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Abstract

Diseases caused by trypanosomatids include leishmaniasis (Leishmania spp.), 
Chagas disease (Trypanosoma cruzi), and sleeping sickness (Trypanosoma bru-
cei) that affect millions of people, especially low-income populations, being 
classified as neglected tropical diseases. Limitations in the clinical treatment, 
associated with the huge number of cases, make these infections a health and 
socioeconomic problem worldwide. To complete their life cycle, trypanosoma-
tids survive to environmental changes in different hosts, including oxidative 
stress. A paradoxal role of reactive oxygen species (ROS) has been proposed, 
such as signaling as a proliferation regulator or even presenting cytotoxic activ-
ity, depending on the concentration. Mitochondrial electron transport chain, 
especially complex III, is figured as one of the most important ROS resources in 
trypanosomatids. In relation to antioxidant defenses, trypanothione pathway 
plays a crucial role, being a peculiar thiol-redox system responsible for the main-
tenance of protozoa functions mediated by thiol-dependent processes. In this 
chapter, we discuss the biological aspects of oxidative stress in trypanosomatids 
and its implications for the success of the infection. The possible ROS resources 
in these protozoa and their consequent antioxidant machinery involved in detoxi-
fication were also focused in this review, including alternative strategies for the 
development of new drugs for these diseases based on oxidative stress 
modulation.
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8.1  Introduction

The World Health Organization (WHO) defined neglected tropical diseases (NTDs) 
as a group of illnesses that affects low-income populations in tropical and subtropi-
cal areas, without the adequate sanitary conditions, reaching over than a billion 
people worldwide. These conditions which are far from the ideal, together with 
severe limitations in the current chemotherapy, led to high mortality and morbidity 
rates of these diseases in developing countries [1]. Trypanosomatid parasites are 
responsible for some of the most important NTDs. Leishmania species, Trypanosoma 
cruzi, and Trypanosoma brucei cause leishmaniasis, Chagas disease, and sleeping 
sickness, respectively [2], and the implication of oxidative metabolism in the suc-
cess of these infections is the focus of this review.

8.1.1  Leishmania spp. and Leishmaniasis

Leishmaniasis is a complex of diseases caused by over 20 species of parasites of the 
genus Leishmania [3]. This disease is endemic in 98 countries, with more than 12 
million people infected and 350 million in risk areas [4]. The parasite life cycle is 
digenetic, with two hosts: an invertebrate host (sandfly), being also the transmitter of 
the disease, and the vertebrate host (mammalian), including humans and animals 
such as rodents, canines, marsupials, primates, and others [5–8]. Leishmania is 
responsible for two major clinical manifestations, tegumentary and visceral leish-
maniasis. The tegumentary form can be divided into cutaneous, diffuse, and mucocu-
taneous; however, it is the visceral form which can lead to death by affecting internal 
organs, such as the liver and spleen [9]. Leishmaniasis chemotherapy has been based 
over seven decades on pentavalent antimonials; however, even being the first choice 
of treatment in several countries, its side effects and longstanding therapy added to 
all the resistance reports led to alternative drug choices, such as amphotericin B, 
pentamidine, paramomycin, and miltefosine [10, 11]. Amphotericin B and its lipid 
formulation, which reduces side effects but has a higher cost, is the first-line therapy 
in some countries and an alternative in cases of antimonial failure. Nevertheless, 
along with pentamidine and paramomycin, there is a vast report of failure cases, with 
side effects, longstanding treatment, and resistance reports [9]. Miltefosine, the first 
oral drug for leishmaniasis, has been emerging in leishmaniasis therapeutic scenario, 
but the resistance case reports and teratogenic effects limit its use [12].

Leishmania biological cycle presents two major hosts and two forms. When the 
hematophagous sandfly host bites the infected mammal, it ingests a mixture of 
blood and phagocytic cells infected with amastigote forms, which are released upon 
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cellular rupture. Inside the insect gut (midgut or hindgut, depending on the 
Leishmania subgenus), amastigotes differentiate as procyclic promastigotes and 
develop in the sandfly. Promastigotes migrate to the proboscis and differentiate into 
metacyclic promastigotes, the mammalian infective form. When the infected sand-
fly bites a mammalian host, it regurgitates promastigotes, which are phagocytized 
by mononuclear phagocytic cells. Once, inside these cells, promastigotes transform 
into amastigotes, that proliferates up to host cell rupture, being phagocytized by 
other phagocytic cells, disseminating the infection [13].

8.1.2  Trypanosoma cruzi and Chagas Disease

Chagas disease, which is caused by the hemoflagellate protozoa T. cruzi, is typically 
a Latin American endemic illness. With the reduction in the transmission by triato-
minae vector, other transmission routes emerge, such as contaminated food or liquid 
ingestion in Brazil and transfusional transmission in Europe and North America, 
due to an increase in the migratory flux of infected people [14, 15]. In relation to 
clinical manifestations, Chagas disease presents an acute phase defined by high 
parasitemia in the patient bloodstream and a chronic phase where severe cardiac 
and/or digestive alterations are observed in 30–40% of the infected individuals 
decades after the acute infection [16, 17]. Up to now, benznidazole and nifurtimox 
are the clinical options for Chagas disease chemotherapy, being strongly effective 
on acute cases. On the other hand, both nitroderivatives show severe side effects as 
well as important activity limitations in the symptomatic chronic patients, particu-
larly. Differences in the susceptibility of the parasite stocks isolated from distinct 
areas to these drugs also emphasize the necessity of the development of alternative 
compounds [18, 19].

The complexity of T. cruzi biological cycle, with different parasite evolutive 
stages and two hosts, also contributes for the delay in the development of novel 
active trypanocidal compounds. During the bloodmeal, triatomines ingest trypo-
mastigotes with blood of the infected host. Reaching the midgut, bloodstream forms 
differentiate into proliferative epimastigotes that colonizes the insect digestive tract. 
The migration of epimastigotes to the low nutrient and acid environment of the tri-
atomine posterior rectum triggers a new differentiation process in the parasite, and 
nonreplicative metacyclic trypomastigotes present in the insect feces will infect the 
vertebrate, invading host cells. In the intracellular environment, metacyclic forms 
differentiate into amastigotes that proliferates quickly. A new intracellular differen-
tiation occurs to trypomastigotes that disrupt host cell and disseminate the infection 
by bloodstream [20, 21].

8.1.3  Trypanosoma brucei and Sleeping Sickness

Sleeping sickness, which is caused by the trypanosomatid T. brucei rhodesiense or 
T. brucei gambiense, is a disease restricted to sub-Saharan Africa, where the vector 
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tsetse flies (Glossina spp.) is present. The transmission occurs by the insect bite, 
being T. b. gambiense the most abundant infection (98% of all cases), which is espe-
cially distributed in the Democratic Republic of Congo [22]. An estimation of WHO 
pointed to 70 million people under risk of infection and about 20,000 new cases per 
year [23–25]. Clinical manifestations of sleeping sickness mainly involve cognitive 
impairment, including mental confusion, personality alterations, and seizures, 
among others, deriving from the direct injury caused by the parasite presence in 
central nervous system of the host, being present for many years or months in T. b. 
gambiense or T. b. rhodesiense infections, respectively [26]. Unfortunately, this dis-
ease progression can lead to the patient death, if untreated. Due to the variety of 
illness stages and parasite subspecies, adaptations in chemotherapy approach are 
critical. Suramin and pentamine are the first-line drugs for early phase of T. b. rho-
desiense and T. b. gambiense infections, respectively. On the other hand, the treat-
ment of later stages is more complicated, once the compounds need to cross the 
blood-brain barrier. Melarsoprol and eflornithine (only for T. b. gambiense) are the 
current drugs for this stage, sometimes in combination with nifurtimox; however, 
their high toxicity associated with difficulties in the administration encourages the 
search for alternative therapies [27–29].

The evasion of the host immune system by the parasite represents a crucial chal-
lenge for the efficacy of novel drugs. Variant surface glycoproteins (VSGs) of T. 
brucei mammalian stages are produced constantly, varying the composition of the 
protozoa surface coat and hampering their recognition by host phagocytic cells [30]. 
The biological cycle of T. brucei starts during the tsetse fly foraging, when metacy-
clic trypomastigotes are inoculated after the insect bite, reaching the mammalian 
bloodstream. The first differentiation step takes place, and long slender forms pro-
liferate, maintaining the infection. Central nervous system, as well as different other 
tissues, are infected when this stage crosses the endothelia. In order to guarantee the 
parasite survival in the tsetse environment, long slender forms differentiate into 
short stumpy forms that will be ingested by the insect. In the midgut, a new differ-
entiation process occurs, and procyclic trypomastigotes will colonize the digestive 
tract of the flies. The migration of procyclic forms to the salivary glands takes place, 
tissue where the last parasite differentiation step will occur. Infective metacyclic 
trypomastigotes presented in the insect saliva will reach vertebrate host during tse-
tse bloodmeal [31].

8.2  Oxidative Stress

The harmful consequences of free radicals production for biological systems and its 
implications in aging and diseases were proposed only half century after the first 
description of these species by Moses Gomberg [32]. Curiously, many years later, it 
was demonstrated that free radicals can also present a beneficial role for the cells and 
tissues, and it was postulated their involvement in the killing of pathogens, and help 
in the immune system [33, 34]. So, the participation of these molecules has been 
demonstrated in a great variety of biochemical pathways, acting as regulators [35].
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Even today, the terms “reactive species” and “free radicals” are employed as 
synonyms, generating a little confusion. Free radicals are instable and represent 
reactive molecules with an unpaired electron in their orbital [36, 37]. Some reactive 
species does not present an unpaired electron, being not considered a free radical 
[38]. Reactive nitrogen species (RNS) comprehend nitric oxide (NO), nitrogen 
dioxide (NO2), peroxynitrite (ONOO–), and nitroxyl (HNO) that participate in many 
crucial cellular processes [39], while also reactive oxygen species (ROS) include 
superoxide anion (O2

•–), hydrogen peroxide (H2O2), and hydroxyl radical (HO–). 
Here, we only focused on the mechanisms of oxidative stress and their detoxifica-
tion in pathogenic trypanosomatids and also its implications for the infection 
success.

In oxidative conditions, antioxidant machinery is highly expressed in order to 
downregulate the reactive species to physiological levels. Indeed, when such bal-
ance is broken, the concentration of ROS and/or RNS becomes higher, defining the 
oxidative stress condition that presents different biological implications, depending 
on molecular targets oxidized and the efficacy of antioxidant defenses, among other 
factors [40, 41]. The increase in ROS generation usually promotes this disbalance; 
however, the decrease in levels of antioxidant enzymes, due to reduction in expres-
sion or inactivation, also contributed for the oxidative regulation [42]. Regardless of 
the causes, the availability of reactive species scavengers strongly modulates almost 
all of biochemical pathways [43].

In the oxidative context, among all organelles and cellular structures, the mito-
chondrion stands out. Nobel Prize winner, Peter Mitchel, in 1961, described the 
co-dependency of cellular respiration and oxidative phosphorylation, being the oxy-
gen metabolism and the ATP production causes of each other [44–46]. In the mito-
chondrial cristae, oxidative phosphorylation takes place, being the proton 
electrochemical gradient generated by electron transport through the complexes, 
leading to ATP synthesis [47, 48]. In aerobic conditions, the great majority of the 
oxygen directly reduced to water by complex IV (cytochrome c oxidase) in an elec-
tron transport chain (ETC) [49]. The partial reduction of oxygen by ETC electrons 
leakage represents one of the main ROS sources in eukaryotic cells, usually occur-
ring in complexes I and III, as well as in coenzyme Q [50]. Alternatively to ETC, 
other enzymatic reactions, such as those catalyzed by oxidases, also can represent 
important ROS resource. In ETC, coenzyme Q shows an oxidized (UQ) or a reduced 
state (partially reduced UQ– or fully reduced UQH2), becoming one of the largest 
ROS generators in the mitochondrion. It is directly associated with its role in oxida-
tive phosphorylation, where coenzyme Q reduction by complexes I and II allows the 
electrons targeting to complex III, in a step dependent of the full reduction of ubi-
quinone. This process includes oxidized ubiquinone that is partially reduced to 
semiquinone (transference of only one electron). During the return to stable state, 
coenzyme Q needs to be reduced again, and such reduction occurs with the semiqui-
none formation. This reaction is not so quick; many molecules including oxygen 
could be also reduced by semiquinone, producing mitochondrial ROS [51–53]. 
Chronologically, O2

•– is the first ROS generated during ETC electron leakage, 
derived from oxygen reduction by only one electron. Due to its unstability, 
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superoxide anion is detected in low concentrations in cells under physiological con-
ditions, situation where superoxide dismutase (SOD) and other specific antioxidant 
enzymes are expressed in order to detoxify these free radicals [41, 52].

After superoxide anion production, the next ROS generated is H2O2 by the O2
•– 

reduction with two protons accepted, concomitantly. H2O2 does not present an 
unpaired electron, being more stable and less reactive than O2

•–. Once such molecule 
is still more reactive than molecular oxygen, it is called ROS but it is not considered 
a free radical. Peroxidases and catalases are specific antioxidant enzymes involved 
in H2O2 removal [41]. In a new reduction step, HO– is produced from H2O2, a highly 
reactive free radical that interacts with more protons and electrons, generating water 
as a product from Fenton reaction [54]. For sure, HO– is the most damaging ROS, 
impairing a great variety of biological processes; however, due to its high instability, 
this molecule presents low half-life in cells compared to other ROS [41, 55, 56]. In 
summary, cellular physiology is directly affected by the consequences of these spe-
cies production, damaging macromolecules, organelles, and structures, which can 
lead to phospholipids peroxidation, including in the plasma membrane, and causing 
subsequent cell rupture [57] (Fig. 8.1).

8.2.1  Oxidative Metabolism in Pathogenic Trypanosomatids

The mitochondrial metabolic processes that occur in the majority of the organisms 
are also present in trypanosomatids, despite some specific peculiarities of this 
organelle [58] (Fig. 8.1). ETC exhibits unique features when comparing their enzy-
matic complexes to the canonical system. In higher eukaryotes, the complex I 
(NADH: ubiquinone oxidoreductase) contains up to 30 accessory subunits whose 
function remains largely unknown [59–61]. It catalyzes the transfer of electrons 
from NADH to ubiquinone, restoring the NAD+, with the concomitant translocation 
of four protons across the mitochondrial inner membrane [62]. In trypanosomatids, 
this complex consists in 19 subunits which were determined by proteomic analysis 
or deduced from genome sequence searches [63]. However, the functionality of 
complex I in these protozoa has been debated. Among the described subunits, all 
molecules known to participate in electron transfer are present, but four membrane 
subunits supposedly involved in proton translocation are missing. Indeed, NADH- 
dependent substrates are not able to stimulate ATP production in isolated mitochon-
drion [64]. Natural T. cruzi mutants which showed deletions in ND4, ND5, and ND7 
genes coding for complex I subunits presented no significant differences in oxygen 
consumption, respiratory control ratio, and mitochondrial membrane potential in 
the presence of NADH-dependent substrates or FADH2-generating succinate. In 
mammals, the complex I is also a site of ROS production; however, H2O2 formation 
induced by different substrates was not associated to complex I subunit deletions, 
demonstrating that these mutations are not important for the control of oxidative 
burst in trypanosomatids [65]. In T. brucei, NADH-induced respiration is sensitive 
to the complex I inhibitor rotenone, at a higher concentration than that dose required 
for inhibiting this complex in other models [66, 67], which is suggestive of the 
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inhibition of other electron carriers [68] or even a characteristic of an atypical com-
plex I. Besides that, previous findings pointed to an increased mRNA levels of sev-
eral kDNA encoded complex I subunits in bloodstream compared to T. brucei 
procyclic forms [69, 70], suggesting a more important role for complex I in this 
parasite stage. Nevertheless, RNAi knockdown of three subunits indicates that com-
plex I is not required for normal culture growth of T. brucei procyclic forms [71], 
the same phenotype was observed in T. cruzi natural knockouts [65].

Trypanosomatids, as many other organisms, have alternative pathways to trans-
fer electrons without concomitant proton translocation, such as type-II NAD(P)H 
dehydrogenases and alternative oxidases [57]. The contribution of the alternative 
NADH oxidizing enzymes to the entry point of electrons into the respiratory chain 
is not completely established. Type-II NAD(P)H dehydrogenases are single poly-
peptides that catalyze the transfer of two electrons from NAD(P)H to ubiquinone 
without coupled proton pumping [72, 73]. These enzymes are able to oxidize both 
NADH and NADPH produced either in cytosol or in the mitochondrial matrix, 
depending on the orientation of NADH binding site. In trypanosomatids, the alter-
native NADH dehydrogenase was first described in T. brucei, where a rotenone- 
insensitive NADH oxidation activity and superoxide production in procyclic forms 
were reported [74, 75]. Contrasting to the lack of phenotype observed for complex 
I mutants, the knockdown of type-II NAD(P)H dehydrogenases affects parasite 
growth and decreases mitochondrial membrane potential [71, 76, 77].

In most trypanosomatids, succinate is the major end product of glucose metabo-
lism. This substrate of complex II (succinate:ubiquinone oxidoreductase) is pro-
duced in the glycosome and/or in the mitochondrial matrix by NADH-dependent 
fumarate reductases. These enzymes oxidize NADH generating succinate from 
fumarate [78–81]. The excretion of succinate probably indicates that the respiratory 
chain is not able to deal with the input of reducing equivalents, supporting the exclu-
sive occurrence of oxidative phosphorylation from complex II to complex IV in 
trypanosomatids. Some data suggest that malonate, an inhibitor of complex II, 
impaired oxygen consumption when complex I and II substrates were added [64, 
65, 82]. Complex II of T. cruzi epimastigotes and L. donovani promastigotes pro-
duce ROS after the treatment with thenoyltrifluoroacetone (TTFA), another inhibi-
tor of complex II [83, 84].

The ubiquinol:cytochrome c oxidoreductase, or complex III, works similarly in 
trypanosomatids and other eukaryotes. This complex carries the electrons flow to 
cytochrome c, which reduces the complex IV. As well as in other organisms, try-
panosomatid complex III is usually the major source of mitochondrial ROS, being 
responsible for O2

•– formation in L. donovani promastigotes and T. cruzi epimasti-
gotes induced by antimycin A, a classical inhibitor of this enzyme [83]. The only 
exception was T. brucei, in which this complex is not considered a potential ROS 
producer site [75]. Trypanosomatids possess two terminal oxidases: a classic com-
plex IV KCN-sensitive and a KCN-insensitive alternative oxidase (AOX) [85–87]. 
The classic complex IV is similar to mammalian cytochrome c oxidase, transferring 
electrons from cytochrome c to the final acceptor, an oxygen molecule. This com-
plex is important to mitochondrial functions, causing a decrease in this organelle 
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membrane potential, reduced ATP production via oxidative phosphorylation, and 
redirected oxygen consumption to AOX when their indispensable subunits were 
repressed in T. brucei procyclic stage [88]. The impairment of cytochrome c oxidase 
also resulted in other severe mitochondrial phenotypes. Without active complex IV, 
the electrons flow through complex III is not able to completely reduce the oxygen. 
Therefore, the electrons flow from cytochrome-mediated pathway can be deviated 
to AOX. Gnipová et al. [88] also showed that knockdown of T. brucei complex IV 
subunits affects the complex III activity, suggesting that these subunits are respon-
sible for the signaling mechanism that allows communication between these two 
sequential respiratory complexes. It can contribute to ROS production detected 
when cytochrome c oxidase was repressed in these parasites.

AOX, the second terminal oxidase in trypanosomatids, is restricted to the inner 
mitochondrial membrane of both T. brucei bloodstream and procyclic forms, not 
exhibiting proton translocation capacity and subsequent contribution to proton gra-
dient that drives ATP formation. In bloodstream forms, the complex IV can be com-
pletely replaced by AOX, while in the insect stage, the enzyme coexists with this 
complex. Interestingly, KCN, a complex IV inhibitor, does not completely abolish 
T. cruzi and L. donovani respiratory rates, suggesting the existence of an AOX as an 
alternative to cytochrome c oxidase. However, the activity of salicylhydroxamic 
acid, an AOX inhibitor, was observed only in T. cruzi, suggesting a role of this 
enzyme in this parasite energetic metabolism [89, 90]. In L. donovani, the respira-
tion KCN-insensitive still remains unclear, needing further investigation [91]. Fang 
and Beattie [72] showed that the inhibition of AOX by salicylhydroxamic acid stim-
ulates ROS formation in T. brucei, resulting in an increase in oxidation of cellular 
proteins. Besides that, AOX activity increased when parasites were incubated in the 
presence of H2O2 and antimycin A, which leads to high ROS levels. These data sug-
gested that the excess of reducing equivalents was removed by AOX in T. brucei 
transferring these equivalents to oxygen, preventing ROS production.

Kinetoplastid parasites have a complex life cycle in which they transit between 
invertebrate and vertebrate hosts. During the cycle, the protozoa change their mor-
phology and metabolic profile, adaptating to diverse environmental conditions [92, 
93]. In T. cruzi, the comparison between the energetic and oxidative metabolisms of 
bloodstream trypomastigotes and epimastigotes showed more active complex II–III 
and a restriction in electron flux to complex IV, reducing oxygen consumption and 
resulting in increased H2O2 generation in bloodstream forms [94]. These findings 
can be explained by the access to glucose at constant concentration that trypomasti-
gotes have in vertebrate bloodstream. Similar results were found in T. brucei blood-
stream stage that is essentially glycolytic, also living in an environment that presents 
high glucose levels. Besides that, these protozoa also lack many tricarboxylic acid 
cycle enzymes and cytochromes, affecting energy production [95–97]. In this 
regard, the invertebrate environment is glucose poor but is rich in amino acids 
released from intense digestion of blood proteins [92, 98, 99], resulting in high 
hemolymphatic levels of histidine [100, 101]. Several groups have discussed the 
possibility of oxidative environment as a stimulus to trypanosomatid growth. In T. 
cruzi epimastigotes, an increase in parasite proliferation was observed in response 
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to H2O2 incubation, mediated by calmodulin kinase II activation. The exposure of 
epimastigotes to different redox-state molecules including heme, a pro-oxidant 
molecule derived from the insect blood digestion, increased mitochondrial ROS 
production and parasite replication, whereas mitochondrion-targeted antioxidant 
reduces ROS generation, impairing protozoa proliferation and increasing metacy-
clogenesis [102–104].

8.2.2  Oxidative Metabolism in the Hosts

Both invertebrate and vertebrate hosts of trypanosomatids share a common machin-
ery of oxidative metabolism, which occurs in the mitochondrion. After decades of 
research in this field, critical proteins and molecules involved in the oxidative 
metabolism were described. The sequenced mitochondrial genome and uncoupling 
proteins (UCP) assays were extremely important for the overall comprehension of 
this process [105–107]. As described above for trypanosomatids, ETC is presented 
in the mitochondrial inner membrane, being the complexes I, II, III, IV, and ATP 
synthase functional [46]. The electrons entry in ETC occurs in complexes I or II, 
passing to complex III through coenzyme Q. Having received the electrons from 
complexes I or II, complex III uses cytochrome c to pass the electrons to complex 
IV, responsible for the reduction reaction that generates H2O from O2 [108]. As in 
trypanosomatids, hosts mitochondria are the main source of cellular ROS. To date, 
11 sites of superoxide and/or hydrogen peroxide in mammalian mitochondria have 
been described, depending on the substrate metabolism, electron transport, and oxi-
dative phosphorylation. The majority of these site-specific mitochondrial ROS pro-
duction has been studied, measuring the maximum capacities of these sites under 
optimal conditions [52, 109]. As described above, complexes II and IV are not 
important ROS sources in mammals. Here, these two complexes are the main ROS- 
generating enzymes.

Differently of trypanosomatids, in mammals, complex I is the only entry point of 
electrons from NADH into the respiratory chain. This enzyme presents two domains: 
a hydrophilic portion located into mitochondrial matrix and a hydrophobic one, 
embedded in the inner mitochondrial membrane. All the known redox centers of 
complex I, the flavin mononucleotide cofactor (FMN), and eight FeS clusters are 
located in the hydrophilic domain [110]. The complex I has been recognized for a 
long time as one of the main sources of ROS production by the mammalian mito-
chondrial respiratory chain. This process was previously demonstrated, where the 
reduction of coenzyme Q pool and the generation of a large ΔΨm by succinate led 
to H2O2 production [111]. Subsequently, other authors showed that isolated com-
plex I, in the presence of NADH, produces O2

•– and that this production is enhanced 
by rotenone [112]. The mechanism of O2

•– generation by isolated complex I is well 
understood, by the reaction of O2 with the fully reduced FMN (set by NADH/NAD+ 
ratio), which explains the enzyme inhibition by rotenone [113, 114]. During stress 
conditions, as ETC inhibition by damage, loss of cytochrome c, or low ATP demand 
and consequent low cellular respiration, the ratio of NADH/NAD+ increases, 
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leading to O2
•– production [52]. The overexpression of a yeast NADH dehydroge-

nase in mammalian mitochondria reduces O2
•– generation through the NADH/NAD+ 

decrease [115]. As described previously to trypanosomatids, in mammals, the ROS 
production by complex III is dependent of coenzyme Q-cycle and semiquinone for-
mation [116].

The oxidation of energetic substrates generates reducing cofactors, as NADH 
and FADH2, which donate electrons to ETC. During the electron flow between the 
mitochondrial complexes, the dissipated energy is used by complexes I, III, and IV 
to translocate protons to intermembrane space, generating an ΔΨm across the inner 
membrane. Protons return to the mitochondrial matrix through ATP synthase, 
decrease the electrochemical gradient, and promote ATP synthesis [44]. However, 
the oxidative phosphorylation is partially coupled since protons can return to the 
mitochondrial matrix independently of ATP synthase and thereby without ATP syn-
thesis [44, 117]. The energy-dissipating process (proton translocation to intermem-
brane space followed by the proton re-entry in mitochondrial matrix) apparently is 
present in all eukaryotic cells in a high proportion of cellular metabolic rates (up to 
25% of the basal metabolic rate in the rats) and could prevent the oversupply of 
electrons to ETC, minimizing the probability of electron leak and O2

•– production 
[118, 119]. Some authors showed the close relationship between the proton leakage 
and ROS production: uncoupler molecules and ADP, which increase respiration 
rate, stimulate ATP synthesis, and decrease ΔΨm, are known for impaired ROS 
production in isolated mitochondria [120, 121].

There are at least two types of proton leakage: a basal and an inducible. The basal 
proton leak is unregulated and depends only on the presence but not on the activity 
of carrier proteins. In this case, the proton return to mitochondrial matrix occurs 
through the lipid bilayer and has low impact. The inducible proton leakage is a 
protein-mediated process that is regulated and could be reversibly activated and/or 
inhibited. Among the inner mitochondrial membrane carriers, the UCPs, proteins 
belonging to mitochondrial anion carrier protein (MACP) family, are the mitochon-
drial carriers whose participation in ROS production is better understood [122, 
123]. In the late 1970s, the first UCP was described in mammalian brown adipose 
tissue and was designated UCP1; afterwards, UCP1 homologues were found in 
mammalian tissues (UCP1-5) [124–127]. While proton leakage mediated by UCP1 
is crucial for adaptative thermogenesis in the cold [124, 128], the function of these 
protein homologues is not yet fully elucidated. One of the differences between 
UCP1 and their homologues is the abundance in individual cells and nonthermo-
genic tissues, influencing the oxidative phosphorylation and ROS production [129]. 
The role of UCP in H2O2 generation was first demonstrated in 1997, showing that 
the inhibition of UCP2 by GDP results in higher ΔΨm and ROS production [130]. 
Studies with UCP2 knockout mice demonstrated an oxidative burst in macrophages 
and liver and also improved resistance to Toxoplasma gondii. In contrast, UCP2 
overexpression decreased ROS generation. In addition, O2

•– and lipid peroxidation 
products (4-hydroxy-2-nonenal (HNE)) have been described to activate UCPs [131, 
132]. Chemical uncouplers, such as 2,4-dinitrophenol (DNP) and FCCP (carbonyl 
cyanide p-tri-fluoromethoxyphenylhydrazone), also had a protector effect, where 
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they contributed to a decrease in oxidative stress in the skeletal muscle, heart, and 
brain [133–135].

8.3  Antioxidant Machinery

As discussed above, mitochondrion is one of the major ROS sources. It is well- 
known that the reactions involving ATP synthesis are able to release toxic products 
such as ROS and RNS. ROS accumulation led to severe biological consequences, 
and a machinery to regulate oxidative stress is essential to minimize its deleterious 
effects [136]; therefore, eukaryotic cells, among them, trypanosomatids and their 
hosts, possess enzymatic and nonenzymatic antioxidant defenses. Antioxidants are 
molecules responsible for the prevention of substrates oxidation (or delay), decreas-
ing the intensity of the characteristic oxidative phenotype that includes genotoxicity 
and injury in crucial molecules such as proteins and lipids, among others [137]. 
Eukaryotic cells use two distinct strategies against the oxidative stress described up 
to now: the blockage of radical formation by antioxidant molecules (enzymes or 
not) or even the increase in the expression of specific enzymes that remove oxidized 
biomolecules [138, 139].

Considering the molecular mass, antioxidants are classified into (i) high molecu-
lar mass antioxidants (≥10  KDa), which include antioxidant enzymes, such as 
transferrin, albumin, and ferritin, which strongly bind to metal ions, among other 
pro-oxidant molecules with high oxidizing potential [43], and (ii) low molecular 
mass antioxidants (≤1 KDa), such as tocopherol (vitamin E), ascorbic acid (vitamin 
C), anthocyanins, carotenoids, uric acid, and polyphenols, which are obtained dur-
ing the alimentation of almost all organisms [43, 138].

8.3.1  Antioxidant Defenses in Pathogenic Trypanosomatids

8.3.1.1  Trypanothione/Trypanothione Reductase
The antioxidant system of trypanosomatids is based on trypanothione/trypanothi-
one reductase, an alternative system to glutathione/glutathione reductase, absent in 
these protozoa [140] (Fig. 8.2). The trypanothione [N1, N8-bis (glutathionyl) sper-
midine] is well-characterized, being formed by the binding of two glutathiones 
(GSH) and one spermidine (SPD) molecule in the cytosol [141–145]. Trypanothione 
biosynthesis is divided into three different steps, including GSH and SPD synthesis, 
similar to the pathway in other organisms.

GSH synthesis begins with the formation of γ-glutamylcysteine from the binding 
of L-glutamate and L-cysteine, catalyzed by γ-glutamylcysteine synthase (GCS). 
Such step is a limiter of the reaction in mammals and trypanosomatids. Previous 
studies showed that low GCS levels in L. infantum reduce the resistance to oxidative 
stress and consequently parasite survival in activated macrophages [146–149]. In T. 
brucei, the reduction in GCS levels resulted in a decrease in GSH and trypanothione 
concentrations; however, GCS knockdown led to an increase in GSH uptake, 
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reversing trypanothione levels in this parasite [145, 150]. Once human blood has 
low GSH levels, the GSH uptake is not the primary source of these molecules in T. 
brucei bloodstream forms [151]. Curiously, GSH transporters were not described in 
Leishmania spp. and T. cruzi [145]. For GSH synthesis, it is necessary the presence 
of cysteine, an amino acid with a thiol group, that confers its redox capacity. In 
trypanosomatids, cysteine can be taken and/or biosynthesized, although, despite 
Leishmania spp. and T. cruzi express cysteine   carriers, the uptake levels are much 
lower than in T. brucei, which expressed highly efficient transporters [152–155]. 
Alternatively, Leishmania spp. and T. cruzi have two biosynthetic pathways, also 
present in other eukaryotes, de novo or cysteine assimilatory pathway (CAP) and 
trans-sulfuration pathway (TSP). Increased levels of protein expression and activity 
of cysteine synthase and cystathionine β-synthase in L. braziliensis, key enzymes of 
these pathways, led to elevated thiol concentrations in response to oxidative and 
nitrosative stresses, confirming the association between cysteine biosynthesis and 
stress response. Promastigotes and amastigotes expressed differently these path-
ways, with TSP pathway increased in insect form and higher de novo synthesis in 
mammalian form [156]. T. brucei possesses gene sequences only of TSP pathway; 
nevertheless, this parasite does not synthesize cysteine [145, 152–155]. The stage/

Fig. 8.2 The trypanothione is formed by the binding of two glutathione (GSH) molecules and one 
spermidine molecule in a reaction catalyzed by trypanothione synthetase (TryS). In this system, 
the maintenance of reduced trypanothione [dihydrotrypanothione – T(SH)2] is dependent on try-
panothione reductase (TryR) action by NADPH consumption. T(SH)2 directly reduces trypare-
doxin (TXN), dehydroascorbate (dhASC) to ascorbate (ASC), and glutathione disulfide (GSSG) to 
GSH. Trypanothione disulfide (TS2); 2-Cys peroxiredoxin (2-Cys PRX); non-selenium glutathione 
peroxidase-like enzymes (nsGPx); ascorbate peroxidase (APx); hydroperoxides (ROOH)
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species-specific regulation of cysteine biosynthetic pathways may be due to com-
plex life cycle and exogenous nutrients, which differ considerably between inverte-
brate and mammalian hosts. The de novo pathway occurs predominantly in the 
mammalian intracellular form, while the TSP is present in insect form. These obser-
vations are consistent with the fact that T. brucei and Trypanosoma rangeli, para-
sites without an intracellular stage, possess only TSP pathway [155–159].

Polyamines are simple aliphatic compounds that are found in all mammalian tis-
sues and also in microorganisms. These molecules are essential for cell growth and 
differentiation and have several biological roles. In trypanosomatids, SPD is one of 
the most important polyamines, being involved in crucial cellular processes includ-
ing synthesis of trypanothione. Polyamines could be obtained by de novo synthesis 
from ornithine and in some cases from arginine, or by the uptake from the extracel-
lular medium [160]. T. brucei synthesize SPD through the ornithine decarboxyl-
ation mediated by ornithine decarboxylase, which generates putrescine, a substrate 
for spermidine synthase, while Leishmania spp., beyond de novo synthesis, can also 
uptake this molecule [161, 162]. In T. cruzi, enzymes of putrescine biosynthetic 
pathway are absent, being this parasite auxotrophic for polyamines [163, 164]. An 
increase in T. cruzi polyamine transport improves the resistance to oxidative stress 
in this protozoa, which can be generated by incubation with H2O2 or trypanocidal 
drugs, such nifurtimox and benznidazole [165].

The last step in trypanothione biosynthesis is the binding of GSH and SPD. This 
process is exclusive of few organisms, including trypanosomatids [145]. 
Trypanothione biosynthesis consists in an ATP-dependent addition of two GSH 
molecules to SPD amino groups by different pathways, depending on the protozoa. 
In pathogenic trypanosomatids, trypanothione is synthesized by trypanothione syn-
thetase (TryS) in two steps: first this enzyme catalyzes the binding of one GSH 
molecule and SPD, forming glutathionylspermidine (intermediate product). After 
this, the same enzyme added a second GSH, forming the trypanothione molecule. In 
addition, TryS presents amidase function, hydrolyzing trypanothione and glutathio-
nylspermidine to form GSH and SPD, suggesting an involvement in polyamine lev-
els [145, 166–169].

In trypanosomatids, trypanothione can be found in reduced form dihydrotrypano-
thione (T(SH)2) and/or in the oxidized form trypanothione disulfide (TS2). T(SH)2 is 
more reactive than GSH, being a dithiol, which favors the reduction of disulfides 
(different pKa values: 7.4 and 8.4 to trypanothione and GSH, respectively) [170–
172]. Depending on the reactive species, T(SH)2 can suffer one- or two-electron 
oxidation, forming thiyl radicals (RS–) or sulfenic acid (RSOH), respectively. The 
thiyl radicals are formed in the reactions with peroxyl and hydroxyl radicals, nitro-
gen dioxide, and others, whereas the sulfenic acid is formed during the reactions 
with H2O2 and peroxynitrite [145]. Moreover, T(SH)2 participate in many antioxi-
dant pathways, reducing intermediate molecules which transfer electrons to peroxi-
dases [173].

The T(SH)2 levels are maintained by NADPH-dependent flavoenzyme trypano-
thione reductase (TryR). TryR has 40% identity with mammalian glutathione reduc-
tase and shares several physical and chemical characteristics with host enzyme, 
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being their specificity of disulfides the main difference. The enzyme reduces posi-
tively charged oxidized forms of glutathionyl-polyamine conjugates, such as try-
panothione, glutathionylspermidine, and others [174], whereas glutathione reductase 
only accepts negatively charged oxidized glutathione as a substrate. This character-
istic is determined by the presence of five amino acid residues in the catalytic site, 
make this part wider, more hydrophobic and negatively charged when compared 
with glutathione reductase [175]. TryR distribution is still discussed, but some pre-
vious data suggested cytosolic and mitochondrial locations, while other reports pro-
posed a glycosome localization [176–178]. T. cruzi and T. brucei have a 
carboxy-terminal extension with a tripeptide segment that would direct the enzyme 
to glycosome [179–181]. TryR is a potential drug target due to its importance for the 
survival of trypanosomatids. L. donovani mutants that presents only 15% of the 
wild-type TryR activity presented a normal growth in culture, but also showed an 
increased susceptibility to oxidative stress and a reduced viability inside macro-
phages. Similarly, the depletion of this enzyme in T. brucei led to an increase in 
sensitivity to H2O2 of the parasite, which then cannot successfully infect mice 
[182–184].

8.3.1.2  Tryparedoxin, a Trypanothione-Dependent Peroxidase 
System

Catalase and glutathione peroxidase (GPx) are absent in pathogenic trypanosoma-
tids, making these parasites more susceptible to high concentrations of hydroper-
oxides [185, 186]. For many years, the elimination of low H2O2 concentrations 
was attributed to trypanothione [187, 188]. Recent studies showed the presence of 
three different classes of peroxidases; however, trypanothione remains essential 
for hydroperoxide removal (Fig.  8.2). Among these peroxidases, tryparedoxin 
(TXN) is a member of thioredoxin superfamily (Trx) that transfers reducing 
equivalents to different thiol proteins, which are found exclusively on 
Kinetoplastida [189, 190]. In contrast to classical thioredoxins, TXN is not 
directly reduced by a NADPH- dependent flavoprotein; however, these molecules 
are reduced by T(SH)2/TryR system at the expenses of NADPH in the parasite 
[191–193]. Experimental analyses pointed cytosol as the localization of TXN in 
different trypanosomatids, but in silico approaches also suggested the mitochon-
drion and endoplasmic reticulum as possible target organelles to the enzyme in 
Leishmania spp. and T. cruzi [173, 177, 191–195]. TXN depletion in L. infantum 
and T. brucei promoted the impairment of the antioxidant metabolism, compro-
mising the parasite survival [195, 196]. Studies with L. infantum and L. donovani 
showed that TXN is essential for promastigotes and amastigotes stages, particu-
larly during the establishment of infection [195, 197, 198].

Tryparedoxin peroxidase (TXNPx) is a class of enzymes that use TXN as elec-
tron donor. This process occurs in two steps: (1) T(SH)2 reduces TXN, being con-
sidered a regulatory reaction in the pathway; and (2) TXNPx is reduced by TXN 
[199]. The TXNPx includes two types of peroxidases, the peroxiredoxins (PRXs) 
and non-selenium glutathione-like enzymes (nsGPx). PRXs are a family of antioxi-
dant enzymes that are present in several organisms, detoxifying hydroperoxides and 
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peroxynitrite through cysteine (Cys) residues. These enzymes are divided in two 
categories, depending on the quantity of Cys residues involved in the reaction. The 
enzyme of trypanosomatids is a typical 2-Cys peroxiredoxin (2-Cys PRX) distrib-
uted in cytosol and mitochondrion, although, in Leishmania spp., one of the genes 
that encode this protein has a glycosomal signal sequence [190, 200]. The 2-Cys 
PRX has two identical reactions centers, being the substrate reduced by one of the 
Cys residues present in these centers, forming a cysteine sulfenic acid (Cys-SOH). 
Then, this residue is attacked by a Cys residue, forming a stable disulfide bond that 
is removed by TXN oxidoreductase [201]. 2-Cys PRX overexpression in Leishmania 
spp. and T. cruzi increased the resistance to hydroperoxides and peroxynitrite; how-
ever, the excess of substrate can reduce the enzyme activity in T. cruzi [202–205].

The second class of TNXPx, the nsGPxs, is structurally similar to glutathione 
peroxidase, but the selenocysteine residue in the active site of this enzyme was 
replaced for Cys residue [206]. These enzymes are classified as nsGPx-AI-III and 
nsGPx-B with different localizations. In T. cruzi, nsGPx-A1 is found in glycosome 
and cytosol, while nsGPX-AII-III are restricted to the cytoplasm. Interestingly, 
nsGPx-B is exclusively located in the endoplasmic reticulum in this parasite [177, 
207]. In T. brucei and Leishmania spp., nsGPX-AI-II exhibit cytosolic localization, 
but on the other hand, nsGPx-AIII shows glycosomal and mitochondrial signal 
peptides [181, 208]. The nsGPx mechanism of action is similar to 2-Cys PRX, with 
the two Cys residues in the active site being responsible for substrate oxidation. 
The affinity of nsGPxs to substrates is a peculiarity of these enzymes. The deple-
tion and/or mutation of amino acid residues in the catalytic site is responsible for a 
decrease in glutathione-binding capacity [207]. In this way, nsGPx-A uses TXN 
during substrate reduction, while nsGPx-B shows low affinity to both molecules 
[177, 209, 210].

8.3.1.3  Ascorbate Peroxidase
Despite the first description by Clark et al. [211], the biological relevance of ascor-
bic acid (vitamin C) in trypanosomatids was demonstrated almost a decade later 
[212]. This molecule acts as a cofactor for a wide range of enzymes involved in 
distinct metabolic processes, among them the antioxidant system [213]. The ascor-
bate peroxidase (APx), an antioxidant enzyme that uses ascorbic acid as a reductor 
agent, is a heme-containing peroxidase that catalyzes H2O2 reduction [209]. This 
enzyme has an endoplasmic reticulum localization in T. cruzi and Leishmania spp., 
whereas in T. brucei, there are no reports about this existence [185, 214, 215]. APx 
acts by cleaving O-O bound in H2O2 through the reaction between heme and reac-
tive species, producing water. This process generates an intermediate that is reduced 
by ascorbate in two sequential electron transfer, restoring APx. Dehydroascorbate, 
the oxidized molecule, returns to the reduced form in two nonenzymatic reactions 
that may include T(SH)2 and TXN [212, 216, 217]. Taylor et al. [218] showed that 
APx overexpression in T. cruzi confers protection against H2O2 exposure, whereas 
its depletion results in enhanced sensitivity. The enzyme activity is not required to 
parasite fundamental processes, such as replication and virulence.
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8.3.1.4  Fe-Superoxide Dismutase
The SOD is an antioxidant enzyme described in most eukaryotes, being responsible 
for O2

•– dismutation in H2O2 and O2 [219]. This enzyme action is dependent on a 
metallic cofactor, such as Cu/ZnSOD and MnSOD, which are found in mammalian 
cytosol and mitochondria, respectively. In trypanosomatids, in silico analyses 
showed four SOD genes that use iron as cofactor. These isoforms are expressed in 
different organelles; FeSOD-B is distributed between cytoplasm and glycosomes of 
T. cruzi and T. brucei, whereas FeSOD-A and FeSOD-C are found in T. brucei mito-
chondrial matrix and intermembrane space, while only the first isoform was 
described in T. cruzi [220–223]. FeSOD-D was described in the three pathogenic 
trypanosomatids, being its activity related with apoptotic-like death in T. cruzi and 
L. donovani, while in T. brucei, it is considered nonessential [57, 224, 225]. The 
downregulation of FeSOD-A in Leishmania spp. increased the parasite sensitivity 
to menadione, a O2

•– producer, whereas this enzyme overexpression protects the 
parasite from the oxidative stress. Furthermore, the SOD expression is related to 
differentiation and replication processes in Leishmania spp. Promastigotes in sta-
tionary phase showed increased resistance to oxidative stress and higher SOD activ-
ity during amastigote differentiation. In contrast, low SOD activity and ROS 
accumulation were found during promastigote logarithmic phase [226, 227]. In T. 
cruzi, the enzyme also has an important role in vertebrate host adaptation, with the 
enzymatic levels increasing during metacyclogenesis [92].

8.3.2  Antioxidant Defenses in the Hosts

8.3.2.1  Glutathione/Glutathione Reductase System
GSH (L-glutamyl-L-cysteine-L-glycine) is the most abundant low molecular mass 
thiol in eukaryotic cells [228, 229]. Its reduced form is also the active form (GSH) 
that is oxidized to glutathione disulfide (GSSG) in the oxidative stress. GSH is 
synthesized in cytosol and is transported into mitochondrion by dicarboxylate car-
rier protein and 2-oxoglutarate carrier protein [230]. Glutathione reductase (GR) is 
the enzyme responsible for maintain glutathione in its reduced form since the 
abundance of its oxidized form leads to a decrease in GSH/GSSG ratio, which 
serves as a warning of oxidative stress [229]. GR has been found in all organisms 
analyzed thus far, being a highly conserved enzyme in highly divergent organisms, 
such as Homo sapiens and E. coli [231]. GR has two cysteines in the catalytic 
domain and two other domains that bind to FAD and NADPH. Glutathione is found 
in cytoplasm, nucleus, mitochondria, and endoplasmic reticulum, as well as it 
seems to be present in lysosomes [232]. The formation of disulfides between GSH 
and protein cysteine residues constitutes a protective mechanism for thiols, which 
prevents their further oxidation, protecting cells from oxidative stress [233]. 
However, the formation of protein disulfides can alter the function of thiol-based 
proteins, such as receptors, protein kinases, and transcription factors, impairing 
cell signaling. In this context, GSSG is able to play a role in a nonspecific cell 
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signalization [230]. GSH is considered the most important redox molecule present 
in organisms, above all, mammals. This molecule is able to play several roles, such 
as a redox buffer, acting as cofactor scavenger for antioxidant enzymes such as 
GPx. This enzyme is able to detoxify H2O2 and lipid peroxidation products by the 
reaction of selenocysteines (presents in its active site) with peroxide group, form-
ing GSSG and H2O [228, 230, 233, 234].

GSH is not only found in cytosol but also in endoplasmic reticulum, nucleus, and 
intermembrane space. The transport of this molecule to nucleus is thought to bcl-2 
facilitating passive diffusion via nuclear pores [235], and nuclear pool of GSH is 
responsible for regulating the redox state of protein sulfhydryls, in order to prevent 
DNA oxidative damage [229, 230]. The regulation of cytosolic GSH transport to the 
nucleus appears to follow cell cycle progression, balancing the GSH cytosolic/GSH 
nuclear according to cellular proliferation [236]. Reaching the endoplasmic reticu-
lum, GSH is responsible for maintaining the homeostasis and the thiol levels in 
catalytic sites for PDI (protein disulfide isomerase) protein folding. Besides endo-
plasmic reticulum capacity to produce ROS, other oxidative inducers can lead to an 
unbalanced environment, impairing natural protein folding [237, 238]. Inside mito-
chondria, GSH is able to control mitochondria ROS generation by ETC and pre-
serve mitochondrial proteins and lipids integrity [239, 240]. GSH also prevents 
toxic effects of free intracellular metals, such as iron, preventing its reaction with O2 
and Fenton reaction [228].

8.3.2.2  Other Thiol-Dependent Enzymes
Trx is part of a major system called TRX system, which includes, besides the Trx, 
the thioredoxin reductase (TrxR) and NADPH. Trx is a ubiquitous protein with a 
redox-active dithiol/disulfide site [241]. As GSH/GSSG, Trx appears in a reduced 
form [Trx(SH)2], with a dithiol group, and in an oxidized form (TrxS2), with a disul-
fide bound. Trx contains a conserved site Cys-Gly-Pro-Cys found in all organisms. 
In mammalian cells, Trx is described by having two isoforms, known as Trx-1 and 
Trx-2. Trx-1 is localized in cytosol, being transported to the nucleus during oxida-
tive stress [229], while Trx-2 is the exclusive mitochondrial Trx isoform, regulating 
mitochondrial homeostasis. As in GSH/GSSG system, the maintenance of reduced 
and oxidized Trx ratio is extremely important in TRX system. TrxR is an oxidore-
ductase, responsible for regulating Trx(SH)2/TrxS2 [241, 242].

PRXs are ubiquitous thiol-dependent enzymes, known as an ancient family of 
proteins, being evolutionarily conserved and present in all kinds of organisms [243]. 
This peroxidase was first observed in Saccharomyces cerevisiae, demonstrating an 
antioxidant activity [244]. Unlike GSH and Trx, PRXs are selenium and heme-free 
molecules, with a peroxidatic cysteine (Cp) conserved in N-terminal domain. PRX 
mechanism of action consists in Cp attack to O–O bonds present in peroxide (reac-
tion 3), which is oxidized into cysteine sulfenic acid [245]. PRX uses Trx as a 
hydrogen donor, creating an electron flow. Besides the H2O2, PRXs are able to act 
as a scavenger for peroxynitrite and lipid peroxidation products. The ability to 
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scavenge peroxides protects prokaryotic and eukaryotic cells from DNA, lipids, and 
proteins oxidative damages, caused by ROS and RNS [243, 245]. Some groups have 
been demonstrating the relation of H2O2 signaling with PRX inactivation, describ-
ing new roles for this protein. Low concentrations of H2O2 appear to generate PRX 
inactivation by hyperoxidation, a reversible reaction promoted by sulfiredoxin [246, 
247]. This reaction appears to follow a circadian rhythm, whereas the H2O2 signal-
ing is required for different cell functions [248]. In structural terms, PRXs are 
divided in two subcategories: 1-Cys and 2-Cys peroxiredoxins, depending on the 
quantity of Cys residues involved in the reaction. There are six PRX isoforms pres-
ent in mammalian: PRX I, II, III, and IV (2-Cys PRX), PRX V (atypical 2-Cys 
PRX), and PRX VI (1-Cys PRX) [242, 243, 245, 249]. PRX I and II are found in 
cytosol and nucleus. PRX III has an affinity to mitochondria, while PRX IV is found 
at endoplasmic reticulum. PRX V has been already detected at cytosol, mitochon-
dria, and peroxisomes [250].

Glutaredoxin (GRX) is a small dithiol protein, also known as thioltransferase, 
required at the redox system. GSH is able to reduce GRX, and it has been described 
the potential role of its sensing changes in GSH/GSSG ratio [251]. GRX has the Trx 
family motif Cys-X-X-Cys, and it is able to form a disulfide bond within GSH. GRXs 
are also under two forms, an oxidized and a reduced form, and its reduction reaction 
is done by GSH, GR, and NADPH [249]. GRX is also found inside the intermem-
brane space, endoplasmic reticulum, and cytosol. It has been described that GRX 
can also display a sensing role at GSH-dependent glucose deprivation, as its interac-
tions result in mediated cell death [251]. GRX-GSH is extremely important when 
TRX system decreases its activity under circumstances such as lack of selenium or 
Trx/TrxR inhibition, acting as a backup redox system [252, 253]. It has been 
described that mitochondrial GRX serves as TrxR substrate, maintaining mitochon-
drial redox homeostasis.

8.3.2.3  Superoxide Dismutase and Catalase
In the enzymatic redox system, SOD and catalase appear as the main enzymes in 
cellular detoxification. SOD is the first defense against superoxide, converting 
O2

•– in H2O2 and O2. This enzyme is dependent on metal as a cofactor, and in 
mammals, there are three different isoforms: SOD1, a Cu/ZnSOD found in cyto-
plasm, nucleus, and plasma membrane; SOD2, a MnSOD found in mitochondrial 
matrix; and SOD3, a Cu/ZnSOD found in extracellular compartments, scavenging 
O2

•– released in inflammatory cascades [254, 255]. High H2O2 concentrations are 
very dangerous for the cells, being necessary its elimination. Catalase is an 
enzyme that works directly connected with SOD, in order to complete O2

•– detoxi-
fication, converting H2O2 into H2O and O2 [256]. The catalase types include Fe 
(heme)/Mn dependent [257]. These enzymes are largely found in all mammalian 
tissues, especially in red blood cells, and have been described as a cardiac and 
neural aging protectors [255, 258, 259].
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8.4  Role of Oxidative Metabolism in Hosts/Trypanosomatid 
Infection

These parasites must thrive endogenous toxic metabolites produced by its aerobic 
metabolism and deal with the oxidative burst derived from the host immune system, 
which include ROS production. Once some antioxidant machinery in trypanosoma-
tids such as catalase and classical GSH/GPx system is lacking, many authors sug-
gested that ROS production by the hosts is a defense against parasite infection. 
However, it is well described the ability of trypanosomatids to overcome this situa-
tion, using ROS and RNS as important signaling molecules for their survival 
[260–262].

Both Leishmania spp. and T. cruzi have an intracellular stage inside the verte-
brates. Macrophages and neutrophils are phagocytic cells, responsible for recogniz-
ing, internalizing, and destroying pathogens, being the first contact of infective 
metacyclic forms, performing a key role in infection control [263, 264]. For a suc-
cessful infection, T. cruzi metacyclic trypomastigotes must invade macrophages and 
survive to oxidative burst found inside the phagosome. Previous data showed that 
cruzipain, an immunogenic glycoprotein, induces an increase in ROS production in 
murine cells during parasite invasion [265]. O2

•– is produced by an associated- 
membrane NADPH oxidase, contributing to the formation of an oxidative environ-
ment during phagocytosis [266]. Besides that, the increase in H2O2 formation is also 
related with NADPH oxidase activation, once that spontaneous reactions (enzy-
matic or not) can convert O2

•– in this molecule [267]. When the parasite is phagocy-
tosed, a signaling cascade is triggered, culminating in the oxidative burst. The 
complex NADPH oxidase, known as NOX family, is a transmembrane multimeric 
protein able to transfer electrons to O2 by NADPH oxidation [268, 269]. 
Cytochemical data demonstrated O2

•– production when the parasite is attached to 
the macrophage surface, due to NADPH oxidase activation [270]. These enzymes 
need calcium or cytosolic proteins to be activated and thus lead to ROS production. 
In early stages of infection, NADPH oxidase is activated and its subunits are directed 
to phagosome membrane. Seven NADPH oxidase homologues have been identified 
in several cells types, being the NADPH oxidase 2 (NOX 2) the homologue present 
in phagocytic cells [269, 271].

Other important reactive species found during macrophages infection is NO. This 
RNS is a highly reactive free-radical produced by the oxidation of L-arginine by 
nitric oxide synthase (NOS) [272], participating in trypanosomatids killing, both 
directly or through the interaction with other free radicals, such as O2

•–, forming 
ONOO– [273, 274]. NO is not a strong reactive species by itself, being unlikely to 
account for a direct damage to the parasite. The NO can inhibit the respiratory chain 
in mammalian via interactions with cytochrome c oxidase, which is accompanied 
by a steady-state level of reduced respiratory complexes, which favors intramito-
chondrial O2

•– formation [275–277]. Proinflammatory cytokine production by mac-
rophages, such as IL-12, INF-γ, and TNF-α, activates the inducible nitric oxide 
synthase (iNOS), generating high amounts of NO, which is maintained by 24 h 
during infection [264, 278]. The upregulation of iNOS expression in BALB/c mice 
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is protected from infection by Leishmania major. Furthermore, T. cruzi infection- 
resistant C57BL/6 mice produced larger amounts of NO, which is correlated with a 
better control of acute-phase parasitemia [279, 280]. In addition to NADPH oxi-
dases and iNOS, myeloperoxidase (MPO) is another enzyme present in phagocytic 
cells, mainly neutrophils, which is pointed out as responsible for oxidative burst. 
MPO is able to catalyze the reaction of hypochlorite production, one of the major 
neutrophil antimicrobial responses [269]. This enzyme is a lysosomal hemoprotein, 
member of cyclooxygenase superfamily, stored in neutrophils azurophilic granules 
[281, 282]. When neutrophils are activated, the MPO is released in cytoplasm dur-
ing degranulation, which also releases H2O2. The MPO-H2O2 system is able to con-
vert halide ions such as Cl– , Br–, and I–, producing their oxidized forms of hypohalous 
acids (HOX), potent antimicrobial molecules [283, 284].

The levels of parasite antioxidant defenses during macrophage invasion may 
improve pathogen survival [285]. Chronic chagasic cardiomyopathy is character-
ized by the presence of pseudo cysts of amastigotes nests in the cardiac fiber. During 
T. cruzi invasion in cardiomyocytes, there is an increase in the production of inflam-
matory mediators, such as TNF-α and IL-1β, and the induction of iNOS, with sub-
sequent NO generation [286, 287]. The biochemical and genetic heterogeneity 
among T. cruzi strains is, in part, responsible for the diverse clinical manifestations 
of the disease, controlling several pathogenesis aspects [288]. Taking into account 
the establishment of a nitroxidative stress during the acute and chronic stages of 
Chagas disease, T. cruzi antioxidant enzymes are important virulence factors and 
become decisive for the infection success. In this context, several proteomic analy-
ses showed an overexpression of T. cruzi antioxidant machinery in the infective 
metacyclic trypomastigotes compared with noninfective epimastigotes [92]. Such 
increase, found during metacyclogenesis of different T. cruzi strains, may act as a 
general preadaptation process to allow the parasite survival in the nitroxidative envi-
ronment found in the vertebrate host. Piacenza et al. [289] showed a positive asso-
ciation between parasite virulence and levels of antioxidant enzymes in vivo.

In Leishmania spp. infection, some strategies to escape the oxidative burst pres-
ent in phagocytic cells were demonstrated. Lipophosphoglycan (LPG), a molecule 
widely distributed in promastigotes surface, plays an important role in intracellular 
survival of these parasites. The protective effect of LPG is restricted to the establish-
ment of infection during differentiation of promastigotes into amastigotes. In vitro 
experiments showed that LPG decreased oxidative burst in activated monocytes 
through inhibition of p67phox and p47phox recruitment to NADPH oxidase com-
plex in phagosomes [290, 291]. LPG is also able to reduce NO• production, regulat-
ing the iNOS expression in macrophages [292]. Additionally, O2

•– generation after 
the infection by promastigotes and amastigotes is substantially different [272]. The 
hypothesis for this difference is the deficiency of NADPH oxidase activity after 
amastigote infection. Monocytes of patients with visceral leishmaniasis produce 
lower levels of O2

•– and H2O2 and have a decreased NADPH activity when com-
pared with healthy controls [293, 294]. To accomplish the successful NADPH oxi-
dase complex assembly, the maturation of gp91phox is necessary, which is 
dependent on heme availability. During the infection, Leishmania pifanoi 
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amastigotes induces the heme oxygenase-1 expression, an enzyme responsible for 
heme degradation, thereby blocking gp91phox maturation and preventing NADPH 
activity [295, 296]. Amastigotes also induced lower levels of p47phox phosphoryla-
tion mediated by protein kinase C, decreasing the phagosomal recruitment of 
p67phox and p47phox to NADPH oxidase complex. Interestingly, unlike promasti-
gotes, such effect is not attributed to LPG in amastigotes and remains unclear [291, 
297, 298].

Although ROS are expected to be responsible for pathogen elimination during 
oxidative burst as described above, evidences suggest that ROS production could 
also have a beneficial role to T. cruzi macrophage infection. Oxidative stress mobi-
lizes iron from host intracellular storages, which is an essential for amastigote rep-
lication. Such process occurs by the regulation of elF2α kinase. In the absence of 
heme, elF2α kinase is active and promotes cell growth arrest, leading to the differ-
entiation of proliferative amastigotes into nonproliferative trypomastigotes [299]. 
ROS also participate in Leishmania spp. differentiation in a process dependent on 
iron availability. In this case, changes in intracellular iron levels activate a ROS- 
dependent signaling pathway that induces promastigotes differentiation into infec-
tive amastigotes [300]. Trypanosomatids also have contact with ROS and RNS 
inside the invertebrate host, in which the blood digestion, derived from the hema-
tophagic behavior, causes an increase of heme concentration and an oxidative burst 
[260, 301]. Heme-induced and mitochondrial ROS stimulates epimastigote prolif-
eration, being the contribution of mitochondrial ROS in epimastigote growth con-
firmed by the use of mitochondrial-targeted antioxidant that impairs parasite 
proliferation [103, 104]. The contribution of mitochondrial ROS to epimastigote 
growth was confirmed using the mitochondrion-targeted antioxidant MitoTEMPO 
that decreased ROS and ATP production induced by heme, strongly impairing the 
cell proliferation.

8.5  Oxidative Mechanisms of Action of Anti- 
trypanosomatid Drugs

Considering all mechanistic studies of preclinical compounds performed in try-
panosomatids, mitochondrion stands out among the most recurrent targets in these 
parasites, and mitochondrial damage has been described as part of the mode of 
action of distinct drugs classes [83, 84, 149, 302–311]. Surprisingly, the compo-
nents and molecular events involved in the mitochondrial susceptibility to drugs, 
usually detected by phenotypes such as swelling and/or depolarization of the organ-
elle, are completely undescribed [312]. Such scarcity of molecular information 
about the mechanisms of action of the great majority of the compounds makes hard 
to prove the mitochondrial direct effect. The specificity of this organelle as a target 
is very controversial, representing its injury a secondary target, derived from pri-
mary effects on another biochemical processes in different cellular structures. 
Independently of the origin or intensity, the mitochondrial damage caused by drugs 
regularly promotes a calcium homeostasis and/or ROS production [313].
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Additionally, the activity of mitochondrial-specific inhibitors has been evaluated 
in trypanosomatid parasites, essentially targeting ETC complexes. Due to the fact 
that the biological activity of complex I had not been demonstrated in trypanosoma-
tids up to now, the effect of the classical inhibitor of NADH dehydrogenase, rote-
none, is very debatable [68, 77, 83, 314]. On the other hand, ROS generation was 
stimulated in parasites treated with complexes II and III inhibitors (noyltrifluoroac-
etone and antimycin A, respectively), being correlated to the mitochondrial depolar-
ization and an apoptotic-like events in some cases [66, 75, 83, 94, 315]. Interestingly, 
the inhibition of complex II promoted a potentialization of leishmanicidal effect of 
the clinical drug pentamidine in  vitro [83]. In L. donovani, 4,4′-bis((tri-n- 
pentylphosphonium)methyl)benzophenone dibromide and sitamaquine, complex II 
inhibitors, led to a ROS production and deep mitochondrial alterations, including 
reduction in oxygen consumption and ATP levels as well as the remarkable swelling 
of the organelle and consequent cell cycle arrestment [316, 317]. Similar alterations 
could also be observed after treatment of L. donovani with tafenoquine and miltefo-
sine, which inhibited complexes III and IV, respectively [318, 319]. Furthermore, in 
almost all pathogenic trypanosomatids, complex IV activity was, at least partially, 
inhibited by KCN, a classical cytochrome c oxidase inhibitor in higher eukaryotes 
[84, 91, 94, 320–322]. The absence of AOX in humans makes this oxidase another 
interesting mitochondrial drug target [323]. In T. brucei, it was demonstrated that 
ascofuranone affects ubiquinol oxidase activity in vitro, producing an apoptotic-like 
phenotype [323–326]. The alkyl lysophospholipid analogue edelfosine interferes in 
ATP synthase activity in Leishmania, being suggested a correlation between this 
biological effect to the leishmanicidal mechanism of action [327].

It is well-established that some chemical characteristics confer high redox poten-
tial to some compounds, leading to ROS generation [328, 329]. In this context, 
structural differences presented in the quinoidal nucleus directly influenced the oxi-
dative capacity of quinones [330]. The effect of naturally occurring quinones and 
derivatives has been investigated in different Leishmania spp., T. cruzi, and T. bru-
cei, and a promising activity was observed [331–339]. The first description of the 
oxidative effect of a quinone in trypanosomatids was performed in the late 1970s, 
demonstrating that beta-lapachone induced ROS generation in T. cruzi epimasti-
gotes [340, 341]. More recently, other naphthoquinones also showed similar mode 
of action, producing considerable amounts of reactive species in this parasite [321, 
342–344]. Almost a decade ago, a mechanistic proposal was raised by our research 
group, in order to explain the anti-T. cruzi effect of naphthofuranquinones. In 2009, 
our data pointed to the mitochondrial depolarization, derived from electron flow 
impairment, probably due to the electrons deviation from ubiquinone to the com-
pounds. It compromises electron flux, producing ROS, leading to the impairment of 
the mitochondrial function, reflected by the reduction in respiratory rates, com-
plexes I–III activity, and the dilation of the organelle [321]. Natural products also 
promoted mitochondrial damage/ROS production on different species of 
Leishmania. Quercetin, apigenin, and epigallocatequin-3-gallate are flavonoids 
working as potent ROS inductors in both Leishmania forms, causing mitochondrial 
dysfunction such as a decrease in ATP levels by altering mitochondrial membrane 
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potential [345–349]. Thiosemicarbazones, 1,3,4-thiadiazole, and triazoles deriva-
tives, or even other classes of drugs such as LQB-118, Flau-A, clioquinol, and pyra-
zyl/pyridylhydrazones derivatives, also induced morphological injury in the 
mitochondrion and ROS production, suggesting the trigger of parasite cell death 
[350–356]. Interestingly, a trypanothione reductase inhibitor, cyclobenzaprine also 
increased ROS levels, which may be the mechanism of the antileishmanial effect 
caused by this compound [357].

After half century of the development of nifurtimox and benznidazole, the avail-
able clinical options for Chagas disease, their mode of action is still debatable. The 
first mechanistic hypothesis for the trypanocidal activity of both compounds was 
proposed in early 1980s, indicating O2

•– and H2O2 generation induced by nifurti-
mox; however, such production was not observed after the treatment with benznida-
zole [358–361]. In this way, the effect of nifurtimox depends on the type-II 
nitroreductases activity that transforms nitroanion radical, producing ROS and their 
subsequent biological consequences such as lipids peroxidation [359, 362, 363]. 
Unfortunately, Boiani et al. [364] showed no correlation between anti-T. cruzi effect 
of nifurtimox and ROS production, which was demonstrated by the absence of 
redox cycling at trypanocidal concentrations together with low molecular weight 
thiol reduction. Recently, the trypanocidal activities of nifurtimox and also benzni-
dazole were associated with type-I nitroreductase in oxygen-independent way, and 
nitroso and hydroxylamine intermediates would generate amine, using NADH as a 
cofactor [365–367]. Based on the nitroderivative, different reactions of these inter-
mediates would take place. For example, furane ring would be cleaved, producing a 
highly reactive unsaturated open chain nitrile in case of nifurtimox [367, 368]. For 
benznidazole, such cleavage led to glyoxal and other metabolites production, which 
directly interacts with DNA [367].

Moreover, despite the current clinical drugs for sleeping sickness or leish-
maniasis have not been associated with oxidative stress, a great variety of com-
pounds leads to the mitochondrial functional impairment, increasing ROS 
production during the treatment. The molecular targets of anti-trypanosomatid 
drugs involved in these protozoa oxidative stress events reported experimentally 
were described in Fig. 8.3.

8.6  Conclusions

During the macrophage/parasite interaction, the host cell triggers a signaling cas-
cade, recruiting immune cells to combat the infection. Macrophages induce NO 
production via iNOS and O2

., which is also required in initial phagocytic steps; 
therefore, an oxidative burst against the parasites is developed [262, 369, 370]. Both 
superoxide and NO can also generate peroxynitrite, a toxic-free radical for patho-
gens [371]. Neutrophils, the first-line defense at pathogen infection, are also able to 
induce NO production in order to kill parasites, but in a smaller scale than macro-
phages [371, 372]. However, both leishmania and trypanosome parasites developed 
several evasion systems, being able to fool host oxidative burst mechanisms.
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Antioxidant machinery of trypanosomatids, especially trypanothione/trypano-
thione reductase pathway, is considered an interesting drug target, and many efforts 
have been made to the design of novel-specific inhibitors that do not interfere with 
mammalian systems [184]. Trypanothione is the most characterized antioxidant 
system in these parasites, once glutathione/glutathione peroxidase pathway and 
classical enzymes such as catalase are absent [185, 373]. Unfortunately, up to now, 
no promising inhibitors of any antioxidant enzyme of pathogenic trypanosomatids 
were found, despite all the efforts employed [374]. The high susceptibility of these 
protozoa to ROS in relation to their hosts is an old-fashioned concept, due to the 
presence of efficient scavengers in trypanosomatids [51, 57, 375].

Several preclinical studies associated oxidative stress to the mode of action of 
anti-trypanosomatid compounds, being the parasites mitochondrion, the main ROS 
source [98]. Curiously, the participation of this organelle in pathogenic trypanoso-
matids treated with different drugs has been extensively demonstrated, but the 
molecular mechanisms involved are still unknown in a large number of cases. The 
mitochondrial injury could be derived from a randomic outcome of an indirect 
effect (probably in the great majority of the cases) or even resulted from ETC- 
specific inhibition that generates a redox imbalance [312]. Previous data published 

Fig. 8.3 Main mitochondrial molecular targets of anti-trypanosomatid drugs (a) and a recurrent 
morphological phenotype found in treated trypanosomatids are the mitochondrial swelling (b)
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showed high host toxicity of anti-trypanosomatid compounds with redox mode of 
action, suggestive of low drug specificity to these protozoa.

As it was mentioned, the significative role of ROS in cell signaling cannot be 
neglected. The pro-oxidant molecule heme triggers an oxidative stress, leading to 
calmodulin kinase II activation and consequent proliferation of T. cruzi epimasti-
gotes [103]. On the other hand, ROS production also represents a crucial step for the 
success of these parasites in different hosts, and mitochondrial plasticity (morpho-
logical and molecular) has been postulated as an important adaptation, being ETC 
impairment directly associated to oxidative stress and loss of the redox balance [50]. 
The clinical correlation between the efficiency of mitochondrial antioxidant machin-
ery (especially trypanothione synthetase and peroxiredoxins) of trypanosomatids 
and these parasites virulence was proposed, favoring the progression of the disease 
[277]. Studies about the molecular regulation of oxidative stress processes could 
base promising strategies for the development of new drugs.
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