted in Fig. 4a using
D flip-flops [19]. An additional input signal W is provided for control purpose. If
W input is 1, the circuit count is incremented else remains unchanged. Figure4b
illustrates conventional 4-bit synchronous Up/Down counter [20]. For the input Up
= 1 or Down = 0, the circuit counts Up or Down, respectively (Fig. 4b).

3.2 Proposed Reversible Counter

3.2.1 Mod-16 Counter

The new reversible structure of the Mod-16 counter is presented in Fig. 6. As dis-
cussed in [19], the input D to the flip-flops can be expressed as follows:

D0 = W ⊕ Q0

D1 = WQ0 ⊕ Q1

D2 = WQ0Q1 ⊕ Q2

The design utilizes four D flip-flops, 3 NOT gates, two Feynman gates (FG)
along with three Toffoli gates (3 × 3, 4 × 4, 5 × 5) to counts from 0 to 15. These
Toffoli gates are responsible for generating the inputs D1 to D3, while one FG is
used to produce D0. The reversible D flip-flop block comprises the PRG gate and
F2G) as depicted in Fig. 5. All the flip-flops are triggered with positive edge of
the clock signal and generate outputs Q and Q′. The quantum implementation of
the proposed Mod-16 counter requires quantum cost (QC) of 99, ancilla (constant)
input of 12, and garbage output of 8. A n-bit version of the Mod-16 counter is
implemented by cascading n D flip-flops,

(
n − 1

)
NOT gates, (n+1) Feynman gates,

and
(
n − 1

)
Toffoli gates with number of control lines m ∈ 2, 3, . . . , n. For the n-

bit counter, the QC is
(
11 × n

) + (
n − 1

) × 1 + (
n + 1

) × 1 + ∑ (
2m+1 − 3

)
,m ∈

2, 3, . . . , n; i.e., QC = 13n + ∑
(2m+1 − 3),m ∈ 2, 3, . . . , n; 13n constant inputs,

and 2n garbage outputs.
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Fig. 7 Block diagram of reversible T flip-flop

Table 2 Performance comparison of different type of reversible 4-bit Up/Down counters

QC Ancilla input Garbage output

Reference [21] 96 23 20

Presented circuit 104 22 17

3.2.2 4-bit Up/Down Counter

A new reversible structure for the 4-bit Up/Down counter is presented as in Fig. 8.
This design utilizes four T flip-flops, 6 Peres gates, one Feynman gate (FG) along
with two Modified Toffoli gates to counts from 0 to 15. The reversible T flip-flop
block comprises the SMS gate and F2G as shown in Fig. 7. All the flip-flops are
triggered with positive edge of the clock signal and generate outputs Q and Q′.
The performance of reversible 4-bit controlled Up/Down synchronous counter can
be illustrated easily after referring to the results in Table 2. The quantum imple-
mentation of the proposed 4-bit Up/Down counter requires quantum cost (QC) of
104, ancilla input of 22, and garbage output of 17. A n-bit version of the 4-bit
Up/Down counter is designed by cascading n T flip-flops, (n − 1) modified Tof-
foli gates, one Feynman gate, and 2(n − 1) Toffoli gates. For the n-bit counter, the
QC is (12 × n) + 2(n − 1) × 4 + (n − 1) × 5, i.e., QC = 25n − 13, 6n − 2 constant
inputs, and 4n + 1 garbage outputs.

4 Functional Verification

Proposed circuits aremodeled inVHDLand usingXilinx ISE14.7. To check the logic
functionality of the presented structures, functional simulations have been performed
on ISim simulator. Simulation result of the reversible Mod-16 counter is depicted in
Fig. 9. In Fig. 9, whenW = 1, the counter counts from 0 to 15 and return to 0 on every
positive edge of the clock signal. Simulation results of the proposed 4-bit Up/Down
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Fig. 9 Simulation result of reversible Mod-16 counter (W = 1)

Fig. 10 Simulation result of reversible 4-bit Up counter (U = 1)

Fig. 11 Simulation result of reversible 4-bit Down counter (U = 0)
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counter is presented for control input U = 1 and U = 0 as shown in Figs. 10 and
11, respectively. For U = 1, the counter works as a Up counter and counts from 0
to 15 and back to 0 on every rising edge of the clock signal. For U = 0, the counter
behaves as a Up counter which counts from 15 to 0 and back to 15 on every positive
edge of the clock signal. All these results reveal the correct logical functionality of
the proposed designs.

5 Summary

This work shows efficient designs of reversible Mod-16 counter and 4-bit Up/Down
counter. A new structure of Mod-16 counter is proposed using D flip-flops, which
are based on a compact 3 × 3 reversible gate. Whereas the presented 4-bit Up/Down
counter uses T flip-flops, which are based on a area efficient 4 × 4 reversible gate.
The performances of the designs are evaluated considering quantum cost, garbage
output, and ancilla inputs. All the designs aremodeled usingVHDL,while functional
verifications are done using ISIM simulator. To show universality, n-bit counters are
also demonstrated.

References

1. Landauer R (1961) Irreversibility and heat generation in the computational process. IBM J Res
Dev 5:183–191

2. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532
3. Ren J, Semenov VK (2011) Progress with physically and logically reversible superconducting

digital circuits. IEEE Trans Appl Supercond 21(3):780–786
4. Knil E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with

linear optics. Nature 46–52
5. Sasamal TN, Singh AK, Mohan A (2016) Efficient design of reversible ALU in quantum-dot

cellular automata. Int J Light Electron Opt 127(15):6172–6182
6. Sasamal TN, Singh AK, Mohan A (2015) Design of two-rail checker using a new parity

preserving reversible logic gate. Int J Comput Theory Eng 7(4)
7. Das JC, De D (2016) Novel low power reversible binary incrementer design using quantum-dot

cellular automata. Microprocess Microsyst 42:10–23
8. Chabi AM, Roohi A, Khademolhosseini H, Sheikhfaal S (2017) Towards ultra-efficient QCA

reversible circuits. Microprocess Microsyst 49:127–138
9. Toffoli T (1980) Reversible computing. Tech memoMIT/LCS/TM-151, MIT lab for computer

science
10. Fredkin F, Toffoli T (2002) Conservative logic. Springer, Berlin
11. Peres A (1985) Reversible logic and quantum computers. Phys Rev A 32(6):3266
12. MaX,Huang J,MetraC, Lombardi F (2008)Reversible gates and testability of one dimensional

arrays of molecular QCA. J Electron Test 24:297–311
13. Sen B, Saran D, SahaM, Sikdar BK (2011) Synthesis of reversible universal logic around QCA

with online testability. In: International symposium on electronic system design (ISED)
14. Sen B, Dutta M, Goswami M, Sikdar BK (2014) Modular design of testable reversible ALU

by QCA multiplexer with increase in programmability. Microelectron. J. 45(11):1522–1532



48 T. N. Sasamal et al.

15. Feynman RP (1986) Quantum mechanical computers. Found Phys 16(6):507–531
16. Parhami B (2006) Fault tolerant reversible circuits. In: Proceedings of the 40th asimolar con-

ference on signals, systems, and computers (ACSSC), pp 1726–1729
17. Sasamal TN, Singh AK, Mohan A (2016) Design of parity preserving combinational circuits

using reversible gate. In: 2nd international conference on next generation computing technolo-
gies (NGCT), Dehradun, pp 631–638. https://doi.org/10.1109/NGCT.2016.7877489

18. Sasamal TN, Singh AK, Mohan A (2018) Low complexity design of QCA reversible circuits
via clock-zone-based crossover. Int J Theor Phys (IJTP) 57(10):3127–3140

19. Brown S, Vranesic Z (2008) Fundamentals of digital logic with VHDL Design, 3rd edn.
McGraw-Hill Education, New York

20. Mano MM (2005) Digital design, 3rd edn. Prentice Hall, Englewood Cliffs
21. Rajmohan V, Ranganathan V (2011) Design of counters using reversible logic. In: 3rd interna-

tional conference on electronics computer technology, vol 5, pp 138–142

https://doi.org/10.1109/NGCT.2016.7877489


Improving the Designs of ESOP-Based
Reversible Circuits

C. Bandyopadhyay, S. Parekh, D. Roy and H. Rahaman

Abstract Finding ways to transform traditional circuits to energy efficient designs
have found immense interest in present day’s design industry and the quest of attain-
ing low power consuming design techniques breeds the concept of reversible circuit
design. One such computing paradigm that enforces reversibility in design architec-
ture is quantum computation. Since a couple of years, several researches are going to
make the reversible designs improved further and one such way of making reversible
circuit efficient is to reduce the cost of the design.Aiming to build cost-efficient archi-
tectures, here in the work, we develop an improved synthesis approach for reversible
circuit. The synthesis process has two phases. In the first phase, we present a best
neighbour based circuit design scheme, where the functional outputs share the com-
mondatawith their immediate neighbors and form shared designs. In the next phase, a
circuit optimization algorithm runs and the circuits generated in previous phase pass
through it for possible improvements in the design. The developed technique has
been tested over different benchmark functions and the experiments show that the
synthesis process followed by the optimization scheme substantially improves the
design cost. To this extent, a comparative study with related existing techniques is
undertaken and a brief analysis over the design approach is summarized at the end
of the work.
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1 Introduction

In last couple of years, the demand for energy efficient circuits and developing tech-
nologies for such architecture has received wide attention before the design industry.
In this conjuncture, “Reversible Circuit” [1, 2] has made a prominent footprint in the
industry as it promises to build low power consuming circuits. One such computing
platform that supports the design of reversible circuit is Quantum computing [3] and
it possible only due to the quantum mechanical property [4, 5] that enforces each
quantum operation to be reversible. The concept of reversible circuit is not restricted
to theoretical domain only as with the advancement of quantum circuit implement-
ing technologies (like NMR [6], Superconducting qubit [6, 7], Ion Trap [8]) physical
implementation of reversible circuit has progressed [9].

In recent time, developing efficient synthesis methodology for reversible circuit
has gained much interest in research community, where areas like way for reducing
designs overheads (like quantum cost, gate count), making the circuit fault-tolerant
have come out as main design goals.

Though there exist variety of synthesis schemes, but some synthesis approaches
have proved to be very effective to form low cost-based designs. Depending on
the scalability level and the type of algorithm deployed, such approaches can be
distributed into two different classes.

1. Optimal methods-based synthesis approach: Optimal algorithms-based syn-
thesis schemes are included in this category. Such schemes generally don’t scale
beyond 6-variable functions but within the said limit, it produces optimal solu-
tions. Algorithms like Transformation technique [10], exact approaches [11]
belong to this category.

2. Sub-optimal solution-based synthesis scheme: Solutions generated from such
schemes never produce optimal results but such synthesis schemes can be scaled
for large benchmark functions. Approaches likeGenetic algorithms, A* [12], Ant
Colony-based optimization technique [13], Simulated annealing-based synthesis
process [14], Binary Decision Diagrams (BDD)-based design approach [15] and
ESOP [16] -based representation schemes belong to this class.

Among these sub-optimal techniques, BDD and ESOP-based design approaches
are known to be effective techniques for synthesizing very large size functions.
But in comparison with BDD, ESOP generated circuits incur less design overhead
as such designs don’t require huge ancille lines like BDD needs. Though several
improvements on ESOP designs have already been made in last couple of years, but
still remain scopes to improve it further.

Aiming tomake efficient ESOP representation, here in our work, we present a best
neighbour based circuit design approachwhich first forms shared ESOP structure and
then optimize it by executing a template matching scheme. Resulting circuits from
this design approach show promising results compared to existing related works.

The rest of the chapter is organized as follows. Section 2 presents preliminaries
on reversible logic. The developed synthesis scheme is stated in Sect. 3. Section 4
presents experimental results and discussion. Finally, Sect. 5 concludes the work.
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2 Background

Here, we introduce the preliminaries on reversible circuit and cost parameters used
to evaluate efficiency of reversible circuits. A brief review on ESOP-based synthesis
is also summarized at the end of this section.

2.1 Basics on Reversible Logic and ESOP-Based Design

Definition1 A circuit is termed “Reversible Circuit” if it holds the following four
principles:

1. Circuit contains same number of input and output lines.
2. For each input pattern, there should exist a unique output pattern, i.e., mapping

should be one to one.
3. The design of circuit will be such that no fan-out should exist in the design.
4. Circuit contains reversible gates only.

There exist a set of well-known reversible gates like NOT, CNOT, Toffoli [17],
Feynman [18], Fredkin [19] which are widely used to form reversible circuits. These
reversible gates act over a set of circuit lines, where the lines that contain the control
nodes are known as control lines and function outputs are collected from target lines.

In the next example, we discuss the construction of reversible using reversible
gates.

Example1 In Fig. 1a, the design of a reversible gate is shown. The depicted gate
has two control nodes on line x1 and x2, and a target node on line t that implements
the function f = t ⊕ x1 x2. This gate is known as Toffoli gate. Like as Toffoli, the
design of CNOT and NOT gate also has been depicted in Fig. 1b, c.

When such reversible gates are appended over a set of control and target lines, then
a reversible circuit is formed. The design of a reversible circuit is given in Fig. 1d,

Fig. 1 a Toffoli Gate,
b CNOT Gate, c NOT Gate,
d reversible circuit
containing 4 reversible gates

x1

 t t  x1 
t  x1 x2

 t A Ā

x3 

x2 (x1 x2 x3)
(x1  x3)

(x1 ( x1  x2 x3 ).( x1  x3))x1

(a) (b) (c)

(d)
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where the circuit contains four reversible gates incurring a cumulative design cost of
8.

As discussed, there exist several design approaches to construct reversible circuit
and among those, ESOP is verywidely known design technique. ESOPhas a different
representation format which is discussed next.

Definition2 Like as Sum of Products (SOP) expression, where product terms are
distanced by ADD (+) operator, in ESOP, such terms are set apart using XOR (⊕)
operator. Any SOP expression can be transformed into an ESOP function by using a
set of transformation rules. For expressing an n-input,m-output function using ESOP
representation, it needs total (n + m) number of circuit lines, where n represents
number of existing control lines and the variable m stands for number of target lines
or functional outputs in the design.

For example, if the set of transformation rules are executed over a certain logic
function f = xy + yz (of SOP form), then its equivalent ESOP form turned to f = xy
⊕ yz ⊕ xyz. But to form ESOP-based designs from benchmark files, an intermediate
description is obtained and it is termed as cubelist.

Definition3 A cubelist is a collection of control node information expressed in a 2D
matrix form (m x n), where each row represents a gate and the value in the cells of
that row contains the control node information.

Example2 In Fig. 2a, a cubelist representing a benchmark function is given, where
the cubelist is formedwith five ESOP cubes. Once the cubes aremapped to respective
reversible gates, an ESOP representation is obtained in Fig. 2b. While mapping the
cubes to respective gates, the 1 bit values in the cubelist are converted to positive
control nodes and the 0 bit values to NOT gates.

2.2 Cost Functions for Reversible Circuit

For evaluating the efficiency of reversible circuit, two cost matrices, namely quantum
cost [20] and gate count are considered as prime driving factors.

Quantum Cost (QC): Minimum number of quantum operations involves to rep-
resent a quantum functionality into a circuital form is termed as quantum cost. The

Fig. 2 a Cube list for
function f (x1, x2, x3, x4) =
x2x3 ⊕ x4 ⊕ x1 ⊕ x1 x2 x4
⊕ x1 x2 x3 x4, b equivalent
ESOP representation for the
cube list of Fig. 2a

(a) (b)
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quantum cost of a reversible circuit is the cumulative cost sum of all the gates present
in the design.

Gate Count (GC): The number of gates exists in a circuit is known as gate count
of the design.

For, example a Toffoli gate has a standard cost of 5, CNOT and NOT each adds
1 cost to the design. The gate count metric for the circuit of Fig. 2b is 7 that incurs
total quantum cost of 51.

Apart from the above-mentioned cost parameters, in recent time, three new cost
matrices (T-count, T-depth [21] and NNC (nearest neighbor cost) [22]) have been
introduced, which sometimes are used to judge the design efficacy.

2.3 Brief Review on ESOP Related Works

The way for transforming an arbitrary circuit to an equivalent ESOP design was
first introduced [23], where the authors first claimed that to represent a n-input m-
output function into ESOP form, it requires total (2n + m) circuit lines but later they
improved the design and bring down the line requirement to (n + m) only.

By finding the structural symmetries between reversible gates using corelations,
an improved ESOP synthesis technique has been developed in [24], where an auto-
correlation coefficient-based cost function is also derived for identifying the gate
positions in a network.

A greedy-based template matching technique for optimizing ESOP network has
been introduced in [25], where the circuit costs are reduced considerably.

The technique for sharing of control lines to form shared structures followed by
reordering of cubes to reduce NOT gate requirement has been introduced in [26].
But this approach has a limitation as the technique does not work effectively when
common structural similarities between functional outputs are missing.

Further, the sharing concept in ESOP representation is improved in [27], where
cube clustering-based design approach is developed. Though, in the design, authors
have added a new circuit line for making the cluster feasible but the cost of the
designs has been reduced considerably.

An improved way for finding better ESOP designs by forming shared represen-
tation is introduced in [28], where reordering of cubes for minimizing NOT gate
usage has been undertaken. For further optimizing the designs, the functional power
of negative control Toffoli gate is exploited in the design architectures. The method
presented in [28] has shown very promising results for ESOP-based designs.

3 Proposed Technique

The circuits generated from synthesis algorithms are not always optimized as there
exist several ways by which the designs of the circuits can be improved further. Such
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a way is sharing of common sub-expressions between output lines that turn a simple
circuit into a shared design architecture. In our design methodology, we have derived
such a strategy that not only forms shared designs but also eliminates redundant gates
from the circuit.

This developed synthesis scheme is accomplished in two consecutive phases. In
the first phase, a best neighbor-based circuit design scheme is introduced, where
functional outputs first find the best neighbors and then share their functionalities
with the selected neighbor. The circuits generated from this stage are termed as
shared circuits. Though these shared circuits have cost-efficient representation but
they may contain redundant gates in the design. So for improving the designs further,
in the second phase, these shared circuits pass through a set of optimized templates
where the sub-circuits in the shared designs are replaced with appropriate templates.
In the experimental verification, it is seen that the best neighbor scheme followed by
optimization procedure considerably improves the design by reducing the quantum
cost. Now, here we are explaining both the design phases in detail.

Phase 1: Construction of shared ESOP designs

The primary objective of this design phase is to form shared circuits by employing
the best neighbor strategy. Previously, we have defined that an output line can be
termed as best neighbor for a functional output if it shares maximum common terms
in-between, but finding a best neighbor involves some heuristic design policy. In our
design scheme also, we have come up with a such heuristic strategy that first scans
around a functional output and then select the best partner with whom later it shares
the common functional terms. This strategy involves the following four steps.

1. Obtain a (.esop) file for a benchmark function using some existing cubelist gen-
eration tool (like EXORCISM-4 [29] that transforms a .pla file into an equivalent
.esop file). Now, if all the cubes from this .esop file are mapped into respective
gates over a set of circuit lines then an ESOP representation can be made.

2. Next, read the (.esop) file and generate all possible (n C 2) distinct combination
pairs (variable n represents the number of functional outputs in the function)
for the output lines, where we compute the number of common product terms
present between the selected pair sets.

3. Hence after, prepare an information chart based on the common shared cubes
of functional outputs and the list is sorted in such a way that the highest shared
functional pairs appear at the beginning of the list. Now, a functional output is
declared as the best neighbor of another functional output if it has shared max-
imum common terms in-between. But while finding the best matched partners,
the choice for selected pairs should be such that no two pairs will contain the
same functional outputs which are previously shared by another selected pair.
This selection process generates (n C 2) number of distinct pairs from n output
lines.

4. Now, the chosen selected pairs are allowed to share the common sub-expressions
between, which finallymake a shared ESOP representation. Now,we are explain-
ing the developed approach using two different examples. In the first one, we
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have considered a benchmark function containing even number of functional
outputs, whereas in the second example, a function comprising with odd number
of outputs. The reason for taking different functions is to show the effect of best
neighbor pairs for odd and even number of functional outputs.

Example3 Consider the following benchmark function “aj-e11_81” as given in
Fig. 3a. This function contains four input lines and four output lines. By following the
process stated in step1, we obtain the .esop file corresponding to the input function by
executing the source file (.pla file) through tool EXORCISM-4. Now, we initiate the
method stated in step2 and generate (4C2) distinct combinations {(2,3), (2,4), (1,2),
(1,3), (3,4), (1,4)} over the functional outputs. Next, prepare a sorted list containing
the pair sets with their shared information. After the completion of step2, finally we
obtain the information chart as shown in Fig. 3b.

Next, we initiate the scanning of the information chart in top-down fashion and
mark the first output pair (2, 3). This output pair shares a total 6 cubes in-between
second and third functional outputs and next we move the (2, 3) pair set in the final
sharing table. Again, we scan the chart from where we stalled and find the next pair
set (2, 4) but this output pair cannot be selected as the second functional output is
existing in the pair set (2, 3), i.e., (2, 3) ∩ (2, 4) �= φ.

Similarly, we refrain from selecting the next three output pairs as if they were
selected then the mutual exclusion property will be violated. As there does not exist
any common functional output between pair sets (2, 3) and (1, 4), so the selected
pair (1, 4) is moved to final sharing table.

Once we reach the bottom of the information chart, we stop scanning and a final
sharing table is formed in Fig. 3c. After performing the cube to gate mapping from
the information of final sharing table, a shared design is obtained in Fig. 3d.

This design has a total cost of 128 but in spite of considering the best neighbor
scheme if a simple circuit was formed from the cubelist of Fig. 3a then the design
cost would be 218. So, it is very evident that the proposed scheme improves the
design overhead by reducing quantum cost to a greater extent.

Next, we consider a function containing odd numbers of functional outputs and
will check the application of best neighbor scheme over it.

Example4 Here, now consider the benchmark circuit “pcler8_190” containing 16
inputs and 5 functional outputs. As like example3, here also we obtain the .esop file
from the benchmark’s source file using tool EXORCISM-4 (see in Fig. 4a). After
executing the step2 of our algorithm, an information sharing chart is prepared in
Fig. 4b. In step3, we first select and then move the cube pairs (3.4) and (1,2) in final
sharing table as depicted in Fig. 4c. After mapping each cube into respective gate and
sharing the common terms as per the information generated in final sharing table, a
complete design is obtained in Fig. 4d. In this problem also, as like Example 3, if a
direct ESOP representation was made (from the cube list of Fig. 4a) then the design
cost would be 368 but in our shared representation (Fig. 4d), the cost has upgraded
to 320.
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(a) (b)

(d)

(c)

Fig. 3 a Cube list for benchmark function aj-e11_81, b possible functional output pairs and their
sharing information, c computed sharing information chart, d shared ESOP representation of func-
tion aj-e11_81

Phase 2: Improving the best neighbor designs via circuit optimization

Though the best neighbor scheme effectively reduces the design cost but still remains
scopes to improve the designs further. Aiming to re-optimize the circuits generated
from previous stage, here we introduce a circuit optimization technique that not only
brings down the quantum cost further but also reduces gate count from the designs.
Basically, this optimization technique searches through the input circuit and replaces
the structure matches with appropriate templates. This optimization process works in
two steps, where in the initial step, a template matching-based optimization process
executes and in the next step, the control lines in the resultant designs are shared
in-between for making the designs efficient further.
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(a)

(b)

(c)

Fig. 4 a The computed cubelist for benchmark circuit pcler8_190, b possible functional output
pairs and their sharing information, c computed information sharing chart, d shared ESOP repre-
sentation of function pcler8_190
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(d)

Fig. 4 (continued)

(a) (b) (c)

Fig. 5 The defined templates. a ProposedTemplate1,bProposedTemplate2, c ProposedTemplate3

Step1: The templates as shown in Fig. 5 first form a template library and once a
circuit passes through that library, the templates try to find their match from
the input circuit. If a match is found then the sub-circuit is replaced with the
selected template structure.
But if the templates as defined in Fig. 5 do not find any matches then the
circuit passes through a set of new templates as depicted in Fig. 6, which
again expand the internal design based on the hamming distance of gates
and create a scope for re-optimization using the Fig. 5 templates. All the
templates defined in Figs. 5 and 6 have very generalized structures as they
can be employed over any size of circuit.

Step2: In this phase, the Phase1 generated circuit passes through a control node
sharing rule, which first finds common control nodes in-between two suc-
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Fig. 6 a Two gates with 3
hamming distance apart,
b transformed circuit from
Fig. 6a, c two gates with 2
hamming distance,
d transformed circuit from
Fig. 6c

(a) (b)

(c) (d)

cessive gates and in later time forms a shared control structure out of the
input circuit.

The way of forming shared control structures from input circuits is given in Fig. 7,
where it can be seen that both the input circuits of Fig. 7a, c have initial cost of 26
and 42, but after reconfiguring the circuits by sharing the common controls, the
costs have brought down to 15 and 25, respectively. The modified designs after the
improvements are shown in Fig. 7b, d.

Fig. 7 a Initial design
incurring total QC = 26,
b QC comes down to 15 in
after the sharing of common
control nodes, c ESOP
circuit incurring QC = 42
before sharing, d cost
reduced to 25 after the
sharing of common control
nodes

(a) (b)

(c) (d)
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(a)

(b)

Fig. 8 a The obtained circuit from step2 of Phase2 over Fig. 3d, b improved ESOP representation
of function pcler8_190

In order to explain the execution of Phase2 of optimization, we are considering
the same circuit (depicted in Figs. 3d, 4d) obtained from Phase1 of Examples 3 and
4. The resulting improved designs from Phase2 are given in Fig. 8a, b, where the cost
for both the circuits has reduced to 104 (from 117) and 275 (from 320), respectively.

So, from the above examples it can be concluded that Phase1 followed by Phase2
of optimization improves designs by diminishing the cost of circuits. Experimental
evaluation and analysis over the proposed design approach are summarized next.
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4 Experimental Results and Analysis

The proposed synthesismethod has been tested over awide range of benchmarks [30]
and the obtained results are summarized in the following two tables—Tables 1 and 2.
In Table 1, a comparison between our approach and existing ESOP techniques ([24,
25] and [16]) is summarized, where our approach generated circuits have registered
considerable improvements in design cost.

Table 1 Comparative study with existing ESOP-based synthesis approaches

Function
names

In/out QC from
[25],
approach
I

QC from
[24],
approach
II

QC from
[25],
approach
III

QC from
[16],
approach
IV

Our technique

QC after
Phase1

QC after
Phase2

ET (in
second)

3_17_6 3/3 – 45 46 39 39 35 <1

4gt12_24 4/1 43 43 43 43 42 37 <1

4gt11_23 4/1 5 5 5 5 5 5 <1

4gt10_22 4/1 35 35 35 – 34 34 <1

4mod7 4/3 167 169 169 143 147 131 <1

f2 4/4 246 – – 116 210 162 <1

4_49_7 4/4 201 222 222 119 143 103 <1

aj-e11_81 4/4 201 221 217 116 128 104 <1

wim 4/7 218 – – 150 206 168 <1

dc1_142 4/7 454 – – 201 244 172 <1

Ex2 5/1 160 – – 118 143 114 <1

Ex3 5/1 97 – – 73 76 51 <1

C17 5/2 105 81 81 – 83 82 <1

cm82a 5/3 143 – – – 128 98 <1

rd53_68 5/3 269 – – 136 246 194 <1

squar5_206 5/8 465 – – – 350 331 <1

C7552_119 5/16 – 2015 2015 1123 1535 967 <1

con1 7/2 206 – – 179 163 163 <1

rd73_69 7/3 1150 – 820 1120 711 <1

Z4_224 7/4 642 412 420 260 551 334 <1

Z4ml_225 7/4 642 – – 260 551 334 <1

sqrt8 8/4 616 – – – 568 320 <1

misex1_178 8/7 1012 – – 743 714 624 <1

dk27_146 9/9 252 – – 245 245 221 <1

max46 9/1 4968 – – 3239 4524 2588 <1

add6 12/7 5757 6751 6764 – 5518 3491 <1

alu1_94 12/8 239 216 216 – 198 172 <1

(continued)
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Table 1 (continued)

Function
names

In/out QC from
[25],
approach
I

QC from
[24],
approach
II

QC from
[25],
approach
III

QC from
[16],
approach
IV

Our technique

QC after
Phase1

QC after
Phase2

ET (in
second)

t481 16/1 236 – – 192 229 183 <1

pcler8 16/5 340 – – – 319 275 <1

mux 21/1 815 – – – 800 800 <1

cordic 23/2 348779 – – 98456 187582 69723 <1

“–” symbol (dash): signifies “Non availability of results” ET stands for: Execution Time

Table 2 Comparisons between ESOP and non-ESOP related

Benchmark specification RMRLS technique [31] RMS technique [31] Proposed design approach

Function’s
name

In/Out QC GC ET QC GC ET QC
after
Phase1

QC
after
Phase2

GC ET

decod24_10 2/4 55 11 497 19 7 <0.01 19 15 6 <0.01

mini-alu_84 4/2 173 21 495.61 248 36 <0.01 85 85 6 <0.01

rd53_68 5/3 – – >500.00 2646 221 0.14 246 194 18 <0.01

mod5adder_66 6/6 529 37 494.46 151 35 0.06 477 301 30 <0.01

rd73_69 7/3 – – >500. 20779 1344 1.93 1120 711 44 <0.01

rd84_70 8/4 – – >500. 8738 124 9.92 3554 2388 29 <0.01

cycle10_2_61 12/12 1435 26 491.87 1837 41 26.17 1788 1444 42 <0.01

plus63mod4096 12/12 – – >500. 4873 24 17.74 956 955 27 0.01

plus127mod8192 13/13 – – >500. 9131 25 57.16 1462 1461 27 0.01

plus63mod8192 13/13 – – >500. 9183 28 57.19 1356 1227 31 <0.01

InTable 2, comparisonwith non-ESOP-based techniques (Reed-Muller based [31]
and Transformation based [32]) has been summarized, where also cost improvement
is observed.

Though the presented approachmakes the circuits efficient by reducing the design
cost but it can be improved further. The areas for possible improvements and the
drawbacks of the presented method are briefed next.

• Phase1 of our approach cannot be executed over an input circuit if the circuit
contains single output only but those functions that contain higher number outputs
show considerable improvement in design cost if Phase1 of design strategy is
followed.

• Sometimes, while selecting the best neighbor pairs, we have faced conflicting
situations when two consecutive pair contains same number of shared terms. In
that case, we have selected the first one but this consideration in some cases has
lead to higher cost designs. But this selection mechanism can be improved further
if more exact heuristic is derived.
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• The design approach has certain reservation over the level of scalability as it
cannot generate circuit beyond 30 inputs and this restriction is due to the higher
time consumption while forming the sharing chart in Phase1 of design.

• Another important feature related to our design approach is, the optimization
strategy (as mentioned in Phase2) not only very useful over Phase1 generated
circuits but it can be employed for re-optimizing circuits generated from different
synthesis algorithms.

5 Conclusion

In this work, we have detailed a best neighbor-based circuit generation schemewhich
makes improved representations bymaking shared designs. Alongwith this synthesis
technique, we have also introduced a template-based optimization procedure which
further improves the design cost generated from the best neighbor technique. All
the design phases have successfully tested over a wide range of benchmarks and the
related experimental findings are stated in result tables. Comparisons with related
synthesis techniques also have been included in the result tables,where improvements
in our approach have been registered. Though this approach does not have very higher
level of scalability but can be considered as an efficient synthesis process as it brings
down the design cost of circuits to a greater extent.
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Logic Synthesis for Reversible Circuits

M. Fujita

Abstract Automatic synthesis methods of reversible circuits are discussed in this
chapter. First the basic characteristics of reversible circuits are reviewed, and the dif-
ference of logic synthesis methods for general CMOS circuits and reversible circuits
are clarified. Then logic synthesis methods for reversible circuits based on exhaustive
search, repetition of local circuit transformations, Binary Decision Diagram (BDD)
based approaches, SAT-based methods, and hierarchical methods are presented in
order. The chapter concludes with discussions on future research topics.

1 Introduction

There has been a significant progress in the development of quantum computers and
their related technology in recent years and more than 100 quantum bits (Qbits) is
now physically realizable. Although it is still far away from practical data processing
with quantum computers, such as solving computation intensive problems of prac-
tical sizes, these small-scaled quantum computers are actually used to explore the
architecture and algorithms for large problems. For academic use, such as teaching,
experiment, and developing algorithms, such quantum computers are really used by
many people, and many new results are to come up. Also, there are efforts to develop
new programming languages for quantum computers such that characteristics of
quantum computers are appropriately encoded into the design of the programming
languages. In terms of implementations with logic circuits for quantum computers,
reversible circuits give the base technology for the interests of most people.

Also, it is proved that reversible circuits should be used for low power operations,
as the power dissipation can be independent from the underlying technology as long
as irreversible logic is used [1]. Moreover, it is known that in order for the power not
to be dissipated in a circuit, it must be built from reversible gates [2].

Due to these and other reasons, there are more and more justifications to consider
circuits composed of only or mostly reversible gates. In this chapter, we discuss
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automatic logic synthesis techniques for such reversible combinational circuits. That
is, a network of reversible combinational gates is automatically generated from a
given reversible function as the specification function. As for sequential circuits,
they can be a natural extension of the reversible combinational circuits discussed in
the chapter.

2 Overall View of Reversible Circuit Synthesis

A combinational logic circuit is said to be reversible if it generates a unique output
value for each input value. That is, if the logic functions implemented with the circuit
are represented in truth tables, the output values are equivalently some permutations
of the input values. This is a very strong constraint when synthesizing combinational
reversible circuits, and so the ways to generate circuits are very different from the
logic synthesis methods for normal circuits, such as the techniques implemented
in the logic synthesis and verification tool ABC [3]. In general, the goal is to pro-
vide synthesis methodologies by which trade-offs among circuit quality, efficiency,
and feasibility are explored automatically or semi-automatically targeting reversible
circuits.

Such circuits take an important role in quantum computing, optical computing,
nanotechnology and low-power CMOS designs. There are several ways from the
viewpoint of the automatic synthesis of reversible circuits. There have been efforts
to generate minimum size (in terms of numbers of reversible gates, numbers of signal
lines, or some others) circuits. Here it is called “exact synthesis”. Although it gives
best quality in terms of the measure of the circuits, generally the time for synthesis
becomes much longer than practical, as the circuit size increases. As a result, it
can be applied only to small reversible functions, and the interests are just for their
theoretical characteristics.

Due to that, there are approaches which try to transform the given circuit into the
corresponding reversible one by going through various optimization and/or transfor-
mation processes. Here it is called “transformation based” method. Although it may
be applied to larger circuit synthesis, generally speaking, the size of reversible circuits
which can be automatically synthesis is still highly limited.One such approach to syn-
thesize relatively large reversible circuits is to generate them from Binary Decision
Diagram (BDD) [4] representation as the specification function. It is called “BDD
based” method and can theoretically synthesize reversible circuits having more than
10,000,000 gates, as it is now easy to build BDD having more than 1,000,000 nodes.
The quality of the synthesized circuits is, however, unnecessarily much larger, as
BDD representation sometimes becomes much larger than the number of gates in
the multi-level logic circuits. BDD is also used in conjunct with the exact method
and the transformation based method, as BDD is a very efficient way to canonically
represent logic functions. BDD and Boolean satisfiability checking (SAT) are the
two common methods to check the equivalence of two logic functions, and so they
can be used as tools to logically check the applicability of transformations.
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Fig. 1 Synthesis methods for reversible circuits

There are synthesis methods using LUT (Look Up Table) based approach. Here
it is called “LUT based” method, and the given circuit is transformed into a LUT
based network and then the corresponding reversible circuit is generated. This can
be generalized as “hierarchical approach” and uses two stages, partitioning a given
circuit in a set of synthesizable regions and synthesizing each region.

The above are illustrated as shown in Fig. 1. Basically the hierarchical approaches
can be applied in conjunct with various synthesis methods which are applied to
each resion after the partitioning, After the preparation and the introduction of basic
definitions, they are discussed with some illustrative examples one by one in this
chapter.

3 Preparation and Basic Definitions

For preparation, several definitions are given in this section for the discussions in the
later sections. If necessary, additional definitions may be given in the later sections
as well.

Definition 1 An m-input, m-output, Boolean function f (X ),X = (x1, x2, . . . ,
xm) is said to be reversible if it generates a unique output value for each input value.

Please note that in order to satisfy the above condition, the number of inputs and
the number of outputs in a reversible function must be the same.

Definition 2 A function f is said to be linear if and only if the following is satisfied:
f (x ⊕ y) = x(x) ⊕ f (y), where ⊕ denotes bit-wise exclusive-OR operation,

A reversible function can be specified in a truth table. The mapping between
inputs and outputs can be understood as an objective one. And so, the set of integers
0, 1, . . . , 2m − 1 corresponding to the input values are mapped onto themselves as
output values. Here the integers are recognized to be the values represented in the
input values and output values as binary. Therefore, a reversible function can be con-
sidered as an ordered set of integers corresponding to the output values of the table
with respect to the increasing order of input values. For example, 4, 6, 3, 1, 2, 0, 7, 5
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Table 1 An example truth
table

x3 x2 x1 Integer x′
3 x′

2 x′
1 Integer

0 0 0 0 1 1 0 4

0 0 1 1 1 0 0 6

0 1 0 2 0 1 1 3

0 1 1 3 0 0 1 1

1 0 0 4 0 0 0 2

1 0 1 5 0 1 0 0

1 1 0 6 1 1 1 7

1 1 1 7 1 0 1 5

represents the function shown in Table1. Here the function over integers are inter-
preted as f (0) = 4, f (1) = 6, f (2) = 3, and so on.

Basically we can understand that a reversible function performs permutations in
the numbers corresponding to the input values and the output values.

Definition 3 An n-input, n-output gate is said to be reversible if it implements a
reversible function of n inputs and outputs.

Definition 4 An n × n Toffoli gate does not change the first n − 1 lines (used as
control), and complements the nth line (the target line), if the values of the control
lines are all 1 (i.e., their product is 1).

Definition 5 A permutation is called even if a product of an even number of trans-
positions (swapping two values) implements the permutation.

A number of different reversible gates have been proposed. Here we use Toffoli
gates defined as follows.

Definition 6 An n × n Toffoli gate is described as TOFn(x1, x2, . . . , xn) where xn
is the target line. Here the prime symbol is used to denote the value of a line after
passing through the gate. Therefore the following are satisfied.

x′
1 = x1, x

′
2 = x2, . . . , x

′
n−1 = xn−1, x

′
n = x1x2 . . . xn−1 ⊕ xn

TOF1(x1)is a special one where there is no control line, and x1 is always comple-
mented. That is, it corresponds to a NOT gate in general logic circuits. TOF2(x1, x2)
is generally called controlled-NOT gate (CNOT). TOF1(x1), TOF2(x1, x2), and
TOF3(x1, x2, x3) are illustrated as shown in Fig. 2. Black dots showwhich are control
inputs and the white dots show the target line.

Definition 7 A SWAP gate exchanges its two inputs.
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Fig. 2 Toffoli gates (a) (b) (c)

4 Exact Synthesis Method

First an exact synthesis method that works for circuits of even permutation on input
values is shown as an introduction to the optimum synthesis for reversible circuits. It
can be a base for the optimum synthesis from a given function through decomposition
with branch and bound searches [5].

It can be shown that every function corresponding to a linear transformation, f
can be realized only with CNOT gates. From this it can be concluded that every
even permutation can be realized only with CNOT gates, and a branch and bounds
method for exact synthesis based on this idea is shown in [5]. Although this is a very
interesting result theoretically, it may not be applied to any realistic sizes of circuits,
as the branch and bounds methods used here take long time in general.

More recently exact synthesismethods based on satisfiability (SAT) checking have
been introduced [6, 7]. SAT checking is applied whether the current transformation
is valid or not. Here, these methods are briefly discussed by showing small examples.
For the details on the method, please see [6, 7]. Now we discuss the exact algorithms
for the synthesis of networks consisting of multiple-control Toffoli gates, that is,
automatic synthesis algorithms which guarantee that a network with the minimal
number of gates is generated. They are based on iterative algorithms which treat the
synthesis process as a repetition of generating general and parametrized circuits with
a fixed number of Toffoli gates and its decision problem to see the generated circuit
can implement the target reversible function or not. Those decision problems can
be defined as Boolean satisfiability (SAT) or SAT modulo theory (SMT) problems.
As soon as one of these decision problems is proved to be satisfiable, a network
consisting of Toffoli gates corresponding to the given function has been identified as
an instance of the generated general circuit. The performance of the synthesis, i.e.,
time for synthesis, highly depends on the encoding used in decision problems or how
to represent the general and parametrized circuits. Generally speaking this is a time
consuming process as SAT/SMT problems.

The basic idea of these exact synthesis methods is as follows: Given a reversible
function f , the problem to generate a network consisting of Toffoli gates for the
function is formulated as a sequence of generation of general and parametrized
circuits and their associated Boolean decision problems which essentially check
the existence of the implementation as an instance of the generated circuits. The
formulation is to see whether there is a network consisting of exactly d Toffoli gates
for the reversible function f and a given number d . This problem can be formulated
as either a SAT or SMT problem and solved by the corresponding solvers.
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For exact synthesis, the minimum value of d is to be found, as the circuits having
minimum numbers of gates are the targets. A straightforward approach is to start
searching a solution with the minimum value which is d = 1. If there is no solution,
i.e., the decision problem is returned to be false (UNSAT, unsatisfiable), the number of
gates in the circuit is incremented until the corresponding decision problem becomes
true (SAT, satisfiable), that it, there is a solution for the decision problem. In this way,
it is obvious that circuits with minimum numbers of gates are found. Also, other
techniques such as, upper or lower bounds estimations can be used in the search
process, which realize much more efficient methods.

However, in this searching method, the following problem can happen. Let us
consider the reversible function shown in Fig. 2 and Table 2. As the implementations
of this function, two networks consisting of Toffoli gates are shown in Fig. 3a, b.
With exhaustive or intensive searches, we understand that there exist networks with
2 gates (d = 2, (a)) and 4 gates (d = 4, (b)), but there does not exist networks with
3 gates (d = 3). This example shows that even if a realization with d gates is found,
its minimality cannot be confirmed by only checking that there is no implementation
d − 1 gates. On the other hand, in order to prove that d gates is the minimum
implementation, it is surely sufficient to show non-existence of networks with d − 1
and also d − 2 gates, as the following theorem holds (Theorem 1).

Theorem 1 Let f : Bn → Bn be a reversible function from which a circuit should
be generated. A Toffoli network consisting of d gates is a minimal implementation
in terms of the number of gates, if no implementation with d − 1 gates or no imple-
mentation with d − 2 gates exist [6].

The theorem says even if the decision problem is proven to be false (UNSAT)
with d gates, still we need to check the decision problem with d + 1 gates, if the
value of d is chosen in non-incremental ways.

Based on this, a pseudo code of an exact synthesis method based on the above
discussion becomes the following. Using the above theorem, the values may not be

Fig. 3 Function which can
be realized by networks with
d = 2 or 4 gates but can not
be realized with d = 3 gates

(a)

(b)

Table 2 An example truth
table for outputs to inputs
transformation

x2 x1 x′
2 x′

1

0 0 0 0

0 1 1 1

1 0 0 1

1 1 1 0

1 0 1 0
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necessarily incremented by one. Instead it can jump up to say, d1 as long as it can
be proven that both of the decision problems for d1 − 1 and d1 − 2 are shown to
be UNSAT. But in the pseudo code, that is not used. Instead the number of gates is
always incremented by one (line 12 in the algorithm).

Algorithm 1 An exact synthesis algorithm based on SAT solver
1: procedure ExactSynthesis(f : Bn → Bn) � f is given in the form of truth table
2: found = false
3: d = 1
4: while found ≡ false do
5: inst ← Encoding(f , d)
6: res ← SATsolver(inst)
7: if res ≡ SAT then � There is an implementation for f with d gates
8: A ← getSolution()
9: generateNetworkFromSolution(A)
10: found = true
11: else � There is no implementation for f with d gates
12: d ← d + 1;
13: end if
14: end while
15: end procedure

The synthesis algorithm receives a truth table of the target reversible function
f . It starts to try to implement f with just one gate, i.e., d is initialized to 1. If
there is no implementation with d gates, d is incremented. This is repeated until
an implementation is recognized. For each iteration, first the synthesis problem is
represented as a Boolean satisfiability problem, and then it is solved by a SAT solver
or a SMT solver.

If there exists a solution on the SAT/SMT problem, an implementation has been
found, and it is generated from the solution as an instance of the general parametrized
circuit. If there is no solution, it has been proven that there is no way to implement
using d gates. By increasing d incrementally from d = 1, that is, minimality is
guaranteed, when it starts with d = 1 and d is incremented one by one. Please note
that due to Theorem 1 above, d should be incremented one by one. If d is incremented
two by two, for example, even if the SAT problem becomes UNSAT for some value
of d , there is a possibility that an implementation exists for d − 1. So the case for
d − 1 must also be checked by SAT/SMT solvers.

Now the remaining issue is how to represent the decision problem in Boolean
formulae or some theories which are decidable. For a reversible function, the syn-
thesized circuit must satisfy three constraints. Satisfying these three constraints is
equivalent to whether there exists a Toffoli gate network for the reversible function
f using d gates. In order to describe these constraints, a set of variable vectors are
introduced next.

First, for a Toffoli network consisting of k gates, the following variable vectors
is defined. There are a number of lines in a Toffoli gate network, and there are
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multiple columns. These columns are essentially Toffoli gates and the computing in
the network proceeds from the left to the right. That is, a righter column corresponds
to a Toffoli gate having a larger number of levels. We call each location of the
columns as depth. Here we assume that the target reversible function has n inputs
and n outputs, and the maximum depth is d as there are d Toffoli gates.

Definition 8 Let f : Bn → Bn be a reversible function. The following variable vec-
tors are defined:
1. tk = (tk�log2n	, . . . , t

k
1 ), with 0 ≤ k < d , is a vector of Boolean variables showing a

binary encoding of an integer tk ∈ {0, . . . , n − 1} which defines the selected target
line for the Toffoli gate at depth k.
2. ck = (ckn−1, c

k
n−2, . . . , c

k
1), with 0 ≤ k < d , is a vector of Boolean variables

showing the control lines of the Toffoli gate at depth k. Assigning cki = 1 with
(1 ≤ i ≤ n − 1) means that line (tk + i) mod n becomes a control line of the Toffoli
gate at depth k, as tk is the target line.

Note that there are totally n · 2n−1 different Toffoli gates for a reversible function
having n variables. This is the case since a Toffoli gate has exactly one target line and
maximally n − 1 control lines. Therefore, there are in total n lines for placing a target
line and 2n−1 combinations for control lines. Figure4 shows 6 out of all 3 · 23−1 = 12
possible Toffoli gates in a network with n = 3 variables. For each gate, the values
of the vectors tk and ck are attached in the figure. For example, the values tk = (01)
and ck = (01) indicate that line [1]2 = 1 is the target line. Furthermore, because c1
is assigned to 1, line (1 + 1) mod 3 = 2 becomes a control line. In contrast, because
c2 is assigned to 0, line (1 + 2) mod 3 = 0 does not become a control line.

Now, the variable vectors for the inputs and outputs of the network, as well as the
internal signals, are defined.

Definition 9 Let f : Bn → Bn be a reversible function. Then, xki =
(xkin , x

k
i(n−1)

, . . . , xki1), with 0 ≤ i ≤ 2n − 1 and 0 ≤ k ≤ d , is a vector of Boolean vari-
ables showing the inputs, internal gates, or outputs at depth k for row i of the truth
table when implementing the target function f . The inputs and the outputs of the
truth table for depth k correspond to the vectors xk−1

i and xki , respectively.

Fig. 4 Examples of
representation of Toffoli
gates with tk and ck

tk=(00)
ck=(00)

tk=(00)
ck=(10)

tk=(10)
ck=(11)

tk=(01)
ck=(01)

tk=(00)
ck=(11)

tk=(10)
ck=(01)
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Fig. 5 Representation of the
decision problem
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Figure5 shows the variables in the above formulation for the constraints of a
function with n = 3 variables and depth d = 2. The positions for the Toffoli gates
to be synthesized should be located inside the dashed rectangles. For each of the
23 = 8 rows in the truth table, n = 3 lines in the network with the respective vectors
for inputs, internal gates, and outputs are used (i.e., overall 3 · 8 = 24 lines are con-
sidered). For each depth, all possible Toffoli gates can be defined with the respective
values for the vectors of variables, tk and ck. For each depth, only one Toffoli gate
for each truth table row should be defined.

Based on these definitions on the constraints, the synthesis problem for a reversible
function f with d Toffoli gates can be formulated as follows:
Is there an assignment for all variables of the vectors tk and ck such that, for each
line i, x0i is equivalent to the left side of the truth table, while x

d
i is equivalent to the

corresponding right side?
The detailed conditions are shown below. The interpretation of these should be

referred to [6].
1. The input and output constraints set the input and output pair of each row of the
truth table given by the reversible function f

f (x) =
2n−1∏

i=0

([x0i ]2 = i ∧ [xdi ]2 = f (i))

2. The functional constraints for possible Toffoli gates which are selected by an
assignment to tk and ck are
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f (x) =
2n−1∏

i=0

d−1∏

k=0

(xk+1
i = t(xki , t

k, ck))

These conditions are saying that if, in line i at depth k, a Toffoli gate is used (i.e.,
tk and ck are completely assigned values), the variables in the next depth k + 1 are
computed from the variables at depth k with the Toffoli gate function t(xki , t

k, ck).
The function t(xki , t

k, ck) is the function realized by a Toffoli gate with target line
tk = [tk]2 and the control lines defined by ck.

3. The following conditions indicate that all illegal assignments to tkmust be excluded
since not all values of tk are necessary to enumerate all possible target lines

f (x) =
d−1∏

k=0

[tk]2 < n

For example, for a network consisting of n = 3 lines, the target line is indicated with
the two variables tk = (t2t1), as shown in Fig. 4. Then, the assignment tk = (11)
must be excluded from the solutions, since there is no line [11]2 = 3.

The way to give these constraints are basically the same as LUT (Look Up Table)
which is defined and used in the logic debugging discussed in the next chapter. LUT
is a representation of a truth table of the target logic function using 2n variables which
show the values of rows in the truth table, and so the formulation is the same as above.
By assigning values to these variables, all of the logic functions with n input (in total
22

n
functions) can be represented. Here the goal is to identify the appropriate logic

functions by SAT/SMT solvers as solutions on the assignments of values to these
variables.

Based on these constraints, there can be different encoding possible when the
Boolean decision problems by SAT/SMT are solved. For example, the conditions
are simply transformed into CNF (Conjunctive Normal Form) for SAT solvers. Here
all bit-vector variables and constraints must be converted into CNF using Boolean
variables and clauses. It is known that this conversion to CNF take linear time and
space with respect to the size of the original Boolean formula. The resulting CNF,
however, is only a Boolean formula based on clauses, and due to the many auxiliary
variables introduced during conversion, SAT solvers may not work so efficient.

Another encoding that avoids the conversion to the Boolean formulae can be con-
sidered, and the constraints are formulated as bit-vector logic inside SMT (Satisfiable
Modulo Theory) solvers. All bit-vector variables and most of the operators are pre-
served as they are inside SMT solvers. Only a few additional variables are necessary
when translating into the formula for SMT solvers. This can potentially significantly
speed up the synthesis process.
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With further careful consideration on the encoding as well as the effective use of
SAT/SMT solvers, circuits having up to 10 gates or so can be optimally synthesized
[6]. The method presented above has further been extended in [7]. Please see the
paper for the details of the extensions.

5 Transformation Based Method

The transformation based method utilizes the fact that if a Toffoli gate is applied
to the inputs or the outputs of a reversible function, the resulting functions always
become reversible. So the synthesis problem can be recognized as finding a sequence
of Toffoli gates which change a given reversible function to the identity function.
Since a sequence of gates can be applied either to the inputs or the outputs, the
synthesis process can proceed from outputs to inputs, inputs to outputs or, in both
directions in a combined way [8].

So a basic and naive algorithm would be to synthesize the circuit in one direc-
tion, specifically from outputs to inputs, and it is given below first. This algorithm
is guaranteed to finish without introducing unnecessary garbage outputs, and the
synthesized circuits have at most n2n gates.

Transformation Based Synthesis: Basic Algorithm

1. Step 1:
If f (0) = 0, invert the outputs which generate 1 for f (0). A complement operation
requires one gate. The function after this, f + satisfies f +(0) = 0.

2. Step 2:
Consider each i in turn for 1 ≤ i < 2n − 1, that is, for all possible input values
for the function. Let f + denote the reversible specification currently being con-
sidered. If f +(i) = i, no transformation is required as it keeps the value and it
satisfies the requirement to be a reversible function. So no Toffoli gate is imple-
mented on i. Otherwise, gates are required to transform the specification to a new
specification which satisfies f ++(i) = i. The required gates should transform as
follows: f +(i) → i.
Let p be the bit string having 1’s in all the positions where the binary expansion
of i is 1 whereas the expansion of f +(i) is 0. These are the bits which have value
1 and must be added in transforming f +(i) → i. Conversely, let q be the bit string
having 1’s in all the positions where the expansion of i is 0 whereas the expansion
of f +(i) is 1. q identifies the bits to be removed through some operation.
For each jwhere pj = 1, use a Toffoli gate with the control lines which correspond
to all the outputs in the positions where the expansion of i is 1 and the target line
which corresponds to the output in position j. Also, for each qk = 1, use a Toffoli
gate with the control lines which correspond to all the outputs in the positions
where the expansion of f +(i) is 1 and the target line which corresponds to the
output in position k.
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For each i in 1 ≤ i < 2n − 1, The transformation in Step 2 performs: f +(i) → i
using the above mentioned sequence of Toffoli gates. i is considered in order, and
Step 1 handles the case when i = 0, and therefore, f +(j) = j, 0 ≤ j < i is satisfied.
Please be reminded that none of the Toffoli gates used in Step 2 influence the equality:
f +(j) = j, 0 ≤ j < i. That is, once a row of the truth table for the specification is
converted into the new value, it remains at that value regardless of the conversions
required for later rows.

As it may not be easy to intuitively understand the algorithm above, let us discuss
through an example. An illustrative example of a transformation based approach is
shown in Table3. Columns A in the table are the given specification. As the process
of Step 1, x1 is applied the application of TOF1 gate (TOF1(x0)) which generates in
columns B in the table. Underlined values are the results of the complement of x1 At
this stage the required condition for all of f +(i), 0 ≤ i ≤ 4 is already satisfied, and
so no further action on these is required. Then TOF3(x13, x

1
2, x

1
1) is applied in order to

partially realize f +(5) → 5, that is, changing the rightmost position to 1. This gener-
ates in columns C in the table. In order to convert the center 1 to 0, TOF3(x23, x

2
1, x

2
2)

is used. As the last stage, in order to realize f +(6) → 6, TOF3(x33, x
3
2, x

3
1) is used.

Please be reminded that the generated gates are identified in order from the output
side to the input side. Figure6 shows the final circuit. This is a basic algorithm and
is rather straightforward. It can be implemented easily, but the complexity of this
algorithm is n2n. We can easily understand that the algorithm always terminates
successfully and generates a circuit for the given specification.

A sequence of transformations (gate generation) are applied from the outputs
to the inputs in the above example. For a reversible function as specification, the
inverse way of processing can be considered. That is, a sequence of transformations
are applied from the inputs to the outputs. Then the better way can be used. Also, the

Table 3 An example truth table for outputs to inputs transformation

A B C D E

x3 x2 x1 x03 x02 x01 x13 x12 x11 x23 x22 x21 x33 x32 x31 x43 x42 x41
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0

1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1

1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1

Fig. 6 The synthesized
circuit from Table3
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Table 4 An example truth table for bidirectional transformation

A B C D

x3 x2 x1 x03 x02 x01 x13 x12 x11 x23 x22 x21 x33 x32 x31
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 1 1 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 1 0 0 1 0

0 1 1 0 1 0 0 0 1 1 1 1 0 1 1

1 0 0 0 1 1 1 0 0 1 0 0 1 0 0

1 0 1 1 0 0 0 1 1 1 0 1 1 0 1

1 1 0 1 0 1 1 1 0 1 1 0 1 1 0

1 1 1 1 1 0 1 0 1 0 1 1 1 1 1

two ways can be combined, that is, some gates are used as transformations from the
inputs to the outputs, while other gates are used as transformations from the outputs
to the inputs. This combined one is called bidirectional transformations.

An example of bidirectional transformations is shown in Table4. Columns A in
the table is the target reversible function. The basic algorithm with transformations
from outputs to inputs discussed above would require that all of x3, x2, x1 are com-
plemented in order to establish f +(0) = 0. On the other hand, there is an alternative
way which complements x1 only, i.e., uses the gate TOF1(x01) to the input side. By
using this gate, and then by reordering the specification in such a way that the input
side is again in standard truth-table order, the specification in columns B in the table
is obtained. In the case of starting with the output side, the mapping f +(i) = 7 → 1
should be established. However, from the input side we only have to exchange rows
1 and 3, and it can be implemented by using the gate TOF2(x11, x

1
2). By doing that

operation and by again reordering the input side into standard order, columns C in
the table are obtained. At this stage, the transformation from the output side and the
transformation from the input side generate the same gate TOF3(x21, x

2
2, x

2
3), columns

D in the table show the resulting target functions.
The application result of this bidirectional approach is the circuit shown in Fig. 7a.

It has 3 gates. On the other hand, the application result of the transformations from
the outputs to the inputs is the circuit shown in Fig. 7b. It has 5 gates.

In general, when f +(i) = i, there are two ways to proceed:

1. Use Toffoli gates to the outputs to satisfy f +(i) → i
2. Use Toffoli gates to the inputs to satisfy j → iwhere j is chosen such that f +(j) =

i. Since the synthesis process proceeds with i in order, such j(> i) must always
exist.

Appropriate choices of the above (1) and (2) should be enforced in order to
generate smaller circuits.

There may be redundancy in the circuits generated by the methods mentioned
above. In the examples of the above, the three serially connected gates, TOF2(x2, x1),
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Fig. 7 The synthesized
circuit from Table4

(a)

(b)

TOF1(x2),TOF1(x1) can be replaced by the two serially connected gates, TOF1(x2),
TOF2(x2, x1), as they are doing the same computations as the whole. This is an equiv-
alent preserving rule which can be utilized for optimization and is called “template”
in [8]. Similar methods have been used in conventional logic synthesis and are called
rule-based logic optimization. Rule-based logic optimization may use large numbers
of rules, such as over 200 rules, depending on the target technologies.

A template consists of a serially connected gates to be matched and the serially
connected gates to be substituted when a match is found.

The lines in the template are to be matched with real lines in the circuit satisfying
the logical consistency on the matching. There may be several templates which can
match the real lines in the target circuit. This is realized by first mapping the widest
target template gate with a gate in the circuit and then looking for the other target
gates in the circuit using the line mapping derived from the widest gate. As the order
of the control lines to a Toffoli gate is irrelevant when matching, there are c! line
mappings which must be considered where c is the number of control lines for the
widest gate.

There are similar problems in rule-based logic optimization and also technology
mapping processes in conventional logic synthesismethods. There in order to identify
the matched rules and gates/cells in the cell libraries of the target semiconductor
technology. Because of symmetry in inputs for various gates/cells, such as a 12 inputs
AND gate, basically all permutation of the 12 inputs must be tried. If we check one
by one, this takes a very long time. There are basically two ways to go. One is based
on only structural analysis and the set of matchable gates/cells are generated for all
permutations of the inputs of the gate/cell. Although this works very efficient (as it is
purely based on structural matching), the numbers of tries for matching may become
very large. The other way is to check the matching based on logical analysis such as
SAT checking. Although this needs only one try for matching for each gate/cell, the
Boolean reasoning process may not be so quick in general depending on the type of
functions in the circuit and gates/cells. Same approaches can be applied also in the
case of template-based optimizations.

Besides the matching problem, we need to look for the target gates to be matched.
This includes the initial match to the widest gate out of all gates in the entire circuit.
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If all target gates are found, they are checked to be replaced so that they are adjacent
matching the template either in the forward or reverse direction. If this checking is
positive, the matched gates are replaced with the new gates specified by the template.
There can be a reverse match, and the new gates are substituted in reverse order.

When traversing the target gates, the matching procedure takes account of
Theorem 2 which follows directly from the definition of control lines in Toffoli
gates. If two gates can be swapped, the swapped one is also checked to be matched
with templates.

Theorem 2 Two gates TOFk(x1, x2, . . . ,Xk−1, xk) and TOFl(y1, y2, . . . , yl−1, yl)
adjacent in a circuit can be swapped, if and only if xk /∈ {y1, y2, . . . , yl−1} and
yl /∈ {x1, x2, . . . , xk−1}.

The matching procedure basically tries all target gates for each template. When a
templatematch is found, the substitution is performed based on thematched template.
Then the matching process restarts, since a substitution may make a template which
is rejected earlier be applicable.

There are different classes of templates that can be defined.

1. Two inputs involving a swap operation
2. Two input gate reductions without any swap operation
3. Based on transformation rule
4. Symmetric templates
5. Controlled SWAP

Examples of templates in the above classes are shown in Figs. 8 and 9. By using
these templates as rules of transformations, reversible circuits can potentially be
reduced significantly, although the final quality, such as the size of reversible circuits
largely depends on the order of applications of the templates. Same as the case of rule-
based logic optimization in the conventional logic synthesis, it is not straightforward
to see the order of applications of various rules or templates, and the initial circuits
tends to influence the lots of the final circuits.

1.1 1.2

2.1 2.2

3.1 3.2 3.3

Fig. 8 Examples of templates in classes 1–3
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4.1 4.2 4.3

4.4 4.5 4.6

5.1

Fig. 9 Examples of templates in classes 4–5

On the other hand, again as is the case of conventional logic synthesis processes,
rule-based logic optimization can further optimize circuits which are synthesized
by other techniques and is actually used intensively in the commercialized logic
synthesis tools. In that sense, template based synthesis can plan an important role in
reversible logic synthesis.

6 Decision Graph Based Method

It is well known that Boolean functions can be efficiently and compactly represented
by Binary Decision Diagrams [4] for many useful logic functions which are com-
monly used in hardware and also software developments. The only exception is the
multiplication function where BDD must explode exponentially with respect to the
number of inputs. Based on the experiences with BDD, all the other functions useful
for human designs are said to be very compact if good variable ordering are used.Also
thanks to the 64-bit processors, large BDD, such as the one having over 10,000,000
nodes can be manipulated and analyzed, as BDD is a canonical representation for
logic functions.

One remark here is that although the size if BDD for the functional practically
appearing in hardware and software developments a reasonably compact and can be
efficiently manipulated on the computer, the number of BDD nodes can be much
larger than the number of gates for conventional multi-level logic circuits. As con-
ventional multi-level logic circuits represent arbitrary logic expressions, they are not
at all canonical, but they can be much mode compact.

Having a BDD, G = (V,E) (where V denotes the set of vertices and E denotes
the set of edges in the graph), a reversible circuit can be generated by traversing the
BDD and substituting each node v ∈ V with a cascade of reversible gates [9]. The
BDD for exclusive-OR operation is shown in Fig. 10a. Its circuit implementation by
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Fig. 10 BDD for full adder and its Toffoli gate implementation

Fig. 11 General case of
BDD node replacement
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high( )

h igh( )
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low( )

Toffoli gates is shown in Fig. 10b. The type of the node v determines how to cascade
the gates.

The general case of a node in a BDD is shown in Fig. 11, and its implementation
with two Toffoli gates is also shown in the figure. Based on the definition of Toffoli
gates, one can confirm that the logic function realized at f in the right side is equal
to low(f ) · x1 + high(f ) · x1. Following this substitution, a complete Toffoli network
can be generated from a BDD if the BDD has no sharing of nodes. When generating
an implementation, inputs have to be set to constants, if the respective low(v) or
high(v) edge goes to a terminal node (either 0 or 1). If the BDD is a kind of a tree
instead of a graph, this can be simply applied to generate a reversible circuits with
Toffoli gates. Please note that BDD representations for logic functions are compact
because of the sharing of sub-graphs in a BDD, and so generally speaking a BDD
has a number of sharing sub-graphs.

Let us take the BDD shown in Fig. 10a. Please note that when the conversions
given in Fig. 11 are applied to each node of the BDD, Fig. 10b becomes the resulting
Toffoli gate based circuit. The BDD is actually sharing the sub-graph and nodes by
which its size becomes much more compact. If the conversions are applied to the
BDD having shared nodes, the resulting circuits are not correct at the points of the
fan-outs in the circuits.
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Fig. 12 Toffoli gate network example for a BDD with a shared node

The values on the signals in the circuit corresponding to the shared nodes must
be preserved until all of the fan-out are converted. The same must be applied to
the signals corresponding to the case-split variables of the nodes, as they are often
required more than once.

There are two edges going to the node of variable x1 in Fig. 12a. That is that node
is shared by the two other nodes. Therefore, the values of that node must be kept until
it is used twice by the other two nodes. An additional line and an adjusted cascade of
gates are inserted into the Toffoli network, in order to implement this as a reversible
circuit, since the value of node f ′ is used twice (by nodes f1 and f2), an additional line
(the second line in Fig. 12b) and the cascade of the Toffoli gates are used to substitute
node f1. In doing so, the value of f is still available so that the substitution of node
f2 can be applied. The resulting circuit is given in Fig. 12b.

Now let us discuss which cascade of the Toffoli gates should be used when a
node is referred multiple times from other nods. See the example BDD in Fig. 13a.
The node which corresponds to the function f ′ is referred two time as shown in the
figure. The Toffoli network shown in the figure is the cascade of gates to be used
when a node is shared. The logical relationship from the Toffoli network in the figure
becomes the followings:
t11 = ((xi ∧ low(f1)) → 0) ∧ (xi ∧ low(f1) → 0)
t12 = xi
t13 = low(f1)
t21 = ((t13 → t11) ∧ (t13 → t11)
t22 = t12
t23 = t13
t31 = ((t23 ∧ f ′) → t21) ∧ (t23 ∧ f ′ → t21)
t32 = t22
t33 = t23
By substituting and simplifying the above equations, one canmake sure they establish
the relationship derived from the BDD structure.
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Fig. 13 A BDD having a
shared node

0

low( )

1

0

low( )
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low( )
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Table 5 Part of the truth
table for node v with
high(v) = 0 without
additional line

xi low(xi) f –

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 (1)

Table 6 Part of the truth
table for node v with
high(v) = 0 with an
additional line

0 xi low(xi) f xi low(xi)

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 1 0 1 1

Please note that the three Toffoli gates are used instead of two gates for the case of
non-sharing. Also there is one additional line (the bottom one) to keep the function
for f ′. This cascade of the three Toffoli gates can be used each time a node is shared
by multiple nodes in the BDD.

Using these substitutions or conversions a given BDD can be transformed to a
Toffoli gate based circuit. However, there are better and more efficient ways for
substitutions, if the successor of a node in a BDD is a terminal node (constant 1
or 0).

For example, a node v with low(v) = 0 (fourth row) can be synthesized with only
one Toffoli gate as shown in Fig. 15d. Various situations when one of the child nodes
is a terminal (constant 1 or 0) are shown in Fig. 15. They include identity node shown
in F of the Figure, i.e., a node with low(v) = 0, high(v) = 1, and select a variable
xi. Furthermore, due to the additional line, which has to be added if either low(v) or
high(v) is a terminal, it is also possible to preserve all inputs of a node. In particular
for shared nodes, this allows better substitutions. Also, please note that BDD having
negative edge generates smaller circuits in general, and the rules for them can be
similarly defined.

Let us discuss on a case of Fig. 15. The truth table for the BDD with high(v) = 0
is shown in Table5. The first three rows of the truth table follow the condition for
a reversible function as shown in the figure. But the last row does not follow, since
f is 0 in the last row (there are three 0s for the value of f ). Therefore, an additional
line is required to realize a reversible circuit as shown in Table6.
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The above discussions can be summarized as the following synthesis algorithm.
First, a BDD for the target function f from which a reversible circuit is to be syn-
thesized is constructed. This can be efficiently implemented with the state-of-the-art
BDD packages. Secondly, the constructed BDD, G = (V,E) is traversed from the
roots in a depth-first way. For each node v ∈ V , there are four cases:

1. When a node v represents the identity of a primary input (i.e., it is a select input):
The circuit does not need any cascade of gates, since the identify function is
simply the same as the input itself.

2. When a node v contains at least one edge (low(v) or high(v)) leading to a terminal
node (constant 1 or 0):
The circuit needs the substitutions shown in Fig. 15, which uses smaller numbers
of gate than the general substitutions.

3. When the successors of a node v (i.e., low(v) and high(v)) are shared nodes and
are still needed:
The circuit needs the substitution which preserves the values of all input signals.

4. When none of the above cases hold:
The circuit needs a cascade of gates shown in Fig. 15a.

Now the above synthesis method is applied to an example shown in Fig. 14.
f1 = x1 ∧ x2 and f2 = x1 ∨ x2 are the specifications. First, the above synthesismethod
reaches node f ′. Since f ′ represents the identity function with respect to x2, no gates
is added. The third line of the circuit in Fig. 14b is used for storing both of the value
of the primary input x2 and the value of f ′. Then, for node f1, the substitution shown
in Fig. 15d is applied. This not only reduces the number of gates.but also preserves
the value of f ′ which is still needed to create a circuit for f2. Finally the node f2 can
be substituted, and the synthesis finishes.

Fig. 14 Toffoli gate network example for a BDD with a shared node
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Fig. 15 Toffoli gate network example for a BDD with a shared node
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Since, each node of the BDD is only substituted by a cascade of gates, the pro-
posed method has a linear worst case run-time and linear memory complexity with
respect to the number of nodes in the BDD. Unfortunately, the numbers of nodes
in the BDD for a given logic function is larger than the numbers of gates for the
corresponding multi-level circuits using the traditional technologies such as CMOS.
Therefore, although this BDD based synthesis method can work for large circuits,
the synthesized reversible circuits may not be compactly represented.

In the above BDD based synthesis method, additional lines may have to be intro-
duced. For the reduction of the numbers of such additional lines, an improvedmethod
is also proposed [10].

7 LUT Based Method and Hierarchical Approach

One big problem on the methods discussed so far is how to synthesize large circuits
without introducing much extra (or redundant) lines or gates. BDD based synthesis
canwork for relatively large functions, but the quality of synthesized circuits may not
be always good, as BDD generally needs larger numbers of nodes than the numbers
of gates in conventional multi-level logic synthesis. All the other methods above
cannot basically deal with large circuits at all.

On the other hand, conventional logic synthesis tools, such as ABC [3] processes
large circuits by introducing “windowing” or partitioning lager circuits into smaller
ones which are actually manipulated by the logic synthesis tools. At a time, the
logic synthesis tools are concentrating only on one particular portion (windows or
partition) of the entire circuit, and the optimized results are just combined together
in order to obtain the final circuit. Such divide-and-conquer approach is the key for
the logic synthesis of large and practical sizes of circuits.

In the field of logic synthesis for reversible functions, such hierarchical approach
is introduced in [11]. It has been shown that hierarchical reversible logic synthesis
methods based on logic network representations are able to synthesize large arith-
metic designs. The underlying idea is to map sub-networks into reversible networks.
If the sub-networks are small enough, one can use the reversible synthesis meth-
ods discussed so far which is not so scalable including the ones based on Boolean
satisfiability.

However, logic networks differ significantly from reversible logic networks in
terms of their structures, such as extra lines appearing quite often in the above. This
introduces a problem for simple hierarchical synthesis methods. For example, the
outputs of the reversible circuits in quantum computers should be either a primary
input value, a primary output value, or a constant, and they cannot expose an interme-
diate result to an output line, which is referred to as a garbage output. State-of-the-art
algorithms such as the approach shown in [11] do not explicitly consider techniques
on the reduction of garbage outputs. Moreover, in order to use the circuit in a quan-
tum computer, one needs to apply a technique called “Bennett trick” [2], where the
number of gates must be doubled and an additional line must be added for each
primary output.
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Before discussing the hierarchal synthesis method, single-target gate is intro-
duced. A reversible logic circuit implements a reversible function, and reversible
circuits are a cascade of a number of reversible gates. The most general gate which
can be considered is the single-target gate. A single-target gate Tc({x1, . . . , xk}, xk+1)

has control lines x1, . . . , xk , a target line xk+1, and a control function c : Bk → B. It
implements the reversible function f : Bk+1 → Bk+1 with f : xi → xi for i ≤ k and
f : xk+1 → xk+1 ⊕ c(x1, . . . , xk). This definition is conceptually similar to a Toffoli
gate. All reversible functions can be realized by cascades of single-target gates just
like cascades of Toffoli gates.

Now a hierarchical synthesis approach based on k-feasible Boolean logic network
is introduced. k-feasible network is a circuit consisting of gates whose numbers of
inputs are k or less. That is, it is a logic network in which every gate has at most
k inputs. These are the same as k-LUT (Look Up Table) which can represent all
possible truth tables up to k inputs. LUT is a commonly used basic gate for Field
Programmable Gate Arrays (FPGA).

If a given network does not satisfy the requirement for k-feasible network, circuit
restructuring can be performed to let it be k-feasible. There are various ways of such
circuit restructuring implemented on conventional logic synthesis tools including
ABC from University of California Berkeley [3]. Figure16 shows an example of
such restructuring process assuming that k = 4. The upper circuit is transformed
into k-feasible circuit in the bottom. The inside matrices with 0, 1, and - denote the
functions to be realized by the LUTs in sum-of-products (SOP) formats.

Fig. 16 Conversion of a
given circuit into k-feasible
circuit
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Normally each gate is better to have as many as inputs not exceeding k. The upper
circuit in the figure is also a k-feasible circuit, since all gates have two inputs or less.
In order to reduce the total number of gates in the circuit, however, each gate is better
to have a larger number of inputs in general. Also, some of the original gates may be
duplicated in the translation into the k-feasible circuit. So the translation may not be
so straightforward in order to keep the numbers of LUTs as small as possible after
translation.

There is a useful property that a one-to-one relationship between a k-input LUT in
a logic network (k-feasible network) and a reversible single-target gate with k control
lines in a reversible network exists. A single-target gate has a control function and a
single target line which is inverted if and only if the control function evaluates to 1
as defined above.

Thehierarchical synthesismethodfirst generates a skeleton for the target reversible
circuit. It consists only of single-target gates, and the number of required additional
lines is already fixed and final. This means there is no garbage outputs. Then, each
single-target gate is converted into a corresponding reversible circuit using any algo-
rithm, which could be anyone discussed above or shown in the literature [12–16].
It is straightforward to parallelize and shorten the time for this second step as the
synthesis problems are independent with one another. This two-step algorithm can
be applied to find reversible circuits for several floating point arithmetic networks
up to double precision computing [17]. Floating point arithmetic circuits are gener-
ally fairly large ones even in the state-of-the-art microprocessor circuits, occupying
20% or more area in the chips. This means the hierarchical method discussed here
can even be applied to the real-life designs. From the synthesized circuits the cost for
their use in, for example, quantum computers can be accurately estimated. Most of
the existing synthesismethods do not give such information, especially for arithmetic
circuits.

The details of the above hierarchical synthesis method are given below by illus-
trating the general idea on how to map LUT networks into reversible circuits. For
this purpose, the LUT network shown in Fig. 17 is used as an example.

The example network has 5 primary inputs x1, . . . , x5, 5 LUTs with names LUT1
to LUT5, and 2 primary outputs, y1 and y2. The two outputs are generated fromLUT3
and LUT5, respectively. A straightforward way to translate a LUT into a reversible
circuit is to use one single-target gate for each LUT in topological order of the circuit.

Given a LUT network of Fig. 17, the skeleton for its reversible circuit becomes
the one shown in Fig. 18. The correspondence between Figs. 17 and 18 are in the
following way. As LUT1 has x1 and x2 as inputs, there is a corresponding box in
Fig. 18 which is indexed as 1. This box has all the control lines, depending on their
values, the value of the additional line is controlled. So the box has a vertical line to
that additional line as shown in the figure. The additional line’s initial value is set to
0. In the same way, for LUT2, there is a box indexed as 2 and its additional line in
Fig. 18.

For LUT3, there is a corresponding box whose inputs are x1 and the output of
LUT1 which is the additional line associated with the box 1. This process continues
until the boxes for all LUT, LUT1-LUT5, are created with associated additional lines
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Fig. 17 An example of
2-feasible circuit
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as shown in Fig. 18. During that process, the initial values for the additional lines
are all set to 0. Please note that in the figure, single-target gates are used rather than
Toffoli gates. With these five gates, the primary outputs y1 and y2 are realized at line
8 and 10 of the reversible circuit.

Unfortunately after processing the five gates, the reversible circuit has garbage
outputs (not related to the real outputs) on lines 6, 7, and 9 shown in Fig. 18. These
perform the functions which are used in the LUTs inside the circuit. It is definitely
better to have fewer numbers of such garbage outputs. This is because the result
of the calculation is enlarged by the intermediate results, and so they cannot be
discarded and recycled without decreasing the quality of the circuits [18]. A kind
of uncomputation) on the intermediate results should be performed if ever possible,
by re-applying the single-target gates for the LUTs in reverse topological order. In
Fig. 18 the last 3 gates work for the uncomputations of the intermediate results at
lines 6, 7, and 9. Based on this observation we derive the following theorem.

Theorem 3 When realizing a LUT network with d gates by a reversible circuit that
uses single-target gates for each LUT, at most d additional lines are required.

There is, however, a better approach. Once the computation for a primary output
is finished, uncomputations are applied to the LUTs that are not used any longer by
other outputs. The lines which are applied uncomputations restore 0 values that can
be used instead of creating an additional line. In the case of the 2-feasible circuit
in Fig. 17 first primary output y2 is computed. After that, the uncomputations for
LUT4 and LUT2 are applied, as they are not in the logic cone of primary output y1.
The freed additional line can be used for the single-target gate realizing LUT3. This
observation leads to a theorem providing a lower bound.

Theorem 4 Given a LUT network with m outputs, let l be the maximum cone size
over all outputs. When realizing the LUT network by a reversible circuit that uses
single-target gates for each LUT, at least l additional lines are required.
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Fig. 19 Toffoli network
generated from the circuit in
Fig. 17 with the order of 1, 2,
4, 5, 3
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That is, we start by synthesizing a circuit for the output with the largest cone. Let
us assume that this cone contains l LUTs. That can be synthesized using l single-
target gates. From these l gates, (l − 1) gates can be applied the uncomputations (all
except the LUT computing the primary output). Therefore, it restores (l − 1) lines
which hold constant 0 values. It is easily understood that the exact number of required
lines may be a bit larger, since all output values need to be kept. Further, it is better
to make use of logic sharing and use at most two single-target gates for each LUT in
the network. As can be seen from the previous discussion, the number of additional
lines roughly corresponds to the number of LUTs. Hence, we are interested in logic
conventional synthesis algorithms that minimize the number of LUTs, which have
already been explored by many researchers under the context of logic synthesis for
LUT networks. Those may be used for further optimization of the method discussed
above.

If this method is applied to the circuit in Fig. 17, the order of processing LUTs
becomes 1, 2, 4, 5, 3 instead of the original order 1, 2, 3, 4, 5. This results in the
reversible circuit shown in Fig. 19 which has one less additional lines compared to
the reversible circuit generated in Fig. 18.

The discussed method works well for large functions including the functions for
floating point computations, which occupies 20% or more area even in the modern
microprocessors. Although the method can be further improved by considering sizes
of LUT and others, it is basically becoming very practical in terms of the sizes of
circuits that can be synthesized. It may be applied to program Quantum computers
with large numbers of Qbits.

8 Conclusions

In this chapter, we have discussed varieties of logic synthesis methods includ-
ing, exact, transformation, BDD-based, and hierarchical approaches. Although each
one has advantages and disadvantages, basically methods except for hierarchical
approach are applicable only fairly small circuits.

On the other hand, the hierarchical approach gives away to partition orwindowing
a large circuit, and after that, any methods discussed in this chapter can basically be
applied. This is essentially the same approach used in conventional logic synthesis
tools, such as ABC. With this combination of the approaches, reversible circuit
synthesis for large functions can become practical. The experimental results by the
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various logic synthesismethodswould be said to be applied to only toy exampleswith
the exception of the hierarchical approach applied to real floating point calculation
circuits which are large and practical. It is expected that more and more practical
evaluation will be made for logic synthesis methods for reversible functions.

Also, logic debugging methods targeting reversible circuits are briefly discussed.
As the reversible circuits become more popular, debugging and ECO would become
more critical, and more intensive researches are expected.
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Search-Based Reversible Logic Synthesis
Using Mixed-Polarity Gates

S. C. Chua and A. K. Singh

Abstract Synthesismethods of irreversible circuits cannot be used for reversible cir-
cuits because of their logical differences. An algorithm for the synthesis of reversible
circuits using its Positive-Polarity Reed–Muller (PPRM) expansions is presented in
this chapter. The proposed algorithm used Hamming Distance (HD) approach to
select the transformation path. A variety of reversible gates are selected through
finding the possible matching reversible gate for path selection. It has the capability
to allow the algorithm to synthesize reversible function in terms of quantum cost,
which is a challenging task for existing synthesis algorithms. The proposed algorithm
has been applied to synthesize all 3-variable reversible functions and has shown to
obtain a good result. From the experimental results, it has been shown that with the
m-NCT gate library added, the results are improved significantly.

1 Introduction

In the past few years, synthesis of reversible logic has been rigorously studied in
the research centered on the synthesis of digital circuit by applying NCT library
gates. NCT library gates have been widely studied and explored for several years.
The existing Toffoli gate has been extended by increasing the size of variable for
observing more possible synthesis outcome. Recently, the researcher has started to
insert polarity control capability in Toffoli gate operations. Mixed- polarity Toffoli
gate is Toffoli gate with polarity control. This gate has been used in several research
papers for synthesizing logic algorithm. Previously proposed mixed-polarity Toffoli
gate was not able to gain any attention because of low quantum anesthetization by
use of NOT gate developed from Toffoli logic gate. Embodying Toffoli logic gate
in the synthesis of reversible logic algorithm would increase the synthesis time and
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also lack in terms of quantum cost and gate count improvement. The research work
attraction enormously increases on this gate after synthesizing few of its quantum
implementations. The use of this gate with quantum implementation gives better
results. Now, it is able to compute complex reversible circuits with less quantum
cost. Even though, many methods were proposed, but search-based reversible logic
synthesis has never been discussed by using this gate in the available literature.

1.1 Literature Review

In this section, overview of the widely proposed reversible logic synthesis algorithms
is discussed. The synthesis algorithms are being categorized into several subsections
according to their types and functions.

1.1.1 Transformation-Based Synthesis Algorithm

The primitive developed algorithm of reversible logic synthesis is transformation-
based synthesis algorithm. This synthesis algorithm was initiated by Iwama et al.
[1] in which the author described various rules to convert Boolean function to a
set of Toffoli-based gates. The introduced method shows that by using suggested
rules, canonical form can be derived from any circuit. The proposed work was for
conceptual concern only, unfortunately did not provide any practical illustration.
This algorithm expanded by using number of predefined patterns (called templates)
by appending transformation rules proposed by Miller et al. [2]. This algorithm
operates by suggested transformation rules, which convert Boolean function to a
set of Toffoli or CCNOT gates in the form of truth table. After getting the results,
many elementary rules for template matching are applied for further simplification.
The results obtained by using this synthesis algorithm were significant during that
time. An extended version of the existing algorithm given by [1, 2] Dueck et al. [3]
and Maslov et al. [4] which append their database by SWAP gate and Fredkin gate.
The algorithm [2] refined later by Maslov et al. by launching bidirectional algorithm
that repeatedly searching in the truth tables for getting the difference between input
and output. This approach was different from conventional method that considered
only the outputs. Many different techniques like MMD (Miller–Maslov–Dueck) [5],
template matching, Reed–Muller spectra and resynthesis to synthesize reversible
function in quantum-based cost and number of gates have been given by Malsov
et al. [6]. This algorithm is not using the conventional representation of truth table
that can be seen in the earlier algorithm and apply the Reed–Muller spectra form for
reversible circuit operations derived from the library of NCT gate. By using Reed–
Muller spectra, it provides greater gate substitution comparing to traditional approach
and thus enhances the synthesis results. The flow of algorithm can be divided into
three steps. First, MMD is applied that chooses a reversible circuit until it determines
the entire identity term. Second, template matching is applied that used templates to
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remove the complexities of the synthesized network by selecting a small network.
Third, resynthesis is applied for reducing the quantum cost by choosing a series of
gates from the network.

1.1.2 Rule-Based Synthesis Algorithm

Arabzadeh et al. [7] suggested to use rule-based optimization technique to convert
NCT (NOT, CNOT, Toffoli gate) to mixed-priority Toffoli-based circuit after apply-
ing transformation-based synthesis algorithm [2, 5]. The algorithm runs by supple-
menting rules to minimize the number of NOT gates in the circuit. The algorithm can
be divided into two steps: In the first step, on giving reversible circuit, several NOT
gates are applied and Toffoli-based circuit transforms into mixed-polarity Toffoli-
based gate, and at this step, redundancy of NOT gates is removed. In the second step,
a K-Map is used to find optimal gates by simplifying intermediate circuits.

Datta et al. [8] proposed a post-synthesis rule that uses template matching
approach to convert NCT-based gate circuits to mixed-priority-based gates. The
author proposed templatematching rules for matching the cascade of various Toffoli-
based circuits jointly to mixed-polarity-based circuits and replacing them. Their
present template rules can match up to 4-variable mixed-polarity Toffoli-based gate.

1.1.3 Cycle-Based Synthesis Algorithm

Cycle-based synthesis algorithm divides the whole permutation into various cycles
and each cycle synthesizes separately. The earliest cycle-based synthesis algorithm
was proposed by Shende et al. [9] in which decomposition is applied on given per-
mutation to transform into a set of disjoint cycles and synthesizing them separately.
This technique works well when given permutations are not in regular patterns and
reversible function, which result in several input combinations remain unchanged.
Yang et al. [10] proposed a similar technique as of [9] in which besides selecting
CNOTgate, it only chosesNOT and Toffoli gates where qubid function for synthesiz-
ing has more than three variables. The algorithm introduces a number of permutation
formula, which can easily be applied on functional area and convert them into syn-
thesized gates. Prasad et al. [11] modified the existing algorithm [9] by replacing the
use of Toffoli gate with NOT and CNOT gates in several conditions. By accepting
these changes, results of gate count and quantum cost improves efficiently.

Sasanian et al. [12] improved the algorithm [9] by eliminating the decomposition
of huge cycles into a set of 2-cycles which introduces a concept about utilizing
reversible gatesmore. In the suggestedmethod, huge cycles are decomposed into pair
of 3-cycles, set of 3-cycles, and pair of 2-cycles and resulted cycles are synthesized
directly. This implementation of cycles in the synthesis algorithm drastically reduced
undesired reversible gates if compared to existing algorithm [9].

Saeedi et al. [13] proposed a k-cycle-based synthesis algorithmwhich uses a set of
seven building blocks to synthesize a selected permutation to minimize the quantum
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cost of circuit and average runtime. Given a cycle of large inputs, the algorithm
before synthesizing decomposes the rules to obtain a set of seven building blocks
from the specified inputs. The seven building blocks contain a pair of 2-cycles, a
single 3-cycles, a pair of 3-cycles, a single 5-cycles, a pair of 5-cycles, a single 2-
cycles (4-cycles) followed by single 4-cycles(2-cycles). The algorithm is capable of
synthesizing large variable reversible function (up to variable size of 20 with a time
limit of 12h per function) and it gives better results in terms of quantum cost for
reversible benchmark function of variable size 8 and above.

Saeedi et al. [14] introduced an algorithmwhich utilizes the set of building blocks
and library for synthesizing given instructions. Each instruction is considered as
a permutation with various cycles where few reversible gates are applied for the
synthesis of each cycle. The experimental results of proposed methods minimized
the quantum cost and average runtime.

1.1.4 Binary Decision Diagrams-Based Synthesis

Binary Decision Diagrams (BDDs) based synthesis algorithm was initiated by
Kerntopf et al. [15]. Decision diagram is constructed from any Boolean function by
considering all possible gates. The gates that minimize the complexity of Decision
diagrams are selected. A similar process is repeated for further analysis. The process
terminates when all the paths are analyzed and choose the minimal path of node and
obtain reversible circuits. Wille et al. [16] proposed an algorithm which begins by
constructing BDD. Every BDD node is replaced by a number of reversible circuits.
In BDDs, shared nodes may be present, it results in fan-outs which is not granted in
reversible logic. To prevail over additional ancilla/constant, input and CNOT gates
are applied. Even though algorithm helps to reduce the quantum cost but a large
number of ancilla/constant inputs usage is not feasible. The algorithm is upgraded
later by Wille et al. [17], by proposing a post-processing optimization method that
reduces the garbage line by adding some garbage output lines, which is suitable with
ancilla input lines. The problem still exists even after so many improvements.

Krishana et al. [18] proposed amethod,which uses isomorphic subgraphmatching
that helps in mapping BDD subgraph to reversible circuit template structure. By
using this method, it drastically reduces ancilla/constant inputs made by existing
BDD-based synthesis algorithm [16]. The problem of ancilla BDD-based synthesis
algorithmwas solved by recently proposed synthesis algorithm given by Soeken et al.
[19]. The proposed concept symbolic function is implemented very efficiently with
BDDs, which is based on young subgroups that use symbolic function.

1.1.5 Search-Based Synthesis Algorithm

Search-Based Synthesis Algorithm proposed by Gupta et al. [20], which used
positive-polarity Reed–Muller (PPRM) expansion to synthesize reversible logic in
the form of gate count. This algorithm implemented by traverse a search tree for
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input reversible function and by using gate matching factor determines all feasible
solutions. In a given period, the algorithm traversed all feasible solutions and store
the optimal solution.

Later, Saeedi et al. [21] improved the algorithm by proposing various new sub-
stitutions rules to the fundamental ones. Their invented results show that method
conducts better synthesis of circuit in terms of total cost and also the probability of
leading a synthesized circuit in a better way as compared to existing algorithm [20].

This algorithm extended by Donald et al. [22] for dealing with SWAP gates,
Peres gate, Fredkin gate, and reverse Peres gate in a similar domain of search-based
framework. In this algorithm potential of circuit synthesis in term of quantum cost
is also added while keeping the synthesis approach same as of [20].

1.1.6 Graph-Based Synthesis Algorithm

Graph-Based Synthesis Algorithm is introduced by Yexin et al. [23] that deals with
the synthesis of reversible logic in set of gate count using NCT-based library gates.
In each synthesis step, the algorithm focus on fasting synthesis time by minimizing
functional complexity. Even though synthesis time is reduced, the algorithm is able
to find all possible solutions for every input reversible function. The disadvantage of
algorithm is that in each step, it is unable to determine optimal gate for substitution
and results as unnecessary use of gates to synthesize a function.

1.1.7 Optimal-Based Synthesis Algorithm

Golubitsky et al. [24], the author proposed an Optimal-Based Synthesis Algorithm
that is able to find the optimal solution by matching all input reversible functions
into a set of presents in database. By use of database, the gate count of optimal cir-
cuit can be found in lesser time through searching in their canonical representative
form. The author [25] extended this approach for improvement in existing database
[24] by removing all reverse functions and inserted various new functions to exist-
ing database. This upgrades the algorithm performance. Now, the algorithm is able
to synthesize higher variables reversible functions. When handling large reversible
function, the algorithm breaks the function into a number of sub-functions using
database individually, matching them, and finally, combine them.

Szprowski et al. [26] extended the synthesized algorithm by adding method for
further synthesis in formof quantumcost [24]. The introduced algorithmcan generate
optimal circuits based on reversible functions up to four variables. Even though gate
count is optimal but not assuring that these are minimal circuits in quantum-based
cost. The reason behind it, there may exist several longer cascades with lesser value
of quantum cost. In Golubitsky et al. [25], the author upgrades an algorithm [26]
by utilizing classical decomposition method without requiring additional lines. By
using this approach, it provides significant savings of quantum cost. This algorithm



98 S. C. Chua and A. K. Singh

[27] further improved by Szyprowski et al. [28], by connecting mixed-polarity-based
Toffoli gate to the synthesis library.

Li et al. [29] introduced an algorithmwhich is unable to find optimal solution up to
4-bit reversible function by using NCTP library (NOT, CNOT, Toffoli and Toffoli4,
Peres, and inverse Peres gates). When synthesizing a given function, primarily, the
introduced algorithm uses a hash table to search a combination with minimal gate
count by using NOT, CNOT, Toffoli, and Toffoli4 gates. Then the split hash tables
are merged to produce a longer has table by applying several computation rules.
Lastly, this algorithm synthesizing the resulted circuit in quantum cost terms by
transforming the selected path to Peres and inverse Peres gates. The introduced
algorithm designed a memory in an efficient way to use lesser amount of coding
for computing permutation rules and topological compression are applied. It also
uses flexible data structures for memory savings. As compared to existing synthesis
algorithm [26], this algorithm produced better results in term of synthesis time and
quantum cost.

1.2 Contribution of This Chapter

Search-based reversible logic synthesis algorithm is shown to be capable of putting
to good use of reversible logic better as compared to available synthesizing algo-
rithms.The available search-based synthesis algorithm is proposedbyGupta et al. and
Donald et al. They already proved that for realizing any reversible function, the algo-
rithm is capable to find all feasible realizations of reversible logic circuits. Search-
based synthesis algorithm does not generate any extra lines similar to BDD-based
realization algorithm. Thus, it considers the synthesized function in its simplest form
with least amount of ancilla inputs andgarbage outputs. The best part of this algorithm
is that it is not demanding for a blend of dissimilar approaches as transformed-based
synthesis algorithm. For additional usage, the produced realization solution is saved
in database of optimal-based synthesis algorithm.

A proposal of search-based synthesis algorithm using mixed-polarity Toffoli gate
is given in this chapter. The use of NCT library with mixed-polarity Toffoli gate for
search-based reversible logic synthesis algorithm has been also introduced. Mixed-
polarityToffoli gate for search-based reversible logic synthesis algorithm is discussed
for the first time in literature. The reversible function is synthesized by introducing
algorithm in positive-polarity Reed–Muller expansion (PPRM) and choose appropri-
ate gates for replacement by searching on matched sets in the expansion. This algo-
rithm focuses on quantum cost and number of gate count required for the synthesis
of reversible logic. The algorithm keeps minimal garbage output by not generating
ancilla input.
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2 Conversion of Logic Function into PPRM Expansion

Before describing the approach of the introduced synthesis algorithm, a primematter
is discussed on irreversible logic function transforming to PPRM expansion which is
set as input to the introduced algorithm. The first step is to convert the nonreversible
function to reversible. This is achieved by adding extra lines to perform a 1:1mapping
among the input and the output. When reversible function diagnosed, the next step
is transformed into ESOP expansion.

Here, those functions are performed by EXORCISM-4 program [30]. This pro-
gram is used by Boolean function for heuristics and efficient look-ahead strategies to
search the ESOP expansion quickly. After acquiring the ESOP expansion, transform
it into PPRM expansion. This is obtained by applying rules xn = 1 ⊕ xn to inverted
variables and reduction is obtained by canceling out identical variables even num-
bers of xn ⊕ xn = 0. In last, PPRM expansion is achieved. In this work, the logic
function is achieved by PPRM expansion by using the following steps:

1. The irreversible functions are translated in a manual manner to reversible func-
tion by applying additional required lines. Then, EXORCISM-4 is applied for
changing them in ESOP expansion. Later that expansion is translated to PPRM
expansion. This is done by using C language and the solutions are saved in PPRM
expansion (.pprm).

2. Many reversible benchmark functions are gathered by [28, 31, 32]. They are
available in “.blif” or “.pla” expansion. Then, these are changed to the PPRM
expansion by applying a program and EXORCISM-4.

3 Synthesis Algorithm

3.1 Gate Substitutions

The given reversible function is converted into PPRM expansion, and the initiated
algorithmfirst finds the expansion and searches all possiblematching reversible gates.
A new path is created for every selected reversible gate and that gate is replaced in
the native task to obtained reduced form of PPRM expansion. For determining the
reversible gate which is to be selected for high probability better solution, definite
requirements are set. When requirements are fulfilled, reversible gates get selected.
The substitution and requirements of every reversible gate are in the following ways:

For the selection of NCT gate library, only if the PPRM expansion set holds a
single variable term xi and f actor , where f actor termed as any single variable
to several multiple variable terms that does not to be formed of xi . In case of NOT
gate, the f actor termed as constant one. An exchanged of xi ⊕ f actor is
created on expansion holding variable xi . The chosen gates in the task are bounded
by the amount of variables in a manner that the largest gate must not be greater than
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the term of task variable. For example, when a 3- variable-based functions, Toffoli
gate will be chosen as the greatest gate and for synthesizing four variable functions,
the selected greatest gate will be Toffoli-4.

The m-NCT gate library will selected by n − 2 negative line (for n line vari-
able) if and only if the term of PPRM expansion contain any single term variable
of xi and f actor , where f actor is termed as any other two variable terms to sev-
eralmultiple variable terms that does not to be formed of xi . Then substitution of gate
will be executed on expansion holding variable term of xi , from the f actor term
selection of negative control variable is done.

An m-NCT gate library will be selected with n − 1 negative line (for n line
variable) if and only if the term of PPRM expansion contain any single term variable
of xi and f actor , where f actor is termed as any other two variable term to several
multiple variable terms that does not to be formed of xi . Then substitution of gate
will be executed on expansion holding variable term of xi , from the f actor term
selection of negative control variable is done.

3.2 Hamming Distance

While reversible function from one path reduced to another path, the method will
search for all feasible reversible gates which are able to simplify the native function.
The results of single PPRM expansion may have several replacements of different
gates. Every substitution is stored in a separate path. To find the path that will give
a fast and better solution, Hamming Distance (HD) method [2] is used. This method
determines the quantity of variables contrast among the input and output terms. On
the basis of experiment results, the paths that hold minimum not equal to 0 HD has
the largest possibility to lead speedy for better results. So, the track holdingminimum
not equal to 0 HD chosen as the next converting track.

The HD of a corresponding path becomes zero, when a solution is verified. Infor-
mation about the path will be stored in terms of gate count, gate connection, and
quantum cost. The method pursues to find the next minimum not equal to 0 HD path
having the potential for best results. When all paths are traversed, then this method
will stop. This improves the memory and synthesis time of the algorithm, and the
program sets to abort its path before the result is determined. That can be achieved
by differentiating the present quantum cost and gate count gathered with the present
optimal result on the path. The particular path is terminated, if it fails to generate
better results.



Search-Based Reversible Logic Synthesis Using Mixed-Polarity Gates 101

3.3 Algorithm

The function inputs are reversible function expressed in its PPRM expansion
f (x1, x2, . . . , xn). Depending upon receiving the input in the form of PPRM expan-
sion, this algorithm initialize execution and initially assign zero to quantum cost and
gate count. During this stage, the HD expansion is computed. Then, algorithm finds
the PPRM expansion and checks all feasible matching in reversible gates for more
reduction. After determining the reversible gate, replacement will be achieved and
assigned path with a new number. Current path updated corresponds to gate count,
quantum cost, and HD. Further, the algorithm chooses the next synthesize path by
picking up a path that contains minimum HDwhich is not equal to 0. This algorithm
iterates till a feasible solution is reached, and the calculated HD of path is close to
0. The whole data of the path about the usage of reversible gate, connections of the
whole circuit, assembled gate countm and quantum cost are stored as an optimal
possible solution. For further differentiation, a duplicate assembled gate count and
quantum cost are stored in register best_gate_count and best_quantum_cost .
The algorithm then pursues for searching the next minimum HD path with not equal
to 0. At any time, a gate replacement is formed and a new path is developed, then
synthesis algorithm determines the result according to the ongoing path. If the path
not generating better results as compare to current optimal results then terminate that
path and gathered data is also disposed of. The comparison is done in a given way:

When realizing in set of gate counts, termination of path if gate_count (path) >
best_gate_count − 1 or gate_count (path) == best_gate_count − 1 with
quantum_count ≥ best_quantum_cost − 1. As for synthesizing in terms of
quantum cost, termination of path if Quantum_cost (path) > best_quantum_
cost − 1 or gatecount (path) == best_gate_count − 1 with gate_count
(path) ≥ best_gate_count − 1. For those cases where the found path provides a
better solution at HD= 0, the replacement of ongoing optimal result take place. This
algorithm must meet stopping criteria after exploring all paths or the timer given by
the user has been reached (Fig. 1).

3.4 Example

For perception of the introduced algorithm, it is illustrated by taking an example
of reversible function by synthesizing with detail explanation of every step, then
describes the achievement of optimal solution. In the given illustration, when algo-
rithm finds a path, some reversible gates are chosen and checks matching of all feasi-
ble gates. The benchmark function selected for demonstration is named as “3_7” and
having features [0,1,2,3,4,5,6,7] [31]. Then stated in PPRM expansion, it pro-
vides a′ = 1 ⊕ a ⊕ c ⊕ ab ⊕ ac, b′ = 1 ⊕ a ⊕ b ⊕ c, c′ = 1 ⊕ a ⊕ b ⊕ ab ⊕ bc.
In tabular format, the expression of program are stored, as given in Table1. The HD
calculated is 13 for the given path.
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Begin Synthesize

initialize sythesis parameter

Pop the path with the
lowest Hamming Distance

Explores the PPRM expan-
sion term to find all possible
matching reversible gate

NCT gate selected

m-NCT gate selected

NCT gate substitution

m-NCT gate substitution

Update path’s information
gate_count(path)++

quantum_cost(path) = + quantum_cost(gate_type)
hamming_distance(path) = update_hamming_distance(path)

Compare result
with best solution

Performance
better than

best
solution

Terminate path

Has a
solution
found?

Update new solution

Is there
more to
explore?

End

No

Yes

Yes

No

Yes

No

Fig. 1 Flow chart of function Synthesize()
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Table 1 Comparison table of all discussed synthesis methods
Synthesis method Features Limitation Library Metric

Iwama et al. [1] • Transformation-based
synthesis

• Large amount of ancilla
inputs and garbage output

NCT GC

• Circuit dependency

Miller et al. [2] • Transformation-based
synthesis

• Limited Scalability NCT GC

• No ancilla input • Circuit dependency

Dueck et al. [3] • Transformation-based
synthesis

• Large amount of ancilla
inputs and garbage output

NCTSF GC

• Circuit dependency

Maslov et al. [4] • Transformation-based
synthesis

• Limited Scalability NCTSF GC

• No ancilla input • Circuit dependency

Maslov et al. [5] • Transformation-based
synthesis

• Limited Scalability NCT GC

• No ancilla input

Maslov et al. [6] • Transformation-based
synthesis

• Limited Scalability NCT GC

• Able to cope with large
function

Arabzadeh et al. [7] • Rule-based synthesis • Circuit dependency m-NCT QC

• No ancilla input

Datta et al. [8] • Rule-based synthesis • Limited scalability m-NCT GC, QC

• No ancilla input • Circuit dependency

Shende et al. [9] • Cycle-based synthesis • Circuit dependency NCT GC

• No ancilla input • Limited scalability

Yang et al. [10] • Cycle-based synthesis • Circuit dependency NCT GC

• No ancilla input • Limited scalability

Prasad et al. [11] • Cycle-based synthesis • Circuit dependency NCT GC

• No ancilla input • Limited scalability

Sasanian et al. [12] • Cycle-based synthesis • Limited scalability NCT GC

• No ancilla input

Saeedi et al. [13] • Cycle-based synthesis • Circuit dependency NCT QC

• No ancilla input

• Able to cope with large
function

Saeedi et al. [14] • Cycle-based synthesis • Circuit dependency NCT QC

• No ancilla input

• Able to cope with large
function

Kerntopf [15] • BDD-based synthesis • Limited scalability NCTSF QC

Wille and Drechsler [16] • BDD-based synthesis • Ancilla input NCT QC

• Able to cope with large
function

• Garbage output

Wille et al. [17] • BDD-based synthesis • Ancilla input NCT Ancilla input

• Able to cope with large
function

• Garbage output

• Circuit dependency

(continued)
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Table 1 (continued)
Synthesis Method Features Limitation Library Metric

Krishna and
Chattopadhyay [18]

• BDD-based synthesis • Ancilla input NCT Ancilla input

• Able to cope with large
function up to 9 variables

• Garbage output

• Much efficient in
handling

• Poor scalability

Krishna and
Chattopadhyay [18]

• BDD-based synthesis • Ancilla input NCT Ancilla input

• Able to cope with large
function up to 9 variables

• Garbage output

• Much efficient in
handling ancilla input

• Poor scalability

Soeken, et al. [19] • BDD-based synthesis • Circuit dependency NCT QC, Ancilla
input

• Able to cope with large
function

• Requires large memory
space

• Ancilla free

Gupta, et al. [20] • Search-based synthesis • Limited scalability NCT GC

Saeedi, et al. [21] • Search-based synthesis • Limited scalability NCT QC

Donald and Jha [22] • Search-based synthesis • Limited scalability NCTSFP GC, QC

• Slow synthesis time

Yexin et al. [23] • Graph-based synthesis • Poor scalability NCT GC

• Fast synthesis time

Golubitsky et al. [24] • Optimal-based synthesis • Function dependency NCT GC

• Fast synthesis time • Limited scalability

• Requires large amount of
storage

Golubitsky et al. [25] • Optimal-based synthesis • Function dependency NCT GC

• Fast synthesis time • Limited scalability

• Able too cope with large
function

• Requires large amount of
storage

Szyprowski et al. [26] • Optimal-based synthesis • Function dependency NCT GC

• Fast synthesis time • Limited scalability

Szyprowski et al. [27] • Optimal-based synthesis • Function dependency NCT GC, QC

• Fast synthesis time • Limited scalability

Szyprowski et al. [28] • Optimal-based synthesis • Function dependency m-NCT GC, QC

• Fast synthesis time • Limited scalability

Li et al. [29] • Optimal-based synthesis • Function dependency NCT QC

• Fast synthesis time • Only limited to
4-variable-based reversible
function
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Table 2 Benchmark function
given in PPRM expansion

Coefficient Function

aaa

1 111

a 111

b 011

ab 101

c 110

ac 100

bc 001

abc 000

HD 13

Gate applied –

GC (QC) 0 (0)

The PPRM expansion terms are analyzed by algorithm and find all possible
reversible gates which are matched. For each selected gate, substitution is performed
and generate functions, which are new and are saved as sub-paths. Assigned distinc-
tive numbers to path and information is updated about gate connection, quantum cost,
and gate count. Table2 shows four results of sub-paths with respect to substitution of
gates. At row named as “gate applied”, the character “1” denotes control line of gate;
“x” denotes gate target line; “–” denotes no connection, and “o” denotes negative
line control (for library gate of m-NCT).

In Table2, from the transformed paths, for every selected gate, HD is calculated
by this algorithm. As not even a single path has zero HD, it shows valid solution that
has been found at this level. Then, this algorithm selects the nonzero minimum HD
path as its succeeding synthesized path. The path having minimum nonzero HD is
shown by a shaded color. The gates get selected and substitution is performed on this
path and their results are given in Table3. The updation can also be seen in terms of
gate count, HD, and quantum cost for new path.

The minimum nonzero HD is 7, as shown in Table3. On the path, more reduction
is performed and results displayed in Table4.

The minimum nonzero HD is 4, as shown in Table4. More reduction is performed
on the path and is shown in Table5. It is observed that the output line b reach to
its identical term, so more depletion on path b and use of this control line has no
significance.

The minimum nonzero HD is 2, as shown in Table5. More reduction is performed
on the path and results are given in Table6.

In Table6, the shaded color shows HD path reached zero, and it indicates a valid
solution which is caught by the path data. The remaining paths which have the path
similar to parent not close to HD zero, exploring on these paths will not give a better
solution. Therefore, their whole information is discarded. The reason behind that,
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Table 3 After first gate substitution

Coefficient Function

abc abc abc abc

1 111 000 100 001

a 111 111 010 011

b 011 110 011 010

ab 101 101 101 101

c 110 010 110 110

ac 100 100 100 100

bc 001 001 001 001

abc 000 000 000 000

HD 11 9 11 11

Gate applied TOF x–1 TOF x– TOF–x– TOF–x

GC (QC) 1 (1) 1 (1) 1 (1) 1 (1)

Table 4 After second gate substitution

Function

Coefficient abc abc abc abc

1 000 000 000 000

a 111 111 100 110

b 110 110 110 111

ab 101 101 101 101

c 010 001 010 100

ac 100 100 101 001

bc 111 100 001 001

abc 000 000 000 000

HD 11 7 8 9

Gate applied TOF x11 TOF x–1 TOF–x1 TOF–x1

GC (QC) 2 (6) 2 (3) 2 (3) 2 (3)

these paths will require more reduction to reach a solution, means it needs additional
gate count and never gives a better solution. Therefore, these path discarded by the
algorithm and processes to traverse the upcoming minimum nonzero HD path to
search for the best solution.
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Table 5 After third gate substitution

Coefficient Function

abc abc abc abc

1 000 000 000 000

a 111 111 100 010

b 110 100 110 110

ab 101 101 101 000

c 001 001 001 001

ac 100 100 000 100

bc 010 110 100 100

abc 000 000 000 000

HD 7 9 4 5

Gate applied TOF x11 TOF x1o TOF 1x- TOF 1ox

GC (QC) 3 (8) 3 (8) 3 (4) 3 (8)

Table 6 After fourth gate substitution

Coefficient Function

abc abc abc

1 000 000 000

a 100 101 100

b 110 110 110

ab 101 100 000

c 001 000 001

ac 000 000 000

bc 101 100 100

abc 000 000 000

HD 5 6 2

Gate applied TOF x11 TOF x1o TOF 11x

GC (QC) 4 (9) 4 (9) 4 (9)

4 Synthesis Result

The results of the introduced algorithm are presented in this section. All experiments
were performed on a Dell Precision T1600 featured an Intel Xeon CPU E31280 pro-
cessor at 3.5GHz, 512kB cache, 16 RAM, and running on Windows 7 Professional
edition. The proposed algorithm has been implemented using C language running
on Ubuntu 10 through Oracle VM VirtualBox.
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4.1 Three-Variable-Based Reversible Functions

To select an efficient synthesis-based reversible algorithm, a method is used to
observe the results for all 3-variable-based reversible functions. The introduced algo-
rithm for synthesizing results of all three reversible-based functions is given in this
section, which contains 40,320 total functions. Quantum cost and gate count for
both m-NCT and NCT gate libraries are calculated. These results are further com-
pared with other proposed algorithms given by different authors. Among the best
algorithm classified according to algorithmic paradigm (like cycle-based, search-
based, transformation-based, and BDD-based) are chosen. The synthesized results
in terms of gate count of proposed algorithm by all three-based reversible functions
with comparison to other algorithms is shown in Table7. The synthesized circuits
are classified according to the number of gate counts shown in column “Number of
Gates”. The details given in other columns show the circuit numbers synthesized by
denoted quotations. The minimum number of gate counts to synthesis any reversible
function is the ideal case. The results calculated by the synthesis algorithm are given
in “Proposed Work” column. In the given table, the introduced algorithm results are
in contrast with available synthesis algorithm [9]. It can be analyzed that the proposed
results using NCT library gate are near to best solution and improved as compared
to many previous synthesis algorithm [5, 22, 23]. It gives a better solution than the
currently available best search-based synthesis algorithm described by Donald et al.
[22]. The significant decrease in number of gate count after including m-NCT library
gate. Overall, this algorithm generates minimum average gate count and any circuit
does not require more than 8 gates.

In spite of synthesizing in form of gate count, the introduced algorithm is also able
to synthesis reversible function on the basis of quantumcost. The results of introduced

Table 7 After fourth gate substitution

Coefficient Function

abc abc abc

1 000 000 000

a 100 101 100

b 110 110 110

ab 101 100 000

c 001 000 001

ac 000 000 000

bc 101 100 100

abc 000 000 000

HD 5 6 2

Gate applied TOF x11 TOF x1o TOF 11x

GC (QC) 4 (9) 4 (9) 4 (9)
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Table 8 Gate count for all 3-variable-based reversible functions

Number
of gates

Proposed
work NCT

Proposed
work
m-NCT

Donald et
al. [22]
NCT

Maslov et
al. [5]
NCT

Maslov et
al. [6]
NCT

Yexin et
al. [23]
NCT

Optimal
solution
Shende et
al. [9]
NCT

0 1 1 1 1 1 1 1

1 12 21 12 12 12 12 12

2 102 225 102 102 102 90 102

3 625 1527 625 567 625 476 625

4 2702 6058 2642 2125 2780 1833 2780

5 7932 14139 7479 5448 8819 4996 8921

6 14384 14995 13596 9086 16953 9126 17049

7 12201 3273 12476 9965 10367 10630 10253

8 2339 81 3351 7274 659 7820 577

9 22 0 36 3837 2 3788 0

10 0 0 0 1444 0 1265 0

11 0 0 0 391 0 258 0

12 0 0 0 62 0 25 0

13 0 0 0 6 0 0 0

algorithm in terms of quantum cost for all 3-variable reversible functions are shown
in Table8. The synthesized circuit are classified by quantum cost size are given in
Table8. The other columns data denotes the number of reversible functions that come
in the classificationon size of available quantumcost.As anyotherworkdoes not have
quantum cost table so unable to perform comparison test. Although, these generated
synthesis results guaranteed to be near optimal solution. This only happened because
the introduced algorithm examines and confirms the produced quantum cost of each
subsection and chooses only the path which leads to the minimum quantum cost. In
addition, it helps to improve quantum cost results by the use of m-NCT library.

When synthesized in terms of gate count, the best feature of the algorithm pro-
vides the lowest quantum cost. This assured that the optimal quantum cost exists
for corresponding every gate count. The same is applicable for minimum gate count
when synthesized in terms of quantum cost. The comparison of introduced algorithm
with the characteristic turn on and off when synthesis in terms of gate count using
NCT library gate is shown in Table9. It is observed that the appended characteristics
provide an improved result.
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Table 9 Comparison of gate count and quantum cost

Quantum cost size Proposed work NCT Proposed work m-NCT

0 1 1

1 9 9

2 51 51

3 187 187

4 387 387

5 426 432

6 305 353

7 350 560

8 1305 1812

9 2952 3458

10 3418 2938

11 1416 1001

12 946 1964

13 3543 5728

14 7278 7851

15 6095 2798

16 1017 856

17 950 2601

18 3319 5048

19 4884 2221

20 1461 64

21 20 0

4.2 Benchmark Function

All functions are benchmark which is obtained from [28, 31, 32]. The introduced
algorithm usage to synthesizing benchmark functions on the basis of quantum cost
and gate count results is shown in Table10. The tables are arranged according to size
of benchmark reversible functions. All shown results are optimal determined result
from the introduced algorithm by holding minimal quantum cost or gate count.

The arrangement of tables is done in the given way. The row of table shows the
benchmark name and function’s size. The succeeding rows are created with vari-
ety of columns, which shows the experimental results corresponding to benchmark
function. The initial column displays the library gate operate to manage the sim-
ulation. The upcoming two columns displays the result of quantum cost and gate
count. The succeeding column holds the benchmark circuit connection decided by
the algorithm.

The notation follows the following circuit connection format t x b1, . . . , bn, bn+1

where t indicatesToffoli gates, x indicates the size ofToffoli gate andb1, . . . , bn, bn+1
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Table 10 Quantum cost result for all 3-variable-based reversible functions

Gate count/quantum
cost

Synthesis in term of GC with
QC minimization

Synthesis in term of GC
without QC minimization

GC QC GC QC

0 1 1 1 1

1 9 9 9 9

2 51 51 51 51

3 187 187 187 187

4 387 387 387 387

5 426 426 426 426

6 305 305 305 305

7 350 350 350 347

8 1305 1305 1305 1267

9 2952 2946 2952 2753

10 3418 3488 3418 2981

11 1416 1377 1416 1088

12 946 937 946 915

13 3543 3543 3543 3483

14 7278 7246 7278 6847

15 6095 5945 6095 5176

16 1017 949 1017 754

17 950 980 950 1173

18 3319 3358 3319 3765

19 4884 4893 4884 5177

20 1416 1463 1416 1478

21 20 62 20 122

22 0 138 0 537

23 0 74 0 846

24 0 0 0 233

25 0 0 0 0

26 0 0 0 0

27 0 0 0 5

28 0 0 0 7

are control line coefficients and bn+1 is the target bit. If a negative control line coeffi-
cient is detected, then a stroke will be given. For example, Toffoli4 with a, c, d con-
trol lines, d is a negative control line and b as target line, the written notation
is t4 a, c, d ′, b.
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5 Summary

The synthesis algorithm that uses the NCT library gate with mixed-polarity control is
presented. The introduced synthesis algorithm gives reversible function by using the
PPRM expansions and then HDmethod is applied to choose the transformation path.
For the chosen path, several reversible gates are determined by searching feasible
reversible gatematching. The introduced algorithmkeeps theminimal garbage output
as it does not produce extra ancilla input. This algorithm has been used to synthesize
all 3- variable-based reversible function and the significant results are obtained. It
provides the usage of introduced algorithm to synthesize the reversible benchmark
functions. From the experimental results, it has been provided that by addingm-NCT
library, the results are greatly improved.
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Reversible Circuit Synthesis Using
Evolutionary Algorithms

T. N. Sasamal, H. M. Gaur, A. K. Singh and A. Mohan

Abstract With the unprecedented growth in VLSI technology in recent years, man-
aging power dissipation has become a challenging task for many researchers. In this
aspect, reversible logic emerges as one of the basis of future lossless computing
system that promises zero energy dissipation, meanwhile classical physics cannot
survive due to constant scaling of transistors and the exponential growth of transistor
density in integrated circuits. It has applications in various domain such as low power
VLSI, fault-tolerant designs, quantumcomputing, nanotechnology,DNAcomputing,
optical computing, cryptography, and informatics. There are many existing works
for the synthesis of reversible logic circuits; some are exact methods while others
based on heuristic approaches. In this survey, we review a range of evolutionary com-
putation approaches to the problem of optimal synthesis of reversible Logic—GA
(Genetic Algorithm) based, PSO (Particle Swarm Optimization) based, ACO (Ant
Colony Optimization)-based circuits where aim is to obtain a near-optimal solution
by efficiently exploring the entire search space. This study provides an algorithmic
review with comparative study on metaheuristic-based reversible logic synthesis
methods proposed in existing literatures. Comparison of experimental results based
on large number of benchmark circuits conform that evolutionary algorithms-based
technique enables optimal or near-optimal solutions with lesser synthesis time.
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1 Introduction

In the current scenario with increasing complexity in VLSI circuits; managing power
dissipation is an important issue in digital circuit design. With higher levels of inte-
gration and increasing scaling; Moore’s law seems to be valid yet, but in traditional
(irreversible) technologies heat produced by each IC doubles [44]. Lossless com-
puting offers an alternative, where logical operations do not yield information loss
called reversible operation [36, 69]. Reversible logic realizes n-input n-output func-
tions where a bijective relation exists between input and output vector. In a reversible
logic, every input pattern can be uniquely recovered from its output pattern, so no
information is lost during computation. Reversible logic circuits take care of heat
loss due to information erase. Thus reversibility will become an inherent property
that will help to broaden low power design [66] and quantum computation [23, 46]
horizon, and also have applications to fault-tolerant designs, nanotechnology, DNA
computing, optical computing, cryptography, and informatics [36, 37, 46]. Work by
Landauer [22] showed that, regardless of the underlying technology, Conventional
logic circuits dissipate heat in an order of kTln2 joules for every bit of information
that is lost, where k is the Boltzmann constant and T is the operating temperature.
Since today’s computing devices are usually built of elementary gates like AND,
OR, NAND, etc., they are subject to this principle and, hence, dissipate this amount
of power in each computational step.

Synthesis of reversible logic circuits differs from the conventional one in many
ways. Firstly, in reversible circuit, only once every output will be taken so that
no fan-out should exist. Secondly, every input pattern there should have a distinc-
tive output pattern. In last, an acyclic circuit must be as a result. The reversible
gate performs the permutation of only input functions and synthesizes the reversible
functions. If a reversible gate contains k inputs and k outputs, then it is addressed
as a a k × k reversible gate. The reversible gates are only included in reversible-
based layouts. In reversible designs, the input lines which has constants are known
as constant inputs and the outputs which are not used as primary outputs are known as
garbage outputs.Anoptimal design is used to keepminimal number of constant inputs
and garbages. Traditional Boolean logic synthesis approaches like Karnaugh Map,
Quine–McCluskey, etc. are not allowed to apply directly to synthesize a reversible-
based design due to the parameters like Fan-outs, feedback from output gates to input
gates are not allowed, number of inputs equal to the numbers of outputs, existence
of ancilla inputs and garbage outputs, etc. So implementation only could be possible
in the form of cascading of reversible gates.

Classification of synthesis algorithms is shown in Fig. 1; where we have taken the
milestone works in this area. All the existing reversible logic synthesis approaches
that have been proposed previously can be divided into two major groups: (a) exact
approach which produces the optimal solutions, suffered from huge computation
time; and (b) heuristic approaches, on the other side which provides near-optimal
solutions in short computation time. They can be described in different represen-
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Fig. 1 Classification of synthesis algorithms

tations like BDDs [65], positive polarity Reed–Muller expansion [14], truth-tables
[38], matrix representations, permutations [59].

Some of these approaches perform well on smaller designs, but fails when the
input count increases, either in requirement of huge computation time and mem-
ory, or failure in terms of reaching to the solution. Although having encouraging
progress in the field of reversible logic synthesis, still search of best possible synthe-
sis solution remains an open challenge for the researchers. Number of results show
the practicability and extend of synthesis are generally not sufficient [25]. So, EA-
based algorithm can be used to bolster the potential and efficiency of reversible-based
synthesis methods.

In this survey,we present a comparative study of severalmetaheuristic approaches,
algorithms, benchmarks, and future aspects emphasizes to the realizationof reversible
logic designs. This chapter is organized in following way: Sect. 2 preliminaries are
introduced. Section3 outlines evolutionary approaches. Section4 includes algorith-
mic details. Section5 presents comparison of available benchmarks and discussion
which manifest the feasibility of different approaches. Finally, Sect. 6 summarizes
this work.

2 GA-Based Synthesis Algorithm

Genetic Algorithm (GA) is based on heuristic search approach and optimization tool
for inheriting the method of natural evolution. A GA has the ability for evolving a
solution, by exploring the search space with evolutionary heuristics, in same way
of genetic information transference known from the Nature [13]. GA related to the
broader area of evolutionary algorithms that produces optimal solutions, which are
inspired from Darwin’s theory of natural evolution, such as fitness function, selec-
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tion, mutation, and crossover. GA uses an initial population, where each individual
within this population is a possible solution for the problem. In GA, an initial popu-
lation evolves in direction of optimal solutions. GA starts with randomly generated
population of individuals and occurs in generations. Each individual of this pop-
ulation evolved in various steps (mutation, crossover or repeated) to produce new
generation of individuals for getting a better solution. The fitness function of every
individual is evaluated in every generation. Selection considered the fitness function
for selecting the individuals from the current population and modified to generate
a next population. This new generation is then used in upcoming iterations of the
process. Usually, the process terminates after reaching maximum generations or best
fitness level has been achieved for the population.

In [70], the authors proposed an array model of reversible- based designs. This
paper used universal gates such as wire gate, NOT gate, Toffoli gate and Feynman
gates for configuring reversible- based functions. The model consists of cascade of
gate-level reversible-based units in a n × m rectangular array fashion without the
feedback and the fan-out as shown in Fig. 2, where n represents maximum input or
output wire counts, m represents maximum number of cascade gate-level reversible-
based units. Each chromosome generated by the cascade of T types of designable
reversible functions and can be encoded by E = (n · A + n · (pmax + qmax ) · B) bits,
where A = �log2T � bits, B = �log2n� bits, pmax and qmax are the maximum con-
trolled wire bit-count and controlling wire bits for all designable function respec-
tively. New individuals are generated by BSAGA [70]. A pre-bit priority mechanism
has been considered to ignore multiplexing error, which happens due to multiplexing
between controlling wires and controlled wires.

In literature [27], GA algorithm is used to synthesize an exclusive-or sum-of-
product (ESOP)-based structure. This method emphasizes the importance of well-
designed encoding method and how it helps in fast convergence of GA. The fitness

Fig. 2 Array model
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(a)

(c)

(b)

Fig. 3 a Coding of a generalized reversible gate. bChromosome of a circuit with m gates. c Toffoli
gate coding

function can handle any number of inputs and outputs, and suitable for incompletely
specified functions. In this work stochastic universal sampling operator is used for
selection of individuals because of its population diversity.

In literature [41, 42], aiming at the genetic algorithm (GA) to optimize a given
specification.Themethod also synthesizes incompletely-defined functions.This opti-
mization works more efficiently if the truth table of the given specification contain
don’t-care conditions and don’t-care outputs (garbage outputs). In this chapter, the
music line style is used for schematic of design, and a new codingmethod is proposed
to encode a generalized n × n circuit with m gates, where n is maximum number of
parallel input/output lines, and m represents maximum number of columns or gates
placed on the parallel lines.

As shown in Fig. 3a some fields are associated with each gate. The first field shows
the type of gate (If T types of configurable reversible logic gates available then this
field needmaximum �log2T � bits). The second field indicates the position of its main
input or output. The line number of the main output given by this code, in number
range from 0 to n − 1. The r fields give information about the position of the gate
inputs. For instance a 3 × 3 Toffoli gate shown in Fig. 3c is encoded with 01, 10, 00,
01 (01 is considered as code of Toffoli gate). Figure3b shows a chromosome, which
represents a reversible circuit that contains m gates.

An improved ESOP-based realization of reversible function using genetic algo-
rithm given in [10]. In this Pseudo Kronecker Expressions (PSDKROs) are used for
very compact representation and the given algorithm is effective for functions having
variables greater than 20.

Manna et al. [28] introduced a searching algorithm based on GA for realizing
reversible layouts. This algorithm generates Toffoli gates network for realization of
a reversible structure.
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Table 1 Comparisons of figure of metrics based on GA

Function name GA [4] [70]

GC QC TC GC

[0, 1, 2, 3, 4, 5, 6,7 ] 3–17 6 14 56 6

[0, 1, 2, 3, 4, 5, 6, 7] ham3 5 9 48 5

ham7 – – – 25

4mod5 5 55 56 5

graycode5 – – – 5

graycode6 5 5 40 –

rd32 – – – 4

rd53 – – – 12

[1, 0, 3, 2, 5, 7, 4, 6] rand_3_9 4 16 48 –

[7, 0, 1, 2, 3, 4, 5, 6] rand_3_1 3 7 24 –

[0, 1, 2, 3, 4, 6, 5, 7] rand_3_2 3 15 48 –

[0, 1, 2, 4, 3, 5, 6, 7] rand_3_3 5 17 64 –

[1, 2, 3, 4, 5, 6, 7, 0] rand_3_4 3 7 24 –

[3, 6, 2, 5, 7, 1, 0, 4] rand_3_5 7 19 72 –

[1, 2, 7, 5, 6, 3, 0, 4] rand_3_6 7 15 64 –

[4, 3, 0, 2, 7, 5, 6, 1] rand_3_7 6 10 48 –

[7, 5, 2, 4, 6, 1, 0, 3] rand_3_8 9 21 80 –

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0]
rand_4_3

6 26 64 –

1–bit adder 4 12 48 –

In [4] author’s proposed a similar algorithm, which is valid for any gate library of
reversible-based logic. So, this chapter encoded generalized Toffoli gates to represent
solution. This algorithm is suitable up to 4 or 5 variables and fails to provide solution
for larger circuits. To avoid this, factor-based permutation cycles are used. Table1
shows various functions name and the gate count for each implementation.

3 PSO-Based Synthesis Algorithm

PSO is a stochastically optimization method introduced by Kennedy and Eberhart
[18], inspired from the social behavior of creatures such as bird flocking or fish
shoaling. In PSO method, particles shows the solution, wander through a multidi-
mensional search space, at every instance each particle modify its position based
upon its own experience, and as per the experience of a neighboring particles, maxi-
mizing the usage of best positions confronted by itself and its neighboring particles.
The method has basic attempt to merge local and global searching techniques in
order to detect best feasible solutions.
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Table 2 Comparisons of figure of metrics based on PSO

Function name PSO [3] [28]

GC QC TC GC

[1, 0, 3, 2, 5, 7, 4, 6] rand_3_9 5 9 40 4

[7, 0, 1, 2, 3, 4, 5, 6] rand_3_1 3 7 24 3

[0, 1, 2, 3, 4, 6, 5, 7] rand_3_2 3 15 48 3

[0, 1, 2, 4, 3, 5, 6, 7] rand_3_3 5 9 48 5

[1, 2, 3, 4, 5, 6, 7, 0] rand_3_4 3 7 24 4

[3, 6, 2, 5, 7, 1, 0, 4] rand_3_5 7 20 80 7

[1, 2, 7, 5, 6, 3, 0, 4] rand_3_6 6 14 56 7

[4, 3, 0, 2, 7, 5, 6, 1] rand_3_7 6 10 48 6

3_17 6 14 56 –

ham3 5 9 48 –

ex1 4 8 32 –

nth prime 4 8 40 –

miller 5 9 48 –

peres 2 6 24 –

fredkin 3 7 32 –

1bitadder 4 12 48 –

hwb4 12 24 120 –

4mod5(M) 5 55 72 –

Datta et al. [3] presented a PSO-based searchingmethods to realizing a reversible-
based design. The method has ability to find near-optimal solution without searching
the complete search space. Each particle in swarm creates a network structure rep-
resented as an array of generalized Toffoli gate. The array can be codified as a string
of integer [0 to n × 2n−1]. For a reversible design with n line, there are n × 2n−1

possible generalized Toffoli gates. For given specification f this algorithm gener-
ates N solutions each of k gates. At the initialization stage, each particle is initialized
randomly. Fitness function accounts length of gates, mismatch, hamming distance
between present and desire permutation for particles in the swarm. On each iteration
the positions of particles changed using well- chosen random function. To accept the
new positions for the next iteration, fitness function at new and old position is com-
pared. In [28] similar synthesis algorithm is considered. Fitness function calculated
as the ratio of number of matches and the length of the permutation. Table2 shows
various function name and the gate count for each implementation.
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4 Ant Colony Optimization-Based Synthesis Algorithm

ACOalgorithms aremost efficient andwidely used algorithmmotivated by the forag-
ing behavior of ant colonies [9]. Behavioral patterns exhibited by ants can be explored
to find shortest paths in graphs and similar application. They establish a communica-
tion between individuals based on a chemical substance called pheromones, which
they deposit and smell during their search of food from source to nest. This behavior
can be used to develop an algorithm for the solution of optimization problems. The
convergence of ACO depends on pheromone deposit on their forward and backward
travel.

In literature [24], the author’s introduced an ACO-based technique for reversible-
based units to formulate the best-path search problem. The approach is capable
to hand massive reversible operations and efficiently produces near-optimal design
or optimal design having less number of gates. A generalized Toffoli gate library
{T OFk |k ≤ n} is proposed to implement an n-input reversible-based operation. Each
Toffoli gates is designated as g(−→c , t), where c represents a vector of control bit out
of n input bits,−→c = {[c1, c2, . . . , cn]|ciε {0, 1, 2} , i = 1, 2, . . . , n}. ci = 0 indicates
positive control bit i ; ci = 1 represents negative control bit i, and ci = 2 shows
neither positive nor negative control line. t represents target bit tε (1, 2, . . . , n). Two
graphs have been proposed. First a probabilistic state transition graph G(V, E) that
correlates the gate selection to help the ants during efficient path search process,
which dynamically updated by pheromone levels and gate count after all the ants
completed their tour. Second a weighted graph G(C, A) called as an ant system
graph (ASGraph) where C = {c1, c2, . . . , cn} is a finite set of elements (reversible
operation). Set comprises of all the arcs (gates) linking the elements. So, the synthesis
of reversible operation able to phrase like a minimization problem on an ASGraph,
in which each arc weight wi j is defined as the lowest cost of gates in ai j .

Key steps in the algorithm:

• Speculative model for gate selection (DFS and BFS algorithm are used in local
search to choose a gate g(−→c , t). The speculative model decides the target bit and
the value of each control bit).

• Initialization of τpq (Ant takes decision based on set of pheromone values τpq =
(ψpq , φpq), where τpq is the amount of pheromone for choosing bit t as target bit,
and φpq is the amount of pheromone to set control bit i as ci for target bit t if an
ant moves from state p to state q. The updated pheromone values are stored in a
hash table to optimize memory utilization).

• Pheromone update (The pheromone graph G(V, E) get updated each time after all
the ants completed their tour. Gates with less quantum cost get more pheromones
than other) (Figs. 4a, b and 5).

Sarkar et al. [57] presented a modified version of classical Quine–McCluskey
method under the guidance of ACO techniques has been proposed. Table3 shows
various function name and the gate count for each implementation.
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Fig. 4 a State transition
graph b weighted graph for
reversible function

Fig. 5 Realization of
reversible function [2, 6, 0, 5,
7, 3, 4, 1] using Toffoli gates
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Table 3 Comparisons of figure of metrics based on ACO

Function name GC

ACO based [24] [57]

[1, 0, 3, 2, 5, 7, 4, 6] rand_3_9 3 5

[7, 0, 1, 2, 3, 4, 5, 6] rand_3_1 3 3

[0, 1, 2, 3, 4, 6, 5, 7] rand_3_2 3 5

[0, 1, 2, 4, 3, 5, 6, 7] rand_3_3 4 6

[0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15] rand_4_2 7 10

[1, 2, 3, 4, 5, 6, 7, 0] rand_3_4 3 3

[1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15, 0] rand_4_3 3 4

[0, 7, 6, 9, 4, 11, 10, 13, 8, 15, 14, 1, 12, 3, 2, 5] rand_4_4 4 4

[3, 6, 2, 5, 7, 1, 0, 4] rand_3_5 6 8

[1, 2, 7, 5, 6, 3, 0, 4] rand_3_6 6 7

[4, 3, 0, 2, 7, 5, 6, 1] rand_3_7 5 7

[7, 5, 2, 4, 6, 1, 0, 3] rand_3_8 5 7

[6, 2, 14, 13, 3, 11, 10, 7, 0, 5, 8, 1, 15, 12, 4, 9] rand_4_5 11 14

[2, 9, 7, 13, 10, 4, 2, 14, 3, 0, 12, 6, 8, 15, 11, 1, 5] 11 –

[6, 4, 11, 0, 9, 8, 12, 2, 15, 5, 3, 7, 10, 13, 14, 1] 13 –

[13, 1, 14, 0, 9, 2, 15, 6, 12, 8, 11, 3, 4, 5, 7, 10] rand_4_1 10 –

5 Comparison and Discussion

To evaluate the effectiveness of EA-based synthesis algorithms, we have taken the
best results available for each benchmark functions [14, 29, 52]. Table4 shows the
function name and the gate count for each implementation. We compare the best
announced algorithm outputs for the NCT library. From Table4 it is clear that the
EA-based algorithm provides better results in terms of gate count (GC) in most of
the cases. In other cases, synthesizing circuit using EA results with identical gates.
For instance, rand_3_1, rand_3_2, which are implemented with identical gates.

6 Summary

In this paper, a brief algorithmic overview on different types of EA- based synthe-
sis approach has been provided. Comparison with existing work shows EA-based
method has better performance inGC,QC, and computational cost. In the last decade,
study of reversible circuits and its synthesismethods has received significant attention
and the results obtained are quite encouraging, still new efficient synthesis algorithm
will remain an open challenge for the researchers.



Reversible Circuit Synthesis Using Evolutionary Algorithms 125

Table 4 Benchmark comparison
Function name Gate count

MOSAIC MASLOV PPRM GA PSO ACO

[52] [29] [14] [4] [16] [24]

[1, 0, 3, 2, 5, 7, 4, 6] rand_3_9 4 – 4 4 5 3

[7, 0, 1, 2, 3, 4, 5, 6] rand_3_1 3 – 3 3 3 3

[0, 1, 2, 3, 4, 6, 5, 7] rand_3_2 3 – 3 3 3 3

[0, 1, 2, 4, 3, 5, 6, 7] rand_3_3 7 – 5 5 5 4

1 bit adder – – – 4 4 4

4mod5 – 4 – 5 5 –

graycode6 – – – 5 – –

graycode5 – – – – – –

ham3 – 5 – 3 5 –

3_17 – 6 – 6 6 –

[0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15]
rand_4_2

9 – 7 – – 7

[1,2,3,4,5,6,7,0] rand_3_4 3 – 3 3 3 3

[1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15, 0]
rand_4_3

4 – 4 – – 3

[0, 7, 6, 9, 4, 11, 10, 13, 8, 15, 14, 1, 12, 3, 2, 5]
rand_4_4

3 – 4 – – 4

[3, 6, 2, 5, 7, 1, 0, 4] rand_3_5 8 – 7 7 8 6

[1, 2, 7, 5, 6, 3, 0, 4] rand_3_6 8 – 7 7 6 6

[4, 3, 0, 2, 7, 5, 6, 1] rand_3_7 6 – 6 6 6 5

[7, 5, 2, 4, 6, 1, 0, 3] rand_3_8 6 – 7 9 – 5

[6, 2, 14, 13, 3, 11, 10, 7, 0, 5, 8, 1, 15, 12, 4, 9]
rand_4_5

19 – 14 – – 11

[2, 9, 7, 13, 10, 4, 2, 14, 3, 0, 12, 6, 8, 15, 11, 1, 5] 23 – 14 – – 11

[6, 4, 11, 0, 9, 8, 12, 2, 15, 5, 3, 7, 10, 13, 14, 1] 21 – 17 – – 13

[13, 1, 14, 0, 9, 2, 15, 6, 12, 8, 11, 3, 4, 5, 7, 10]
rand_4_1

29 – 14 – – 10
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Automatic Error Correction
of Reversible Circuits

M. Fujita

Abstract Automatic correction of logical bugs in reversible circuits is discussed in
this chapter. The general logic correction problem can be formulated as Quantified
Boolean Formula (QBF) problem which can be solved by repeatedly applying SAT
solvers. The automatic correction of reversible circuits can be similarly formulated
as QBF. We show various experiments to demonstrate how the method can correct
the circuits with an implementation on the logic synthesis and verification tool, ABC
from University of California, Berkeley. The discussed methods can be extended to
topologically constraints reversible circuit synthesis.

1 Logic Debugging for Reversible Circuits

In this chapter we discuss techniques by which reversible circuits, or more specif-
ically Toffoli networks can be logically debugged. Here we would like to discuss
the following situation. Suppose a specification in terms of reversible function is
given, and with the method discussed in the previous chapter, or with other tech-
niques, the corresponding reversible circuit is manually generated. Unfortunately, it
is shown by simulation and other verification techniques that the reversible circuit is
not completely equivalent to the specification, and it must be logically debugged.

Similar situations also happen when the specification is modified after its corre-
sponding circuit is generated. This is so-called “Engineering Change Order” (ECO).
When specification changes, instead of regenerating a new circuit from the scratch,
it is often better to modify the existing one so that it becomes equivalent to the new
specification, since by doing so, the original circuit topology is mostly preserved and
the implementation efforts such as layout can also be reused. Logical debugging and
ECO are basically doing the same operations, as the goal is to make the given circuit
equivalent to the given specification.

Logical debugging basically consists of two steps. The first step is to locate the
suspicious portions in the buggy circuit. Typically when a circuit is found to be
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incorrect by some verification method, some sort of counterexamples are available.
By back tracing the dependencies in the simulation results of the counterexamples,
which portions in the circuit are in charge of generating wrong values at primary out-
puts can be examined. If multiple counterexamples are available and buggy portion
is to be one portion, intersections of such back traces from the primary outputs on the
dependency paths may be most suspicious. Then in the second step, the suspicious
portions are actually replaced with new sub-circuits so that the entire circuit becomes
equivalent to the specification.

In this chapter, we concentrate on the second step, since the first step is basi-
cally the same as the methods for conventional logic circuits. This chapter consists
of the following discussions. First, automatic correction techniques which utilize
LUT (Look Up Table) based formulation is reviewed with applications to illustrative
examples. They are applicable to conventional logic circuits. Then their extensions
for reversible circuits are discussed. The key issue is how to generate reversible func-
tions for the LUTs introduced for automatic correction. If the logic functions for the
LUTs are generated without the additional constraints shown below, the generated
functions are most likely nonreversible. After that, a new formulation of automatic
correction of reversible circuits is given using the generalized Toffoli gates discussed
later. All of the discussions so far assume that the inputs to the gates or sub-circuits
to be corrected do not change. Although this gives simpler methods for the automatic
corrections, based on the industrial experiences, around half of the errors cannot be
corrected, as they require new inputs to the gates or sub-circuits to be corrected.
Therefore, methods which can change the inputs to the gates or sub-circuits to be
corrected are also discussed.

Most of the discussions above are made through illustrative examples including
the running examples using the logic synthesis and verification tools ABC [1].

2 Automatic Correction Methods Using LUT
for Conventional Circuits

There have been proposed a number of techniques on automatic correction of sus-
picious portions in the buggy circuit. Here one of such techniques based on partial
logic synthesis [2, 3] is shown to be useful for reversible circuits as well. This
section introduces the partial logic synthesis methods for conventional circuits. It
tries to automatically fill the missing portions of the circuit so that the entire circuit
becomes equivalent to the specification separately given. For example, suppose that
a buggy full adder design is given as the one shown in Fig. 1b and assume that the
correct specification is equivalent to the circuit shown in Fig. 1a. Specifically one
EOR gate in (a) is wrongly replaced with an AND gate in (b).

There are basically two different formulations on logical debugging or ECO (spec-
ification is slightly changes) targeting combinational circuits or combinational parts
of sequential circuits:
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Fig. 1 The target circuit,
full adder

1. For a set of selected gates, only their types of gates are to be modified in order
for the entire circuit to be equivalent to the specification.

2. Same as above, but it is allowed to change not only the types of their gates, but
also the fanins (inputs to the gates) can be changed from the original ones to any
signals including the primary inputs in the circuit. Please note that as the target
is a combinational circuit, by changing the connection, no loop is introduced.

As for problem 1, there have been introduced and researched based on LUT-
based problem definition which can be solved byQBF (Quantified Boolean Formula)
solvers or incremental SAT solvers [2, 3], and as for problem 2, the problem to find
out good replacements for the fanins of the gates is defined as a SAT problem which
can be solved by SAT solvers [4].

Here the logic synthesis and ECO methods shown in [2, 3] are briefly introduced
through examples, and then the methods shown in [4] is introduced through an
example.

Let us consider the circuit shown in Fig. 2. The circuit shown in Fig. 2b is the
target buggy circuit to be corrected with respect to the specification shown in the
circuit in Fig. 2a. As the first step, the buggy gates whose types are to be modified are
identified. This may be accomplished by so-called “path tracing” which traces back
the dependencies from the primary outputs whose values are wrong. In this case, the
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(a)

(b)

(c)

Fig. 2 An example sequential circuit whose combinational part should be debugged
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gates, G15 and G16 are identified. Then a single output sub-circuit having those two
gates is picked up. The sub-circuit is the region which covers the three gates, G15,
G16, and G9. The generated sub-circuit is represented by an LUT having three inputs
as shown in Fig. 2c, since there are originally three inputs to the sub-circuit. The LUT
corresponds to the missing portion in the figure. Please note in this debugging and
ECO method, the inputs to the sub-circuit are not allowed to change.

As shown in Fig. 3, the LUT has variables t t0, . . . , t t7 which correspond to the
values of the truth table for the sub-circuit and the original three inputs, in1, in2, in3.
It is essentially equivalent to a multiplexer whose control inputs are in1, in2, in3
and the inputs are t t0, . . . , t t7. Please note that the variables t t0, . . . , t t7 show the
values of the truth table.

Then the problem to be solved is defined as a QBF (Quantified Boolean Formula)
problem:
∃t t0, . . . , t t7.∀in1, in2, in3.
Circuit shown in Fig.2c is equivalent to circuit shown in Fig.2a.

That is, by assigning appropriate values to t t0, . . . , t t7, for all input values, Circuit
shown in Fig. 2c is equivalent to circuit shown in Fig. 2a.

The above problem is not a SAT problem, as both of existential and universal
quantifiers appear in the formula. This QBF problem can be efficiently solved by
QBF solvers or incremental SAT solvers as shown in [2, 3]. Circuits having tens of
thousands of gates can be processed.

Instead of discussing the details of the methods, here they are illustrated with the
examples using the logic synthesis and verification tool ABC [1]. In order to describe
the gate-level netlists to be processed by ABC, BLIF format is introduced and used
here. As for the details of the BLIF format, please see for example, [5].

The circuit shown in Fig. 1a in BLIF format is shown below:
1 .model fulladder
2 .inputs a b c
3 .outputs s co
4 .names b c n1
5 10 1
6 01 1
7 .names b c n2
8 11 1
9 .names a n1 n3
10 11 1
11 .names a n1 s
12 10 1
13 01 1
14 .names n3 n2 co
15 1- 1
16 -1 1
17 .end
.model in line 1 defines the name of the circuits. .inputs and .outputs in
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Fig. 3 3-input LUT (Look
Up Table)

lines 2 and 3 respectively show the list of primary inputs and the list of primary
outputs of the circuit. Then .names defines the functionality of each gate in the
circuit. Variable names following .names are inputs to the gate except for the last
variable. The last variable is the output of the gate. Please note that with .names
statements in BLIF format, all gates must be a single output gate. The lines consisting
of 0, 1, and - after the lines of .names define the logic function of the gates. Here
the input values which make the output of the gate 1 are expressed. That is, the line
11 1 in line 8 means a 2-input AND gate whereas the two lines consisting of 1-
1 and -1 1 in lines 15 and 16 means a 2-input OR gate. - represents a don’t care
value, that is, the output does not depend on the value of the variable in this case. In
the same way, the two lines consisting of 10 1 and 01 1 in lines 5–6 and 12–13
means a 2-input EOR gate.

An example of buggy circuit is shown in Fig. 1b. In this example, the buggy gate,
BG is replaced with a 2-input LUT as shown in Fig. 1c. The 2-input LUT in BLIF
format becomes the following:
1 .model LUT2
2 .inputs tt0 tt1 tt2 tt3 in1 in2
3 .outputs out
4 .names in1 in2 tt0 tt1 tt2 tt3 out
5 001-- 1
6 01-1- 1
7 10−1- 1
8 11--1 1
9 .end
Values of t t0, . . . , t t3 show the values of the truth table of the target 2-input LUT.
Based on the values of in1 and in2, an appropriate row in the truth table is selected
and connected to out which is represented by lines 5–8.

Using the above LUT2 circuit as a sub-circuit, the circuit shown in Fig. 1c is rep-
resented in BLIF format as follows:
1 .model faLUT

2 .inputs t0 t1 t2 t3 a b c

3 .outputs s co

4 .subckt LUT2 tt0=t0 tt1=t1 tt2=t2 tt3=t3 in1=a in2=b out=n1

5 .names b c n2
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6 11 1

7 .names a n1 n3

8 11 1

9 .names a n1 s

10 10 1

11 01 1

12 .names n3 n2 co

13 1- 1

14 -1 1

15 .end

The logic function for the full adder in Sum-of-Products form is shown in Fig. 4a
and it can be described in BLIF as below. This becomes the specification for the
debugging problem.
1 .model fa
2 .inputs a b c
3 .outputs s co
4 .names a b c s
5 001 1
6 010 1
7 100 1
8 111 1
9 .names a b c co
10 -11 1
11 1-1 1
12 11- 1
13 .end

In order to solve the debugging problem, a circuit called “miter” (as shown in
Fig. 5) is created from the specification in Fig. 4a and the buggy circuit with an LUT
in Fig. 4b. The miter circuit in Fig. 5 becomes the followings in BLIF format:
1 .model faSyn

2 .inputs t0 t1 t2 t3 a b c

3 .outputs out

4 .subckt faLUT t0=t0 t1=t1 t2=t2 t3=t3 a=a b=b c=c s=s1 co=co1

5 .subckt fa a=a b=b c=c s=s0 co=co0

6 .names s0 s1 out1

7 11 1

8 00 1

9 .names co0 co1 out2

10 11 1

11 00 1

12 .names out1 out2 out

13 11 1
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Fig. 4 Specification and buggy circuit with LUT

Fig. 5 Miter circuit for the debugging

14 .end

Then the miter circuit is processed by the ABC command, “qbf”. It solves the
QBF problem:
∃t0, t1, t2, t3.∀in1, in2, in3. faLUT circuit is equivalent to fa circuit.
Here is the execution trace of the qbf command:
abc 06> read faSync.blif

Hierarchy reader flattened 3 instances of logic boxes and left

0 black boxes.

abc 07> qbf -P 4 -v
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Iter 0 : AIG = 0 100 Iter 1 : AIG = 1 010 Syn = 0.00 sec

Iter 2 : AIG = 2 001 Syn = 0.00 sec

Parameters: 0110 Statistics: 0=2 1=5

Solved after 2 iterations. Total runtime = 0.01 sec

The parameters: 0110 obtained above are the truth table value and mean that the
LUT must represent EOR of the two inputs, which is correct. In the qbf command,
the solutions for parameters are iteratively found as seen from the above trace. It
tries to find a solution “candidate” by assigning a value set to the input variables,
in1, in2, in3. First, the values of input variables and truth table variables whichmake
the circuit with LUT nonequivalent to the specification is chosen by a SAT solver.
In this case, the values of the input three variables are set to (1,0,0) as seen from
the above trace. From this input values, as shown in Fig. 6, one of the parameters is
found by a SAT solver such that t0 must be 0 in order for the specification and buggy
circuit with LUT become equivalent. Then another solution candidate on the values
of t0, t1, t2, t3 is selected, such as t0, t1, t2, t3= (0,0,0,0). This solution candidate is
falsified by the equivalence checking between the specification and the buggy circuit
with LUT programmed as (0,0,0,0). A SAT solver generates a counterexample for
the equivalence, which is (0,1,0).

Then as the second iteration, the qbf command tries to find another solution
candidate which is correct under both of the two inputs values, (1,0,0) and (0,1,0).
As the input values, (0,1,0) forces t1 to be 1 as shown in Fig. 7, a solution candidate,
such as t0, t1, t2, t3= (0,1,0,0) is generated.Again a counterexample for this solution
candidate is the input values, (0,0,1). Now as the third iteration, the qbf command
tries to find another solution candidate which is correct under all of the three inputs
values, (1,0,0), (0,1,0), and (0,0,1). In this case, the qbf command find an actually
correct solution of t0, t1, t2, t3= (0,1,1,0), and the qbf command terminates, as there
is no more counter example.

As can be seen from the above, three input values are needed instead of 8 possible
value combinations. Generally speaking, the algorithm used in qbf command finds
a correct solution with a small number of iterations in most of the cases as seen in
[2, 3].

3 LUT Based Automatic Correction for Reversible Circuits

The method presented in the last section can be directly applied to reversible circuits
under the context shown in Fig. 8. A Toffoli network is given as shown in the top
of the figure. If it is logically buggy, the target Toffoli gate is identified just like
the discussions in the previous section. Then it is replaced with an LUT by which
the entire Toffoli network becomes correct. Then the functionality of the LUT can
be determined by the same way as the method in [2, 3]. The functionality realized
by the Toffoli gates other than the buggy one can be translated into regular logic
formulae which become the constraints on the problem above. This translation is
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Fig. 6 Miter circuit for the debugging

Fig. 7 Miter circuit for the debugging

rather straightforward, as what must be performed is simply a manipulation of logic
formulae. One difference is that as Toffoli networks have a number of lines, when
finding corrections, up to the number of lines of LUTs may be required for the
problem definition, which is within the methods shown in [2, 3] only if the number
of lines is not so large (around 16 or less). This is because in order to define LUTs,
exponential numbers of variables for rows of the truth tables are required.

There is, however, one problem.As the circuitmust be reversible and implemented
as (potentially cascades of ) Toffoli gate, the new logic function obtained for the LUT
as the solution of the QBF problem should also be a reversible function. For that first
of all, the number of inputs and the number of outputs must be the same. Also
when generating the solution for the QBF problem, the function generated must be
a reversible function. This can be checked by the following way for functions for
LUTs.
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Fig. 8 Debugging Toffoli
circuits

A reversible function is basically permuting input values and generate them. The
input value and the output value must be a one-to-one mapping. This means that
in order to be a reversible function, the output values can become the same only if
the input values are the same. As long as the input values are different, they must
generate different output values. On the contrary, if this is satisfied, all of the input
values must be realized at the output, and so the function is reversible.

Theorem 1 Given a n inputs and n outputs LUT, let the n functions defined
by the LUT be LUT1(in1, in2, . . . , inn), LUT2(in1, in2, . . . , inn), . . . , LUTn(in1,
in2, . . . , inn). Also let (in11, in12, . . . , in1n) and (in21, in22, . . . , in2n) be two input
values. The overall n inputs and n outputs function realized by the LUT is reversible
if and only if the disjunction of the following two is always true:
(1) ((in11 = in21) ∧ (in12 = in22) ∧ · · · ∧ (in1n = in2n))
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(2) For some i (1 ≤ i ≤ n). (LUTi (in11, in12, . . . , in1n) �= LUTi (in21, in22, . . . ,
in2n))

The condition (2) above consists of n inequalities. So the solution for the debugging
problem with LUT-based formulation must also satisfy the theorem. The condition
for the theorem in the case of three inputs can be described in BLIF format as follows:
1 .model RevCheck

2 .inputs T00 T01 T02 T03 T04 T05 T06 T07 T10 T11 T12 T13 T14

T15 T16 T17 T20 T21 T22 T23 T24 T25 T26 T27 in11 in12 in13

in21 in22 in23

3 .outputs out

4 .subckt LUT33 t00 = T00 t01 = T01 t02 = T02 t03 = T03 t04 =

T04 t05 = T05 t06 = T06 t07 = T07 t10 = T10 t11 = T11 t12 =

T12 t13 = T13 t14 = T14 t15 = T15 t16 = T16 t17 = T17 t20 =

T20 t21 = T21 t22 = T22 t23 = T23 t24 = T24 t25 = T25 t26 =

T26 t27 = T27 in1=in11 in2=in12 in3=in13 out1=o11 out2=o12

out3=o13

5 .subckt LUT33 t00 = T00 t01 = T01 t02 = T02 t03 = T03 t04 =

T04 t05 = T05 t06 = T06 t07 = T07 t10 = T10 t11 = T11 t12 =

T12 t13 = T13 t14 = T14 t15 = T15 t16 = T16 t17 = T17 t20 =

T20 t21 = T21 t22 = T22 t23 = T23 t24 = T24 t25 = T25 t26 =

T26 t27 = T27 in1=in21 in2=in22 in3=in23 out1=o21 out2=o22

out3=o23

6 .names in11 in21 y1

7 11 1

8 00 1

9 .names in12 in22 y2

10 11 1

11 00 1

12 .names in13 in23 y3

13 11 1

14 00 1

15 .names y1 y2 y3 y

16 111 1

17 .names o11 o21 z1

18 11 1

19 00 1

20 .names o12 o22 z2

21 11 1

22 00 1

23 .names o13 o23 z3

24 11 1

25 00 1

26 .names z1 z2 z3 z
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27 111 1

28 .names y z out

29 1- 1

30 -0 1

31 .end

The following way of applying the qbf command finds a reversible function.
abc 02> qbf -P 24

Parameters: 110010011110010010010101 Statistics: 0=12 1=18

Solved after 25 iterations. Total runtime = 0.08 sec

Please note that the above execution has over 25 iterations, as in total 24 vari-
ables are existentially quantified. By combining the constraints for a function to be
reversible, shown above with the constraints for LUT-based debugging, solutions for
the LUT which are reversible functions can be obtained.

Thismethod, however,maynot scalewell if the number of inputs toLUTsbecomes
large, as the constraints for a function to be reversible needs a number of variables
to be defined. So instead of doing above, a debugging method with the generalized
Toffoli gate is introduced in the next section.

4 Debugging Based on Universal Toffoli Gates

An alternative approach is to represent the functionality of possible Toffoli gates with
a set of parameter variables instead of using LUT. Here an example of a debugging
process is briefly shown with ABC tool using this idea. The target circuits are shown

Fig. 9 Example of
debugging a Toffoli circuit x1 x’1
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x3 x’3
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in Fig. 9. (a) is assumed to be a correct circuit whereas (b) is a buggy one as can be
seen in the second Toffoli gate in (b).

The first step is to represent the general functionality of a Toffoli gate with a set of
parameter variables. Two sets of parameter variables are introduced. The first set is
to show whether each line in the Toffoli network is connected to the control input of
the Toffoli gate or not. If mi , 1 ≤ i ≤ 3 is 1, then linei is one of the control inputs of
the Toffoli gate. Clearly at least one of the lines must not be connected to the control
input of the Toffoli gate, and so m1 ∧ m2 ∧ m3 must be satisfied (must be always 1).

The second set of parameter variables is to show whether each line is the target
of the Toffoli gate or not. If ei is 1, linei is the target line. Therefore, for example,
the following holds:
x11 = (e1 ∧ x1) ∨ (e1 ∧ (((m1 ∨ x1) ∧ (m2 ∨ x2) ∧ (m3 ∨ x3)) → (((m1 ∨ x1)
∧ (m2 ∨ x2) ∧ (m3 ∨ x3)) ⊕ x1)))
If e1 is 0, that is line1 is not the target line, x11 should have the same value of x1, i.e.,
x11 = x1 (or e1 ∧ x1). If e1 is 1, line1 is the target line, and so the value of x11 should
be:
((m1 ∨ x1) ∧ (m2 ∨ x2) ∧ (m3 ∨ x3)) ⊕ x1).
Finally the same line cannot be both of control input and the target of the Toffoli
gate: m1 ∨ e1.
The above is just for line1, and there must be corresponding constraints for line2 and
line3 as well.

Also as exactly one of the lines must be a target of the Toffoli gate, the follow-
ing must be satisfied: (m1 ∨ m2 ∨ m3) ∧ (m1 ∧ m2 ∧ m2 ∧ m3 ∧ m3 ∧ m1). Clearly
a line cannot become both of the control input and target line at the same time:
e1 ∧ m1

e2 ∧ m2

e3 ∧ m3

In the case of three lines, these are summarized as follows:
O1 ≡ e1 ∧ m1

O2 ≡ e2 ∧ m2

O3 ≡ e3 ∧ m3

P ≡ (m1 ∨ x1) ∧ (m2 ∨ x2) ∧ (m3 ∨ x3)
Q ≡ m1 ∧ m2 ∧ m3

R0 ≡ e1 ∨ e2 ∨ e3
R1 ≡ e1 ∧ e2
R2 ≡ e2 ∧ e3
R3 ≡ e2 ∧ e1
S1 ≡ e1 ∧ x1
S2 ≡ e2 ∧ x2
S3 ≡ e3 ∧ x3
T1 ≡ e1 → (P ⊕ x1)
T2 ≡ e2 → (P ⊕ x2)
T3 ≡ e3 → (P ⊕ x3)
x11 ≡ Given by the specification
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x12 ≡ Given by the specification
x13 ≡ Given by the specification
N1 ≡ (x11 = S1 ∨ (e1 ∧ T1))
N2 ≡ (x12 = S2 ∨ (e2 ∧ T2))
N3 ≡ (x13 = S3 ∨ (e3 ∧ T3))
Then overall constraints become:
O1 ∧ O2 ∧ O3 ∧ Q ∧ R0 ∧ R1 ∧ R2 ∧ R3 ∧ N1 ∧ N2 ∧ N3

The values of x11 , x
1
2 , x

1
3 represent the output values of the three lines.

The above formulae can be specified in ABC as a combinational circuit with one
primary output inBLIF format. The constraintsmean the primary output of the circuit
must be always 1. When writing a combinational circuit for the constraints, input
variables are defined in such a way that parameter variables (m1,m2,m3, e1, e2, e3)
appearing first followed by the primary input variables (x1, x2, x3). Once that is done,
the qbf command in ABC can solve the problem.

Please note that the above way of defining SAT problem is a simplified version of
the method discussed in the exact synthesis approach of the previous chapter [6–8].

A BLIF file of the above constraints assuming that there are three output lines
should realize:
x11 = x1 ⊕ x2, x12 = x2, x13 = x3.
This can be made sure by seeing the lines 69–71 for x11 , lines 75–76 for x

1
2 , and lines

80–81 for x13 .
1 .model exreversible
2 .inputs m1 m2 m3 e1 e2 e3 x1 x2 x3
3 .outputs out
4 .names e1 m1 O1
5 11 0
6 .names e2 m2 O2
7 11 0
8 .names e3 m3 O3
9 11 0
10 .names m1 x1 P1
11 0- 1
12 -1 1
13 .names m2 x2 P2
14 0- 1
15 -1 1
16 .names m3 x3 P3
17 0- 1
18 -1 1
19 .names P1 P2 P3 P
20 111 1
21 .names m1 m2 m3 Q
22 111 0
23 .names e1 e2 e3 R0
24 1- 1
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25 -1- 1
26 -1 1
27 .names e1 e2 R1
28 11 0
29 .names e2 e3 R2
30 11 0
31 .names e3 e1 R3
32 11 0
33 .names e1 x1 S1
34 01 1
35 .names e2 x2 S2
36 01 1
37 .names e3 x3 S3
38 01 1
39 .names P x1 T11
40 10 1
41 01 1
42 .names P x2 T12
43 10 1
44 01 1
45 .names P x3 T13
46 10 1
47 01 1
48 .names e1 T11 T1
49 0- 1
50 -1 1
51 .names e2 T12 T2
52 0- 1
53 -1 1
54 .names e3 T13 T3
55 0- 1
56 -1 1
57 .names S1 T1 e1 ST1
58 1- 1
59 -11 1
60 .names S2 T2 e2 ST2
61 1- 1
62 -11 1
63 .names S3 T3 e3 ST3
64 1- 1
65 -11 1
66 .names x11 ST1 N1
67 11 1
68 00 1
69 .names x1 x2 x11
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70 10 1
71 01 1
72 .names x12 ST2 N2
73 11 1
74 00 1
75 .names x2 x12
76 1 1
77 .names x13 ST3 N3
78 11 1
79 00 1
80 .names x3 x13
81 1 1
82 .names O1 O2 O3 Q R0 R1 R2 R3 N1 N2 N3 out
83 11111111111 1
84 .end
The BLIF file is read by ABC tool and then qbf command is executed in ABC as
follows:
abc 02> qbf -P 6 -v
Iter 0 : AIG = 27 110
Iter 1 : AIG = 38 101 Syn = 0.01 sec
Parameters: 010100 Statistics: 0=4 1=5
Solved after 1 interations. Total runtime = 0.02 sec

The execution of qbf command generates the values for the parameters. 010100.
As the order of inputs in Fig. 9 is m1,m2,m3, e1, e2, e3, this indicates the following:
m1 = 0,m2 = 1,m3 = 0, e1 = 1, e2 = 0, e3 = 0
With these parameter values, the functionality of the three lines, x11 , x

1
2 , x

1
3 becomes

the following as intended.
x11 = x1 ⊕ x2, x12 = x2, x13 = x3

For the debugging of the entire circuit shown in Fig. 9c, the above generalized
Toffoli gate is cascaded by four times. The first, third, and fourth generalized Toffoli
gates are programmed following the functionality shown in Fig. 9c as follows:
x11 = x2 ∧ x3 ⊕ x1, x12 = x2, x13 = x3
x31 = x22 ∧ x23 ⊕ x21 , x

3
2 = x22 , x

3
3 = x23

x41 = x31 , x
4
2 = x32 , x

4
3 = x33

The second generalized Toffoli gate is the target to be corrected, and so its parameter
values are to be synthesized by the qbf command.

For example, in the first Toffoli gate in Fig. 9c, the target line is line1 and the lines,
line2 and line3 are control lines. This means m1 = 0,m2 = 1,m3 = 1, e1 = 1, e2 =
0, e3 = 0 and can be described in BLIF format as:
.subckt Toffoli m1=zero m2=one m3=one e1=one e2=zero
e3=zero in1=li1 in2=li2 in3=li3 out1=x11T out2=x12T
out3=x13T out=invar0
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where zero and one are defined as in BLIF format:
.names zero
.names zero one
0 1

The third and fourth gates can be described in the same way. By combining
these, the buggy circuit in Fig. 9c can be efficiently corrected with respect to the
specification in (a).

The overall constraints for the debugging of Fig. 9c with respect to the specifica-
tion in (a) becomes the following in BLIF format:
1 .model Toffolinetwork
2 .inputs M1 M2 M3 E1 E2 E3 Li1 Li2 Li3
3 .outputs out
4 .names zero
5 .names zero one
6 0 1
7 .names lo1 Slo1 ooo1
8 11 1
9 00 1
10 .names lo2 Slo2 ooo2
11 11 1
12 00 1
13 .names lo3 Slo3 ooo3
14 11 1
15 00 1
16 .names ooo1 ooo2 ooo3 out
17 111 1
18 .subckt Spec li1=Li1 li2=Li2 li3=Li3 lo1=Slo1
lo2=Slo2 lo3=Slo3
19 .subckt Toffoli m1=zero m2=one m3=one e1=one
e2=zero e3=zero in1=Li1 in2=Li2 in3=Li3
out1=x11T out2=x12T out3=x13T out=invar0
20 .names x11T invar0 x11
21 11 1
22 .names x12T invar0 x12
23 11 1
24 .names x13T invar0 x13
25 11 1
26 .subckt Toffoli m1=M1 m2=M2 m3=M3 e1=E1 e2=E2 e3=E3
in1=x11 in2=x12 in3=x13 out1=x21T out2=x22T out3=x23T
out=invar1
27 .names x21T invar1 x21
28 11 1
29 .names x22T invar1 x22
30 11 1
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31 .names x23T invar1 x23
32 11 1
33 .subckt Toffoli m1=zero m2=one m3=one e1=one e2=zero
e3=zero in1=x21 in2=x22 in3=x23 out1=x31T out2=x32T
out3=x33T out=invar2
34 .names x31T invar2 x31
35 11 1
36 .names x32T invar2 x32
37 11 1
38 .names x33T invar2 x33
39 11 1
40 .subckt Toffoli m1=zero m2=zero m3=zero e1=one e2=zero
e3=zero in1=x31 in2=x32 in3=x33 out1=x41T out2=x42T
out3=x43T out=invar3
41 .names x41T invar3 x41
42 11 1
43 .names x42T invar3 x42
44 11 1
45 .names x43T invar3 x43
46 11 1
47 .names x41 lo1
48 1 1
49 .names x42 lo2
50 1 1
51 .names x43 lo3
52 1 1
53 .end

The automatic correction can be performed by the qbf command of ABC just like
before:
abc 02> qbf -P 6 -v
Iter 0 : AIG = 34 000
Iter 1 : AIG = 52 010 Syn = 0.01 sec
Iter 2 : AIG = 69 110 Syn = 0.00 sec
Iter 3 : AIG = 87 100 Syn = 0.00 sec
Parameters: 110001 Statistics: 0=3 1=6
Solved after 3 interations. Total runtime = 0.02 sec
From the above the solution for the parameter variables are
m1 = 1,m2 = 1,m3 = 0, e1 = 0, e2 = 0, e3 = 1
which is the same as the circuit in Fig. 9a.
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Fig. 10 Bug example: need
to change both inputs and the
function of the gate
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5 Fanin

As for the second problem, that is not only the types of gates but also inputs (fanin)
to the gates must be changed, the method shown in [4] can be directly applied before
applying the methods shown in [2, 3]. The method in [4] can find all possible sets of
fanins by which the entire circuit can become correct. For example, the top circuit in
Fig. 10 is the correct one, and the bottom circuit is an incorrect buggy one. As can be
seen from the figure, the inputs and type of the gate, n19 iswrong. The search problem
for the fanin of the gate can be formulated as a SAT and set-covering problem [4],
and large circuits having hundreds of thousands of gates can be analyzed with the
method in [4]. Moreover, various costs can be defined, and the fanins with minimum
cost can be searched. Essentially search problem becomes a set-covering problem.

Normally the lowest cost solution is selected, but for reversible circuits, other
criteria can be defined for the optimization of the entire circuit. As discussed above,
the hierarchical approach is promising especially for larger circuits. With the method
for the fanin selection, LUT networks can be optimized or restructured so that such
hierarchical approach works better. For example, reducing the numbers of fanin of
LUTs is generally good even for reversible circuits, but that may depend on the
functions that must be realized by the LUTs. This is one of the interesting future
research topics.
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6 Conclusions

In this chapter, debugging techniques for reversible circuitswhich are extensions over
the debugging methods for conventional circuits have been presented by showing
sample execution traces with the logic synthesis and verification tool, ABC. The
above BLIF descriptions can be directly processed by ABC with the qbf command
for debugging.

Although the presented methods work for medium sizes of reversible circuits,
they need to be extended in order to deal with large circuits. In order to realize that,
various heuristics must be developed on the selections of lines which are inputs to
Toffoli gates. For that, the fanin selection techniques briefly discussed in the previous
section can be a starting point. Also, how the methods presented in this chapter can
be combined with hierarchical approaches [9, 10] is to be explored.
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Fault Models and Test Approaches
in Reversible Logic Circuits
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Abstract The operations in reversible circuits are fully controllable and observ-
able due to their bijective property which provides cursive testing. Testing can be
categorized into two behavioral schemes: (i) Online testing, where the detection of
faults within the circuit is carried out during its operation, (ii) Offline testing, where
test vectors are applied after extracting the circuit out from its normal operation
and the correct output values are known. Test data minimization for a specific kind
of fault model such as stuck-at, bridging, missing gate, cross-point, and cell faults,
is an important factor in this type of testing using meta-heuristic algorithms and
circuit modification methodologies. Diverse varieties of fault families in reversible
logic circuits and an exclusive study of testable design advances for these faults are
portrayed in this chapter. Plentiful approaches were projected under two extensive
classifications to meet the challenge. The methodologies are alleged to coat almost
all the faults and their sub kind by exploiting the properties of reversible gates and
circuits. The objective is to minimize testing overhead, which can be achieved by
reducing the cost metrics utilized for testability.
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1 Introduction

In quantum circuits, de-coherence enforces the quantum states of bits to decay. It
results in loss of information that causes faults. Due to this phenomenon, these cir-
cuits are more prone to faults than conventional circuits [1]. As reversible circuits
have direct relations to quantum circuits, they are largely prone to several transient
and permanent faults which cause single and multiple point failures. Testing assures
the correct operations of logic circuits which show its untamed necessity and their
excellence. The operations in reversible circuits are fully controllable and observable
due to their bijective property which provides cursive testing. It has also been exten-
sively studied since the last decade by exploiting this property for the identification of
several types of fault models. These fault models are stuck-at, bridging, missing gate,
cross-point, and cell faults. Testing can be categorized in two behavioral schemes.
First is online testing, where the detection of faults within the circuit is carried out
during its operation [2, 3]. It provides a built-in self- testable environment through
design methodology and circuit modification for the detection of fault models in
terms of single and multiple-bit-flip faults. Second is offline testing, where test vec-
tors are applied after extracting the circuit out from its normal operation and the
correct output values are known. Test data minimization for a specific kind of fault
model is an important factor in this type of testing using meta-heuristic algorithms
and circuit modification methodologies.

Several novel paradigms have been presented in both the area of testing reversible
logic circuits. Built-in testable environment are provided over pristine fundamental
(MCT and MCF) and new gates-based design methodologies [4–11] and modifica-
tion principles [12–16]. Test data minimization is achieved over new deterministic
[17–27], randomized test pattern generation algorithms [28–31] and modification
techniques [32–37] for respective faults. It is noticed that, the technique of parity
checking [38] is dominating for the recognition of single/multiple bit faults in online
testing, whereas the bijectivity property of reversible logic circuits is utilized in case
of offline testing. The reduction of operating cost has been achieved to some need-
ful extent in all the proposed approaches with respect to prior ones to narrow the
compensation with overall testing overheads. Fault tolerance is also the architectural
attribute of a digital system that maintains proper functioning of a logic machine
during various kinds of failures [39, 40]. The inclusion of fault tolerance abilities
during the design and synthesis process is also in the development phase [41–46].

Testing impetus a dramatic increment in the utilization of resources in terms of
cost and power requirements. In electronic circuits, it leads to a large increment
in operating costs from their original circuits like gates and wires, which drastically
increases size and power. It accounts 30–60% of the cost of manufacturing electronic
devices by consuming extra hardware and resources [47]. During the construction
of built-in testable reversible circuits over design methodology or modification, the
operating cost increases in terms of gates, wires, ancilla input, and garbage output.
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Test data minimization over meta-heuristic algorithms consume excess time and a
separate hardware to produce test sets. Test data minimization over modification
includes incorporation of additional hardware as well as time to run test vectors
for the respective type of fault. Hence, necessary actions should be taken to reduce
excess usage of hardware and time to lower the overall testing overheads and narrow
the compensation with power.

2 Fault Models

Faults are a type of deficiency in a circuit which reflects in the imperfect behavior and
functional abilities of a system long lastingly or for a limited period of time. They can
be occurred due to any human and environmental issues [2] and termed as permanent
and nonpermanent faults respectively. A fault model depicts the category of fault
occurrence in a circuit and guides in identifying the target for testing. Numerous fault
models are projected in the past along with respective categorization in reversible
circuits as labeled out in Fig. 1. Following is the short description of these fault
models given in this figure.

Fig. 1 Faults in reversible circuits
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Fig. 2 Stuck-at and bridging
faults

(a) (b)

Stuck-At Fault

Alike conventional logic circuits, this fault occurred when any wire in a circuit get
settled on a single logic bits 0 or 1 are termed as stuck-at-0 (S-a-0) or stuck-at-1
(S-a-1) faults respectively. The faults can be aroused on single or multiple nodes at
a single time which can be either of same or of both types. In reversible circuits,
these faults occurred at the input of the gates and the input/output wires of the
circuit. The total number of stuck-at faults (S-a-0 and S-a-1) in the circuit is given
by {2 × (

∑G
i=1 gi + n)} where, G are the number of gates contained by the n wires

circuit and gi is the gate size of i th gate. For example, there are nine possible sites
for this type of fault occurrence are shown by tiny circles in Fig. 2a.

Bridging Fault

This category of fault arises when two or more adjacent wires of a circuit get phys-
ically come in contact or linked and resemble the abilities of wired AND or OR
interconnections that consequence into erroneous functionality. The illustration is
provided in Fig. 2b which, these faults may occur on a couple of wires or on multiple
wires at respective levels of the circuit which are termed as single intra-level and
multiple intra-level bridging faults. The number of levels of the circuit is governed
by number of gates. For instance, a circuit containing G gates there will be G + 1
distinct levels which include the input of each gate and the final output. The number
of single intra-level faults between a couple of wires are given by nC2 and all single
intra-level faults between a couple ofwires in the circuit is given by {(G + 1) ×n C2}.
The circuit represented in Fig. 2b has three levels and number of single intra-level
faults between a couple of wires are 9.

Missing Gate Fault

When a gate in a circuit fully fails to perform its characteristics or act completely
disappeared from the circuit is called a single missing-gate fault (SMGF), as illus-
trated in Fig. 3a. As a result, the output changes to a faulty value as illustrated in the
figure where the fault-free/faulty logic values are written on every level of the circuit.
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Fig. 3 Missing gate and cross-point faults

Multiple missing gate fault (MMGF) is the disappearance of two or more successive
gates. Maximum occurrence of SMGF in the circuit is equal to number of gates
(G) contained by the circuit and number of MMGF is given by {G(G + 1)\2 − G}.
Hence, the total number MGF (SMGF and MMGF) in the circuit can be calculated
by {G(G + 1)\2}. For instance, number of MGF in the circuit for Fig. 3a is 3.

The of missing gate faults are also labeled as partial missing gate fault (PMGF)
and repeated gate fault (RGF) by the researchers of this area. PMGF occurred when
any control point is disappeared from a gate and RGF is a replication of operation by
a single gate for multiple instances. The illustrations of these faults can be acknowl-
edged in Fig. 3b and c respectively. There is no effect of RGF on the circuit if the
instances are even in number. For odd number of instances, RGF will result as that
of SMGF in the circuit.

Cross-Point Fault

This fault is associated to the nonfunctioning and inclusion of control points of
reversible gates in a circuit. These faults are referred to as appearance (AF) and dis-
appearance (DF) types of faults in the circuit. The behavior of these faults can be
acknowledged from the Figs. 3d and b respectively. Disappearance faults show simi-
lar tendencies as that of PMGFs, the difference seems in the names only according to
the researchers from the past. Total number of single AF in the circuit can be calcu-
lated by (nG − ∑G

i=1 gi ) and number of single DF can be given by (
∑G

i=1 gi − G).

Cell Fault

Any inappropriate operation of a gate in a circuit which results in an incorrect output
is termed as cell faults (CF). Here the gates are referred to as a cell. The foundation
of these faults is belongs to fault modeling in cellular logic arrays and therefore these
faults can be simply called by cell faults. There are multiple anonymous ways of the
occurrence of this kind of fault in the circuit, hence the calculation of its number is
redundant.
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(a) (b)

Fig. 4 Bit-flip faults (Source [48])

It can be noted that the occurrence of a type of fault in a circuit will results in
flipping or inversion of bit values at the nodes after the gate where a fault occurrence
has been taken place in the circuit. The alteration of these bits will affect single or
multiple values at subsequent stages of the circuit and obviously cultivated toward
the output. This kind of situation is referred to as a bit-flip fault can be termed as
bit faults. When the value of a single bit is distorted, it can be a single-bit fault and
if multiple values are flipped, it can be called as multiple bit faults. Figure 4a and b
depict the patterns of changes of bit values because of respective faults in the circuit.
Where, the propagation S-a-0 fault in red color for better understanding. The un-
faulty/faulty bit values can be seen against each wire where the exactly these faults
have affected.

It also can be concluded that the bit faults are meant for online testing as these
faults detection will result in the detection of all types of fault models. The number
of single-bit faults can be given by (

∑G
i=1 gi + n). It diminishes the requirements of

designing a separate hardware/method for the detection of a given type of fault. The
design for test complexities can be reduced as a consequence.

3 Fault Identification

Every fault model has its own role to change the behavior of the circuit. Their
identification is based on the type of gates used and the test vector which changes the
input–output logic values. For instance, if an input vector is not able to interrupt the
functioning of a gate in the circuit, it cannot be used for identification of any faults.
An applied test vector to the inputs of the circuit alters one or more bit logic values of
the input wires of the gates and subsequent levels contained by it. The identification
procedures for the different type of faults in MCT and MCF gates are explained as
follows:
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3.1 Fault Identification for MCT Gates

Considering an n wire MCT gate having (k1, k2, . . . , km) control inputs and target
input T . Note that, there cannot be any bridging and cross-point faults in a NOT gate.
Respective deterministic methodologies for the identifications of faults are explained
below.

SAF Identification

Single stuck-at faults in MCT circuit is given by {n + ∑GC
i=1(kmi ) + 2GC}, where,

GC is number of gates and kmi is control inputs of i th gate of the circuit. Assuming
logic 0 and 1 values at all the fault sites, the n dimensional test vector of size 2 given
by (0, 0, . . . , 0)(1, 1, . . . , 0) defines a test vector for the detection of all single and
multiple type stuck-at faults of an MCT gate.

BrF Identification

Bridging faults is dependent on total number of wires in the circuit. All single intra-
level bridging fault for an MCT gate is given by {2(GC + 1) ×n C2}. The detec-
tion is done by assuming complementary values between the two wires at every
level of the circuit. The n dimensional test vector of size n, produced by shift-
ing 0 value from first wire to next until it reaches to the end of test vector, given
as (0, 1, . . . , 1), (1, 0, . . . , 1), . . . (1, 1, . . . , 0) is complete for all single intra-level
bridging faults of an MCT gate of a circuit.

MGF Identification

Single missing gate faults is equal to the gates present in the circuit. The detection
principle for this type of fault is to assign logic values 1 to the control inputs and
1 (or 0) value to the target input of the gate in the circuit. The n-dimensional sin-
gle test vector given as {k1, k2, . . . km, T } = {(1, 1, . . . 1, 1)} (or {(1, 1, . . . 1, 0)}) is
complete for its detection.

CPF Identification

The number of single cross-point faults, either appearance or disappearance type,
occurred in the circuit is given by N (n − 1). The detection is achieved by assigning
the combination of n test vectors keeping logic 1 to the m − 1 control inputs and 1
value to target input of each gate at distinct levels of the circuit. Assuming logic 0 to
the control input where the fault has been occurred, making rest all control at logic 1
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and 1 (or 0) value to target input of the gate. The n dimensional test vector of size (n −
1) given as {k1, k2, . . . km, T } = {(0, 1, . . . 1, 1), (1, 0, . . . 1, 1), . . . (1, 1, · · · 0, 1) is
complete for the detection of all CPF of the gate for n ≥ 2.

CF Identification

The 2n greedy permutation fix the detection of this type of fault and all n dimensional
test vectors of size 2n are required to detect all the cell faults in the circuit.

3.2 Fault Identification for MCF Gates

Considering an n wire MCF gate having (k1, k2, . . . , km) control inputs and target
inputs T1 and T2. Note that, there will be no cross-point faults in a swap gate and no
single wire MCF gate is available. Also, the test principles used for traditional and
MCT based logic circuits can be applied for the detection of stuck-at faults, single
intra-level bridging faults, and cell faults. Respective deterministic methodologies
are explained below.

MGF Identification

Single missing gate faults in MCF circuit is equal to the sum of gates available in
the circuit. The detection principle for this type of fault is to assign logic values 1
to the control inputs and complementary values to the two target inputs of the gate
in the circuit. The n dimensional single test vector given as {k1, k2, . . . km, T1, T2} =
{(1, 1, . . . 1, 0, 1)} is complete for its detection.

CPF Identification

The number of single cross-point faults, either appearance or disappearance type,
occurred in the circuit is given by N (n − 2). The detection is achieved by assign-
ing the combination of n test vectors keeping logic 1 to the m − 2 control inputs
and complementary values to target input of each gate at every level of the circuit.
Assuming logic 0 to the control input where the fault has been occurred, mak-
ing rest all control at logic 1 and complementary values to the target inputs of the
gate. The n dimensional test vector of size (n − 2) given as {k1, k2, . . . km, T1, T2} =
{(0, 1, . . . 1, 0, 1), (1, 0, . . . 1, 0, 1), . . . (1, 1, · · · 0, 0, 1) is complete for the detec-
tion of all CPF of the gate for n ≥ 3.
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Fig. 5 Classification of testing approaches

4 Testing Approaches

Testing of the reversible circuit gaining grounds since more than a decade, where
the researchers have been forwarded about the kind of faults that can be happed and
developing their testing strategies in this emerging field. A collective information
of testing approaches from the literature is provided in this section with respect to
cost metrics and test complexity. The possible categorization of testing approaches
for reversible circuits that have been proposed so far [49–51], are shown in Fig. 5.
A brief about the contribution in these approaches are described in this section. It
can be noted that mostly all the online testing approaches utilize parity checking
technique. However, offline approaches exploit the bijective mapping property of
reversible function. Number of inputs, gates, quantum cost, ancillas, and garbage are
considered to evaluate the performance of respective testing approaches. Three more
measures are included for the analysis of testing approaches: test size (s), execution
time (t), and fault coverage (FC) [51]. However, test size and execution time are used
in case of ATPG approaches.

4.1 MCT and MCF Gates-Based Design Methodologies for
Online Testing

The MCT and MCF are the fundamental gates and the final quantum decomposition
is based on them. The design complexity of testable and quantum circuits are proven
lesser due to this reason [52]. The design methodologies which provide built-in
testability features includes a twofold MCT gate placement, design with MCF gates
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and design with mixed MCTF gates methodologies were proposed [11, 53]. These
methodologies depict a novel design paradigm that relies on the placement of MCT
and MCF gates to generate a desired Boolean function. The placement methodology
produce parity preserving circuits and are meant for single bit fault detection, which
are called as soft errors in a broad sense.

4.2 New Gates Based Design Methodologies for Online
Testing

Theobjective of proposing testable gates (newgates) is to incorporate someadditional
input and output to achieve testability. Using minimal operating costs is the prime
targets for their formulation. It can be noted that all the methods are meant single
bit faults detection inside a circuit. These new gates are 4 × 4 R1 and R2 whose
combination formulates a testable block TB [4, 5] and testable gate OTG which can
be used to produce testable cell CTSG. Two self-testable dual-rail coding scheme
based gates are also presented [8] to remove the requirements of additional dual-rail
checkers in prior methodologies. The gates LIG and FIG are introduced to establish
testable information at the output for MGF faults without using parity checking [9].
The method for multi-bit errors is also formulated using concurrent error detection
scheme [10].

4.3 Gate-Based Modification Methodologies for Online
Testing

The gates of the circuit aremodified to achieve testability in these type of approaches.
A modification of a reversible gate procedure to make them testable form is first
adopted by the use of ETG (Extended Toffoli Gate) [54] is adopted. However, ETGs
are formulated over photonics, the methodology utilizes two additional CNOT gates
per MCT gate. Another method exploits the technique of cascading several stages
of an identity gate to renovate a gate into a testable reversible cell TRC. Both of
the methodologies exploits the phenomenon of parity preservation and generation
for single bit fault detection in reversible circuits. A method of gates conversion
for testability is presented utilizing the property of parity preserving gates rather
converting for the same [48]. A methodology for the modification of Toffoli and
Peres gates in corresponding testable form is also presented which ensures the nearly
all multiple-bit faults detection [16].
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4.4 Circuit-Based Modification Methodologies for Online
Testing

However, the circuit is modified when the modified gates are used for their formu-
lation. In this particular approach complete circuit is circuit using the same testable
viewpoints at all levels or some levels of the circuit. In this regard, a method of gates
cascading was proposed for the modification of MCT circuits [55]. In this method, a
gate of same size is cascaded after each gate with same control inputs and target on
a new wire. This modification produces parity preserving reversible circuits where
the detection of single bit faults can be achieved using two arrays of CNOT gates.
The method is also proven better in performance when implemented using quantum
cellular automata (QCA) platform.

4.5 Deterministic ATPG Approaches for Offline Testing

Utilizing the concepts described in Sect. 3 for various types of faults detection, several
algorithms are proposed.Complete test sets for detection of stuck-at and cell faults are
formulated using practical heuristic over an integer level program (ILP) using binary
variables [17, 18]. The test sets by obtained in lesser execution time and proven for
minimal test size. An exact ATPG is developed over the emerging ion-trap quantum
computing technology for obtaining minimal test set for missing gate faults [19].
Principle of comparison of change in output due to missing gates based and the
concepts of Boolean difference method, algorithms are also developed for single
and multiple missing gate faults detection respectively [20, 21]. The test generation
algorithm is formulated for the detection of bridging faults on the basis of proposed
block division method [22]. An algorithm which produces a constant universal test
vector (of size n) is also presented for single and multiple input bridging faults [23].
It is noted that, nearly all the presented methodologies are meant for MCT circuit.

4.6 Randomized ATPG Approaches

Creation of and modification of existing ATPGs by including random variables is
another method, where researchers also proposed several solutions for achieving
testability in MCT circuits. Solving an NP-hard problem for obtaining minimal size
test set stuck-at fault detection in NCT circuits is proposed [28]. Greedy heuristic
and exact branch and bound algorithm are utilized to detect the missing gate faults
[29]. Ping-pong method is proposed to generate a test set for missing gate type of
faults [30]. The detection of cross-point faults is also generalized by proposing a
randomized ATPG [31].
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4.7 Gates Based Modification Methodologies for Offline
Testing

As per the authors knowledge and review of this area, transformation of a reversible
to corresponding AND-EXOR irreversible circuit is the only method presented in
the literature for the detection of single intra-level bridging faults [36]. MCT circuits
are first decomposed in the irreversible PPRM AND-EXOR network. Faults are
assumed between the wires of AND-EXOR circuit and detection strategy is applied
at its different levels.

4.8 Circuit Based Modification Methodologies for Offline
Testing

Following the identification approaches of the faults in reversible circuits, the circuit
is modified in such a method that the applied test vector propagates till the last level
of the circuit in this type of methodology. Two circuit modification methodologies
are formulated for single and multiple stuck-at faults detection in MCT circuits. A
universal test set (UTS) and a complete test set (CTS) test sizes of 2 are proposed along
with the methodologies. An efficient adding a gate methodology is also presented for
the detection and location of these faults with a minimal test set for their detection
[56]. Techniques are realized by the inclusion CNOT gates for missing gate fault
detection by single test vector [17, 29] and universal test set of size (n + 1) [34, 35].

5 Summary

Diverse varieties of fault families in reversible logic circuits and an exclusive study
of testable design advances for these faults are portrayed in this chapter. As a new
technological change, an outstanding awareness is depicted by the researchers of
the area for finding a solution for the notation and detection of these faults. Plen-
tiful approaches were projected under in two extensive classifications to meet the
challenge. The methodologies are alleged to coat almost all the faults and their sub
kind by exploiting the properties of reversible gates and circuits. The objective is
to minimize testing overhead which can be achieved by reducing the cost metrics
utilized for testability. Following are the key points discussed in this chapter which
includes objectives, notations, and result analysis for design and testing of reversible
logic circuits:
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Detection and Identification of Gate
Faults in Reversible Circuit

B. Mondal, C. Bandyopadhyay, A. Bhattacharjee and H. Rahaman

Abstract In recent time, efficient implementation of reversible logic circuits has
come out as an important research area before the design industry. With the advance-
ment in reversible logic synthesis, developing mechanism for identification of faults
finds importance. Though there exist well-known testing techniques, but develop-
ing improved testing algorithms is the need of the hour. Aiming to develop efficient
testing technique, here in this work, we show an improved testing scheme based on
Boolean logic function. Two different testing approaches are presented here, where
in the first work, by using Boolean difference method SMGFs in reversible circuit
are tracked successfully, where a test vector generator is derived to find the faults.
In the second work, a Reed–Muller (RM) form based testing approach is developed
that not only detects the faults but also locates the exact position of the faulty area.
A limitation for the second testing scheme is that it can only be employed over a
specific type of reversible circuit known as Exclusive-Or Sum-Of-Product (ESOP)
design. Both the testing techniques have been executed over different benchmark
suites and a comparative study with state-of-the-art testing approaches have been
included in the work.

B. Mondal (B) · C. Bandyopadhyay · A. Bhattacharjee · H. Rahaman
Department of Information Technology, Indian Institute of Engineering Science and Technology,
Shibpur 711103, India
e-mail: bappa.arya@gmail.com

C. Bandyopadhyay
e-mail: chandanb.iiest@gmail.com

A. Bhattacharjee
e-mail: anirbanbhattacharjee330@gmail.com

H. Rahaman
e-mail: hafizur@it.iiests.ac.in

© Springer Nature Singapore Pte Ltd. 2020
A. K. Singh et al. (eds.), Design and Testing of Reversible Logic, Lecture Notes
in Electrical Engineering 577, https://doi.org/10.1007/978-981-13-8821-7_10

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8821-7_10&domain=pdf
mailto:bappa.arya@gmail.com
mailto:chandanb.iiest@gmail.com
mailto:anirbanbhattacharjee330@gmail.com
mailto:hafizur@it.iiests.ac.in
https://doi.org/10.1007/978-981-13-8821-7_10


170 B. Mondal et al.

1 Introduction

Heat dissipation is considered as the essential concern in modern day’s VLSI circuit.
As per Launder’s principles [1], loss of information generatesKTlog2joule amount of
heat, where k is Boltzmann constant andT is absolute temperature. Hence, alternative
technology is required so that heat generation can beminimized in the circuit. Bennet
[2] claimed that dissipation of energy can be made zero only when the circuit is
constructed with reversible gates. Therefore, reversible logic design is considered
as the prerequisite needed to minimize heat dissipation during logic computation.
On the other side, as the quantum circuit [3] follows the principle of reversibility,
the implementation of quantum functionality using reversible circuit is possible.
Reversible circuit not only has the dominance in the field of quantum circuit design,
but it too has applications in adiabatic computing [4, 5], Cryptography and Optical
Computing. In the last couple of years, several progresses have beenmade on efficient
design strategies of reversible circuit.

Synthesis algorithms have been developed formaking the designs of reversible cir-
cuit generic. But, not only designing the cost-efficient circuits get the high importance
but simultaneously developing testing algorithms [6–11] for checking the correctness
of such designs find popularity. In recent time, some promising works on efficient
testing strategies have been developed where improved algorithms are formulated to
make the testing process easier.

Here, in this work, we show two different approaches to find faults in reversible
circuit. In the first work, a Boolean difference-based testing technique is developed,
where a Boolean generator is formulated to produce test vectors and then the faults
are tracked. This approach is very generic as it can be employed over any type of
circuits. The second testing scheme is not very generic like the first one as it can
only operate over ESOP-based designs. In this testing scheme, the functional power
of Reed–Muller expression is used to find and locate the faults.

The remaining portion of the article is formulated as follows: preliminaries asso-
ciated with reversible testing are stated in Sect. 2. Section 3 summarizes previous
research works on reversible testing. The developed methodologies are presented in
Sect. 4. The experimental data of our work are summarized in Sect. 5. Finally, the
chapter is concluded in Sect. 6.

2 Preliminaries

2.1 Reversible Circuits and Gates

Definition 1 A circuit Cnf over a set of circuit lines L = {c1, c2, …, cn} is said to be
reversible if it satisfies the following three criteria:

(i). input (m) lines are equal with the output (n) lines
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Fig. 1 a 2-control Toffoli
gate, b CNOT gate, c NOT
gate

(a) (b) (c)

(ii). if the circuit is fan-out free
(iii). circuit consists of reversible gates only.

Definition 2 A reversible gate G can be described as G(C; T), where parameters C,
T represents the control and target connection inputs. In that gate G, the control input
set C may contain an empty value but the set T must have a minimum of one target
line in such that C∩T = �.

In classical circuit different logic gates are used to implement a circuit, similarly
there are well-known reversible gates like Toffoli [12], Fredkin [13], Feynman [14]
that are used to construct reversible circuits. Some examples of reversible gates are
depicted in Fig. 1.

2.2 ESOP-Based Design

A reversible circuit may have different designs and such variations in design depend
on the type of algorithm deployed or heuristic employed. Among the several design
models, due to the scalable feature property, ESOP (Exclusive Sum-Of-Products)
[15]-based representation has been found as one of the widely used design model for
reversible circuit. Now in the following, we introduce this special type of circuit.

ESOP can be represented in the form of Sum-Of-Products (SOP) form except
that the SOP product terms which are separated by ‘+’ operator, it is separated
by “⊕” operator. To express any n-input, m-output reversible function in ESOP
representation, it requires (n + m) numbers of input lines in the circuit, where n
represents the control set and the rest m lines operate as functional output lines.

Cube list a special data structure from which the ESOP designs are formed. Such
cube list contains the detail gate specification and control structure for the ESOP
circuit. Each cube in the cube list denotes a gate in the design. For an ease of under-
standing, cube list and its corresponding ESOP expression are given in Fig. 2a and
b, where it can be seen that each of the cubes from the list has been mapped to an
equivalent gate and finally a complete design is formed Fig. 2b.



172 B. Mondal et al.

(a) (b)

Fig. 2 a Cubelist for f (a1, a2, a3, a4) = a2a3⊕a4⊕a1⊕ ā1a2a4⊕ ā1a2a3ā4, b ESOP expression
of Fig. 2a

2.3 Reed–Muller Form

For efficient design and testing of reversible circuit, the concept of Boolean algebra
operator is usedwidely. Themodulo-2 arithmetic is applied and anyBoolean function
can be realized using this algebra. For implementation purpose, Reed–Muller expan-
sion can be represented using sum-of-products expression of modulo-2 arithmetic.
Reversible circuit based on module-2 expansion can be realized using only exclusive
OR (EXOR) gates. For any Boolean function f (x1x2 . . . xn), it is expressed in the
form of Reed–Muller expansion [16, 17].

PPRM: The positive polarity based Reed–Muller (PPRM) expression can be
realized in the form of an EXOR canonical sum-of-products expression in which
each variable represents a positive polarity (un-complimented). A PPRM expression
of n variable can be expressed as

f(x1x2 . . . xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x1x2 ⊕ . . . ⊕ a2n−1x1x2 . . . xn, where ai ∈
{0, 1}. The variable ai in the above expression represents coefficient vector, where
xi denotes input variables. If the coefficient becomes zero, then the corresponding
product term is not present in the PPRM expression otherwise the product term is
included in the given expression.

FPRM: In fixed polarity Reed–Muller (FPRM) expression, the n variable function
can be represented as

f(x1x2 . . . xn) = a0 ⊕ a1ẋ1 ⊕ a2ẋ2 ⊕ a3ẋ1ẋ2 ⊕ . . . ⊕ a2n−1ẋ1ẋ2 . . . ẋn where
ai ∈ {0, 1} and ẋ ∈ {x, x̄}, where x denoted un-complemented literals and x̄ denotes
complemented literals.

GRM/MPRM: The Mixed polarity Reed–Muller (MPRM) expression can be
considered as the generalization of FPRM expression in which there is hardly any
limitation in the polarity of each variable. The Boolean function having n variable
can be represented by a number of 2n2

n−1
GRM form. The MPRM expression for n

variable function is represented as
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f(x1x2 . . . xn) = a0 ⊕ a1ẋ1 ⊕ a2ẋ2 ⊕ a3ẋ1ẋ2 ⊕ . . . ⊕ a2n−1ẋ1ẋ2 . . . ẋn where
ai ∈ {0, 1} and ẋ ∈ {x, x̄}.

The association among various Reed–Muller configurations can be represented
as PPRM ⊂ FPRM ⊂ GRM/MPRM.

2.4 Different Fault Models and Their Properties

Faults in a circuitmayoriginate due to several reasons [18–20].Depending on the type
of errors, there are four types of faults such as—single missing gate fault (SMGF),
repeated gate fault (RGF), partial missing gate fault (PMGF) and multiple missing
gate fault (MMGF).

Definition 3 Complete disappearance of a gate from a given circuit results in a single
missing gate fault.

The Fig. 3a shows an SMGF in a benchmark circuit ham3\design#, where the
faulty area has been marked with a dotted box. In the dotted region, the first 2-CNOT
gates are missing. A SMGF fault can be detected by providing value 1 to all the
control line set of the gate and either 0 or 1 at the target node of corresponding gate.

Definition 4 A fault can be considered as repeated gate fault if the same gate con-
secutively reappears in the design and may change the functionality of the circuit.

In Fig. 3b, the RGF is shown in the first gate of the ham3\design#1. It can be
ascertained that if a gate reappears even number of times then its effect becomes
equivalent to an SMGF fault while odd occurrence makes the RGF fault as redundant
indicating the circuit functionality remains unchanged.

Definition 5 Disappearance of control connection input of a gate results in a fault
in a circuit known as partial missing gate fault (PMGF).
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Fig. 3 a SMGF fault in circuitham3\design#, b RGF in ham3\design#1 circuit, c PMGF in cir-
cuitham3\design#1, d MMGF in ham3#design#1
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In Fig. 3c, a PMGF fault is shown in the first gate of the circuit. It is considered
that a PMGF fault can only be uncovered by applying value 0 to at themissing control
inputs and a value 1 is set for other control lines.

Definition 6 Missing of two or more successive gates from the circuit generates a
fault known as multiple missing gate fault (MMGF).

Consider the circuit shown in Fig. 3d, where the first two gates enclosed within
the dotted box are missing.

Still so far we have seen the fundamentals related to reversible circuit and its
associated fault models. Now, here we are discussing some of the works in testing
and highlighting their contributions.

3 Related Works and Contributions

An efficient approach of stuck-at-fault detection by the adaptive tree-based technique
is proposed in [6]. Here, in this technique at first the fault in half of the circuit is
detected and then by applying the reversible property, amirror image of the remaining
part of the circuit is developed to detect faults in the remaining part of the circuit.

Furthermore, a generalized approach of “stuck-at” fault detection for all k-CNOT
based circuit has been reported in [7], where a universal test of size 3 has been used
for the fault detection.

Taking one step more, a novel technique for fault detection is shown in [8], where
an (n × n) reversible circuit constructed with k-CNOT gates is tested for possible
faults. In this method, a testable design has been developed by copying gates along
with an additional line. Though some overhead is incurred to transform the original
circuit into the testable form, but themodified testable design becomes very sufficient
and easy to detect all existing fault models in the given circuit.

To make the faults detection easier, not only fault specific test vectors have been
generated but theway ofmaking simpler testable designs also have been explored and
such a work is reported in [9], where extra inputs and additional k-CNOT gates are
added in the design to make the design testing friendly. This modified testing design
methodology determines a universal test set of size (n + 2) and thereby identifies the
said faults in the given circuit.

Insteadof applyinghugenumber of test vectors in fault detection and also to reduce
the design complexity, testing of SMGFs and RGFs andMMGFs in reversible circuit
with minimum number of test vectors is presented in [10].
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4 Proposed Testing Methods

Here we state both the testing schemes with examples. The first testing scheme is
based on Boolean difference method, whereas the second one relies on Reed–Muller
expansion.

4.1 Boolean-Based Testing Method1

Here we state the technique to determine the existence of SMGF in a circuit. The
proposed approach is divided into three phases. At first, Boolean difference of the
circuit is computed for each of the missing gate. In the second phase, a Boolean
generator for the entire circuit is constructed and in the third phase, test vectors are
constructed from the Boolean generator which finally checks the presence of SMGF
in the circuit. All three phases are stated next in detail.

4.1.1 Computation of the Boolean Difference for Missing Gate Faults

Let us assume a reversible circuit having n number of input lines and N number of
gates.

Definition 7 TheBoolean expression generated at the jth line of a fault-free circuit is
known as theOriginalExpressionj, where (0≤ j≤ n− 1). For any given reversible cir-
cuit with n inputs can be represented by OriginalExpression0, OriginalExpression1,
OriginalExpressionn−1.

Definition 8 For a faulty circuit, the Boolean expression produced at the jth line as
a result of the gate missing from the ith level of circuit can be represented as the
FaultyExpressioni,j, where (0 ≤ i ≤ N − 1), (0 ≤ j ≤ n − 1).

For any reversible circuit with n lines can be expressed as FaultyExpressioni,0,
FaultyExpressioni,1, … , FaultyExpressioni,n−1 for the detected fault occurring at ith
gate. The computed Boolean expression of the jth line in the faulty circuit may not
be identical to the one generated at the jth line of the corresponding fault-free circuit.

Boolean difference method [21] is basically used to determine the complete test
set for detecting stuck-at faults. We have employed the same it in reversible circuit
for identifying SMGF faults.

Definition 9 The Boolean difference
(

dFj
dGi

)
estimated at the jth line for the gate

missing from the ith level can be expressed as dFj
dGi

= Foj ⊕ Fij, where Foj is the

OriginalExpressionj, Fij is the FaultyExpressioni,j, (0 ≤ i ≤ N − 1) and (0 ≤ j ≤ n −
1).
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Definition 10 The Boolean difference resulted due to removal of gate located at ith
level is represented as dF

dGi
which can be determined as follows:

dF

dGi
=

∑ dFj
dGi

=
(
dF0
dGi

)
+

(
dF1
dGi

)
+ · · · +

(
dFn−1

dGi

)
, (0 ≤ i ≤ N − 1), (0 ≤ j ≤ n − 1)

In this way, at first the Boolean difference for themissing of each gate in the circuit
is computed and then the Boolean difference of the circuit is constructed using the
Boolean difference for each gate of the given circuit.

Definition 11 The Boolean generator can be defined as the Boolean expression
needed for the test set construction so as to identify all the possible SMGFs in
the circuit.

Lemma 1 For a reversible circuit of n number input lines and N number of gates,

then computation of individual Boolean difference
(

dF
dGi

)
enables to identify SMGF

at the ith level.

Proof For the reversible circuit with n lines and N gates, the Boolean difference(
dF
dGi

)
for detecting the gate missing at the ith level is computed as:

dF

dGi
=

∑ dFj
dGi

, (0 ≤ i ≤ N−1), (0 ≤ j ≤ n − 1) (1)

� denotes the OR operation and

dFj
dGi

= Foj ⊕ Fij, (0 ≤ i ≤ N − 1), (0 ≤ j ≤ n − 1) (2)

From the expression given at Eq. (1), it can be noticed that the possible values
for dF

dGi
can be either 0 or some other Boolean representation. Furthermore, it can be

determined that the estimated result of dF
dGi

becomes zero provided each of the terms
dFj
dGi

evaluates to “0” as logical OR is being performed between any two successive

terms of dF
dGi

.

By analyzing the expression given in Eq. (2), it can be observed that the term dFj
dGi

returns the value “0”, if both Foj and Fij are becomes identical only if the circuit is
fault free. This in turns suggests that, if the expression dF

dGi
returns 0 then the circuit

is said to be fault free.
For any SMGF in the circuit, it is obvious that the output expression obtained at

any of the n input lines varies with the one derived for fault-free circuit. It means
that at least a single line say j must be present for which the terms Foj and Fij turns
out to be different due to existence of fault. It implies that dF

dGi
cannot be equal to 0 in

the faulty reversible circuit as logical OR is implemented between the consecutive
terms dF

dGi
and dFj

dGi
.
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4.1.2 Implementation of Boolean Generator for Detection of Single
Missing Gate Fault

In the proposed method, the Boolean generator of the given circuit is estimated using
the function BGen = dF

dG0
∧ dF

dG1
∧ . . . ∧ dF

dGN−1
, where ∧ represents the logical AND

operation and N represents number of gates in the circuit. For BGen �= 0, the BGen
is minimized to construct the Boolean generator of the circuit. For BGen = 0, the
expressions B1

Gen and B
2
Gen need to be computed to determine the Boolean generator

of the given circuit. The computation method of the expressions B1
Gen and B2

Gen are
as follows:

Let S = (so, s1, … , sN − 1) be the set of all dF
dGi

, where si = dF
dGi

for (0 ≤
i ≤ N − 1). Let S1 ⊆ S contains maximum number of si’s such that B1

Gen =
Si1�Si2� · · · �Sik �= 0, where Sik ∈ S1. B2

Gen are remaining si’s of S. For each of
the B2

Gen, the B
1
Gen = 0.

After the formation B1
Gen and B2

Gen, the expression B1
Gen is upgraded to compute

the final form of the Boolean generator as follows:

(i) If any term of B2
Gen completelymatches or is subset of any term of B1

Gen , no need
to upgrade the B1

Gen , else compare different terms of the B1
Gen with each term

of the B2
Gen and upgrade the B1

Gen as: B1
Gen = B1

Gen+ highest matching term
[i], i = 0 to (number of highest matching term – 1). Repeat the same procedure
between upgraded B1

Gen and other available B2
Gen , if exist.

(ii) The minimized form of B1
Gen is the Boolean generator of the circuit.

4.1.3 Test Vector Construction from the Boolean Generator
of the Circuit

Theminterms and their corresponding decimal values for the generator are calculated
and the collection of those decimal values is the test set of the circuit that will be
used for the detection of SMGF.

Example 1 The ham3tc benchmark circuit of Fig. 4a is considered here. The circuits
consisting of three lines (n = 3) and five gates (N = 5).

As per the first phase of the proposed technique, output expressions Original-
Expression0, OriginalExpression1 and OriginalExpression2 are computed from the
fault-free circuit of Fig. 4a.

The output expression generated for each circuit line is OriginalExpression0 =
(a ⊕ b · c), OriginalExpression1 = ((b ⊕ c) ⊕ ((c ⊕ (b ⊕ c)) ⊕ (a ⊕ b · c))),
OriginalExpression2 = ((c ⊕ (b ⊕ c)) ⊕ (a ⊕ b · c)).

Now, let us assume that the gate G0 at the level0 is removed from the circuit.
Hence, the circuit ham3tc becomes a faulty circuit (as shown in Fig. 4b) and its output
expressions are FaultyExpression0,0, FaultyExpression0,1, FaultyExpression0,2.
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level1 level2level0
level3

level4

G1 G2
G0 G3 G4

a

b

Original Expression0

Original Expression1

c Original Expression2

level1 level2level0
level3

level4

G1 G2
G0 G3 G4

a

b

Faulty Expression0,0

Faulty Expression0,1

c Faulty Expression0,2

(a)

(b)

Fig. 4 a Fault free ham3tc circuit, b testable circuit for SMGF (Faulty ham3tc circuit where dotted
box indicates missing of that gate)

Each expression of the faulty circuit are FaultyExpression0,0 = (a), FaultyExpres-
sion0,1 = ((b ⊕ c) ⊕ ((c ⊕ (b ⊕ c) ⊕ (a))), FaultyExpression0,2 = ((c ⊕ (b ⊕ c)) ⊕
(a)).

After finding out fault free expression of each line and the faulty expression of
each line of the circuit, the Eqs. 1 and 2 as discussed earlier are used to compute the
Boolean difference of the circuit. The Boolean difference of the circuit for the miss-
ing of the gate G0 is as dF

dG0
=

(
dF0
dG0

)
+

(
dF1
dG0

)
+

(
dF2
dG0

)
, dF
dG0

= (OriginaIExpression0

⊕ FaultyExpression0,0) + (OriginalExpression1 ⊕ FaultyExpression0,1) + (Origi-
nalExpression2⊕ FaultyExpression0,2)= ((a⊕b·c)⊕a)+(((b⊕c)⊕((c⊕(b⊕c))
⊕(a ⊕ b · c))) ⊕ ((b ⊕ c) ⊕ ((c ⊕ (b ⊕ c) ⊕ (a))))) +(((c ⊕ (b ⊕ c)) ⊕ (a ⊕ b · c))
⊕((c ⊕ (b ⊕ c)) ⊕ (a))) = bc

Similarly, each gate is removed at a time and the Boolean difference of the given
circuit for the remaining gates is computed.

So, dF
dG1

= c, dF
dG2

= bc̄ + b̄c, dF
dG3

= ābc + ab̄ + ac̄, dF
dG4

= ābc̄ + ab̄ + ac.
Now as per the second phase of the proposed testing method, the Boolean

generator of the circuit is computed by the statement BGen, where BGen =
( dF
dG0

)AND( dF
dG1

)AND( dF
dG2

) AND( dF
dG3

)AND( dF
dG4

) = (bc)AND(c) AND(bc̄ +
b̄c)AND(ābc+ ab̄+ ac̄) AND(ābc̄+ ab+ ac) = 0. As BGen is 0, we have to find
out the B1

Gen and B2
Gen to calculate the final form of the Boolean generator.

For this example, as gate count is N = 5, we need 5 iterations to generate the
resultant Boolean generator of the circuit.

First Iteration: Let us assume B1
Gen = dF

dG0
= bc.

Second Iteration: Here B1
Gen is upgraded as follows: B1

Gen = B1
Gen AND( dF

dG1
) =

(bc)AND(c) = bc.
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Third Iteration: Similarly, B1
Gen = B1

Gen AND( dF
dG2

) = (bc)AND(bc̄ + b̄c) = 0.

That means the term (bc̄+ b̄c) converts the term B1
Gen to 0 and therefore, the B

2
Gen(0)

is computed and B1
Gen will not be upgraded. Now, B

2
Gen(0) = (bc̄ + b̄c).

Fourth Iteration: B1
Gen = B1

Gen AND( dF
dG3

) = (bc)AND(ābc + ab̄ + ac̄) = ābc.

Fifth Iteration: B1
Gen = B1

Gen AND( dF
dG4

) = (ābc)AND(ābc̄ + ab̄ + ac) = 0.
Once again as per the third iteration, the B2

Gen (1) is computed and the function B1
Gen

will not be modified. Now, B2
Gen(1) = (ābc̄ + ab̄ + ac).

Now, we need to compare B1
Gen with B2

Gen (0) and B2
Gen (1) once again to upgrade

the B1
Gen. At First, the expression B1

Gen(ābc) is compared with both the terms of
B2
Gen (0). The term (ābc) of B1

Gen contains a single literal matching with both the
terms of B2

Gen (0) and hence, B1
Gen(0) = (ābc + bc̄) and B1

Gen(1) = (ābc + b̄c).
Now,we need to compare both the B1

Gen with the B
2
Gen(1) to determine the updated

value of B1
Gen (0) and B1

Gen (1). The B1
Gen (0) is compared with the B2

Gen (1) and the
term (ābc) of B1

Gen (0) and the term (ābc̄) of B2
Gen (1) has the highest literalmatching.

So, the B1
Gen (0) is upgraded to B1

Gen(0) = (ābc + bc̄ + ābc̄). Similarly, the B1
Gen

(1) is upgraded to B1
Gen(1) = (ābc + b̄c + ābc̄).

After the minimization, the B1
Gen(0) = (āb + bc̄) and B1

Gen(1) = (āb + b̄c).
As both B1

Gen (0) and B
1
Gen (1) contains similar number of literals, therewill be only

two generators to identify all the possible SMGF in the given circuit. generator(0) =
B1
Gen(0) = (āb + bc̄) and generator(1) = B1

Gen(1) = (āb + b̄c)
Now as per the third phase, the test vector formation from the Boolean generator

is explained as follows:
Mintermgenerator(0) = āb(c + c̄) + bc̄(a + ā) = ābc + ābc̄ + abc̄ + ābc̄ =

ābc + ābc̄ + abc̄ = {3, 2, 6} = {2, 3, 6}. The test set derived from the generator(0)
is {2, 3, 6}. Similarly, Mintermgenerator(1) = āb(c+ c̄)+ b̄c(a+ ā) = ābc+ ābc̄+
ab̄c + āb̄c = {3, 2, 5, 1} = {3, 2, 5, 1}.

The test set derived from the generator(1) is {1, 2, 3, 5}. As the generator(0)
contains lesser number of test vectors, the generator(0) will be used to uncover the
SMGF fault.

4.2 Boolean Based Testing Method2

In this method, the ESOP-based reversible circuit is considered for the detection of
SMGF fault and also to diagnosis the detected fault. Let us assume that Ctest is the
testable circuit in which the test has to be performed. To test the Ctest circuit, initially
a fault-free ESOP-based circuit (Ctrue) is read from a given specification files (Tspec)
and then the logical XOR is performed between Ctrue and Ctest .

But the design of fault-free ESOP circuit from the Tspec creates problem because
number of distinct ESOP circuits can be generated from the Tspec and due to this
reasonMPRM can be considered as the subclass of an ESOP expression. A fault-free
ESOP circuit (Ctrue) can be identified from a number of distinct ESOP circuits by
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the help of some complex calculation. To solve the said problem, we have used the
PPRM class from which only one circuit can be designed.

The proposed testing method is segmented into two stages. At first, fault detection
is performed in the Ctest and after that in second stage, identification of the detected
fault in the Ctest is performed and proper diagnosis is done in the Ctest to transform
the circuit from faulty to fault-free circuit.

4.2.1 Detection of SMGF

Here in this phase, a PPRM expression f P PRM
true from the given circuit specification

fileTspec is obtained for the circuit, Ctest. After that the MPRM expression f MPRM
test

is derived from testable ESOP circuit Ctest. Now, for each variable contained within
MPRM expression (fMPRM

test ), the polarity of such variables is converted to positive
form and thereby a FPRM form ( f FPRM

test ) can be derived. Now, the LXOR is computed
as follows: LXOR = f P PRM

true ⊕ f FPRM
test , where⊕ denotes the XOR operation. If LXOR

is zero that means fault is not detected in the Ctest else SMGF is detected in the Ctest.

4.2.2 Detection and Correction of SMGF

Here, both fault identification and correction of the specified fault in a given circuit.
The output expression obtained fromLXOR is considered as the specification details of
the corresponding missing gate and represented in the form of a Boolean expression
and the variables containedwithin such expression LXOR designates the control inputs
for the gate Mg, where Mg denotes the missing gate in Ctest circuit.

To make the circuit function correctly, if the identified missing gate (Mg) is
attached to the input circuit Ctest to convert it to a fault-free circuit.

Now, the proposed method of SMGF identification and medication in an ESOP
based circuit has been discussed with supportive examples below.

Example 2 The benchmark ESOP circuit 4gt4 [22] is used here for testing the pro-
posed methodology. The Tspec of 4gt4 is represented in Fig. 5a. The testable circuit,
Ctest for the given circuit 4gt4 is also shown in Fig. 5c. Now, the PPRM cover
of the fault-free circuit is obtained from file Tspec employing [23]. In Fig. 5b, the
corresponding PPRM cube can be observed and the derived PPRM expression is
f P PRM
true = a⊕bd⊕bc⊕bcd⊕abd⊕abc⊕abcd. Now, the obtained expression from

the circuit Ctest is f MPRM
test = a⊕ ābc̄d̄ ⊕ āb and changing the polarity of each literal

in the expression f MPRM
test to positive value is required to derive the corresponding

FPRM expression (( f FPRM
test = a⊕ bd⊕ bc⊕ bcd⊕ abd⊕ abc⊕ abcd). Now LXOR

is computed as LXOR = f P PRM
true ⊕ f FPRM

test = ∅.
Hence, it can be confirmed that there an SMGF does not exist in the circuit Ctest

as LXOR is null.
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(a)

(b) (c)

Fig. 5 Illustration of Example 2. a Input specification file of 4gt4 b Equivalent PPRM cube list of
4gt4 c Testable input ESOP circuit for function 4gt4

Example 3 The benchmark circuit 4mod5 [22] is considered here once again to
explain the proposed technique. The specification file Tspec for 4mod5 and Ctest

circuit are represented in Fig. 6a and b, respectively. Initially, f P PRM
true = 1 ⊕ ad ⊕

ab ⊕ bc ⊕ cd ⊕ a ⊕ b ⊕ c ⊕ d is obtained from Tspec. Then, MPRM expression
( f MPRM

test = 1⊕ ad̄ ⊕ āb⊕ b̄c) is derived from the circuit Ctest. Now, an FPRM logic
expression ( f FPRM

test = 1⊕ad⊕ab⊕bc⊕a⊕b⊕c) is formed. The equivalent ESOP
structure of derived f FPRM

test and f P PRM
true expressions are represented in Fig. 6c and

d, respectively. Now, LXOR = f P PRM
true ⊕ f FPRM

test = cd ⊕ d = c̄d.

Hence, it is confirmed that a SMGF fault is present in Ctest exists as LXOR is equal
to some Boolean value. As per the proposed method, the expression LXOR represents
the control lines of the gateMg (as depicted in Fig. 6e) which is completely missing
in the testable circuit. Thereafter, it can be described that theMg is having a negative
control and positive control at lines c and d, respectively.

The circuit can be made fault free if the corresponding missing gate (Mg) is
adjoined to the input circuit Ctest and the resultant original ESOP structure of 4mod5
is depicted in Fig. 6f.

5 Experimental Results

We have tested both of our approaches against different benchmark suites [22]. The
results obtained from first testing approach is summarized in Table 1, where first
three columns represent the circuit name, the number of lines (n) and the number
of gates (N) present in a benchmark function. The Boolean generator is shown in
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a
b
c
d

t=1

# Function:4mod5 
.input a b c d
.output   f 
a b c d f
0000 1
0101 1
1010 1
1111 1

a
b
c
d

t=1

a
b 
c
d

t=1

a
b
c
d

t=1

a
b
c
d

t=1

XOR

a
b
c
d

t=1

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Illustration of Example 3. a Specification file Tspec for circuit 4mod5 b Testable input
circuit 4mod5 c f FPRM

test function equivalent ESOP circuit d f FPRM
test function equivalent ESOP

circuit e Detected missing gate details f Fault free circuit of 4mod5

column 4 and the set of test patterns produced from the generator are tabulated in
column 5 of Table 1.

The second testing technique is also checked over several benchmark circuits and
the effectiveness of RM form also has been verified for successful detection and
localization of faults.
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Table 1 Boolean generator for the detection of SMGF

Name of
benchmark
function

Number of
lines (n)

Number of
gates (N)

Boolean generator of the
circuit

Derived test set from the
boolean generator

rd32d1 4 4 (ab + ābc)
or
(ab + ab̄c)

{6, 7, 12, 13, 14, 15}
or
{10, 11, 12, 13, 14, 15}

xor5d1 5 4 (ab̄c̄d̄) {16, 17}

ham3tc 3 5 (āb + bc̄)
or
(āb + b̄c)

{2, 3, 6}
or
{1, 2, 3, 5}

3_17tc 3 6 (ab̄c + abc̄)
or
(ab̄c + āb̄c̄)

{5, 6}
or
{5, 0}

mod5d1 5 8 (abcd) {30, 31}

mod5d2 5 9 (abcd) {6, 7}

4_49d3 4 12 (abd + acd) {3, 7, 13, 15}

hwb4d1 4 17 (abcd + cd + acd) {1, 5, 9, 10, 11, 13, 14}

2of5d1 6 15 (ace + abde + abde +
abcdf)

{8, 9, 12, 13, 20, 21, 23,
24, 25, 28, 29, 34, 35,
42}

mod5adders1 6 21 (abcēf̄ + abc̄d̄ē + ad̄ēf̄ +
b̄c̄ēf̄)

{0, 4, 32, 36, 40, 48, 49,
56, 60}

6 Conclusions

This work has presented two Boolean based approaches for testing of SMGF faults
in reversible circuit. In the first method, a Boolean generator has developed for a
reversible circuit and in later time, from this generator test vectors are constructed to
a test a circuit. The second testing technique hasmainly targeted to test a special class
of reversible circuit known as ESOP designs. But, the first testing technique is very
generic and can be employed over any type of circuits. In both the testing approaches,
we have addressed SMGF only, but other types of faults like RGF, MMGF also can
be tracked by following the same strategy as used to find SMGF. The presented
techniques have successfully tested over a wide spectrum of benchmarks also.
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Online Testable Efficient Latches for
Molecular QCA Based on Reversible
Logic

Debajyoty Banik

Abstract Quantum computer is very advanced technology in upcoming era and can
capable to solve any complex problem with very fast computation power. The pro-
posed models for quantum computation are quantum dot cellular automata (QCA).
The molecular QCA has the tendency to high error rates. In case of molecular quan-
tum dot cellular automata, the main objective of circuit design is the reduction of
circuit area with wanted functional behavior. In this article, we propose the efficient
design of online testable latches based on reversible logic for molecular QCA that
is very much cost-effective respect to circuit area and other parameters. We use
reversible gates having conservative property; i.e., capability for producing the equal
number of 1s in output bits as input bits. So, conservative logic gates are subset of
parity preserving reversible gate. Fault patterns of used conservative logic gate are
analyzed for single stuck-at faults in molecular QCA circuit. Our proposed latches
are able to examine single stuck-at fault, missing/additional QCA cell defect online,
including permanent or transient fault in molecular QCA and efficient respect to cir-
cuit area. The designs of QCA layouts for various latches are presented and verified
using QCA Designer and the Verilog HDL library of QCA devices is used to present
HDLQ design tool.

1 Introduction

Molecular QCA is most demandable emerging nanotechnology having small shaped
component, ultra low power consumption and high clock frequency [1, 2].Molecular
QCA cell can define the logic states, such as logic 0 or logic 1, by depending upon the
electrons’ location in it. Due to the tendency of high error rate in nanotechnology, it is
necessary to check the error frequently in the circuit. And it is possible only when the
circuit has online testable capability. Defect in molecular QCA can occur in various
phases, such as synthesis, deposition, and runtime; missing/additional defects take
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place in synthesis and deposition phase [3]. Stuck-at fault and transient fault aremore
likely to take place in runtime for external unwanted energy or internal cell defect.

We introduce an efficient design of online testable latches for molecular QCA.
ThemolecularQCAhas various application of reversible computation. The reversible
computation is possible only if the primary elements of the system are reversible gate.
A reversible gate computes the function with bijective in manner. A reversible gate
is n×n gate which has same number (n) of inputs and outputs with bijective mapping
within input and output vectors. Landauer has proved that kBT ln2 Joules energy
is dissipated for every bit of information loss which is possible only irreversible
logic [4]. Where, kB is the Boltzmann constant and T represents the operating tem-
perature. This energy dissipation Will not be occurred with reversible computation,
firstly proposed by Bennett [5]. The previous exertion for applying reversible logic
in molecular QCA is described in [6], in which reversible logic testing properties are
described in a 1-D array of QCA cells.

The conservative reversible gates are used as basic component of the latches to
provide online testability in the circuits and to reduce energy dissipation.

Conservative logic belongs to the logic family having a power to generate same
number of 1s in the input and the output signals [7].

Definition 1: Bit conserving circuit is referred as conservative logic circuit. It must
hold same number of 1s in input and output signals.

Definition 2: A circuit with is conservative in nature with having the reversibility
property is known as conservative reversible logic circuit.

Definition 3: All high signals at the input lines of the conservative logic network
are the cause to produce all high signals at the output lines, and all low signals
at the input lines of the conservative logic network are the cause to produce all low
signals at the output lines. Figure 1 shows the structure of very well-known reversible
conservative Fredkin gate.

Here, the fault patterns for single stuck-at fault are analyzed. We get a clear idea
from the fault patterns (for different type of faults) that when single fault will occur
in the conservative logic gate it must mismatch the parity and specifically mismatch
the number of 1s in output lines with input lines. Based on the above property we
design online testable latches using conservative Fredkin gate. In existing paper,
irreversible latches for molecular QCA are proposed without having online testable
capability [8, 9]. Concurrently testable latches are proposed with decidedly less-
cost efficient design which needs more molecular QCA cells to design [10]. So,
the main contribution in this literature is to design various latches having online
testable capability with cost-effective nature which needs few molecular QCA cells
and minimal garbage lines.

Fig. 1 Conservative
reversible Fredkin gate F

 A
 B
C

P=A
Q=A’B+AC
R=A’C+AB
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This literature is arranged by the following way: Sect. 2 describes background
work related to our work including the basics, cost metric of molecular QCA and
also turn the attention to related work. Section 3 presents conservative reversible gate
and online testing of molecular QCA. Various online testable reversible latches in
molecular QCA framework are designed in Sect. 4. Implementation and Various sim-
ulation results of the proposed online testable latches in molecular QCA framework
to verify our designs are shown in Sect. 5. Single stuck-at fault patterns are shown in
tabular format and normal circuit simulation result is mentioned in graphical format
to verify the designs in this section. Finally, Sect. 6 describes conclusions along with
upcoming works.

2 Background

Various type of faults may occur in molecular QCA, like stuck-at fault [11], miss-
ing/additional cell defect which is more likely during synthesis and deposition phase
for miss placement of the QCA cell [3], etc. It also has the tendency for perma-
nent faults as well as transient faults caused by radiation, thermodynamic impact,
and other effects, like the variation of power within excited and ground states is very
small [12]. So, any type of single stuck-at fault, single cell defect (missing/additional)
including permanent fault or transient fault detection are important. Our proposed
designs covered all of such faults. Thus the proposed designs are significant.

2.1 Basics of molecular Quantum Cellular Automata
Computing

QCA cell which is nothing but coupled dot system, is the basic unit of molecular
quantumdot cellular automata nanotechnology circuit. Each cell contains four dots at
the vertices of the square. Among four dots two electrons can quantummechanically
tunnel in this QCA cell. Due to electrostatic repulsion, the electrons are occupying
diagonal positions, which is mentioned in Fig. 2a. Positions of electron pair in the
QCA cell are caused to polarize the QCA cell either in logic 0 (P = −1) or in logic
1(P = +1), is mentioned in Fig. 2b.

Fig. 2 QCA cell: a QCA
cell formation. b Bi-polar
QCA cell

Quantum
Well

Tunnelling Potential

Junction
Tunnel

(a)

 P = +1       P = −1
Binary ’0’Binary ’1’

   Localised Electron(b)
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4.Relax

1.Switch 3.Release

 2.Hold

(a)

X− Cell

’+’ Cell

B

A

B

A

(b)

A A

(c) B

A

A

B
(d)

Fig. 3 a Clocking. b Coplanar wire-crossing. c Wire. d Multilayer wire-crossing

The four distinct periodic phases cascaded clocking is accomplished timing in
QCA [4]. Figure 3a displays four distinct periodic phases are consist of switch, hold,
release, and relax. Wire crossing in the molecular QCA is a remarkable achieve-
ment. The nature of the QCA cell makes wire-crossing more vulnerable. Undesir-
able crosstalk between wires may be introduced here. Wire-crossing determination
is done either using different clock zones at different wires or using rotated QCA
cells at one of the wires by coplanar approach. Considering 90◦ (X cell) and 45◦
(+ cell) structures form the coplanar wire crossing which is mentioned in Fig. 3b.
The crossover can also be realized with multilayered wires. Instead of the coplanar
strategy, multilayer strategy is more powerful [13]. Multilayer implementation of
wire-crossing with same type of cells is mentioned in Fig. 3d.

Primary and the basic device of QCA computing is MV or majority voter, which
is mentioned in Fig. 4. Property of majority voter is modeled as MV(A, B, C) = AB
+ BC + CA, which is a function to produce output from the majority of inputs A, B,
and C. All other basic functions like OR, AND can be realized with majority voter.
Two-input OR or a two-input AND gate can be realized through the fixation of a
input cell at MV to p = +1 or p = −1, respectively. Realization of OR gate, AND
gate is shown in Fig. 5.

INVERTER is another important logic device, which can be realized with many
ways in QCA computing. Pictorial representation is mentioned in Fig. 6. Signal
in QCA circuit may transfer through either inverter chain (Fig. 6c) or binary wire
(Fig. 3c).
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F=MV(A,B,C)

(a)

C
MV

A
B                     F=AB+BC+CA

(b)

Fig. 4 Majority voter

A

B

+1

F=OR(A,B)

(a) A

B F=AND(A,B)

−1

(b)

Fig. 5 a OR gate. b AND gate

A’A

(a)

A’
A

(b)

A’A
(c)

Fig. 6 a Inverter [type-1]. b Inverter [type-2]. c Inverter chain [type-3]

2.2 Cost Metric

Any circuit in molecular QCA framework must be designed with some cost-effective
manner, which depends on number of QCA cell, majority voter, clock cycle is used to
design the QCA circuit. We should reduce the cost metric to design efficient circuit.

Molecular QCA Cell

The QCA cell is primary element of the molecular quantum dot cellular automata.
The QCA cell count should be minimum for reducing the circuit area. This is the
most important cost metric because the main objective to design the circuit in any
framework minimizes the area.
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Majority Voter

In order to design the circuit with basic gates, majority voter is important to realize
AND andOR gates.Minimum number ofmajority voters is considered as an efficient
design to reduce the circuit area.

Clock Zone

The clock zone is another important cost metric because it estimates the time delay
of the circuit. Thus, to make efficient circuit design we should minimize the delay
or minimize the clock zone.

2.3 Related Work

Lent et al. proposed molecular QCA firstly in 1993 [14]. The first physically imple-
mented molecular QCA produced Al islands and tunnel junctions. The experiment
is done at 10mK [15]. As the circuit in molecular QCA having tendency to high error
rate, so researchers were trying to concentrate on testing and the testing of molecu-
lar QCA first addressed in 2004 [3]. Here, the QCA devices defect characterization
has been demonstrated, and also described how the difference between the testing
of molecular QCA and the CMOS. QCA defects were modeled at molecular level
for combinational circuits in [16]. It characterized faults in respect to single addi-
tional/missing cell defect on different QCA devices (i.e., INV, fan-out, MV, L-shape
wire, cross wire, etc.). The test generation for molecular QCA described in [11]. For
theQCA reversible logic circuit, single additional/missing cell defectswere proposed
in [6]. It concludes that reversible 1-D array must be C-testable. The fault-tolerant
molecular QCA designs using the modular redundancy with the shifted operands,
were shown in [17]. Considering various faults and wire delay, defect is modeled and
SR latch is presented. The sequential circuits in QCA is presented based on the SR
latch [8, 9]. The coplanar crossing in molecular QCA was presented and proved that
wires with rotated cells can be considered as thermally more stable cells in [18]. The
single stuck-at fault testing for combinational circuit is presented in [19]. Testing of
reversible circuits is shown in [20–24] but they have not test circuit in of molecular
framework. Though testable latches in QCA framework for missing/additional cell
defect was done in [10], but it does not target to test stuck-at fault and it is not much
efficient design respect to circuit area, time delay, etc.

Latches and flip-flops are the primary ingredients of various registers. Nowadays,
researchers incorporate registers also for transliteration [25] to increase the process-
ing speed. The automated transliteration and translation [26] are booming topics for
now [27, 28]. Energy efficient fault- tolerant architecture is designed for wireless
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sensor networks [29]. Moreover, researchers introduced testable features into the
sequential circuits which makes it more interesting [30–32]. In future, researchers
may incorporate the proposed scheme in their applications [33] to improve efficiency.

3 Conservative Reversible Gate and Online Testing of
Molecular QCA

The conservative reversible gate is a unique type of parity preserving logic which
belongs to conservative reversible logic family. It has capability to form same number
of 1s in output signals as the input signals. We shall discuss the conservative logic
with case study of Fredkin gate. If anyone is interested to design the circuit with
another conservative logic gate then they can also easily make the circuit online
testable. The Fredkin gate is 3 × 3 conservative gate with reversible property. Iv =
{A, B, C} and Ov = {A, A’B⊕AC, A’C⊕AB} having quantum cost 5; first proposed
by Fredkin and Toffoli [7]. This is mentioned in Fig. 1. As the Fredkin gate belongs
to the conservative reversible logic family. So, it is capable to produce equal number
of 1’s in input lines as output lines which can be cleared from behavioral analysis of
the Fredkin gate which shown in Table 1. It should be noted that any type of single
permanent or transient fault will cause to miss the conservative property as well
as parity preserving property. Thus, depending upon the conservative property of
the Fredkin gate, we can easily detect the fault online. Launder four-phase clocking
scheme is most popular to design circuit in molecular QCA framework and our
proposed designs are based on this clocking scheme. Figure 7 represents the Fredkin
gate structure in molecular QCA.

The Fredkin gate is considered as basic building block of proposed latches based
on the reversible logic in molecular QCA framework, having 6 FOs, 2 INVs, 6 MVs,
8 LSs, 5 CWs, and to implement it 233 QCA cells with 4 clock zone are needed.

In this work, we use Fredkin gate behalf of conservative logic gate. The Verilog
library of the hardware description language notations for QCA layout is used to

Table 1 Behavioral study of the Fredkin gate

A B C P Q R

Low Low Low Low Low Low

Low Low High Low Low High

Low High Low Low High Low

Low High High Low High High

High Low Low High Low Low

High Low High High High Low

High High Low High Low High

High High High High High High
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Fig. 7 QCA layout of Fredkin gate

show all possible single stuck-at fault and single cell defect (missing/additional) in
majority voters (MJs), CWs, INVs, L-shape wires (LSs), FOs. The Verilog HDL
library of molecular QCA devices is used as HDLQ design tool i.e., MV, FO, L-
shape wire, Cross wire (CW), INV having ability to inject the faults [34]. Design
HDLQ model for the Fredkin gate is mentioned in Fig. 8.

Verilog HDL simulator helps to simulate the proposed design and this is success-
fully done for the appearance of all the possible single stuck-at faults to determine
corresponding erroneous outputs. 43 fault patterns were produced through the entire
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Fig. 8 Modeling for the Fredkin gate with QCA layout. INV describes inverter in QCA, FO
illustrates QCA fanout device, MV describes QCA majority voter, LS shows QCA L-shape wire,
and CW illustrates QCA cross wire

test for single stuck-at 0 and 45 fault patterns for single stuck-at 1. The fault patterns
for single stuck-at 0 fault is mentioned in Tables 2 and 3, fault patterns for single
stuck-at 1 fault is mentioned in Tables 4 and 5. In these tables, k represents the
three-bit pattern of corresponding decimal value of roman k. s0 describes bit pattern
000 (decimal 0), a1 denotes bit pattern 001 (decimal 1), and so on. From the fault
pattern table, it is clear that there must be mismatch in conservative nature if there
exits any stuck-at fault. Conservative gate also mismatch in parity if there exist single
cell defect (missing/additional) is occurred [10]. So, the fault patterns indicate the
presence of fault, if any conservative discrepancy (i.e., number of 1s in input vector
is unequal to number of 1s in output vector) is found between the input and output
vectors. More generally parity mismatch helps to find the faults. So, any permanent
or transient faults can be detected by parity mismatch property of conservative logic
gate. Finally, it can be claimed that the Fredkin gate based on molecular QCA is
online testable gate for its parity preserving property.
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Table 2 Stuck-At 0 fault patterns in Fredkin gate (first 22 lines)

InV EOV Fault patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i i i i 0 i i i i i i i i 0 0 0 i i i i 0 i i i

ii ii ii 0 ii ii ii ii ii 0 0 0 ii ii ii ii ii ii ii ii ii ii 0 ii

iii iii iii i ii iii iii iii iii i i i iii ii ii ii iii iii iii iii ii iii i iii

iv iv 0 iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv

v vi i vi iv iv iv iv vi vi vi vi vii vi vi vi vi vi vi vi vi vi vi iv

vi v ii iv v v v v vii v v v v v v v iv iv iv iv v iv v v

vii vii iii vi v v v v vii vii vii vii vii vii vii vii vi vi vi vi vii vi vii v

InV = Input vector, and EOV = Expected output vector

Table 3 Stuck-At 0 fault patterns in Fredkin gate (remaining lines)

InV EOV Fault patterns

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 46 47

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i i i 0 i i i 0 0 i i i i i 0 0 0 i i i i i 0

ii ii 0 ii 0 0 ii ii ii 0 0 0 0 ii ii ii ii ii ii ii ii 0 ii

iii iii i ii i i iii ii ii i i i i iii ii ii ii iii iii iii iii i ii

iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv iv 0 0 0 0 iv iv

v vi vi vi iv vi iv vi iv vi vi vi vi vi vi vi vi i 0 0 ii iv vi

vi v v iv v v v v v v v v v iv v v v iii iii i i v iv

vii vii vii vi v vii v vii v vii vii vii vii vi vii vii vii iii iii i iii v vi

InV = Input vector, and EOV = Expected output vector

Table 4 Stuck-At 1 fault patterns in Fredkin gate (first 22 lines)

InV EOV Fault patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 0 iv ii i 0 0 0 0 0 ii ii 0 0 i i 0 0 0 i i i ii ii

i i vi iii i iii i iii i i iii iii 0 i i i i i i i i i iii iii

ii ii v ii iii ii ii ii 0 ii ii ii ii ii iii iii iii ii ii iii iii iii ii ii

iii iii vii iii iii iii iii iii i iii iii iii ii iii iii iii iii iii iii iii iii iii iii iii

iv iv iv v vi iv vi iv iv iv iv iv iv iv iv iv iv v v v v v vi vi

v vi vi vii vi vi vi vi vi vi vi vi vi vii vi vi vi vii vii vii vii vii vi vi

vi v v v vii v vii v v vii v v v v v v v v v v v v vii vii

vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii

InV = Input vector, and EOV = Expected output vector
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Table 5 Stuck-At 1 fault patterns in Fredkin gate (remaining lines)

InV EOV Fault patterns

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

0 0 ii i ii 0 0 i i ii ii ii ii 0 i 0 i iv iv iv iv 0 ii i 0

i i iii i iii i iii i i iii iii iii iii i i i i vi vii vii v iii iii i i

ii ii ii iii ii ii ii iii iii ii ii ii ii iii iii ii iii iv iv vi vi ii ii iii iii

iii iii iii iii iii iii iii iii iii iii iii iii iii iii iii iii iii vi vii vii vii iii iii iii iii

iv iv vi v vi iv iv iv vi iv iv iv iv iv iv iv iv iv iv iv iv vi iv iv v

v vi vi vii vi vi vi vi vi vi vi vi vi vi vi vii vi vi vi vi vi vi vi vii vii

vi v vii v vii vii v v vii v v v v v v v v v v v v vii vii v v

vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii vii

InV = Input vector, and EOV = Expected output vector

4 Design of Online Testable Latches in molecular QCA
Framework

In this part, we design efficient online testable latches based on minimum number of
online testable conservative reversible Fredkin gate with minimal number of QCA
cells, few majority voters, and significant clock zones.

Lemma Any circuit based on online testable gates is also online testable. �

Proof Online testable capability denotes the power of fully fault coverage runtime.
Here, we consider the single stuck-at fault. So, the test vector should cover all zeroes
and all ones in the input lines and output lines. The fault cover achieves with either
to generate all combination of outputs with some characteristic or adding extra line
which defines the correctness of the circuit. Now, if the testable advantage achieves
with the first characteristic then there is no problem to test each block, because
it can be tested with comparing specified characteristic for every combination of
input which is applied from preceding block. If the testable advantage achieves with
the mentioned second characteristic then each block must generate error detection
signal for each combination of provided input to that block. Finally, after getting
green signals from every block it can easily confirm to have no fault in the circuit.

Lemma Proposed designs of sequential circuit based on multilayer approach are
online testable. �

Proof Multilayer based Fredkin gate in molecular QCA is online testable, proved in
section III. According to Lemma 1, circuit based on Fredkin gate is online testable.
As, it is sequential circuit, its input depends on output of previous state. According to
conservative principle, generate output must have same number of 1’s as applied 1’s
in input lines in fault-free case. Thus, after comparing equality in generated number
of 1’s at output with applied number of 1’s including previous state signal to input
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of the Fredkin gate, and consider Q as extra line which must be opposite of Q, we
can claimed that the generated signal is error free and the circuit is fault free.

4.1 D Latch (Positive Level Triggered)

Equation of the level triggered D latch (positive):

Qn+1 = (D ∧ E) ∨ (E ∧ Qn)

where, D and E are input bit and enable line, respectively. Qn and Qn+1 are primary
outputs of the present state and the next state, respectively. As per the level triggered
D latch (positive) characteristic equation, it is cleared the straightaway reflection of
D passes to the output signal when E is high, as Qn+1 = D. Positive level triggered
D latch stays identical in its past state when the enable signal is low; as Qn+1 = Qn .
Figure 9 shows the D latch (positive level triggered). Though fan-out is restricted at
reversible circuit whereas fan-out is acceptable in molecular QCA. Thus, Fig. 9 is
valid for low power QCA.

As Fredkin gate has capability to detect fault online for its parity preserving
characteristic, so the proposed D latch with the Fredkin gate also has the capability
to detect fault online. To test the D latch, it is necessary to considered Qn , E and D
signals for input vector and G1, G2, Qn as output vector; if parity mismatch is found
within input and output vectors then it can be claimed that there is fault in the circuit.
For testing the D latch (positive level triggered) with output Q and Q, we only need
to check same criteria and we should check additional Q bit which must be inverse
of Q line if there exists no fault.

4.2 D Latch (Negative Level Triggered)

It will directly transfer the input signal D to Q line, when value of E is low; else
estate will remain unchanged as before. The negative level triggered D latch can be
modeled as,

Qn+1 = (D ∧ E) ∨ (E ∧ Qn)

Fig. 9 Positive level
triggered D latch with output
Q and Q
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From the characterize equation, it is clear that D latch (negative level triggered) is
mapped to Fredkin gate because of its MUXing capability, is mentioned in Fig. 10.

The proposed negative level triggered D latch also has capability to detect fault
online. For testing, it is necessary to consider Qn , E, and D signals for input vector
and G1, G2, and Q signals as output vector. If parity mismatch is found within input
and output vectors, then it can be claim that there is fault in the circuit because of
its parity preserving property. For testing the D latch (negative level triggered) with
output Q and Q, only need to check same criteria and we should check additional Q
bit which must inverse of Q bit for no fault.

4.3 T Latch

In this section, we design online testable T latch in molecular QCA framework. T
latch is explained bellow:

Qn+1 = (T ⊕ Qn)E + EQn

According to characterize equation ofT latch, it ismapped to the conservativeFredkin
gate.We design the online testable T latch with two Fredkin gates only. Our proposed
design of online testable T latch with output lines Q and Q is mentioned in Fig. 11.
To test the T latch online, it is necessary to consider Qn, Qn , T, and E signals as input
vector and G1, G2, G3, Qn+1, and Qn+1 signals as output vector. Now if there is any
mismatch in parity between the input and output vectors then this will be considered
as faulty circuit.

4.4 JK Latch

In this section, online testable JK latch in QCA framework with two Fredkin gate is
presented. The JK latch can be described as,

Fig. 10 Negative level
triggered D latch

Fig. 11 Proposed design of
T latch based on Fredkin
gate
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Qn+1 = (J Qn + K Qn)E + EQn

From the characterize equation, it is clear that the JK latch can be realized using D
latch or SR latch, but by this methodology circuit complexity will high, so alternative
circuit diagram for JK latch is mentioned in Fig. 12.

The proposed JK latch based on the Fredkin gate also has capability to detect fault
online. To test the JK latch, we should considered J, K , E, and Qn signals as input
vector and G1, G2, G3, Qn+1 signals as output vector; if parity mismatch is found
within input and output vectors, then it can be claimed that there is fault in the JK
latch. For testing the JK latch with output Q and Q, only need to check same criteria
and we should check additional Q bit which must opposite of Q bit in fault-free case.

4.5 SR Latch

In this section, we propose the design of online testable SR latch in molecular QCA
framework based on Fredkin gate. The characteristic equation of SR latch can be
established as,

Qn+1 = (S + RQn)E + EQn

The characteristic equation can be mapped to D latch (positive level triggered) as
DE + EQn , where D = (S + RQn), and both of the equations can be realized using
Fredkin gate. Our architecture for the testable SR latch is mentioned in Fig. 13.

Proposed SR latch based on the conservative Fredkin gate also have capability to
detect fault online. To test the SR latch, we should consider all input bits including Qn

as input vector, and G1, G2, G3, G4, G5, G6, Q as output vector. If parity mismatch
is found within input and output vectors, then it can be claimed to have fault in the SR
latch. For testing the SR latch with output Q and Q, only need to check same criteria
and we should check additional Q bit which must opposite of Q bit in fault-free case.

Fig. 12 JK latch based on
Fredkin gate

Fig. 13 SR latch based on
Fredkin gate
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5 Implementation to Functionally Verify The Proposed
Multilayer Latches in Molecular QCA Framework

Verification of every design is done by using the QCADesigner version 2.0.3 [35].
Following parameters are used for the bistable approximation, cell size = 18 nm,
radius of effect = 41 nm, convergence tolerance = 0.001000, number of samples
= 182 800, clock amplitude factor = 2.000, clock high = 9.8 e−22, clock low =
3.8 e−23, relative permittivity = 12.9, maximum iterations per sample = 1000, and
layer separation = 11.5000 nm. In the QCA layouts, each multilayer Fredkin gate
will produce output by one clock cycle delay since Fredkin gate is designed with
four clock zones, as shown in Fig. 7. The simulated waveform of the multilayer
conservative Fredkin gate ismentioned in Fig. 14 bywhich it verifies the functionality
with one delay of the circuit. The applied inputs to multilayer Fredkin gate at clock
zone 0 and the produced outputs from Fredkin gate at clock zone 4. The simulation
result is exactly same as truth table of the Fredkin gate. It verifies the correctness
of the proposed multilayer implementation of Fredkin gate. The important fact is
that all the designs are practical as well as usable, since it was verified using the
QCADesigner simulator that generated signals are proper without degradation. To
perform correctly, all signals should appear simultaneously at the majority gate [36].
All designs follow this characteristic.

5.1 Multilayer QCA Layout and Simulation of the Proposed
Latches

All the latches are implemented with proposed multilayer Fredkin gate. The QCA
layout of the triple layer D latch (positive level triggered) is mentioned in Fig. 15
and it is verified using QCADesiger version 2.0.3 which is same as expected truth
table. To better understanding of conservative property, in Fig. 15 garbage outputs are
managed with proper clock zone. G1 and G2 represent the garbage output. To verify
the design, the simulated results of the proposed triple layer D latch (positive level
triggered) are mentioned in Fig. 16. Here, arrows are used to verify the functionality
of the proposed triple layer D latch (positive level triggered). Arrow A, B, and C
show that when E is high then D will be reflected in Qn+1; like arrow A and arrow C
indicate that when E = 1 and D = 0 then Qn = 0. And since E = 0 in the next cycle,
Qn+1 will maintain its previous value as 0 (mentioned with lines D and F), Arrow
B indicate that when E = 1 and D = 1 then Q = 1. And since E = 0 in the next
cycle, Qn+1 will maintain its previous value of Qn as 1 (mentioned with lines E). To
design the triple layer D latch (positive level triggered), 292 QCA cells, 0.44µm2

area and four clock zones are needed. All the generated output will be delayed by one
clock cycle as Fredkin gate has one clock cycle delay. The Table 6 which is compact
form of Fig. 16, summaries the working functionality of proposed triple layer D latch
(positive level triggered).
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Fig. 14 Simulated results of multilayer Fredkin gate

Figure 17 shows multilayer representation of negative level triggered latch which
is just opposite of positive level triggered latch. According to the characterize equa-
tion of negative level triggered latch, when E is low then D will be reflected in output
Qn+1 and when E is high then the output Qn+1 will remain same as Qn . To better
understanding of conservative property, in Fig. 17 garbage outputs are managed with
proper clock zone. G1 and G2 represent the garbage output. To verify the design, the
simulated results of the proposed D latch (negative level triggered) are mentioned
in Fig. 18. The trip of the arrows A and C indicate that when E = 0 and D = 0 then
Qn = 0. Since enable (E)= 1 in the next cycle, Qn+1 will maintain its previous value
as 0 (mentioned with lines D and F), The trip of the arrow B indicates that when both
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Layer 1 Layer 2

Layer 3 Top View

Fig. 15 Grid representation of proposed triple layer D latch (positive level triggered)

enable and the input line D are low then Q is based on previous state (i.e., high). And
since E= 1 in the next cycle, Qn+1 will maintain its previous value of Qn as 1 (men-
tioned with lines E). To design the triple layer D latch (negative level triggered), 272
QCA cells, 0.40µm2 area and four clock zones are needed. All generated outputs
are delayed by a clock cycle. Table 7 which is compact form of Fig. 18, summaries
the working functionality of proposed triple layer D latch (positive level triggered).

Figure 19 presents the top view representation of QCA layout and Fig. 20 show
the simulation results of the triple layer T latch. To design the triple layer T latch, 628
QCA cells, 0.92µm2 area and eight clock zones are needed. Thus, after two clock
cycles the correct output is generated. Table 8, summaries the working functionality
of proposed triple layer T latch. The trip of arrow A represents toggling of Qn at
Qn+1 as when E = 1, T = 1, and Qn = 1 then Qn+1 = 0. The Trip of the arrow B
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Fig. 16 Simulated output of the triple layer D latch (positive level triggered)

Table 6 Truth table of the D latch (positive level triggered)

Arrow Input Output (after one clock cycle)

A E = High D = Low Qn= High Qn+1 = Low

B E = High D = High Qn = Low Qn+1 = High

C E = High D = Low Qn = High Qn+1 = Low

D E = Low D = High Qn = Low Qn+1 = Low

E E = Low D = Low Qn= High Qn+1 = High
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Layer 1 Layer 2

Layer 3 Top View

Fig. 17 Grid representation of proposed triple layer D latch (negative level triggered) with output
Q based on multilayer Fredkin gate

represents when E = 0, T = 0, and Qn = 1, then Qn+1 = 1. The trip of the arrow C
represents when E = 1, T = 0, and Qn = 0, then Qn+1 = 0.

Top view of the triple layer JK latch is represented in Fig. 21. The simulated results
are shown in Fig. 22. To design the triple layer JK latch, 780 QCA cells, 1.50µm2

area and eight clock zones are needed, as two Fredkin gates are cascaded in series.
Thus, the correct output will be generated after delay of two clock cycles. Table 9
which is compact form of Fig. 22, summaries the working functionality of proposed
triple layer JK latch. The trip of arrow A represents when E = 1, J = 0, K = 1, and
Qn = 0, then Qn+1 = 0. The trip of arrow B represents when E = 1, J = 1, K = 0
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Fig. 18 Simulated results of triple layer D latch (negative level triggered)

Table 7 Truth table of the D latch (negative level triggered)

Arrow Input Output (after one clock cycle)

A E = Low D = Low Qn = High Qn+1 = Low

B E = Low D = High Qn = Low Qn+1 = High

C E = Low D = Low Qn = High Qn+1 = Low

D E = High D = Low Qn = Low Qn+1 = Low

E E = High D = High Qn = High Qn+1 = High
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Fig. 19 Top view QCA layout of proposed triple layer T latch with output Q based on multilayer
Fredkin gate

Fig. 20 Simulated results of triple layer T latch

Table 8 Truth table of the T latch

Arrow Input Output (after two clock cycles)

A E = High D = High Qn = High Qn+1 = Low

B E = Low D = Low Qn = High Qn+1 = High

C E = High D = Low Qn = Low Qn+1 = Low
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Fig. 21 Top view QCA layout of proposed triple layer JK latch with output Q using multilayer
Fredkin gate

and Qn = 0 then Qn+1 = 1. The trip of arrow C represents when E = 1, J = 1, K =
1, and Qn = 1 then Qn+1 = 0. The trip of arrow D represents when E = 1, J = 0, K
= 0, and Qn = 0 then Qn+1 = 0. The trip of arrow E represents when E = 0, J = 1,
K = 0, and Qn = 0, then Qn+1 = 0.

Top view of QCA layout of the triple layer SR latch are presented in Fig. 23. The
simulated results are shown in Fig. 24. To design the triple layer SR latch, 981 QCA
cells, 2.17µm2 area and twelve clock zones are needed, as three Fredkin gates are
cascaded in series. Thus, the correct output will be generated after delay of three
clock cycles. Table 10 which is compact form of Fig. 24, summaries the working
functionality of proposed triple layer SR latch. The trip of arrow A represents when
E = 1, S = 1, R = 0 and Qn = 1, then Qn+1 = 1. The trip of arrow B represents
when E= 1, S= 0, R= 1and Qn = 1 then Qn+1 = 0. The trip of arrow C represents
when E= 0, S= 1, R= 1and Qn = 1 then Qn+1 = 1. The trip of arrow D represents
when E = 1, S = 0, R = 0, and Qn = 1, then Qn+1 = 1.

Our multilayer latches are significant than the state-of-the-art latches in molecu-
lar QCA concerning with delays, Fredkin gates count, and the used number of QCA
cells. A clock cycle delay is needed for each Fredkin gate in critical path. Compar-
ison analysis of proposed multilayer latches in molecular QCA with existing one is
mentioned in Table 11.
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Fig. 22 Simulated results of triple layer JK latch

Table 9 Truth table of the JK latch

Arrow Input Output (after two clock cycles)

A E = High J = Low K = High Qn = Low Qn+1 = Low

B E = High J = High K = Low Qn = Low Qn+1 = High

C E = High J = High K = High Qn = High Qn+1 = Low

D E = High J = Low K = Low Qn = Low Qn+1 = Low

E E = Low J = High K = Low Qn = Low Qn+1 = Low
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Fig. 23 Top view QCA layout of proposed triple layer SR latch with output Q based on multilayer
Fredkin gate

6 Conclusions and Future Work

We propose online testable latches for molecular QCA using conservative logic (i.e.,
multilayer Fredkin gate). The proposed online testing approach concerning with
parity preserving characteristics of the multilayer Fredkin gate without increasing
the area of the circuit. It is beneficial for permanent fault as well as transient fault
which can be detected by parity mismatch between inputs and outputs. Q may not
be considered depending upon the prior information about circuit design, where
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Fig. 24 Simulated results of triple layer SR latch

Q is introduced separately using NOT gate. For that case Q will be tested using
knowledge of Q, as Q must be opposite of Q in fault-free case. The online testable
designs for various multilayer latches, QCA layouts, and their simulation results
are presented. The proposed methodology is applicable for the online detection of
the single cell defect (missing/additional) model, single stuck-at fault model, or
unidirectional faults. The proposed methodology is not appropriate to detect the
bidirectional multiple faults, say expecting fault free output vector is {1110}, and
due to bidirectional faults generated output vector is {1101} where parity of the
input vector and output vector is same, thus fault is not detected. The input signals
can be regenerated at output lines due to the reversible property. Thus, input vector
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Table 10 Truth table of the SR latch

Arrow Input Output (after three clock cycles)

A E = High S = High R = Low Qn = High Qn+1 = High

B E = High S = Low R = High Qn = High Qn+1 = Low

C E = Low S = High R = High Qn = High Qn+1 = High

D E = High S = Low R = Low Qn = High Qn+1 = High

Table 11 Comparison analysis of proposed multilayer latches

# of Fredkin gates
in critical path

Required
delays

# of QCA cells

Various latches In [10] Proposed In [10] Proposed In [10] Proposed

D latch (positive level triggered)
with output Q and Q’

2 1 2 1 598 292

D latch (negative level trig-
gered) with output Q and Q’

None in
literature

1 None in
literature

1 None in
literature

272

T latch with output Q and Q’ 3 2 2 2 826 628

JK latch with output Q and Q’ 4 2 4 2 1206 780

SR latch with output Q and Q’ 4 3 4 3 1224 981

and output vector will not only preserve the parity, it must be exactly same. This
characteristic can be implemented with our proposed approach to resolve the pitfall
(detection of bidirectional multiple faults) of our proposed methodology in future,
and also our proposed methodology can be implemented to design testable memory
inmolecular QCA framework. Finally, we can conclude that our proposedmultilayer
latches are implementation of online testable sequential circuit in molecular QCA
framework with multilayer approach which is efficient respect to the area, delay, etc.
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Applications to Emerging Technologies



An Efficient Nearest Neighbor Design
for 2D Quantum Circuits

A. Bhattacharjee, C. Bandyopadhyay, B. Mondal, Robert Wille,
Rolf Drechsler and H. Rahaman

Abstract In the last couple of years, synthesis of quantum circuits has received
huge impetus among the research communities after the evolution of an efficient
and powerful computational technology called “quantum computing”. But physical
implementation of these circuits considers the nearest neighbor qubit interaction as
the desirable one otherwise a computational error can result. Realization of such
an architecture in which qubit interacts only with its adjacent neighbors is termed
as the Nearest Neighbor (NN) property. To attain such design architecture, SWAP
gates plays a significant role of bringing the qubits to adjacent locations. But this in
turn introduces design overhead so NN-based realization using limited number of
SWAP gates has become significant. In order to explore this area, in this article, we
introduced an efficient design technique for NN realization of quantum circuits in
2D architecture. The design algorithm has been partitioned into three phases of qubit
selection, qubit placement and SWAP gate implementation. To verify the exactness
of the stated design approach, its functionality has been evaluated over a wide set of
benchmark function and subsequently witnessed an improvement on its cost metrics.
By running our algorithm an overall improvement of about 17%, 3% against existing
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2D works and 35%, 22% against 1D works over SWAP gate count and quantum cost
metrics have been recorded, respectively.

1 Introduction

Quantum computing, a new computational technology has shown promise in making
the computation much easier by overcoming the limitations of conventional comput-
ing paradigm. Introduction of such computing technology not only finds solutions
for some intractable problems but also solves them within a reasonable time bound.

Due to such computational facilities, quantum computing has left a remarkable
footprint in the research community and thereby an effort has been evolved toward
the establishment of quantum devices [1]. Additionally, quantum algorithms are
required to be designed such that quantum computing architectures can be fabri-
cated using quantum circuits. In quantum paradigm, quantum circuits are designed
using a sequence of elementary quantum gates, representing quantum operators that
manipulate quantum data information. To this end, qubits are considered as the basic
quantum data units that acts similar to bits used in classical computing. However,
these quantum units differ from the conventional data units in the way they exist.
Unlike classical bits, qubits can be found to occur in multiple states simultaneously
which can be represented as the linear superposition of the basis states.

The states of the quantum units are delicate and can easily be modified by envi-
ronmental effects that can hamper the integrity of the quantum system. Therefore,
an essential requirement toward attaining a practical and reliable quantum opera-
tion is by conducting fault-tolerant computation. For this purpose, quantum error
correction codes turns out to be useful and thereby becomes acceptable [2]. How-
ever, application of these codes depends upon the nearest neighbor interaction of the
qubits. Additionally, such a restriction in qubit interaction has also been considered
as the limiting design constraint for the synthesis of certain quantum implementa-
tion technologies like ion trap [3], quantum dots [4], superconducting qubits [5] and
nuclear magnetic resonance [6]. To make it more precise, the need toward realiza-
tion of a nearest neighbor qubit interaction can be warranted due to the limitations
of J-coupling force [7] required to enable multi-qubit operations (2-qubit or more)
and can only be achieved effectively for adjacent neighboring qubits.

This design architecture can be obtained by making the quantum gates to act only
on qubits located at adjacent positions, which can be realized via. SWAP gates. It
can be made possible by exchanging the states of the qubits till the desired qubits
become adjacent. Realization of NN architectures with the help of SWAP gates in
turn causes an impact on the resultant architecture by enhancing the circuit depth
and gate count. Therefore, NN optimization in terms of reduction in the number of
SWAP gate requirements has become an essential design challenge such that the
resulting overhead in the circuit can be checked. To address this, several articles
related to efficient NN realization has been declared where the authors mainly con-
sidered SWAP gate reduction by following different design solutions. To realize NN
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design architecture, qubits need to be mapped onto the desired topological layout
structure and the most commonly used structure is the qubit chain or 1D layout.
Such an arrangement of qubits is referred to as the Linear Nearest Neighbor (LNN)
architecture. Several contributions toward the development of LNN architecture have
been made and detailed review of those works is presented next.

The importance ofNNdesignnetworks alongwith the discussion of various design
methodologies has been stated in the article [8]. In [9], a couple of efficient transfor-
mation schemes related to LNN synthesis is introduced that reduces the additional
circuit and time complexity of the resultant structures. To produce cost-effective
NN architectures, the authors of [10] suggested a transformation approach where
mapping of circuits into lattice structure representations has been presented. The use
of graph partitioning algorithm to form improved linear NN design architectures is
stated in [11]. To improve the design further, two reordering techniques viz. global
and local has been discussed in the work [12], where exact NN design solutions
for each of the two reordering schemes are introduced so that the resultant solution
becomes optimal. In pursuit of having an efficient NN realization, the authors of [13]
presented a design methodology based on local reordering approach in which SWAP
gate optimization is achieved by exploiting look-ahead strategies. To obtain efficient
NN solutions for larger circuits, a heuristic approach using the look-ahead policy has
been stated in the work [14]. Furthermore, an optimal linear NN architecture using
global-based scheme has been obtained in [15], where an exact design algorithm
based on A* approach is employed.

However, the stated research contributions discussed so far are based on LNN syn-
thesis of quantum circuits where the qubits are arranged to form a chain like structure
in which it can hardly have more than two adjacent neighbors to communicate. To
maximize this nearest neighbor communication, the qubits need to be mapped to
higher dimensional topological structures like 2D, 3D, and even on multidimen-
sional layout. In other words, 2D organization of qubits facilitates to communicate
with a maximum of four neighbors while such nearest neighbor communication can
extend up to six in case of 3D structures. But such an increase in communication
makes it difficult in controlling the qubits especially in 3D representations. There-
fore, in this work, we have considered only on synthesis of 2D NN architectures. In
the recent past, many research articles related to NN representations in 2D layouts
have been reported and a few of them are stated below.

In the work [16], a mixed integer programming approach has been undertaken in
which the design problem is formulated by mapping it into a 2D architecture and
provides better design structures than 1D representation. An optimal 2D solution
with respect to SWAP cost is derived in [17] whereby an exact design strategy has
been employed. Despite the algorithm produces an optimal structure but it was found
infeasible for large benchmark circuits as a result of extensive computational cost.
In [18], the authors reduce the design overhead by arranging the qubits in such a
manner that they are placed at suitable grid positions. To obtain a better NN repre-
sentation, a heuristic design scheme has been undertaken in [19] in which a couple of
grid selection approaches is employed followed by an efficient qubit placement strat-
egy where the circuit’s qubits are mapped based on their corresponding interaction
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count. To optimize the design further, the authors of [13] exploited a heuristic-based
look-ahead design methodology that determines the appropriate movement of the
qubits resulting in a significant reduction in SWAP cost. To provide an improved and
scalable 2D NN representation, a better heuristic model based on generalization for
a combined local and global reordering scheme has been investigated in the work
[20].

Here, in this article we have employed a heuristic qubit mapping strategy to trans-
form a quantum circuit to its corresponding 2DNN representation using less number
of additional SWAP gates. Our design methodology has shown better performance
over some of the existing research articles.

The remaining content of the article is formulated as follows. In Sect. 2, we
discuss about the elementary quantumgates alongwith the nearest neighbor property.
A detailed discussion of our design methodology has been presented in Sect. 3.
An experimental evaluation of our approach against the related works has been
summarized in Sect. 4. Finally, the article ends with concluding remarks in Sect. 5.

2 Background

In quantum technology, qubits are considered as the elementary quantum data units
whose states undergomodification through execution of a sequence of quantumgates.
Qubits share a similar characteristic of bits is that it can occur in one of the basis
states like |0〉 and |1〉, which can be considered equivalent to 1 and 0 in conventional
computing. In addition to these basis states, qubits can even occur in superimposed
states of |0〉 and |1〉 that can be interpreted in the form of a state vector expression as

|�〉 = α|0〉 + β|1〉 (1)

where the notations α and β in the above expression denotes the complex numbers
indicating the probability amplitudes of the corresponding basis states that satisfy
the condition α2+β2 = 1.While measurement causes this state vector to degenerate
into one of the basis states of |0〉 and |1〉.

The operations performed by the quantum gates on the qubits can be defined
in the form of unitary matrices. In this context, the quantum functionality of an
n-qubit quantum system can be realized via multiplication of distinct 2n× 2n unitary
matrices.

Definition 1 Quantumgates represent the elementary quantumoperators thatmanip-
ulate the qubits and when a collection of such gates are arranged over any group of
circuit lines then the formed circuit is termed as quantum circuit.

The gates that have been most popularly used in the implementation of a quantum
circuit are CNOT, NOT, and V/V+ and their corresponding symbolic representa-
tion have been represented in Table 1. These quantum gates form the constituent
elements of the NCV gate library [21, 22] that help to map specific quantum into
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Table 1 Symbolic representations of some quantum gates

Gates Representation Gates Representation

NOT Controlled-V

CNOT

V Controlled-V†

V†

its corresponding gate level representations. In this chapter, our work is formulated
using only the quantum gates from NCV library.

Despite the fact that quantum gates can be used to transform any function into
a relevant circuit representation but there exist some physical limitations for the
implementation of these circuits. To this end, realization of such circuits requires the
quantum gates to interact only with its qubits physically placed at adjacent positions.
In order to satisfy this design constraint, the process of implementing SWAP gates
before any gate with non-neighboring qubits becomes essential that alters the posi-
tions of the qubits till the desired qubits become adjacent. Such a requirement for the
physical design of quantum circuits is regarded as the Nearest Neighbor condition
and it can be further described as follows:

Definition 2 Nearest Neighbor Cost of any 2-qubitgate g(c, t) can be interpreted as
the distance separating the positions of its control (c) and target (t) qubits and this
difference can be computed mathematically as

NNC(g) = |c − t | − 1 (2)

The above expression determines the nearest neighbor cost (NNC(g)) of an individual
gate g and the combination of such costs of the respective gates produces the overall
cost (NNC (QC)) of the corresponding quantum circuit QC. It can be represented
mathematically as follows:

NNC(QC) =
∑

NNC(g) (3)

This interpretation indicates that a given circuit holds the nearest neighbor condition
provided either all the 2-qubit quantum gates act on adjacent qubits or it is having
only 1-qubit gates. In other words, if the nearest neighbor expression represented
above evaluates to zero then the resultant circuits are said to be NN-compliant.
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Fig. 1 a Toffoli gate
structure, b NCV realization
of Fig. 1a

(a) (b)

Fig. 2 a SWAP gate, b NN
structure of Fig. 1b

(a) (b)

Suppose, consider a Toffoli gate represented in Fig. 1a, whose corresponding
NCV gate level realization obtained after decomposition is depicted in Fig. 1b. By
inspecting Fig. 1b, it can be observed that the NCV realization of Toffoli gate does
not hold the nearest neighbor condition as its overall NNC holds a positive (NNC
(QC) = 1).

Tomake the circuit as NN-compliant, SWAP gates (diagrammatically represented
in Fig. 2a) needs to be inserted before the first gate with nonadjacent interacting
qubits which changes the qubit positions till they are placed adjacent. The resulting
NN circuit post SWAP injection is depicted in Fig. 2b.

To get a clear understanding of the purpose of SWAP gate, another example has
been considered in which transformation of a non-NN-complaint into its correspond-
ing NN representation using SWAP gates is illustrated.

Example 1 Let’s consider the circuit as depicted in Fig. 3a that fails to meet the
nearest neighbor criteria as all the 2-qubit gates does not have their interacting qubits
placed adjacent. SWAPgates are needed to transform the given circuit to its equivalent
NN design. The resultant NN circuit is obtained after inserting ten SWAP gates as
depicted in Fig. 3b.

The transformation process we have discussed so far is related to NN architectural
design of 1D quantum circuit. It is also possible to obtain a much better NN repre-
sentation for the corresponding circuit by projecting it in a 2D architectural format in
which the qubits are mapped from a linear chain like structure to a two-dimensional

q1

q2

q3

q4 

V

V†

V†

V

V†

V†

q1

q2 

q3

q4

(a) (b)

Fig. 3 a Quantum circuit with NNC = 5, b NN-compliant representation of Fig. 3a
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q2

q1

q4

q3 

V†

V

V†

q2

q1

q4

q3

V†

V

V†

(a) (b)

Fig. 4 a Orientation of circuit in Fig. 3a into 2D structure, b NN representation of Fig. 4a

grid structure. Such a mapping process produces an improved NN architecture over
its linear counterpart by reducing the SWAP gate requirement. Now, we will discuss
about the NN representation of quantum circuits in 2D architecture. The transfor-
mation process of quantum circuit into a two-dimensional topological layout can
be carried out by mapping the qubits from linear format into a grid-like structure
whereby the qubits are permitted to interact with four adjacent neighbors while only
two nearest neighbor interaction can be allowed in 1D layout. Such an increment
in nearest neighbor communication of qubits minimizes the number of nonadja-
cent gates and thereby leads to an efficient representation of NN structure with fewer
SWAPS overhead in the circuit. Moreover, optimization of the resultant design struc-
tures depends on the selection of an appropriate 2D configuration grid used in the
qubit mapping process.

Consider the following mapping of a five-qubit circuit into a 2D structure. There
exist several possible solutions in which such a mapping process can be conducted
depending upon the availability of grid configurations. Likewise, a five-qubit circuit
can be represented in 2 × 3, 3 × 2, or 3 × 3.

Example 2: Considering the circuit shown in Fig. 3a, transformed into 2D structure
inwhich a 2× 2 configuration is chosen for arranging the qubits randomly as depicted
in Fig. 4a. After inserting the necessary SWAP gates the resultant NN circuit realized
in 2D topological layout is shown in Fig. 4b.

3 Proposed Approach

In this chapter, an improved heuristic qubit mapping scheme for the synthesis of
NN circuits in 2D configuration has been described. This design workflow realizes
an efficient NN architecture in which the circuit overhead is reduced by control-
ling SWAP gate implementation. For this purpose, our synthesis mechanisms are
developed based on some heuristic policy that can be used for making some design-
oriented decision and thereby formulated a unique qubit placement strategy for better
mapping of qubits.
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In this regard, our design workflow has been segmented into three phases namely
qubit selection, followed by qubit placement and thenSWAPgate insertion. For better
realization, all the aforementioned stages have been explained with an illustrative
example and for this any circuit specification such as the one shown in Fig. 5a is
considered as the input on which all the desired operations pertaining to the synthesis
approach are conducted.

Phase1: Qubit Selection Policy
The purpose of this phase is to arrange the qubits in a suitable manner on the 2D
grid structure. To fulfill this objective, we have used some qubit preference metrics
in which two metric tables viz. time interaction and time costing are computed by
reading the gate level specifications of the given circuit.

Total interaction time of each individual qubit is estimated and recorded the results
in a time interaction table. The values stored in this table constitute the interacting
timestamps of the operating qubits and their corresponding overall interaction time
is determined by aggregating the timestamps for each individual qubits in the given
circuit. For the circuit shown in Fig. 5a, its time interaction table is estimated and
represented in Table 2.

1    2     3    4      5   6       7       8    9   10
Time

a1

a2 

a3

a4

a5 

V

V†

V

V

V†

V†

a1 a5 a1

a4

a5 a1 a2

a3

(a)

(b) (c) (d)

Fig. 5 a Input circuit, b a1 inserted in the center of 3× 3 grid, c a5 placed on the left of a1, dQubits
a4, a2, a3 placed around a1

Table 2 Qubit time
interaction table

Qubits Time instants Total interaction

a1 1, 3, 4, 5, 8, 9 30

a2 2, 4, 7, 8 21

a3 3, 6 9

a4 1, 5, 6, 7, 10 29

a5 2, 9, 10 21
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Table 3 Qubit time costing table

Qubits Time instants Total interaction Time instants Total costing

a1 1, 3, 4, 5, 8, 9 30 1, 3 ,5, 9 18

a2 2, 4, 7, 8 21 2, 7 9

a3 3, 6 9 3 3

a4 1, 5, 6, 7, 10 29 1, 5, 7 13

a5 2, 9, 10 21 2, 9 11

Table 4 Qubit preference
table

Qubits Total interaction Total
costing

Preference index

a1 30 18 18/30 = 0.6

a2 21 9 9/21 = 0.42

a3 9 3 3/9 = 0.33

a4 29 13 13/29 = 0.44

a5 21 11 11/21 = 0.52

After resolving the qubit interaction metric discussed above then we work on the
time-related cost of all the interacting qubits in the circuit. Computation of this cost
parameter involves evaluation of the total costing time of the qubits and for this cal-
culation purpose, the previous qubit interaction (time interaction) table determined
is needed. Finally, the computation ends by recording the qubit costing results in a
table called time costing (see Table 3). This parameter is determined by identifying
the time steps in which a qubit of any 2-qubit gate is not interacting with an adja-
cent neighboring qubit using the respective qubit interaction time values and in this
manner, such timestamp evaluation is carried out for all the individual qubits of the
circuit provided.

After deriving these two tables, we merge the information contained in them and
stored the combined result in a new table called qubit preference table is tabulated in
Table 4. This preference table contains the qubit preference index evaluated using the
ratio between the costing and interaction time values for all the qubit acting as inputs
in a given circuit. Next, this preference table is sorted in decreasing order using the
qubit index values computed earlier in which the qubit with largest indexing value
is stored at the beginning of the table as displayed in Table 5. Now the index entries
in the sorted preference table represent the qubit priority values used in the decision
making purpose related to qubit placement as discussed in the next phase.

Phase2: Qubit Placement Policy
At the end of the previous workflow process, a preference table providing the
sequence to be followed for qubits mapping on a 2D grid structure is considered
as the input of this phase on which our mapping algorithm is executed as discussed
next.
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Table 5 Sorted qubit
preference table

Qubits Total interaction Total
costing

Preference index

a1 30 18 0.6

a5 21 11 0.523

a4 29 13 0.448

a2 21 9 0.428

a3 9 3 0.33

The qubit mapping process works by picking the appropriate qubits from the
preference table (PT) (see Table 5) based on their preference index values and thereby
arranges the qubits on the chosen grid position. To be precise, the process starts by
selecting the qubit with highest priority index from PT table and positioned the
corresponding qubit at the center of the grid structure. After allocating the position
of this qubit then a searching process is applied on the resultant grid to look for an
empty cell having maximum number of adjacent vacant locations. After detection of
such a desired position, the algorithm selects the next preferred qubit from preference
table and places it in the identified location. If our search results does not generate
a unique vacant cell then the qubits from PT table are placed in these locations by
selecting them in the order of left, top, right and bottomwith respect to the position of
the last placed qubit depending on the space availability and carried out till a definite
location is found. Following this algorithmic policy, ordered qubits from preference
table are selected and settled on the 2D grid structure.

Now, this same mapping function is employed on the preference table generated
in the previous phase to arrange the qubits on a proper 2D network. As a result,
the qubit with high priority, a1 is taken and placed at the center of the chosen grid (3
× 3) as shown in Fig. 5b. After placing qubita1, we initiate a search to look for cells
surroundedwith large number of adjacent empty locations on the corresponding grid.
In this case, we have determined eight such possible cells surrounded by a maximum
of two vacant cells and to solve this the remaining qubits from the preference table
are selected orderly and placed by following the convention like left, top, right and
bottom of the last qubit a1 till a unique empty cell is identified. Hence, the next
ordered qubit a5 in PT is fetched and then placed at a location occurring to the left
of a1 as represented in Fig. 5c. In this manner, the remaining qubits viz. a4, a2, a3
are mapped to the positions locating at the top, right, and bottom of a1, respectively.
The resultant grid structure obtained after placing all the qubits appear as shown in
Fig. 5d.

Phase3: SWAP gate insertion
In the previous design phase, our mapping function has organized all the qubits on
the given grid and thereby the circuit has been transformed into a 2D representation.
Now, we consider the resultant 2D grid obtained in phase 2 and examine the gates
with their qubits arranged on a grid and in this process if we identify a one with
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No SWAP

g1 (a1, a4)

SWAP(a2,a1) g3 (a1, a3)
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a5 a1 a2

a3

a4

a5 a1 a2

a3

a4
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a5 a1 a2

a3

SWAP(a4,a1)

a1
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a1 a5 a2

a3

g6(a4, a3)

Fig. 6 Steps of SWAP gate insertion

nonadjacent qubits then a SWAP gate is applied to bring those qubits at adjacent
positions.

Considering the circuit shown in Fig. 5a, execution of phase 2 generates the
structure represented in Fig. 5d and now in this phase we work on this grid and
apply SWAP gates at required positions so that an equivalent NN circuit is formed
as depicted in Fig. 6. It can be noticed that overall of five SWAP gates are needed to
transform the circuit into its corresponding NN form.

To have a better interpretation of the entire design mapping process, we have
provided another illustrative example.

Example 3 Here, we have considered a benchmark function, 4gt11_84 as shown in
Fig. 7, to describe the transformation mechanism used in our qubit mapping process
is represented from Tables 6, 7, 8, 9, 10 (Figs. 8, 9).

4 Experimental Results

The qubit mapping algorithm has been developed using C and executed the function
on a machine having Intel i5 processor with 4 GB RAM and 3.30 GHz clock. The
performance analysis of our mapping scheme has been made by conducting experi-
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Fig. 7 Input benchmark
circuit (4gt11_84) a1 

a2 

a3 

a4 

a5 

V V†

1    2     3    4      5     6        7        

V

Time

Table 6 Qubit time interaction table

Qubits Time instants Total interaction

a1 1,2,4,6,7 20

a2 1,3,4,5 13

a3 2,3,5 10

a4 – –

a5 6,7 13

Table 7 Qubit time costing table

Qubits Time instants Total interaction Time instants Total costing

a1 1,2,4,6,7 20 2,6,7 15

a2 1,3,4,5 13 0 0

a3 2,3,5 10 0 0

a4 – – – –

a5 6,7 13 6,7 13

Table 8 Qubit preference
table

Qubits Total interaction Total
costing

Preference index

a1 20 15 15/20 = 0.75

a2 13 0 0/13 = 0

a3 10 0 0/10 = 0

a4 – – –

a5 13 13 13/13 = 1

Table 9 Sorted preference Qubits Total interaction Total
costing

Preference index

a5 13 13 1

a1 20 15 0.75

a2 13 0 0

a3 10 0 0

a4 – – –
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Fig. 8 Qubits arranged on
grid (2 × 3)

a2 a1 a3

a5 a4

mental evaluations over a set of various benchmark functions taken from [23]. The
experimental data set has been summarized in two result tables Tables 10 and 11
respectively. The result sets for small and medium size benchmark specifications are
recorded in Table 10 while the other table contains the data of large size functions.
In each of these tables, two cost metric values namely quantum cost and SWAP cost
are evaluated for all the benchmark functions and compared the estimated results
against some existing 1D and 2D design approaches.

No SWAP g2 (a3, a1)

a2 a1 a3

a5 a4

SWAP (a2, a1)

g3 (a3, a2) 

a1 a2 a3

a5 a4

a1 a2 a3

a5 a4

a1 a2 a3

a5 a4

a1 a5 a3

a2 a4

a1 a5 a3

a2 a4

a2 a1 a3

a5 a4

a2 a1 a3

a5 a4

No 

SWAP

g1(a2, a1) 

No SWAP 

g4 (a2, a1) 

No SWAP

SWAP (a2, a5)

g6 (a5, a1) 

No SWAP 

g7 (a1, a5) 

Fig. 9 Stages of SWAP insertion policy

Table 11 Comparison over higher size benchmarks

Benchmark’s
name

Initial QC
incurred

Total lines
present

Gate
count

Grid size QC in NN
design

No. of
SWAPs

rev_17 136 17 136 6 × 3 443 214

hm_20 73 20 73 5 × 4 142 69

ac_21_1 130 21 130 6 × 4 246 116

rev_18 153 18 153 5 × 4 374 221

ac_21_2 67 21 67 6 × 4 120 53

rev_19 171 19 171 4 × 5 427 256

hm_21 79 21 79 6 × 4 181 102

ac_21_3 42 22 42 6 × 4 93 51

hm_22 85 22 85 6 × 4 179 94
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Table 10 contains a comparison analysis of ourmapping algorithmwith the results
of the reported work [19] and against the best results of [16]. From this comparison,
our proposed mapping approach has shown better performance over the reported
works.

From the analysis of the result tables, an overall improvement of about 28.71%
and 10.18% with respect to the previous 1D and 2D works has been estimated. In
addition to this, a best case improvement of about 37.73% and 35.71% is noticed over
the reported 2D articles [16] and [19] whereas an improvement of about 67.56% is
attained in case of 1D [16] representation. Investigation of our result tables suggests
that our design algorithm provides an improved resultant structure for majority of the
benchmark functions. But for few circuits, our mapping approach has not provided
a better NN realization than the reported ones.

5 Conclusion

In the present work, an improved heuristic qubit mapping scheme for NN realization
of 2D quantum circuits is discussed. The design algorithm has been divided into three
segments starting with qubit selection process followed by placement strategy and
then SWAP insertion policy. To justify the functionality of our mapping scheme, it
has been evaluated over a various set of benchmark circuits and has shown improved
results. The computed values are compared with some of the existing 1D and 2D
research articles. Based on our evaluation, it can be inferred that the proposed design
mapping scheme attains a significant improvement around 35.32%, 22.10% over
SWAP and quantum cost metric in 1D whereas an improvement of 17.09%, 3.28%
over the same metrics is registered in case of 2D. In spite of having an improvement
over the existing articles but the computed results may not be optimal because of
implementing heuristic design policy in qubit mapping process and thereby in the
future we work on optimizing the design structure further by investigating more
efficient design mapping workflow.
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Design of Space-Efficient Nano Router
in Reversible Logic with Multilayer
Architecture

A. Kamaraj, P. Marichamy, J. Senthil Kumar,
S. Selva Nidhyananthan and C. Kalyana Sundaram

Abstract The reversible logic is a promising technology for zero power dissipa-
tion. The reversible logic circuits are realized in quantum cellular automata (QCA),
which are called as quantum circuits. The router is a predominant device in the
modern communication era. The router is expected to perform faster with minimum
area requirement and power consumption. In this paper, a nano router is designed in
reversible logic and it is realized in quantum cellular automata. The memory plane
and the routing data plane are the major functional components of the router. These
are constructed from the basic peripherals decoder, memory array, multiplexer,
switch fabric and parallel-to-serial converter. The constructed router peripherals are
combined together to form the integrated router and it is realized in QCA. The QCA
realized structure has the significance of multilayer crossing for its wire crossing.
The multilayer crossing reduces the number of cells required for realization and also
it passes the signal without any degradation. The simulation results confirm that the
proposed router consumes minimum resources for its realization (up to 50%
improvement) than the existing. The nano router is suitable for nano-
communication applications. The realization is performed in QCADesigner tool.
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1 Introduction

Gordon Moore has forecasted, in 1965, that the capacity of an integrated chip grows
exponentially with time, whereas the advances in the microelectronic industry
depend upon the ever-shrinking size of transistors. The physical limitation of the
realization of the transistors is the major challenge in the CMOS technology. The
International Technology Roadmap for Semiconductors (ITRS) prediction states
that, after 2021 in nanometre technology, it is very hard to shrink the size of the unit
transistor [1]. There has been extensive research in recent years at nanoscale to
supersede conventional CMOS technology. It is anticipated that these technologies
can achieve a density of 1012 devices/cm2 and operate at THz frequencies [2]. One
possible solution is to go with the nanostructure based on quantum-dot cellular
automata (QCA).

The significant advantages of the QCA are it has a high packing density, low
power-delay product, memory-in-motion and processing by wire (PBW
Computation, and Communication occurs simultaneously) [3]. It does not dissipate
its signal energy during the transition. Laundauer has proved that the irreversible
circuit elements dissipate KTln2 Joules of heat energy (K—Boltzmann constant, T
—Room temperature) [4]. Benett has stated that the heat occurs due to the loss of
information; which could be avoided by using the reversible logic [5, 6]. The
performance factors of the various conventional reversible logic gates are measured
and using these gates fundamental combinational circuits are designed [7]. Hence,
the low power, high-density computation is possible with the combination of
reversible logic circuit realization in QCA.

The router has a data plane and control plane for its function. The control plane
has the routing protocols and the data plane does the transfer of data packets. The
data plane consists of mux/demux, crossbar and serial-to-parallel converter [8].
There are two types of wire crossings in QCA; named as coplanar and multilayer
wire crossing. The coplanar crossing is generally used, but it is suffering from
delay, loss of synchronization among signals, discontinuity in propagating signals
and more number of cells for its realization. A careful scheduling of clocking is
needed to attain the stable output in coplanar crossing. In multilayer, the signal
connectivity is more strong and stable and need less control over the clock [9, 10].
Thus, it is desirable to a multilayer crossover in QCA design.

Multistage interconnection networks (MIN) are used in connections in parallel
systems to have maximum bandwidth and maximum access rate to memory
modules. Here, the switching elements are realized with the multiplexers [11]. The
flip-flops are the basic elements of the sequential circuits, which are being con-
structed with the conventional reversible gates. The flip-flops DFF, SRFF, JKFF
and TFF are designed in Master–Slave mode [12]. Two types of memory structures
are available: serial and parallel. Serial memory has high latency and multiple-bit
storage facility; whereas, parallel memory as low latency and single storage facility.
The serial memory is realized in QCA known as SQUARE (Standard Quantum
Cellular Automata Array Elements) [13]. As a part of the RAM design, a decoder is
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designed for accessing the memory. Also, a 2D grid of memory cell is addressed by
the QCA decoder [14].

In a bottom-up approach, the Parallel-to-Serial and Serial-to-Parallel converters
were designed for data communication purpose. Here, a coplanar based wire
crossing is used for communication over the wires [15, 16]. QCA realized
sequential circuits are modelled and testing procedure is proposed to reduce the
quantum cost and ancilla bits. Simple flip-flops and up–down counter is synthesized
and modelled for quantum realization with testing capability [17]. More recently,
the reversible circuits design are being promoted towards the universality [18] in
2D rectangular arrays and simulations are done in reversible cellular automata.

The following sections are organized as follows; Sect. 2 describes the required
components for the router design, its specifications and its construction in reversible
logic. The QCA realization of the proposed architecture is carried out in Sect. 3.
A case study and the results discussions are presented in Sect. 4 and is finally
concluded.

2 Design Parts of Reversible Router

The basic router has majorly two functional units, they are; a memory block and
router block. The memory block consists of a decoder, memory array, multistage
interconnection network and multiplexer. The router block has DE multiplexer,
switch fabric and a parallel-to-serial converter as shown in Fig. 1. The integral
specification of the router is listed in Table 1.

Fig. 1 Functional modules of router

Table 1 Particularization of
the router

Components of the router Specification

Decoder 2 to 4

Memory array 4 � 4

Multiplexer 4 � 1

DE multiplexer 1 � 4

Parallel-to-serial converter 4 � 1

Switch fabric 4 � 4
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2.1 Decoder

A decoder is a circuit that changes a code (S0, S1) into a set of signals (A0, A1, A2,
A3). The basic function is to accept a binary word (code) as an input and create a
different binary word as an output. By applying a specified input signal, it is
possible to steer the required output. The generic decoder architecture (2 to 4) is
shown in Fig. 2 and is switching actions at different time instances are depicted in
Fig. 3. It represents A0 is enabled at the time instance 0 and select signals S0 and
S1 whose inversion line is closed. Similarly, the other outputs are enabled, when the
S0 and S1 are switched at the specified instances. This decoder selects the particular
row of memory array for read or write.

Fig. 2 Generic 2 to 4
decoder

Fig. 3 Switching instances of decoder
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2.2 Memory Cell

The arrangement of the single memory cell (1-bit) is depicted in Fig. 4. The row
select line enables the particular row of the memory array. The read/write line
decide whether the input data to be written (RW = 1) into the memory loop or the
memory information to be forwarded to the output (RW = 0). The memory loop
retains the value written into the memory cell [14]. Here, the intended design is
4 � 4 array structure; so the single cell has to be replicated 16 times with each row
4 cells.

2.3 Multiplexer and Demultiplexer

A Multiplexer is a circuit with many inputs and one output. By applying a control
signal, it is possible to steer any input to the output which satisfies Eq. (1). The
switching action instances are shown in Fig. 5, where MV represents the majority
voter, A, B, C, D are inputs and S0 and S1 are control signals. The multiplexer
selects any one of the memory array data and forward it to the router data plane.

Y ¼ S00S
0
1ÞAþðS00S1

� �
BþðS0S01ÞCþ S0S1ð ÞD ð1Þ

A Demultiplexer is a circuit with one input and many outputs. The inputs are a
data line, two select lines (S0, S1) and a constant enable input (−1) to perform the
Demultiplexer operation. The outputs are D0, D1, D2 and D3. By applying a
control signal (S0, S1), it is possible to steer any input to the output.

Fig. 4 Single memory cell
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The purpose of 1 � 4 Reversible Demultiplexer is done to perform the process
of delivering data packets into the switch fabric as in Fig. 6. One more added
advantage is that naturally, the demultiplexer satisfies the reversibility.
Demultiplexer forwards the incoming data to the output via selected switch fabric.

Fig. 5 Reversible multiplexer switching instances

Fig. 6 Reversible demultiplexer
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2.4 Switch Fabric

The Switching fabric is to connect input ports to the output ports. The switch fabric
includes 4 � 4 interconnections; this is to connect 4-input port (Demultiplexer) and
4-output port (parallel-to-serial converter), thus, switch fabric avoids the collision.
This utilizes the multilayer crossing shown in Fig. 7.

2.5 Parallel-to-Serial Converter

In a Parallel-to-Serial Converter, a set of input data are carried by different wires
and arrive in the device at the same time. These data are buffered in the horizontal
wire by the use of D flip-flop and produced at the output at different instant of time.
The switching instances of the parallel-to-serial converter are shown in Fig. 9;
where the flip-flops of Fig. 8 are switched at various time instances.

2.6 Integrated Router

The router has two major planes: memory and data planes. The memory plane is
constructed using a decoder, memory array and multiplexer. In memory plane, the
decoder (2 to 4) acts as a row selector, memory array (4 � 4) is constructed by

Fig. 7 QCA multilayer crossing
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cascading of memory cells in an array and the array is replicated to form the
complete memory structure, the multiplexer (4 � 1) functioning as data/bit selec-
tor. The row selector selects any one of the rows of data to be forwarded to the
output port. The data present in the memory array is available in the data selector
through the interconnection network.

The data selector does the forwarding of data serially to the data plane as shown
in Fig. 10. The operation of the memory plane is controlled by the sequence of
control signals released at distinct time instances.

In data plane, the demultiplexer (1 to 4) receives the data serially from the
memory plane. It is sent to the switch fabric for further processing. The switch
fabric receives data in parallel from all the demultiplexers. This parallel data is
forwarded to the output port serially via parallel-to-serial converter. The switching
actions at various time instances control the entire operation to be performed
without any confusion in data forwarding. The component level detailed repre-
sentation is shown in Fig. 11, which is being controlled by the switching actions as
shown in Figs. 3, 5 and 9.

Fig. 9 Switching instances parallel-to-serial Converter

Fig. 8 Parallel-to-serial converter
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3 QCA Realization and Functional Verification

In Sect. 1, it has been discussed that the multilayer architecture provides better data
communication than its counterpart coplanar. The reversible gates Feynman,
Fredkin, Toffoli and Peres gates are realized in QCA using majority voter gate with
multilayer (crossover and vertical cell used—bridge type) [19] and coplanar
(45° rotation in horizontal wire for crossing) architecture. The realization and
simulation results confirm that the multilayer architecture is having a fewer number
of cells, area, and simulation runtime than coplanar as shown in Table 2. Also, the
coplanar structure requires careful alignment of cells and clocking to have proper
propagation of signals.

Fig. 11 Components level description of router

Fig. 10 Functional representation of router

Design of Space-Efficient Nano Router … 241



T
ab

le
2

C
om

pa
ri
so
n
of

co
pl
an
ar

an
d
m
ul
til
ay
er

ar
ch
ite
ct
ur
e

Pa
ra
m
et
er
s

Fe
yn

m
an

ga
te

Fr
ed
ki
n
ga
te

T
of
fo
li
ga
te

Pe
re
s
ga
te

C
op

la
na
r

M
ul
til
ay
er

C
op

la
na
r

M
ul
til
ay
er

C
op

la
na
r

M
ul
til
ay
er

C
op

la
na
r

M
ul
til
ay
er

N
o.

of
ce
lls

12
2

77
39

2
13

3
13

1
90

31
0

19
4

A
re
a-
nm

2
39

,5
28

24
,9
48

12
7,
00

8
43

,0
92

42
,4
44

29
,1
60

10
0,
44

0
62

,8
56

Si
m
ul
at
io
n
tim

e
(s
)

34
27

96
45

45
35

87
65

242 A. Kamaraj et al.



The major components of the router are realized in the QCA environment and
their functionality is being verified. Here, the crossover is structured in multilayer
configuration and the same is indicated in Figs. 12, 13, 14, 15, 16 and 17. Also, as
discussed in Sect. 2, the router has memory and data plane; whose realization is
shown in Fig. 16, 17 and the complete integrated router architecture is shown in
Fig. 18. The integral part of the designed router is also indicated.

Fig. 12 Demultiplexer
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Fig. 13 Decoder

Fig. 14 Parallel-to-serial converter
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Fig. 15 Multiplexer

Fig. 16 Router plane structure
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Fig. 17 Memory plane structure

Fig. 18 Complete router architecture
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4 Results and Discussion

Ratification of the Router was done in different aspects and are revealed as below.

Case 1
The decoder is provided with select lines as ‘00’ and Read/Write line as ‘1111’
which performs its respective operations as shown in the simulation output Fig. 19.

Case 2
The decoder is provided with select lines as ‘10’ and Read/Write line as ‘1010’
which performs its respective operations as shown in the simulation output Fig. 20.

The router is realized in multilayer crossing, its individual components resource
utilization is listed in Table 3. It is observed that there are three layers are required
for realizing the router architecture. The coplanar realization requires 45° rotation of
horizontal cells wherever the crossing is required, and also it requires sufficient
clocking sequence for polarization of the cells without interference [20, 21]. In
multilayer crossing, it requires only crossover cells and vertical cells to make the
crossing.

The proposed router design is compared with the existing router [8] design. In
the proposed design, the minimum amount of resources is utilized for the router
realization due to the proper clock scheduling and organization. Here, no needs of
additional cells for signal boosting as in the case of coplanar. Thus, the improve-
ment in complexity and area is achieved for the integrated router design in QCA as
shown in Table 4.

Fig. 19 Simulation result of the integrated router case 1
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Fig. 20 Simulation result of the integrated router case 2

Table 3 Resource utilization of router components

Parameters Demux P to S
converter

Router Decoder Mux Memory Complete
router

Complexity 22 cells 41 cells 3057 cells 188 cells 277 cells 7465 cells 10,932 cells

Simulation
time (s)

4 4 25 4 5 75 128

Area (µm2) 212,400 50,150 7,910,900 203,500 448,500 16,747,500 30,394,500

Latency (s) 1 4 6 3 5 20 44

Layers 3 1 3 3 3 3 3

Table 4 Comparison of existing and the proposed router

Parameters Router existing design [8] Router proposed design Percentage of improvement

Complexity 4026 3057 cells 24%

Latency 48 24 50%

Area (µm2) 13.81 7.91 42.7%

Simulation time – 25 s –

Layers 3 3 –
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5 Conclusion

The design of nano router architecture in reversible logic and realizing them in
quantum cellular automata is one of the viable solutions in order to achieve the
low-power dissipation and high-speed device. Here, an integrated router with
memory plane and control plane is designed using the combination of digital
components decoder, memory cell, multiplexer, demultiplexer and parallel-to-serial
converter. The designed nano router structure is realized in the QCA platform with
multilayer architecture for wire crossing. The multilayer crossing effectively
propagates and computes the information while propagation without any interfer-
ences in the signal. The simulation work is carried on in QCADesigner 2.0.3. From
the simulation and realization results, it is evident that the reversible logic based
router realization in QCA with multilayer architecture effectively improves the
performance up to 50% than the existing method. The designed router could be
deployed in communication and networking environment in the near future.
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Design of Reversible Binary-to-Gray
Code Converter in Quantum-Dot
Cellular Automata

I. Gassoumi, L. Touil and B. Ouni

Abstract At nanoscale, for digital systems, the device density and power con-
straint of the circuit are essential issues. Quantum-dot cellular automata (QCA) is an
incipient nanotechnology, which leads to build circuits at nanoscale. It offers var-
ious features such as minimal power dissipation, very high-operating frequency,
and nanoscale feature size. Besides, reversible computation can lead to the devel-
opment of low-power systems without loss of information. Thus, reversible QCA
logic can provide a powerful and efficient computing platform for digital applica-
tions. This paper presents a QCA code converter. Feynman gate is used as a
fundamental building block to perform the proposed design of code converter.
QCADesigner version 2.0.3 is used to validate the accuracy of the proposed circuit.
QCAPro, a very widespread power estimator simulation engine, is applied to
estimate the power depletion of the proposed circuit.

1 Introduction

The thermal energy discharged by circuit transistors is one of the most important
issues faced while designing VLSI circuits. Although the recent VLSI technology is
based on CMOS technology. However, this technology entails many challenges.
High-power density levels, high leakage currents, and constraint of speed in GHz
are some of the problems that CMOS is faced [1, 2]. In the 1960s, Landauer proved
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that if information processing has performed at an irreversible process, then energy
will be lost and a loss of information leads to loss in energy [3]. It has proved that
the loss of any bit of information would be at least 0.6931 KbT joules, where T is
the temperature of the environment in which computation is performed. These
truths lead to look beyond traditional approaches in order to reduce the power
depletion. Hence, various alternative technologies were found like Carbon
Nanotube Field-effect Transistors (CNTFET), Single-electron Transistor (SET), and
Resonant-tunneling Diodes (RTD) [4].

QCA is an incipient nanotechnology and potential substitute to orthodox CMOS
archetypes at nano extent that assures to conceive digital circuits with minimal
power, extreme speed, and particularly dense structures. This approach can operate
at a higher frequency (in the order of THz) than the conventional solution [5–7].
Apart from that, reversible approach is also considered as an alternative technology
that can mitigate the issues, which are anticipated for CMOS devices due to the heat
dissipation [8, 9]. A system is reversible if its output values define its input values,
i.e., it performs a bijective function. The inputs may be reproduced from the outputs
and vice versa. Thus, without wasting of information, no energy dissipation occurs.
This design strategy aims toward the development of digital designs with ideally
zero power dissipation. Then, the design of reversible logic circuits used in this new
emerging nanotechnology (QCA) leads to ultra-low-power systems and architec-
tures. Reversible QCA logic can provide high-performance and low-power solu-
tions for digital designs. Recently, it is used as the best method to reduce power
depletion [10–15]. As well known that the fundamental components of each logic
circuits are logic gates which are used to perform any Boolean functions. Thus,
reversible circuits can easily be realized that can perform complex logical and
arithmetic operations using reversible logic gates. Some gates have been employed
by several reversible logic designs such as Feynman, Fredkin, and Toffoli gates. In
recent years, several efforts have been made toward to conceive of reversible QCA
digital circuits [16–18].

This chapter describes the design of reversible binary-to-gray code converter in
QCA. The basic building block of the proposed design is Feynman gate. In this
chapter, the major contributions of our work can be summarized as follows:

• A novel reversible Feynman gate (FG) based on QCA technology has been
proposed.

• The proposed FG has been exploited to realize the design of reversible code
converter circuit in QCA technology.

• The simulation results of the designed circuit have been correctly obtained.
• Power dissipation of the proposed design has been estimated.

The rest of this work is systematized as follows: Sect. 2 reviews the QCA tech-
nology. Section 3 presents the background work. The designed circuit is discussed
in Sect. 4. Section 5 shows the performance comparisons with power depletion
analysis. Finally, the chapter is concluded in Sect. 6.
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2 Background

2.1 QCA Devices

The QCA approach is an emerging technology designed as an appropriate alter-
native to conventional technology. It contains an array of cells. Cells in the QCA
technology include four cavities located in four corners of the square. Only two
electrons diametrically opposite are injected into a cell due to Coulombic interac-
tion [19]. Through Coulombic effects, two possible polarizations (labeled –1 and 1)
can be shaped. These polarizations are represented by binary “0” and binary “1” as
depicted in Fig. 1. Figure 2 illustrates the propagation of logic “0” and logic “1”,
respectively, between input and output in QCA binary wires due to the Coulombic
repulsion. Generally, in neighboring cells, the Coulombic interaction between
electrons is used to implement many logic functions, which are controlled by the
clocking mechanism [20].

The main logic components in the QCA technology are majority and inverter
gates, which are composed by some QCA cells as depicted in Fig. 3 [21, 22]. The
3-input majority voter consists of five QCA cells. Furthermore, the majority gate
and inverter are operated for realizing QCA circuit performances. A majority gate
can operate a 3- or 5-input logic functions as presented in Fig. 3.

ElectronQuantum Dot

P = -1
Binary ‘0’

P = + 1
Binary ‘1’

Fig. 1 Two different
polarization of quantum-dot
cell

Logic 0 Logic 0

Logic 1 Logic 1

Fig. 2 QCA binary wire
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2.2 QCA Clocking

Clocking plays an important role in QCA designs. Every single clock has four
periods, namely, switch, hold, release, and relax, which are essential for appropriate
circuit implementations as illustrated in Fig. 4 [23, 24].

• In switch phase, QCA cell is beginning to shift from unpolarized status to
polarize status, and the blockades of the dots are lifted.

• In hold phase, blockade of the cell is in the highest value, electron cannot
channel within dots, and cell preserves their existing statuses specifically, stable
polarization.

• In release phase, the blockade is lessened, electron can channel within dots, and
statuses of the cell turn into unpolarized.

• In the final phase, blockade stays lessened and cell remains in unpolarized
status.

Output 1 OutputA

B

C

A C

B Output

A

B

C

E

D

Output

Input :0

Output :1

Output :1

Input :0

Input :0

(a) (b)

Fig. 3 a Types of inverter gate, b majority gate
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3 Feynman Gate

The reversible designs are one of the most promising solutions, which are capable
of overcoming the limitations of the applications based on the CMOS technology.
Additionally, reductions in energy dissipation comprise one of the important goals
of nanotechnology-based methods, including QCA and so it is desirable to consider
reversibility in the design of QCA circuits. The Feynman gate (FG) is employed by
many reversible logic circuits. It is a 2 � 2 universal gate (Fig. 5) and any logical
reversible design can easily be implemented by using it. The FG is named as a
self-inverse one, i.e., to a circuit that is capable to return to any previous state in
reverse order. The truth table of the Feynman gate is shown in Table 1. Figure 6
illustrates the proposed QCA design and the simulated outcome of Feynman gate.

Clocking
field 
strength

Switch Hold Release Relax
Clock phase

Fig. 4 QCA clock zones

A P =A 

FG

Q = A ⊕ BB

A

B

P=A

Q= A ⊕ B

Fig. 5 Feynman gate and its quantum realization

Table 1 Truth table of FG A B P Q

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0
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The proposed Feynman gate contains 12 QCA cells and covers an area of 0.01 µm2.
Here, the suppression of majority voter leads to QCA structures with less power
consumption and hardware complexity.

4 Reversible Binary-to-Gray Code Converter

In this section, a new reversible code converter design by using QCA is explored.
A binary-to-gray Code converter is a combinational circuit which is a non-weighted
code. This conversion method is useful to reduce the rapid switching activity. In
order to generate the 3-bit binary-to-gray code converter, only two FGs have been
used. The corresponding block representation and QCA diagram of the proposed
circuit is depicted in Figs. 7 and 8, respectively. It has one garbage bit. The pro-
posed design contains 29 cells, extent 0.04 µm2. It needs two clock zones to
generate the correct outputs.

A

B

Q

P

1

0

(a) (b)

Fig. 6 a Proposed QCA layout of Feynman gate, b its simulation outcome

Fig. 7 Schematics of 3-bit
reversible binary-to-gray code
converter
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5 Results and Discussions

QCADesigner software is used to verify and simulate the proposed hardware design
[25]. The utilized parameters for the simulation are shown in Table 2. The Feynman
gate is the basic building blocks of the proposed circuit. Therefore, the foremost
benefit of the designed gate is that no multilayer and rotating crossing is applied,
which will lead to the efficient design of reversible binary-to-gray code converter.
Table 2 illustrates the comparison result of the designed gate (FG) with some

A

B

Q

P

1

  0

Q1

 G

1

  0

C

(a)

(b)

Fig. 8 a QCA layout of 3-bit reversible binary-to-gray code converter, b its Simulation outcome

Design of Reversible Binary-to-Gray Code Converter … 257



existing designs in the literature. It can be perceived that the proposed gate excels
all the best reported designs presented in [26]. Table 3 depicts the quantum cost
(QC) of the suggested circuits. Clearly, the QCA designs have less QC than that of
classical implementation as shown in Table 4. In addition, the proposed design
consists of 29 cells, occupies 0.04 µm2 area and 0.5 latency. The QCAPro software,
a probabilistic designing engine [27], has been applied for power depletion study.

Table 2 Simulation
parameters

Parameter Value

Number of samples 12,800

Convergence tolerance 0.001000

Radius of effect 65,000,000 (nm)

Relative permittivity 12,900,000

Clock low 3,800,000e-023(J)

Clock high 9,800,000e-022(J)

Clock shift 0,000,000e + 000

Clock amplitude factor 2,000,000

Layer separation 11,500,000

Maximum iterations per sample 100

Table 3 Comparison of various Feynman gates

Design Cell
count

Area
(µm2)

Clock no.
cycle

Feynman gate [11] 54 0.037 0.75

Feynman gate [14] 43 0.038 0.75

Feynman gate [15] 13 0.02 0.5

Feynman gate [26] 14 0.01 0.5

Proposed Feynman gate 12 0.01 0.5

3-bit reversible binary-to-gray code converter
[28]

118 0.0926 4

3-bit reversible binary-to-gray code converter
[29]

117 0.0953 10

3-bit reversible binary-to-gray code converter
[30]

75 0.0554 4

Proposed binary-to-gray code converter 29 0.04 0.5

Table 4 Quantum cost of the proposed reversible sub-circuit versus corresponding QCA layout

Proposed reversible circuit Quantum
cost

Quantum cost of QCA circuit (area.
latency2)

Feynman gate 1 0.0025

Reversible binary-to-gray code
converter

2 0.01
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Table 5 explains the overall power depletion study of the proposed design. The
estimation is performed at three tunneling energy levels (EK) at T = 2 K. The
temperature impact on the output polarization of designed gate is performed. The
proposed diagram function readily in the temperature range of 1–6 K, and the AOP
for each cell is reformed very little in this estimate as demonstrated in Fig. 9, which
is analyzed at different temperatures by QCADesigner Tool.

6 Conclusion

Recently, QCA technology has attracted researchers’ attention for implementing
reversible computing. Reversible QCA logic has become a promising technology in
the implementation of digital design. In this chapter, we have presented a QCA
architecture based on reversible logic, which performs binary-to-gray code con-
verter. Feynman gate is used to achieve the proposed design. The results of the
comparison demonstrated significant improvements. The designed circuit is more
efficient in terms of extent, cell complexity, quantum cost, and delay.
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Fig. 9 The effect of
temperature on output
polarization of Feynman gate

Table 5 Power dissipation analysis of the proposed circuits

Proposed QCA circuit Dissipation of power T = 2.0 K

c = 0.5 Ek c = 1 Ek c = 1.5 Ek

Feynman gate 9.55 15.76 22.73

Reversible binary-to-gray code converter 19.39 31.52 45.98
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