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Preface

The book series focuses on protein allostery in drug discovery. Allosteric regulation,
“the second secret of life,” fine-tunes virtually most biological processes and con-
trols physiological activities. Allostery can both cause human diseases and contrib-
ute to the development of new therapeutics. Allosteric drugs exhibit unparalleled
advantages compared to conventional orthosteric drugs, rendering the development
of allosteric modulators as an appealing strategy to improve selectivity and pharma-
codynamic properties in drug leads. The series delineates the immense significance
of protein allostery—as demonstrated by recent advances in the repertoires of the
concept, its mechanistic mechanisms, and networks; characteristics of allosteric
proteins, modulators, and sites; development of computational and experimental
methods to predict allosteric sites; small-molecule allosteric modulators of protein
kinases and G-protein-coupled receptors; engineering allostery; and the underlying
role of allostery in precise medicine. A comprehensive understanding of protein
allostery is expected to guide the rational design of allosteric drugs for the treatment
of human diseases.
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Chapter 1
Allostery in Drug Development

Xi Cheng and Hualiang Jiang

Abstract Allosteric regulation is a ubiquitous strategy employed in nature to
control cellular processes by regulating the affinities of biomolecules. Allosteric
modulators are able to tune the protein/substrate affinity in a highly predictable way,
suggesting that such modulators may represent safe drugs. Tremendous advances
have been made in the development of allosteric modulators and the characterization
of their therapeutic targets. Here, we briefly introduce several representative alloste-
ric modulators of important drug targets, such as the G protein-coupled receptor
family. We also review the state-of-the-art experimental and computational
approaches used in allosteric drug development. The accumulated knowledge of
allosteric regulation and the technical progress made in drug development will lead
to an explosion of promising allosteric drugs in the near future.

Keywords Allosteric perturbation · Biased agonists · Conformational changes ·
Protein dynamics · Rational drug design

Abbreviations

ASD AlloSteric Database
BRET Bioluminescence resonance energy transfer
cAMP Cyclic adenosine monophosphate
CCR5 C-C chemokine receptor type 5
DAG Diacylglycerol
DNA Deoxyribonucleic acid
EC50 Half maximum effect concentration
EF Bacillus anthracis adenylyl cyclase toxin
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Emax Maximum effect concentration
FDA Food and Drug Administration
FRET Fluorescence resonance energy transfer
GDP Guanosine diphosphate
GFP Green fluorescent protein
GPCR G protein-coupled receptor
GRK G protein-coupled receptor kinase
GTP Guanosine-50-triphosphate
HIV/AIDS Human immunodeficiency virus infection and acquired immune

deficiency syndrome
IP3 Inositol triphosphate
MD Molecular dynamics
MSA Multiple sequence alignment
NMA Normal mode analysis
NMR Nuclear magnetic resonance
RET Resonance energy transfer
RNA Ribonucleic acid
SCA Statistical coupling analysis

1.1 Allostery in Nature

Billions of years of evolution have equipped organisms with complex molecular
mechanism networks that enable their highly efficient responses to environmental
changes. Most of these mechanisms rely on structure-switching biomolecules that
undergo specific conformational changes upon stimulation. Allostery is one of the
most important naturally occurring mechanisms in which a stimulus induces the
conformational changes and functional modulation of the target biomolecule
[102]. It arises from noncovalent events, such as binding of ions, small molecules,
ribonucleic acid (RNA), deoxyribonucleic acid (DNA), or proteins [26, 27, 94]; from
covalent events, such as phosphorylation, glycation, and nitration [4, 42, 106, 113];
and from light absorption [112]. Typically, the allosteric perturbation (such as the
binding of an effector) occurs at a site distal from the active site of the target
biomolecule [23] (Fig. 1.1). Allostery takes place in all dynamic proteins, in
multimolecular assemblies, and in RNA and DNA polymers [71].

Allosteric regulation is a ubiquitous strategy employed in nature to control
cellular processes by regulating the affinities of biomolecules. Many essential pro-
teins take advantage of allosteric regulation to control their activities. One of the best
examples is the negative allosteric modulation of hemoglobin by
2,3-bisphosphoglycerate [85]. Hemoglobin is the major oxygen-transport protein
in the red blood cells of all vertebrates. The 2,3-bisphosphoglycerate binds to
hemoglobin and decreases its affinity for oxygen, thus enhancing oxygen transport
efficiency. On the other hand, the oxygen also positively allosterically modulates the
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hemoglobin. The binding of oxygen to one subunit of hemoglobin induces a
conformational change that enhances the oxygen affinity of the remaining active
sites and allows hemoglobin to carry more oxygen. In addition to the participation in
transportation of biomolecules, allosteric control is also strongly involved in numer-
ous cell signaling and enzyme activities.

1.2 Allosteric Drugs

Allosteric modulators may represent novel and safe drugs. One main advantage of an
allosteric modulator is its ability to tune the receptor/substrate affinity in a highly
predictable manner. Instead of completely eliminating all activity, the allosteric
modulator can selectively tune the receptor activity up (or down) only when its
endogenous substrate is present. As a result, large doses of allosteric modulators can
be administered with a low propensity toward target-based toxicity. Moreover,
allosteric modulation does not affect the specificity of the biomolecule for its
substrate because the allosteric site is distal from the receptor/substrate interface.
Additionally, because they have not faced the same evolutionary pressure as endog-
enous substrate binding sites (orthosteric sites), the allosteric binding sites are less
conserved. By targeting these diverse allosteric sites, specific drugs with greater

Fig. 1.1 Ligand-induced allosteric regulation. In negative allosteric modulation (left panel), an
allosteric inhibitor (red) modifies the active site of a protein (gray) so that substrate (yellow) binding
is reduced or prevented. In contrast, in positive allosteric modulation (right panel), an allosteric
activator (green) modifies the active site of the protein (gray) so that the affinity for the substrate
(yellow) increases

1 Allostery in Drug Development 3



selectivity across homologous receptors may be obtained, which avoid off-target
side effects. Allosteric modulators can efficiently govern the conversion of a specific
signal input into a desired output, which determines its significance in the therapeutic
developments for disease treatment.

The US Food and Drug Administration (FDA) has approved several efficient
allosteric modulators as marketed drugs (Fig. 1.2 and 1.3a). Those allosteric drugs

Fig. 1.2 Development
status of allosteric drugs.
(Data were collected from
the Thomson Reuters
Integrity database http://
integrity.thomson-pharam.
com)

Fig. 1.3 Chemical structures of allosteric modulators described in this chapter. (a) FDA-approved
allosteric drugs. “R” labels denote common locations of side chains, which give different
benzodiazepines their unique properties. (b) Allosteric compounds undergoing clinical trials
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interact with key proteins, including but not limited to ion channels, enzymes, and G
protein-coupled receptors (GPCRs). One class of the earliest allosteric drugs with a
major impact on society is the benzodiazepines (compound 1). They are allosteric
modulators of the γ-aminobutyric acid receptor, which is a ligand-gated ion channel
regulating brain functions. Benzodiazepines effectively treat anxiety and sleep
disorders without inducing the potentially lethal effects of direct-acting agonists
[84]. Nevirapine (compound 2) is another famous allosteric drug. This drug prevents
human immunodeficiency virus infection and acquired immune deficiency
(HIV/AIDS) via inhibiting the reverse transcriptase enzyme, which transcribes
viral RNA into DNA. Unlike nucleoside reverse transcriptase inhibitors binding at
the polymerase active site, nevirapine binds allosterically at a hydrophobic pocket
10 Å away from the active site [104]. In triple-combination therapy, nevirapine has
been shown to effectively suppress viral load when used as initial antiretroviral
therapy [86]. Maraviroc (compound 3) is another antiretroviral drug used in the
treatment of HIV infection, which works through a negative modulation mechanism
inhibiting a GPCR, i.e., C-C chemokine receptor type 5 (CCR5). As the co-receptor
of HIV envelopes glycoprotein gp120, CCR5 is necessary for the entrance of the
virus into the host cell for most HIV strains. Maraviroc can allosterically induce
conformational changes of CCR5 that block the association of gp120 with the
receptor and prevent the entry process of the virus into the host cell [72]. This
allosteric drug has been proven for use in the treatment of HIV patients. Cinacalcet
(compound 4) is another GPCR drug targeting calcium-sensing receptor. In the
treatment of secondary hyperparathyroidism, it allosterically increases the sensitivity
of calcium-sensing receptor on parathyroid cells to reduce parathyroid hormone
levels and decrease serum calcium levels [118]. Trametinib (compound 5) is a
selective allosteric inhibitor of mitogen-activated protein kinases. This allosteric
drug is the first oral chemotherapy regimen approved in 2013 [37]. In addition to
these marketed drugs, a number of compounds working through allosteric mecha-
nisms are under active development at the time of writing (Figs. 1.2 and 1.3b).

Focusing on the most fruitful drug targets, i.e., GPCRs, tremendous advances
have been made in allosteric modulator development and therapeutic profile char-
acterization. Previous studies have demonstrated that GPCR signaling is primarily
controlled via interacting with three protein families: G proteins, G protein-coupled
receptor kinases (GRK), and β-arrestins (Fig. 1.4). Upon stimulation, a GPCR
activates a corresponding heterotrimeric G protein and catalyzes the exchange of
guanosine-50-triphosphate (GTP) for guanosine diphosphate (GDP). Then, the
heterotrimeric G protein dissociates into Gα and Gβγ subunits to promote the
formation of second-messenger effectors. After G protein activation, the receptor
is phosphorylated by GRKs, which increases β-arrestin binding to the receptor
[9]. β-arrestins mediate desensitization, tracking, and internalization of GPCRs
[40, 76]. In addition to acting as negative regulators, β-arrestins also couple to
many signaling mediators, including mitogen-activated protein kinases, serine/thre-
onine kinases, tyrosine kinases, nuclear factor κB, and phosphoinositide 3-kinase
[8, 35, 77]. These signaling pathways are different from classical G protein signaling
pathways and regulate distinct aspects of receptor activity. GPCRs present multiple
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functional states and conformations to interact with G proteins, GRKs, and
β-arrestins upon different stimuli, e.g., agonist binding. This phenomenon is
known as biased signaling or biased agonism. The development of biased agonists
targeting a particular signaling pathway and pharmacological output is suggested to
increase drug efficacy with reduced side effects. Here, we introduce several biased
agonists of GPCRs with improved therapeutic profiles.

1.2.1 G Protein-Biased Agonists

μ-Opioid receptor is a well-known drug target providing analgesia. However, tradi-
tional μ-opioid receptor agonists (such as morphine and fentanyl) are limited by side
effects that include addiction, respiratory depression, constipation, and tolerance.
Early studies of μ-opioid receptor indicated that activation of G protein signaling and
blockage of β-arrestin signaling might enhance analgesia with reduced side effects
[13, 14]. DeWire et al. reported TRV130 (compound 6) as a G protein-biased agonist
of μ-opioid receptor. This agonist elicits robust G protein signaling with potency and
efficacy similar to morphine, but it has less β-arrestin recruitment and receptor
internalization [31]. Compared with morphine, TRV130 increased both analgesia
and pain relief and reduced on-target adverse effects in a randomized double-blind

Fig. 1.4 Schematic of a heterotrimeric G protein, a G protein-coupled kinase, and an arrestin
interaction with a GPCR

6 X. Cheng and H. Jiang



controlled trial [110]. PZM21 (compound 7) is another G protein-biased agonist of
the μ-opioid receptor [81]. Discovered via computational modeling and structure-
based optimization, this agonist is structurally distinct from previously reported
μ-opioid receptor modulators. PZM21 has a potent Gαi signaling profile, decreased
β-arrestin recruitment, improved analgesia efficacy, and fewer side effects compared
with morphine in a preclinical pain model.

Another representative case of biased agonist development involves adenosine
A1 receptor. The adenosine A1 receptor plays a major role in regulation of myocar-
dial oxygen consumption and coronary blood flow [122]. Stimulation of adenosine
A1 receptor has a myocardial depressant effect by decreasing the conduction of
electrical impulses and suppressing pacemaker cell function, resulting in a decrease
in heart rate. This makes its agonists useful medications for treating tachyarrhythmia.
However, unbiased stimulation of adenosine A1 receptor results in several on-target
side effects, including bradycardia, atrioventricular conduction blockade, and hypo-
tension. Screening a series of 4-substituted 2-amino-3-benzoylthiophenes, Aurelio
et al. identified a G protein-biased allosteric modulator of adenosine A1 receptor
[3]. Using this allosteric modulator as a backbone, Valant et al. designed the G
protein-biased allosteric agonist VCP746 (compound 8) [121]. By modulating the
adenosine A1 receptor, VCP746 provided a cytoprotective benefit to rat
cardiomyocytes and stimulated anti-fibrotic signaling pathways in cardiac-derived
cell lines without hemodynamic side effects, such as bradycardia [123]. This finding
demonstrates the superiority of G protein-biased agonists of the adenosine A1
receptor.

1.2.2 β-Arrestin-Biased Agonists

In addition to G protein-biased modulators of GPCRs, several β-arrestin-biased
allosteric agonists with unique therapeutic profiles have also been developed.
Targeting neurotensin 1 receptor, ML314 (compound 9) is a biased agonist operating
via the β-arrestin pathway [46]. Compared with traditional agonists of the
neurotensin 1 receptor, ML314 showed low potential for promiscuity and improved
pharmacological data for the treatment of methamphetamine abuse [6, 97]. Another
example of a β-arrestin-biased agonist is ORG27569 (compound 10). As an alloste-
ric modulator of cannabinoid receptor 1, ORG27569 enhances binding affinity of
orthosteric agonists to receptors, inhibits G protein signaling efficacy, and promotes
β-arrestin 2 activities [1]. In animal behavior tests, pretreatment with ORG27569
attenuated reinstatement of cocaine- and methamphetamine-seeking behavior,
suggesting that ORG27569 is a potential pharmacotherapy for drug addiction
[57]. TAK-875 (compound 11) is a potent allosteric agonist of the free fatty acid
receptor 1. This compound induces interactions between the receptor and β-arrestins
1 and 2 [80]. This agonist-induced β-arrestin 2 signaling contributes to insulin
secretion in pancreatic β cells, indicating a new clinical strategy for treating type II
diabetes.

1 Allostery in Drug Development 7



1.3 Strategies in Allosteric Drug Development

1.3.1 Structural Study Regarding Allostery

The molecular mechanism of allosteric modulation relies on structural switches
between particular conformations in distinct functional states. Atomic-level protein
structure provides the molecular basis of allosteric drug development. Recent break-
throughs in crystallography have led to the widespread adoption of structure-based
drug design methodologies [55, 61, 67, 101, 108]. X-ray crystallography can provide
detailed structural information for a protein before and after perturbation. Moreover,
some crystal structures were solved in complex with modulators, revealing a wide
variety of allosteric binding sites [48, 56, 65, 74, 87, 93, 111, 115, 130, 133,
134]. Docking to such structures has proven to be highly effective in the discovery
of novel ligands [88, 100, 127]. Many drug candidates developed through structure-
based methods have entered preclinical assays and clinical trials [1, 3, 6, 31, 46, 57,
81, 97, 110, 121, 123]. However, the lack of dynamic information on the static
crystal structure and possible bias related to conformational change due to crystal
packing set limits on X-ray crystallography in allostery studies.

Nuclear magnetic resonance (NMR) spectroscopy provides experimental probes
for studying protein dynamics on a wide range of timescales, ranging from picosec-
onds to milliseconds and beyond. Recent NMR methodological advancements have
enabled the characterization of allosteric modulation mechanisms by increasing the
proportion of the transient conformational ensembles that can be experimentally
observed [15]. For example, using fluorine-19 NMR spectroscopy, Liu et al. mon-
itored the local chemical environment on the intracellular face of the β2 adrenergic
receptor and captured conformational changes of the receptor induced by various
agonists [73]. Subsequent NMR studies offered plenty of structural data and further
characterized the allosteric activation pathways of GPCRs involving crucial down-
stream effectors, such as β-arrestin [52, 131].

1.3.2 Allosteric Site Identification

Identification of allosteric sites in proteins of pharmaceutical interest is the first step
in allosteric drug discovery. Despite many potential advantages of developing drugs
targeting allosteric sites, identification of such sites is challenging. The physical and
chemical properties of allosteric sites are not necessarily similar to those of con-
served orthosteric sites. Some allosteric sites exist exclusively in intermediate
functional states of proteins. In these scenarios, it is difficult to sufficiently detect
allosteric sites from crystallographic or NMR structures. Alternatively, computa-
tional approaches are useful in helping researchers analyze and select potential
allosteric sites for drug discovery. Here, we briefly introduce the computational
approaches developed for the prediction of allosteric sites.

8 X. Cheng and H. Jiang



1.3.2.1 Sequence-Based Prediction Approaches

Statistical coupling analysis (SCA) [75] is a sequence-based approach that uses a
multiple sequence alignment (MSA) to identify networks of coevolving residues in a
protein family. The family members of a target protein are used to construct an MSA.
Pairwise correlations were calculated between all pairs of residues in the alignment.
The networks of coevolving residues are uncovered to provide a molecular basis for
allosteric communications between functional and allosteric sites. Mutational anal-
ysis can be employed to validate the predicted allosteric site and coevolving net-
work. Recently, Novinec et al. used SCA to analyze the family of papain-like
cysteine peptidases [90]. They computationally identified and experimentally vali-
dated 14 residues and 8 allosteric sites that were involved in the allosteric commu-
nications of cathepsin K. An active compound, NSC13345, was identified in the
virtual screening against these allosteric sites. Further X-ray crystallographic inves-
tigation of the cathepsin K-NSC13345 complex showed a novel allosteric site in the
protein. These results prove that it is feasible to predict allosteric sites by exploiting
the SCA method.

1.3.2.2 Dynamics-Based Prediction Approaches

Complementing experimental approaches, computational methods can provide mas-
sive structural information and dynamic details regarding allostery. Molecular
dynamics (MD) simulation is the most commonly used method in protein dynamics
characterization. In MD simulations, Newton’s equations of motion are integrated
over time to generate the trajectories followed by each particle in molecular systems
[58]. The large number of snapshots generated from MD simulations captures the
motion of the proteins, thus providing structural information of allosteric transitions.
In a previous study of an anti-anthrax target, i.e., Bacillus anthracis adenylyl cyclase
toxin (EF), Laine et al. used MD simulations to generate a conformational pathway
connecting the known inactive and active structures of the target protein [68]. The
resulting intermediate conformations revealed the presence of a pocket on the
surface of EF, which underwent significant structural changes during the inactive-
to-active transition. Laine et al. suggested this pocket as an allosteric site that
regulates the calmodulin-induced activation of EF and then discovered EF inhibitors
binding to this site using in vitro assays [68].

While traditional MD simulations have been used to identify allosteric sites and
elucidate protein conformational diversity, Markov state models can further charac-
terize the probability of these conformations, guiding rational design against
dynamic proteins [25, 79, 95, 105, 109]. Briefly, a Markov state model is a stochastic
kinetic model that describes the probability of transitioning between discrete states at
a fixed interval. The probability of transitioning between these states is independent
of previous transitions. By clustering protein structures extracted from a simulation
trajectory, it is possible to identify discrete conformational states required in Markov
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state models. In a recent study of the β2 adrenergic receptor, Kohlhoff et al. used
Markov state models to aggregate independent MD simulations and revealed mul-
tiple activation pathways of the receptor. The resulting intermediate conformations
were successfully exploited in a subsequent virtual screening campaign [60]. Addi-
tionally, researchers have also used Markov state models to accurately determine the
ligand-protein binding kinetics (kon and koff) [20, 117]. While this approach is
currently too computationally demanding for virtual screening, Markov state models
provided a strong foundation regarding protein-ligand interactions and allosteric
mechanisms for rational drug discovery.

Compared with MD simulations, the coarse-grained and lattice modeling need
much fewer computational resources. Instead of explicitly representing every atom
of the system, coarse-grained simulations use “pseudo-atoms” approximating groups
of atoms, such as a whole amino acid residue. The coarse-grained two-state model
can be used to identify allosteric sites [99]. Based on the concept that allostery is a
conformation population shift process, an ensemble including two functional states
of a protein is constructed. When perturbations are added to a site, the ensemble is
monitored. If the conformation population redistribution is observed, the perturbed
site is predicted as an allosteric site. Applying this approach, Qi et al. successfully
identified new allosteric sites of Escherichia coli phosphoglycerate dehydrogenase
and discovered inhibitors regulating the Escherichia coli serine synthesis
pathway [99].

Normal mode analysis (NMA) is another method that characterizes protein
dynamics. It was developed based on the hypothesis that the largest movements in
a protein are functionally relevant. This method captures the functional motions of a
protein and unearths sites participating in allosteric communications [5]. Compared
with MD simulations, NMA is better suited to study large structural rearrangements
of biomolecules with fewer computational costs in terms of CPU time (although
more expensive in terms of memory). The low computing cost of NMA contributed
to the development of several web servers performing normal mode calculations.
PARS (http://bioinf.uab.cat/cgi-bin/pars-cgi/pars.pl) [96] is an NMA web server
predicting allosteric sites based on the alteration of protein flexibility upon ligand
binding. Given a protein submitted by a user, NMA is performed for the apoprotein
and protein-ligand complex, in which ligands are simplistically represented by
dummy atoms. The differences in NMA-derived B factors between the apo and
ligand-bound states of the protein are compared. If a significant change is observed,
the place where the ligand is positioned is proposed to be an allosteric site. This web
server successfully predicted 44% of known allosteric sites from the benchmark set
[96]. SPACER (http://allostery.bii.a-star.edu.sg) is a web server integrating NMA
with Monte Carlo simulations to predict biologically active sites, including allosteric
sites [39]. It uses simulations to produce putative active sites, which are further
described by low-frequency normal modes. This method can identify latent allosteric
sites in structurally homologous proteins [119].

There are a number of open tools allowing users to analyze protein conformations
from simulations or modeling trajectories. They were developed based on geometry-
or/and energy-based methods. Geometry-based site detection methods, such as
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POCASA [132], CASTp [11], Fpocket [70], Q-SiteFinder [69], and POVME [32],
identify ligand-binding sites by considering only the atomic coordinates of a target
protein. All predicted sites are ranked by simple geometric metrics, such as volume
and shape. A site is rejected when it is shallow or partially collapsed. Energy-based
site detection methods evaluate the interactions between small organic probes and
the target protein to identify binding sites. For example, SiteMap [44] and
SITEHOUND [45] dock a methane or water molecule to the target protein to
evaluate the likelihood of small-molecule binding. FTMap [18, 63, 64], FTSite
[89], and GRID [83] consider multiple chemically diverse probes in the identifica-
tion of druggable hot spots. Compared with geometry-based methods, energetic-
based methods are more computationally demanding, which limits their applicability
to large-scale structural data sets. Both geometry- and energy-based tools are
efficient in identifying allosteric sites that only occasionally manifest themselves
over time.

1.3.2.3 Knowledge-Based Prediction Approaches

Knowledge-based site detection methods query existing databases to determine
ligand-binding sites. For example, 3DLigandSite [125], FINDSITE [19], and
Pocketome [66] predict ligand-binding sites by searching databases for ligand-
bound proteins that are structurally similar to the target protein. To identify allosteric
sites, other methods, such as FRpred [36], ConSeq [10], and ConCavity [22], use
hybrid multiple-dimensional information, including sequence conservation, pres-
ence of surface residues, and structural homology. Evolutionarily important individ-
ual protein residues or residue groups are identified and further examined with
additional knowledge, such as structural homology.

Recently, a specialized database dedicated to allostery was developed to serve as
a source of knowledge on allosteric sites. To systemically interpret the increasing
allostery information, Huang et al. built the AlloSteric Database (ASD, http://mdl.
shsmu.edu.cn/ASD/) describing hundreds of allosteric proteins and thousands of
allosteric modulators [50]. The ASD has been developed to provide comprehensive
information characterizing allosteric regulation, ranging from allosteric proteins and
modulators to interactions, sites, pathways, functions, and associated diseases. In the
recently updated version of this database, two of the largest human allosteromes of
protein kinases and GPCRs were constructed, and more than 1600 allosteric actions
were identified in allosteric networks [107]. These data have the benefit of prompting
an investigation of allosteric mechanisms, allosteric-related diseases, and allosteric
drugs. Chemists can use allosteric modulators in ASD to implement structural
modifications for rational drug design. Integrating the allosteric protein information
in ASD enables the allosteric site identification and characterization. Based on ASD,
a server-based model called Allosite [49] was developed to predict allosteric sites. In
a fivefold cross-validation test, Allosite showed high sensitivity and high specificity.
Because it is capable of discovering novel allosteric sites, Allosite is a powerful tool
in rational drug design targeting allosteric sites.
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1.3.3 Experimental Assays for Screening Allosteric
Modulators

Experimental screening and validation of allosteric modulators are uniquely chal-
lenging in drug development. Traditionally, experimental assays measure orthosteric
function rather than ligand binding at the allosteric site. Efficient development of
allosteric drugs requires qualitative and quantitative characterization of ligand-
binding affinity and allosteric efficacy, including conformational changes and down-
stream response [91, 128]. Here, we describe several pharmacological approaches
that can be used to screen allosteric modulators.

1.3.3.1 Binding Assays

Binding assays are important tools for studying protein allostery, as they can often
directly validate whether a ligand has an allosteric mode of action. At the early stages
of the drug discovery process, the radioligand assay can be used to identify allosteric
modulators. In this assay, a potent ligand bearing a radionuclide is used as a probe
[59]. In the presence of candidate modulators, the allosteric activity is detected by
monitoring the probe dissociation kinetics (kon and koff) [41]. This approach is
applicable to different experimental preparation types, such as whole cells, tissue
sections, or cellular membrane preparations. However, technical constraints and
radioactive waste management make it poorly amenable to high-throughput
screening.

Fluorescent ligand assays overcome the shortages of radioligand assays and offer
the significant advantage of having a real-time readout. Many fluorescent ligand-
based technologies have been developed, including but not limited to time-resolved
fluorescence intensity, fluorescence resonance energy transfer (FRET), time-
resolved FRET, and bioluminescence resonance energy transfer (BRET)
[53]. Among these techniques, approaches based on resonance energy transfer
(RET) are currently widely used in drug screening. In RET assays, the probes can
be endogenous ligands, synthetic small molecules, and antibodies labeled with
fluorophore, quencher, or lanthanide ions, while the proteins can be labeled using
fluorescent proteins, enzyme tags, or antibodies [51, 78]. These assays can serve as
first filters in screening allosteric modulators targeting transmembrane proteins. For
example, the DTect-All™ FRET-based binding platform can identify allosteric
effectors interacting with the transmembrane domain of GPCRs. In this platform, a
fluorophore is linked to a probe, while a green fluorescent protein (GFP) is fused to
the amino terminal part of the target receptor [51, 114]. Because the amino terminal
domain is truncated, candidate modulators only bind to the extracellular and trans-
membrane domains, where most allosteric sites are located. DTect-All™ assays have
been successfully used to identify several allosteric modulators of glucagon-like
peptide 1 receptor [129] and metabotropic glutamate receptors [103]. However,
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fluorescent ligand assays still have drawbacks. As a label to a probe or a target
protein, a fluorophore is generally large, which may alter allosteric interactions.

NMR techniques can also be employed in allosteric binding assays. For example,
saturation transfer difference NMR methods are commonly utilized to differentiate
between competitive and allosteric inhibitors [21, 28]. This method is implemented
as a competitive binding experiment in the presence of excess orthosteric ligands.
Another efficient NMRmethod is the target immobilized NMR screening, which is a
fragment-based approach [24]. In this assay, the target protein and a reference
protein are immobilized on a solid support. Chemical fragments that bind specifi-
cally to the target will be detected in NMR spectra. This approach is particularly
robust for identifying both allosteric inhibitors and agonists of unstable membrane
proteins. Last but not least, fluorine chemical shift anisotropy and exchange is a
highly sensitive and reliable screening method for identifying allosteric effectors
[29, 30, 124]. In this assay, the use of fluorine labels is not limited to ligands but is
applicable to the target protein [2, 38, 98]. In a study of master coactivator
CBP/p300, the binding of allosteric modulators and conformational changes of
functionally important KIX domain were examined by labeling the aromatic
amino acids at protein-biomolecule interfaces [98].

1.3.3.2 Functional Assays

Because the binding affinity of an allosteric modulator does not always correlate
with its efficacy on modulating protein functions, functional assays are required in
the screening of allosteric modulators. One major advantage of functional assays is
that the desired functional output can be directly observed in screening. In the
pharmacological study of important membrane proteins, such as GPCRs, functional
assays remain the current standard for high-throughput screening [82]. To detect and
quantify allosteric efficacy, a typical functional assay usually examines the ability of
the allosteric modulator to alter the half maximum effect concentration (EC50) and/or
the maximum effect concentration (Emax) of the orthosteric agonist. The choice of
functional assays is highly dependent on the functional roles of the target protein. It
is impossible to provide a full description of all functional assays. Rather, we focus
on the well-known drug target GPCR family and describe several mature functional
assays in screening GPCR allosteric modulators.

GPCR functional assays may provide a direct measure of receptor activation by
monitoring stimulation and/or recruitment of receptor primary effectors, such as
β-arrestins and G proteins. β-arrestins not only regulate receptor desensitization,
interaction, and recycling but also serve as signaling scaffolds to regulate various
signaling networks downstream of the corresponding receptors. As a result, func-
tional assays measuring ligand-induced β-arrestin engagement have become increas-
ingly important in GPCR drug discovery programs. In typical microscopic imaging
assays, ligand-induced translation of GFP-tagged β-arrestins from the cytosol to the
activated GPCR-containing pits is monitored with epifluorescence microscopy,
confocal microscopy, or microplate laser scanning cytometry-based imaging
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systems [16, 33, 43]. These imaging assays not only quantitatively characterize the
β-arrestin engagement but also provide information on cytotoxic effects of allosteric
modulators. As well-studied primary effectors of GPCRs, G proteins are activated by
the conformational changes of the corresponding receptors. Energy transfer assays
such as FRET and BRET can be used to directly measure the recruitment of different
G protein subtypes to a given receptor in real time in living cells [54]. In G protein
engagement assays, energy donor and acceptor are fused to the subunits of a G
protein. Agonist-induced activation of a GPCR produces intramolecular structural
switch of the G protein. Energy transfer efficiency between the tagged G protein
subunits is correlated with the allosteric efficacy of the receptor. These BRET-based
assays can also be used to detect β-arrestin, which allows comprehensive character-
ization of the allosteric modulator behaviors.

Other functional assays of GPCR focus on the downstream signaling cascade,
such as second-messenger production. Cyclic adenosine monophosphate (cAMP) is
a second messenger of many GPCRs. The change in cellular cAMP level has widely
been used to estimate the biological activity of various GPCR modulators. From a
variety of cellular cAMP assays, FRET-based biosensors allow real-time detection
of changes in cellular cAMP levels [47]. For example, fluorescence lifetime imaging
microscopy is a technique measuring the changes in cAMP concentration. This
measurement relies on the relative fluorescence of donor and acceptor fluorophores
fused to a cAMP-binding protein moiety. The sensor proteins are distributed in the
cell cytosol. Binding of cAMP results in a decrease in acceptor fluorescence and an
increase in donor fluorescence. The calculated acceptor/donor emission ratio corre-
lates with the changes in intracellular cAMP. In addition to FRET-based assays,
immunoassays can also help characterize cAMP levels. In a typical competitive
cAMP immunoassay [7, 12, 34, 126], labeled cAMP and cellular cAMP compete for
binding to an anti-cAMP antibody. As binding of labeled cAMP to an anti-cAMP
antibody will send a signal, a decreased signal is observed with increasing intracel-
lular cAMP levels. The cAMP assays described above could also be adapted to the
analysis of another second messenger, such as cyclic guanosine monophosphate.

If cAMP accumulation is observed, most high-throughput screening campaigns
use calcium mobilization assays to identify GPCR modulators. Calcium mobiliza-
tion results from the activation of certain GPCRs, which bind to a specific Gα
subunit, Gq. Gq-coupled receptors can active phospholipase C pathways and lead
to an increase of inositol triphosphate (IP3) level. IP3 activates IP3-sensitive calcium
channels, which results in a calcium release from the endoplasmic reticulum. If the
receptor is not naturally coupled to Gq, a promiscuous or chimeric G protein
co-expressed with the receptor can be employed to modulate calcium mobilization
by redirecting the signaling pathway [92]. In these assays, cells are loaded with a dye
that fluoresces upon calcium ion binding. The fluorescence magnitude emission is
directly correlated with calcium response magnitude. This type of assay is particu-
larly interesting because it enables screening of GPCR modulators without knowl-
edge of specific receptor signaling pathways. However, the usage of calcium assays
in detecting slow-binding ligands is not recommended because calcium efflux
transiently occurs within seconds. An alternative method to monitor calcium flux
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involves the measurement of IP3 and/or diacylglycerol (DAG). In a scintillation
proximity assay of inositol phosphates, the label is incorporated into cellular
phosphatidylinositol 4,5-bisphosphate, which is hydrolyzed to IP3 and DAG upon
receptor activation [17]. The mass of soluble inositol phosphates is a quantitative
readout of receptor activation, which is amenable to high-throughput screening. In
functional assays monitoring DAG levels, genetically encoded biosensors of DAG
are used to detect the DAG binding to protein kinase C after receptor activation
[116]. The change in fluorescence indicates the intracellular DAG levels.

1.3.3.3 Bias in Assays

In the past decades, applications of binding assays and functional assays have not
only led to the discovery of many promising allosteric modulators of GPCR but have
also provided crucial information on the corresponding signaling pathway. How-
ever, the discovery of allosteric modulators remains challenging because the allo-
steric efficacy may be not always readily apparent. The data interpretation might
depend on the assay conditions, such as the probe used and the protein expression
level. For a target protein having multiple orthosteric ligands, the use of different
ligands as probes can give opposite activities for the same allosteric modulators. This
phenomenon was illustrated with the characterization of glucagon-like peptide
1 receptor [62, 129]. To avoid such “probe bias,” it is necessary to test allosteric
modulators with various probes, including endogenous ligands and surrogate ago-
nists. The efficacy of an allosteric modulator also depends on the expression level of
its target protein or/and its downstream transducer elements in a given tissue or
system, which is known as “system bias” [135]. For example, due to the distinct
expression of β-arrestins and G protein-coupled receptor kinases across brain
regions, agonists targeting dopamine receptor 2 show different effects in the striatum
and prefrontal cortex [120]. System bias may be observed in a situation where all
measurements of a specific assay are amplified or diminished. To identify efficient
allosteric modulators, it is crucial to remove the effects of system bias from the
cellular response.

1.4 Concluding Remarks and Future Perspectives

The tremendous technical progresses in the basic and translational studies of allo-
steric regulation have led to the discovery of many promising allosteric modulators.
By offering high selectivity and improved physiochemical properties, allosteric
modulators allow researchers to dissect the functional roles and therapeutic potential
of a protein in its highly conserved family. Advanced experimental and computa-
tional methods detecting transient allosteric sites even offer new therapeutic oppor-
tunities for many proteins that were previously considered “undruggable.”
Numerous binding assays and functional assays have been developed for
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high-throughput and routine screening of allosteric modulators, suggesting that this
field is maturing.

Although impressive progress has been made, there are still considerable chal-
lenges in allosteric drug development. First, allosteric drug development is restricted
by the small number of experimentally observed allosteric sites. Second, more effort
must be spent on improving the performance of computational methods predicting
allosteric models and active sites. Simplified modeling, such as coarse-grained
simulations, might miss essential interactions modulating allosteric communica-
tions. All-atom molecular dynamics simulation is more accurate but computationally
expensive. Moreover, all structure- or topology-based prediction models suffer from
biased force fields. In the near future, the soaring computation power and the rapid
development of force fields may help solve these problems. Last but not least,
current studies of allostery have largely focused on single proteins. Proteins function
through highly interconnected cellular pathways. To fully describe the allosteric
effects of a modulator, it should be put into an allosteric network including multiple
proteins in the framework of a cell system. Benefiting from the massive accumulated
information of allosteric modulation, researchers in this field have constructed
allosteric networks of many important drug targets using specialized databases
such as ASD. We expect the comprehensive understanding of allostery in such a
network manner may lead to new therapeutic developments and disease treatments.

References

1. Ahn KH, Mahmoud MM, Shim JY, Kendall DA (2013) Distinct roles of beta-arrestin 1 and
beta-arrestin 2 in ORG27569-induced biased signaling and internalization of the cannabinoid
receptor 1 (CB1). J Biol Chem 288(14):9790–9800

2. Assemat O, Antoine M, Fourquez JM, Wierzbicki M, Charton Y, Hennig P, Perron-Sierra F,
Ferry G, Boutin JA, Delsuc MA (2015) 19F nuclear magnetic resonance screening of gluco-
kinase activators. Anal Biochem 477:62–68

3. Aurelio L, Valant C, Flynn BL, Sexton PM, Christopoulos A, Scammells PJ (2009) Allosteric
modulators of the adenosine A1 receptor: synthesis and pharmacological evaluation of
4-substituted 2-amino-3-benzoylthiophenes. J Med Chem 52(14):4543–4547

4. Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay
LE, Forman-Kay JD (2015) Folding of an intrinsically disordered protein by phosphorylation
as a regulatory switch. Nature 519(7541):106–109

5. Bahar I, Lezon TR, Bakan A, Shrivastava IH (2010) Normal mode analysis of biomolecular
structures: functional mechanisms of membrane proteins. Chem Rev 110(3):1463–1497

6. Barak LS, Bai Y, Peterson S, Evron T, Urs NM, Peddibhotla S, Hedrick MP, Hershberger P,
Maloney PR, Chung TD, Rodriguiz RM, Wetsel WC, Thomas JB, Hanson GR, Pinkerton AB,
Caron MG (2016) ML314: a biased neurotensin receptor ligand for methamphetamine abuse.
ACS Chem Biol 11(7):1880–1890

7. Beaudet L, Bedard J, Breton B, Mercuri RJ, Budarf ML (2001) Homogeneous assays for
single-nucleotide polymorphism typing using AlphaScreen. Genome Res 11(4):600–608

8. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An
Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and
behavior. Cell 122(2):261–273

16 X. Cheng and H. Jiang



9. Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ (1986) Beta-adrenergic receptor kinase:
identification of a novel protein kinase that phosphorylates the agonist-occupied form of the
receptor. Proc Natl Acad Sci U S A 83(9):2797–2801

10. Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2004)
ConSeq: the identification of functionally and structurally important residues in protein
sequences. Bioinformatics 20(8):1322–1324

11. Binkowski TA, Naghibzadeh S, Liang J (2003) CASTp: computed atlas of surface topography
of proteins. Nucleic Acids Res 31(13):3352–3355

12. Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ,
Shah A, Talley DB et al (1991) Electrochemiluminescence detection for development of
immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 37(9):1534–1539

13. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor
desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature
408(6813):720–723

14. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced
morphine analgesia in mice lacking beta-arrestin 2. Science 286(5449):2495–2498

15. Boulton S, Melacini G (2016) Advances in NMR methods to map allosteric sites: from models
to translation. Chem Rev 116(11):6267–6304

16. Bowen WP, Wylie PG (2006) Application of laser-scanning fluorescence microplate
cytometry in high content screening. Assay Drug Dev Technol 4(2):209–221

17. Brandish PE, Hill LA, Zheng W, Scolnick EM (2003) Scintillation proximity assay of inositol
phosphates in cell extracts: high-throughput measurement of G-protein-coupled receptor
activation. Anal Biochem 313(2):311–318

18. Brenke R, Kozakov D, Chuang GY, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009)
Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain
correlation techniques. Bioinformatics 25(5):621–627

19. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site
prediction and functional annotation. Proc Natl Acad Sci U S A 105(1):129–134

20. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor
binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A
108(25):10184–10189

21. Cala O, Guilliere F, Krimm I (2014) NMR-based analysis of protein-ligand interactions. Anal
Bioanal Chem 406(4):943–956

22. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein
ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS
Comput Biol 5(12):e1000585

23. Changeux JP (2012) Allostery and the Monod-Wyman-Changeux model after 50 years. Annu
Rev Biophys 41:103–133

24. Chen D, Errey JC, Heitman LH, Marshall FH, Ijzerman AP, Siegal G (2012) Fragment
screening of GPCRs using biophysical methods: identification of ligands of the adenosine A
(2A) receptor with novel biological activity. ACS Chem Biol 7(12):2064–2073

25. Chodera JD, Noe F (2014) Markov state models of biomolecular conformational dynamics.
Curr Opin Struct Biol 25:135–144

26. Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and
independent dynamic segments: an extended view of binding events. Trends Biochem Sci
35(10):539–546

27. Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci 17(8):1295–1307
28. Dalvit C, Caronni D, Mongelli N, Veronesi M, Vulpetti A (2006) NMR-based quality control

approach for the identification of false positives and false negatives in high throughput
screening. Curr Drug Discov Technol 3(2):115–124

29. Dalvit C, Fagerness PE, Hadden DT, Sarver RW, Stockman BJ (2003) Fluorine-NMR
experiments for high-throughput screening: theoretical aspects, practical considerations, and
range of applicability. J Am Chem Soc 125(25):7696–7703

1 Allostery in Drug Development 17



30. Dalvit C, Mongelli N, Papeo G, Giordano P, Veronesi M, Moskau D, Kummerle R (2005)
Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations
and experimental applications. J Am Chem Soc 127(38):13380–13385

31. DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis
PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at
the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory
dysfunction compared with morphine. J Pharmacol Exp Ther 344(3):708–717

32. Durrant JD, de Oliveira CA, McCammon JA (2011) POVME: an algorithm for measuring
binding-pocket volumes. J Mol Graph Model 29(5):773–776

33. Eggeling C, Brand L, Ullmann D, Jager S (2003) Highly sensitive fluorescence detection
technology currently available for HTS. Drug Discov Today 8(14):632–641

34. Eglen RM (2002) Enzyme fragment complementation: a flexible high throughput screening
assay technology. Assay Drug Dev Technol 1(1 Pt 1):97–104

35. Eichel K, Jullie D, von Zastrow M (2016) Beta-Arrestin drives MAP kinase signalling from
clathrin-coated structures after GPCR dissociation. Nat Cell Biol 18(3):303–310

36. Fischer JD, Mayer CE, Soding J (2008) Prediction of protein functional residues from
sequence by probability density estimation. Bioinformatics 24(5):613–620

37. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L,
Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long
GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K,
Weber J (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600
mutations. N Engl J Med 367(18):1694–1703

38. Ge X, MacRaild CA, Devine SM, Debono CO, Wang G, Scammells PJ, Scanlon MJ, Anders
RF, Foley M, Norton RS (2014) Ligand-induced conformational change of Plasmodium
falciparum AMA1 detected using 19F NMR. J Med Chem 57(15):6419–6427

39. Goncearenco A, Mitternacht S, Yong T, Eisenhaber B, Eisenhaber F, Berezovsky IN (2013)
SPACER: server for predicting allosteric communication and effects of regulation. Nucleic
Acids Res 41(web server issue):W266–W272

40. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH,
Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-
adrenergic receptor. Nature 383(6599):447–450

41. Goupil E, Laporte SA, Hebert TE (2013) A simple method to detect allostery in GPCR dimers.
Methods Cell Biol 117:165–179

42. Gustavsson M, Verardi R, Mullen DG, Mote KR, Traaseth NJ, Gopinath T, Veglia G (2013)
Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of
phospholamban. Proc Natl Acad Sci U S A 110(43):17338–17343

43. Haasen D, Wolff M, Valler MJ, Heilker R (2006) Comparison of G-protein coupled receptor
desensitization-related beta-arrestin redistribution using confocal and non-confocal imaging.
Comb Chem High Throughput Screen 9(1):37–47

44. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J
Chem Inf Model 49(2):377–389

45. Hernandez M, Ghersi D, Sanchez R (2009) SITEHOUND-web: a server for ligand binding site
identification in protein structures. Nucleic Acids Res 37(Web Server issue):W413–W416

46. Hershberger P, Hedrick M, Peddibhotla S, Maloney P, Li Y, Milewski M, Gosalia P, Gray W,
Mehta A, Sugarman E, Hood B, Suyama E, Nguyen K, Heynen-Genel S, Vasile S,
Salaniwal S, Stonich D, Su Y, Mangravita-Novo A, Vicchiarelli M, Smith LH, Roth G,
Diwan J, Chung TDY, Caron MG, Thomas JB, Pinkerton AB, Barak LR (2010) Small
molecule agonists for the neurotensin 1 receptor (NTR1 agonists). Probe reports from the
NIH Molecular Libraries Program. Bethesda (MD),

47. Hill SJ, Williams C, May LT (2010) Insights into GPCR pharmacology from the measurement
of changes in intracellular cyclic AMP; advantages and pitfalls of differing methodologies. Br
J Pharmacol 161(6):1266–1275

48. Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M,
Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor
1. Nature 499(7459):438–443

18 X. Cheng and H. Jiang



49. Huang W, Lu S, Huang Z, Liu X, Mou L, Luo Y, Zhao Y, Liu Y, Chen Z, Hou T, Zhang J
(2013) Allosite: a method for predicting allosteric sites. Bioinformatics 29(18):2357–2359

50. Huang Z, Zhu L, Cao Y, Wu G, Liu X, Chen Y, Wang Q, Shi T, Zhao Y, Wang Y, Li W, Li Y,
Chen H, Chen G, Zhang J (2011) ASD: a comprehensive database of allosteric proteins and
modulators. Nucleic Acids Res 39(Database issue):D663–D669

51. Ilien B, Franchet C, Bernard P, Morisset S, Weill CO, Bourguignon JJ, Hibert M, Galzi JL
(2003) Fluorescence resonance energy transfer to probe human M1 muscarinic receptor
structure and drug binding properties. J Neurochem 85(3):768–778

52. Isogai S, Deupi X, Opitz C, Heydenreich FM, Tsai CJ, Brueckner F, Schertler GF, Veprintsev
DB, Grzesiek S (2016) Backbone NMR reveals allosteric signal transduction networks in the
beta1-adrenergic receptor. Nature 530(7589):237–241

53. Jaeger WC, Armstrong SP, Hill SJ, Pfleger KD (2014) Biophysical detection of diversity and
bias in GPCR function. Front Endocrinol (Lausanne) 5:26

54. Janetopoulos C, Jin T, Devreotes P (2001) Receptor-mediated activation of heterotrimeric
G-proteins in living cells. Science 291(5512):2408–2411

55. Jazayeri A, Dias JM, Marshall FH (2015) FromG protein-coupled receptor structure resolution
to rational drug design. J Biol Chem 290(32):19489–19495

56. Jazayeri A, Dore AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A,
Koglin M, Robertson NJ, Errey JC, Andrews SP, Teobald I, Brown AJ, Cooke RM,
Weir M, Marshall FH (2016) Extra-helical binding site of a glucagon receptor antagonist.
Nature 533(7602):274–277

57. Jing L, Qiu Y, Zhang Y, Li JX (2014) Effects of the cannabinoid CB (1) receptor allosteric
modulator ORG 27569 on reinstatement of cocaine- and methamphetamine-seeking behavior
in rats. Drug Alcohol Depend 143:251–256

58. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat
Struct Biol 9(9):646–652

59. Knudsen LB, Kiel D, Teng M, Behrens C, Bhumralkar D, Kodra JT, Holst JJ, Jeppesen CB,
Johnson MD, de Jong JC, Jorgensen AS, Kercher T, Kostrowicki J, Madsen P, Olesen PH,
Petersen JS, Poulsen F, Sidelmann UG, Sturis J, Truesdale L, May J, Lau J (2007) Small-
molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci U S A
104(3):937–942

60. Kohlhoff KJ, Shukla D, Lawrenz M, Bowman GR, Konerding DE, Belov D, Altman RB,
Pande VS (2014) Cloud-based simulations on Google Exacycle reveal ligand modulation of
GPCR activation pathways. Nat Chem 6(1):15–21

61. Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2014) From three-dimensional GPCR structure
to rational ligand discovery. Adv Exp Med Biol 796:129–157

62. Koole C, Wootten D, Simms J, Valant C, Sridhar R, Woodman OL, Miller LJ, Summers RJ,
Christopoulos A, Sexton PM (2010) Allosteric ligands of the glucagon-like peptide 1 receptor
(GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-
selective manner: implications for drug screening. Mol Pharmacol 78(3):456–465

63. Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S
(2015) The FTMap family of web servers for determining and characterizing ligand-binding
hot spots of proteins. Nat Protoc 10(5):733–755

64. Kozakov D, Hall DR, Chuang GY, Cencic R, Brenke R, Grove LE, Beglov D, Pelletier J,
Whitty A, Vajda S (2011) Structural conservation of druggable hot spots in protein-protein
interfaces. Proc Natl Acad Sci U S A 108(33):13528–13533

65. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton
PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J,
Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine
receptor. Nature 504(7478):101–106

66. Kufareva I, Ilatovskiy AV, Abagyan R (2012) Pocketome: an encyclopedia of small-molecule
binding sites in 4D. Nucleic Acids Res 40(Database issue):D535–D540

67. Kumari P, Ghosh E, Shukla AK (2015) Emerging approaches to GPCR ligand screening for
drug discovery. Trends Mol Med 21(11):687–701

1 Allostery in Drug Development 19



68. Laine E, Goncalves C, Karst JC, Lesnard A, Rault S, Tang WJ, Malliavin TE, Ladant D,
Blondel A (2010) Use of allostery to identify inhibitors of calmodulin-induced activation of
Bacillus anthracis edema factor. Proc Natl Acad Sci U S A 107(25):11277–11282

69. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of
protein-ligand binding sites. Bioinformatics 21(9):1908–1916

70. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand
pocket detection. BMC Bioinf 10:168

71. Lechtenberg BC, Freund SM, Huntington JA (2012) An ensemble view of thrombin allostery.
Biol Chem 393(9):889–898

72. Levy JA (2009) HIV pathogenesis: 25 years of progress and persistent challenges. AIDS
23(2):147–160

73. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012a) Biased signaling pathways in
beta2-adrenergic receptor characterized by 19F-NMR. Science 335(6072):1106–1110

74. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman
LH, AP IJ, Cherezov V, Stevens RC (2012b) Structural basis for allosteric regulation of
GPCRs by sodium ions. Science 337(6091):232–236

75. Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of energetic con-
nectivity in protein families. Science 286(5438):295–299

76. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) Beta-arrestin: a protein that
regulates beta-adrenergic receptor function. Science 248(4962):1547–1550

77. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F,
Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-depen-
dent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science
283(5402):655–661

78. Ma Z, Du L, Li M (2014) Toward fluorescent probes for G-protein-coupled receptors
(GPCRs). J Med Chem 57(20):8187–8203

79. Malmstrom RD, Lee CT, Van Wart A, Amaro RE (2014) On the application of molecular-
dynamics based Markov state models to functional proteins. J Chem Theory Comput
10(7):2648–2657

80. Mancini AD, Bertrand G, Vivot K, Carpentier E, Tremblay C, Ghislain J, Bouvier M, Poitout
V (2015) Beta-arrestin recruitment and biased agonism at free fatty acid receptor 1. J Biol
Chem 290(34):21131–21140

81. Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC,
Bernat V, Hubner H, Huang XP, Sassano MF, Giguere PM, Lober S, Da D, Scherrer G,
Kobilka BK, Gmeiner P, Roth BL, Shoichet BK (2016) Structure-based discovery of opioid
analgesics with reduced side effects. Nature 537(7619):185–190

82. May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-
coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51

83. Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simulta-
neous search method. Proteins 11(1):29–34

84. Mohler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol
Exp Ther 300(1):2–8

85. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible
model. J Mol Biol 12:88–118

86. Montaner JS, Reiss P, Cooper D, Vella S, Harris M, Conway B, Wainberg MA, Smith D,
Robinson P, Hall D, Myers M, Lange JM (1998) A randomized, double-blind trial comparing
combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: the INCAS
trial. Italy, The Netherlands, Canada and Australia study. JAMA 279(12):930–937

87. Nawaratne V, Leach K, Felder CC, Sexton PM, Christopoulos A (2010) Structural determi-
nants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor:
identification of ligand-specific and global activation mechanisms. J Biol Chem
285(25):19012–19021

88. Negri A, Rives ML, Caspers MJ, Prisinzano TE, Javitch JA, Filizola M (2013) Discovery of a
novel selective kappa-opioid receptor agonist using crystal structure-based virtual screening.
J Chem Inf Model 53(3):521–526

20 X. Cheng and H. Jiang



89. Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S (2012) FTSite: high accuracy
detection of ligand binding sites on unbound protein structures. Bioinformatics 28(2):286–287

90. Novinec M, Korenc M, Caflisch A, Ranganathan R, Lenarcic B, Baici A (2014) A novel
allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational
methods. Nat Commun 5:3287

91. Nussinov R, Tsai CJ (2012) The different ways through which specificity works in orthosteric
and allosteric drugs. Curr Pharm Design 18(9):1311–1316

92. Offermanns S, Simon MI (1995) G alpha 15 and G alpha 16 couple a wide variety of receptors
to phospholipase C. J Biol Chem 270(25):15175–15180

93. Oswald C, Rappas M, Kean J, Dore AS, Errey JC, Bennett K, Deflorian F, Christopher JA,
Jazayeri A, Mason JS, Congreve M, Cooke RM, Marshall FH (2016) Intracellular allosteric
antagonism of the CCR9 receptor. Nature 540(7633):462–465

94. Pan Y, Tsai CJ, Ma B, Nussinov R (2010) Mechanisms of transcription factor selectivity.
Trends Genet: TIG 26(2):75–83

95. Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov
state models but were afraid to ask. Methods 52(1):99–105

96. Panjkovich A, Daura X (2014) PARS: a web server for the prediction of protein allosteric and
regulatory sites. Bioinformatics 30(9):1314–1315

97. Peddibhotla S, Hedrick MP, Hershberger P, Maloney PR, Li Y, Milewski M, Gosalia P,
Gray W, Mehta A, Sugarman E, Hood B, Suyama E, Nguyen K, Heynen-Genel S, Vasile S,
Salaniwal S, Stonich D, Su Y, Mangravita-Novo A, Vicchiarelli M, Roth GP, Smith LH,
Chung TD, Hanson GR, Thomas JB, Caron MG, Barak LS, Pinkerton AB (2013) Discovery of
ML314, a brain penetrant non-peptidic beta-arrestin biased agonist of the neurotensin NTR1
receptor. ACS Med Chem Lett 4(9):846–851

98. Pomerantz WC, Wang N, Lipinski AK, Wang R, Cierpicki T, Mapp AK (2012) Profiling the
dynamic interfaces of fluorinated transcription complexes for ligand discovery and character-
ization. ACS Chem Biol 7(8):1345–1350

99. Qi Y, Wang Q, Tang B, Lai L (2012) Identifying allosteric binding sites in proteins with
a two-state go model for novel allosteric effector discovery. J Chem Theory Comput
8(8):2962–2971

100. Rodriguez D, Gao ZG, Moss SM, Jacobson KA, Carlsson J (2015a) Molecular docking
screening using agonist-bound GPCR structures: probing the A2A adenosine receptor.
J Chem Inf Model 55(3):550–563

101. Rodriguez D, Ranganathan A, Carlsson J (2015b) Discovery of GPCR ligands by molecular
docking screening: novel opportunities provided by crystal structures. Curr Top Med Chem
15(24):2484–2503

102. Rossetti M, Porchetta A (2018) Allosterically regulated DNA-based switches: from design to
bioanalytical applications. Anal Chim Acta 1012:30–41

103. Schann S, Mayer S, Franchet C, Frauli M, Steinberg E, Thomas M, Baron L, Neuville P (2010)
Chemical switch of a metabotropic glutamate receptor 2 silent allosteric modulator into dual
metabotropic glutamate receptor 2/3 negative/positive allosteric modulators. J Med Chem
53(24):8775–8779

104. Schauer GD, Huber KD, Leuba SH, Sluis-Cremer N (2014) Mechanism of allosteric inhibition
of HIV-1 reverse transcriptase revealed by single-molecule and ensemble fluorescence.
Nucleic Acids Res 42(18):11687–11696

105. Schwantes CR, McGibbon RT, Pande VS (2014) Perspective: Markov models for long-
timescale biomolecular dynamics. J Chem Phys 141(9):090901

106. Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein:
oxidative modifications to alpha-synuclein act distally to regulate membrane binding. J Am
Chem Soc 133(18):7152–7158

107. Shen Q, Wang G, Li S, Liu X, Lu S, Chen Z, Song K, Yan J, Geng L, Huang Z, Huang W,
Chen G, Zhang J (2016) ASD v3.0: unraveling allosteric regulation with structural mecha-
nisms and biological networks. Nucleic Acids Res 44(D1):D527–D535

1 Allostery in Drug Development 21



108. Shoichet BK, Kobilka BK (2012) Structure-based drug screening for G-protein-coupled
receptors. Trends Pharmacol Sci 33(5):268–272

109. Shukla D, Hernandez CX, Weber JK, Pande VS (2015) Markov state models provide insights
into dynamic modulation of protein function. Acc Chem Res 48(2):414–422

110. Soergel DG, Subach RA, Burnham N, Lark MW, James IE, Sadler BM, Skobieranda F, Violin
JD, Webster LR (2014) Biased agonism of the mu-opioid receptor by TRV130 increases
analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind,
placebo-controlled, crossover study in healthy volunteers. Pain 155(9):1829–1835

111. Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F, Snell G, Lane W, Ivetac A,
Aertgeerts K, Nguyen J, Jennings A, Okada K (2014) High-resolution structure of the
human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513(7516):124–127

112. Strickland D, Moffat K, Sosnick TR (2008) Light-activated DNA binding in a designed
allosteric protein. Proc Natl Acad Sci U S A 105(31):10709–10714

113. Subedi GP, Hanson QM, Barb AW (2014) Restricted motion of the conserved immuno-
globulin G1 N-glycan is essential for efficient FcgammaRIIIa binding. Structure
22(10):1478–1488

114. Tahtaoui C, Guillier F, Klotz P, Galzi JL, Hibert M, Ilien B (2005) On the use of
nonfluorescent dye labeled ligands in FRET-based receptor binding studies. J Med Chem 48
(24):7847–7859

115. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W,
Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu B (2013) Structure
of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science
341(6152):1387–1390

116. Tewson P, Westenberg M, Zhao Y, Campbell RE, Quinn AM, Hughes TE (2012) Simulta-
neous detection of Ca2+ and diacylglycerol signaling in living cells. PLoS One 7(8):e42791

117. Tiwary P, Limongelli V, Salvalaglio M, Parrinello M (2015) Kinetics of protein-ligand
unbinding: predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci U S A
112(5):E386–E391

118. Torres PU (2006) Cinacalcet HCl: a novel treatment for secondary hyperparathyroidism
caused by chronic kidney disease. J Ren Nutr 16(3):253–258

119. Udi Y, Fragai M, Grossman M, Mitternacht S, Arad-Yellin R, Calderone V, Melikian M,
Toccafondi M, Berezovsky IN, Luchinat C, Sagi I (2013) Unraveling hidden regulatory sites
in structurally homologous metalloproteases. J Mol Biol 425(13):2330–2346

120. Urs NM, Gee SM, Pack TF, McCorvy JD, Evron T, Snyder JC, Yang X, Rodriguiz RM,
Borrelli E, Wetsel WC, Jin J, Roth BL, O’Donnell P, Caron MG (2016) Distinct cortical and
striatal actions of a beta-arrestin-biased dopamine D2 receptor ligand reveal unique
antipsychotic-like properties. Proc Natl Acad Sci U S A 113(50):E8178–E8186

121. Valant C, May LT, Aurelio L, Chuo CH, White PJ, Baltos JA, Sexton PM, Scammells PJ,
Christopoulos A (2014) Separation of on-target efficacy from adverse effects through rational
design of a bitopic adenosine receptor agonist. Proc Natl Acad Sci U S A 111(12):4614–4619

122. Vecchio EA, Baltos JA, Nguyen ATN, Christopoulos A, White PJ, May LT (2018) New
paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased
agonism. Br J Pharmacol 175:4036

123. Vecchio EA, Chuo CH, Baltos JA, Ford L, Scammells PJ, Wang BH, Christopoulos A, White
PJ, May LT (2016) The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist
that stimulates anti-fibrotic signalling. Biochem Pharmacol 117:46–56

124. Vulpetti A, Hommel U, Landrum G, Lewis R, Dalvit C (2009) Design and NMR-based
screening of LEF, a library of chemical fragments with different local environment of fluorine.
J Am Chem Soc 131(36):12949–12959

125. Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites
using similar structures. Nucleic Acids Res 38(Web Server issue):W469–W473

126. Weber M, Ferrer M, Zheng W, Inglese J, Strulovici B, Kunapuli P (2004) A 1536-well cAMP
assay for Gs- and Gi-coupled receptors using enzyme fragmentation complementation. Assay
Drug Dev Technol 2(1):39–49

22 X. Cheng and H. Jiang



127. Weiss DR, Ahn S, Sassano MF, Kleist A, Zhu X, Strachan R, Roth BL, Lefkowitz RJ,
Shoichet BK (2013) Conformation guides molecular efficacy in docking screens of activated
beta-2 adrenergic G protein coupled receptor. ACS Chem Biol 8(5):1018–1026

128. Wenthur CJ, Gentry PR, Mathews TP, Lindsley CW (2014) Drugs for allosteric sites on
receptors. Annu Rev Pharmacol Toxicol 54:165–184

129. Wootten D, Simms J, Koole C, Woodman OL, Summers RJ, Christopoulos A, Sexton PM
(2011) Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring
and synthetic flavonoids. J Pharmacol Exp Ther 336(2):540–550

130. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P,
Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of
the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science
330(6007):1066–1071

131. Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian
CL, Xiao KH, Wang JY, Sun JP (2015) Phospho-selective mechanisms of arrestin conforma-
tions and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat
Commun 6:8202

132. Yu J, Zhou Y, Tanaka I, Yao M (2010) Roll: a new algorithm for the detection of protein
pockets and cavities with a rolling probe sphere. Bioinformatics 26(1):46–52

133. Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W,
Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q,
Wu B (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature
520(7547):317–321

134. Zheng Y, Qin L, Zacarias NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C,
Cherney RJ, Carter P, Stamos D, Abagyan R, Cherezov V, Stevens RC, AP IJ, Heitman LH,
Tebben A, Kufareva I, Handel TM (2016) Structure of CC chemokine receptor 2 with
orthosteric and allosteric antagonists. Nature 540(7633):458–461

135. Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ (2009) Selective engagement of G protein
coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad
Sci U S A 106(24):9649–9654

1 Allostery in Drug Development 23



Chapter 2
Dynamic Protein Allosteric Regulation
and Disease

Ruth Nussinov, Chung-Jung Tsai, and Hyunbum Jang

Abstract Allostery is largely associated with conformational and functional transi-
tions in individual proteins. All dynamic proteins are allosteric. This concept can be
extended to consider the impact of conformational perturbations on cellular function
and disease states. In this section, we will illuminate how allostery can control
physiological activities and cause disease, aiming to increase the awareness of the
linkage between disease symptoms on the cellular level and specific aberrant
allosteric actions on the molecular level.

Keywords Cell organization · Cell signaling · Signaling pathways · Signal
transduction · Cell structure · Signaling modules · Diffusion

2.1 Introduction

In the cell, a protein can be present in the active or more frequently in the inactive
state. Function requires that it populates a distinct conformational state. In 1991,
Frauenfelder et al. [28] transformed our views of proteins and broadly biological
macromolecules. They described them as existing in not only two – active and
inactive – states but in an ensemble of states that reflect their relative energy levels
which can be mapped on the free energy landscape. This concept profoundly
influenced the understanding of protein folding and prompted the development of
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numerous experimental and computational methodologies to identify the states, the
transitions between them, and the foundational problem of protein folding. The free
energy landscape is forceful since it is able to capture the mapping of all possible
states, native and nonnative, that the molecule can populate as a function of their
corresponding energy levels. The description on a two (or three)-dimensional Car-
tesian coordinate systems is simple and powerful, since it captures all possible
physical states of the protein around the native basin. This landscape idea is
compelling: it shows that the protein may populate any of these conformations
under certain conditions.

However, the picture is a static snapshot of the possible states; it is unable to
explain biological function, which is based on cooperativity. In the late 1990s, this
inspired us to offer a dynamic ensemble landscape concept [65, 83, 147, 148]. In our
description, the relative distributions of the conformational states are dynamic and
depend on the conditions in the cell, which reflect functional cell states following
intra- and extra-molecular events. We suggested that the shifts of the population
between the states, which are triggered by such events, are the origin of
cooperativity, i.e., allostery [37, 65]. Changes in conditions can be reflected by
binding events whether non-covalent, such as ligands, lipids, proteins, water, and
nucleic acids, or covalent. Changes in covalent linkages include mutational events,
posttranslational modifications (PTMs) [107], as well as alterations in temperature,
pH, ion concentrations, interactions with lipids such as signaling lipids or the
membrane, and even water molecules [148]. Any of these events can shift the
relative population of the states, which we termed “population shift.” In our descrip-
tion this redistribution of the populations of the states is the allosteric effect. Binding
of an allosteric effector promotes a population shift from a highly populated inactive
state to an active state, with an observable (or a very subtle) conformational change
at the active site [104]. We further proposed that all possible conformations preexist.
Allosteric (or non-allosteric) events do not create new conformations; they only shift
the populations between the conformations as they get stabilized (or destabilized)
[4, 19, 147, 148]. We had a great difficulty in publishing those ideas. At the time
they were considered heretic, with the prevailing concept being of only two states,
active (bound or closed) and inactive (unbound or open) since those were the
structures captured by crystallography and deposited in the PDB. It took us
2 years to finally get them accepted by journals.

Allostery is of paramount importance for biological processes. The unified view
of allostery that we formulated recently merges three components: thermodynamics,
free energy landscape of population shift, and structural; critically, all are with
exactly the same allosteric descriptors [144]. Our unified view innovates by linking
these views or elements. The thermodynamic view quantified the binding of the
ligand to the active (or inactive) states by employing experimentally measurable
quantities. The free energy landscape describes the population shift in terms of
energy, which captures the relative stabilization (or destabilization) of the two states.
The structural view connects the first two views, thereby capturing the allosteric
pathway between the active and allosteric sites on the protein. If there is no
population shift, on its own, a preexisting propagation pathway does not imply
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allostery; it only indicates coupling between the active and another site on the protein
[155]. As we discuss below, allosteric propagation pathways are often sought
between allosteric driver mutations and functional sites [15, 24, 93, 136], and driver
mutations are sometimes suggested to result in new states, which is not the case.
They simply increase (or decrease) the relative population of a state, because the
mutation changes its relative stability. For most proteins, the inactive state is the
more stable. An allosteric mutation may act by destabilizing the inactive state,
stabilizing the active state or both [101].

Early on, protein binding was postulated to take place through a “lock-and-key”
mechanism. Binding was proposed to involve matching of two rigid shapes, which
precisely fit each other similar to a jigsaw puzzle. This was followed by an “induced
fit” mechanism where the shape of the protein binding site may not fit perfectly that
of its incoming ligand; however, the ligand would induce a conformational change to
optimize it. These mechanisms are unable to explain how allosteric driver mutations
can promote oncogenic consequences. By contrast, the dynamic free energy land-
scape, which postulates a shift in the population between states – elicited by a driver
mutation where a now populated state can favorably select a ligand – can explain the
oncogenic outcome. We dubbed this mechanism “conformational selection and
population shift” [65, 83, 84]. In this mechanism new functions do not involve
newly created conformations; instead, new functions can involve a shift of the
population between preexisting conformations, populating a conformation that was
only sparsely populated earlier [102]. Our “conformational selection and population
shift” concept posited that because ensembles are vast, encompassing many possible
states with varying degrees of energy, binding will take place between the most
compatible conformations, followed by a minor conformational change, largely of
the side chains, for optimal fit [16]. Since the binding conformations will be removed
from solution, the ensemble will shift (“a population shift”) in their favor to maintain
the equilibrium.

The conformational selection and population shift paradigm which argues that the
closed state already exists in solution contrasts the induced fit. The kinetic differ-
ences between the two models [154] reflect ligand concentrations [59]: if very high
(typically a nonphysiological occurrence), induced fit may prevail. Because usually
the complementary conformer has lower population, which will require crossing a
barrier to switch between the states, induced fit has faster timescales. The slower
timescales make conformational selection more difficult to detect experimentally [4],
which explains the often mistaken conclusion that the studied mechanism follows an
induced fit process. The timescales reflect a dynamic free energy landscape [65],
where substates populate shallow wells and binding alters their relative stabilities
[87]. The elegant NMR data of Gardino et al. [33] provided detail how transitions
between high energy states can take place. Population shift is the origin of allostery
and regulation and can explain how constitutive allosteric driver mutations can
rewire signaling in cancer [101, 109, 142].

Allostery can provoke disease in many ways. The most common among these are
allosteric driver mutations and pathogen proteins or metabolites. Mutational effects
can be direct, or they can involve alterations in patterns of allosteric PTMs, either
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through direct substitution or via mutational effects in the enzymes tagging the
protein with the PTMs or those cleaving them [132]. From the allosteric standpoint,
the mechanisms are unchanged.

Here we discuss dynamic conformational ensembles focusing on allosteric events
in signaling and drug discovery. We focus on allosteric driver and discuss also latent
driver mutations [105].

2.2 Not All Driver Mutations Are Allosteric and Not All Are
Frequent, yet They May Be Associated with Disease

Mutations are classified as drivers or passengers. Passenger mutations are
unconnected to the disease; driver mutations can elicit it. Driver mutations can be
at active or functional sites, in which case they are orthosteric; but they can also be
allosteric. Driver mutations are typically detected through their high frequencies of
occurrence in sequence analysis. Allosteric driver mutations can be predicted
through their activation/inactivation effects. Both can alter signaling pathways.
However, not all driver mutations are statistically significant; some are rare, at the
tail of the distribution. Notwithstanding, their characteristics and mechanisms are
unchanged: some are orthosteric, some allosteric. Detecting rare driver mutations is
challenging. One way is via their clustering: if the mutations occur in clusters,
chances are higher that they are driver mutations, even if rare [32]. Such clusters
were recently identified in RAC1 and MAP 2K1. Proximal associations can suggest
cooperativity, similar to the tendency of residue hot spots to cluster into “hot
regions” [61, 62]. Clusters can include established frequent drivers such as
KRasG12D, but often they are rare mutations, such as KRasD33E (defined as <0.1%
of the sample) [64], as well as others in KRas (KRAS), B-Raf (BRAF), and p53
(TP53). Most of these rare mutations are likely to be passengers, but some may be
drivers. Cluster analysis in protein structures also identified rare drivers in tumor
suppressors including PTEN, CDH1, and KEAP1. 15 clusters with 48 residues were
detected in PTEN tumor suppressor (with 2 known frequent mutations and 46 rare,
some of which may be drivers) – all around the phosphatase catalytic core motif [20].

By definition, allosteric driver mutations elicit an observable conformational
change, whereas passenger mutations do not. However, we proposed that under
certain conditions or combinations, rare presumably passenger mutations may trans-
form into driver mutations. We dubbed these mutations “latent drivers” [103]. The
free energy landscape suggests that a binary yes/no driver/passenger classification of
mutations into allosteric and non-allosteric may not be accurate [105]. This is
important since pharmacology may overlook relevant mutational targets
[110]. These silent latent driver mutations may not cause a switch from the inactive
to the active state (or vice versa); however, should another cooperative silent
mutation emerge during cancer development, their combined effect on the ensemble
can be significant, turning on (or off) a signaling pathway [102]. Together they may
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work via AND (i.e., additive) or graded logic gate integration mechanisms (but not
OR) [7]. Signaling often reflects a combination of events [109], such as binding of
several proteins, small molecules, ions, lipids, water molecules, as well as PTMs
[37, 108], and with millions of possible genetic variants and cellular events such
allosteric effects are at play [26, 75, 79, 80, 114, 126, 143, 145, 157, 163].

Below, we provide examples of proteins that control key cellular functions with
allosteric driver mutations that are linked to cancer: protein and lipid kinases and the
small GTPase Ras protein.

2.3 Allosteric Driver Mutations: Theory and Examples

2.3.1 Protein Kinases: Introduction

Protein kinases [85] exemplify how allosteric driver mutations shift the ensemble
from the inactive to the constitutively active state [142]. Catalysis involves binding
of ATP and a substate, transfer of the γ-phosphate of ATP to a hydroxyl group, and
release of the phosphorylated substate and ADP. Optimal phosphate transfer dictates
the almost identical kinases’ active conformations [47, 98], with hydrophobic
contacts and electrostatic interactions accurately orienting and coordinating the
catalytic residues [135]. However, the inactive conformations vary, which permit
distinct kinases to bind to and activate diverse different ligands. The active and
inactive states differ in the conformation of the activation loop (in the active
conformation, it is often in an extended (or less favorable disordered) conformation,
whereas in the inactive state, it is collapsed, folding back to block substate binding),
a specific salt bridge (between the β3 lysine and the αC glutamate), and the
structurally coupled and organized R-spine [105] which occurs only in the active
αC-helix-In, but not in the inactive αC-helix-out kinase state, where the salt bridge is
broken and the R-spine distorted. Activation involves a rotation and shift of the αC
helix which is controlled by an allosteric switch. Normally, the catalytic domain
populates the inactive state [57].

2.3.2 EGFR

Oncogenic driver mutations can shift the ensemble toward the active conformation
by stabilizing it, as in the case of Leu858 driver mutation, or destabilizing the
inactive state by breaking interactions that stabilize it [101, 125], as in the cases of
T790M mutation in EGFR, T315I in Bcr-abl, T334I in c-Abl, T341I in Src, T670I in
c-Kit (a.k.a CD117), and T674I in PDGFRα. All allosterically shift the kinase
populations toward the activated kinase states. The T790M driver mutation stabilizes
the active monomer by increasing the population of the asymmetric dimer. The
L858R driver mutation disrupts interactions that stabilize the inactive symmetric
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dimer interface versus the asymmetric dimer. However, like T790M driver mutation,
it can also stabilize the active state and asymmetric dimer formation by stabilizing
the αC-helix-In conformation. Thus, driver mutations can adopt one (or two) of three
mechanisms: destabilize the inactive state, stabilize the active state, or both. From
the standpoint of the energy landscape, these can be described by the alterations in
the relative depths of the minima [13, 21, 23, 48, 56, 70, 88, 121, 124, 125, 152,
158–162, 166].

2.3.3 Raf

Here, we exploit Raf to provide a unified scheme for kinase allosteric activation
under physiological conditions and in cancer [146]. We emphasize that the popula-
tion shift from the inactive to the active state is relative and that allosteric events alter
the relative populations additively. We further indicate that the structural features of
the active conformation are coupled with the regulatory and catalytic spines for
accurately positioning the catalytic sequence motifs. These illuminate the necessity
for Raf dimerization and clarify how the V600E driver mutation activates Raf.

Raf’s inactive autoinhibited state is an ensemble of “closed” monomeric states
[112], with the N-terminal tail, Ras-binding domain (RBD), cysteine-rich domain
(CRD), and linker, with its Ser/Thr-rich segment, preventing kinase domain dimer-
ization [8, 12, 17, 30, 40, 50, 51, 68, 92, 123, 130, 131, 137, 139, 140, 164, 165]. The
oncogenic V600E mutation of B-Raf weakens the autoinhibition [151].

In response to external stimuli, the Ras/Raf/MEK/ERK signaling pathway initi-
ates physiological processes including growth and proliferation. Under physiologi-
cal conditions, via a series of events, the activated receptor stimulates conversion of
Ras-GDP to Ras-GTP, with subsequent dimerization, and nanoclustering [10, 55,
79, 94, 96, 146]. Coupled with the high binding affinity of Ras-GTP to Raf’s RBD,
the spatial proximity of Ras dimers/nanoclusters [167] increases the effective local
concentration of Raf, promoting Raf activation via a side-by-side (or face-to-face)
symmetric Raf dimerization [2, 111]. The increase of the effective local concentra-
tion by Ras dimers/nanoclusters and the high Ras-Raf affinity is critical to Raf’s
activation in the cell, since the weak binding affinity of Raf-Raf interactions [69]
limits full-length Raf dimerization under normal Raf expression levels. The recruit-
ment to the membrane through active Ras interaction, which is further strengthened
by its CRD attachment to the membrane [72, 73, 141], effectively reduces Raf’s
distribution space from three-dimensional to two-dimensional. In this scenario Raf
activation depends on activated Ras oligomer, in contrast to the Ras-independent
scenario, which may take place in oncogenic Raf activation.

Above we described our global picture of “how allostery works” [103, 144]. Here
we describe how allostery can work in activation, illustrating it with population shift
in the Raf kinase through structural features that destabilize the inactive state and/or
stabilize the active state to explain how oncogenic drivers activate Raf
[101, 143]. Even though not discussed here, paradoxical Raf activation by asym-
metric Raf dimerization by an inhibitor also fits this description.
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Monomeric Raf [138] is populated in the inactive state. Physiological activation
involves dimerization as a homodimer or as a Raf family heterodimer [29, 42, 52, 53,
95, 120, 151]. Dimerized active Raf monomers can catalyze transphosphorylation of
their partner’s activation loop, with binding and phosphorylation [164] being addi-
tive allosteric events [22]. How does Raf allosteric asymmetric activation via
symmetric dimerization take place? According to our nomenclature, Arg509 and
Trp450 are allosteric driver residues. Allosteric drivers clash with other atoms/
residues of the protein partner (here the backbone of Arg506 and Lys507 in the
inactive state). The clash exerts a “pull” and/or “push” action that shifts the receptor
population from the inactive to the active state [103]. The rest of the residues in the
activator interface are anchor residues; that is, they are responsible for docking into
an allosteric pocket. The conformation with which they interact is unchanged during
the transition between the inactive and active states. Anchor residues provide the
foundation that allows the driver to exert its action. These residues are responsible
primarily for the stability of the dimer. The side chains of Arg509 and Trp450
destabilize the inactive monomer by forcing the αC helix into an active state. This
clarifies why R509H and W450A abrogate Raf’s transactivation [42]. Oncogenic
B-Raf harboring the V600E mutation is active as a monomer; thus, it is Ras- and
activation loop phosphorylation-independent. It constitutes 90% of BRAF oncogenic
mutations [18, 151]. Recently we clarified in detail how V600E can switch the B-Raf
population toward an active monomeric state [146]. How does paradoxical activa-
tion take place? Orthosteric, ATP-competitive inhibitor binds to one monomer in the
dimer [39, 41, 117], allosterically reducing its affinity for the other monomer [146].

2.3.4 PI3Kα Lipid Kinase

Allosteric oncogenic mutations in PI3Kα lipid kinase [44, 60] promote activation by
relieving the autoinhibition by acting to release the nSH2 domain or by boosting
nSH2-release-induced allosteric motions. Two driver mutations in the helical
domain, E542K and E545K, which reverse the charges act in this manner. Another,
less frequent mutation of Gln546 (to Lys or Arg) in the helical domain, is at the
nSH2–helical domain interface does not interact favorably with the nSH2 domain. In
the autoinhibited state it is close to nSH2 Lys382 (under 5 Å). The repulsive force
created by the mutation facilitates nSH2 release. Two frequent oncogenic mutations
(Cys420 and Asn345) in the C2 domain occur at the iSH2-C2 interface. They are
often mutated to basic residues (Arg or Lys), which destabilize the iSH2-C2 inter-
face. The disruption of the interface results in a conformational change by nSH2
release, promoting iSH2 rotation and the C-terminal portion of the kinase domain
exposure in PI3Kα activation. The rotation is coupled with the interacting ABD
domain in the p110α catalytic subunit. There are eight frequent driver mutations in
the ABD domain: at the ABD-kinase domain interface and at the ABD-RBD linker.
They either break the ABD-kinase domain interface or contacts in the linker, which
can also promote iSH2 rotation and thus the C-terminal portion of the kinase domain
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exposure. Several driver mutations promote the C-terminal portion of the kinase
domain movement away from C2 and the helical domains or modulate the
C-terminal portion of the kinase domain dynamics, thereby contributing to the
PI3Kα membrane interactions in PI3Kα activation [unpublished data].

2.3.5 Ras

Under normal physiological conditions, Ras proteins are also in the inactive state.
They are activated at the membrane [5, 54, 127] by an incoming signal from RTKs
via an exchange of GDP by GTP [11, 80, 90]. Their activation promotes tumor
proliferation pathways, especially MAPK (via Raf) and PI3K (via PI3k/Akt/mTOR)
[26, 43, 94, 97, 113]. They are inactivated by hydrolysis of GTP to GDP, assisted by
the GAP proteins. Driver mutations suppress hydrolysis, rendering Ras constitu-
tively active. Conformational analysis revealed that mutations can change the
landscape of Ras isoforms [1, 3, 14, 34, 35, 38, 45, 49, 58, 66, 76–78, 82, 110,
115, 119, 122, 133, 134, 143]. Substitutions of Gly12, Gly13, and Gln61 are
common and block GAP-catalyzed GTP hydrolysis [9, 27, 63, 81]. Notably, even
mutations at functional sites as here or ligand binding at orthosteric sites have
allosteric effects. Simulations of wild-type KRas4B-GTP bound to GAP suggested
that GAP not only inserts its arginine finger for GTP hydrolysis but also further
stabilizes the active state [80] by reducing the Switch II fluctuations, promoting
formation of the H-bonds between the GTP γ-phosphate and Gln61. Driver
mutations block the coordination of GAP’s Arg789 and the catalytic Gln61 and
thus GTP hydrolysis. NMR of GppNHp-bound HRas observed two interconverting
conformations, inactive and active. Simulation of GTP-bound KRas also witnessed
that in solution, GTP-bound KRas4B exists in the inactive and active states. The
simulations also detail how distinct oncogenic mutations abolish catalysis by altering
the catalytically competent Gln61-Arg789 organization.

Wild-type KRas4B-GDP is autoinhibited by its farnesylated HVR [54]. At the
membrane, when GTP-bound, the attachment of the HVR to the catalytic domain is
released [36, 54, 55, 89, 129, 156, 167]. The catalytic domain fluctuates, exposing
the effector-binding surface. NMR residue chemical shift perturbation analysis and
simulations showed that oncogenic driver mutations shift the landscape toward the
exposed effector-binding site. Thus, driver mutations can work via diverse mecha-
nisms, to abolish GTP hydrolysis, ease effector binding, and weaken the HVR
interactions with the catalytic domain, thus increasing the population of the exposed
site, versus the wild-type and importantly promote GDP to GTP exchange through
the SOS (a GEF) protein [74].
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2.4 Allosteric Effects in the Cellular Network

Above we highlighted allosteric driver mutations in kinases and in Ras in cancer that
act by turning the signaling pathway ON constitutively. They can also act by
rewiring the network by switching the signaling from one partner to another, when
both partners bind at the same shared site. How can proteins bind specifically more
than one partner at the same site? Several strategies can be at play [150], including
the partners sharing a binding site motif or conserved interactions, as well as
different conformations of the receptor preferentially selecting different partners.
This may depend on prior allosteric events, relative ligand concentrations, PTMs,
and more [4, 16]. This may be especially at play for disordered proteins or regions,
which have broad ensembles with the energy levels (or minima on the landscape) not
too different and with low barriers between them [149]. The multiple receptor states
allow conformational selection events to (somewhat) different ligand surfaces. Prior
allosteric events taking place on the receptor can be a key factor in partner ligand
selection. An allosteric event at one site may alter the binding site conformation and
dynamics, promoting a population shift in turn leading to a conformational change in
the receptor binding site, which may then prefer a distinct ligand partner. Membrane-
anchored Eph receptor tyrosine kinases and their ephrin ligands provide examples
[67, 99, 109, 118]. The consequent different binding events which mirror cell cycle
events in an altered environment are a powerful theme in evolution. The cellular
network is dynamic and sensitive to its surroundings. Because all conformations
preexist, function will always be performed at some level, even though it may be too
low for executing the required protein action. An allosteric event, such as a mutation,
absence or presence of a PTM, or overexpression, may disrupt normal regulation,
altering the conformational distribution with far-reaching (disease) consequences by
promoting alternative (parallel) pathways or constitutive activation.

Key to successful drug discovery is accounting for dynamic changes in the
cellular environment; such changes and cellular response are largely reflected in
signaling. Signal transduction relays extracellular information to the interior of cells.
Cell surface membrane-bound receptors are stimulated by ions, small-molecule
morphogens, hormones, neurotransmitters, and covalent modification events. This
initiates a cascade of intracellular protein interactions which eventually transmit to
genome activation (or suppression) resulting in altered cellular expression. Proteins
are dynamic, and this is particularly the case for signaling proteins, which frequently
contain disordered domains/segments [31, 91]. Here, we described proteins in terms
of their dynamically fluctuating conformational ensembles and their distributions;
how these distributions change upon structural perturbations, such as those caused
by binding of proteins, cofactors, DNA, small molecules or drugs, or changes in the
cellular environment; and the consequences of these fundamental phenomena, called
allosteric effects, for beneficial drug discovery.
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2.5 Principles of Allosteric Drug Action

Drug discovery aims to identify protein targets whose inhibition (or activation) can
treat disease. Diseases are complex, and identifying druggable, disease-relevant
proteins and accounting for their role in the network is a challenging task. Modeling
of the structural proteome can provide the complete static structural network; on the
other hand, the free energy landscape complements this description by helping to
understand the dynamic changes in the distributions of the substates in vivo and thus
the species to be targeted.

Allosteric drugs work through the same mechanism as any allosteric effectors.
They bind elsewhere on the protein surface and allosterically change the conforma-
tion of the protein binding site. Similar to orthosteric drugs, their mechanisms
present potential pitfalls which call for considerations in their design; however,
these are distinct from those of their orthosteric counterparts. Different than
orthosteric drugs which often cause toxicity through binding to active sites of related
proteins and consequently high affinity to the target to permit low dosage is the
primary concern, this is not the case for allosteric sites, which are more likely to be
unique. Mechanistically, allosteric drugs act by shifting the free energy landscape.
Effective allosteric drugs have atoms in good contact with protein atoms that elicit
propagation optimally reaching the active site. Affinity is important; however,
designs exploring the protein conformational ensemble and the preferred propaga-
tion states are expected to selectively and more potently achieve the goal of
advantageous, target-only tunable binding [100]. Different from drugs binding at
active sites, allosteric drugs allow modulation of responses, thus holding great
promise for the future [59].

Several tools have been published for prediction of allosteric sites based on their
characterization (e.g., Huang et al. [45, 46, 71, 128]). Recently, we unraveled the
structural mechanisms of allosteric drug action [103].

2.6 Conclusions

Proteins can exist in multiple conformations around their native states which can be
portrayed by an energy landscape. Their emerging picture would feature individual
valleys, which correspond to the conformational substates. All functional substates
preexist, and their relative populations will change upon allosteric events, which
perturb the structure. The resulting energetic frustration elicits population shifts,
where the energy is distributed in the structures and the conformational changes shift
the energetics [25, 116], which may be observed by changes in the shapes and
properties of the protein active sites.

Allostery reflects conformational and functional transitions in macromolecules. It
may emerge through the actions of multiple factors, including small molecules as
diverse as the allosteric inhibition of GTP-bound H-Ras protein by a small-molecule

34 R. Nussinov et al.



compound carrying a naphthalene ring [86] and not surprisingly even a curved
membrane [6]. Conformational perturbations are the essence of function and life
[153]; thus, it is expected that they are harnessed for combating dysfunctional
diseased states. In this section, we illuminated how allostery can control physiolog-
ical activities and cause disease, aiming to increase the awareness of the linkage
between disease symptoms on the cellular level and specific aberrant allosteric
actions on the molecular level. Eventually, all reflect or harness fundamental laws
of quantum mechanics and structural chemistry [106].
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Chapter 3
Protein Allostery in Rational Drug Design

Takayoshi Kinoshita

Abstract This chapter focuses on protein kinases that transfer the phosphate group
of ATP to the hydroxyl group of a substrate protein. Five hundred eighteen human
protein kinases are classified into serine/threonine kinases and tyrosine kinases and
individually or synergistically transduce physiologic stimuli into cell to promote cell
proliferation or apoptosis, etc. Protein kinases are identified as drug targets because
dysfunction of kinases leads to severe diseases such as cancers and autoimmune
diseases. A large number of the crystal structures of the protein kinase inhibitor
complex are available in Protein Data Bank and facilitated the drug discovery
targeting protein kinases. The protein kinase inhibitors are classified into categories,
Type-I, Type-II, Type-III, Type-IV, and Type-V, and as a separate class, covalent-
type inhibitors. In any type, a protein kinase inhibitor bound to the allosteric region is
advantageous in terms of selectivity compared to the traditional ATP-competitive
one. In the following sections, the successful and promising examples of the partially
or fully allosteric protein kinase inhibitors are illustrated in the following pages.

Keywords Protein kinase · Allosteric inhibitor · Structure-based drug discovery ·
High selectivity

3.1 Introduction

Protein kinases (PKs) catalyze the γ-phosphate group transfer from ATP to the
hydroxyl group of substrate proteins requiring magnesium ions. Five hundred
eighteen protein kinases had been identified in human genome [23] and divided
into tyrosine kinases (TK), serine/threonine kinases (STK), and pseudo-kinases. PK
transduces the cellular signals started with the extracellular stimulations to regulate
the complicated physiological functions involving cell differentiation, proliferation,
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and apoptosis. Therefore, collapse of the vital valance sophisticatedly regulated by
PKs results in the serious diseases such as cancers. Approximately 30 kinase
inhibitors including imatinib and gefitinib have been approved as molecular target
drugs by the Food and Drug Administration (FDA) of the USA to date [43]. Modern
scientific technologies allow to discover high-potency inhibitors for a target protein
kinase associated with the diseases. However, it remains a serious challenge to
develop inhibitors to be drugs. Promiscuous kinase inhibitors would suppress a
variety of the off-target protein kinases as well as the target kinase and exert the
adverse effects on vital. X-ray crystal analyses of the premature inhibitor with the
off-target PKs as well as with the target kinase would promote drug discovery
process.

PK involves a wide variety of combinations of the functional domains or sub-
units. About 200 kinds of human protein kinase domain structures are available from
the Protein Data Bank (PDB). These crystal structures reveal that the catalytic
domain of PK configures a typical kinase fold consisting of an N-lobe involving a
α-helix (αC-helix) and five β-strands, a C-lobe with high helicity, and a hinge region
connecting these lobes (Fig. 3.1a). The numbering and alphabeting of the β-strands
and α-helices have been defined upon the structure of the protein kinase A (Fig. 3.1a)
[11]. The hinge region composed of a single strand contributes to the plasticity of the
relative positions of the N- and C-lobes and the recognition of the adenine ring of
ATP. The flexible regions such as P-loop, A-loop, N- and C-terminals, and insertion
loop singly or collaboratively regulate the protein kinase activity, concerted with the
regulatory subunit (or protein) binding or detaching and/or chemical modifications
such as phosphorylation. The phosphate binding loop (P-loop) with a glycine-rich
sequence in the N-lobe binds ATP or ATP-competitive inhibitors. The activation
loop (A-loop), which is bracketed by the highly conserved DFG (Asp-Phe-Gly) and

Fig. 3.1 A typical protein kinase fold. (a) The numbering and alphabeting of the secondary
structure and the nomenclatures of the sub-domains are shown on the protein kinase A. (b)
Hydrophobic intramolecular spines. The regulatory spine (R-spine, brown) and catalytic spine
(C-spine, green) consisting of the hydrophobic amino acid residues stabilize the protein kinase
fold. The phenylalanine residue in the DFG motif is jointed to the R-spine
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APE (Ala-Pro-Glu) motifs, functions as a molecular switch via phosphorylation by
the client kinase or itself (autophosphorylation). The A-loop works as a platform for
substrate binding in the active state and as a molecular brake in the inactive state. The
aspartate residue in the DFG motif binds a magnesium ion that is essential for
enzyme activity. Activation by promoting factors such as phosphorylation provokes
the configuration changes in the N-lobe position relative to the C-lobe, A-loop, and
αC-helix. This structural transition results in the salt-bridge formation between the
catalytic lysine residue in the β3-strand and glutamate residue in the αC-helix, which
can accommodate the ATP molecule in the transition-state conformation. The active
conformation is structurally stabilized by two intramolecular spines, regulatory and
catalytic spines (R-spine and C-spine), which consist of the hydrophobic residues,
respectively (Fig. 3.1b). The C-spine involves the adenine ring of the ATP molecule,
and the R-spine does the benzene ring in the DFG motif (Fig. 3.1b). In case that these
structural requirements are prepared, the protein kinase is ready for the catalytic
reaction. The catalytic loop (C-loop) contains the catalytic aspartate residue which
eliminates the proton from the hydroxyl group in the substrate. Subsequently, the
activated hydroxyl group of the substrate makes a nucleophilic attack to the phos-
phorous atom in the γ-phosphate group of ATP. The N- and C-terminal regions
and/or insertion loop represents remarkable diversity in amino acid sequence and
size and allosterically regulates the protein kinase activity involving the auto-
inhibition, substrate recognition, and subcellular localization. The structural clarifi-
cation of the allosteric molecular switches eventually provides the valuable clues for
producing highly selective protein kinase inhibitors.

3.2 Classification of Protein Kinase Inhibitors

Approximately 3000 crystal structures of the protein kinase-inhibitor complex have
been registered in the Protein Data Bank (PDB) and facilitated the anti-protein
kinase drug discovery. Kinase inhibitors are classified into categories Type-I,
Type-II, Type-III, Type-IV, and Type-V and, as a separate class, covalent-type
inhibitors as shown in Table. 3.1 [24]. Type-I inhibitor binds mainly to the ATP
binding region, which is located at the hydrophobic slot between the N- and C-lobes.
The structural requirements regarding ATP binding in this region are well-conserved

Table 3.1 Classification of kinase inhibitors

Type Binding region Approved drug

Type-I ATP site Gefitinib, erlotinib

Type-II ATP site + DFG-out region Imatinib, nilotinib

Type-III DFG-out or near-allosteric region Trametinib

Type-IV Far-allosteric region –

Type-V ATP and substrate sites –

Covalent ATP site Afatinib, ibrutinib
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among protein kinases. The main chain atoms in the hinge region make the hydrogen
bonds with the adenine moiety of ATP. The hydrophobic residues participated in the
R-spine bracket the adenine ring of ATP (Fig. 3.1b). Thus, a number of Type-I
inhibitors involve the hetero-aromatic ring as a substitute for the adenine moiety.
The lysine and magnesium ion ligated at the aspartate residue in the DFG motif,
which are conserved in the ATP binding site, largely contribute to recognize the
phosphate groups. The hydrogen bonding with these lysine and aspartate residues is
essential for the potential inhibitors. Type-II inhibitor binds to the so-called DFG-out
conformation, which is caused by the flipping motion of the DFG motif in the
N-terminal end of the A-loop. This motion results in the emergence of the hydro-
phobic pocket, referred to as DFG-out region, a poorly conserved region among
protein kinases. Type-II inhibitors bind to the DFG-out region as well as the ATP
binding site and thus present the rather high selectivity against the off-target kinases.
Type-III inhibitor binds to the near-allosteric region such as the DFG-out region but
not to the ATP binding region. Type-IV inhibitor binds to the far-allosteric region,
distant to the ATP site, involving the substrate binding or autoregulatory regions.
Type-V inhibitor is composed of the ATP analogue and peptide derived from
substrate protein and covers almost all of the enzyme reaction sites [31]. However,
Type-V inhibitor is apt to display the low inhibitory activity because the peptide
moiety causes the entropy loss due to its conformational flexibility. Further, the
peptide part contains not less than ten residues by which the molecular weight of the
Type-V inhibitors greatly exceeds to 1000 daltons. The peptide sequence around the
phosphorylation site configures the extended formation and forms the β-sheet
structure with the A-loop. Namely, protein kinases request the rather low sequence
specificity for the substrate recognition. These obstacles likely put a damper on the
development of the Type-V inhibitors. Recently, it had reported that the covalent-
type inhibitor was effective for a kind of protein kinases that possessed the cysteine
residues around the ATP binding site [22]. The cysteine residues are observed in the
hinge region, gatekeeper, P-loop, A-loop, and the other allosteric sites in protein
kinases, but not conserved among all of them. In practice, these cysteine residues
were significant for developing the highly selective drugs such as afatinib and
ibrutinib (Table. 3.1). Crystal structure showed that the α,β-unsaturated ketone
moiety of afatinib covalently bound to Cys797 in the hinge region end of epidermal
growth factor receptor (EGFR) [37]. In addition of the covalent bond, the 2-chloro-
3-fluorobenzene moiety bound into the deep ATP site which was occupied by the
methylbenzene moiety of erlotinib (described in detail in the next section), and the
quinazoline ring forms the hydrogen bonds with the main chain atoms in the hinge
region. Afatinib is classified into the Type-I inhibitor with the covalent bonding.
Finally, the covalent bonding character could be introduced to all types of protein
kinase inhibitors.

The comparison in the amino acid sequence and crystal structure suggests that the
protein kinase inhibitor bound to the allosteric region is advantageous in terms of
selectivity compared to the traditional ATP-competitive one such as staurosporine.
The successful and promising examples of the partially or fully allosteric kinase
inhibitor are illustrated in the following pages.
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3.3 Utilization of the ATP Back Pocket, a Near-Allosteric
Site/Type-I

Due to binding to the highly conserved ATP binding region, the Type-I inhibitors
display a low selectivity against the off-target kinases. However, the extensive
structural dissections in the deep-inside and/or peripheral region of the ATP binding
site clarified the subtle but unique structural differences among protein kinases and
promoted to produce the highly selective Type-I inhibitors [21]. The gatekeeper
residue and N-terminal neighboring one of the DFG motif (DFG-1) in front of the
hydrophobic pocket in the deep ATP site, referred to as ATP back pocket, are the key
residues for the definition of pharmacophore for protein kinase inhibitors (Fig. 3.2)
[46]. This ATP back pocket is divergent among protein kinases and has been utilized
for drug discovery of selective protein kinase inhibitors such as gefitinib and
erlotinib (Table. 3.1). Erlotinib, an anticancer drug, targets epidermal growth factor
receptor (EGFR). The threonine residues as the gatekeeper and DFG-1 cause the
large hydrophobic back pocket deep in the ATP binding site, thus defined as a near-
allosteric site (Fig. 3.2). The acetylenyl benzene moiety of erlotinib binds to the ATP
back pocket (Fig. 3.2) [32]. This characteristic interaction allows erlotinib to be
highly selective for EGFR. However, the clinical efficacy of gefitinib and erlotinib is
ultimately reduced by the emergence of the acquired drug resistance such as by
mutation of the gatekeeper Thr790 residue of EGFR (T790M), which is detected in
half of the drug-administrated patients. The resulting Met790 buried the back pocket
in the deep ATP site essential for the recognition of the acetylenyl benzene moiety of
erlotinib and significantly decreased the binding affinity of erlotinib with the T790M
mutant. Zhou et al. discovered a novel compound effective to the T790Mmutant and
showed that this inhibitor fitted into the modified ATP binding site [45]. On the other
hand, the clinical activity of the Type-I inhibitor entrectinib was greatly limited by
the acquired resistance by the mutation at the DFG-1 position of tropomyosin

Fig. 3.2 The ATP back
pocket of the epidermal
growth factor receptor
(EGFR) kinase domain. The
acetylenyl benzene group of
erlotinib (orange) intrudes
into the ATP back pocket
(enclosed black dot line).
The gatekeeper (Thr766,
shown in red) and DFG-1
(Thr830, shown in green)
residues are located in front
of the ATP back pocket
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receptor kinase A (TrkA) (G667C). The resulting Cys667 works as a steric hindrance
for entrectinib binding to the ATP back pocket of the G667C mutant, while foretinib
suppressed both of the wild-type and G667C mutant [28]. The molecular modifica-
tion matched for the drug-resistant mutant could be implemented, but cancer cells
would acquire the resistance against the new drug. The cat-and-mouse game
between the cancer cells and human wisdom will be permanently continued. Nev-
ertheless, the ATP back pocket plays a key role in producing highly selective Type-I
protein kinase inhibitors.

3.4 Utilization of the DFG-out Region, a Near-Allosteric
Site/Type-II

The DFG-out region of protein kinase has appeared adjacent to the ATP binding site
along with the flip-flop motion in the DFG motif. In the innate DFG-out conforma-
tion (DFG-in), the side chain of the aspartate residue is faced into the ATP site and
that of the phenylalanine residue is involved in the R-spine outside of the ATP site.
In the DFG-out conformation, the side chains of aspartate and phenylalanine resi-
dues moved outside and inside of the ATP binding site, respectively. Consequently,
the DFG-out region retains the hydrophobic slot occupied by phenylalanine in the
DFG-in conformation. The DFG-out region represents the structural divergence and
connects to the ATP back pocket. Type-II inhibitor binds to the DFG-out region as
well as the ATP binding site via the ATP back pocket and thus tends to be highly
selective compared with Type-I inhibitors. Imatinib, an approved drug for chronic
myeloid leukemia, binds to the ATP binding site and DFG-out region of Bcr-Abl, a
chimera protein kinase resulting from the gene translocation [35]. Therefore,
imatinib is classified as a Type-II kinase inhibitor. The pyridine, pyrimidine, and
methyl benzene moieties of imatinib bound to the ATP binding site and the other
portion of the inhibitor occupied the DFG-out region. The nitrogen atom in the
pyridine ring forms a hydrogen bond with the main chain NH of the hinge region in
the ATP binding site. The three rings are bracketed by the hydrophobic residues in
the N- and C-lobes. These hydrophobic interactions complete the C-spine. The
interactions like these are observed in binding of the typical Type-I inhibitor to the
ATP site. The pyridine moiety of imatinib fitted into the hydrophobic space
surrounded in the DFG-out region of Bcr-Abl. The pyridine ring inserts and com-
pletes the R-spine of Bcr-Abl. However, the DFG-out region was not the ultimate
target for gaining the complete selectivity. The post-marketing surveillance studies
revealed that imatinib also inhibited c-Kit, a receptor-type tyrosine kinase, although
it was at first identified as a selective Bcr-Abl inhibitor. To date, the DFG-out
configuration has been observed in a large number of protein kinases. The crystal
structures of protein kinases indicated that the size of the gatekeeper residue corre-
lates with the propensity to be DFG-out. The small gatekeeper residue probably
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tolerates DFG-out motion but the large one does not. Imatinib also binds to the
DFG-in conformation of spleen tyrosine kinase (Syk) that has the methionine residue
at the gatekeeper position although it binds to the DFG-out conformation of the
target kinases with the threonine gatekeeper [3]. This gatekeeper rule is applied to
the other protein kinases such as mitogen-activated protein kinases (MAPKs). The
DFG-out configuration was often observed in p38α MAPK but little or no in
extracellular-regulated kinase 2 (ERK2) nor c-Jun N-terminal kinase 1 (JNK1) to
date. The gatekeeper residues are threonine, glutamine, and methionine in p38α
MAPK, ERK2, and JNK1, respectively.

Finally, Type-II inhibitor utilizing the ATP site and DFG-out region as a near-
allosteric region could not achieve the complete selectivity. The following illustrates
about the unique allosteric binding sites distinct from the regions utilized by the
Types-I and Type-II inhibitors.

3.5 Characteristic p38α MAPK Inhibitors/Type-I½

p38αmitogen-activated protein kinase (MAPK) plays a crucial role in the regulation
of pro-inflammatory cytokine production such as IL-6 and is an attractive drug target
for inflammatory diseases including rheumatoid arthritis and psoriasis. The Type-I½
inhibitors for p38α MAPK displayed high potency and selectivity [41]. The classi-
fication of Type-I½ was descended from the combination of the Type-I and Type-II
features. The most deterministic factor in the discrimination between Type-I and
Type-II is the inhibitor-binding conformation in the DFGmotif. The Type-I inhibitor
binds to the DFG-in conformation and has no involvement in the R-spine, while the
Type-II inhibitor binds to the DFG-out conformation and the hydrophobic moiety of
the inhibitor takes part in forming the R-spine. The Type-I½ inhibitor binds to the
DFG-in conformation, but the hydrophobic moiety of the inhibitor interacts with and
stabilizes the R-spine, moving the phenylalanine residue of the DFG motif a little.
Consequently, the near-allosteric pharmacophore around the ATP back pocket of
p38α MAPK represents a quite unique shape among protein kinases and is pivotal
for producing highly selective inhibitors. Furthermore, the Type-I½ configuration of
p38αMAPK is often accompanied with the flip motion at Gly110 in the hinge region
and resultantly possesses the unique shape in the ATP binding site, which accom-
modates atypical moieties dissimilar to the adenine moiety. The flipping point
observed in p38α MAPK is not conserved among the MAPK family: ERK2 and
JNK1 possess the glutamate and aspartate residues at the Gly110 position, respec-
tively. Our structural inspections for MAPKs revealed that the Type-I½ configura-
tion of p38α MAPK was quite unique and thus a beneficial target for elaborating
highly selective inhibitors. Moreover, the structural flexibility of p38αMAPK offers
the great potential to configure an unidentified conformation involving a novel
allosteric pocket useful for producing potent and selective inhibitors.
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3.6 Potential of the Allosteric Regions for the CK2α
Inhibition/Type-I and Type-IV

Casein kinase 2 (CK2) is a serine/threonine kinase that promotes cellular growth,
proliferation, and survival. CK2 is an important target protein for cancer and
glomerulonephritis therapies. The CK2 holoenzyme is constitutively active without
phosphorylation and consists of two catalytic subunits (CK2α) and two regulatory
subunits (CK2β). CK2 uses either ATP or GTP as a phosphate group donor in the
protein kinase reaction. This unusual dual specificity for nucleosides was
underpinned by the particularly large space near the ribose binding site, as well as
the flexibility in the αD-helix connected to the hinge region (Fig. 3.3a) [27]. CK2α
displays a constitutive enzyme activity regardless of whether or not it is phosphor-
ylated. Instead, the N-terminal segment stabilizes the active conformation of CK2α
via the hydrogen bonds and hydrophobic interaction. The salt bridge between Lys68
in the β3-strand and Glu81 in the αC-helix is complete in the constitutive active
conformation. The N-terminal segment, the phenylalanine residue (Phe113) at the
gatekeeper position, and the tryptophan residue (Trp176) replaced by phenylalanine
in the DFG motif of CK2α structurally stabilize the DFG-in configuration, i.e., likely
impede transition to the DFG-out configuration. The phenylalanine residue (Phe113)

Fig. 3.3 Near- and far-allosteric sites in the protein kinase domains of CK2α and ERK2. The ATP
binding and phosphorylation sites are shown in yellow and pink, respectively. (a) CK2α equips the
αD-helix pocket and CK2β binding interface for the allosteric binding (orange circles). The αD-
helix pocket is located adjacent to the ATP binding site, and the CK2β binding interface is far from
the ATP site. (b) ERK2 involves the KIM and FXFP sites essential for the substrate recognition and
dimer interface essential for activity in cytosol (green circles)
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at the gatekeeper position limits the accessibility to the ATP back pocket. The crystal
structures of the inhibitor-bound CK2α conferred a highly conserved water molecule
hydrogen bonding with the side chains of Glu81 in the ATP back pocket and main
chain NH of Trp176 in the DWG motif. This structural insight is helpful for
developing selective Type-I CK2α inhibitors. The carboxylic group of the several
CK2α inhibitors forms a hydrogen bond with the conserved water molecule
[18]. Further, the ATP binding site is narrow compared with the other kinases
owing to the bulky residues involving Phe113, Leu45, Val53, Met163, and Ile174.
Several planar compounds have been identified as the Type-I inhibitor for CK2 by
the structural analyses. Among them, silmitasertib (CX-4945) is in preclinical
development for cancer therapy. The low flexibility except for the αD-helix con-
strains the pharmacophore for CK2α and thus enabled to easily develop potent
inhibitors based upon the crystal structures.

The high-resolution crystal structure manifested two novel allosteric regions, the
hydrophobic pocket near the αD-helix and CK2β binding interface (Fig. 3.3a)
[17]. An ethylene glycol molecule, a precipitant reagent for the crystallization,
bound in the αD-helix pocket, and the other ethylene glycol molecules occupied
the CK2β interface. Recently, several compounds bound to the αD-helix pocket
were discovered and merged with the low-selective Type-I inhibitors on the basis of
several crystal structures [14]. The αD-helix pocket located in the C-lobe is a unique
character of CK2 and large enough to accommodate fused-ring heterocyclic com-
pounds such as the indole moiety. Therefore, this fragment-merge strategy is useful
for producing the highly selective CK2α inhibitors. On the other hand, Raaf et al.
indicated that 5,6-dichloro-1-b-d-ribofuranosyl benzimidazol (DRB), an
ATP-competitive CK2 inhibitor, binds to the CK2β interface as well as the ATP
binding site, and this conferred the potential to interfere with the CK2α/CK2β
interaction [33]. Several compounds involving DRB bind to the CK2α/CK2β inter-
face located at the top of the N-lobe (Fig. 3.3a) and inhibit the enzyme activity with a
non-ATP competitive manner [6]. These structurally unique regions, the αD-helix
pocket and CK2α/CK2β interface, are beneficial to develop CK2α-specific drugs as
Type-I or Type-IV.

3.7 Unique Allosteric Binding Sites of MAP 2K/Type-III
and Type-IV

Mitogen-activated protein kinase kinase 1 (MAP 2K1) functions as cell proliferation
and survival and is defined as an attractive drug target of cancers. The crystal
structure of the MAP 2K1 with U0126, a non-ATP-competitive inhibitor, unveiled
a highly unique region adjacent to the ATP binding site [30]. In this structure, the
inhibitor is bound to the unique site without interfering the ATP binding. Further
investigation indicated that the unique region appeared in an auto-inhibition state
adopted by the N-terminal regulatory domain (NRD) consisting of a single helix at
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the N-terminal of the kinase domain (Fig. 3.4) ([8]). The NRD region bound to the
back side of the hinge region and pulled the N-lobe toward the hinge region. The
gain-of-function mutations in the NRD region found in the cancer cells likely cancel
the hydrogen bond network between the NRD region and N- and C-lobes in the
kinase domain. Subsequently, the αC-helix moved out from the ATP site in the auto-
inhibition state, and this αC-out motion resulted in the emergence of the unique
region, which accommodates a variety of non-ATP-competitive inhibitors involving
U0126. Consequently, these structural insights indicated that this unique region was
available for producing the Type-III MAP 2K1 inhibitor, defined as a near-allosteric
site binder. Trametinib had been approved as an anticancer drug and displayed a high
selectivity for MAP 2K1 and MAP 2K2 against the other MAP 2K [40]. MAP 2K2
presents a similar physiological role with MAP 2K1 and conserves the NRD and
trametinib binding region [30]. The trametinib binding region of auto-inhibited MAP
2K1 is structurally unique and likely has potential to produce highly selective Type-
III inhibitors. The strong point of the Type-III inhibitor is that this binds to the target
kinase collaboratively with the ATP molecule, while the Type-I or Type-II inhibitor
must eliminate the ATP molecule from the ATP binding site, resulting in a large

Fig. 3.4 Auto-inhibition mechanisms of the MAP 2K family kinases. MAP 2K1 is autoregulated
by the N-terminal helix, which fixes the hinge motion between the N- and C-lobes. MAP 2K4 is
autoregulated by binding the substrate in the N-lobe groove and configuring a long helix in the
A-loop region. MAP 2K6 is autoregulated by configuring the three helices in the A-loop region.
Commonly, the A-loop configurations of MAP 2K1, MAP 2K4, and MAP 2K6 in auto-inhibition
state are not ready for substrate binding. The auto-inhibition state of MAP 2K7 is formed by an
interaction of P-loop with the C-lobe, interfering the ATP binding
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enthalpy loss. Several Type-III inhibitors for MAP 2K1 bound to the unique region,
making the hydrogen bonds with the phosphate group of ATP. The allosteric pockets
similar to MAP 2K1 have been observed in with-no-lysine kinase 1 (WNK1) and
cyclin-dependent kinase 2 (CDK2) [44] [5], although these are distinguishable based
upon their detailed structures. In the near future, the structural mechanism for
forming the MAP 2K1-type allosteric pocket along with the αC-out motion would
be clarified based upon the crystal structure analyses, and this likely facilitates the
development of selective inhibitors for these protein kinases.

On the other hand, crystal structures of the MAP 2K1 homologues, MAP 2K4,
MAP 2K6, andMAP 2K7, in the auto-inhibition state indicated that these three MAP
2Ks owned no NRD, but each has a characteristic auto-inhibition mechanism
(Fig. 3.4) [25, 26, 36]. MAP 2K4 is a client kinase of p38 mitogen-activated protein
kinases (p38 MAPKs) and c-Jun N-terminal kinases (JNKs), and its dysregulation
occurs in the diseases such as cancers. The substrate binding to a deep cleft in the top
of the N-lobe induces an auto-inhibition conformation of MAP 2K4, in which the
A-loop region configures a long helix, interfering substrate binding (Fig. 3.4)
[25]. Therefore, the N-lobe cleft and vacant space caused by the structural
rearrangement in A-loop are likely available for producing allosteric inhibitors of
MAP 2K4. MAP 2K6 is a client kinase of p38 MAPKs and an attractive drug target
for inflammation and autoimmune diseases. The ATP binding triggers an auto-
inhibition conformation of MAP 2K6, in which the A-loop segment was converted
into three short helices, interfering substrate binding (Fig. 3.4) [26]. The hydropho-
bic space located at the back side of these helices is perhaps available as an allosteric
site for discovering novel MAP 2K6 inhibitors. MAP 2K7 is involved in the JNK
signal cascade and a significant drug discovery target against arthritis, cardiac
hypertrophy, and so on. The n-σ� interaction between Cys218 at the N-terminal of
the αD-helix and Gly145 in the P-loop of MAP 2K7 shaped a closed structure,
interfering with the ATP molecule binding (Fig. 3.4) [36]. The resulting structure
presents the large and unique hydrophobic space in the DFG-out region sequestered
by the ATP binding site. These allosteric spaces discovered in the auto-inhibition
state of MAP 2K4, MAP 2K6, and MAP 2K7 are not conserved among the MAP 2K
family kinases and thus noteworthy for the development of highly selective Type-III
inhibitors.

High-resolution X-ray analysis, which was achieved through the experiments
under the microgravity environment, conferred the alternative auto-inhibition state
of MAP 2K7, regulating with an intermolecular manner [16]. The C-terminal
fragment of Gly424-His430, following to the kinase domain, presented an extended
configuration and bound to the groove in the N-lobe of the neighbor MAP 2K7
molecule via the hydrogen bonds and hydrophobic interaction and likely worked as
an intermolecular brake of MAP 2K7. The side chain of Leu426 in the middle of the
C-terminal fragment intruded into the deep hydrophobic pocket involving Asn138,
Trp151, and Val164, forming the side and bottom of the N-lobe groove. The
intermolecular interaction likely induces the shift of the N-lobe toward the hinge
region and subsequently the DFG-out conformation without forming the C-spine.
Further structural inspections revealed that this N-lobe pocket of MAP 2K7 is unique
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among MAP 2Ks. The other MAP 2K could not accommodate the leucine residue
with the region similar to the Leu426 binding pocket of MAP 2K7 because of the
bulky or hydrophilic residue replaced by that of MAP 2K7 (Table. 3.2). Actually, the
synthesized C-terminal peptide moderately but concentrate dependently inhibited
the MAP 2K7 activity and thus could be defined as a seed compound of the Type-IV
drug. The top of the N-lobe is used for the protein-protein interaction and
autoregulation in several kinases such as MAP 2K4 and 3-phosphoinositide-depen-
dent protein kinase (PDK1) and useful for the development of highly selective
inhibitors. Inactive MAP 2K4 accommodates the substrate in the N-terminal groove
as abovementioned [25]. PDK1 equips the PDK1-interacting fragment (PIF) pocket
in the N-lobe, which primary recruits the substrate proteins. Rettenmaier et al.
discovered the Type-IV inhibitors, which inhibit PDK1 in cells, based upon this
structural insight [34]. Fortunately, these allosteric pockets of MAP 2K4, MAP 2K7,
and PDK1 are nonoverlapping in the N-lobe and recognize the distinguished
sequence.

Together all, we have the great chances to produce the near- and far-allosteric
MAP 2K inhibitors (Type-III and Type-IV), which represent the tendency to be
highly selective against the off-target kinases. However, we cannot quantitatively
estimate the potential of the obtained inhibitor to date.

3.8 Far-Allosteric Inhibition of ERK2/Type-IV

Extracellular-regulated kinase 2 (ERK2) is a member of mitogen-activated protein
kinases (MAPKs), regulated by MAP 2K1 via phosphorylation and defined as a drug
discovery target for serious diseases such as cancer and type 2 diabetes. The
ATP-competitive Type-I inhibitors for ERK2 have been discovered, and some of
them are in clinical study [29, 42]. In addition to these, the far-allosteric inhibitors
were discovered on the basis of the unique substrate recognition mechanism
[15]. ERK2 anchors the substrate proteins via their consensus sequence of Lys
(Arg)2-3-X1-6-Φa-X-Φb (Φ, hydrophobic amino acid; X, any amino acid) at the
kinase interacting motif binding site (KIM site) which is distinct from the phosphor-
ylation site recognizing the Ser(Thr)-Pro sequence of the substrate (Fig. 3.3b). The
far-allosteric KIM site is located in the back side of the hinge region but inaccessible

Table 3.2 Amino acid
residues significant for the
N-lobe pocket of MAP 2Ks

MAP2K7 Asn138 Trp151 Val164

2K1 Lys Phe Arg

2K2 Arg Thr Arg

2K3 Thr Glu Val

2K4 Asp Asn Val

2K5 Tyr Tyr Val

2K6 Pro Glu Val
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to the ATP binding site. Therefore, the KIM binder is classified as the Type-IV
inhibitor. A synthesized peptide based on the consensus sequence in signal trans-
ducer and activator of transcription 3 (STAT3) inhibited the ERK2 activity with the
IC50 value of 9.8 μM and had a significant effect on the model mice without the
serious adverse effects [15]. The X-ray analysis conferred the separated sub-pockets
in the KIM site. The two aliphatic residues of the peptide inhibitor are accommo-
dated in the shallow pocket configured by the hydrophobic residues in the KIM
region. The positive-charged residues of the peptide inhibitor were located in the
negative-charged pool involving three aspartates and a glutamate residue in the KIM
region of ERK2. The hydrophobic pocket and negative-charged pool are completely
sequestered in the KIM region. The arbitrary sequence in the middle of the consen-
sus peptide likely works as a sole linker of these characteristic regions. The KIM
region forms a shallow groove and is disadvantageous for the gain of binding affinity
compared with the ATP binding site. Nevertheless, the drug discovery studies
indicated the potential to realize the far-allosteric inhibition of ERK2. The KIM
binders discovered by the in silico screening displayed the moderate inhibitory
activity and competitive behavior to the STAT3 peptide [19]. JNKs and p38
MAPKs, members of the MAP kinases involving ERK2, possess the common
substrate recognition mechanism using the KIM region. MAPKs discriminate their
own substrates with high fidelity through the recognition in the KIM region.
Therefore, the KIM binding inhibitors are expected to possess high selectivity
among MAPKs. However, the KIM inhibitors reported to date displayed the rather
low activity. To solve this problem, the bivalent inhibitors were invented by merging
the Type-I ATP competitive and KIM peptide inhibitors via the long linker segment
[20]. The bivalent inhibitors exhibited high inhibitory potency against ERK2.

The FXFP region found in the MAP kinase insert region of MAPKs works as a
second substrate anchoring site utilized by the transcription factor substrates
(Fig. 3.3b) [1]. Structural studies revealed that the FXFP site was observed in the
active ERK2 (doubly phosphorylated state) but inaccessible to the inactive state of
ERK2 (non-phosphorylated state). In the inactive state, Phe181 and Leu182 in the
A-loop occupied the FXFP site of ERK2. Double phosphorylation likely induces the
conformation change in the A-loop and opens the FXFP site. The second anchoring
system is also conserved in all MAPKs but divergent enough to discriminate their
own substrates like the KIM site.

Upon activation, the dimer state is essential for the ERK2 extranuclear signaling.
Herrero et al. reported that a small molecule inhibitor for ERK2 dimerization fore-
stalls tumorigenesis [13]. Biochemical experiments revealed that this inhibitor
interfered with the dimerization of ERK2 and probably bound to the dimerization
interface of ERK2. Crystal structure indicated that the tip of the A-loop involving
Asp175 intruded into the small pocket was located in the back side of the connecting
loop between the β3-strand and αC-helix [13] (Fig. 3.3b).

To the best of our knowledge, three far-allosteric pockets involving the substrate
recognition sites of KIM and FXFP and dimer interface are available for producing
highly selective Type-IV inhibitors of ERK2.
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3.9 Allosteric Inhibition of Receptor Tyrosine Kinases/
Type-III

The receptor tyrosine kinase (RTK) family represents a typical auto-inhibition configura-
tion in which accompanying theDFG-out transition, the phenylalanine residue in the DFG
motif intrudes deeply into the ATP site (Fig. 3.5). In addition to that, the tyrosine residue
as a phosphorylate acceptor in the A-loop is located at the substrate binding position in this
auto-inhibition state (Fig. 3.5). The resulting allosteric pocket involving the DFG-out
region is probably available for producing selective Type-III inhibitors (Fig. 3.5).
FMS-like tyrosine kinase (FLT3), a member of the RTK family, is essential for the
normal function of stem cells and the immune system and potential target for therapies of a
variety of leukemia. The allosteric pocket in the typical RTK auto-inhibition structure of
FLT3 is fully occupied by Tyr572 and its marginal residues in the juxtamembrane region
(Fig. 3.5) [10] and is likely available for developing selective FLT3 inhibitors. Insulin-like
growth factor-1 receptor (IGF-1R) is also a member of RTK family and associates to the
signaling to tumor. Heinrich et al. showed that the indolealkylamine class inhibitors,
which were discovered by a high-throughput screening, bound to the near-allosteric
pocket involving the DFG-out region in the typical RTK auto-inhibition conformation
of IGF-1R [12]. Thus, these inhibitors are defined as Type-III inhibitors and stabilize the
RTK auto-inhibition conformation, concealing the phosphorylating tyrosine residue in the
A-loop.

Tropomyosin receptor kinase A (TrkA) is a receptor for nerve growth factor
(NGF) that mediates neuronal differentiation and cellular survival. TrkA belongs to
the receptor tyrosine kinase family, consisting of an extracellular ligand-binding

Fig. 3.5 An auto-inhibition
configuration of FLT3 on
behalf of the receptor
tyrosine kinase. The
phenylalanine residue in the
DFG motif intrudes into the
ATP binding site, resulting
in the narrow ATP binding
site. The tyrosine residue in
the A-loop occupies the
phosphorylation site and
forms a hydrogen bond with
the aspartate residue as a
proton acceptor. In this
conformation, the A-loop
sequesters the DFG-out
region from the ATP
binding site
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domain, a transmembrane helix, an intracellular juxtamembrane region (JM), and a
tyrosine kinase domain. The TrkA signaling pathway plays a crucial role in the
physiological function of chronic pain and is an attractive drug target for chronic
pain. TrkA is a member of the Trk subfamily, which also includes TrkB and TrkC.
Each Trk plays a distinct function. Thus, selective TrkA inhibitors are desired for the
chronic pain therapy. Undesirable side effects have been reported for pan-Trk
inhibitors. The several Types-I and Type-II inhibitors for TrkA have been developed
based upon the crystal structures but disappointingly exerted the pan-activity. The
crystal structures depicted that the inhibitor-binding environments in the ATP and
DFG-out sites were completely conserved among the Trk family. These structural
insights coincide with the low selectivity of the above inhibitors. However, some
research organizations have reported the highly selective TrkA inhibitors, which
were expected to be classified into Type-III, binding to the RTK allosteric pocket as
observed in IGF-1R. The crystal structures of TrkA with the highly selective
inhibitor unveiled that the inhibitor-binding pocket were assembled from the allo-
steric RTK pocket and JM region and completely sequestered from the ATP site
[9, 38]. Therefore, these selective inhibitors were confirmed as the Type-III inhibitor.
One-third of the pocket is composed of amino acid residues in the JM region. Owing
to the low sequence homology of the JM region among Trks, these inhibitors exhibit
high selectivity. Trks share significant sequence homology in the kinase domain
involving the DFG-out region, whereas the JM region is highly divergent among the
Trk family. The selective Type-III inhibitor binds to the JM region via hydrogen
bonds, van der Waals interactions, and CH-π interactions at Leu486, His489, Ile490,
etc. These residues of TrkA are not conserved in TrkB and TrkC and should
contribute to the high binding affinity and selectivity.

Collectively, the receptor tyrosine kinases have a typical auto-inhibition structure
and its close relatives useful for producing potent Type-III inhibitors, and the flexible
region such as JM occasionally plays a definitive role for the high selectivity and
potency of the inhibitors.

3.10 Molecular Switch Regulation of RSKs and MSKs/
Type-IV

Dimethyl fumarate (DMF) has been used for the oral therapy of psoriasis and
multiple sclerosis. More recently, Anderson et al. suggested that DMF covalently
bound to the hydrophobic pocket in the C-lobe of p90 ribosomal S6 kinases (RSKs)
and mitogen- and stress-activated kinases (MSKs) as its potential target proteins
[2]. The crystal structure of the DMF-RSK2 complex showed that the Michael
acceptor of DMF made a covalent bond with the Cys599 in the bottom of the
C-lobe pocket formed by the hydrophobic residues Trp602, Val662, Ile633, and
Leu710 [2]. The C-lobe pocket was estimated to be an allosteric regulator that bound
the tip of the phosphorylated A-loop and stabilized the active conformation. The
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C-lobe pocket containing the cysteine residue is conserved among RSKs and MSKs.
Therefore, the DMF-binding pocket is noteworthy for producing highly selective
Type-IV inhibitors for RSKs and MSKs. Further structural dissections probably
allow to discriminating the C-lobe pocket of these homologous kinases.

3.11 The Pursuit of Unidentified Allosteric Pockets
in Protein Kinases

In the near future, all the protein kinase structures would be available in Protein Data
Bank and consequently accelerate the production of highly selective inhibitors.
Bioinformatics technology and computational chemistry using artificial intelligence
(AI) presumably play central roles in dissecting and characterizing the inhibitor-
binding pockets of all protein kinases. The structural flexibility of protein kinases
confers the innumerable conformations in solution, involving some energetically
stable those such as the auto-inhibition state. The conformational selection by a
protein kinase inhibitor results in the population shift in the protein kinase config-
uration. The DFG-out configuration was firstly identified as a result of the Type-II
inhibitor binding but not observed as an apo state. Molecular dynamics studies
facilitated the comprehensive understanding of the structural flexibility of protein
kinases [7, 39]. With the upsurge in computational power, it would be possible to
develop drug discovery techniques involving in silico screening against the confor-
mational ensemble of a target protein kinase and the clarification of unprecedented
conformations that could not been identified without crystal analyses. Meanwhile,
several recent studies showed that the propensity of the slow dissociation kinetics of
the protein kinase inhibitor was beneficial for drug efficacy and associated with
conformational change. Ayaz et al. indicated that roniciclib, a Type-I inhibitor,
exerted the kinetic selectivity for CDK2, indicating sustainable effect on retinoblas-
toma protein phosphorylation [4]. Furthermore, the derivatives of roniciclib
prolonged the resident time by the inhibitor-induced conformational change in
binding to the CDK2 [4]. Finally, the computation development involving molecular
dynamics would dissect the conformational behavior and binding kinetics of protein
kinases to produce highly selective protein kinase inhibitors.

3.12 Conclusion

It is necessary to resolve a large number of the significant challenges to develop
inhibitors to be drugs. Protein kinase inhibitors with low selectivity suppress a
variety of the off-target protein kinases as well as the target one and arguably exert
the adverse effects on vital. To pursue the production of highly selective protein
kinase inhibitors, a variety of the druggable allosteric sites involving the ATP back
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pocket (Sect. 3.3), the DFG-out region (Sect. 3.4), the αD-helix pocket and CK2β
binding interface of CK2α (Sect. 3.6), the KIM and FXFP sites of ERK2 (Sect. 3.8),
the N-lobe pockets (Sects. 3.6, 3.7 and 3.8), the C-lobe pocket (Sect. 3.10), the
physiologically essential dimer interface (Sect. 3.8), and so on are available in the
protein kinase domains (Table 3.3). These allosteric sites are primarily utilized for
the diverse physiological function such as the activity regulation, substrate recogni-
tion, and subcellular localization of protein kinases. These allosteric molecular
switches are quite unique among protein kinases. Therefore, the allosteric sites
equipped in the protein kinase domain are noteworthy for gaining high selectivity.
The approved kinase inhibitors gained the high selectivity by more or less using the
allosteric site. Erlotinib, a Type-I EGFR inhibitor for the anticancer therapy, bound
to the ATP back pocket (Sect. 3.3). Imatinib, a Type-II Bcr-Abl inhibitor for the
chronic leukemia therapy, occupied the DFG-out region (Sect. 3.4). Trametinib, a
Type-III MAP 2K1 inhibitor as anticancer drug, used only the near-allosteric region
induced by the auto-inhibition (Sect. 3.7). The Type-IV kinase inhibitor binds to the
far-allosteric region and thus is expected to be highly selective but displays the low
inhibitory potency. The Type-V kinase inhibitor presents a considerable burden in
gaining the high selectivity because of little or no use of the allosteric region.

Table 3.3 Allosteric sites
available for producing highly
selective protein kinase
inhibitors

Protein kinase Allosteric site Target type Section

EGFR ATP back pocket Type-I 3

TrkA ATP back pocket Type-I 3

DFG-out region Type-III 9

Bcr-Abl DFG-out region Type-II 4

c-Kit DFG-out region Type-II 4

p38α MAPK ATP back pocket Type-I½ 5

CK2α αD-helix pocket Type-I 6

CK2β interface Type-IV 6

MAP2K1 αC-out pocket Type-III 7

MAP2K2 αC-out pocket Type-III 7

MAP2K4 N-lobe pocket Type-IV 7

MAP2K6 DFG-out region Type-III 7

MAP2K7 DFG-out region Type-III 7

N-lobe pocket Type-IV 7

WNK1 αC-out pocket Type-III 7

CDK2 αC-out pocket Type-III 7

PDK1 N-lobe pocket Type-IV 7

ERK2 KIM site Type-IV 8

FXFP site Type-IV 8

Dimer interface Type-IV 8

FLT3 DFG-out region Type-III 9

IGF-1R DFG-out region Type-III 9

RSK2 C-lobe pocket Type-IV 10

MSKs C-lobe pocket Type-IV 10
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The structural flexibility of protein kinases confers the innumerable conforma-
tions in solution, involving the unidentified allosteric pockets as discovered in the
auto-inhibition state. Finally, the computation development involving molecular
dynamics would dissect the conformational behavior of protein kinases and promote
to produce highly selective protein kinase inhibitors.
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Chapter 4
Progress in Allosteric Database

Kun Song, Jian Zhang, and Shaoyong Lu

Abstract An allosteric mechanism refers to the biological regulation process
wherein macromolecules propagate the effect of ligand binding at one site to a
spatially distant orthosteric locus, thus affecting activity. The theory has remained
a trending topic in biology research for over 50 years, since the understanding of
allostery is fundamental for gleaning numerous biological processes and developing
new drug therapies. In the past two decades, the allosteric paradigm has evolved into
more descriptive models, with ever-expanding amounts of experimental data
pertaining to newly identified allosteric molecules. The AlloSteric Database (ASD,
accessible at http://mdl.shsmu.edu.cn/ASD), which is a comprehensive knowledge
repository, has provided the public with integrated information encompassing allo-
steric proteins, modulators, sites, pathways, and networks to investigate allostery
since 2009. In this chapter, we introduce the history and usage of the ASD and give
attention to specific applications that have benefited from the ASD.

Keywords ASD · Allostery · Drug development

4.1 Introduction

Allostery is the most common and efficient means that enables the exquisite control
of macromolecule function. Nature leverages allosteric modulation in a wide variety
of cellular processes such as signal transduction, transcription activation, and feed-
back inhibition [5, 16, 33]. The biological occurrence of allosteric regulation is
characterized by conformational or dynamical changes at the active site induced by
the stimuli-like binding of molecules or covalent modification at another site via the
transmittal cascade of residue-residue fluctuations throughout the structure [4].
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Early experimental evidence has resulted in the development of two theoretical
allosteric models, a concerted model raised by Monod, Wyman, and Changeux (MWC)
[35] and a sequential model proposed by Koshland, Némethy, and Filmer (KNF) [25],
both of which consider two conformation states for different protein domains. The MWC
model emphasizes that the chemical equilibrium shift of two pre-existing states upon
ligand binding leads to cooperative regulation. In contrast, the KNF model assumes the
“induced-fit” allosteric transition mechanism that ligand binding on one subunit will
trigger conformational changes in other subunits. Undoubtedly, both models have been
successful in depicting allosteric mechanisms for a long time. However, how the structure
facilitates allosteric coupling between the allosteric site and the orthosteric site is still
unclear. Considering the ensemble nature of biomolecule systems, a modern perspective
of allostery supports that the manipulation is derived from the population redistribution of
the entire conformational state [36, 39].

Advance in deciphering allosteric mechanisms drives the field of developing allosteric
drugs, which holds the promise for producing therapeutic molecules with higher selectiv-
ity and lower toxicity compared to conventional orthosteric drugs [20, 40, 57]. Allosteric
modulators generally have a saturable effect that does not fully activate or inhibit protein
function, resulting in an improved safety profile [22]. Additionally, the modulation effect
often occurs in the presence of endogenous orthosteric ligands, allowing for natural
cellular function to proceed [42]. Since allosteric drugs boast many potential advantages,
great efforts have been made by the pharmaceutical society, which is evidenced by the
approval of 11 allosteric drugs.

In the past two decades, improvements in experimental methods such as X-ray
diffraction, nuclear magnetic resonance, and high-throughput screening in conjunction
with computational approaches such as molecular dynamics simulation have produced
numerous data regarding allosteric cocomplexes, compounds, and pathways. These
improvements have led to a singular opportunity for propelling the understanding of the
allosteric mode of action, the disclosure of allosteric proteins, and the exploiting of novel
compounds targeting allosteric sites. In contrast, most allosteric compounds are discovered
coincidentally through virtual screening, as the resources and strategies that can promote
rational and systematic development of these agents are still lacking [7, 55]. Therefore, the
presence of an open-accessible database designed for searching, visualizing, and analyzing
allosteric data may bridge this gap. The AlloSteric Database (ASD) has provided a
versatile resource for structure, function, disease, and related annotation for the well-
established allosteric macromolecules and allosteric modulators since 2009. Data in the
ASD are free for biologists and medicinal chemists interested in allosteric regulation
mechanisms and allosteric drug discovery.

4.2 History of ASD

In this section, three released versions of the ASD will be introduced. The deluge of
allosteric data and feedback from the community enable us to append new modules
for deciphering allostery and facilitating allosteric drug development. Figure 4.1
shows the main page of the ASD.
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4.2.1 ASD v1.0

ASD v1.0, the first version of the database, was constructed as an integrated resource
that focuses on allosteric information describing the specific structure, function, and
mechanism of 336 allosteric proteins and 8095 allosteric modulators [18]. All
allosteric data are deposited in MySQL (Fig. 4.2).

The original allosteric data were collected from scientific literature, relevant web
servers, and United States Patent and European Patent files. Three hundred and
thirty-six proteins comprising 101 species deposited in the ASD were manually
verified in which their functional variation was evoked by ligand binding at a site
that was topographically distinct from the orthosteric site. These proteins were
annotated with gene information, biological function, natural mutations, and related
diseases. The structural information for allosteric proteins were also collected and
annotated, incorporating crystal structures from the Protein Data Bank (PDB) or
theoretical structure models predicted by I-TASSER [46], the structural classifica-
tions SCOP [38] and CATH [9], and allosteric sites validated by biochemical assays
or structural details from the literature.

Likewise, allosteric modulators for 336 allosteric proteins were searched for in
PubMed and the United States Patent and European Patent files, which yielded 8095
chemical allosteric modulators. All allosteric ligands were classified into three categories,
namely, allosteric activators for those increasing a protein function, allosteric inhibitors for

Fig. 4.1 Screenshot of the main page of ASD v3.0
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those decreasing a protein function, and allosteric regulators for those regulating enzyme
activity or controlling cooperativity of multisubunit proteins indirectly via allostery, etc.
Additionally, allosteric modulators were labeled as “Endogenous” or “Druggable” to
distinguish molecules produced in vivo from compounds leveraged for drug design.
Physicochemical properties such as the logP, PSA, and number of rotatable bonds
together with the binding affinity available from respective references for each allosteric
modulator were provided for chemical optimization.

In the first release of the ASD, the goal was to focus on integrating identified allosteric
proteins andmodulators in the past 50 years to facilitate systematic allosteric investigation.
However, owing to the increasing number of allosteric proteins being identified, the whole
repertoire of allostery needed to be further unraveled.

4.2.2 ASD v2.0

For the second version of the ASD, in addition to increasing the amount of allosteric
proteins and modulators, the allosteric sites and allosteric pathways were constructed
to recapitulate the regulatory mechanisms in various biological processes from the
structure view [19]. Moreover, medical chemists could design compounds with high
selectivity targeting less conserved allosteric pockets. Figure 4.3 displays the new
features of ASD v2.0.

Fig. 4.2 The architecture of the ASD. Users can visualize and analyze a great range of allosteric
information by interfacing the web page
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Using the same collection method in ASD v1.0, 1286 allosteric proteins across various
species, including kinases, GPCRs, ion channels, peptidases, phosphatases, transcription
factors, and nuclear receptors, were curated and deposited. Accordingly, 565 diseases
reported to be relevant to the dysregulation of those allosteric proteins were also collected.
In this version, the database comprises 22,008 allosteric modulators that are categorized as
15,140 activators, 6207 inhibitors, and 850 regulators.

The presence of druggable, spatially distinct allosteric sites in a wide range of
protein families offered a new paradigm for compounds to regulate receptor function
[32]. Original allosteric cocrystals encompassing 907 allosteric protein-ligand com-
plexes of 23,009 experimentally verified interactions were acquired from PDB.
Afterward, 218 unique allosteric sites with or without bound modulators were
visualized to investigate the key interactions and perturbations on the pocket elicited
by allosteric binding. In addition, the paired orthosteric sites can also be queried to
explore coupling with regulatory sites.

An important aspect underlying allosteric mechanisms is the communication-
mediating allosteric and functional sites. The identification of potential allosteric
pathways could guide a rational design of physiopathological activity for therapy
[12, 14]. Thus, in ASD v2.0, we collected 48 allosteric pathways identified by
experimental methods including site-directed mutagenesis, NMR, and theoretical
methods such as Markov models and MD simulation. The key residues constituting
the signaling pathways were listed.

Fig. 4.3 The new features in ASD v2.0
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In addition to the two features, Allo-Modulator Like and Allo-Site Prediction are
deployed as two standalones to predict allo-like traits for small molecules and
allosteric sites for a protein structure, respectively. In this version of the ASD, the
repository was enhanced with structural perspectives on illuminating allosteric
regulation, which may boost the development of computational tools for allosteric
proteins and their modulators.

4.2.3 ASD v3.0

In this update, we focused on the characterization of allosteric drug action, allosteric
cellular networks, and well-established therapeutic protein families such as protein
kinases and GPCRs [49].

Building on the previous two versions, with increasing interest in the field of
allostery, we expanded the data volume of allosteric proteins and modulators
considerably (Table. 4.1). ASD v3.0 contains 1473 allosteric proteins and 71,538
allosteric modulators consisting of 25,339 activators, 33,604 inhibitors, and 13,462
regulators. The increase in modulators is mainly derived from a significant interest in
the drug discovery community. Other allosteric annotations and features, including
allosteric interactions, sites, pathways, and related diseases, were also augmented.

As a key step to characterize the allosteric control of a molecule system, the
desired compound activity can be examined in the detected allosteric site via
adjusting the degree of allosteric action exerted on the surrounding residues
[41]. To observe the origin of the conformational transition, comparison of the
allosteric site before and after binding the modulator is critical. To this end, 1688
allosteric apo/holo paired structures in 308 proteins from 107 organisms were
constructed in ASD v3.0 to determine the allosteric modulator action. As shown in
Fig. 4.4, the superimposition of apo/holo structures of glutamate suggests pro-
nounced backbone displacement induced by binding of the allosteric effector. This
module also revealed that the opposite mechanism originated from one allosteric site
by triggering different hotspots, raising challenges for allosteric drug design.

Cellular functions can be decoded in terms of signaling networks such as gene
transcription networks, metabolic networks, etc. The propagation of allosteric sig-
nals is not limited to a single protein structure. The binding of an allosteric modulator
to one protein may induce conformational and dynamical changes on adjacent
proteins. Moreover, as allosteric signals are transmitted inside the protein structures
and over the entire network in an anisotropic and stepwise manner, proteins largely
distant from the origin of propagation can also be perturbed [43]. To integrate the
dynamic regulation of allosteric proteins and reveal their relationships in functional
networks, 261 allosteric networks, in which allosteric proteins function as perturbed
nodes and allosteric modulators act as perturbants, were built from the literature
through cross-linking and manual calibration. Figure 4.5 displays the “MAPK
signaling pathway” allosteric network.

Analysis of collected allosteric information indicates that kinases and GPCRs are
two of the largest allosteric protein families that have been extensively exploited
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Table 4.1 Total data in different versions of ASD

Data category ASD v3.0 ASD v2.0 ASD v1.0

Number of all modulators 71,538 22,003 8095

Number of activators 25,339 15,144 4784

Number of inhibitors 33,604 6205 3035

Number of regulators 13,462 854 386

Number of dual activators/regulators 334 50 16

Number of dual inhibitors/regulators 320 55 16

Number of dual activators/inhibitors 257 125 87

Number of multiple activators/inhibitors/regulators 44 30 9

Number of all allosteric sites 1930 907

Number of all proteins 1473 1261 336

Number of kinases 207 187 46

Number of GPCRs 118 109 48

Number of ion channels 134 119 21

Number of peptidases 59 55 0

Number of phosphatases 30 27 0

Number of transcription factors 55 46 0

Number of nuclear receptors 26 24 0

Number of E-proteins 5 5 2

Number of other proteins 839 689 219

Number of protein-modulator interactions 75,462 23,120 8680

Number of all protein pathways 56 48

Number of allosteric-related diseases 3350 565 248

Fig. 4.4 Conformational rearrangements at the allosteric site on the basis of aligning the glutamate
structure of apo and holo



with drug discovery. Unraveling the evolutionary relationship among allosteric sites
of these two families could provide a promising paradigm for novel site identifica-
tion and could help design potent compounds with high subtype selectivity and
improved biased signaling. To this end, two allosterome maps in humans, protein
kinases, and GPCRs were completely established in terms of multiple sequence
alignments and phylogenetic trees. As illustrated in Fig. 4.6, among 76 kinases,
51 members with discovered allosteric modulators are labeled with white circles and
12 members with solved allosteric complex structures are tagged with red flags.

In this ASD update, great efforts were made to describe allosteric action on the
structural view, map allosteric cellular networks, and construct protein kinase and
GPCR allosteromes.

Fig. 4.5 A screenshot of allosteric network “MAPK signaling pathway”
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4.3 Usage of the ASD

The main page contains seven items on the top menu: “HOME,” “MOLECULES,”
“FEATURES,” “TOOLS,” “MISC,” “DOWNLOAD,” and “HELP,” “MOLE-
CULE” contains two submenus, “PROTEIN” and “MODULATOR,” and “FEA-
TURES” contains four submenus, “SITE,” “PATHWAY,” “NETWORK,” and
“ALLOSTEROME.” The overall organization of ASD v3.0 is depicted in Fig. 4.7.

Users can click the “PROTEIN” menu to access Level 1 Protein Browse in the
Main Frame. It groups all macromolecules into multilevel tab panels according to the
selected class and subclass. All allosteric proteins are classified as Kinase, GPCR,
Channel, Peptidase, Phosphatase, Transcription Factor, Nuclear Receptor,
E-Protein, and Other. Each page of the tab lists all targets within the subclass.
Double-clicking the target name jumps to show Level 2 information of the target.
Level 2 of the Protein module encompasses an integrated description of allosteric
proteins ranging from sequence, structures, mutations, and modifications. Visuali-
zations of allosteric actions for a protein are available in the Allosteric Mechanism
section of the module. Clicking the modulator button shows the details of the
apo/holo aligned structures with basic information of the target, the bound

Fig. 4.6 The illustration of protein kinase allosterome
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modulator, and the extent of conformational rearrangement. All proteins deposited in
the ASD are cross-linked to other widely used biological databases including
UniProt, GenBank, and PDB.

Clicking the “MODULATOR” menu displays the Level 1 Modulator module in
the Main Frame. All modulator entries in four tab panels are defined by the
modulator type, namely, All, Activator, Inhibitor, and Regulator. Each page of the
tab panel illustrates 10 modulator records with their ASD IDs, 2D structures, and
modulating effects for different targets. Clicking the ASD ID jumps to Level
2 information of the modulator, which contains standard molecule formula, 2D/3D
structures, physicochemical attributes, and related targets with original references.

The Site module can be accessed by clicking the “SITE” menu under the
“FEATURE” menu. The site data are listed in the grid table where the target
name, organism, modulator, allosteric site and orthosteric site, and PDB ID are
shown. The Pathway module lists all allosteric pathways stored and the information
for each pathway includes target, organism, method, verified residues, and refer-
ences. The Network module is organized as two levels. Level 1 lists all allosteric
networks stored in ASD v3.0. Each page of the grid shows five records with network
titles. Double clicking a record brings the user to Level 2 of the module. In this page,
users can query the details of allosteric networks, in which allosteric proteins are
marked with different colors. Users can view the protein details by suspending the

Fig. 4.7 Organization of the web interface in ASD v3.0
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mouse on the node. The two allosterome results can be accessed by clicking the
“ALLOSTEROME” menu.

Clicking the gene name reveals detailed information of the target, modulators,
and complex structures. Users can download all archive files of modulators and
proteins in the download page under the “DOWNLOAD” menu.

4.4 Application Cases

In this section, we focus on four application studies that adopt allosteric information
in the ASD to investigate allosteric mechanisms or allosteric drug discovery and
design.

4.4.1 GNM Analysis of Hemoglobin and iGluR

The normal mode analysis (NMA) method has become one of the standard technol-
ogies to probe protein dynamics [1]. The theory of normal modes is based on the
assumption that a given conformation is at the energy minimum and all other
conformations can be considered as thermally induced harmonic fluctuations around
the minimum. Thus, the energy surface in the vicinity of the minimum is a
multidimensional parabola. NMA is commonly applied to detect slow modes with
large conformational fluctuations, namely, low-frequency modes, which are repre-
sentative of global motion and are relevant to protein function. The Gaussian
network model (GNM), which is the simplest coarse-grained model based on
NMA, regards the entire protein structure as a set of Cα atoms connected through
spring-like interactions within a certain cutoff distance [13]. The fluctuations around
the equilibrium are distributed in a Gaussian manner. The topology of the network is
fully defined by a Kirchhoff matrix, and its diagonalization can acquire the fre-
quency and direction of the mode. Due to its simplicity and efficiency, GNM has
been applied to allosteric transitions and allosteric coupling [28, 30, 58].

4.4.1.1 Case Study 1: Hemoglobin

Perhaps the most thoroughly studied example of allostery is hemoglobin (Hb), a
tetrameric protein consisting of four subunits (α1, α2, β1, and β2) systematically
arranged as a dimer of dimers (α1β1 and α2β2) (Fig. 4.8) [45]. Hemoglobin can bind
O2 reversibly at four heme sites on four subunits and act as an O2 carrier to transport
oxygen from the lungs to all tissues in the body. In the 1960s, it was believed that the
allosteric transition of hemoglobin had been well-understood by the determination of
the deoxygenated and oxygenated structures, which correspond to the tense (T) and
relaxed (R) states of the two-state allosteric model [35]. The structural transition
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from T to R is manipulated in a cooperative manner, as the binding of O2 to the first
subunit increases the O2-binding affinity of the second and successive subunits. In
recent decades, a growing body of evidence suggests the existence of several states
in conformational change. Silva et al. detected an alternate quaternary state, R2, for
ligated hemoglobin [51]. Maria et al. confirmed that R2 is an oxygenated hemoglo-
bin end state, rather than an R state [47]. Recently, Stefan et al. used the conjugate
peak refinement (CPR) algorithm to identify the minimum energy pathway in the
transition. They found that the protein was present in an intermediate quaternary
state between two distinctive quaternary events, Q1 and Q2 [15]. Naoya et al.
determined the structures and functions of the coexisting states and identified a
new intermediate form with an intermediate O2 affinity [50]. These findings suggest
that the dynamic paradigm of hemoglobin remains a trending topic in exploring
allosteric mechanisms.

To identify regions that are likely to undergo structural change in allosteric
transition, Dror and his coworker calculated the GNM for the hemoglobin dataset
retrieved from the ASD, including 169 allosteric structures. They found that the
α1β1/α2β2 interface is a dynamically variable region, but not at the α1β2/α2β1 and
the α1α2/β1β2 interfaces [10]. They represented the GNM modes as curves and
utilized a neighbor-joining approach, similar to the Clustal W multiple sequence
alignment algorithm, to align multiple curves. The standard deviation was calculated
as an indicator of how well the curves were aligned at a specific point. From the
alignment of the four slowest modes of the two end states (PDB ID: 1A3N, 1BBB)
and all other structures in the dataset, the majority of hemoglobin structures were
dynamically similar to the T state rather than the R2 state. Next, the standard
deviation was adopted to evaluate variable regions with a threshold of 5.5. All

Fig. 4.8 The tetramer
structure of hemoglobin
contains two α-subunits
(light pink) and two
β-subunits (blue-white)
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dynamically variable residues according to the alignment of the first mode were
within the α1β1/α2β2 interface. In addition, the second and the third modes account-
ing for the α1β2/α2β1 and α1α2/β1β2 movements did not reveal dynamical vari-
ability. The most variable residues identified on the fourth mode were enriched at the
proximity of heme groups at the α1β1/α2β2 and α1/β1 interfaces. Collectively, they
concluded that the α1β1/α2β2 interface serves an important role in the allosteric
transition from T to R2.

4.4.1.2 Case Study 2: iGluR

Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that medi-
ate the majority of excitatory synaptic transmissions in the central nervous system
and are involved in brain development and function, including learning and memory
formation [63]. iGluR malfunctions are correlated with devastating chronic neuro-
degenerative symptoms such as Alzheimer’s and Parkinson’s diseases. iGluRs
include three major subfamilies, namely, AMPA receptors, kainate receptors, and
N-methyl-D-aspartate (NMDA) receptors, which have different pharmacological
profiles and kinetic properties but share similar structural features. Structurally,
iGluRs have a unique molecular architecture and contain four domains, namely,
the distant amino-terminal domain (ATD); the clamshell-shaped ligand-binding
domain (LBD), which binds glutamate or other agonists; the transmembrane domain
(TMD), which harbors a cation channel; and the intracellular C-terminal domain
(CTD), which is implicated in synaptic targeting [24]. Recent X-ray crystallography
studies have revealed the receptor architecture and allosteric modulation of gating
[62]. The iGluR structure is organized like a capital “Y,” in which the ATD, LBD,
and TMD are arranged in layers. The distal ATD forms the upside, the TMD
corresponds to the downside, and the LBD is between them (Fig. 4.9, left). The
LBD consists of upper lobes and lower lobes, which face the ATD and TMD,
respectively (Fig. 4.9, right). Armstrong et al. determined that modulator binding
at the LBD evokes the closure of the two lobes that lead to an opening in the
channel [2].

Dror explored allosteric effects on the dynamics of the LBD using an improved
GNMmethod on the iGluR dataset in the ASD [53]. Given the homology among the
iGluR family, they optimized the aforementioned GNM mode alignment approach
using a combination of sequence alignments. Specifically, gaps or insertions were
introduced in GNM modes according to the sequence alignment and the sign of all
modes were aligned to the first one. The standard deviation, a measurement of how
well the fluctuation values are conserved, was calculated for points that presented
half of the residues. Initially, they calculated GNM modes for the 13 LBD structures
with the endogenous ligand and various allosteric effectors collected from the ASD.
The results indicated that the second mode describing the clamshell-like motion of
the upper and lower lobes is affected by allosteric modulators. Two regions,
T91-P105 and D216-L236, which are located at the interface between the upper
and lower lobes, showed pronounced dynamical variability and were characterized
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with an SD � 5.9. Moreover, as the two regions are characterized by experimentally
low B-factors, the dynamical variability cannot result from flexibility or thermal
fluctuations. Therefore, the clamshell-like movement may elicit dynamical changes
at these regions. The results of the GNM analysis performed on structures without
accounting for the ligand and effectors are very similar. Taken together, the allosteric
effect induced by agonist/antagonist binding at the LBD causes dynamical variabil-
ity at the interfacial region between the upper and lower lobes.

Both studies used an elegant GNM analysis to probe the allosteric mechanisms of
hemoglobin and iGluRs, which provide new insight into the dynamic paradigm of
allostery. The increase of allosteric protein information deposited in the ASD is
useful for the application of computational approaches that examine allostery.

4.4.2 Fragment-Based Drug Design of Allosteric Modulators
of mGlu5

G-protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane
proteins encoded by the human genome. GPCRs can be stimulated by a diverse
variety of endogenous ligands including odors, neurotransmitters, hormones, and
pheromones and can be coupled with sensor molecules to elicit signaling transduc-
tion cascades [59]. The GPCR superfamily, comprising more than 800 proteins, can
be further classified into four major subfamilies, A, B, C, and F (frizzled), in terms of
sequence homology [31]. The metabotropic glutamate receptors, a family of class C
GPCRs, are activated by the endogenous neurotransmitter glutamate. The receptor

Fig. 4.9 Left: The crystal structure of iGluR (PDB ID: 3KG2) incorporates ATD (pale green), LBD
(blue-white), and TBD (light pink). Right: The zoomed-in version of the LBD. The upper lobe and
lower lobe are displayed with cartoons in marine and purple, respectively. The antagonist is
highlighted with a sphere in wheat
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falls into three clusters based on protein structure and physiological activity, namely,
group I, group II, and group III. mGlu5 is a member of group I and plays an
important role in modulating neuron activity and plasticity [29]. mGlu5 represents
a valuable therapeutic target, and negative allosteric modulators (NAMs) that could
alleviate receptor activation by endogenous glutamates are under clinical evaluation
for the treatment of diseases ranging from fragile X syndrome to depression [17].

A substantial argument with respect to allosteric modulators for targets deposited
into the ASD is that it could facilitate and lead optimization using conventional
structure-based medicinal approaches and have potential to generate novel com-
pounds by applying state-of-the-art in silico technologies. Fragment-based drug
design (FBDD) is an attractive strategy that is increasingly applied in the pharma-
ceutical community and is used for reducing the detrition rate in the early phase of
the process and provides novel compounds [6, 11, 23]. Fragments, which are
generally low molecular weight and moderately hydrophobic organic molecules,
can be grown, linked, and merged with other fragments to form large molecules with
improved potency [26]. Some studies have suggested that the FBDD campaign
could result in drug-like molecules, where traditional drug development approaches
have struggled [37].

Recently, Bian et al. harnessed a purely computational fragment-based method to
synthesize novel allosteric modulators for mGlu5 on the basis of a fragment library
built in ASD v2.0 [3] (Fig. 4.10). As a result, they identified synthetic compounds
that shared high similarity with patented modulators of mGlu5, which indicates the
feasibility of the methodology. The discovery of other compounds without reported
activities could be further exploited.

Initially, 27,262 allosteric modulators of GPCRs in ASD v2.0 were broken into
fragments using retrosynthetic combinatorial analysis procedure (RECAP). The
“Rule of Three” instead of “Rule of Five” was used as a guideline to select ideal
fragments. Next, fragments were docked into the allosteric binding site defined by
the mGlu5-mavoglurant complex structure (PDB ID: 4OO9) (Fig. 4.11). The frag-
ment docking study revealed that fragments were enriched at two distinct subpockets

Fig. 4.10 Workflow of fragment-based method to generate novel allosteric modulators for mGlu5
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at the allosteric site, the upper and bottom regions. Subsequently, RECAP synthesis
was adopted to generate novel compounds by combining the fragments with the
highest score in both regions for increasing binding affinity.

The authors conducted a series of evaluation procedures for the top-ranked
synthetics. First, in order to verify the docking algorithm for ranking the lead
compounds, a benchmark set containing 50 decoys against NAM mavoglurant was
generated for enrichment analysis. The docking evaluation for the top 20 synthesized
compounds, 50 decoys, and mavoglurant indicates that newly generated compounds
can be enriched with NAM and were distinct from the challenging decoys. Next, a
QSARmodel, which uses the relationship between LogKi and theoretical descriptors
of molecules, was built with a training set of 66 analogs of 1,2-diphenylethyne
acquired from the ASD. The model accuracy was cross-validated, and both the
predicted LogKi of the 20 top-ranked synthesized compounds and the docking
scores indicated that these compounds were allosteric modulators of mGlu5. In
addition, the top 20 in silico hits included structurally diverse compounds with
reported and unreported scaffolds in patents. A structure similarity search revealed
that a series of patented scaffolds with reported mGluR allosteric activities could
reemerge through computational design.

One of the goals of constructing the ASD was to facilitate allosteric drug design,
especially in promising targets including GPCRs and kinases. The above study
highlights that the combination of the ASD and fragment-based approaches can be
used to design novel allosteric compounds for mGlu5 and other targets. Additionally,

Fig. 4.11 The allosteric site
of mGlu5 (PDB ID: 4OO9).
The mGlu5, allosteric site,
and allosteric compound are
displayed in cartoon,
surface, and stick modes,
respectively
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this study shows the potential for computational breakthroughs in propelling the
ongoing process of allosteric drug design.

4.4.3 Pharmacophore Modeling and Screening for Allosteric
Modulators of mGlu1

Metabotropic glutamate receptor 1, another member of group I mGlu receptors, has
been proposed to be an attractive drug target for the treatment of cerebellar ataxia
and schizophrenia [8]. Endeavors in designing negative allosteric modulators of
mGlu1 have revealed the complex crystal structure of the receptor with a small-
molecule NAM 4-fluoro-N-(4-(6-(isopropylamino)pyrimidin-4-yl)thiazol-2-yl)-N-
methylbenzamide (FITM) [60]. The allosteric cocrystal, together with other verified
allosteric modulators in the ASD, could be instrumental in guiding the discovery of
new hits.

A pharmacophore model can be defined as an ensemble of chemical features that
is essential for specific protein-ligand binding. Generally, elucidating the
pharmacophore hypothesis involves either exploring the possible interactions of
the receptor/complex structure or aligning a set of active ligands and extracting
common features responsible for the activity [61]. Once the pharmacophore model is
generated, it can be used as a query to search chemical structure libraries for potential
hits. Pharmacophore-based virtual screening has represented an extremely efficient
method owing to reduced search time and the discovery of novel compounds with
different scaffolds and functional groups [27, 48].

Recently, Jiang et al. leveraged NAMs of mGlu1 in the ASD to generate
pharmacophore hypotheses and applied them to discover potential Chinese herbs
[21] (Fig. 4.12). First, they collected 74 NAMs of mGlu1 from the ASD and

Fig. 4.12 Workflow of pharmacophore modeling and screening for discovering Chinese herbs
targeting mGlu1
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clustered them into three groups based on structure similarity. Six highly active
molecules from each group were selected as a training set to create up to
20 pharmacophore models per group. Then, 74 active compounds and 222 inactive
compounds formed a test set to validate the pharmacophore models mapped for the
three structure types. Three pharmacophores achieving improved specificity were
chosen to screen the Traditional Chinese Medicine Database (TCMD), which con-
tains 233,033 natural compounds from 6735 medicinal plants. Consequently,
642 potential hits were retrieved that met the pharmacophore queries and had
drug-like traits. To elucidate the accommodation of these compounds for mGlu1,
642 hits were docked into the FITM allosteric binding site in the crystal complex
(PDB ID: 4OR2) (Fig. 4.13). Three compounds, thesinine-40-O-β-d-glucoside,
nigrolineaxanthone-P, and nodakenin, with a high docking score and high
pharmacophore fit score were considered as potential novel compounds binding to
mGlu1. Additionally, a molecular dynamics simulation revealed three hits that form
similar interactions at the binding pocket with FITM under dynamic conditions,
further indicating that the compounds have negative allosteric effects on mGlu1.

Although the hits were not verified as active by experimental methods, the case
demonstrates that knowledge-driven allosteric compound discovery is an efficient
and rational alternative to the “high-throughput” docking-based screening approach.
Moreover, the application of knowledge-based methods to disease-related targets
appears particularly worthwhile, given the existence of assay and structure data in
the ASD and the challenges of drug candidates in the preclinical phase.

Fig. 4.13 The allosteric site
of mGlu1 (PDB ID: 4OR2).
The figure scheme follows
that of Fig. 4.10
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4.4.4 Allosteric Modulator Characterization

Orthosteric compounds block the active site and hinder protein function activity.
Consequently, allosteric drugs bind at the allosteric site to remodel the energy
landscape and regulate protein function [41]. Due to different modes of action,
allosteric modulators have formed a conceptually distinct class of compounds for
targets of interest [54]. In the past decade, allosteric drug discovery has gained
momentum because it not only provides highly selective molecules but also presents
a feasible strategy for designing compounds targeting therapeutic proteins. Unfor-
tunately, specific proteins of which the active site has undesirable physicochemical
properties make them potentially untargetable [34, 44]. Arguably, the amount of
allosteric modulators in ASD v3.0 has increased ~800% compared to that in ASD
v1.0. The current deluge of allosteric modulators could foster the characterization of
methodology for designing allosteric drugs.

Wang et al. performed a systematic analysis on the structural and physicochem-
ical traits of allosteric modulators by the comparison of molecules from various
chemical databases [56]. They selected 3916 diverse allosteric modulators after
applying fingerprint clustering to the original modulator set obtained from the
ASD. Other compounds were collected from the Available Chemicals Directory
(ACD), Comprehensive Medicinal Chemistry (CMC) dataset, Chinese Natural
Product Database (CNPD), DrugBank, MDDR, and NCI Open Database. Eighteen
metrics widely used for drug discovery were calculated to evaluate compounds in the
ASD and the other datasets. Next, an association rule was used to find an optimal
combination of the most highly correlated attributes for retrieving allosteric mole-
cules. The rule was established as follows: (i) molecular weight � 600; (ii) number
of rotatable bonds �6; (iii) 2 � number of rings �5; (iv) number of rings in the
largest ring system ¼ 1 or 2; and (v) 3 � SlogP �7.

These results indicate that fewer rotatable bonds and more rings in moderate ring
systems comprise the primary features of allosteric small molecules, which suggests
the rigid configuration of chemical structures. In addition, higher hydrophobicity
was also found to be a distinct character for allosteric-likeness.

Recently, Richard D. Smith and his collaborators proposed that allosteric ligands
tend to be more aromatic and rigid than competitive ligands based on a comparison
of molecule data from the recently released version of the ASD and the CHEMBL
database [52]. However, they contradicted the above study that had indicated
allosteric ligands tended to be more hydrophobic.

The authors started by collecting allosteric and competitive ligand data. The
allosteric set consisted of 70,219 unique allosteric ligands including 67,749 modu-
lators from ASD v3.0 and 2470 from CHEMBL, covering 1048 receptors. The
competitive set had 9511 unique ligands from CHEMBL, targeting 860 proteins.
To remove redundancy, proteins were grouped by sequence similarity and within
each protein family; all ligands were clustered by structure similarity using the
extended connectivity chemical fingerprints. The clustering process was performed
at four levels of thresholds, namely, protein similarity/ligand similarity ¼ 100%,
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90%, 75%, and 60%. Twenty-nine physicochemical properties including atom
counts, bond counts, physical properties, and drug�/lead-like characteristics were
calculated. Statistically significant differences in physical properties had Wilcoxon
p-values <0.0001 and no overlap in the 95% confidence intervals of the medians
determined from 100,000 bootstrapped samples.

They found that the combination of increased aromatic atoms and decreased
number of rotatable single bonds in allosteric ligands indicates that these molecules
are more rigid. Additionally, the difference in the typical hydrophobicity metric,
SlogP, was statistically marginal in the allosteric and competitive sets.

These insights into the intrinsic nature of allosteric modulators could allow
researchers in the drug discovery field to estimate whether a hit compound has a
potential to allosterically bind to the receptor and emerge as an empirical principle to
guide the optimization of the chemical structure. With additional curated allosteric
modulators deposited into the ASD, the depiction of those modulators could be more
informative, which would benefit the whole community.

4.5 Conclusion

The ASD has experienced three updates and is continuously maintained as an
integrated public repository of curated information incorporating allosteric proteins,
modulators, sites, pathways, and networks. The abundance of allosteric protein data
in the ASD has allowed the community to exploit allosteric phenomena at various
levels, from atom movement in a single structure to the cascades of a complex
network. Furthermore, the ASD offers an increased body of allosteric modulator and
site data, which, coupled with computational tactics, would reveal new opportunities
for rational allosteric drug design, especially for undruggable proteins. In subsequent
releases of the ASD, we will focus on tracing the evolutionary origin of allostery
across species. With the rapid improvement of next-generation sequencing, investi-
gating the effect of mutations occurring at allosteric sites may provide new insight
into clinical syndromes, physiological abnormalities, and disorders.
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Chapter 5
Correlation Between Allosteric
and Orthosteric Sites

Weilin Zhang, Juan Xie, and Luhua Lai

Abstract Correlation between an allosteric site and its orthosteric site refers to the
phenomenon that perturbations like ligand binding, mutation, or posttranslational
modifications at the allosteric site leverage variation in the orthosteric site. Under-
standing this kind of correlation not only helps to disclose how information is
transmitted in allosteric regulation but also provides clues for allosteric drug dis-
covery. This chapter starts with an overview of correlation studies on allosteric and
orthosteric sites and then introduces recent progress in evolutionary and simulation-
based dynamic studies. Discussions and perspectives on future directions are also
given.

Keywords Correlation · Evolutionary analysis · Statistical coupling analysis ·
Elastic network model · Molecular dynamics · Two state Go̅ model · Rigid-body
simulation · Community analysis · Mutual information

5.1 Overview

Allostery can be described as the phenomenon where the function of a protein is
tuned by perturbation at a distant site [9]. Despite many studies, how the allosteric
site communicates and influences the biologically functional (orthosteric) site
remains elusive. Many efforts have been carried out toward this direction, aiming
to disclose the correlation between allosteric site and orthosteric site. Here, “corre-
lation” refers to the incident that ligand binding, mutation, or posttranslational
modifications at an allosteric site leverage variation in the orthosteric site.

Two general types of approaches have been used to study the correlation
(Fig. 5.1). The first one is based on evolutionary analysis. As allosteric effects are
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evolved through time [50], evolutionary correlation could be deduced by examining
the related sequences. The second one is based on dynamic analysis as the motions
of allosteric site and orthosteric site are believed to be highly coupled. These motions
could be obtained by computer simulations or inferred from experimental studies.
Either equilibrium-based or non-equilibrium-based simulation methods have been
used at atomic or coarse-grain level. Based on the simulations, motion correlation,
network analysis, and information propagation pathways can be deduced. In the
present chapter, recent progresses in both evolutionary and dynamic correlation
analysis will be introduced.

Fig. 5.1 Overview of correlation studies on allosteric and orthosteric sites
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5.2 Evolutionary-Based Analysis on the Correlation
Between Orthogonal Site and Allosteric Site

The accumulation of protein sequence data provides opportunity to understand how
fitness factors like the key constraints in maintaining correct folding, stable structure,
and specific functions shape the evolution. Practically, an ensemble of homologous
sequences are chosen to make a multiple sequence alignment (MSA), and a corre-
lation matrix between positions in sequences are computed. Different algorithms for
information extraction from MSA have been developed. For example, the spatial
constraints that reflect direct contacts are used in the prediction of protein structures
[27]. For allostery which includes certain cooperative action of a number of residues
in the protein, deduction of the global constraints is not straightforward.
Ranganathan and coworkers developed the statistical coupling analysis (SCA)
method, which represents the most successful evolutionary approach for allostery
study in the past decade [8, 20, 23, 48, 50].

As in other sequence-based methods, two types of data from the MSA are
processed. Position-specific conservation belongs to the first-order statistics. The
evolutionary conservation at one position is in the form of the Kullback-Leibler
relative entropy, which is estimated from the deviation of the computed distribution
of amino acids at this position from a random distribution expected by neutral drift.
When mapping the positional conservation result to protein structure, the most
conserved residues tend to be positioned in the hydrophobic core or on the surface
as functional sites. The conserved correlations between positions belong to the
second-order statistics. Based on the alignment, the natural measure of the correla-
tion of two types of residues at two distinct positions could be given by the
subtraction of their independent frequency from their joint frequency. A covariance
matrix will be generated in this way and could be studied by mutual information for
their statistical dependency. However, this kind of treatment assumed the indepen-
dence from the calculated frequency of each site and therefore did not properly treat
the evolutionary relevance of observing these frequencies. To better incorporate
such effect, in the current version of SCA [49], the positional conservation, which is
in the form of the relative entropies, is used to compute conserved correlation over an
ensemble of alignments. In practices, such alignments could be made by bootstrap
sampling of the original alignment. Finally, compared to the original covariance
matrix which is based on one MSA, a weighted covariance matrix is obtained with
the weight functions which are representations of conservation of each amino acid
type at each position. Highly conserved correlations are emphasized by such mul-
tiplication. However, unlike the interpretation of position-specific conservation,
direct mapping of such correlation is not obvious on protein structures.

In the current version of SCA, a spectral decomposition is further performed on
the weighted covariance matrix and then compared with the result of many trials of
randomized alignments. Only the top eigenmodes that outperform the random are
kept. As suggested by the authors, the allosteric effect may include higher-order
correlations [49]. Thus, unlike previous heuristical clustering, independent
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component analysis (ICA) is applied to make the top eigenmodes into maximally
independent components (ICs). When mapping to the sequence space with evolu-
tionary information, these ICs are related to conserved, differentially evolving
functional units in proteins. Ranganathan and coworkers defined “sectors” in their
2009 article as a group of residues each displaying strong intragroup correlations and
weak intergroup correlations which are nonuniformly spatially connected [8]
(Fig. 5.2).

A significant IC does not need to correspond to an independent sector. In the most
recent version of SCA [49], key residues contributed to each IC are first identified via
a heuristic statistical approach, and their correlations with other key residues are
extracted from the weighted covariance matrix. Compared with previously identified
sectors, ICs with more intercorrelations are likely to be grouped together as a sector.
Overall, these key ICs could be either a subpart of a single sector or a real sector with
a distinct function. As suggested by SCA, sectors are composed of physically
connected and coevolving residues. These spatially organized residues link active
sites to many surface sites distributed throughout the protein structure. Sectors may
be coincided with evolutionarily conserved mechanism that transfers perturbations at
the surface to the functional site in allosteric regulation. In mutation experiments,
residues within sectors are sensitive compared to those outside of sectors.

In practice, the sequence-analysis results are interpreted by integrating with other
forms of data such as structures, phylogenetic tree information, and mutation
experiments. Reynolds and coworkers recently proposed a protein engineering
approach, the rational engineering of allostery at conserved hotspots (REACH), to
introduce novel regulation into a protein by examining potential allosteric site from
SCA and have been successfully applied in protein kinase studies [4, 46].

Fig. 5.2 Sectors in S1A
proteases discovered by
SCA. The figure was
prepared according to
reference [8] using PyMOL
(the PyMOL Molecular
Graphics System). The red
sector comprises the S1
pocket, the salmon sector
comprises the catalytic
mechanism of the protease,
and the blue sector
comprises a ring of residues
including a calcium-binding
region
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Similar to other sequence-based analysis methods, the evolutionary analysis
approach is limited by the available sequences and the selection process. The user
should select the input sequences carefully and make a reasonable multiple sequence
alignment. Considering the statistical significance, the number of the sequences
should be at least five times the length of the protein. Although the evolutionary
method can give clues of key residues that are important for the allosteric effect, the
signal propagation process cannot be reconstructed.

5.3 Dynamic Analysis on the Correlation Between
Orthogonal Site and Allosteric Site

Allosteric effects happen when dynamic correlation patterns between residues in the
orthogonal site and allosteric site are altered either through conformational or
dynamic changes. The allosteric information can be transmitted through different
ways, namely, the “domino” and “violin” style. In the “domino” style, such infor-
mation is transferred through relay nodes. The binding of an effector will trigger
local structural changes that sequentially propagate to the functional site through one
dominant pathway which has been observed in the PDZ domain family and G
protein-couple receptors, etc. In the “violin” style, the vibrational modes of the
protein change without obvious configurational modification [16].

Both atom-based molecular simulations and coarse-grained models have been
used to study allosteric communications. For systems with only one structure and no
available information on allostery, simulations can be performed and analyzed to
estimate the potential of allosteric regulation and identify the possible allosteric sites.
Ligand discovery can then be carried out based on the predicted allosteric sites. For
systems that are known to be allosterically regulated, simulations with and without
allosteric effector binding provide information to understand allosteric regulation
and information transmission.

5.3.1 Methods Using Only a Single Protein Structure

As allostery usually involves long-range regulations and global dynamic changes
have major contributions, coarse-grained models have advantages in extracting
correlation information related to allosteric effect, especially when only the ligand-
free structure of a protein is known. The elastic network model (ENM) is a com-
monly used coarse-grained model to study global dynamics of proteins [3]. As a
protein system can be regarded in the vicinity of a minimum, the potential energy is
approximated with the sum of harmonic potentials. The simplest ENM is the
Gaussian network model (GNM). In this model, each protein residue is represented
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as a node and connected by harmonic springs. The interatomic potential energy of
the system can be expressed as

U ¼ γ

2

XN

i, j
ΔRi Γij ΔR j

" #

where γ is a force constant uniform for all springs, ΔRi is a vector that represents the
displacement of the ith residue from its equilibrium position, and Γij is the element of
the Kirchhoff (or connectivity) matrix of inter-residue contacts, Γ, defined by

Γij ¼
�1 if i 6¼ j and rij � rc
0 if i 6¼ j and rij > rc
� Σ

i, i 6¼j
Γij if i ¼ j

8
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>:

where rc is a cutoff distance for spatial interactions and usually taken to be 7 Å for
amino acid pairs (represented by their α-carbons) [59]. Based on statistical mechan-
ics, the expectation values of residue fluctuations (mean-square fluctuations, MSF)
and cross-correlation could be given by the form:

< ΔRi � ΔR j >¼ 3kBT
γ

Γ�1
ij

� �

where kB is Boltzmann’s constant and T is the absolute temperature. The normal
modes of GNM are found by diagonalization of the Kirchhoff matrix. The eigen-
values correspond to vibrational frequencies of the normal modes, while the eigen-
vectors represent the directions of the normal modes. Low-frequency modes (slow
modes) reflect large collective or delocalized motions in the protein structure, while
high-frequency modes reflect small vibrations in localized regions. The dynamical
information is contained in the cross-correlations and can be expressed by a sum
over the N-1 non-zero normal modes as:

Γ�1 ¼ UΛ�1UT

< ΔRi � ΔR j >¼ 3kBT
γ

XN

k¼2

uik � u jk

λk

Because the slow modes have large amplitudes, several top modes always
dominate. In fact, the ENM slow modes have been shown to agree well with those
predicted by detailed atomic-level force fields and with experimentally determined
dynamics [18, 51]. Fast- and medium-frequency modes that contribute less to global
motions are important for coordinating finer motions and with their incorporation
with slow modes are necessary to analyze the correlated motions of allosteric and
orthosteric sites [22, 26, 41, 44].
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To account for the strength of such correlations, Ma et al. proposed an algorithm
that only depends on one existing protein structure, that is, the general protein
topology [26]. The potential ligand-binding sites are identified by a pocket detection
program, CAVITY [61]. The total correlation of each sites with the orthosteric site is
the summation of the amplitude of all the cross-correlation terms which belong to
these two sites (Fig. 5.3). Then all the total correlation calculated is normalized using
the Z-score. Among the 24 known allosteric sites in the dataset used, 22 are correctly
predict within the top 3 rank. This method has been incorporated into a web-server
CavityPlus [58] with the name of CorrSite. Only the coordinates of the protein
structure or the PDB code are needed as input to predict potential allosteric site.
Some of the predicted allosteric sites have been verified in experimental studies
(Li et al. 2018; [57]).

By using the GNM model, Su et al. used a spherical probe representing allosteric
effector binding to sample the protein surface, and additional springs were attached
between this effector point and the local residues. The free-energy difference (ΔΔG)
between the protein-ligand and protein-effector-ligand systems was calculated. In
the Hsp70 and GluA2 AMPA receptor, regions with large ΔΔG values were found
to correspond to experimental verified allosteric sites [54]. NMA has also been
incorporated with machine learning methods for allosteric site prediction [35, 42],
which will be covered in other chapters.

While these ENM-based studies have shown that the residue contact network
topology is the dominant factor that defines the collective modes, more detailed
structural properties are not considered. By adding terms related to distance, the
nearest and the second nearest neighbor effects, and backbone hydrogen bond
patterns, Lezon and Bahar proposed an improved model (mGNM) that could better

Fig. 5.3 Illustration of
motion correlations between
orthosteric site and allosteric
site. Allosteric site tends to
have higher total correlation
than non-allosteric site as
suggested by CorrSite [26]
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resemble the dynamics revealed by NMR studies [22]. In the original ENM, the
correlation is calculated by dot multiplication, which favors collective motions in
parallel direction. Yu et al. used a singular value decomposition (SVD) method that
analyzes the correlation coefficient of fluctuation dynamics with an arbitrary angle
between the correlated directions. This method also worked in cases where two
correlated movements are perpendicular to each other which cannot be analyzed
using dot product [60].

With atomic details, Amor et al. made an atomic graph with energy-weighted
covalent bonds, hydrogen bonds, salt bridges, hydrophobic tethers, and electrostatic
interactions [1]. For each bond, a bond-to-bond propensity is defined to account for
the total perturbation effect of such bond on all the bonds formed between ligand
atom and the residues in active site. Quantile regression was then used to identify
significant interactions. Three biologically important proteins, caspase-1, CheY, and
h-Ras, were tested, and key allosteric interactions were correctly predicted.

5.3.2 Simulation-Based Methods and Analysis

Atom-based molecular dynamics (MD) simulations let the system evolve in a near
natural manner. Currently, simulations up to milliseconds are possible with enough
computational resources and large amount of data will be generated from confor-
mation sampling and subsequent analysis.

La Sala et al. examined pocket formation, dynamics, and allosteric communica-
tion embedded in microsecond-long MD simulations of three proteins, PNP, A2A,
and Abl kinase [19]. As the system evolved, cryptic pockets emerged on protein
surface. These hidden pockets were very dynamic at nanosecond timescale as their
volume varied from zero to hundreds of cubic angstroms, disappeared, and then
appeared again. The analysis algorithm checked temporal exchange of atoms
between adjacent pockets along the MD trajectories as a fingerprint. The allosteric
communication networks across the protein surface could be detected. These results
suggest the prospective use of this dynamic analysis (or long-time MD simulation) to
characterize transient binding pockets for structure-based drug design.

A straightforward approach for studying allosteric effect is to simulate the system
in both apo and bounded state and compare the difference (Fig. 5.4a). The root mean
square fluctuations of each residue is a classical descriptor to characterize the
flexibility of the protein. After the binding of effectors, the stability of some regions
will change significantly. By comparing the result from active state to apo state, key
residues could be located [7].

The difference between apo state and bound state could also be explored by
comparing the variation of interactions. In 2015, Ma et al. used the molecular
mechanics generalized Born surface area (MM/GBSA) energy decomposition
method to calculate the residue-residue interaction energies in the allosteric sites in
17 known allosteric proteins [25]. They found that the interactions in the allosteric
effector binding state were different from those before binding, indicating that
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redistribution of interactions happened within the allosteric site. This is consistent
with a more detailed simulation by Kumawat et al. in 2017 [17]. They studied the
PDZ domains, in which ligand binding produces local energetic perturbation that
propagates in inter-residue interaction pattern in a domino-like style. These signif-
icant changes in the nature of specific interactions and side-chain reorientations
together drive the major redistribution of energy. The internal redistribution and
rewiring of side-chain interactions here also led to large cancellations resulting in
small change in the overall enthalpy of the protein.

Based on the population shift scheme [38], Qi et al. studied allosteric transitions
by changing the interaction strength in the allosteric site based on a two-state Go̅
model [39]. An ensemble of the two functional states of a protein was first
constructed as reference. Then at a potential allosteric site, the native contact
interactions are rescaled by a factor F and new ensembles are constructed
(Fig. 5.4b). The population distribution of the new ensemble is monitored. For
known allosteric sites, the population was shifted to the other state with a switch-
like transition as F varied. As this method relies on the two-state Go̅ potential, it can
be applied for cases where structural rearrangements after the binding of the allo-
steric effector occur. Although not directly correlated with orthosteric site, this
method verified a collective behavior of local stability with global configuration
variation. Extending this observation to other sites in the proteins tested, novel
allosteric sites were predicted. They further experimentally tested the novel allosteric

Fig. 5.4 Two-state simulation schemes. (a) The system is simulated at two separate states and
difference is compared. (b) Control parameters are used to assist the population shift process. (c)
Auxiliary states are introduced in the simulation
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site predicted in the Escherichia coli phosphoglycerate dehydrogenase (PGDH) to
see whether novel allosteric inhibitors can be discovered. Virtual screening by
molecular docking was performed with a known chemical database and the
top-ranking molecules were experimentally tested. Three compounds showed
remarkable inhibition activities with the lowest IC50 value of 21.6 μM. Mutation
studies confirmed that these molecules did bind to the predicted allosteric site.
Compared to the known allosteric site used by L-serine, this new allosteric site is
much larger in size and can be easily used to design novel chemical regulators
[47, 56].

Allostery is considered to be a dynamical process with several residues sitting on
the proposed major allosteric pathways. Protein could be considered as semirigid
[15]. Changing the dynamics of a key residue may significantly disrupt allosteric
pathways. Kalescky et al. introduced a direct way to change single-residue dynamics
behavior by treating a specified residue as a single rigid body, i.e., the residue has no
internal degrees of freedom which eliminate the reorientation of the side chain and
energetic redistribution locally from this residue [10]. Therefore, two more auxiliary
states are generated (Fig. 5.4c). The influence of a single residue on allostery can be
investigated directly through such rigid-body simulations. The intrinsic dynamics
and rigidity-based descriptor, the average residue correlation index (ARC), and the
residue correlation similarity (RCS) index are defined to help characterize the
difference between states. Two groups of key residues are identified. The first
group of residues are proposed as “switches” that are needed to “turn on” the binding
effect of protein allostery. When they are rigidified, the difference in cross-
correlation patterns between both perturbed simulations of the unbound and bound
states is nearly zero. Conceptually, the allosteric effect upon ligand binding in the
form of motional dynamics is cancelled when these residues are “turned off.” The
second group is from a second-order comparison: the difference between both
perturbed simulations of the unbound and bound proteins is similar to the difference
between unperturbed simulations of the unbound and bound proteins. As the energy
flow may cause significant dynamic changes of residues along allosteric pathways,
the least disruptive residues for such effects of binding on intramolecular commu-
nication are mostly suitable to play a role of “wire” that let the energy or information
propagate. They further combined this method with configurational entropy calcu-
lation, principal component analysis (PCA), and projection of ensembles onto
coherent allosteric modes [11]. The prediction of key allosteric residues has good
agreement with experimental studies.

Pfleger et al. constructed a model of dynamic allostery by integrating an
ensemble-based perturbation approach with the analysis of biomolecular rigidity
and flexibility. The system in complex with allosteric effector is simulated and
conformation ensemble is generated from the trajectory. For each conformation
which is regarded as a ground state, the corresponding perturbed state is constructed
by removing the allosteric effector from the ground state or by mutations no
allosteric effector is known. All short-range rigid contacts are counted for both
ground state and perturbed state and a chemical potential difference between the
two states is deduced. The free energy associated with the change in biomolecular
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stability due to removal of a ligand or mutation is calculated by an ensemble average.
The validation is done on three distinct biomolecular systems: eglin c, protein
tyrosine phosphatase 1B, and the lymphocyte function-associated antigen
1 (LFA-1) domain. In all cases, it successfully identified key residues for signal
transmission in agreement with experiments. It also correctly discriminated the
positively from negatively cooperative effects in LFA-1 system.

The above MD simulations let the system evolve at equilibrium state and deduced
the communication through collective motions. As biological systems are governed
by numerous physical interactions, perturbation at one place may be propagated to
other parts of the molecule. Nonequilibrium MD simulations could be used to trace
the energy flow related to allosteric effect. In anisotropic thermal diffusion method,
only the source atoms were coupled to a high-temperature bath. During the
nonequilibrium MD simulations, the propagation of the root mean square deviation
of residues was recorded, and then signaling pathways could be formulated [40]. In
the pump-probe MD simulation method, the atoms were coupled with oscillating
forces, and the motions of atoms were analyzed with Fourier transformation to detect
energy transduction pathways [53]. Such energy transfer pathways could also be
extracted from the evaluation of the cumulative response of the energy source by
nonequilibrium correlation functions [14, 36]. Such methods could be suitable to
explore fast events like energy transfer in a short timescale without large configura-
tion variation.

5.3.3 Network- and Information-Based Analysis

When analyzing the simulation results, the protein motions are usually mapped to
network representations. Each protein residue is depicted by a single node. The
length of the edge between two nodes are usually related to their correlation. The
metrics of the length could be defined based on correlated motions or the number of
contacts. By doing such mapping, various network-analysis algorithms can be used
to locate important pathways of communication or group of residues that have strong
communications [2].

Community analysis is one of the widely used methods that provide a good
visualization of the modular subpart of the whole protein [52]. Sethi et al. studied the
allostery in tRNA-protein complexes by community analysis. The pre-transfer and
post-transfer states are simulated. After simulating the system, amino acid residues,
nucleotides, and the AMP substrate are treated as a single node. Consecutive
residues are excluded in the network. Two nonconsecutive nodes are regarded as
in contact if any heavy atoms from these two residues are within 4.5 Å of each other
in at least 75% of the frames. The weight of an edge between two connected nodes is
the probability of information transfer across that edge as measured by the correla-
tion values between the nodes in the simulation. The Girvan-Newman algorithm is
next used to identify communities of highly interconnected residues. The optimum
community structure is found by maximizing the modularity. This analysis made a
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good illustration of how protein dynamics changed when a modulator binds as the
community number varied.

In most of the cases, the orthosteric site and allosteric site are located in different
communities. The length of a path between distant residues is defined as the sum of
the edge weights between the residues on the path. The shortest paths between pairs
of residues in different communities are calculated with Floyd-Warshall algorithm
and the residues connected by these edges are considered as critical residues for
allosteric signal transduction. Meanwhile, the number of paths with length shorter
than a certain limit above the shortest distance is a good measure of the path
degeneracy in the network. The calculation of these near-optimal pathways is
computationally more expensive than the shortest pathway when every residue in
allosteric site and orthosteric site should be considered. Van Wart et al. later
proposed an efficient program called Weighted Implementation of Suboptimal
Paths (WISP) [55]. In this program, physically distant residues and residues that
are unlikely to be in the optimal or near-optimal allosteric communication pathways
are excluded. Then for the rest of the residues, the shortest path connecting to the
source and sink node via this node is calculated by Dijkstra’s algorithm. If this path
is too long to be an optimal or near-optimal path, there is no way that other paths
passing through this node could be an ideal one and this node is eliminated. By such
simplification process, notable pathways of allosteric communication could be
computed more efficiently. The result is illustrated in Fig. 5.5. Communications
between the allosteric and orthosteric site are different in the presence and absence of
an effector molecule. When hundreds of suboptimal paths are considered, a large
effector-dependent shift in communication between the allosteric and allosteric site
becomes apparent.

Correlated motion could also be quantified using mutual information which is
related to second-order terms from the configurational entropy expansion. MutInf,
first introduced by McClendon et al. [28], uses internal coordinates and torsion
angles to derive the mutual information. With statistical correction, the result is
robust from multiple short simulations. In the updated version, the Kullback-Leibler
divergence metric has been incorporated to improve the sensitivity [29]. For the
original example of interleukin-2, population-shift-mediated signal transmission is
observed between the allosteric and orthosteric sites via the hydrophobic core. Meng
et al. carried out MutInf analysis on 15-LOX and identified a novel allosteric site
together with CAVITY. Both activators and inhibitors were discovered that bind to
the predicted allosteric site [31, 32].

Higher-order correlations may also be important to address the allosteric effect.
LeVine et al. described an N-body Information Theory (NbIT)-based method [21],
which identifies communication channels between allosteric sites and orthosteric site
through information theory-based analysis of N-body collective motions derived
from the configurational entropy. Careful treatment to estimate entropy with clus-
tering is necessary. Good sampling of the system is also required. The authors
analyzed two MD simulations of the bacterial transporter LeuT and the results are
consistent with previously reported experimental data.
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To accelerate the sampling of dynamics, accelerated MD (aMD) could be used
[34, 45]. The enhancement of the conformational sampling was done by adding a
harmonic boost potential to smoothen the system potential energy surface. Within
the timescale of normal MD simulation, the transitions between states could be
sampled efficiently. Community-analysis workflow for allosteric effect analysis
could also be applied to the trajectory generated by aMD as in the cases of alpha-
thrombin and the M2 muscarinic receptor [5, 33].

Fig. 5.5 WISP-generated signaling pathways. The 700 shortest paths between Leu50:HisF and
Glu180:HisH, shown as red splines, derived from (a) the apo trajectory and (b) the holo trajectory.
(c) The path distribution is largely shifted to the left for the holo (allosteric) state
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5.4 Summary and Perspective

A quantitative and predictive description of allostery is fundamental for understand-
ing biological processes. Methods introduced in this chapter can be used to evaluate
the significance of individual residues in protein dynamics and allostery and narrow
down the number of residues required for further experimental study. Based on
correlation analysis between allosteric site and orthosteric site, significant progress
has been made to locate potential allosteric sites without prior knowledge of
allosteric ligand and key residues. Although successful examples of allosteric ligand
discovery based on the identified allosteric sites have been reported, optimization of
these ligands remains difficult. Simply increasing binding affinity may not improve
its efficacy of allosteric regulation. A clear understanding of the allosteric mecha-
nism is necessary. On the other hand, without enough binding potency, the allosteric
effector cannot be specific enough. In the current allosteric regulation studies, the art
of balance still depends on “trial and error.” Better models need to be developed to
quantify correlation, efficacy, and key sites.

Allostery is believed to exist in all the proteins as an adaptive nature of evolution
[6]. Most of our current knowledge on allosteric mechanisms are derived from a
limited number of model systems. More systems need to be studied to understand the
diversified allosteric regulation mechanisms in the protein universe and to generate
theoretical models. In addition to physical model-based simulations and statistical
analysis, analysis of the large-scale sequencing and omics data provides another
dimension for allosteric studies. Posttranslational modification and single nucleotide
polymorphism data provide useful information to locate key residues and potential
allosteric pathways. On the other hand, allostery provides useful tools to explore
functions of proteins and to regulate the biological networks that they are involved in
[24, 30, 37, 43].

With the rapid development of structural biology techniques, especially CryoEM,
many important large biological assemblies have been solved in recent years. How
allostery regulates the function of large biological machines can be carried out.
Coarse-grained modeling can be used for such large systems [12]. The discovery that
intrinsic disorder regions in protein impose entropy-driven allosteric effect on
structured regions has put new challenges to methods developed for treating struc-
tured systems [13]. Artificial intelligence will certainly help, as it did in classification
of states and identification of key residues [62]. Integration of physical models with
large-scale experimental data will provide novel opportunities to address the
remaining major questions in understanding allosteric mechanism and in designing
better ways of allosteric regulation.
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Chapter 6
Characteristics of Allosteric Proteins, Sites,
and Modulators

Xinheng He, Duan Ni, Shaoyong Lu, and Jian Zhang

Abstract Allostery is considered one of the most direct and efficient ways to
regulate biological macromolecule functions. Allostery is increasingly receiving
attention in the field of drug discovery because of the unique advantages of allosteric
modulators such as high selectivity and low toxicity. Because of technical break-
throughs in the allosteric studies, the understanding of the characteristics of allosteric
entities such as allosteric proteins and their allosteric sites and modulators has made
great strides. These features play a critical role in both the evolution of the allosteric
concept and the prediction of allosteric interactions. In this chapter, we highlight the
fundamental characteristics of allosteric proteins, allosteric sites, and allosteric
modulators. Importantly, the applications of such principles in real cases are
depicted in detail. Collectively, these characteristics are beneficial in aiding allosteric
drug design and allosteric mechanism research.

Keywords Allostery · Allosteric modulation · Allosteric mechanism · Drug design

6.1 Introduction

Allostery, also referred to as allosteric regulation, is the process by which biological
macromolecules (mostly proteins) transmit the effect of ligand binding at allosteric
sites spatially and topographically remote from the functional sites, resulting in the
regulation of macromolecule activity [26, 69, 115, 124, 182]. Allosteric signals are
transmitted across the structure of macromolecules to the active site via allosteric
signal pathways including atomic fluctuations, residue networks, or domain move-
ments [45, 77, 82, 117, 136, 173, 188]. Allosteric interactions can be initiated by
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many factors ranging from noncovalent contacts (small molecules, ions, lipids,
peptides, proteins, and nucleic acids) [33, 40, 95, 114, 140, 204] to covalent
modifications (disulfide trapping, phosphorylation, and point mutations) [113, 131,
135, 142, 168], light absorption [175], and environmental fluctuations (ionic
strength, pH, and temperature) [20, 43, 56]. Allosteric perturbation is an efficient
mechanism that allows the regulation of the functions and activities of proteins and
then fine-tunes a myriad of biological processes, including metabolism, signal
transduction, enzyme activity, and gene regulation [3, 23, 68, 70, 107, 121, 139,
158, 204]. Allosteric perturbation has been recognized as the “second secret of life,”
next only to the genetic code [53, 182]. The dysfunction of allosteric networks has
been significantly associated with the etiology of a broad spectrum of human
diseases such as cancer, growth disorders, and neuron disease [27, 131, 143].

Allosteric regulation is always triggered by allosteric modulators that present a
couple of advantages over orthosteric modulators that target the functional sites.
Above all, coded by homologous genes, proteins in the same family always possess
highly conserved orthosteric binding sites, especially in G-protein-coupled receptors
(GPCRs) and kinases. However, allosteric sites are often less conserved because
allosteric effects occur in the diverse structure of the protein but not the functional
sites [18, 201]. Furthermore, even if the affinity of an allosteric modulator is the
same among different subtypes of a protein, the modulator may still exert a selective
effect by having different degrees of cooperativity that exists between orthosteric
and allosteric sites at each subtype [35, 105]. Thus, allosteric modulators can
distinguish the target protein from homologous proteins, causing better subtype
selectivity and fewer side effects than orthosteric modulators [71, 100, 133]. More-
over, any binding sites on the protein surface remote from the functional site could,
in theory, potentially serve as allosteric sites, resulting in an evident diversity of
allosteric effectors [48, 66, 126, 189]. Allosteric modulators also have no direct
competition with orthosteric ligands, so they can exert their influence with an
orthosteric ligand bound to the receptor. However, competitive inhibitors play
their role only with a vacant orthosteric site [94, 127]. Additionally, allosteric
modulators regulate the protein activity rather than absolutely eliminating the activ-
ity, indicative of their moderate potential effects [130, 131]. In addition to direct
binding to the receptor, allosteric modulators also produce indirect allosteric effects
that influence proteins in one signaling unit so they have the potential to fine-tune
tissue activities specifically [161, 176]. With these advantages, allosteric drug
development has been regarded as a new paradigm and a prevailing trend in drug
design at present [12, 88, 93].

Nevertheless, a battery of disadvantages cannot be ignored in allosteric regula-
tion. Allosteric modulators may be less effective than orthosteric modulators due to
the common flat sites [193]. For instance, allosteric modulators of GPCRs often
show micromolar affinities to their receptor, which restrains their drug potential
[184]. Furthermore, nonconserved sites might lead to an easier onset of resistance in
the systems with rapid gene mutation and severe selection (e.g., antivirus and
anticancer therapeutic areas) [103, 186]. Additionally, allosteric sites are usually
different between species owing to the low evolutionary conservation. Therefore, it
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is difficult to develop allosteric drugs because rodent model experiment results might
totally mismatch the results in the human body [184, 193].

Additionally, there are several challenges in the field of allosteric drug develop-
ment. First, although possible allosteric sites are widespread on the protein surface, it
is difficult to discover highly effective allosteric sites [115, 127, 191]. Moreover,
allosteric effector design is not the same as orthosteric drug design. The latter can
refer to related ligands but the former mostly needs to create a new world [138]. With
these challenges and devoid of relevant research methodologies, the number of
allosteric modulator identifications was limited before the year 2000. Fortunately,
the rapid development of structural biology and computational biology has recently
provided a series of methods such as NMR, X-ray crystallography, and fluorescent
labeling, which strongly promotes the research of allostery and fuels the interest in
the discovery of allosteric effectors and allosteric sites [8, 14, 31, 49, 96, 110, 128,
162]. The trend is confirmed by the explosive growth of the number of allosteric
modulators in the past 8 years. In the latest Allosteric Database (ASD), 77825
allosteric modulators and 1788 allosteric macromolecules were included [81, 84,
165]. There is no doubt that the rapid development of related technologies is the
precondition of research into allostery features. Thus, a review of the characteristics
of allostery is helpful in the field of new technology application and advanced
research about allosteric regulation.

Here, we summarize the characteristics of allosteric regulation. We first general-
ize the regulating mechanism and distribution of allosteric proteins, the largest
proportion of the allosteric biological macromolecules. Then, we state the charac-
teristics of allosteric sites that are invoked for the prediction of new sites and the
development of novel allosteric drugs. Finally, the commonalities and key physio-
logical influential factors of allosteric modulators are discussed and quintessential
examples of allosteric drug design are depicted to prove the utility of allostery in
biological processes. These characteristics might help in future allosteric mechanism
research and allosteric drug development.

6.2 Allosteric Proteins

6.2.1 Models of Allosteric Proteins

Multiple models such as the Monod–Wyman–Changeux (MWC) model [123], the
Koshland–Nemethy–Filmer (KNF) model [102], the morpheein model [89, 90], the
population shift model [92], and the dynamic-driven model [101, 112, 146] have
been reported to elucidate the foundation of allostery (Fig. 6.1). The MWC and KNF
models both state that allosteric proteins are symmetrical homo-oligomers. How-
ever, the MWC model indicates that modulator binding and conformational changes
occur in a concerted manner, but the KNF model assumes that modulator binding is
separated to cause conformation remodeling, as a sequential process. In addition, the
MWC model supports that ligand binding shifts the equilibrium of structures so that
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Fig. 6.1 Allostery models. (a) The two-state concerted model of Monod–Wyman–Changeux
(MWC). (b) The sequential model of Koshland–Nemethy–Filmer (KNF). (c) The morpheein
model. (d) The population shift model. (e) The dynamic-driven model
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the transition state exists as a stable state with ligand binding (Fig. 6.1a, b). As
groundbreaking theories, the two models are referenced extensively in early allostery
research.

The morpheein model is based on homo-oligomeric protein allostery. In this
model, subunits of the protein assemble as a specific multimer, while alternate
subunits of the protein can assemble as a structurally and functionally different
alternate multimer (Fig. 6.1c). Alternate subunits can bind with the allosteric ligand
that stabilizes them and shifts the equilibrium to form the alternate multimer. As a
result, the function of the protein is altered toward the targeted multimer, providing a
mechanism for allostery [89, 90].

With further research, the consensus is that the molecular mechanisms of allo-
stery are rooted in the dynamic nature of proteins, an inherent property of
biomacromolecules [72, 73, 129]. Allosteric regulation exists whether small struc-
tures or complex oligomeric enzymes are involved, so the viewpoint from homo-
oligomeric protein allostery needs to be supplemented. Two dynamic models are
helpful in the explanation. In the population shift model, evolution has formulated a
conformation ensemble composed of a series of stable energy basins in the protein
structure [112]. Depicted as a selection process, an allosteric modulator binds with
the conformation that has the site most suitable for it. As illustrated in Fig. 6.1d,
binding of an allosteric effector reduces the energy of the corresponding protein
structure and makes it a stable and dominant conformation. Then, the conformation
ensemble undergoes a population shift, and the conformational redistribution is
accomplished [62]. In the dynamic-driven model, allosteric ligands exert their action
by transmitting changes in protein motions rather than the alteration of the protein
conformation [146]. Importantly, changes in protein dynamics dominate the alloste-
ric effect, but the shape of the protein structure is maintained. As shown in Fig. 6.1e,
the first ligand binding does not induce structural changes in the unliganded subunit,
but the motions of its residues are activated as well. Similarly, the second ligand
binding incurs an obvious decrease in total atomic fluctuations (conformational
entropic penalty) but not atomic mean position changes in other subunits, indicative
of the allosteric interactions driven by changes in protein motions [112, 146].

6.2.2 Distribution of Allosteric Proteins

To determine if a protein is an allosteric protein, the most direct way is to solve the
cocrystal structure between the protein and the allosteric effector with the help of
X-ray crystallography. With a technological advance such as the cryo-electron
microscope, the acquisition of crystal structure troubles researchers less [6, 16]. Oth-
erwise, under the condition that cocrystal structures are not always easily available,
indirect biochemical evidence is also applied to confirm allosteric interactions
between the protein and modulator. For example, the point mutation at key residues,
which causes a measurable decrease of allosteric ligand-binding affinity, can define a
allosteric effect [39].
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After being defined, allosteric proteins and allosteric modulators are deposited
into databases to summarize and utilize them better. The Allosteric Database (ASD)
serves as a relatively complete database of allosteric interactions [81, 84,
165]. Although the first version of the ASD contained only 316 allosteric proteins
in Aug. 2010, the latest ASD (Nov. 2018) contains 1787 proteins
[81, 165]. Figure 6.2a shows the growth trend of allosteric proteins in the past few
years. A small fraction of allosteric proteins was evidently reported before 2000, but
research related to allosteric proteins experienced rapid growth after the millennium.
The reasons for this phenomenon stem not only from the attraction of the advantages
of allosteric drugs to researchers but also from the new insights into mechanisms of
allostery caused by the advances in structural biology [64, 116, 131]. In the recent
two years, the application of cryo-electron microscopy and computational methods
has promoted the discovery of allosteric proteins further [13, 69, 118, 119].

Fig. 6.2 (a) The overall growth of released allosteric protein structures per year (The 1990-
represents structures released before 1990). The orange bars show the number of total available
allosteric protein structures, and the blue bars show the number of structures released annually. Data
come from ASD3.0 [165]. (b) The class distribution of all proteins in the latest ASD (Aug. 2018)
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In the origin theory, proteins possessing an oligomeric structure with symmetry
properties were defined as allosterically regulatory proteins [24]. A typical example
is the first allosteric protein hemoglobin regulated by oxygen [123]. Allosteric
perturbation transmission between topographically remote sites is accomplished by
conformational changes established among several pre-established states with
the conservation of symmetry, and the effect on receptor-binding sites is produced
by this cooperativity [24]. However, the symmetrical oligomeric model is a common
but not universal property in proteins [25, 108]. In the Protein Data Bank in August
2018, the number of monomers (64637) is not far from the number of oligomers
(67138), and the universality of allostery makes it impossible to ignore monomers
([153]; Rose et al. [154]). Meanwhile, allosteric phenomena have been observed in
monomer proteins such as GPCRs [156], thrombin [75], and proteases [187] with
NMR and X-ray crystallography. For instance, type II protease-activated receptors
(PAR2), a member of the rhodopsin-like family of class A GPCRs, can obviously be
downregulated by an allosteric modulator AZ8838 binding to a pocket lined by
extracellular loop 2, transmembranes 1–3 and 7, providing a possible selective
PAR2 antagonist for a series of therapeutic uses (e.g., anti-inflammatory)
[28, 202]. Recent research reveals that even intrinsically disordered proteins
(IDPs) can experience allosteric regulation in signal transmission [181, 197]. Thus,
the old definition needs to be supplemented.

As shown in Fig. 6.2b, allosteric phenomena are widely spread in various proteins
such as kinases, ion channels, GPCRs, transcription factors, and kinds of enzymes.
The existence of allostery in most proteins confirms that rooted in the nature of
proteins, allosteric regulation is as ubiquitous as orthosteric modulation. Therefore,
allosteric regulation gains increasing attention in academia and the pharmaceutical
industry. To date, allosteric protein collection is focused mainly on kinases, ion
channels, and GPCRs, which are the three largest categories of human drug targets.
In these three categories, classic orthosteric effectors interact with the highly con-
served sites bound by the endogenous modulators, so it is difficult to achieve great
selectivity for individual subtypes [37, 116]. However, high selectivity, even toward
closely related subtypes, can be provided by allosteric modulators due to their
distinct binding sites, leading to relatively low off-target effects and side effects
[30, 195]. Moreover, orthosteric modulators mimicking endogenous ligands have a
limited effect on proteins that respond to special stimuli such as light, protons, and
divalent cations, but allosteric modulators play their role by regulating the interac-
tion between receptors and ligands [37]. Of note, allosteric drugs bind with the
nonfunctional structure of proteins, so common mutations occurring on functional
sites exclude the effect of orthosteric modulators but not allosteric effects
[198]. Based on these advantages, the rapid development of allosteric proteins,
especially kinases, ion channels, and GPCRs, can reasonably be explained.
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6.3 Allosteric Sites

6.3.1 Definition of Allosteric Sites

The defined allosteric sites are some residues that are away from the catalytic center
and able to interact with allosteric modulators to regulate the protein activity. Thus,
the allosteric sites exercise a remote control in the regulation of protein activity.
Conversely, orthosteric sites are always coincident with the catalytic center
[25, 72]. Figure 6.3a shows the relative positions of the two sites in cyclin-dependent
kinase 2 (CDK2), a serine/threonine kinase that is a therapeutic target in cancer

Fig. 6.3 Several features of allosteric sites. (a) The relative position of allosteric and orthosteric
sites is colored in the surface representation, taking CDK2 as an example. The blue area represents
the orthosteric site interacting with CCT068127, an inhibitor competing with the substrate ATP
[194]. The red area represents the allosteric sites bound with two 8-anilino-1-naphthalene sulfonate
molecules, the exclusive CDK2 allosteric inhibitor (PDB ID: 3PY1) [9]. (b) A sequence alignment
comparison of residues of an allosteric site and an orthosteric site in AchE from 24 different species
(partial sequences are omitted for clarity). Residues that maintain identity among the 24 sequences
possess a black background, and those that are similar among the sequences have a gray back-
ground. The remaining residues keep a white background. The homologous protein data were
collected from the ConSurf server [21, 67], and the sequence alignment was finished at the
Sequence Manipulation Suite [174]. The residue numbers of allosteric sites and orthosteric sites
were derived from ASD 3.0 [165]
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treatment [9, 151, 194]. In addition to this key difference, allosteric sites also have a
series of distinctions from orthosteric sites, as described below.

6.3.1.1 Nonconservation of Allosteric Sites

At first, allosteric sites were relatively nonconservative compared to the orthosteric
sites. Yang et al. [201] proposed that allosteric site residues have an average
conservation score of 0.58 that is calculated from homologous sequence alignments
in 58 enzymes collected from various species. However, orthosteric site residues
have an average conservation score of 0.94 (P¼1.36 � 10�67). Using acetylcholin-
esterase (AChE) as a sequence comparison example in Fig. 6.3b, it is significant that
the allosteric site of AchE shows negligible similarity among 24 different species.
Nevertheless, the orthosteric site of AchE is highly conserved. Even more than one
third of the residues of the orthosteric site of AchE are exactly the same among the
species. Thus, allosteric sites are statistically unequivocally less conserved than
orthosteric sites.

From an evolutionary perspective, orthosteric sites are responsible for substrate
binding and further reaction, so mutations here inevitably demolish the normal
function of the protein [7]. Rather, allosteric sites serve only as platforms for
modulator binding instead of being involved in the catalytic effect toward substrates.
Therefore, mutations on allosteric sites rarely influence the key functions of the
proteins [72, 186]. Furthermore, different environments render allostery variables in
different organisms and species, which provides an opportunity to evolve allosteric
site residues differently to fit the environments [201]. For instance, AMP allosteri-
cally inhibits the porcine fructose-1,6-bisphosphatase (FBPase), but this effect is
absent in Escherichia coli FBPase, which shares a 41% sequence identity and similar
functions with the former FBPase [61, 78]. As a result, allosteric sites are not as
conserved as orthosteric sites. Thus, the drugs targeting allosteric sites can be
specific and prevent side effects [34, 100]. Meanwhile, low conservation makes it
difficult to develop allosteric drugs by cross-species experiments [193].

6.3.1.2 Residue Features of Allosteric Sites

In addition to distinct evolutionary pathways, allosteric sites also have unique amino
acid compositions that are related to the allosteric mechanism and helpful in allo-
steric site prediction. Song et al. [172], Li et al. [109], and Yang et al. [201] all
revealed that allosteric sites tend to be more hydrophobic than orthosteric sites with
data collected from different databases. Polar amino acid residues such as aspara-
gine, histidine, aspartic acid, and glutamic acid are more abundant at orthosteric sites
than at allosteric sites, whereas the hydrophobic residues (e.g., leucine, valine,
isoleucine, phenylalanine, and proline) are highly enriched at allosteric sites. Nota-
bly, amino acids with hydroxyl groups such as serine, tyrosine, and threonine are
abundant at orthosteric sites.
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Different site compositions could be attributed to different functions undertaken
by the sites. Orthosteric ligands commonly interact with the sites by a covalent effect
(e.g., phosphorylation), but allosteric sites seldom form covalent bonds with
corresponding ligands [41, 113, 199]. Thus, hydroxyl-containing amino acids are
enriched at orthosteric sites to form covalent interactions. For the hydrophobicity
possessed by allosteric sites, hydrophilic orthosteric site residues have the potential
to form unique connections such as hydrogen bond networks to facilitate receptor-
ligand interactions, but allosteric site residues indicate fewer similar interactions in
this regard [5, 144]. Rather, the allosteric site residues drive changes in the hydrogen
bond network instead of being involved in that network [97]. In addition, nonpolar
residues at allosteric sites are useful in the formation of the ligand-binding pocket,
with only a small part of polar residues facilitating interactions during ligand
binding [201].

6.3.2 Prediction of Allosteric Sites

Essentially, allosteric regulations are due to allosteric sites receiving and transmitting
perturbation signals to the functional sites through atomic fluctuations, amino acid
residue networks, or domain movements, resulting in dynamic alterations in the
protein conformation population and ultimately conversion between two or more
functional states of the protein [19, 45, 92, 117, 124]. During this process, the
allosteric sites are undoubtedly the trigger points and regulatory centers for allostery.
Therefore, how to identify allosteric sites is regarded as an important issue for drug
design related to allosteric regulation [85, 116, 200]. In the early period of allostery
research, allosteric site identification was dependent mainly on experimental
methods. With the rapid development of computational biology, methods in silico
applied for the identification of allosteric sites have emerged generally and show a
promising future [32, 115, 127]. Next, we summarize the basic concept and recent
progress in the field of experimental and computational methods for the prediction of
allosteric sites.

6.3.2.1 Prediction of Allosteric Sites Based on Experimental Methods

X-Ray Crystallography

As the most common experimental method in allosteric site identification research,
X-ray crystallography continues to make contributions to the discovery of allosteric
sites [110, 118, 166]. In the research for site discovery, the procedure is as follows.
First, the allosteric modulators are screened by a high-throughput method, and then
the cocrystal structure of the protein and modulator is cultured using structural
biological methods. Next, the diffraction images of the structure are obtained by
X-ray crystallography. Analysis of the complex crystal structure of the effector and
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the protein directly explains the allosteric regulatory site and mechanism. In addi-
tion, by comparing the crystal structures between the apo state and the holo state, it is
possible to find detailed changes in the protein after the allosteric perturbation.
However, X-ray crystallography also has limitations. Allostery is caused not only
by protein conformation changes but also by protein thermodynamics. The crystal
structure is observed statically, but the allosteric process is dynamic. Therefore, the
result of X-ray crystallography lacks kinetic data, which can be complemented by
following molecular dynamic simulation [55, 157, 166].

Metabotropic glutamate receptor 5 (mGlu5), a member of class C GPCRs, is of
considerable interest as a promising allosteric therapeutic target in the treatment of a
series of emotion and movement disorders [87, 203]. However, structural informa-
tion on the seven-transmembrane domain (TMD) of mGlu5 has remained elusive for
a long time. This domain plays a particularly important role in the identification of
allosteric sites and allosteric modulators bound to this region [35, 51]. Doré et al.
[46] first determined the cocrystal structure of the mGlu5 TMD domain in a complex
with the allosteric modulator mavoglurant using X-ray crystallography based on a
thermostabilized mutated receptor. As shown in Fig. 6.4a, X-ray crystallography
data directly reveal that the allosteric site defined by residues from transmembrane
helices is hidden in a pocket 8 Å from the receptor surface, and the entrance of the
modulator is restrained to 7 Å by the transmembrane helix and the extracellular loop
2 of mGlu5. Furthermore, the crystal structure also identifies the interactions between
residues and ligand (Fig. 6.4b), which helps the explanation of its mechanism and
drug optimization in the next step.

Fig. 6.4 The position of mavoglurant and interactions between mGlu5 and the mavoglurant. (a)
Surface representation of the mGlu5–mavoglurant complex structure (PDB ID: 4OO9), viewed
parallel to the membrane lipids. In a stick representation, mavoglurant is colored orange with the
binding pocket colored in cyan. The arrow indicates the ligand entrance, marked with its diameter.
(b) Interactions between pocket residues and mavoglurant. Hydrogen bonds are represented by
dashed lines, and part of the site is represented by green lines
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Isotope Tracer Labeling Method

Isotope labeling technology has recently been developed rapidly to discover allo-
steric sites. With the 13C and 15N labeling, nuclear magnetic resonance (NMR)
spectroscopy provides not only high-resolution structural information for a complex
in solution but also information about the dynamic process on a picosecond to
millisecond time scale. Moreover, low-populated conformational states and residue
conformational entropy can be provided by NMR [169, 183]. All of this information
is helpful in the identification of an allosteric site.

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is another site
revelation method that is useful with the help of isotope labeling. In this way, the
protein is immersed in a heavy aqueous solution, and the hydrogen atoms of the
protein are exchanged with the deuterium in the solution. During the exchange
process, the exchange rate of hydrogens located outside the protein is fast, but the
hydrogens inside or participating in the formation of hydrogen bonds exchange
slowly. Then, by mass spectrometry, the exchange rate of different sequence frag-
ments of the protein can be monitored to show the intrinsic fluctuations, local
unfolding, rigid body motion, and conformation rearrangement of the protein,
which can be summarized as kinetic parameters and energy parameters and finally
infer the location of allosteric sites [22, 192].

Heat shock protein 90 (HSP90) is a kind of molecular chaperone that facilitates
protein folding, maturation, and stabilization. Proteins chaperoned by Hsp90 are
sometimes significant in the progression of various diseases. Thus, Hsp90 inhibition
site discovery gains intense academic interest [86, 205]. Chandramohan et al. [22]
combined both structural insights and dynamic information provided by HDX-MS,
observed characteristic long-range conformational changes, and finally identified its
allosteric site. The binding of a phenolic class ligand with low affinity (KD ¼
570 μm) demonstrates the difference in the hydrogen–deuterium exchange rate
between the apo state and the holo state at the allosteric site and regions affected
by allostery (Fig. 6.5). Therefore, the site position and allosteric effect are
determined.

Fluorescent Label Method

In addition to the isotope label, the fluorescent label can also be used in the field of
allosteric site identification. As a commonly used protein tracer, fluorescent mole-
cules bind covalently to the suitable residues of a target protein, and its motion
dynamically expresses the movement or conformation changes of the corresponding
region of the protein. Because of its high sensitivity and the convenience of
detection, the fluorescent label is widely used in the discovery of allosteric
sites [122].

Regarded as a new target for antibiotic discovery, FtsZ is a widely conserved
tubulin-like GTPase that directs bacterial cell division [120]. A potent allosteric
inhibitor PC190723 binds to FtsZ in a cleft-opening conformation and suppresses its
function [50, 177]. Using fluorescent benzamide analogs of PC190723, Artola et al.
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[2] demonstrated the binding site and elucidated the mechanism experimentally.
With an open cleft, the probe fluorescent molecule interacts with the allosteric site
and shows the position of the allosteric site. However, a closed cleft in FtsZ prevents
the allosteric interaction between ligand and receptor. Combined with cytological
methods, the fluorescent probe binding assays are also employed to screen for
allosteric inhibitors of FtsZ in search of new antibiotics [1] (Fig. 6.6).

Disulfide Trapping Method

Disulfide trapping is a site-directed approach developed by Well et al. [76, 159],
offering a strategy to detect hidden and potential allosteric sites on a given protein
using small molecules. In this approach, a protein harboring cysteine adjacent to a
site of interest is screened against a library of disulfide-containing compounds for the
purpose of forming a disulfide bond between the appropriate small molecules and a
cysteine in the proximity of the site under reducing conditions. The formation of a
disulfide bond between the protein and the specific small molecule is then easily
detected via mass spectrometry. Ultimately, X-ray crystallography is performed to
demonstrate the binding mode between the protein and disulfide-trapped fragments.
The disulfide bond capture method has a site-directed orientation, but its application
scope can only cover proteins with cysteine next to the site. Overall, disulfide
trapping has proven to be a valuable tool to verify suspected or orphan allosteric
sites on the protein surfaces.

A study of caspase-5 shows the application of the disulfide trapping method.
Caspase-5 is a member of the inflammatory aspartate-specific thiol proteases
[17]. Working together with caspase-1, caspase-5 plays an important role in

Fig. 6.5 Ligand influence observed by HDX-MS shows allosteric effect in Hsp90. (a) Modulator
2,4-dihydroxypropiophenone causes conformational motions. (b) Cartoon representation of Hsp90
crystal structure (PDB ID: 4EGK). Hydrogen–deuterium exchange rate alteration after ligand
binding shows the positions of regions affected by allostery (colored in orange) and allosteric site
(colored in red)

6 Characteristics of Allosteric Proteins, Sites, and Modulators 119



inflammatory responses, but its mechanism remains obscure [10]. The development
of caspase-5-specific inhibitors is beneficial to both elucidations of its mechanism
and novel treatment of inflammatory disorders [190]. However, the orthosteric site is
highly conserved among caspases, so the discovery of the allosteric site is imperative
to address this issue. Gao and Wells [60] used the disulfide trapping approach to
validate an allosteric site on caspase-5 and generate selective allosteric inhibitors of
caspase-5. They left unchanged the Cys341 of caspase-5, which corresponds to
Cys331 of caspase-1, located at its novel allosteric site [160]. Having screening
approximately 15,000 thio-containing small molecule compounds, they identified
via mass spectrometry 61 compounds that conjugate highly to Cys341. The 10 first-
tier hits were selected to be resynthesized based on the structural attractiveness and
the least similarity to known caspase-1 hits. The results revealed a naphthyl-thiazole-
containing compound (Fig. 6.7a) that displays the most potent inhibition of caspase-
5 but little inhibitory effect on caspase-1 (Fig. 6.7b). Further, a mass spectrometric
study on wild-type caspase-5 confirmed that the compound specifically binds to the
p10 subunit that is away from the orthosteric site and interferes with the substrate
binding by inducing conformational changes. Therefore, a novel allosteric site on
caspase-5 was discovered by the disulfide trapping approach, which provides a
starting point for the design of selective allosteric modulators targeting caspase-5.

Fig. 6.6 Scheme interpreting the allosteric site and effect of the cleft. The cyan arrow represents the
success of the probe fluorescent molecule (green spheres) in binding to the open state of FtsZ (PDB
ID: 4DXD), resulting in the observed fluorescent. However, the magenta arrow and red cross
indicate that the closed cleft structure (colored in magenta) prevents the effector from interacting
with the receptor at the same allosteric site. In total, the fluorescent molecule identifies the allosteric
site and the binding mechanism
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6.3.2.2 Prediction of Allosteric Sites Based on Computational Methods

Prediction Based on Sequence Analysis

As the basic information for a protein, the sequence information has the potential to
predict an allosteric site mainly through sequence alignment. Combining correlation
information with sequence conservation, statistical coupling analysis (SCA) is one
of the most representative methods for sequence-based prediction [74, 111,
179]. First, residues coevolving in a protein family are found through multiple
sequence alignment techniques. Then, protein sectors, the networks of identified
residues, are regarded as the structural basis of the allostery phenomenon. Finally,
surface pockets that directly interact with the protein sectors are predicted to be
allosteric sites [63, 185].

The discovery of allosteric hotspots for the metabolic enzyme dihydrofolate
reductase (DHFR) provides solid support for the SCA prediction method. Widely
spread in prokaryotes and eukaryotes, DHFR is an essential enzyme that is necessary
for the biosynthesis of purines, pyrimidines, and amino acids [163]. However, the
allosteric function of DHFR remains elusive. Using SCA to scan the homolog
sequences of DHFR, Reynolds et al. [152] discovered a system of coevolving
amino acids as a protein sector that forms a sparse and physically contiguous
network. The network connects the DHFR orthosteric site with the substrate, the
cofactor site, and several distant surface regions (Fig. 6.8) [106]. Indeed, the sector-
connected surface sites are hotspots for the emergence of allostery, namely, possible
allosteric sites. Thus, although there is no known allosteric function, DHFR contains

Fig. 6.7 (a) Chemical structure of the selective allosteric modulator. (b) Inhibition of wild-type
caspase-1 and caspase-5 with the compound. The effector was incubated with either 50 nm caspase-
1 or 200 nm caspase-5 at a concentration of 1 μm for 1 hour at room temperature and tested for
inhibition of activity. The blue bar and green bar represent the activity of caspase-1 and caspase-5,
respectively, after treating
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a sparse sector structure that is the same as other allosteric proteins, providing a
statistically preferable route for the initiation of allosteric control.

Prediction Based on Structure Analysis

Each protein has a unique 3D structure, and features of allosteric sites can be
identified by machine learning that demands a large sum of allosteric structure
data. Thus, the structures of a protein can also be applied to predict the allosteric
sites. Based on data in ASD, Huang et al. [83] presented a highly efficient web
platform, Allosite, to identify potential allosteric sites based on pocket-based anal-
ysis and a support vector machine (SVM) classifier. A broad array of allosteric and
non-allosteric sites was employed to carry out the SVM learning process, and 21 site
descriptions were performed to characterize the topological and physicochemical
features of the sites. With the sensitivity and specificity meeting the need in the
fivefold cross-validation test, the model was applied to validate 18 additional allo-
steric sites and 231 non-allosteric sites, and the rate of the correct results was as high
as 96%. Although Allosite has been a highly sensitive and accurate allostery
prediction tool, its performance can still be improved. Recently, Song et al. [172]
presented AllositePro to upgrade the accuracy and effect of Allosite. A combination
of structural features and approaches based on normal-mode analysis (NMA) was

Fig. 6.8 The orthosteric site, connecting network, and predicted allosteric sites in DHFR. (a) A
surface representation of the sparse but physically connected networks that links the active site to a
few distant surface positions (PDB ID: 1RX2). The active site is colored blue. The sector
comprising the network is colored yellow, and the possible allosteric sites are colored red. Other
unrelated areas are colored gray. The orthosteric ligand (folic acid) is depicted by a stick model. (b)
A flattened schematic representation of the slice through the protein core. Yellow arrows show the
residue network linking the orthosteric site (blue) and a few distant surface positions, as well as the
predicted allosteric sites (red)
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used in the prediction of allosteric sites in AllositePro, making it a more accurate and
reliable tool for allosteric site prediction.

A successful application of AllositePro is the discovery of a novel allosteric site
on cyclin-dependent kinase 2 (CDK2). As a serine/threonine kinase, CDK2 is
involved in the G1/S checkpoint and activates the S phase-specific gene expression
[164]. Its overexpression leads to damage of the cell cycle and initiation of cancer, so
CDK2 inhibition is regarded as a therapeutic target in cancer treatment [9, 151,
194]. In the prediction process, the crystal structure of CDK2 (PDB ID: 2C6K) was
uploaded as the input. After the estimation of the site score, a pocket at least 5 Å from
both the ATP-binding site and the substrate site was predicted to serve as a novel
allosteric site (Fig. 6.9a). A mutation on residues R150 and Y180 at the predicted site
significantly attenuates the catalytic effect of CDK2, indicative of the accuracy and
potential use of the prediction results of AllositePro. Moreover, two new allosteric
inhibitors were discovered based on the allosteric site (Fig. 6.9b) [80]. Thus, pre-
diction methods based on structure analysis are useful in finding potential allosteric
sites.

Prediction Based on Dynamic Information

Some proteins could have naturally cryptic ligand-binding sites. Although these sites
have the potency to modulate the protein activities allosterically, they are usually
difficult to detect in the ligand-free structures, even a single representative structure.
However, powered by molecular dynamics (MD) simulations, a full map of receptor
conformation space and representative samples of all structures with atomic-level

Fig. 6.9 The discovery of a novel allosteric site in CDK2 proved the usefulness of AllositePro. (a)
The surface representation of the orthosteric site and allosteric site of CDK2. The novel allosteric
site is represented in red, and the orthosteric site is colored in blue with DT2, an orthosteric inhibitor
depicted by the stick model. (b) The chemical structure of novel allosteric modulators
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accuracy make the allosteric sites and molecular interaction processes visible
[57, 145]. MD simulations reproduce the dynamic interaction process and offer an
in-depth insight into the detailed interactions between proteins and modulators,
without prior knowledge of the binding site position [118, 127]. Specifically,
large-scale unbiased MD simulations start with the receptor protein and known
modulator placed away from the orthosteric site. In the simulation process, the
binding of allosteric effectors reveals several metastable hidden binding sites that
can be confirmed by X-ray crystallography [47, 104]. Furthermore, based on the
conformation clusters of the protein, virtual docking blindly can identify the possible
sites [79]. In addition to a single MD simulation, massive MD simulations construct
Markov state models (MSMs) that are able to discover allosteric sites hidden in
minor conformations [15, 29]. With the pMD membrane newly developed,
membrane-bound protein interaction can be simulated, as well as solvent proteins,
and the prediction of allosteric sites on them becomes easy and accurate [147]. In
short, dynamically predicting allosteric sites is a method used widely, especially in
the field of the prediction of sites hidden in the intermediate states.

The nonreceptor tyrosine kinase c-Src is a well-known drug target because of its
oncogenic properties in many cancers and importance in neuroinflammation
[58, 171]. Extensive experimental data have revealed both inactive and active states
of c-Src and showed large-scale distinctions between them [155, 178]. However, the
absence of intermediate states along the activation pathway impedes control of the
aberrant kinase activation [52, 148]. Using massively distributed MD simulation
(totally 550 μs), Shukla et al. [167] revealed the presence and structures of key
intermediates and analyzed the conformational landscape of the c-Src activation
pathways. With the help of MsM, two intermediate states (I1 and I2) were discov-
ered along the transition pathway. The C-helix and β-sheets in the N-terminal lobe of
c-Src were observed to form an allosteric site in I2. Additionally, 8-anilino-1-
naphthalene sulfonate (ANS) toward this site inhibits c-Src by trapping the kinase
in this partially active intermediate state. The discovery of this site would be both
beneficial in the development of selective allosteric kinase inhibitors and useful for
research about the functions of a single kinase in complex cellular signaling path-
ways [98]. The research above indicates that large-scale MD simulations have the
ability to detect an allosteric site hidden in intermediate states. In the former example
of FtsZ, molecular dynamics simulations had also identified a correct allosteric site
and revealed the regulation mechanism in silico before the experimental evidence
obtained by the fluorescent label [149].

6.4 Allosteric Modulators

Allosteric modulators are protein allosteric site-binding molecules that have poten-
tially higher specificity and less toxicity than traditional orthosteric compounds
[72]. Due to the advantages and advanced technology, the interest in the allosteric
modulator discovery has been fueled in the past 15 years, especially in the recent
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5 years. In 2000, there were fewer than 1000 allosteric molecules in total. However,
the number increased to 10,000 in 2010 and has reached 80,000 to date. In the year
2013 alone, 26,308 new allosteric modulators were discovered. In short, the discov-
ery of allosteric modulators has grown explosively. In the following section, the
characteristics and main applications of allosteric modulators are introduced.

6.4.1 Characteristics of Allosteric Modulators

6.4.1.1 Classification of Allosteric Modulators

Based on the different effects on the receptor, allosteric modulators can be divided
into positive allosteric modulators (PAMs), negative allosteric modulators (NAMs),
and silent allosteric modulators (SAMs, also named neutral allosteric modulators).
Through binding to the corresponding allosteric site, a PAM improves the action of
an orthosteric effector but has no intrinsic activity. The PAM may enhance the
efficacy and/or affinity of the orthosteric effector. Meanwhile, the PAM may also
enhance the coupling process to the G protein. Conversely, a NAM decreases the
action of an orthosteric effector and inhibits the function of the orthosteric effector
by binding to the corresponding allosteric site. The NAM is regarded as a
noncompetitive antagonist in the field of enzymology. In addition, a SAM occupies
an allosteric site fully but exerts no pharmacological function on its own. Neverthe-
less, it blocks the allosteric site of both PAMs and NAMs, resulting in the inhibition
of the corresponding allosteric activities [51, 196]. The modes of these interactions
are shown in Fig. 6.10.

6.4.1.2 Mechanism of Allosteric Modulator Action

From a unified perspective, allosteric signal propagation pathways pre-exist in pro-
teins, and their activation is associated with events about protein topologies such as
modulator binding and covalent modifications [132, 182]. The binding of an allo-
steric modulator shifts the ensemble of pre-existing pathways to a specific allosteric
pathway, causing the population variation of the protein [124]. In this way, the
modulator stabilizes the allosterically active conformation and/or destabilizes the
allosterically inactive conformation. Hence, an allosteric modulator does not create
new conformations of their receptors. An allosteric modulator only changes the
conformation distributions within the ensemble [131]. Moreover, via modulation of
protein structural dynamics, allosteric modulators are often non-competitive effec-
tors that are always considered as prospective drugs [72].

However, it is troublesome that only subtle differences exist between some PAMs
and NAMs toward the same protein. Even identical modulators in different envi-
ronments lead to largely different, even opposing, effects. The determining factors of
the population shift direction need to be revealed to explain or predict the
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consequences of allosteric modulator binding [4, 125, 132, 159]. Faced with this
problem, Nussinov and Tsai raised the concept of anchor and driver atoms
[132, 137]. The atoms of allosteric modulators can be divided into anchor and driver.
The anchor part docks into the allosteric site and is involved in favorable interactions
with common conformations in the active and inactive states. These interactions
between the anchor atoms and the receptor protein do not alter during the switch
of the protein state. In contrast, the driver atoms interact with the receptor. They can
be classified as attractive “pulling” atoms that stabilize the allosterically active
conformations or repulsive “pushing” atoms that destabilize the allosterically inac-
tive conformations. Thus, attractive interactions between drive atoms and allosteric
site can pull the inactive conformations into active conformations or vice versa.
Furthermore, it is understandable that subtle but important modifications in the drive
atoms of allosteric modulators can lead to totally distinct effects. The concept of
driver and anchor proposes an advanced allosteric drug design strategy based on the
structural mechanisms of allosteric modulator action.

6.4.1.3 Physicochemical Properties and Chemical Features of Allosteric
Modulators

Different from orthosteric ligands, allosteric modulators have some common struc-
tural and physicochemical properties that have been involved in research for years
due to the importance of allosteric drug design and understanding of allostery
phenomena [141, 186].

Fig. 6.10 The schematic illustration of the influences caused by different kinds of allosteric ligands
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Guided by the massive information collected from ASD and ChEMBL, Smith
et al. [170] investigated the features of allosteric modulators and compared them to
orthosteric modulators. First, they discovered that allosteric modulators are more
rigid and constrained. There are fewer bonds per heavy atom in allosteric ligands,
which means fewer saturated bonds and less possibility to rotate the bonds. With the
increase in aromatic structures in allosteric effectors, the allosteric effectors tend to
be more rigid in allosteric interactions, though allosteric sites always undergo a
conformational change [42, 141]. However, in terms of hydrophobicity, large-scale
statistics revealed that only negligible differences exist between orthosteric ligands
and allosteric ligands, while allosteric sites show more hydrophobicity than
orthosteric sites. Meanwhile, modulators of both categories appear to cover similar
chemical space such as molecule weight. The study provides insight into chemical
features that can be considered in the design of allosteric drugs.

6.4.2 Allosteric Modulators in Drug Discovery

Since allostery is widespread in receptors, huge molecular machines, and protein
kinases, effective drugs for multiple diseases can be developed [72]. Additionally,
allosteric drugs are free from major drawbacks (e.g., off-target effect) of traditional
orthosteric compounds [116]. Because of their specificity, they cause fewer side
effects and are regarded as safer. They have no competition with the orthosteric
ligand, so the regulation can be controlled but not produce the on/off effects
[44, 132]. Moreover, the allostery-specific “effect ceiling” increases the level of
drug safety under the overdose condition [64]. Thus, the development of allosteric
drugs appears to be a promising trend in drug design. In the following part, we will
discuss some typical cases that provide new insights into the therapeutic field, which
is instructive for future drug design and the optimization of existing allosteric drugs.

6.4.2.1 GPCR Allosteric Modulators

As key cell-surface proteins, GPCRs undergo a complex conformation
rearrangement upon ligand binding to transmit extracellular environmental changes
into biochemical signals such as G protein activation across the membrane
[99, 180]. GPCRs have been proved to be engaged in a broad array of human
disorders. Thus, it is not surprising that GPCRs are the target of many therapeutic
methods currently in use (e.g., benzodiazepines and γ-aminobutyric acid receptors)
[35]. Since GPCRs have all evolved from the same ancestor, and the active site has
to keep conserved to guarantee their function, it is difficult to discover selective
orthosteric modulators for a specific GPCR subtype [34]. Nevertheless, by targeting
the less conserved allosteric sites, selective modulators have been developed suc-
cessfully [36]. Meanwhile, allosteric modulators do not cause receptor desensitiza-
tion, which is a typical result of orthosteric modulators [193, 196]. Additionally, an
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allosteric modulator can regulate specified downstream pathways but not influence
others, which is depicted as functional selectivity [59]. As a result, the allosteric
approach is increasingly popular in the field of GPCRs.

6.4.2.2 Kinase Allosteric Modulators

Implicated in various cellular and extracellular activities, kinases transfer the gamma
phosphate of ATP onto the hydroxyl group possessed by proteins, lipids, and sugars.
Kinases provide a central switching function in cellular transduction pathways such
as cellular growth, proliferation, and differentiation [11, 91]. Overexpression of
kinases is directly associated with many human diseases such as diabetes,
Alzheimer’s disease, and Parkinson’s disease [150]. Thus, kinase inhibition has
been indicated as a potential therapeutic target, but undesired selectivity profiles
and the emergence of resistance undermine the clinical applications of kinase
inhibitors [54, 198]. However, allosteric kinase inhibitors do not affect conserved
ATP-binding sites, avoiding unnecessary inhibition and preventing drug toxicity. In
contrast, orthosteric drugs interact with the ATP-binding sites directly, and multiple
kinases are influenced due to the similarity of the substrate sites. Other advantages of
allosteric modulators over ATP-competitive kinase inhibitors include the ability to
overcome resistance caused by mutations in the ATP-binding site such as the
common T315I mutations in the gatekeeper position of BCR-Abl [65]. In addition,
allosteric kinase modulators may not need to possess affinity at the nM level to
compete with the ATP with a high intracellular concentration, rendering it easier to
develop and optimize allosteric inhibitors. With these attractive features, allosteric
modulators are regarded as a new generation of kinase inhibitors [198].

6.4.2.3 Allosteric Network Modulators

In addition to the alteration of the single protein activity, the allosteric changes in a
single protein may induce dynamic changes in proximal proteins and then have an
effect on adjacent proteins. In this fashion, allosteric signals propagate in cellular
networks and finally exert an effect on the distant target protein [116, 176]. Nussinov
et al. ([134], Csermely et al. [38], Szilágyi et al. [176]) proposed a novel concept,
“allo-network,” to explain this behavior. A conventional modulator directly has
an effect on an individual protein. However, an allo-network modulator initiates a
perturbation signal in a protein. Then, with the help of the cellular network, the
signal is enabled to reach the distant target protein. Thus, the allo-network modulator
greatly expands the range of drug target proteins. Since allo-network modulators
have the potential to generate a specific protein signaling pathway to change the
abnormal cellular network, they possess fewer side effects and lower toxicity and
have prospects for further drug development [176].
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6.5 Conclusions

Defined by distant regulation in biological macromolecules, allostery has been
regarded as an efficient and ubiquitous regulation of protein activities. Allostery is
described dynamically, namely, the population shift of a macromolecule is caused by
the binding of allosteric modulators. Allosteric regulation has many differences from
orthosteric regulation, which can be applied to the prediction of allosteric interac-
tions. Additionally, allosteric regulation is receiving increasing attention in drug
development because of some unique advantages (e.g., subtype selectivity) of
allostery above the differences. In the last 10 years, advanced technologies promote
the identification of allosteric proteins, sites, and modulators, providing a premise for
the research of allostery mechanism and the optimization of allosteric modulators.
The application of allostery such as in kinase inhibitors and GPCR modulators has
demonstrated the promising future of allosteric regulation. Because of the obvious
merits of allosteric regulation and the considerable interest in the development, we
believe that the repertoire of allostery will be burgeoning in the pharmaceutical
industry and drug discovery program.
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Chapter 7
Advances in the Computational
Identification of Allosteric Sites
and Pathways in Proteins

Xavier Daura

Abstract With the increasing difficulty to develop new drugs and the emergence
of resistance to traditional orthosteric-site inhibitors, the search for alternatives is
finally approaching the focus on allosteric sites. Allosteric sites offer opportunities to
regulate many pharmacologically targeted pathways by inhibition or activation. In
addition, allosteric sites tend to be less conserved than the functional site, which may
facilitate the design of specific effectors in the protein families for which specific
orthosteric inhibitors have proved difficult to design. Furthermore, recent evidence
suggests that all proteins might be susceptible of allosteric regulation, increasing the
space of druggable targets. Computational identification of allosteric sites has
therefore become an active field of research. The problem can be approached from
two sides: (1) the identification of allosteric-communication pathways between the
functional site and potential allosteric sites and (2) the functional-site-independent
identification of allosteric sites. While the first approach tends to be more laborious
and thus restricted to a single protein, the second tends to be more amenable to
larger-scale analysis, thus providing tools for the two drug discovery scenarios: the
analysis of known targets and the screening for new potential targets. Here, I show
some basic concepts and methods useful to the identification of allosteric sites and
pathways, in line with these two approaches. I describe them in some detail to build a
clear framework, at the risk of losing the interest of experts. Examples of recent
studies involving these methods are also illustrated, focusing on the techniques
rather than on their findings on allosterism.
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7.1 Introduction

In the late 1950s, the discovery of feedback inhibition [1] meant that inhibitors could
differ from substrates in terms of shape, size, and charge, questioning the binding to
a common site in the protein. A few years later, Monod and collaborators described
how a binding site distinct from the active site could regulate protein function and,
together with Jacob, coined the term “allosteric” in the conclusions article of a Cold
Spring Harbor Symposium in 1961 [2]. In its initial definition the term focused on
the effector molecule—a molecule other than a steric analogue of the substrate.
However, the focus quickly moved to the protein [3], as a structure-related property
involving a reversible conformational alteration triggered by the binding of an
allosteric effector to a site different of the active site. A crucial observation for
rationalizing the allosteric effect was that allosteric regulation could be impaired
through mutation while keeping the catalytic function intact. It was also observed
that regulation mechanisms were more sensitive to mutations than the catalytic
function, meaning that allosteric transitions involved not only the regulatory site
but also relied on residues spread over the protein structure.

Models of allosterism initially focused on homomeric proteins. The MWC
(Monod, Wyman, and Changeux) or concerted model [4] assumed the existence of
at least two conformational states in equilibrium, for both the ligand-bound and
ligand-unbound states. All monomers would be in the same state and the ligand
would bind the different conformations with different affinities. Thus, upon binding
there would be a shift in the equilibrium toward the most stable conformation for the
bound state. It is a precursor of today’s conformational selection model. On the other
hand, the KNF (Koshland, Nemethy, and Filmer) or sequential model [5] represents
an induced-fit model. It assumes two conformational states associated to the
unbound and bound states, respectively. The binding of the effector ligand would
cause a conformational change. The monomers would go through that conforma-
tional change independently, but the switch of one subunit would make the other
subunits more likely to change.

The evolution toward our current understanding of allosterism was mainly
triggered by emerging ideas on protein dynamics [6] and the realization that quater-
nary structure was not fundamental to allostery [7]. The current view of allosterism
retains, nevertheless, the basic concepts of the two classical models [8–10], which
can be recognized in different degrees in different allosteric systems and could be
probably summarized in the following keywords: ensemble of states, conformational
selection, population shift, induced fit, perturbation, and signal propagation. The
largest digression from the classical concept was probably the proposal that allosteric
signals may propagate by altering protein dynamics alone, without a detectable
conformational change [11]. The baseline is that allosteric mechanisms are diverse
and complex, as it is expected from a phenomenon affecting a large diversity of
proteins and functions.

The presence of allosteric sites in a protein may not always be evident.
Some allosteric sites are characterized by a transient nature and escape structural
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studies—cryptic allosteric sites [12, 13]. In other cases, regions in a protein that
could accommodate a ligand but lack natural ligands may become allosteric given
the identification of an appropriate compound—serendipitous allosteric sites [14]—a
property that has important implications in drug discovery. Indeed, it has been
argued that in vivo there may be multiple effector sites and multiple signaling
pathways within a single allosteric protein [15]. These findings and the notion that
protein flexibility is a key requirement for allostery support the concept of allostery
as a universal phenomenon [16]. An important difficulty when trying to identify
allosteric sites and pathways in proteins, as already identified by Monod [3], is that
the coding of allosteric properties in the protein structure appears to be subtle and
fragile when compared to a catalytic activity. The picture is further complicated by
the finding that intrinsically disordered proteins are no exception to allosterism [17].

Generally speaking, prediction algorithms may be based on (1) well-funded
physical principles describing the system and property of interest (physical models);
(2) a large number of previous recordings of the property of interest and possibly of
other variables of the system that may correlate with it (statistical models); (3) explor-
atory knowledge, more often intuition, of other features of the system that may
correlate with or determine the property of interest (heuristic models); or (4) a self-
learning combination of the latter two (machine learning models). Often, prediction
algorithms combine aspects of these different modeling strategies or derive a
consensus from different models.

In the case at hand, the computational identification of allosteric sites and pathways in
proteins, the development of predictors is hampered by both our still limited understand-
ing of the physical determinants of allostery and the limited number and biased nature of
well-characterized cases—1930 sites and 56 pathways described in the AlloSteric Data-
base [18] at the time of this writing—that makes the use of statistical or machine learning
models nonoptimal. The many facets of allostery make it also difficult to apply a unified
prediction approach. For example, allosteric mechanisms may operate in a single protein
domain, across domains in a protein, or across monomers in an oligomer. In addition,
allosteric sites may map to protein cavities, surfaces, or interfaces. On the other hand,
while we think that we understand some of the physical principles that govern allostery,
we are currently unable to unambiguously identify allosteric sites based only on those and
usually require the incorporation of heuristic knowledge. This comes in the form of
candidate reporter properties—computable properties that presumably correlate with the
presence of an allosteric site at a specific position in the protein’s three-dimensional
structure.

The distance between what we know about allostery and what we can actually predict
is illustrated by a recent community experiment on the prediction of the effect of mutations
on the allosteric regulation of human liver pyruvate kinase [19]. Although the number of
participant groups was small and the result may thus be considered not significant—one
could also argue that those who participated may represent a significant subpopulation of
the still small set who have something to say—the experiment showed that the best
predictions were marginally better than random. Clearly, there is still a lot to do before we
are able to routinely identify allosteric sites and associated key signaling residues in
proteins for drug discovery purposes.
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7.2 Identification of Allosteric Sites and Pathways:
A Methodological Framework

The computational identification of allosteric sites and pathways has been object of
recent, excellent revisions [20–24]. For this reason, rather than trying to give a
thorough overview that can be already found in these articles, here I present a
personal selection of methods that can be useful to build a conceptual framework
to study and predict allosteric sites and their communication with the functional site.
The methods are described in some detail to give the nonexpert a basis to estimate
their possibilities and understand the underlying assumptions. This methodological
framework consists of two elements: the analysis of the dynamics of the system and
the evaluation of correlations of different types between close and distant sites in a
protein, eventually mapping the allosteric site and/or its communication with the
functional site. Both interaction energy and entropy, as well as coevolution, are
considered in this analysis.

7.2.1 Representation of Protein Structure and Dynamics

Protein structure and dynamics can be represented at different levels of resolution
and using different approximations. The two methods that are most used to study
allostery are molecular dynamics (MD) simulation and normal mode analysis
(NMA) of elastic network models (ENM). Both can use an atomic or a coarse-
grained representation of the protein structure, but it is more common to see the
atomic level in MD simulation, including the protein environment, and one particle
per residue in the ENM. Both make use of Newton’s equation of motion to describe
the dynamics of the system, solved numerically in MD simulation and, analytically,
in the context of the harmonic approximation, in NMA-ENM. In MD simulation the
information on the dynamics of the systems is extracted from the exploration of the
potential energy surface, while in NMA-ENM it is extracted from a single minimum.
For a main analysis considered here, both methods deliver a covariance matrix of the
positions of the atoms (or other particles) in the system.

7.2.1.1 Molecular Dynamics Simulation

The method most often used to model proteins and their environment at high
(atomic) resolution is molecular dynamics (MD) simulation [25]. MD simulation
provides all the elements required to fully characterize a molecular system, thermo-
dynamically and dynamically, provided the problem under study can be adequately
approached from a classical mechanics basis. In the field of allostery, MD simulation
is mainly used to investigate allosteric mechanisms of specific proteins.
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Nevertheless, as we shall see, it can be also used for the identification of allosteric
sites, albeit the technique is currently not suited for either fast or automatic identi-
fication studies.

MD simulations require the definition of (1) the molecular model, including the
type of degrees of freedom and how these interact, (2) the equations of motion that
will be used to propagate the system coordinates over time, and (3) the boundary
conditions used to solve these equations, including both spatial and thermodynamic
boundaries defining the theoretical macroscopic state of the system.

Model and Force Field When using a molecular model at the atomic level of
resolution, the potential energy function describing the interactions between the
N atoms of the system as a function of the 3N Cartesian coordinates r is typically
given by [26, 27]:

VðrÞ ¼ 1
2

XNb
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where the first three harmonic terms describe the interactions through bonds, bond
angles, and so-called improper dihedral angles—used to enforce ring planarity as
well as tetrahedral carbon geometry if aliphatic hydrogen atoms are not explicitly
represented (united-atom models). The cosine function describes the interactions
through torsional dihedral angles and, together with the harmonic terms, conforms
the so-called bonded interactions. The last explicit term describes the van der Waals
and electrostatic interactions—known together as nonbonded interactions—by
means of the Lennard-Jones and Coulomb potentials, respectively. Because the
number of atoms commonly considered in MD simulations of proteins makes the
direct calculation of the sum in this term forbiddingly expensive (see “Boundary
Conditions”), different methods have been developed to approximate the contribu-
tion from interactions beyond a cutoff radius or to effectively sum over periodic
images, particularly for the electrostatic part [28, 29]. The special term V s(r) refers
to purpose-specific functions adding restrains or a bias or incorporating a mean-force
contribution from missing degrees of freedom.

The force constants kn and the parameters b0n, θ
0
n, ξ

0
n, mn, δn, Aij, Bij, qi, and qj

constitute, together with Eq. (7.1), the (empirical) force field. These parameters are
derived by fitting simulation data, generated with the force field that is being
optimized, to quantum mechanical calculations and experimental data—gas and
liquid phases—on simple molecules containing the chemical groups present in
proteins and other biomolecules of interest. Importantly, these force fields have
not been parameterized against protein experimental data and are therefore free of
any bias toward the native folded structure of a protein. The selection of the force
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field is a matter of choice, since there is currently no force field that outperforms
every other one for every system and every property of interest.

Equations of Motion The system dynamics are obtained, in general, by integrating
Newton’s equations of motion. Recalling that in a conservative field, the force is
equal to minus the gradient of the potential—which has a straightforward analytical
form given Eq. (7.1)—the force acting on atom i is given by:

Fi ¼ mi
d2ri
dt2

¼ �∂VðrÞ
∂ri

ð7:2Þ

The resulting system of equations must be integrated numerically, for which there
exist different algorithms [26]. In order to avoid numerical instabilities, the integra-
tion time step must be significantly smaller than the highest-frequency motions in the
system, i.e., those between atoms interacting through a bond. The treatment of bonds
as classical harmonic oscillators, as in Eq. (7.1), represents a gross approximation to
the notorious quantum mechanical nature of the bond. For this reason, and because
of its little impact on system dynamics, the bond term in the potential may be
replaced by an equally gross approximation consisting in the fixing of the bond
length by imposing a constraint [30]. This allows an increase of the time step to the
commonly used value of 2 fs, as well as a reduction of the range of frequencies
coexisting in the system, leading to a faster redistribution of energy between modes.

The evaluation of the forces in Eq. (7.2) is, by far, the most time-consuming task
in a MD simulation. While this cost can be reduced by using lower-resolution
models—known as coarse-grained models—that map groups of atoms to the
dynamic particles [31], this approach has significant limitations when applied to
proteins, requiring the superposition to the standard force field of secondary structure
restraints [32] or an elastic network [33] in order to maintain a correct fold. It is often
argued that this level of modeling is sufficient to capture the main features of the
protein’s global dynamics, which are thought to be less sensitive to the fine details of
the structure—“butterfly effects” such as the destabilizing action of some point
mutations, often transparent to such force fields, would speak against it. Clearly,
these models can be very useful for the study of large biomolecular systems,
particularly if diffusion and binding are important components of the study. How-
ever, if one is interested in intramolecular dynamics, such as in the study of allosteric
communication, it is not clear if a coarse-grained MD model would provide higher-
quality information than the computationally far less demanding elastic network
models discussed below.

Boundary Conditions Although there exist mean-field approaches that allow a
relatively inexpensive incorporation of solvent effects in the dynamics of the protein
[34, 35], the molecular environment of the protein is in most cases represented
explicitly. This is because there are important aspects of solvation, such as an
entropic component due to correlations between protein and solvent degrees of
freedom, that cannot be easily incorporated in such mean-field approaches. When
the protein environment is explicitly represented, the molecular system needs to be

146 X. Daura



given a finite size by defining appropriate three-dimensional boundaries. This is
most often done by surrounding a central system having a biologically relevant and
computationally tractable size by an infinite array of periodic images, in so-called
periodic boundary conditions [26].

In addition to specifying the number of particles by physically delimiting the
system, one needs to specify the degree of separation between the system and its
surrounding—whether it is isolated or there is exchange of heat, work, or matter—
and the value of the thermodynamic state variables (temperature, pressure, volume,
etc.) that are constant, in order to define the macrostate of the system. In MD
simulation, quantities such as temperature and pressure may be held “constant” by
use of different algorithms that couple the system to an external reservoir [36].

Interpretation of MD Simulation Data Under the ergodic hypothesis we can
assume that, when the simulation time approaches infinity—in practice, the time
required to sample the system’s phase space with the right probability density
distribution—the average of an observable over time and its average over the
corresponding equilibrium statistical ensemble are the same. This simple relation
grounds molecular dynamics simulations in statistical mechanics. Clearly, in real
applications the simulation time not only falls short of this target but in most cases
does not even reach the biologically relevant time scale. However, the problem of
insufficient sampling not only questions the use of statistical mechanics to interpret
molecular dynamics simulations, it also questions its use to interpret native ensemble
methods facing equivalent computational limitations.

We may represent the trajectory ϕ of position and velocity coordinates of the
atoms of the system at discrete time points in the simulation as:

ϕ ¼ rðt0Þ, rðt1Þ, . . . , rðtMÞ, vðt0Þ, vðt1Þ, . . . , vðtMÞð Þ ð7:3Þ

where r(tk) and v(tk) describe the positions and velocities of the N atoms at time tk:

rðtkÞ ¼ r1ðtkÞ, r2ðtkÞ, . . . , rNðtkÞð Þ
vðtkÞ ¼ v1ðtkÞ, v2ðtkÞ, . . . , vNðtkÞð Þ ð7:4Þ

With the tools of statistical mechanics at hand, the possibilities opened by this
data set in terms of characterizing the system and its properties—at the
given macrostate—are almost unlimited. Again, the only factor that will reduce
our options to succeed in that characterization is the amount of sampling performed,
which will be unavoidably on the short side. And, of course, given sufficient
sampling we will be able to fully characterize nothing more than the computational
system, which will be still a model.

7.2.1.2 Elastic Network Models

Elastic network models (ENM) are used in combination with normal mode analysis
(NMA) as an approximation to the dynamics of a protein around a minimum in the
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potential energy surface, typically that represented by the crystallographic structure.
While MD simulation integrates numerically Newton’s equations of motion, NMA
solves them analytically by assuming that the potential (and kinetic) energy of the
system can be approximated by a quadratic form. Thus, NMA assumes that the
motion of the atoms is limited to small fluctuations around equilibrium positions
corresponding to a minimum of a given potential energy function. This is because
the shape of the potential in the vicinity of the minimum may be assumed to be
quadratic even if the underlying potential energy function is not.

Standard NMA, like MD simulation, makes use of potential energy functions such as
the one in Eq. (7.1) and requires energy minimization of the initial structure to guarantee
that the calculations are performed at an energy minimum. To ensure that the first
derivative of the potential is zero with respect to the positions of all atoms and thus
calculate meaningful second derivatives, which are required to solve the equations of
motion, a careful energy-minimization protocol is mandatory in standard NMA. Instead,
as we shall see below, in ENM any structure of choice of the protein is, by construction of
the potential energy function, a global energy minimum.

Although the potential energy surface of a protein—and its environment—is, as a
matter of fact, complex and characterized by multiple minima, ENM have shown
remarkable success at reproducing main features of low-frequency, large-amplitude
collective motions observed in molecular dynamics simulations using all-atom force
fields [37, 38] as well as in the calculation of crystallographic B-factors [39],
revealing an unsuspected robustness of the global modes of motion relative to details
in atomic coordinates or specific atomic interactions. Indeed, it has been postulated
that the global modes are an intrinsic property of the three-dimensional shape of the
protein [40].

Remarkably, ENM have been also shown to outperform standard NMA in many
applications [37]. This is not completely surprising, since the power of empirical
atomistic force fields lies in their combination with techniques such as molecular
dynamics or Monte Carlo simulation to sample the potential energy surface. This
type of force fields has not been, for example, optimized to accurately reproduce the
folded structure of proteins, but is based on thermodynamic, dynamic, and electro-
static properties of simpler systems. Thus, if one is to base a calculation, under the
harmonic approximation, on one single structure of the protein, it is probably better
to take as energy minimum the crystallographic structure, particularly if it has been
solved at high resolution, than a relatively close structure that happens to be a
minimum in an empirical force field. Focusing on a single minimum of an empirical
interaction function will only make more evident the defects of this function.

As an advantage over more accurate methods such as MD simulation, the low
computational cost of ENM means that they can be used in studies involving
relatively large sets of proteins, for example, in the context discussed here, for the
prediction of allosteric sites or the study of allosteric mechanisms.

We distinguish two types of ENMmodels, the anisotropic network model (ANM)
[41], which is a three-dimensional model based on seminal work by Tirion [42], and
the Gaussian network model (GNM) [43, 44], a one-dimensional model. I will
describe in some detail the ANM and then mention main differences of the GNM.
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Anisotropic Network Model It models the protein as a network of N atomic
masses, in principle representing only the Cα atoms. Two atoms i and j of the
network are linked by a Hookean spring if their distance r0i j ¼ kr0j � r0i k in the
studied structure r0 is smaller than a cutoff Rc. The potential energy of the system is
then described by the function:

V ¼ 1
2
k

X
i, j

r0i j � Rc

ðri j � r0i jÞ2 ð7:5Þ

where the force constant k is in principle uniform for all pairs and has, in such case,
the sole function of specifying the units—note that k does not modify the shape of
the normal modes, but only scales uniformly their frequencies, which must be
anyway interpreted in relative, rather than absolute, terms. Rc becomes then the
only parameter in the model. Contrary to standard NMA, this model does not require
energy minimization, since by construction the studied structure corresponds to the
global minimum of Eq. (7.5).

The parameter Rc should be chosen sufficiently small that the network holds
information on topology and shape, rather than only on size, and sufficiently large
that no artificial subnetworks, i.e., subnetworks not corresponding to actual protein
domains, are generated. In practice, if we use a too small cutoff distance, the eigen-
decomposition of the Hessian (see below) will lead to additional zero eigenvalues
[38]. An optimum Rc of 18 Å has been proposed for ANM using Cα atoms as nodes
[45], although values as low as 10 Å are also commonly used [46].

By recalling Newton’s and Hooke’s laws, we can write the equations of motion
for the system as:

F ¼ M
d2

dt2
Δr ¼ �HΔr ð7:6Þ

where F ¼ (F1, . . ., FN) are the restoring forces on the N atoms, M is the 3N � 3N
mass diagonal matrix, H is the force constant or Hessian matrix, and Δr ¼ (Δr1,. . .,
ΔrN), with Δri ¼ (ri � r0i ), are the atomic displacements from equilibrium.

It can be shown that the analytical solution to this equation for atom i is [38]:

riðtÞ ¼ r0i þ
X3N

n¼1
ðunÞi

2En

ω2
nmi

� �1=2

cos ðωnt þ ϕnÞ ð7:7Þ

where En, ωn, and (un)i are the total energy, angular frequency (¼ 2πνn), and ith
coordinates of the so-called normal mode of vibration n, andmi is the mass of atom i.
The amplitude of the mode—the square root factor in Eq. (7.7)—depends, together
with the phase ϕn, on initial positions and velocities. Note that all modes have on
average the same vibrational energy, i.e., kBT.
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Geometrically, the normal modes are the particular directions u in which the force
is aligned with the displacement. Therefore, when applied to u, the linear transfor-
mation H must result in a simple scaling of the vector, so that Hu ¼ λu, where λ and
u are eigenvalues and corresponding eigenvectors of H.

The frequencies ωn and directions un in Eq. (7.7) can then be obtained by using
the slightly modified eigen equation:

Hu ¼ λMu ð7:8Þ

where it can be shown that λ ¼ ω2. Conventionally, this equation is solved in the
simpler form ~H ~u ¼ λ~u, where the tilde indicates that the coordinates and force
constants have been mass weighted, i.e., ~uxi ¼ uxi

ffiffiffiffiffi
mi

p
and ~Hxiyj ¼ Hxiyj=

ffiffiffiffiffi
mi

p ffiffiffiffiffiffi
mj

p
,

with the subindex xi indicating the x component of atom i. However, when all masses
are equal, as in the case described here, Eq. (7.8) reduces to Hu ¼ λmu ¼~λu, which
can be readily solved.

The Hessian H, evaluated at r0, where rij ¼ r0ij, can be represented as the block
matrix:

H ¼
H11 � � � H1N

⋮ ⋱ ⋮
HN1 � � � HNN

2
4

3
5 ð7:9Þ

with off-diagonal and diagonal blocks given by:

Hij ¼
∂2V=∂xi∂xj ∂2V=∂xi∂yj ∂2V=∂xj∂zj
∂2V=∂yi∂xj ∂2V=∂yi∂yj ∂2V=∂yi∂zj
∂2V=∂zi∂xj ∂2V=∂zi∂yj ∂2V=∂zi∂zj

2
64

3
75 ð7:10Þ
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∂2V=∂yi∂xi ∂2V=∂yi

2 ∂2V=∂yi∂zi
∂2V=∂zi∂xi ∂2V=∂zi∂yi ∂2V=∂zi

2

2
64

3
75 ð7:11Þ

where the second derivatives are given by:

∂2V

∂xi∂yj
¼ ∂2V

∂yj∂xi
¼ ∂2V

∂yi∂xj
¼ �k

1

r0
2

ij

ðxj � xiÞðyj � yiÞ ð7:12Þ
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Hii ¼ �
X
j 6¼ i

r0ij � Rc

Hij ð7:13Þ

The matrix H is real symmetric and can be decomposed in 3N�6 nonzero eigen-
values (informing on the frequencies of vibration) and corresponding orthogonal
eigenvectors (informing on the directions and relative amplitudes). The remaining
six eigenvalues are equal to zero and correspond to the protein’s rigid-body motion.
As already mentioned, the vibrational energy is, on average, equal for all modes,
which means that the average amplitude of oscillation along a given mode is
inversely proportional to its frequency. Thus, the collective motions of largest
amplitude, which tend to be most interesting in terms of protein function, are those
along the lowest-frequency—lowest eigenvalue—modes.

Although the zero eigenvalues make H non-invertible, by discarding these six
eigenvalues, we can define a pseudo-Hessian H

^

using the similarity transformation
H
^ ¼ PDP�1, where P is the change-of-basis matrix with the 3N�6 orthonormal
eigenvectors as columns and D is the diagonal matrix with the 3N�6 eigenvalues,
such that we may obtain the inverse asH

^�1 ¼ PD�1PT . The inverse pseudo-Hessian
is also organized in N � N submatrices of size 3 � 3, with element xiyj of submatrix�
H
^�1
�
ij given by:

�
H
^�1
�
xiy j

¼
X3N�6

n¼1

1
~λn

unð Þxi unð Þy j
ð7:14Þ

where~λn ¼ ω2
nm is the nth eigenvalue and un,xi is the component x of atom i in the nth

eigenvector.
The trace of submatrix

�
H
^�1
�
ij
defines the covariance between the positions of

atoms i and j (or the mean square displacement if i ¼ j; see Sect. 7.2.2.1 for a
discussion on these quantities):

hΔriΔrji ¼ kBT tr
�
H
^�1
�
i j

� �
¼ kBT

m

X3N�6

n¼1

ðunÞiðuT
n Þj

ωn
2

ð7:15Þ

Δri2
	 
 ¼ kBT tr

�
H
^�1
�
ii

� �
¼ kBT

m

X3N�6

n¼1

unð Þi uT
n

� �
i

ωn
2

ð7:16Þ

In practice, since these quantities scale as the inverse of the frequency squared, a
sum over the lowest-frequency normal modes of the system in Eqs. (7.15) and (7.16)
is usually sufficient to obtain a reasonable approximation.
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ANM exists with different flavors, including the inverse weighting of the force
constant with the distance between atoms [45] or the original derivation including
distinct atom types (masses) [42].

Gaussian Network Model The GNM assumes that the Cα atoms and
corresponding interatomic distances undergo Gaussian-distributed, isotropic fluctu-
ations around their equilibrium coordinates under the potential of their near neigh-
bors in the network. The potential energy of the system takes then the form:

V ¼ 1
2
k

X
i, j

r0i j � Rc

ðΔrj � ΔriÞ2 ¼ 1
2
k

X
i, j

r0i j � Rc

ðri j � r0i jÞ2 ð7:17Þ

where an optimum Rc value of 7.3 Å has been proposed [47]. Note that, contrary to
Eq. (7.5) (ANM), the interaction energy of an atom pair i j in Eq. (7.17) is only zero
if both the magnitude (i j distance) and direction of the vectors rij and r0ij are equal.
This is assumed to be a main reason for the comparatively better agreement of the
mean square displacements from GNM with experimental data, relative to ANM
calculations [48].

In this model, the fluctuations of the atomic positions and their cross-correlations
are determined by the adjacency-degree matrix, which describes the neighboring
relations between all atoms:

Γi j ¼
�1 if j 6¼ i and ri j � Rc

0 if j 6¼ i and ri j > Rc

�
X

l6¼i
Γi j if j ¼ i

8<
: ð7:18Þ

The matrix Γ can be therefore viewed as the N � N counterpart of the Hessian.
Note that Γ provides no information on directionality, which means that the GNM
can be used to obtain information on the relative amplitudes of motion but not on
their three-dimensional directions.

Within this framework, the covariances and mean square displacements can be
calculated after decomposing the adjacency-degree matrix into its eigenvalues and
eigenvectors to then invert it—discarding the smallest, zero-valued eigenvalue,
which corresponds to translation—much as it is done with the Hessian in the
ANM. Covariances and mean square displacement can be then computed as:

hΔriΔrji ¼ 3kBT
k

�
Γ
^�1
�
i j

ð7:19Þ
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hΔri2i ¼ 3kBT
k

�
Γ
^�1
�
ii

ð7:20Þ

Main allosteric-site prediction servers and freely available codes, such as
AlloFinder [49], DynOmics [50], STRESS [51], AlloPred [52], PARS [53], and
SPACER [54], have as main component a normal mode analysis on an elastic
network model, typically within a perturbation approach (see Sect. 7.2.2.4).

7.2.2 Analysis of Coupled Sites in Proteins

For an effector molecule to modulate the function of a protein upon binding to an
allosteric site, there must be a causal connection or coupling between the latter and
the active site or region of the protein involved in function. It has been proposed that
this coupling may not necessarily translate into a conformational change—be it
induced or through the stabilization of a transient conformer—upon binding of the
allosteric effector, as assumed in the early MWC (conformational-selection-like) [4]
and KNF (induced-fit-like) [5] models, but could be due to changes in dynamics with
no translation to conformation [11]. Examples supporting this latter possibility
include experimental studies [55], and, as we will see in Sect. 7.2.2.4, it has given
rise to models exploring allosteric communication from a purely entropic perspec-
tive, by assuming the absence of a conformational change as integral part of the
model [56]. Nevertheless, the question of whether there can be an allosterically
induced change of the functional state of a protein without a corresponding confor-
mational change is, far from settled, a topic of active discussion [57]. In either way,
the coupling between the allosteric site and the functional site must have an energy
basis (interactions), an entropy basis (fluctuations and their correlations), or both.

The fact that allostery requires the communication between generally distant sites
has given rise to the concept of allosteric pathway. This concept is in line with the
observation that local perturbations do not propagate isotropically in proteins.
However, it can be misleading because the causal connection between the allosteric
and functional sites may not necessarily involve a contiguous string, or even an
ensemble of strings, of coupled residues. Furthermore, the risk of finding an allo-
steric signaling pathway when actively searching for it is high. This is illustrated by a
recent study that has estimated the statistical significance of contiguous pathways for
the null model of selecting residues at random [58]. The authors found that when
20% of the residues in three proteins were randomly selected, contiguous pathways
at the 6 Å cutoff level were found with success rates ranging from 51% to 3%
depending on the protein. The pathways were found to be most significant (lower
percentage of false positives) in the system exhibiting the greatest degree of
complexity.
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Under the conceptual framework presented here, the problem of identifying the
allosteric site of a protein might be transformed into that of identifying significant
energy and/or entropy couplings, which might map to evolutionary couplings,
between the functionally relevant site and other regions in the protein. Since such
couplings have been proposed to be ubiquitous in proteins [16, 59], we may not
necessarily expect to come out with a single candidate site from such exercise.
Indeed, the potential for multiple allosteric regulation—by the binding of effectors to
different sites in a protein—might be a feature common to all proteins [15], whether
these potential allosteric sites are orphan, having a yet unknown natural effector, or
serendipitous, having no natural ligand [60].

In Sects. 7.2.2.1, 7.2.2.2, 7.2.2.3, and 7.2.2.4, I describe a personal selection of
concepts and methods that are being used to evaluate the coupling between atoms
and residues at close or far distances in a protein and that can, therefore, be used to
identify communication pathways and, from them, potential allosteric sites given the
knowledge of the functional site. They cover the aspects mentioned before, entropy
and energy, linked by dynamics, and coevolution. Along their description, I give
examples of recent studies making use of these concepts and methods or of variants
of them.

7.2.2.1 Methods Based on the Covariances of Atomic Positions

One way to evaluate the coupling between pairs of residues at any distance in a
protein is by analyzing the degree to which they move in a concerted way. This
coupling or correlation can be measured for two residues at a given time point t or, in
order to investigate a potential causality, one residue at a time t and another at a later
time t + τ. These analyses are described and discussed in the following paragraphs.

Given two jointly distributed random variables X and Y, their covariance
(a measure of their joint variability) is defined as:

cov X; Yð Þ ¼ X � Xh ið Þ Y � Yh ið Þh i ¼ XYh i � Xh i Yh i ð7:21Þ

where the angle brackets denote an expected value (mean). The covariance is
positive if the two variables increase and decrease together, negative if they have
an opposite behavior, and zero if they are independent.

If X is a random vector, we define its covariance matrix as the matrix whose
elements are given by the covariances cov(Xk, Xl) of the scalar components k and l of
the vector. The covariance matrix is symmetric, with the diagonal elements being the
variances.

For example, consider a trajectory of the Cartesian coordinates of the N atoms of a
protein from a molecular dynamics (MD) simulation. After translational and
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rotational fitting of the protein configurations sampled in a given time interval, to
remove translational and—imperfectly—rotational motion, we could calculate the
covariance cov(xk, xl) (ckl in simplified notation) between coordinates xk and xl as:

ckl ¼ hðxk � hxkiÞðxl � hxliÞi ¼ hΔxkΔxli ð7:22Þ

where k and l run over the 3N coordinates of the protein and the angle brackets are
now time averages. The resulting matrix can then be used for the analysis of
principal components (PCA) [61]—a projection onto the orthogonal directions of
largest variance of the 3N-dimensional space where the vectors representing the
coordinates of all atoms of the protein as a function of time (the original dataset) are
defined—or the calculation of configurational entropies [62, 63]. Although in
principle both types of analysis could be further used to identify potentially coupled
sites in proteins [64, 65], we will see that, in the study of allostery, entropy is
generally approached from the information-theory side. Note that, formally, the
top-ranking modes obtained by PCA should be comparable to the lowest-frequency
modes derived by normal mode analysis (NMA), provided that the ensemble of
conformers from MD simulation and the Hessian used in the NMA are representa-
tive for the same equilibrium.

The covariances given by Eq. (7.22) may be difficult to interpret if we are
interested in the covariance between the positions ri and rj of atoms i and j, which
can be also calculated as:

ci j ¼ hðri � hriiÞðrj � hrjiÞi ¼ hΔriΔrji ð7:23Þ

where i and j run now over the N atoms of the protein. Note, however, that the dot
product means that this equation measures the positional covariance by projecting
the displacement of one atom onto the direction of displacement of the other. Thus,
two atoms moving in perfect synchrony but in perpendicular directions will have a
covariance of zero. This can be further understood by noting that the linear trans-
formation represented by this covariance matrix operates on a vector space of
dimension N, which can be thought of as a projection of the three-dimensional
space of atomic coordinates to one dimension.

The diagonal elements of this covariance matrix are the mean square displace-
ments hΔr2i iof the atoms, which can be related to the isotropic temperature factors Bi

(B-factors) [66]:

Bi ¼ 8π2

3
hΔr2i i ð7:24Þ

Note that the mean square displacements are also available from NMA.
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The magnitude of the covariance depends on the magnitudes of the atomic
displacements from the mean, which makes it difficult to interpret in terms of the
extent to which the atoms move in a concerted way (amount of correlation). The
correlation or normalized covariance matrix is defined by elements Cij such that:

Ci j ¼ ci j

c1=2ii c1=2j j

¼ hΔriΔrji
hΔr2i i1=2hΔr2j i1=2

ð7:25Þ

The correlation coefficients Cij have values from �1 (perfectly anticorrelated
motions) to 1 (perfectly correlated motions), with zero corresponding to fully
uncorrelated motions. The diagonal elements are equal to 1.

As the covariance matrix, the correlation matrix is symmetric and gives therefore
no information on a potential directionality of the motional coupling of two atoms.
One may also calculate the time covariance cij(τ) and correlation Cij(τ) as a function
of a lag time τ:

Ci jðτÞ ¼ ci jðτÞ
c1=2ii c1=2j j

¼ hðriðtÞ � hriiÞ rjðt þ τÞ�; hrji
� �i

hðri � hriiÞ2i1=2hðrj � hrjiÞ2i1=2

¼ hΔriðtÞΔrjðt þ τÞi
hΔr2i i1=2hΔr2j i1=2

ð7:26Þ

This introduces directionality in the correlation, often interpreted as causality, and
in general Cij(τ) 6¼ Cji(τ).

Correlation and principal component analysis are, for example, used by the
package MONETA [64] to localize the propagation of structural and dynamical
effects of a perturbation throughout a protein structure, for the identification of
allosteric pathways. Note that a correlation analysis can be performed for different
quantities, for example, between the positional fluctuation of one residue and the
stabilization energy of another (see Sect. 7.2.2.3), for all residue pairs in a
protein [67].

7.2.2.2 Methods Based on Probabilities of States and Information
Theory

A second way to investigate the coupling between residues in a protein is by the
analysis of their joint probabilities. The framework for this analysis is information
theory, from which some basic concepts will be introduced here. A key concept in
this context is the mutual information between two variables, formally an entropy. Its
overtime counterpart is the transfer entropy, which corresponds to a conditional
mutual information.

In addition, the relative probabilities of different states of a system can be used to
calculate their free energy differences. This has been exploited, as we will also see, to
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study the coevolution of residues in a protein, indicative of functional links between
them. Evolutionary coupling is a perfect complement to energy and dynamic
coupling for the identification of allosteric pathways and sites. These concepts are
described and discussed in the following paragraphs.

Given the probability distribution of a discrete random variable X, the Shannon or
information entropy H(X) measures the average minimum amount of information
required to convey the identity of a random sample from that distribution [68]:

HðXÞ ¼ �
X
x

pðxÞlogpðxÞ ð7:27Þ

where x are the values or states that may be adopted by X, p(x) is the marginal
probability that X adopts state x, and the entropy units depend on the base of the
logarithm—bits or shannons for base 2, nats for base e, and hartleys for base 10.
Thus, one nat is the information content of an event of probability e�1. Note that the
information content of a state (�log p(x)) is higher the lower its probability.

Importantly, there exists a relationship between information entropy and thermo-
dynamic entropy [69], which becomes apparent from Gibbs’ statistical mechanical
definition of entropy, in its discrete form [70]:

SðXÞ ¼ �kB
X
x

pðxÞlnpðxÞ ð7:28Þ

where kB is Boltzmann’s constant. In this case, x are the microscopic states that may
be adopted by the thermodynamic system X, as drawn from an equilibrium ensemble
characterized by a probability distribution that is determined by the macroscopic
(thermodynamic) state of the system (note that X in Eq. (7.28) implicitly incorporates
the dependence on the thermodynamic state variables). In information-theoretic
terms, the reduced Gibbs entropy (S/kB) may thus be interpreted as the average
minimum amount of information in nats required to fully specify a microstate, given
that we know the system’s macrostate [71].

Using the Shannon equation, one may also define the joint entropy H(X,Y) of two
random variables X and Y as:

HðX,YÞ ¼ �
X
x, y

pðx, yÞlogpðx, yÞ ð7:29Þ

where p(x, y) is the joint probability that X adopts state x and Y adopts state y.
One can also define the entropy H(X|Y) of X conditioned to Y, or amount of

information required to describe the state of X given that the state of Y is known, or
amount of randomness in X given Y:
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H XjYð Þ ¼ �
X
x, y

p x; yð Þlog p x; yð Þ
p yð Þ ð7:30Þ

Finally, the mutual information I (X, Y) measures the amount of information that
one variable contains about the other, i.e., their mutual dependence:

I X; Yð Þ ¼
X
x, y

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ ð7:31Þ

where I(X,Y) is nonnegative, p(x, y) � p(x)p( y), the equality being valid for inde-
pendent variables, and symmetric, I(X,Y) ¼ I(Y, X). Unlike the correlation given by
Eq. (7.23), which reflects the degree of linear relationship between the two variables,
the mutual information is also sensitive to nonlinear relationships.

The previous entropy measures can be then related to the mutual information
through Eq. (7.32):

HðX,YÞ ¼ HðXÞ þ HðYÞ � IðX,YÞ ¼ HðXjYÞ þ HðY jXÞ þ IðX,YÞ ð7:32Þ

which tells us that the information shared by the two variables (their dependence)
reduces their joint entropy or amount of information required to encode a joint event.

To study the dynamics of shared information, we need to introduce directionality
in Eq. (7.31) [72]. Let us first define the conditional mutual information for random
variables X, Y given Z:

I X; Y jZð Þ ¼ H XjZð Þ þ H Y jZð Þ � H X; Y jZð Þ ð7:33Þ

Schreiber [73] defined transfer entropy TX!Y as a measure of the causal informa-
tion transfer between two systems that evolve in time, based on finite-order station-
ary Markov processes. Consider the simplest case of a random variable
X approximated by a stationary Markov process of order 1—one where the proba-
bility to find X in state x at time t + τ, τ being the coarse-graining lag time, depends
only on the state of X at time t, and the probability of the transition is time invariant.
Consider a second such variable Y. Then, the transfer entropy quantifies the devia-
tion from the generalized Markov property p(yt + τ | yt)¼ p(yt + τ | yt, xt) that assumes
that the two variables are independent and can be written as:

TX!YðτÞ ¼
X
xt

X
yt

X
ytþτ

pðytþτ, yt, xtÞlog
pðytþτjyt, xtÞ
pðytþτjytÞ

ð7:34Þ

TX!YðτÞ ¼
X
x0

X
y0

X
yτ

pðyτ, y0, x0Þlog
pðyτjy0, x0Þ
pðyτjy0Þ

ð7:35Þ
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where, due to the condition of stationarity, the probabilities are independent of the
value of t. For practical applications, one should first evaluate the dependence of
TX!Y on the value of τ or choose a value of τ consistent with the processes of
interest—e.g., with the decay time of their time correlation function.

After simple manipulations and observing Eq. (7.33), it can be shown that:

TX!YðτÞ ¼ HðXtjYtÞ þ HðYtþτjYtÞ � HðYtþτ,XtjYtÞ ¼ IðYtþτ,XtjYtÞ ð7:36Þ

Thus, the transfer entropy from a process X to a process Y is a measure of the
amount of information that the current state of X provides on the future state of
Y given the current state of Y, that is, the conditional mutual information.

These concepts have been recently used by Hacisuleyman and Erman [74] to
evaluate the transfer entropy between the fluctuations of pairs of Cα atoms in
ubiquitin (replacing X,Y by Δri, Δrj in the previous expressions) to determine net
entropy acceptors and donors and entropy paths with potential roles in allostery. To
this end, they histogrammed the values ofΔri from a molecular dynamics simulation
of the protein by dividing the distribution in an estimated optimum number of eight
bins. This reduced number of states and a relatively long simulation of 600 ns
enabled the evaluation of the single, double, and triple probabilities required for
the calculation of the various entropy terms described above (with τ ¼ 5 ns). In
addition, they complemented the transfer entropy calculations with results from time
correlation analysis (see Sect. 7.2.2.1), which were also found to reveal causality
relations.

The mutual information concept has been also used to derive a generalized
correlation coefficient [75] that has been later used to study protein-cavity couplings
from MD simulation data [59] or to identify the residues involved in allosteric
signaling using MD simulation data and a graph-theoretical approach [76]. Mutual
information has been also used to identify evolutionarily coupled residue pairs
involved in the communication between ligand-binding pockets [77, 78].

In the latter context of coevolution of amino acid residues in a protein, Lockless
and Ranganathan [79] introduced a successful metric to evaluate statistical energy
couplings between positions in a multiple sequence alignment (MSA). The so-called
statistical coupling analysis (SCA) views the evolution of a protein as the result of a
random mutagenesis process constrained by the condition of function preservation.
It assumes that, if there are no evolutionary constraints at one position in a MSA, the
distribution of observed amino acids at that position should approach their mean
abundance in proteins, and the degree of deviation from the mean value should be
proportional to the degree of conservation of the position. It also assumes that the
functional coupling of two positions, wherever they are in the structure, should
mutually constrain evolution at those positions, and this should be reflected in the
statistical coupling of the underlying amino acid distributions. The statistical cou-
pling of two sites is defined as the degree to which amino acid frequencies at one site
change—not necessarily changing the conservation of the site—in response to a
perturbation of the frequencies observed at the other site.

7 Advances in the Computational Identification of Allosteric Sites and. . . 159



The probability pi(x) of an amino acid x at site i in the MSA is given by the
binomial probability of getting nx instances of x at position i in the N sequences of the
MSA, given a background probability of x in proteins of pp(x):

pi xð Þ ¼ N!

nx! N � nxð Þ! p
nx
p 1� pp
� �N�nx ð7:37Þ

One may treat the sequence as if described by a statistical ensemble, characterized
by a given probability distribution over the microstates (exact amino acid
sequences). Then, for a MSA representing the ensemble—with the right distribution
of amino acids at the sites—the free energy change associated to the transition from a
state with x at position i to a state with x at position j is given by:

ΔGx
i!j ¼ �k ln

p j xð Þ
pi xð Þ ð7:38Þ

where k is here an arbitrary constant with energy units (kBT in the statistical-
mechanical context). One may then take j as a hypothetical reference site for all
amino acids, in which all amino acids are found at their mean frequencies in the
MSA ( pmsa(x)), and define a vector Pi ¼ (ΔGA

i!j ,. . ., ΔG
Y
i!j) of dimension 20. The

empirical evolutionary conservation parameter ΔGstat
i for site i is then defined as the

norm of vector Pi:

ΔGstat
i ¼ k

X
x

ln
piðxÞ
pmsaðxÞ

� �2
" #1=2

ð7:39Þ

To measure the functional coupling of sites, the authors measured the vector Pi

for the full MSA and for a selected subset of the MSA representing a perturbation of
the amino acid frequencies at another site j, Pi|δj. The norm of the difference vector
gives the statistical coupling energy between sites i and j:

ΔΔGstat
i j ¼ k

X
x

ln
pijδjðxÞ
pmsajδjðxÞ

� ln
piðxÞ
pmsaðxÞ

 !2
2
4

3
5
1=2

ð7:40Þ

which represents the degree to which the probability of individual amino acids at i is
dependent on the perturbation at j. If performed systematically for all sites i given a
site j, it gives the full map of statistical couplings for position j over all proteins of
the MSA.

Using this methodology, the same group later found that evolutionarily conserved
sparse networks of coevolving amino acids—termed sectors—represent structural
motifs with functional roles, including allosteric communication [80, 81].
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7.2.2.3 Methods Based on Interaction Energies

The other quantity that can be used to evaluate the functional coupling between
residues in a protein is energy. The method introduced by Colombo and collabora-
tors [82] to analyze the distribution of the intramolecular nonbonded interaction
energy in a protein represents an excellent example of this.

This method is based on the calculation of an N � N matrix describing residue-
residue nonbonded interaction energies using configurations from a molecular
dynamics simulation:

Mij ¼
X
k2i

X
l2j

V vdW
kl þ V ele

kl

� �* +
ð7:41Þ

where Mij is the element of the matrix describing the interactions between residues i
and j, V vdW

kl is the van der Waals interaction energy between atom k of residue i and
atom l of residue j,V ele

kl is the corresponding electrostatic term, and the angle brackets
denote an average over an equilibrium trajectory. Since the matrixM is symmetric, it
can be decomposed into N real eigenvalues and corresponding orthogonal eigenvec-
tors, which can be related to the elements Mij through:

Mij ¼
X
n

λn unð Þi unð Þj ð7:42Þ

where λn is an eigenvalue and (un)i and (un)j are the i and j components of the
corresponding eigenvector un normalized to unit length. If the eigenvalues are
labeled in increasing order, it is observed that λ1 � λ2, where λ1 is negative. The
interaction energy between residues i and j is then approximated by the first term in
Eq. (7.42):

Mij 	 λ1 u1ð Þi u1ð Þj ð7:43Þ

This dimensionality reduction to a principal component allows for the description
of the contribution of residue i to the intramolecular nonbonded interaction energy of
the protein with a single parameter (u1)i. Thus, u1 defines a residue-based profile that
is an approximated measure of the interaction energy distribution within the protein
structure. The matrix given by Eq. (7.43) can be then used to map regions and
pathways of high or low interaction energy density onto the three-dimensional
structure of the protein. The scaling parameter λ1 has been shown to be sensitive
to global changes such as the introduction of destabilizing or stabilizing mutations
[83], while the effect of conformational dynamics is sensed primarily by u1.

Note that the average in Eq. (7.41) may also be taken for each of a series of
consecutive simulation intervals—eventually for every configuration, that is, with no
averaging—to analyze the dependence of the energy distribution on changes in
protein conformation or on binding of ligands. Furthermore, the average can be
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performed for each of a number of sets of structures classified post-simulation with a
structural clustering algorithm.

In recent applications of the method, the configurations from the molecular
dynamics simulation are energy minimized before the calculation of the matrix.
Although the simulations are performed with explicit solvation (and an ionic con-
centration when appropriate), by construction the residue-solvent interactions are not
included in the matrix. This means that there is an energy imbalance between core
and surface pair interactions that ignores solvent effects. To correct this, the protein’s
solvation free energy, decomposed into residue-pair contributions, is evaluated via
the MM/PBSA method [84] and introduced in the calculations so that Eq. (7.41)
becomes the potential of mean force:

Mij ¼
X
k2i

X
l2j

V vdW
kl þ V ele

kl

� �* +
þ ΔG sol

ij ð7:44Þ

where ΔG sol
ij is the solvation free energy contribution to the interaction between

residues i and j, calculated over the same configurations as the interaction potential.
Although the approximation describing the interaction potential of an amino acid
residue with a single parameter might seem venturous, the authors have applied the
method to different problems, including prediction of epitopes [85] and analysis of
allosteric pathways [67], with significant success.

On a different basis, Yaliraki and collaborators [86] introduced a graph-
theoretical model to predict allosteric sites and communication pathways through
the derivation of so-called bond-to-bond propensities. In their graph model, nodes
are atoms and edges represent covalent and noncovalent bonds (hydrogen bonds, salt
bridges, hydrophobic tethers, and electrostatic interactions). A fundamental feature
of this model is that edges receive weights derived from interatomic potentials.
Earlier, Ribeiro and Ortiz [87] had devised a similar network model under the
assumption that signal transmission and allostery could be more accurately described
as efficient energy propagation than as correlations of atomic positions, an assump-
tion that they validated by performing energy propagation MD simulations. The
resulting all-atom graph is analyzed to calculate the effect that the fluctuations of an
edge have on any other edge of the graph, giving a propensity score for each bond
that measures the strength of its coupling to the active site through the graph. The
significance of a high score propensity is evaluated by comparing each bond to the
set of bonds at a similar geometric distance from the active site, as well as to a
reference set of 100 representative proteins. Computation time scales almost linearly
with the edges, making the method applicable to large systems.

7.2.2.4 Perturbation Methods

All methods discussed in the previous sections are susceptible of being used within a
perturbation approach, most often consisting in the analysis of the response of the
protein to the binding or unbinding of the ligand, by measuring a given metric or
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group of metrics before and after the perturbation. In these experiments, the ligand
may be a molecule known or expected to be an allosteric effector of the protein [88],
or a simple volumetric probe aimed at efficiently scanning cavities with different
characteristics in the protein [89]. When using a network model, the perturbation
may be performed on a single structure [53] or on an ensemble of structures [90]. In
some cases, as described in one example below, the perturbation may not be related
to ligand binding but to an energy pulse, which propagation/dissipation can be
tracked over time and space, indicating potential energy paths in the protein.

An interesting example of the ligand perturbation approach is given by recent
work from Gohlke and coworkers [56]. They devised a model to study allosteric
effects based solely on changes in flexibility: the perturbation introduced in the
system does not consider, by actual design, the possibility of conformational
changes between the bound and unbound states. By means of rigidity theory [91],
proteins can be decomposed into flexible and rigid regions by determining the
number and spatial distribution of independent internal degrees of freedom or
so-called floppy modes, which are equivalent to zero-frequency vibrational modes
of the system. In this model, the protein structure is represented as a network of
atoms including covalent as well as noncovalent (hydrogen bonds, salt bridges, and
hydrophobic tethers) constraints. A combinatorial algorithm [92] is then used to
count the rotational degrees of freedom floppy modes of the network.

These authors had previously shown that changes in vibrational entropy upon
binding of a ligand can be estimated from changes in the number of floppy modes
with respect to changes in the number of noncovalent constraints of the network—
resulting from the addition of the ligand [93]. This motivated the adoption of an
ensemble-based perturbation approach. An ensemble of structures of the bound
state, including the allosteric effector and eventually the orthosteric ligand, is first
generated by MD simulation. The perturbed state is then obtained by removing the
constraints associated with the allosteric effector and/or the orthosteric ligand in each
of the networks generated from the chosen MD configurations. Finally, rigidity
analysis of the two states is used to predict the residues involved in allosteric
communication as well as the existence of cooperativity. To this end, the relative
stability of the two states is estimated by calculation of the free energy change
associated to the perturbation using the one-step perturbation formula [94], and the
identification of residues potentially involved in allosteric signaling is performed by
calculation of per-residue perturbation free energies using the linear response
approximation [95].

As an example of the energy dissipation approach, Martínez and coworkers have
recently combined the anisotropic thermal diffusion (ATD) protocol previously
proposed by Ota and Agard [96] with a network model to study heat diffusion and
predict residue-protein vibrational couplings [97]. An ATD MD simulation exper-
iment consists of cooling a protein structure to a very low temperature (10 K, no
temperature bath), then separately heating each residue by independent coupling to a
heat reservoir, and measuring the temperature of the protein after a fixed interval.
Thus, one can quantify the strength of the vibrational coupling of each residue to the
protein as a whole. Residues which quickly dissipate excess vibrational energy have
been previously found to be essential to protein activity in example cases [98]. The
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authors investigated whether those residues correspond to nodes of higher than
average centrality in the corresponding residue networks, by studying heat diffusion
on the network as a function of the local temperatures and the connectivity between
residues.

7.3 Outlook

Although a relatively young field, the computational study of allostery, including the
prediction of allosteric sites, has already reached maturity. If we approach the
problem from physics, the basic principles on which we can build, be it for the
prediction of allosteric sites or to improve our understanding of allosteric commu-
nication, are known since a long time and come down to basic concepts such as
atomic interactions and dynamics. These can be certainly approached from very
different models and methods, but we should be worryingly surprised if they would
give us fundamentally different answers. Significant progress in this front is there-
fore unlikely unless we see in the coming years a fundamental step forward in force
field development or computational speed, or the irruption of new, unexpected
experimental data making us revise how we see allostery from a physical point of
view. If we approach the problem from biology, the concepts at stage seem also clear
and may be based on sequence and/or structural conservation—not addressed here
but also integrated in some strategies [99]—and coevolution of certain characters
(residues or groups of them). Again, in the absence of orthogonal experimental data
or the possibility to analyze much larger sets of allosteric proteins from a phyloge-
netics point of view, changing our views on how allostery emerged in evolution and
evolved—we are probably more in the dark here than in the physics domain—
significant progress in this front is also unlikely. The integration of different
approaches and different reporters of allostery that have shown already some success
seems, on the other hand, a good way to go from where we stand. Indeed, commu-
nity efforts to benchmark [100] and integrate the different methods available will be
at a certain point necessary if we want to progress.

The parallelisms between allostery and protein-folding research are remarkable.
In both cases one would like to understand the problem (allosteric communication
and associated conformational transitions in one case and the folding process in the
other) from a physical and biological standpoint and be able to make predictions (the
presence of allosteric sites or the native three-dimensional fold). Computational
approaches used in these fields have also many similarities when they are not
factually the same. If we look at the evolution of the older field of computational
protein folding, we will see that there have been no major theoretical or methodo-
logical advances for several years now, with incremental steps being often enabled
by corresponding advances in computational power or by the increasing information
content of databases. Interestingly, DeepMind’s AlphaFold has just entered the field
of protein fold prediction with excellent results in CASP13 (http://predictioncenter.
org/casp13). Comparatively, the irruption of artificial intelligence in the field of
allostery—not covered in this revision—is still incipient. Nevertheless, there already
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exist tools with prediction capacities at the level of the best methods [52, 101–103],
often adding the machine learning layer on top of earlier models including informa-
tion on dynamics. The impression is that radical improvement in this direction will
require access to much larger amounts of data on allosteric proteins. This points out,
once more, that continued efforts to identify and characterize allosteric proteins at
the experimental level and to curate and classify these data to make it accessible
through resources such as the AlloSteric Database [18] are key for the progress of the
field.
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Chapter 8
Advances in NMR Methods to Identify
Allosteric Sites and Allosteric Ligands

Hazem Abdelkarim, Ben Hitchinson, Avik Banerjee, and Vadim Gaponenko

Abstract NMR allows assessment of protein structure in solution. Unlike conven-
tional X-ray crystallography that provides snapshots of protein conformations, all
conformational states are simultaneously accessible to analysis by NMR. This is a
significant advantage for discovery and characterization of allosteric effects. These
effects are observed when binding at one site of the protein affects another distinct
site through conformational transitions. Allosteric regulation of proteins has been
observed in multiple physiological processes in health and disease, providing an
opportunity for the development of allosteric inhibitors. These compounds do not
directly interact with the orthosteric site of the protein but influence its structure and
function. In this book chapter, we provide an overview on how NMR methods are
utilized to identify allosteric sites and to discover novel inhibitors, highlighting
examples from the field. We also describe how NMR has contributed to understand-
ing of allosteric mechanisms and propose that it is likely to play an important role in
clarification and further development of key concepts of allostery.

Keywords NMR · Allosteric ligands · Allosteric sites · NMR methods
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CHESCA Chemical shift covariance analysis
CORCEMA-ST Conformational exchange matrix analysis of saturation transfer
CPMG Carr-Purcell-Meiboom-Gill
DHF Dihydrofolate
DHFR Dihydrofolate reductase
DHPS Dihydropteroate synthase
DNA Deoxyribonucleic acid
Eg5 Plus-end-directed kinesin-related protein
EPAC Exchange protein directly activated by cAMP
F Fluorine
FAXS Fluorine chemical shift anisotropy and exchange for screening
GDP Guanosine diphosphate
GMPPCP β, γ-Methyleneguanosine triphosphate
GPCRs G-protein-coupled receptors
GTP Guanosine triphosphate
H Hydrogen
HBGAs Histo-blood antigens
HSQC/HMQC Heteronuclear single/multiple quantum coherence/correlation
ITK Interleukin-2-inducible T-cell kinase
KNF Koshland, Némethy, and Filmer
MD Molecular dynamics
MerR The bacterial mercury resistance
MWC Monod-Wyman-Changeux
N Nitrogen
NMR Nuclear magnetic resonance
NOEs Nuclear Overhauser effects
pABA p-Aminobenzoic acid
PCSs Pseudocontact shifts
PDK1 Phosphoinositide-dependent kinase-1
PIF PDK1 interacting fragment
PREs Paramagnetic relaxation enhancements
R1

15N spin-lattice relaxation experiments
R2 Spin-spin relaxation experiments
RDCs Residual dipolar couplings
RNA Ribonucleic acid
SOS Son of sevenless
STD-NMR Saturation transfer difference
TET 2,2,2-Trifluoroethanethiol
THF Tetrahydrofolate
TROSY Transverse relaxation optimized spectroscopy
VLPs Norovirus virus-like particles
WaterLOGSY Water ligand observed via gradient spectroscopy
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8.1 Introduction

NMR is a technique that detects resonance frequencies of proteins and small
molecules in a magnetic field. These resonance frequencies change in response to
altering electromagnetic environment due to binding and conformational
rearrangements. Proteins are inherently flexible macromolecules that constantly
sample different conformational states. These dynamic properties are essential for
protein functions as diverse as enzyme catalysis, signaling, building cellular struc-
tures, and driving cell motility. Understanding the basis of protein dynamics is
crucial to understanding function and targeting proteins therapeutically.

One way to pursue proteins therapeutically is through allosteric targeting by
designing ligands that bind at one site and induce conformational and functional
changes at a different site. The mechanism of allostery is intrinsically linked to the
dynamic nature of proteins, their ability to adopt an ensemble of conformations, and
the ability of a binding event to shift the equilibrium of the conformational ensemble.
Several biophysical and biochemical techniques have been employed to investigate
allostery. These include, but are not limited to, ligand binding assays [48],
fluorescence-based resonance energy transfer experiments [12], and X-ray crystal-
lography [3]. While these methods have provided information about the affinity and
binding sites of molecules, significant insight into conformational transitions has
come from NMR experiments.

NMR has provided near-atomic resolution of dynamic processes on a timescale
ranging from nano- to milliseconds. These dynamic processes underlie allosteric
transitions in proteins and explain their thermodynamic and kinetic properties. Thus,
NMR has become the preferred approach for investigating protein allostery.

In recent years, advances in NMR methods have made it possible to monitor
dynamic processes that underlie allostery. In this chapter, we will focus on how
NMR methods have been used to identify allosteric sites, effectors, and inhibitors
and how NMR has advanced the concept of allostery.

8.2 NMR and the Concept of Allostery

NMR has contributed to the development of models that describe protein allostery. One
important example is allosteric regulation of hemoglobin, a tetrameric oxygen transporting
protein in red blood cells. The two widely accepted models of allostery in hemoglobin are
the symmetry (concerted) model proposed byMonod-Wyman-Changeux (MWC) and the
sequential model proposed by Koshland, Némethy, and Filmer (KNF). The MWCmodel
postulates that the protein exists in two or more distinct symmetric states depending on
their thermal equilibrium and stability. Effector binding shifts the equilibrium in favor of
one of these states. On the other hand, the KNF model integrated the concept of
cooperativity of protein subunits (positive and negative) and postulated that binding of
an allosteric effector to one unit can cause a neighboring unit to change the conformation
to a high/low affinity state.
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Based on the MWC model, the sigmoidal binding of oxygen to hemoglobin can
be explained as a shift in equilibrium from one state to another state as the oxygen
concentration changes leading to a concerted cooperativity. However, NMR studies
under high phosphate levels have revealed that the alpha subunit has higher affinity
for oxygen than the beta subunit. This finding led to the conclusion that sequential
cooperativity can exist in hemoglobin binding to oxygen in addition to the concerted
mechanism that follows the MWC model of allostery [33].

The dynamic allostery model was introduced by Cooper et al. in 1984 to describe the
existence of allosteric dynamic changes in proteins without a noticeable change or shift in
the conformational ensembles. This allostery is dependent on the magnitude of changes in
thermal amplitude or vibrational frequencies induced by allosteric ligand binding. The
dynamic allostery model accounted for the entropic contribution to the mean conforma-
tional ensemble as a thermodynamic factor working together with the enthalpic contribu-
tion, considered in MWC and KNF models. NMR methods and approaches have been a
cornerstone in providing experimental evidence in studying dynamic protein allostery
structurally and quantitatively [28, 97]. NMR studies expanded the term to account for not
only the thermodynamic nature of the changes, but also to include a perspective on protein
kinetics and function [28, 97]. Several reviews have discussed the impact of NMR
approaches on the concept of dynamic allostery, and in later sections of this book chapter
we will highlight these approaches and how they facilitated the study of dynamic allostery
[28, 97].

As it became apparent that the existing models of allostery explain some but not
all characteristics of allosteric behavior in proteins, the need to unify these models
arose. One response to this need is the development of the ensemble allosteric model,
which interprets the energy landscape in terms of the probabilistic ensembles of
conformations. In this model, the probability of sampling of specific conformations
within the structural ensemble exhibited by the protein is defined thermodynami-
cally, as a free energy balance [69, 100]. Significant support for the ensemble
allosteric model came from NMR relaxation studies, as they described the entropic
contribution to the allosteric process. These studies led to an idea that fast motions
underlie conformational entropy. Importantly, the concept that conformational
entropy constitutes a major part of the free energy protein-ligand interactions was
developed [13, 101]. NMR investigation of the calcium-binding protein calmodulin
provided evidence that conformational entropy, evidenced in local, long-range, or
dynamic transitions, is directly involved in molecular recognition and, thus, protein
function [49].

Interestingly, chemical shift analysis and 15N Carr-Purcell-Meiboom-Gill
(CPMG) relaxation dispersion NMR experiments, providing access to backbone
dynamics on the millisecond to microsecond timescale, have revealed that the
allosteric regulation of adenylate kinase can be tuned by altering dynamics of the
spatially distinct mobile domain of the enzyme [81]. Dynamics of this domain were
able to alter the affinity of adenylate kinase for its substrate. This study highlighted
the importance of dynamic regions in the functional energy landscape of protein
molecules and hinted at a possibility that unstructured regions within proteins can
control thermodynamics and affinity for binding partners.
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In line with this concept is the conformation selection and population shift model
to describe protein folding, oligomerization, binding to effectors, and function. This
model has significantly contributed to the concept of allostery by augmenting current
models to consider conformational ensembles of several states instead of the simple
two-state models [53, 96, 103]. Additionally, the Ranganathan research group,
through statistical mapping of the amino acid networks, identified thermodynamic
coupling between amino acids and their long-range effects on protein conforma-
tional ensembles [53, 55, 93]. Testing this hypothesis on important proteins will
likely define the future of NMR investigations of allostery.

One example of the studies highlighting the role of protein dynamics in allosteric
regulation is the Ras family of proto-oncogenes and the discovery of drugs that target
these proteins [27, 60, 72, 74, 88]. Ras proteins (H-Ras, N-Ras and K-Ras4A and
4B) are small GTPases with a conserved catalytic domain and a highly flexible
C-terminal hypervariable region. They regulate important signaling pathways by
cycling between the active GTP-bound and the inactive GDP-bound states. Onco-
genic mutations within the catalytic domain of Ras hinder the ability to hydrolyze
GTP, rending the protein constitutively active. For a long period of time it was
thought that Ras proteins existed only in on and off conformations.

Evidence that Ras proteins sample different conformational states came from
NMR studies that discovered the presence of two states (state 1 and state 2) in H-Ras
bound to the GTP analog GMPPNP [1, 26, 89, 90]. Only state 2 displayed high
affinity for Raf kinase, an important effector of Ras. Further NMR studies revealed
that the nucleotide sensing switch I and switch II regions exist in multiple confor-
mations in GTP- and GDP-bound Ras [57]. Intriguingly, X-ray crystallography
studies have found that allosteric regulation differs between wild type and oncogenic
mutants of K-Ras and between Ras isoforms [7–9, 21, 70, 76]. Inhibitors of Ras are
still lacking in the clinics and development of allosteric modulators of Ras as
anticancer therapeutic agents is underway. For instance, Matsumoto et al. have
reported the discovery of small molecules bearing a naphthalene group to be
allosteric inhibitors of H-Ras in its GTP state [65]. Based on NMR studies, the
compounds, via their naphthalene group, bind a hydrophobic pocket located
between the switch I and II region of H-Ras. Upon binding, the inhibitor will
allosterically influence the effector binding (c-Raf1) region by causing conforma-
tional changes in switch I and β2 strand region [65]. Also Maurer et al. have used
saturation transfer difference (STD) NMR to identify fragments against K-Ras4B
G12D [66]. The STD-NMR fragment-based screening yielded 240 primary hits that
can target the protein in active (GMPPCP-loaded) and inactive (GDP-loaded) states
[66]. Further NMR experiments supported by computational studies, crystallogra-
phy, and biological approaches identified the new binding pocket with the ability to
inhibit K-Ras activity at cellular level by interfering with son of sevenless (SOS)-
mediated nucleotide exchange [66]. Because these ligands are not targeting the
active pocket of K-Ras, they can potentially be considered allosteric inhibitors.
Thus, NMR has allowed significant advancement in understanding allostery and
discovery of allosteric inhibitors.
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8.3 NMRMethods to Identify Allosteric Sites and Allosteric
Ligands

Analysis of chemical shifts in two-dimensional heteronuclear single (or multiple)
quantum coherence (HSQC or HMQC) experiments and their transverse relaxation
optimized (TROSY) equivalents for large proteins can provide significant informa-
tion about allostery because these shifts act as reporters of conformational changes.
One example of how HSQC has enhanced our knowledge of protein targeting by
allosteric molecules was provided by Oyen et al., who identified the allosteric
binding site of a nanobody targeting the dihydrofolate reductase (DHFR) enzyme
from E. coli using HSQC and 15N-labeled protein [75]. DHFR catalyzes the reduc-
tion of dihydrofolate (DHF) to tetrahydrofolate (THF) in an NADPH-dependent
manner, with the rate-limiting step being THF release. This is a well-studied enzyme
that has subsequently been used to establish the allosteric network paradigm using
NMR relaxation experiments. These experiments commonly use the HSQC frame-
work and other pulse sequence components to measure protein conformational
dynamics [41]. Fast motions on the picosecond to nanosecond timescale are often
measured in 1H-15N heteronuclear nuclear Overhauser effects (NOEs), 15N spin-
lattice (R1), and spin-spin (R2) relaxation experiments, while much slower confor-
mational exchange can be characterized by the relaxation-compensated CPMG and
off-resonance rotating frame relaxation experiments [52, 58, 59].

It is well established that within proteins, networks of interactions mediate the
propagation of conformational changes caused by allosteric events. By plotting
chemical shift patterns or by characterizing relaxation rates upon addition of ligands,
we can follow transitions in protein conformation. If a library of ligands including
allosteric binders is available, it is possible to interrogate the allosteric network in a
protein. Selvaratnum et al. helped to establish this paradigm by studying the cAMP-
binding domain of the exchange protein directly activated by cAMP (EPAC). EPAC
is a guanine exchange factor that is regulated by cAMP. In these studies, they
mapped allosteric networks activated by binding of different ligands based on
covariance analysis of NMR chemical shifts [83]. This method, which they termed
chemical shift covariance analysis (CHESCA), utilized five different EPAC ligands
known to stabilize five different states of the protein in HSQC experiments. Once all
resonances were assigned, the authors performed statistical analysis of chemical
shifts for different residues via pairwise correlations, agglomerative clustering, and
singular value decomposition.

Protein conformations can be analyzed with the aid of residual dipolar couplings
(RDCs), dipolar interactions between neighboring nuclei, providing orientational
information on internuclear vectors. Measurement of RDCs requires partial orienta-
tion of protein molecules in the magnetic field that is commonly accomplished by the
addition of alignment media [94]. An intriguing example of the use of RDCs in
understanding protein allostery was provided by Hansen et al. and Lukin et al. who
studied hemoglobin. The authors found that the crystal structures of the original R
hemoglobin poorly agreed with experimental RDCs measured in solution and
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proposed that hemoglobin exists in multiple conformational states [31, 61]. Thus,
two-dimensional NMR methods can provide a wealth of information regarding
protein allostery.

NMR has become a very useful technique for identification of allosteric ligands
[6, 28, 52, 97]. The approach is to first identify binders using a ligand-based
approach, such as saturation transfer difference NMR (STD-NMR) or water ligand
observed via gradient spectroscopy (WaterLOGSY), and then to select ligands that
do not directly interact with the orthosteric site.

STD-NMR provides information about ligand binding epitopes that are in direct
contact with the protein of interest by showing a significantly stronger STD signal
than those not in contact (Fig. 8.1). STD-NMR can be combined with computational
and cell biology approaches to identify allosteric ligands. For instance, the complete
relaxation and conformational exchange matrix analysis of saturation transfer
(CORCEMA-ST) software has proved useful for the identification of allosteric
ligand binding sites, where a known structure of a protein already exists [38, 39,
47, 67, 68]. CORCEMA-ST is a software that predicts STD-NMR intensities for a
proposed interaction between a ligand and receptor using information about satu-
rated protein protons and a variety of other parameters, such as correlation times,
exchange rates, and spectrometer frequency [38, 78]. In 2013, Zhang et al. devel-
oped this approach to identify the allosteric binding site of several ligands of the
plus-end-directed kinesin-5 subfamily protein, Eg5 [102].

More recently, Krimm [46] used orthosteric, fragment-like compounds termed
“spy compounds” as probes for binding of allosteric ligands [46]. This technique
found allosteric transitions induced by ligands via observing the changes in the
binding mode of the orthosteric “spy”molecule in the absence and in the presence of
an allosteric ligand. Importantly, the spy molecule binds at a site distinct from the
allosteric ligand providing a method to assess the effects of allosteric binding and
allosteric regulation of proteins. Additionally, Von Geldern et al. have used
STD-NMR to support the identification of a set of novel allosteric inhibitors of

Fig. 8.1 Schematic representation of STD-NMR
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fructose-1,6-bisphosphatase [98]. Using N6-methyl adenosine-5-monophosphate
(AMP) as an allosteric probe molecule that binds to the AMP allosteric site, they
ran competition STD-NMR experiments with benzoxazole benzenesulfonamide-
based inhibitors [98]. The authors showed the ability of the inhibitors to suppress
energy transfer to the probe, indicating binding to an allosteric site [98]. Further
crystallography and biological data have confirmed the allosteric nature of these
inhibitors [98]. Other examples of the use of STD-NMR to discover allosteric
ligands include a screen for inhibitors of 3-phosphoinositide-dependent kinase-1
(PDK1) [92], determining the binding isotherms of L-fucose to virus-like particles
[63], and identification of allosteric inhibitors for interleukin-2-inducible T-cell
kinase [30].

In WaterLOGSY experiments, selective magnetization of bulk water molecules
can be transferred to the target protein, to sequestered water molecules bound to the
protein, and to water molecules in the interface of the protein-ligand complex
[14, 15]. Hence, the ligand resonances belonging to the groups in contact with the
protein will exhibit positive intensities, while the groups that do not interact with the
protein will produce negative signals [14, 15] (Fig. 8.2).

As with STD-NMR, all binders are first identified in the ligand-based NMR
screens and allosteric compounds are later selected in competition experiments and
further validated using heteronuclear NMR experiments or other approaches. Exam-
ples of discovery of allosteric ligands using WaterLOGSY include fragment-based
screening to target the myristoyl allosteric binding pocket of Abl kinase followed by
NMR analysis of conformations of the enzyme labeled with 15N valine [36],
identification of allosteric inhibitors of farnesyl pyrophosphate synthase using
WaterLOGSY competition assays [37], finding allosteric ligands for dihydropteroate
synthase [29], and development of selective allosteric inhibitors of 14-3-3 adaptive
protein [85]. Based on these examples, STD and WaterLOGSY-NMR approaches
are powerful and fast approaches to identify allosteric ligands.

As the 19F nucleus is exquisitely sensitive to its electromagnetic environment
[10, 25, 34, 42–45, 50, 51, 56, 64, 77, 84, 99], 19F NMR has become a powerful

Fig. 8.2 Schematic representation of WaterLOGSY
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approach to study allostery in protein folding/unfolding, dynamics, enzyme kinetics,
conformational changes, binding of natural substrates and ligands, and even ther-
modynamic and physical properties of proteins [10, 25, 34, 42–45, 50, 51, 56, 64,
77, 84, 99]. Analysis of 19F chemical shifts and signal line-widths in trifluoromethyl-
containing chemical probes has helped to investigate allosteric behavior of insulin-
metal hexamer complexes that play an important role in insulin assembly and storage
in the pancreatic β-islets [5, 80]. Another 19F NMR probe 1,1,1-
trifluorobromoacetone was used to reveal the mechanism of allosteric regulation in
citrate synthase [19]. 19F can also be incorporated into proteins during synthesis via
the use of 5-fluoro-tryptophane and 2-fluoro-tyrosine. This approach has helped to
investigate allostery in human serum albumin in response to binding of a commonly
prescribed blood thinner warfarin [40]; to study ligand-induced conformational
changes in apical membrane antigen 1 (AMA1) [24], a malaria therapeutic target
to several inhibitors [62]; and to discover a unique allostery network in bacterial
mercury resistance (MerR) operon guided by metal and DNA binding [87].

An interesting approach to investigate allostery by 19F NMR was employed by
Assemat et al. who used fluorine chemical shift anisotropy and exchange for
screening (FAXS, Fig. 8.3) [16] to identify glucokinase activators [2]. This enzyme
can be modulated by activators or inhibitors that affect its transition between the
active and inactive states. The 19F NMR screening method was based on a spy
molecule. By monitoring the R2 relaxation time of the 19F spin, eight known
activators were used to validate the method. In a similar application, Skora and
Jahnke developed a 19F NMR dual-site screening assay to distinguish between active
site and allosteric inhibitors of Abl [86]. This assay was designed to apply fluori-
nated reporter molecules known for their binding specificity to either the active site
or the allosteric site.

Assessment of conformational rearrangements within G-protein-coupled recep-
tors (GPCRs) is an important area of research that has benefitted from the use of 19F
NMR [18]. GPCRs convey signals from the extracellular environment to

Fig. 8.3 Schematic representation of FAXS
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intracellular structures and are highly dynamic proteins. Several methods have been
used to incorporate specific labels into receptors to understand ligand binding and to
gain insight into activation processes [18]. For instance, Liu et al. used 2,2,2-
trifluoroethanethiol (TET) to label cytoplasmic cysteine of β2-adrenergic receptor
to study the binding of several ligands [54]. The 19F NMR labels revealed that
intracellular helices VI and VII can adapt two conformational states and ligands can
differentially affect these states. Further 19F NMR studies by Horst et al. determined
the thermodynamic and kinetic changes associated with ligand binding and the
conformational equilibria of β2-adrenergic receptor [35]. Later, Staus et al., using
19F NMR, showed that a negative allosteric antibody can stabilize one of the two
conformational states [91]. In summary, 19F NMR has been widely applied to
investigate processes in proteins and to discover allosteric ligands.

A unique position among NMR methods is occupied by paramagnetic
approaches. An unpaired electron creating paramagnetic effects can be incorporated
into the protein structure via paramagnetic probes or metal-binding sites. Due to the
very large magnetic moment of the unpaired electron, long-range distances can be
measured from the electron to nuclei in the protein. In many cases, these distances
surpass the 6 Å limit of NOEs [23, 32, 73]. Frequently, paramagnetic probes allow
measurement of paramagnetic relaxation enhancements (PREs), pseudocontact
shifts (PCSs), or RDCs [20, 22, 32, 95]. While PREs provide distance information,
PCSs allow determination of orientation of electron-nuclear vectors with respect to
the axes of the paramagnetic anisotropic susceptibility tensor. Paramagnetic centers
can also induce partial orientation of macromolecules in the external magnetic field
and allow measurement of RDCs, providing orientational information on bond
vectors [22, 95]. Thus, the availability of paramagnetic probes in proteins allows
collection of many types of structural information that can describe conformational
rearrangements in protein molecules due to allosteric modulation.

Despite ample advantages offered by paramagnetic NMR approaches to the
discovery of allosteric regulation in protein molecules, particularly with respect to
long-range distance and angular information, there are relatively few reports describ-
ing their use. In most cases, PREs are utilized to measure distances between the
protein and the ligand or within the protein itself. Some recent examples include
discovery of allosteric regulatory mechanisms in intrinsically disordered proteins
α-synuclein and osteopontin [4], detection of inhibitor-induced conformational
changes in HIV-1 reverse transcriptase [82], and description of orientations of cyclic
nucleotides in the binding site in the murine hyperpolarization-activated cyclic
nucleotide-gated ion channel [17]. These studies involved incorporation of unique
cysteine residues into proteins for attachment of paramagnetic probes. However,
there may be cases where cysteine incorporation might create a problem with protein
folding and/or aggregation. Additionally, calculations of paramagnetic anisotropic
susceptibility tensor parameters for the use of PCSs and RDCs can be laborious and
might hinder a wider use of these approaches. Despite the limitations, we expect that
advances in paramagnetic NMR [11, 71, 79] will allow to more fully explore its use
in studies of allosteric regulation in proteins.
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8.4 Conclusion

In addition to other methods, NMR has guided the evolution of models of allostery,
focusing on contributions of protein dynamics and conformational ensembles as
drivers of allosteric regulation. Our review provides examples of the use of NMR in
the development of models of allostery. These examples highlight the complexity
and diversity of allosteric mechanisms and suggest that further refinement of the
main concepts of allostery may be needed. We also propose that application of
advanced concepts of allosteric regulation will likely lead to deeper understanding of
important proteins, including Ras GTPases and GPCRs. Understanding how protein
function can be allosterically modulated by ligand binding at a distant site is of
paramount importance for drug discovery. NMR continues to play a key role in
mechanistic studies of allostery and in identification of allosteric ligands. Multiple
advanced NMR-based approaches are widely utilized to find protein binders and to
discover the allosteric mechanisms used by these compounds to modulate protein
function. Undoubtedly, further refinement of NMR methods will lead to new
discoveries in the area of allosteric regulation of proteins.
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Chapter 9
Interrogating Regulatory Mechanisms
in Signaling Proteins by Allosteric
Inhibitors and Activators: A Dynamic View
Through the Lens of Residue Interaction
Networks

Lindy Astl, Amanda Tse, and Gennady M. Verkhivker

Abstract Computational studies of allosteric interactions have witnessed a recent
renaissance fueled by the growing interest in modeling of the complex molecular
assemblies and biological networks. Allosteric interactions in protein structures
allow for molecular communication in signal transduction networks. In this chapter,
we discuss recent developments in understanding of allosteric mechanisms and
interactions of protein systems, particularly in the context of structural, functional,
and computational studies of allosteric inhibitors and activators. Computational and
experimental approaches and advances in understanding allosteric regulatory mech-
anisms are reviewed to provide a systematic and critical view of the current progress
in the development of allosteric modulators and highlight most challenging ques-
tions in the field. The abundance and diversity of genetic, structural, and biochemical
data underlies the complexity of mechanisms by which targeted and personalized
drugs can combat mutational profiles in protein kinases. Structural and computa-
tional studies of protein kinases have generated in recent decade significant insights
that allowed leveraging knowledge about conformational diversity and allosteric
regulation of protein kinases in the design and discovery of novel kinase drugs. We
discuss recent developments in understanding multilayered allosteric regulatory
machinery of protein kinases and provide a systematic view of the current state in
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understanding molecular basis of allostery mediated by kinase inhibitors and acti-
vators. In conclusion, we highlight the current status and future prospects of com-
putational biology approaches in bridging the basic science of protein kinases with
the discovery of anticancer therapies.

Keywords Allosteric regulation · Siganling proteins · Allosteric modulators ·
Conformational dynamics · NMR Spectroscopy · Residue coevolution · Residue
interaction networks · Protein kinases · Drug discovery

9.1 Introduction

Allosteric regulation is a common mechanism employed by proteins and complex
biomolecular assemblies for regulating their activity and adaptability in the dynamic
cellular environment during processes of signal transduction, catalysis, and gene
regulation [31, 32, 109, 139, 158]. The initial framework and theoretical basis of
allosteric regulation was proposed by Monod, Wyman, and Changeux (MWC
model), which is often referred as the concerted model [139]. An alternative
model was later developed by Koshland, Enmity, and Filmer and is known as the
KNF model or sequential model [109]. These mechanistic qualitative models have
been put forward to provide a plausible rationale of the allosteric regulation phe-
nomena and explain cooperative binding by proteins, where binding event at the
ligand site of one subunit can affect the protein response at another distant site,
thereby altering ligand affinity to other protein subunits. The MWC model postu-
lated that protein subunits undergo concerted conformational changes that occur by
preserving symmetry as an important requirement of allosteric changes. According
to this model, all subunits in each oligomer are in the R (“relaxed”) or T (“tense”)
states where different conformational states of the allosteric protein coexist in a
dynamic equilibrium and can be populated independently in the presence of the
bound ligand. In the alternative KNF model, long-range allosteric coupling in pro-
teins can occur through a mechanism of discrete and sequential conformational
changes leading to global changes in the protein structure. In this model, ligand
binding to one subunit triggers sequential conformational switching of the neigh-
boring units to the higher affinity state. Computational and experimental studies of
allosteric mechanisms have witnessed a recent renaissance that reshaped the con-
ventional models of allostery, fueled by the growing interest in quantitative biology
of complex biomolecular systems. The thermodynamics-based model of allosteric
regulation has embraced the energy landscape perspective of protein structure and
dynamics, according to which the statistical ensemble of preexisting conformational
states and communication pathways can be explored and modulated by allosteric
perturbations [46, 51, 126, 204, 205, 236]. New conceptual models such as confor-
mational selection expanded our view of allostery beyond the induced fit by capi-
talizing on the free energy landscape framework where thermodynamic view of
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conformational selection is linked with the effector-induced equilibrium population
shift [204, 206]. The conformational selection/population-shift model reformulated
the original MWC model by assuming that proteins can sample ensembles of
preexisting conformational states. In accordance with this model, allosteric ligand
will bind weakly populated, high-energy conformations, altering the free energy
landscape in this region and shifting the population toward this bound conformation
(Fig. 9.1). The new view of protein allostery implies that ligand-induced redistribu-
tion of conformational fluctuations in regions that are linked by cooperative inter-
actions may determine allosteric control and signaling. In this formulation, long-
range interactions and allosteric changes are mediated not only by conformational
transitions reflected in the enthalpy contribution but also by entropy-driven dynamic
fluctuations around the average structure [77, 78, 158, 209, 210].

Protein kinases act as dynamic molecular switches in cellular signaling and their
functional activity is essential for the integrity and viability of many signaling
processes [4, 55, 106, 107, 135, 154, 178, 196, 198, 199]. The growing wealth of
structural, genetic, and biochemical information in protein kinases has enhanced our

Fig. 9.1 (a) The conformational selection model. The conformations of the enzyme corresponding
to local energy minimums are schematically shown. Red corresponds to the inactive enzyme, green
to the active enzyme, and blue to another active-like conformation. The beads in the energy basins
represent the relative population of each conformation. The energy surface prior to allosteric ligand
binding is in a dashed line. (b) Dynamically driven allostery. The active enzyme (green) presents
large fluctuations around the active site. These fluctuations are significantly reduced upon binding
of an allosteric ligand rendering the inactive enzyme (red) without changing the mean structure of
the enzyme. The surface prior to allosteric ligand binding is indicated by a dashed line
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knowledge of the inhibitory mechanisms underlying drug–kinase binding and mod-
ulation of kinase activities. Recent advances in understanding allosteric regulation of
protein kinases have facilitated efforts aiming in the discovery of allosteric kinase
inhibitors that can provide target specificity and are at the forefront of the precision
medicine initiative in oncology. We provide analysis of structural and network-
based models of protein allostery and their applications to dissecting molecular
determinants of allosteric inhibition and activation of human protein kinases.

9.2 Dynamic Allostery and Allosteric Communications
in Proteins: Getting a Grip on Conformational
Ensembles through Lens of NMR

While studies on allostery in protein systems are often focused on thermodynamic
aspects of the mechanism, there is an increasing realization of the critical role of
conformational dynamics, which is central to “entropy-driven” allostery (Fig. 9.1).
This mechanism proposes that modulation of the thermal fluctuations around a mean
structure rather than large structural shifts give rise to allostery in ligand binding
[42]. Based on theoretical grounds, it was proposed that proteins may have evolved
to take functional advantage not only of diverse conformational states but also of
conformational dynamics about the mean structure, where effector-induced free
energy changes are manifested exclusively in the modulation of the conformational
distributions rather than structural transformations. Allosteric cooperative effects can
be positive or negative, depending on whether the binding of the first ligand
increases or decreases the affinity for subsequent ligands. While positive
cooperativity is a fairly common mechanism for increasing the binding potential in
allosteric systems [119], there are many examples of negative cooperativity in
protein systems [48, 145, 188]. Negative cooperativity in proteins is mainly
entropy-driven and occurs when successive binding to a regulatory site leads to a
decrease in affinity and significant redistribution of conformational entropy.
Dynamic allostery in proteins is often associated with negative cooperativity and
significant entropy exchanges between local protein regions [6, 67, 134, 204, 206]. It
was argued that fluctuation-induced allostery can arise in proteins that can be
adequately described as inhomogeneous elastic entities in which domains are com-
posed of rigid modules connected by more flexible interface regions [134]. The
range of allosteric models employed to explain regulatory mechanisms in protein
systems can vary from a sequential model, where binding of a molecule at one site
causes a sequential propagation of conformational changes across the protein, to an
intermediate, “block-based” model and a fully cooperative model, where structural
changes are tightly coupled [104].

In the dynamics-driven allostery, effector ligands can induce redistribution of
protein fluctuations in the regions linked by cooperative interactions and propagate
signal through dynamic modulation of slow and fast functional motions located at
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distant functional regions even in the absence of visible structural changes [99, 100,
158, 209, 210]. Recent time-resolved infrared spectroscopy experiments have indi-
cated that the allosteric transitions occur on multiple timescales. By using
non-equilibrium molecular dynamics (MD) simulations, a time-dependent picture
of the allosteric communication revealed that allostery is manifested by hierarchical
propagation of structural and dynamical changes suggesting a high degree of
conformational heterogeneity of the ensemble of communication routes in proteins
[26, 189]. The recent experimental breakthroughs in NMR technologies have
enabled structural studies of large protein systems and conformational dynamic
processes at atomic resolution that provide unique insights into allosteric mecha-
nisms [89, 96, 101, 108, 165]. Relaxation dispersion NMR methods developed over
the past decade have enabled detection and characterization of rare and energetically
excited conformational states that play significant role in dynamic activation of
protein function and allosteric mechanisms. The rapid conformational exchanges
between ground and excited states occurring on the μs–ms timescale can now be
detected by NMR and provide information about the kinetics and thermodynamics
of the exchange process [101, 165]. Structural identification and characterization of
very low populated states can allow for better understanding of allosteric activation
mechanisms and enable atomic reconstruction of ligand-induced allosteric dynamic
changes in large biomolecular systems. Characterization of low-lying excited states
of proteins by high-pressure NMR under thermodynamic equilibrium conditions can
allow for detection of reversible transitions that are functionally relevant, providing
means for modulation of dynamic energy landscape sculpted to optimize functions
via allosteric mechanisms [98, 219]. High-pressure NMR can help to identify these
conformations, including low populated functional states, and characterize their
energies and kinetics of conformational changes [219]. Pressure-dependent chemical
shifts may also measure redistributions in conformational entropy and specify
dynamic allosteric mechanisms, thereby providing the experimental platform for
design of allosteric modulators that can sequester and stabilize otherwise
low-populated functional states [98, 142, 219]. Allostery is a physical property of
complex systems that can be characterized by dynamic networks of interactions
between their components and integrated modules. The organization of these net-
works allows for formation of ensembles of pathways that transmit signals by
propagating conformational fluctuations and functional motions between distant
sites. The ensembles of allosteric communications and protein residues involved in
signal transmission via population-shift or dynamics-based allostery can be exper-
imentally examined by NMR spectroscopy [76, 184, 193]. NMR chemical shift
responses to bound ligands are commonly employed as diagnostic tools for identi-
fying coupled networks within allosteric proteins that could quantify potential
communication pathways [122, 165, 180, 210]. The growing evidence that
dynamics-driven allostery may be common to many protein systems has further
expanded our view of diverse allosteric mechanisms that are not limited to popula-
tion shift mediated exclusively through structural transitions that select and stabilize
specific conformational states.
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However, the main premise of the thermodynamics-based allosteric mechanism is
shared by these models, postulating that allosteric proteins exist in different confor-
mational states (often inactive and active type) and effector binding regulates protein
responses and activity through modulation of the conformational equilibrium fluc-
tuations. While allosteric ligand binding can alter distributions and energies of the
different protein states, it typically has minor effect on conformations that are largely
dictated by the intrinsic protein architecture. A rigorous thermodynamic model of
allostery does not necessarily imply the existence of specific communication path-
ways as allosteric effects can propagate long distance through broad and diffusely
distributed ensemble of heterogeneous conformational fluctuations [85, 103, 141,
220]. However, the ensemble-based model of allostery does not preclude thermo-
dynamically weighted propagation of allosteric information through preferential
preexisting pathways that can be modulated by ligand binding. This characterization
can provide important insights into mechanisms and dynamics of signal transmis-
sion, identifying preferential mediators and carriers of dynamic fluctuations. Despite
significant advances in computational and experimental studies of allosteric regula-
tion mechanisms, molecular signatures of ensemble-based communication pathways
and specific contributions of functional residues implicated in allosteric regulation
are yet to be fully understood, rationalized, and reconciled with the population-shift
and dynamics-driven allosteric mechanisms.

9.3 Molecular Mechanisms of Allosteric Inhibitors
and Activators

Understanding molecular mechanisms underlying complexity of allosteric regula-
tion in proteins has attracted growing attention partly due to considerable interest in
the discovery of selective modulators of therapeutically important targets [149]. In
the recent decade, drug discovery has been steadily shifting its focus toward
targeting allosteric sites in order to improve compound selectivity [151, 194,
216]. An important factor behind these efforts is structural and evolutionary diversity
of allosteric sites even among structurally similar proteins of the same family.
Allosteric sites present a unique opportunity to selectively target one particular
protein in a family of homologous proteins [53, 181]. Furthermore, allosteric binding
sites tend to be under low evolutionary pressure and are often more dynamic than the
active sites, facilitating and diversifying design of target-specific agents while
addressing long-standing lingering problems of safety, toxicity, and side effects
[149, 150]. Allosteric drugs also feature distinct physiochemical properties than
their orthosteric counterparts, adding further freedom for the discovery of novel
active compounds and can be often combined with orthosteric drugs into synergistic
drug cocktails to modulate and improve enzyme activities, specificity, and pharma-
cological profiles. Analysis of the Ras cycle predicts at least eight drug-relevant
functional states of the protein that can be used for an allosteric modulation of the
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Ras activity, and some of these states were detected and localized in the activated
Ras by high-pressure NMR techniques [98, 142]. These studies have suggested that
allosteric inhibition based on targeting rare states revealed by NMR can open up new
unexplored directions for the discovery of highly specific agents [98]. Targeted
alterations of a dynamic conformational landscape may represent a feasible strategy
for engineering allostery into protein scaffolds that lack intrinsic allosteric properties
[38]. In particular, allostery can be dialed in by remodeling dynamic conformational
ensembles through the introduction of short, flexible protein segments at the inter-
face between two domains of non-switch fusion proteins. By exerting differential
effects on the dynamic fluctuations in the presence and absence of effector, the
flexible interdomain connector could confer allosteric switching between the inac-
tive and active forms of the fusion protein [38]. Allostery can be also associated with
the introduction of intrinsic disorder [11, 64, 68, 217]. While traditional orthosteric
drugs usually bind to the active site and inhibit protein activity, allosteric modulators
may not only inhibit but also increase protein activity. Chemical biology approaches
have identified a number of allosteric activators for several natural enzyme targets,
including glucokinase (GCK), AMP-activated protein kinase (AMPK), p300 histone
acetyltransferase, RNase L, and the sirtuin family of NAD+-dependent protein
deacetylases [17].

Allosteric activators may exploit several general mechanisms: (a) binding to an
allosteric site on the catalytic domain to promote an active conformation; (b) binding
to an allosteric site to facilitate activating posttranslational modification; and
(c) binding to a regulatory subunit to indirectly promote activity at the catalytic
domain or to promote an activating oligomerization [237]. Direct binding to the
catalytic domain of a dormant enzyme and induction of a population shift that
stabilizes the active conformation is often a prevalent mechanism of allosteric
activation [237]. This mechanism has been observed for GCK, SIRT1, PDK1,
PP1, and p300 proteins. Human glucokinase (GCK) has emerged as a model system
for understanding allostery in monomeric, single-site enzymes. Even in this simplest
example, there exist two functionally distinct mechanisms of GCK activation that
can elicit the allosteric response of GCK to glucose. While the first activation
mechanism involves a population shift and a notable structural change to a closed
active structure, limited proteolysis and NMR have also revealed that activation can
be achieved by modulating the dynamic properties of an active site loop without
perturbing the ensemble average structure, thereby presenting another example of
dynamics-driven allostery [218]. Large protein assemblies such as 20S proteasome
core particle (CP) can be controlled by activator complexes that bind 75 Å away
from sites catalyzing proteolysis, revealing a population-shift-based allosteric mech-
anism by which proteasome interconverts between multiple conformations whose
relative populations are shifted on binding of the activator or mutation of residues
that contact activators [172]. Allosteric modulators that increase or decrease the
activity of the orthosteric agonists by interacting with the residues that mediate
allosteric communication between the orthosteric and the G-protein site emerge as
new strategies in drug design for GPCRs [13, 19]. Analysis of differences in
ensembles of communication pathways in the inactive and active states of GPCR
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has shown several well-defined signaling routes, while a more dispersed pattern of
delocalized pathway ensembles in the active form [13]. Allosteric nanobodies
probed diverse mechanisms of GPCR activation where large ligand-specific effects
are explained using an allosteric model of dynamic equilibrium among at least three
receptor states [186]. While agonists exert efficacy by stabilizing the active
antibody-stabilized receptor state, partial agonists incur both stabilization of the
active state and destabilization of the inactive state to modulate receptor activation.
These pioneering studies have concluded that allosteric GPCR agonists can elicit a
range of cellular responses by differentially stabilizing multiple receptor states.
NMR analysis of the activator complexes with the glutamine aminotransferase
imidazole glycerol phosphate synthase (IGPS) has shown absence of ligand-induced
structural changes in the IGPS enzyme, revealing clear signs of fluctuations-driven
allosteric mechanism [124]. The allosteric network of IGPS appeared to be widely
dispersed and illuminated presence of effector-specific pathways that may be essen-
tial for propagation of the allosteric signal. A broad and effector-dependent nature of
allosteric network in the IGPS enzyme is manifested in the variable number and
location of dynamically stimulated residues elicited by specific activators
[124]. Interestingly, the strongly activating allosteric ligands perturb the chemical
shifts of fewer residues than weak activators, and yet the allosteric pathways inferred
from chemical shift data differ with each effector. These studies have also found that
allosteric activator-induced changes in millisecond motions are responsible for
enhancing the catalytic rate at a distant active site [121, 123, 124]. Despite several
successful examples, the concept of allosteric activators has not yet obtained a
widespread attention, which may reflect the relatively small number of structural
and functional studies and lack of systematic validated strategy to rationally design
enzyme activators. It has been noted that the repertoire of enzyme agonists and
antagonists can often overlap and show how small changes may lead to switching
from inhibition to activation [49]. The improved understanding of similarities and
differences between these classes of allosteric modulators could offer new opportu-
nities for probing and interrogating biological processes and pathways.

9.4 Structural and Network-Based Models of Allosteric
Interactions in Proteins

The statistical ensemble-based models of protein allostery have been successfully
used to model the effects of allosteric interactions in individual proteins, analysis of
modulations on signaling pathways, cellular functions, and disease states [45, 74,
147–149, 152, 153]. Most recently, the modern statistical view of protein allostery
has been further expanded to study disordered proteins [47], structure and dynamics
of molecular networks [45], and the mechanisms of allosteric protein inhibition in
signaling networks [194]. Elastic network models of protein dynamics [6, 7, 231]
and the normal mode analysis [8, 127] have been integrated with the information-
based theory of signal propagation [35, 36] in the development of a generalized
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formalism of allosteric communication pathways in proteins [6, 37]. Among recently
advocated approaches to explain communication of the allosteric signals is to
consider protein representation as a network of residues interconnected via
noncovalent interactions [24, 25, 52, 205, 213]. In this approach, allosteric effector
can rewire part of the network to efficiently communicate allosteric information over
long range through structural changes or dynamics redistributions. This model has
led to the development of several methods that reproduced the atomistic mechanisms
associated with transmission of ligand-induced allosteric signals [62]. The integra-
tion of network theory and evolution analysis with MD simulations and normal
mode analysis (NMA) has emerged as a powerful and increasingly popular approach
to study allosteric regulation and quantifying communication pathways in complex
molecular machines [13, 15, 16, 18, 52, 53, 62, 69–71, 80, 176, 177, 191].

The central concept underlying the network approach in modeling of allosteric
interactions and pathways is that effector binding can result in a dynamically
propagating cascade of coupled residue fluctuations throughout the protein. By
mapping these dynamic fluctuations and correlated motions onto a graph with
nodes representing residues and edges representing weights of measured dynamic
properties, one could determine global topological features and ligand-induced
organization of the allosteric interaction network, identify key functional centers,
and characterize ensembles of allosteric communication pathways in the system. The
network-based approaches have offered a simple, robust, and conceptually attractive
perspective, providing better understanding of protein structure and enabling local
and global effects to be seamlessly incorporated into computationally transparent
models. The network studies have also suggested that rapid transmission of allosteric
interactions through small-world networks encoded in protein folds may be a
universal requirement encoded across diverse protein families [18, 52, 205].

Functional sites that mediate communication pathways and determine organiza-
tion of the residue interaction networks often correspond to dynamically coupled and
coevolving residues. Statistical coupling analysis (SCA), mutual information
(MI) model, and covariance-based approaches have employed sequence-based anal-
ysis of residue coevolution in homologous families to show that functional residues
in residue networks are connected via strong coevolutionary relationships [2, 50, 79,
125, 128, 133, 183, 192]. Coevolution of protein residues can reflect a coordinated
involvement of these sites in mediating residue–residue contacts [185], promoting
protein folding [140], and facilitating allosteric signaling in multi-protein complexes
[214]. Coevolving residues tend to be spatially coupled and coincide with functional
positions exhibiting correlated and compensatory mutations in homologous proteins
[232]. These residues could also form direct communication paths in the interaction
networks with connections weighted according to dynamic couplings and coevolu-
tionary interaction strengths between nodes [29, 30, 115, 146]. Furthermore,
coevolving residues can assemble into structurally stable and quasi-independent
modules of physically interacting residues termed “protein sectors” [79, 133]. Several
computational methods have been developed to evaluate the extent of mutual
information (MI) and coevolutionary dependencies between residue pairs [72, 128,
129, 183, 202]. In the MISTIC approach [128, 183], the residue-based mutual
information score characterizes the extent of mutual information shared by a given
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residue with all other protein residues across protein family. Based on this informa-
tion, MISTIC tool defines cumulative mutual information (cMI) and proximity
mutual information (pMI) residue scores. cMI score is a sequence-based parameter
that measures the degree of shared mutual information of a given residue with the
other protein residues. pMI score encapsulates both sequence and structural varia-
tions being defined as the average of cMI scores of all the residues within a
predefined distance from a given residue in the protein structure [128, 183]. Coevo-
lutionary analysis using MISTIC approach was integrated into dynamics-based
network modeling of the residue interactions [187]. In this model, the network
edges (interactions) are weighted based on both dynamic and coevolutionary residue
correlations that determine the shortest communication paths between residue nodes.
Residue centrality (residue betweenness) is a global network parameter that was
computed to determine highly connected nodes in a global interaction network. A
propensity of protein residues to serve as global mediating centers of allosteric
interaction networks in this approach is evaluated by considering common peaks
in the distributions of residue centrality and pMI profiles.

The important revelation of these studies was that dynamic and coevolutionary
residue correlations may act as synchronizing forces to enable efficient and robust
allosteric regulation, where key sites mediating allosteric signaling are often aligned
with high centrality and high pMI residues. These specific characteristics may be
necessary for the regulation of allosteric structural transitions and could distinguish
regulatory sites from nonfunctional conserved residues. The observed confluence of
dynamics correlations and coevolutionary residue couplings with global networking
features may also determine modular organization of allosteric interaction networks
[187]. Computational analysis of residue interaction networks has revealed that
independent modules of protein residues anchored around functional sites can
work cooperatively to mediate structural stability and conformational transitions
required for diverse functions in the dynamic protein environment [88, 95, 128, 187,
201, 229, 235]. These results have motivated the development of novel community-
hoping methods for modeling ensembles of allosteric communication pathways in
protein structures [187, 208, 211]. In this model, cooperative transitions may occur
between local modules (communities) of tightly coupled interacting residues that
tend to switch their conformational states cooperatively and form a weakly coupled
assembly acting as a communication pathway in signal transmission. The body of
computational studies on allosteric mechanisms has indicated that integration of
network-based approaches with NMR studies of protein dynamics and conforma-
tional ensembles may provide a robust platform for further exploration and atomistic
characterization of allosteric states and regulatory mechanisms controlled by allo-
stery. This has motivated the development and proliferation of various computa-
tional models and tools for predicting allosteric sites and pathways of the
intramolecular signal propagation and communications ([22, 73, 102, 132, 136–
138, 157, 187, 200]).
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9.5 Data-Driven Modelling of Residue Interaction
Networks: Network Signatures of Allosteric Inhibitors
and Activators Inferred from Allosteric Database

A rapid growth of biochemical and structural information on allosteric proteins and
allosteric modulators has benefited bioinformatics studies and development of
various web-based database resources. Allosteric Database (ASD) initiated several
years ago has received significant praise of computational community, providing a
centralized resource for the display, search, and analysis of the structure and function
of allosteric proteins [90, 91, 179]. Currently, ASD has catalogued and annotated
allosteric proteins and modulators in three categories (activators, inhibitors, and
regulators). ASDBench is an open-source subset of the ASD database that includes
proteins from various species, primarily bacteria contributing 44% and human pro-
teins amounting to 26% of the dataset. ASDBench is subdivided into Core set, which
is composed of 235 unique allosteric protein entries and Core-Diversity set that
contains 147 allosteric proteins with the additional filter of redundancy and the
quality of the binding site. By performing large-scale analysis of residue interaction
networks and coevolutionary residue couplings in allosteric proteins of the Core-
Diversity set, we have determined the distributions of residue centralities and
coevolutionary pMI parameters (Fig. 9.2). In this analysis, we specifically focused
on a comparative analysis of complexes with allosteric inhibitors and allosteric
activators, aiming to identify distinguishing molecular and network signatures of
these two classes of allosteric modulators. Our analysis confirmed that protein
structure topologies in allosteric proteins could produce small-world networks.
Indeed, the residue centrality and pMI distributions revealed the characteristic
small-world signature of a sharp decay and a longer tail corresponding to residues
with very high centrality (high pMI) values (Fig. 9.2). Hence, allosteric inhibitors
may often induce a significant network-bridging effect and produce large allosteric
networks with the enhanced centrality of mediating residues that stabilize structural
environment favored by the inhibitor-bound conformations. This may also reflect a
potential enrichment of population-shift allosteric mechanism in complexes with the
allosteric inhibitors. In this case, inhibitor binding can be often accompanied by the
equilibrium shift to the specific state, with many spatially distributed high centrality
centers in the allosteric network that links the allosteric and active sites. Our previous
network studies of protein kinase complexes with ATP-competitive inhibitors
related ligand-induced changes in the residue interaction networks with drug resis-
tance effects, showing that network robustness may be compromised by targeted
mutations of key mediating residues [207]. According to results of that study, the
severity of drug resistance effects to inhibitor binding may be directly associated
with the high network centrality and mediating function of mutation-targeted
residues.

In some contrast, the centrality distribution of complexes with allosteric activators
pointed to a noticeably shorter tail, indicating a shortage of high centrality sites and instead
featuring many residues with moderate centrality (Fig. 9.2). These results may reflect the
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fact that an appreciable fraction of allosteric activators may operate under dynamically
driven allosteric mechanisms when the protein does not significantly change in structure,
giving rise to more dispersed and diffusely distributed ensembles of communication
pathways with the fewer obligatory mediating hubs. In this scenario, the location and
density of dynamically stimulated residues elicited by specific activators for a given
protein may significantly differ [124]. It has been noted that the number of crystal
structures of enzymes bound to allosteric activators is small as compared to the diversity
of structures complexed with the allosteric inhibitors [237]. One of the potential reasons
may be associated with the dominant allosteric mechanism as inhibitors usually stabilize
and rigidify a specific inactive conformation, whereas activators could often modulate and
stimulate protein dynamics making crystallographic determination of these complexes
more challenging. Obviously, these observations do not imply that allosteric inhibitors and
activators can be biased to any specific mechanism as allosteric modulators can exploit
variations and synergistic combinations of different mechanisms including induced-fit,
population-shift, and entropy-driven allostery. Our data argue that allosteric inhibitors may
often leverage network efficiency by promoting signal transmission via several distinct
“narrow tubes” of paths formed around specific routes of predominantly rigid high
centrality residues. We have observed that allosteric activators may often promote
adaptation of a moderate population-shift or dynamics-driven allosteric mechanism,
where signaling routes are more diffusely distributed through many dynamic residues
connecting distal sites. In this scenario, allosteric activators may exploit and functional

Fig. 9.2 (a) The residue centrality distribution for allosteric proteins from the Core-Diversity set.
The distribution for all proteins is shown in blue and the distribution for allosteric inhibitors in
human proteins is superimposed and shown in green. (b) The residue centrality distribution for all
allosteric proteins is superimposed with the centrality profile for allosteric activators in human
proteins (in green). (c) The pMI distribution for all allosteric proteins (in blue) and for allosteric
inhibitors in human proteins (in green). (d) The pMI distribution for allosteric activators (in green)
is superimposed on the overall pMI density
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redundancy to ensure robust protein activation that would sustain random mutations. It
was shown that dynamic allostery can better tolerate individual mutations due to many
independent pathways as disabling one pathway by mutation could trigger compensation
by another pathway [215].

Our previous studies of molecular chaperones [18, 187] and protein kinases
[207, 208] have suggested that allosteric interactions may be regulated through a
mechanism that combines efficient communication via specific pathway of predom-
inantly rigid residues [160] and more robust signal transmission via an ensemble of
multiple communication routes in which nonredundant rigid centers are coupled
with more flexible residues [236]. The diversity of allosteric communication mech-
anisms could ensure a proper balance of the network efficiency and functional
redundancy required to maintain resilience against random attacks in the fluctuating
protein environment.

9.6 Allosteric Kinase Inhibitors

Among therapeutically important protein families, the human protein kinases play a
special role by regulating functional processes in signal transduction networks and
acting as dynamic molecular switches in cellular signaling [196, 198]. Recent studies
of the structure and dynamic regulation of the SRC kinase [20, 57, 81, 166, 167,
168], ABL kinase [81, 156, 162], and ErbB kinases [21, 63, 98, 116, 117] have
provided compelling evidence that protein kinase activity can be regulated via a
dynamic equilibrium between the inactive and active states. Protein kinase activation
and regulation are orchestrated by cooperative conformational changes of the con-
served HRD motif in the catalytic loop and the DFG motif coupled with the αC-
helix. These regulatory elements of the catalytic domain cooperate to form con-
served intramolecular networks termed regulatory spine (R-spine) and catalytic
spine (C-spine) whose assembly and stabilization are associated with the conforma-
tional transformations and kinase activation [196, 198]. A diverse repertoire of
crystallographic conformations has also indicated that molecular mechanism of
protein kinases may not necessarily imply an on–off binary switch between static
inactive and active states but rather represents a dynamic multilayered regulatory
sensor in which binding and external perturbations give rise to a continuum spectrum
of inactive and active conformations exhibiting a range of activity levels. The wealth
of structural knowledge about conformational states of the kinase catalytic domain,
regulatory assemblies, and complexes with inhibitors has dramatically advanced out
understanding of these allosterically regulated molecular switches, facilitating the
development of selective and multi-targeted kinase inhibitors that play a dominant
role in cancer research [58, 167–169, 221, 222].
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On the basis of the molecular mechanism of action and crystallographic binding
mode, several classes of kinase inhibitors have been determined [167–169,
234]. Type I inhibitors target the catalytically competent, active (DFG-in) confor-
mation of the kinase domain with the αC-helix-in conformation and A-loop in the
open (“out”) active conformation. Type II inhibitors recognize the inactive DFG-out
kinase conformation with the αC-helix-in conformation and A-loop in the closed
(“in”) inactive arrangement. Type III allosteric inhibitors do not compete with ATP
and could be more selective than types I and II inhibitors by binding to the regulatory
sites outside of the ATP binding site. An unintended consequence of kinase drug
discovery has been the discovery of ATP-competitive inhibitors that behave as
agonists of their kinase targets [49]. These studies have indicated a connection
between ATP binding site occupancy and interaction networks of communications
that can lead to the enhancement of catalytic activity. Allosteric kinase inhibitors can
be further subdivided into two subclasses: inhibitors that bind in an adjacent
allosteric site that does not overlap with the ATP binding pocket and inhibitors
which bind to an allosteric site that is distant from the ATP binding pocket. Targeting
allosteric pockets of kinases outside the highly conversed ATP pocket has been
proposed as a promising alternative to overcome current barriers of kinase inhibitors,
including poor selectivity and emergence of drug resistance. Structural diversity of
allosteric regulatory mechanisms in protein kinases has been leveraged in the
discovery of small-molecule allosteric inhibitors [43, 44, 49, 59, 212]. Allosteric
compounds can often confer selectivity, allow access to novel and diverse chemical
space beyond ATP-based scaffolds, and allow for better modulation of physico-
chemical properties. Although drug resistance may frequently arise, combination
therapies of ATP-competitive and allosteric inhibitors can become a fruitful alter-
native to conventional design approaches.

The serine/threonine MEK kinases are among the most investigated targets for
which allosteric inhibitors have been developed [61]. A number of compounds that
inhibit MEK-1 and MEK-2 activity through an allosteric mechanism have been
co-crystallized in complexes with the catalytic domain. These allosteric inhibitors
can bind and stabilize a naturally occurring inactive form of MEK kinases and bind
to the “back pocket” away from the ATP binding site [65, 163]. Structural study has
identified that a potent and selective MEK allosteric inhibitor TAK-733 binds to the
MEK1–ATP complex in the back cleft adjacent to the ATP-binding pocket [54]. The
discovery of novel carboxamide-based allosteric inhibitor XL518 (GDC-0973) (pdb
id 4LMN) (Fig. 9.3) and related analogs has produced further insights into mecha-
nisms of allosteric MEK inhibitors [163]. Allosteric MEK1/2 inhibitors usually
constrain the movement of the activation loop and thus decrease the rate of
Raf-mediated MEK phosphorylation and lock the kinase in the catalytically inactive
state. Hence, this class of allosteric inhibitors would likely operate under population-
shift mechanism by biasing the dynamic equilibrium toward specific inactive con-
formation. AKT inhibitors can allosterically bind to both the active and inactive
forms of the enzyme, and require presence of the pleckstrin-homology (PH) domain
[10, 120]. The crystal structure of human AKT1 containing both the PH and kinase
domains with a selective allosteric inhibitor bound in the interface was recently
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determined (pdb id 3O96) (Fig. 9.3) [5]. This study has shown that the PH domain
can lock the kinase in an inactive conformation, while the kinase domain disrupts the
phospholipid binding site of the PH domain. The co-crystal structure of another
AKT allosteric inhibitor occupies a cavity at the interface between the kinase domain
and the PH domain (PDB entry 4EJN) (Fig. 9.3) [223]. While ATP-competitive
AKT inhibitors bind to the activated state, ‘PH-out’ conformation, allosteric AKT
inhibitors induce recruitment of the PH domain and stabilize the unique ‘PH-in’
conformation of the inactive AKT, thus inhibiting activation and phosphorylation of
the enzyme [60, 131].

These studies have provided support to the conformational selection allosteric
mechanism of AKT inhibitors that induce equilibrium shift toward the unique
inactive form of the kinase. Allosteric kinase inhibitors can bind near the A-loop
and MAPK insert region for JNK1 kinase (pdb id 3O2M) [40], PIF pocket of PD1
(pdb id 4AW1) [28], C-terminal lobe of CHK1 (pdb id 3JVS), DFG-out pocket of
SRC kinase (pdb id 3F3U) ([182]), DFG-out pocket and A-loop of IGF1R (pdb id
3LW0) [84], DFG-out pocket of CDK8 (pdb id 4F70) [174] and PYK2 (pdb id
4H1M) [14], catalytic loop and DFG-out pocket of FAK (pdb id 4I4F) [203], and
DFG-out pocket of RIP1 (pdb id 4ITJ) [227] (Fig. 9.3). The allosteric pockets

Fig. 9.3 Crystal structures of allosteric kinase inhibitors. The bound inhibitors are shown as
spheres; the catalytic domain is shown in ribbons with a reduced transparency to highlight different
positions of inhibitors. The crystal structures of kinases are annotated and corresponding PDB ID of
the kinase complexes with allosteric inhibitors are also shown
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utilized by these inhibitors can involve structural rearrangements of the DFG motif
and the activation loop, ordering or displacement of the αC-helix, and modulation of
conformational dynamics in the functional regions.

To illustrate the nature of residue interaction networks and communication
pathways, we selected several representative kinase complexes with allosteric inhib-
itors that feature a population-shift mechanism and are characterized by a number of
high centrality and high pMI residues. By conducting atomistic simulations of the
JNK kinase complex with the allosteric inhibitor (pdb id 3O2M), we constructed
dynamic interaction network for this system, identified high centrality sites, and
reconstructed ensembles of allosteric pathways connecting the allosteric and active
sites (Fig. 9.4). The employed computational protocol is consistent with our previous
network-based studies of allosteric regulation [187, 207, 208]. In this analysis, we
focused on modeling of communication networks that link the peptide-binding with
the catalytic site [113]. The allosteric compound binds on a ledge in JNK kinase
provided by the MAP insertion on the surface of the protein, and this site is
accessible only in the inactive form of the protein (Fig. 9.4). Allosteric inhibitor
operates under population-shift mechanism by favoring the inactive JNK1 confor-
mation characterized by rotational motions of N- and C-lobes and destabilization of
the activation loop conformation [113]. The regulatory actions in JNK family
kinases is exerted by the opposing actions of peptide and activation loop phosphor-
ylation providing a control mechanism over the catalytic site, which lies between the
lobes. Structural map of dominant communication pathways mediated by high
centrality residues showed clusters near the peptide binding site and in the activation
loop near the allosteric binding site that can be essential for carrying out the allosteric
response. The communication map showed that allosteric binding in the lower lobe
of the inactive JNK1 can affect signal transmission between the ATP site and the
peptide binding site by rewiring preferential routes to link the allosteric and peptide
sites instead. In this case, allosteric inhibitor may enhance network efficiency and
connectivity of the inactive form by forming specific routes of high centrality
residues linking the allosteric site with the rest of the protein. The inhibition
mechanism via binding to the allosteric site in the inactive form can prevent
phosphorylation of the activation loop and kinase activation. Our analysis also
reveals a pocket crosstalk network, which passes through a set of small pockets
that can be targeted by allosteric kinase inhibitors [110].

Crystal structures of the fluorophore 8-anilino-1-naphthalene sulfonate com-
pound (ANS) bound with human CDK2 revealed two ANS molecules bound
adjacent to one another in a large allosteric pocket that extends from the DFG region
above the αC-helix [12] This pocket is formed by the αC-helix and the β-strands β3,
β4, and β5 of the N-lobe. These small molecules act as allosteric inhibitors of CDK2,
eliciting structural changes in the αC-helix and the β3, β4, and β5 strands thereby
intervening with CDK2 association with cyclin A. The second ANS molecule binds
adjacent to the primary site and also makes interactions with the αC-helix residues.
However, the tight interaction of the CDK–cyclin complex requires allosteric inhib-
itors to be exceptionally potent as relatively moderate binding of ANS can be
displaced from CDK2 upon cyclin A association [12, 130].
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Network-based modeling of communication pathways in the CDK2-inhibitor
complex showed that these routes are mediated by high centrality residues that
overlap and complement the R-spine and C-spine networks (Fig. 9.4). The localiza-
tion of high centrality sites and the pathway map may reflect the underlying
mechanism of allosteric inhibitor binding in CDK2 that is based on strengthening
the unproductive spine arrangement that stabilizes the inactive CDK2 conformation.
Our results suggested that structural mimicry of the R-spine residues by allosteric
inhibitors can create opportunity for design of other compounds. Based on the
importance of high centrality and high pMI residues, we suggest that further
improvement of binding for ANS-derived compounds could be achieved by combi-
nation of complementary electrostatic (Lys33) and hydrophobic interactions with
some important for allostery sites, including Leu55, Phe146, Tyr15, Phe80, Leu78,

Fig. 9.4 The dynamic network analysis and structural mapping of the thermodynamically favor-
able communication routes from the ensemble of communication pathways. (a) The schematic view
of JNK1 complex with the allosteric inhibitor (pdb id 3O2M). The inhibitor is shown in spheres; the
protein structure is in ribbons with the reduced transparency. (b) The favorable communication
paths are shown in blue spheres; the JNK structure is in green ribbons. The allosteric inhibitor is
shown in yellow spheres. (c) The schematic view of CDK2 complex with the allosteric inhibitors
(pdb id 3PXF). The inhibitors are shown in spheres; the protein structure is in ribbons with the
reduced transparency. (d) The favorable communication paths are shown in blue spheres; the CDK2
structure is in green ribbons. The allosteric inhibitor is shown in yellow spheres. The R-spine
residues (orange spheres) and C-spine residues (cyan spheres) highlight overlay and complemen-
tarity of these subnetworks with the preferential paths
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Leu148, and Leu66. Using virtual screening campaign, the first-in-class type III
allosteric ligands based on ANS scaffold was discovered [161]. These compounds
have achieved the improved potency by utilizing interactions with key networking
residues (Leu55, Phe146, Tyr15, Phe80, Leu78, Leu148, Leu66, Ile52, Leu76,
Leu78, Leu37, Val69, and Ile35). The structural features of allosteric inhibitors
binding with the different chemical scaffold were further explored using mutagen-
esis and biochemical studies [39] confirming binding to the allosteric pocket and
structural mimicry of ANS interactions with the R-spine residues. Noteworthy,
ligand-induced modulation of communication networks in JNK1 and CDK2 struc-
tures revealed presence of ligand-specific pathways that reflect the inhibitory mech-
anisms and stabilization of unique inactive kinase forms. In case of JNK1, inhibitor
binding can modulate communications by blocking efficient signaling between the
ATP and peptide binding sites (Fig. 9.4). Allosteric inhibitors of CDK2 kinase
induce several communication lines that support and stabilize the inactive spine
arrangements (Fig. 9.4).

Our previous studies of kinase interaction networks in the ABL kinase [207] and
EGFR [94] presented a mechanistic model of allosteric coupling between the
ATP-binding and substrate binding sites that may be conserved among kinases. In these
studies, we have demonstrated that the θ-like shape of the interaction network can provide
two lines of communication that connect the ATP binding site and the substrate binding
regions. One side of the network could be traced from the active site to the αD-helix
through the C-spine residues to the integral αF-helix and the substrate binding region.
Another line of communication linked the ATP binding site with the αC-helix and via the
R-spine residues to the substrate region. The θ-shaped residue network is rested on
allosteric coupling between two lines of communications that are controlled by the
regulatory DFG and HRD regions [207]. We observed that high centrality and highly
coevolving kinase residues often coincide and correspond to the conserved functional sites
mediating stability and allosteric communications in the kinase domain. These residues
included the gatekeeper residue from the ATP site, HRD motif of the catalytic loop, and
DFG motif and substrate binding motif in the C-lobe. This general topography of the
residue interaction networks in kinases and conservation of mediating centers was also
noted in a recent study of allosteric networks in SRC kinase [66], suggesting that the
conserved allosteric network may define ensemble of preexisting communication path-
ways modulated by allosteric perturbations and ligand binding. Our data indicated that
these allosteric networks and pathways can be dynamically remodeled and partly rewired
based on the adopted allosteric mechanism of kinase inhibition (Fig. 9.5).

9.7 Allosteric Kinase Activators

The repertoire of kinase activators that can be utilized for interrogating and stimu-
lation of biological pathways may be beneficial in some pathologies and could lead
to new drug candidates as well as expanded tool kit for probing mechanisms of
kinase actions. While the field of kinase inhibitors has enjoyed unprecedented

204 L. Astl et al.



advances and clinical success manifested in multiple FDA-approved drugs, the
number of studies focused on development of kinase activators is still very small.
It has been noted that mechanisms underpinning allosteric action of kinase activators
can proceed by destabilization of the inactive state, stabilization of the active state,
facilitating of the active state, and dynamic responses to phosphorylation in regula-
tory sites [43, 49, 59]. Allosteric activation through binding to the catalytic domain
of a dormant enzyme and induction of a conformational change is considered a
prevalent mechanism of allosteric activation. Although binding of allosteric modu-
lators of protein kinases can often involve significant rearrangements of the phos-
phorylated loop toward the active site and the rotation of the C-terminal domain,
recent studies have indicated that switching functions of kinase structures and
allosteric kinase activation can be achieved on different time scales by small,
medium, and large conformational changes [225, 226]. NMR studies have shown
that domain dynamics in the MAP kinase ERK2 is inherently constrained at the
hinge region, distal from the site of phosphorylation. Phosphorylation can allosteri-
cally trigger a significant shift in conformational dynamic exchanges throughout the
kinase core due to release of constraints in the hinge region [225]. The effect of

Fig. 9.5 Crystal structures of allosteric kinase activators. The bound inhibitors are shown as
spheres; the catalytic domain is shown in ribbons with a reduced transparency to highlight different
positions of inhibitors. The crystal structures of kinases are annotated and corresponding PDB ID of
the kinase complexes with allosteric inhibitors are also shown
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phosphorylation on ERK2 dynamics yields new models of kinase activation and
inhibition, exposing cryptic sites that can be recognized by novel conformation
selective inhibitors [170]. Interestingly, JNK1 phosphorylation can also increase
conformational dynamics in the regions involved in catalysis and substrate binding
that trigger kinase activation. It was shown that in the inactive form of JNK1,
nucleotide binding may select conformation in which the domains are more open
and the N-terminal domain is transiently destabilized, whereby phosphorylation
shifts equilibrium toward a catalytically competent structure [155]. In this case,
kinase activation may invoke a combination of dynamically driven allostery and
population-shift mechanisms. Crystallographic and solution studies of allosteric
inhibitor binding with PDK1 kinase have shown that small-molecule activators
can allosterically activate the enzyme, leading to the ordering of the activation
loop and controlling the assembly of an active kinase conformation [56, 190]. The
crystal structure of the PDK1 complex with PS48 activator provided further insights
into the allosteric mode of action of these modulators [86]. The allosteric effect of
this activator is manifested in reducing conformational plasticity and ordering key
functional elements of the kinase catalytic domain (the αC-helix, the glycine-rich
loop, and the activation loop) that promotes stabilization of the active PDK1
conformation. Analogous to the discovery of activators that bind to the PIF pocket
in PDK1, a small-molecule activator of PP1 to the allosteric site mimics binding of
the endogenous protein regulator, increasing the enzymatic activity relative to the
inhibited form [195]. Allosteric activation mechanisms can provide graded levels of
regulatory control in protein kinases through phosphorylation-regulated protein
dynamics in ERK2 [226] and AurA kinases [111, 118, 171]. In AurA kinase,
phosphorylation of the activation loop can trigger a graded dynamic switch to a
fully activated form and enhancement of the catalytic activity of the active form
within a dynamic conformational ensemble [171]. Interestingly, allosteric activator
of AurA kinase Tpx2 acts using a population-shift mechanism by switching from the
inactive DFG-out to the active DFG-in state, while phosphorylation can induce
activation through dynamics-driven allosteric modulation of the activation loop
causing marginal stabilization of the active conformation [111, 118].

Allosteric activation by eliciting functional conformational changes in the cata-
lytic domain through binding to the regulatory subunit underlies allosteric mecha-
nism of AMPK [3, 41], PKA [105, 197], and PKC kinases [27]. Recent studies of the
RAF regulatory mechanisms activation have revealed that RAF inhibitors can
differentially affect the enzyme transactivation through allosteric modulation of
the side-to-side dimerization [82, 83, 159]. These studies have discovered that
most of the RAF inhibitors can induce dimerization and paradoxically stimulate
RAS-dependent activation by conferring an active conformation of the BRAF kinase
domain. As a result, the inhibitory potential of the existing RAF inhibitors can be
compromised as they may paradoxically stimulate activation and increase ERK
signaling, causing drug resistance [87]. The allosteric effect of these molecules is
based on modulation of the dimerization interface and eliciting functional changes in
the second protomer without altering structural topology of the dimer.
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9.8 Allosteric Inhibitors and Activators of the ABL Kinase:
Distinguishing Two Sides of Allostery

The activation and inhibition reactions in the ABL kinase are regulated allosterically
through formation of multi-protein regulatory complexes involving the SH3 and
SH2 domains and the kinase domain (Fig. 9.6). Recent structural and biochemical
investigations of ABL kinase [81, 143, 144, 156] have reported molecular details of
the regulatory interactions by which the SH3 and SH2 domains can act cooperatively
with the catalytic core to suppress or promote kinase activation. In the
downregulated inactive state of the ABL–SH2–SH3 complex, the SH3 domain
binds to the linker that connects the SH2 domain and the kinase domain, while the

Fig. 9.6 The dynamic network analysis and structural mapping of the thermodynamically favor-
able communication routes in the ABL complexes with ABL001 inhibitor and DPH activator. (a)
The schematic view of the ABL complex with the allosteric inhibitor ABL001 (asciminib) (pdb id
5MO4). The allosteric inhibitor is shown in spheres; the protein structure is in ribbons with the
reduced transparency. The two-dimensional diagram of the allosteric inhibitor binding. Black
dashed lines indicate hydrogen bonds, salt bridges, and metal interactions. Green solid line shows
hydrophobic interactions. (b) The favorable communication paths are shown in blue spheres; the
ABL structure is in green ribbons. The allosteric inhibitor asciminib and ATP-competitive inhibitor
nilotinib are shown in atom-colored sticks. (c) The schematic view of ABL1 complex with the
allosteric activator DPH (pdb id 3PYY). The activator is shown in spheres; the protein structure is in
ribbons with the reduced transparency. (d) The favorable communication paths in the ABL complex
with DPH are shown in blue spheres
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SH2 domain interacts with the C-terminal kinase lobe acting as an autoinhibitory
“clamp” that constrains catalytic activity of the kinase [92, 143]. The N-terminal
“cap” (NCap) fragment can form direct interactions with the SH2 domain and the
SH3–SH2 linker, thus strengthening the autoinhibitory “grip” over the catalytic core
[33]. The disengagement of the SH2–SH3 domains that relieves the autoinhibitory
constraints and yields an activated form can be promoted by phosphorylation of the
SH3 tyrosine residues [9, 23, 34]. Phosphorylation and single mutations of func-
tional residues in the SH3 and the linker regions can allosterically perturb the
network of autoinhibitory interactions and induce a population shift between inac-
tive and active kinase states. Recent biochemical studies have shown that the SH2–
kinase binding can allosterically induce kinase activation, confirming a positive
regulatory role of this interaction in kinase function [75, 112]. NMR studies of
ABL complexes with inhibitors have established the existence of multiple confor-
mations in which the SH2 and SH3 domains can adopt a range of different positions
with respect to the kinase domain, providing an ensemble of preexisting conforma-
tional that can be accommodated by the kinase domain to produce states with
different activity levels. The latest “tour de force”NMR study has revealed a detailed
atomistic picture of allosteric regulation in the ABL kinase, showing how interacting
signaling modules cooperate with the kinase domain to form a multilayered regula-
tory mechanism that exploits various allosteric switches powered by binding or
phosphorylation at different sites of the regulatory assemblies [173].

Recently discovered allosteric inhibitor of the ABL kinase GNF-2 which binds to
the myristic pocket near the C-terminus of the ABL kinase domain stabilizes the
inactive conformation of the kinase [1, 233]. Using solution NMR, X-ray crystal-
lography, mutagenesis, and hydrogen exchange mass spectrometry, it was shown
that GNF-2 binding to the myristate binding site could induce changes in the
dynamics of the ATP binding site. Although GNF-2 cannot inhibit several
imatinib-resistant mutants, a combination of GNF-2 with another drug nilotinib
was effective in inhibiting many imatinib-resistant mutants [233]. GNF-5
(a GNF-2 analog with improved pharmacokinetics), when used in combination
with imatinib or nilotinib, could inhibit both wild-type and T315I mutant in bio-
chemical and cellular assays [233]. According to the proposed inhibition mechanism
of GNF-2/GNF-5 inhibitors to the myristate binding site, these compounds can
induce a bent conformation of the αI-helix in the C-terminal lobe that serves as a
switch promoting the SH2–KD interactions and stabilization of the inhibited con-
formation. NMR studies have confirmed that GNF2 and GNF5 binding to ABL can
function via a population-shift mechanism that drives the equilibrium toward the
assembled, inhibited state and decreases the activated-state population [233]. Simul-
taneous binding of GNF-5 and the ATP-competitive inhibitor dasatinib to the
Abl-T315I mutant induced conformational changes similar to those observed with
wild-type ABL in the presence of dasatinib alone [92]. Taken together, the results
provided evidence for allosteric communication between the allosteric and ATP
binding sites, revealing that dasatinib resistance can be overcome by simultaneous
binding of GNF-5 that allosterically remodels the ATP binding site.
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ABL001 (asciminib) is another allosteric ABL compound discovered through
NMR-based conformational assay and structure-based design that inhibits ABL
kinase activity by selectively binding to the myristoyl pocket and shifting equilib-
rium to the inactive kinase conformation [175, 224]. This allosteric inhibitor and
second-generation ATP-competitive inhibitors have similar cellular potencies but
distinct patterns of resistance mutations [115, 224]. While a number of drug-resistant
mutations of allosteric ABL inhibitors are clustered near the myristoyl binding
pocket, several drug-sensitive mutations in the kinase domain are located away
from the allosteric site and confer resistance to allosteric inhibition by shifting the
equilibrium and activating the kinase [115]. Asciminib is in phase I clinical trials as
monotherapy and in combination with ABL drugs imatinib, nilotinib, and dasatinib
for the treatment of patients with refractory chronic myeloid leukemia (CML).
NMR-based conformational assays have shown that the conformational state of
the αI-helix in the C-terminal lobe is a structural determinant for functional activity
of allosteric myristate inhibitors. The allosteric inhibitors that mimic binding of
myristate and induce bending of the αI-helix are functional antagonists, whereas
allosteric ligands that bind to the same pocket but do not induce this local confor-
mational change are kinase agonists [93].

A high-throughput screen has discovered another class of allosteric ABL com-
pounds that targets the ABL myristoyl pocket and yet can further enhance the rate of
kinase activation in the presence of ATP [230]. Unlike allosteric inhibitors, allosteric
agonist DPH binds in the myristate pocket, forcing αI-helix into linear extended
conformation (PDB code 3PYY) and promoting disengagement of the SH2 domain
and subsequent conformational change to the active ABL form. Hence, although
GNF-2/GNF-5, asciminib, and DPH ligands all bind to the myristate pocket and
occupy the same structural positions, DPH activates ABL kinase, while other
compounds suppress kinase activity. Quite surprisingly, recent NMR and biophys-
ical methods have found that Gleevec is capable of binding to the myristate pocket
with a sub-micromolar affinity and acts as an allosteric activator of ABL at higher
doses of administering the drug [228]. Structural and biochemical studies of allo-
steric inhibitors and activators of ABL kinase have indicated that local structural
environment near the myristate pocket can serve as a sensor of ligand binding,
triggering either stabilization of the inactive state or large conformational shift and
activation. Furthermore, synergistic actions of allosteric and ATP competitive inhib-
itors have provided strong evidence that binding can perturb dynamics at distal
regions and elicit ligand-specific communication between binding sites. It remains
unclear how this long-range effect is transmitted from the myristate to the ATP
pocket.

We argued that reconstruction of residue interaction networks and ensembles of
communication pathways in ABL complexes with inhibitors and activators may help
to address these questions and detail allosteric signatures of two classes of allosteric
modulators. In the presence of ABL001 inhibitor, we observed the emergence of
several dominant allosteric communication pathways that are mediated by high
centrality residues in the kinase domain, SH2 domain, and the SH2–SH3 linker
(Fig. 9.6). The spatial organization of these pathways reflected a fairly large
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allosteric network that favors distinct “narrow tubes” of paths connecting the
allosteric site and ATP binding site (Fig. 9.6). The topography of dominant pathways
in the ensemble is dictated by ligand-induced inhibitory conformation that locks the
interactions between the SH2 and kinase domains. One of the dominant pathway
tubes proceeds directly from the allosteric site navigating through several function-
ally important positions A337, A344, P465, V468, and F11 (corresponding to A356,
A363, P484, V487, and F330, respectively, in the residue numbering of pdb id
5MO4). The existence of this direct path may exploit network efficiency in propa-
gating this signal through cooperative interactions between these groups of rigid
residues (Fig. 9.6). The emergence of this path in the statistical ensemble of network
communications is supported by biochemical experiments showing that A344P,
A337V, P465S, V468F, and Y469H substitutions near the allosteric site may
cause drug resistance of ABL001 by relieving autoinhibition and promoting popu-
lation shift to the activating form [115, 224]. The determined network of pathways
specified a potential allosteric crosstalk between sites which goes through a set of
functional residues located close to the αG- and αI-helices of the C-lobe, in a region
that can be targeted by allosteric kinase inhibitors. Another dominant pathway in the
ensemble is formed through couplings with the SH2 and SH2–SH3 linker residues
(Fig. 9.6). Among key centrality residues serving as mediating sites in this path are
SH2 residues (V151, A155, Y158) and linker residues (T243, P242, Y245, and
P249). The importance of these centers is supported by NMR and biochemical
experiments, demonstrating that mutations of Y158 in the SH2–KD interface can
compromise the downregulated state and cause an increase in kinase activity
[81]. Similarly, phosphorylation of Y245 in the linker can also disrupt the SH3–
linker interactions and promote ABL kinase activity [34]. NMR data have revealed
that the allosteric mutants in the linker region (P242E and P249E) can shift the
population of the inhibited and activated state, giving rise to a substantially increased
activation [173]. These allosteric drug-resistant mutants were shown to promote the
activated state of ABL and compromise the inhibitory function of imatinib. Notably,
preferential communication paths in the ensemble can weaken allosteric coupling
between the ATP binding site and substrate binding site which is the intrinsic
allosteric signature of the catalytic domain [66, 94, 207]. In contrast, in the ABL
complex with DPH activator, we found a wider ensemble of communication path-
ways connecting the ATP binding sites and substrate binding site. Interestingly,
through disengagement of the inhibitory lock with the SH2 domain, allosteric
activator DPH switches the preferential pathways and leverages the C-spine network
(V256, A269, L323, C369, L370, V317, L438, and I432) for efficient communica-
tion with the ATP site. In addition, DPH binding promotes a wide path connecting
the ATP and substrate binding site, primarily by engaging the R-spine in ABL. This
subnetwork consists of M290 from the C-terminal end of the αC-helix, L301 from
the β4-strand, F382 of the DFG motif in the beginning of the A-loop, H361 of the
HRD motif in the catalytic loop, and D421 of the αF-helix. Collectively, the broad
ensemble of preferential pathways interlinks the allosteric binding site with the ATP
and substrate binding pockets, ensuring robustness of the activating signal, which
may be an important network signature of the active form of ABL kinase (Fig. 9.6).
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These results indicated that allosteric modulators may selectively activate various
communication routes from the ensemble that is intrinsically determined by the
protein topology. The long-range communications between the allosteric and ATP
binding sites in the inhibitory state can critically depend on structural integrity of
these high centrality mediating sites. According to our findings, rapid communica-
tion in the ABL complex with allosteric inhibitor may come at the expense of high
dependency and sensitivity on a relatively small number of coordinating modes,
making allosteric drug binding vulnerable to targeted mutations of mediating cen-
ters. Exploiting and targeting this communication network may thus offer a way for
modulating the kinase activity. In network terms, the emergence of several alterna-
tive pathways may provide better balance between the efficiency and resilience of
the interaction networks. It is noteworthy that resilience introduces a certain degree
of redundancy into the system, which may lead to a decreased efficiency but ensures
stronger protection from random perturbations and targeted attacks.

9.9 Concluding Remarks

The recent years have witnessed significant advances in our understanding of the
allosteric mechanisms and interactions in complex protein systems. Viewing pro-
teins as dynamic regulatory machines that constantly fluctuate between different
conformations in response to external perturbations and effector binding may be the
key to understanding complexity and diversity of allosteric regulation. Although we
have achieved a basic understanding of a variety of allosteric scenarios and have
gained important insights into the function of allosteric proteins and modulators, the
quantitate characterization of these highly dynamic and often elusive processes
remains a great challenge. Fifty years after the KNF and MWC models were
proposed, the processes involved in allosteric regulation are still not completely
understood, and more work is still required before a consensus toward a general
unified theory of allostery is reached. The lessons from our analysis suggest that
allosteric regulation mechanisms can proceed via a subtle and nontrivial combina-
tion of the three classical models of allostery: conformational selection, induced-fit,
and dynamic allostery. Although allostery takes place at the protein level, its effect
has implications at the cellular level, as allostery enables to communicate environ-
mental signals and alter specific cellular functions. Understanding of system-based
relationships between protein robustness, disease, and allosteric drug binding at the
structural level may prove to be useful in the development of theoretical and
experimental approaches bridging structure-based network analysis of protein tar-
gets with modeling of protein interaction networks and pathways.

The emerging realization that allosteric inhibitors and activators can exploit distinct
regulatory mechanisms and subtly modulate protein activities could open up new venues
and opportunities for probing signaling processes, engineering allostery using synthetic
biology principles, and development of drug combinations with improved therapeutic
indices and broad range of activities. The next breakthrough in the discovery of allosteric
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drugs may require integration of network science, systems biology approaches, and
experiments to bridge microscopic analysis of genes with macroscopic understanding of
cellular networks and signaling pathways. Data-driven and system-based modeling in
combination with powerful machine learning and artificial intelligence tools could poten-
tially provide a new robust platform to exploit advances in medicinal chemistry, chemical
biology, and structural biology for the development of novel drugs and precisionmedicine
therapies.
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Chapter 10
GPCR Allosteric Modulator Discovery

Yiran Wu, Jiahui Tong, Kang Ding, Qingtong Zhou, and Suwen Zhao

Abstract G protein-coupled receptors (GPCRs) influence virtually every aspect of
human physiology; about one-third of all marketed drugs target members of this
family. GPCR allosteric ligands hold the promise of improved subtype selectivity,
spatiotemporal sensitivity, and possible biased property over typical orthosteric
ligands. However, only a small number of GPCR allosteric ligands have been
approved as drugs or in clinical trials since the discovery process is very challenging.
The rapid development of GPCR structural biology leads to the discovery of several
allosteric sites and sheds light on understanding the mechanism of GPCR allosteric
ligands, which is critical for discovering novel therapeutics. This book chapter
summarized different GPCR allosteric modulating mechanisms and discussed vali-
dated mechanisms based on allosteric modulator-GPCR complex structures.

Keywords GPCR · allosteric modulator · drug discovery · membrane protein
structures

10.1 GPCRs Are Allosteric Signaling Systems

G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain
receptors, represent the largest superfamily of proteins that regulate a wide range of
fundamental physiological processes. They are one of the most important and
successful classes of drug targets, and about one-third of marketed drugs function
by targeting GPCRs [16, 17, 52].
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All GPCRs present a common arrangement of the transmembrane domain
(TMD), which consists of seven-transmembrane helices (TM1–7) linked by three
extracellular loops (ECL1–3) and three intracellular loops (ICL1–3). TM3 is the
most conserved helix that is surrounded by other helices in the 3D space, and it plays
an axis role in GPCR activation. Upon agonist binding, residues in the cytoplasmic
end of TM3 switch contact from residues in TM6 to TM7, the loosen contacts
between TM3 and TM6 leads to the outward movement of the cytoplasmic end of
TM6 (which is the hallmark of GPCR activation), and the cytoplasmic end of TM7
moves inward due to the engagement of TM3–TM7 residues.

GPCRs are typical allosteric signal transduction systems [32]. They receive
various extracellular stimuli including peptides, neurotransmitters, odorants, lipids,
and photons in the traditional ligand binding site and transduce the signal across the
cell membrane through the conformational rearrangement of the receptors. The
intracellular signaling pathway is subsequently triggered by recruiting effectors
such as various heterotrimeric G proteins, β-arrestin, and GPCR kinases (GRKs)
to the G protein binding pocket.

GPCRs are highly flexible, and they have many conformational states in the
membrane, which comprise the free energy landscape of each receptor
[14, 34]. Ligand(s) binding at any pocket(s) could perturb the free energy landscape
and reshape the surface of intracellular binding pocket and thus affect the down-
stream signaling [35]. If the binding pocket of a ligand is different from the
endogenous ligand binding site, the ligand is considered an allosteric modulator.
Through many years’ research, it has been more and more believed that one ligand
leads to a unique free energy landscape that indicates a new biology. For the cases in
which one orthosteric ligand and one allosteric ligand bound to the same GPCR, it
can be expected that different ligands binding to same GPCR will lead to new free
energy landscapes and there is possibility for stabilization of new functionally
relevant conformational states and activation of new downstream cascades [14, 60].

The GPCR allosteric modulation is complex, where an allosteric ligand enhances
an agonist-mediated receptor response and is, therefore, defined positive allosteric
modulator (PAM). On the other hand, an allosteric ligand that attenuates an agonist-
mediated receptor response is known as negative allosteric modulator (NAM).
Despite the two classifications, an allosteric ligand is named as a neutral allosteric
modulator, or neutral allosteric ligand (NAL), if it does not affect neither receptor
nor orthosteric ligand activity. Moreover, a subclass of PAMs, called ago-PAM, can
behave as agonist in the absence of orthosteric ligand [15, 40]. In an allosteric system
like GPCRs, the ligands binding in spatially distinct sites can affect the affinity and
efficacy of the other in a reciprocal manner. As shown in Fig. 10.1, the combination
of affinity allosteric modulation and efficacy allosteric modulation is quite elaborate.
For example, a PAM can potentiate the downstream signaling through four different
ways: (1) promoting orthosteric agonist binding affinity but not directly affecting the
signaling, (2) enhancing signaling directly without affecting the orthosteric agonist
binding, (3) increasing the orthosteric ligand binding affinity and increasing the
signaling by itself at the same time, and (4) decreasing the orthosteric ligand binding
affinity but increasing the signaling by itself. A NAM can use similar combinations
to diminish downstream signaling.
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10.2 Benefits of GPCR Allosteric Modulators

Due to their vital biological functions, GPCRs have been intensively researched
during the past several decades. Numerous ligands, either endogenous or exogenous,
natural or synthetic, small molecular or peptide, have been discovered. Some of
these discoveries led to new achievements in medical field. A recent review [16]
shows that 475 drugs (~34% of all drugs approved by the US Food and Drug
Administration (FDA)) target at 108 unique GPCRs.

Most of these ligands bind to the traditional ligand-binding pocket which is
formed extracellularly by the seven helix bundle. This pocket is referred as
orthosteric pocket in most cases of class A and class B GPCRs. For class C and
class F GPCRs, the endogenous ligands bind at their extracellular domain (ECD).
Thus, many “allosteric” ligands for class C and class F interact with GPCRs in the
traditional ligand binding pocket. Moreover, they present similar exposed versus
buried surface area ratio with orthosteric ligands, while most class A and class B

Fig. 10.1 Allosteric modulation mechanism of GPCRs. Orthosteric agonists bind to GPCRs and
trigger downstream signaling (upper left). Allosteric ligands that have no effect on the binding
affinity and signaling are neutral allosteric modulators (lower left). Positive allosteric modulators
bind to GPCRs and enhance the signaling through either affinity allosteric modulation or efficacy
allosteric modulation (top row). Negative allosteric modulators bind to GPCRs and decrease the
signaling through either affinity allosteric modulation or efficacy allosteric modulation (bottom
row)
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allosteric ligands show an elevated value for this ratio (Fig. 10.2). This book chapter
is going to focus on discussing allosteric ligands of class A and class B receptors,
with brief introduction of those involved in class C and class F GPCRs interaction.

Despite the remarkable success achieved in GPCR drug discovery, one of the
major challenges remains the ligand selectivity. Indeed, the orthosteric binding sites
within a subfamily show high sequence conservation, which allows the binding of
the same/similar endogenous ligand(s). For this reason, an advantage in the use of
allosteric modulators is a better receptor subtype selectivity, since the allosteric sites
within a subfamily have theoretically less evolutionary pressure and are thus less
conserved. Moreover, allosteric modulators may possess different subtype
cooperativities due to the distinct allosteric pockets and pathways. Another advan-
tage is that they maintain the natural spatiotemporal signaling rhythms of the
endogenous orthosteric ligand when cofunctioning [15]. Besides, the cooperation
between allosteric and orthosteric ligands may stabilize different conformation states
of the receptor, which may lead to different function and result in biased signaling.
Finally, the weak cooperativity of allosteric ligands leads to “effect ceiling” which
can improve the safety of target in overdose situations [11].

Fig. 10.2 Ratio of exposed/buried ligand surface area versus total ligand surface area buried
by the receptor. Each ligand in the co-crystallized GPCR structure is a dot in the figure, with
orthosteric ligand shown in gray and allosteric ligands shown in red, purple, green, and blue for
class A, B, C, and F GPCRs
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10.3 Problems and Methods in Allosteric Modulator
Discovery

The detection of allosteric behavior of a modulator from pharmacological experi-
ments is still a challenging stage of the discovery procedure. Indeed, a PAM is not
easily recognizable compared to an agonist, especially in high-throughput assay. The
signal window of HTS assay decreases in the presence of the orthosteric ligand and
increases the interference from noise. Meanwhile, the magnitude of the signal
produced by PAMs is far less than that produced by a full agonist, in which case
weaker PAMs may not show significant effect [3]. A NAM can be recognized if the
signal decreases while orthosteric agonist’s potency is unchanged. Otherwise, its
behavior does not significantly differ from an orthosteric antagonist. Indeed, the
pharmacological behavior of an allosteric modulator can be even more complicated.
For example, ORG 27569, an allosteric modulator of cannabinoid receptor CB1,
makes orthosteric agonist CP55,940 acting like an inverse agonist in cell signaling
assay, but it actually increases the binding of CP55,940 [49].

Currently, triple-read assays have been developed as an effective HTS approach
to detect allosteric modulators [26, 45, 51]. The first read tests ligand agonist
activity, whereas the second read tests PAMs activity, and the final read measures
the inhibition ability of tested compounds to an EC80 orthosteric agonist [3].

For many GPCRs, the binding site(s) determination of their allosteric modulator
(s) is notoriously difficult. The design of point mutation is generally the most
common method used to identify specific residues able to interact with the modula-
tors. However, the consequences of mutations are often unpredictable, and false
positives are often observed; therefore, further analysis should be included to
interpret their impact on modulators. As an example, mutations of residues in
different positions of the protein 3D structure have been reported to abolish the
effect of ORG 27569 on cannabinoid receptor CB1 [53, 55]. A more reliable strategy
would be the introduction of a covalent bond between the modulator and the
receptor. For instance, a similar strategy has been used in PAMs of glucagon-like
peptide 1 receptor [5, 46]. But modification of the modulator is limited by its
chemical structure, and the rational design process is not always straightforward
and could be very time consuming. Excitingly, solving the complex structure has
been the most successful way to identify binding site and pose of allosteric modu-
lators in GPCRs since 2013 [33]. So far, all the complex structures were obtained by
crystallographic methods. Recently the fast developing cryo-electron microscopy
demonstrated to be a powerful method to obtain complex structures at the atomic
level. The study of allosteric modulators also helps drug discovery against GPCRs.
Indeed, allosteric modulators of GPCRs in a number of classes (A, B1, C, and F)
have been approved as drugs or tested in clinical trials in multiple cases.

With the development of structural biology, many computational methods based
on structures spring up in allosteric site identification. For example, Allosite, a
method for predicting allosteric sites developed by Zhang Jian et al., uses elegant
algorithms such as pocket-based analysis and support vector machine (SVM)

10 GPCR Allosteric Modulator Discovery 229



classifier to predict the location of allosteric sites in proteins [23]. FTMAP, another
computational method developed by Sandor Vajda et al., globally samples the
surface of a target protein using small organic molecules as probes to discover
favorable binding positions [44]. Furthermore, Miao Y et al. combined FTMAP
and accelerated molecular dynamics (aMD) simulation, successfully mapping allo-
steric sites in activation-associated conformers of the M2 muscarinic receptor [41].

Visual screening also has successful examples in finding allosteric modulators in
known allosteric sites. Miao Y et al. performed long-time scale aMD simulation on
M2 muscarinic acetylcholine receptor to construct structural ensembles. During
virtual screening, they combined induced-fit docking and ensemble docking. Even-
tually, they successfully identified four new NAMs and one PAM for M2
mAChR [42].

Given the fact that noteworthy reviews about GPCRs allosteric regulation are
already available in literature, this book chapter aims to summarize different GPCR
allosteric modulating mechanisms and discuss validated mechanisms based on
allosteric modulator-GPCR complex structures.

10.4 Allosteric Modulating Issues for GPCRs in Different
Orthosteric Binding Mechanisms

Allosteric modulating issues are distinct issues when the orthosteric sites on GPCRs
are at different positions.

10.4.1 The Classic Orthosteric Binding Mechanism

The most common mechanism indicates that the orthosteric site locates among the
transmembrane helices close to the extracellular end. This happens in most class A
(the largest class) GPCRs. Although class B1 GPCR has an extracellular domain at
the N-terminal (called hormone receptor domain) critical for endogenous peptide
ligand binding, it also shares orthosteric site mechanism, due to the fact that the
peptide ligand binding site extends into the pocket among the transmembrane
helices.

For receptors following this mechanism, the orthosteric site must be elsewhere
than the pocket among the transmembrane helices close to the extracellular end.
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10.4.2 Special Orthosteric Binding Mechanism:
Extracellular Domain

Several groups of GPCRs bind to endogenous ligands only with extracellular
domains. (1) Class C GPCR has two extracellular domains, a Venus flytrap domain
and nine-cysteine domain, and it uses the former to recognize endogenous small-
molecule ligand. (2) Class F receptor has an N-terminal Fz domain (or called
cysteine-rich domain) responsible for binding to WNT protein binding in frizzled
receptors (PDB ID: 4F0A [27]) or for the interaction with steroids in smoothened
receptor (both functional [65] and structural evidences, PDB ID: 5L7D [6]).
(3) There are eight evolutionarily related receptors in class A GPCRs, each having
a leucine-rich repeat-containing domain. All the five members with known func-
tions, including three protein receptors and two peptide receptors, have been vali-
dated to bind to the endogenous ligands only with the extracellular leucine-rich
repeats-containing domains. The other three members (leucine-rich repeat-
containing G-protein coupled receptors 4, 5, and 6) remain orphan (for their ligands
inducing G protein coupling/pathway are not found). Nevertheless, they have been
reported to function in WNT signaling pathway by binding to R-spondin solely with
their extracellular domains.

For GPCRs with this extracellular domain binding mechanism, the site among the
transmembrane helices, proximal to the extracellular end, is possibly involved in
allosteric modulating. During long evolution, the diverse ligand types of GPCRs
have proved this site to be ideal for ligand binding. Therefore, discovering allosteric
modulators at this site should be relatively easy. This is in accordance with the
published statistic data of allosteric modulators: class C GPCRs contribute to more
than half of the modulators; smoothened and the three leucine-rich repeats-
containing protein receptors (follicle-stimulating hormone receptor, lutropin-
choriogonadotropic hormone receptor, thyrotropin receptor, and glycoprotein hor-
mone receptor) in class A GPCRs have multiple allosteric modulators, as reported in
Fig. 10.3.

10.4.3 Special Orthosteric Mechanism: Proton Sensing

Four receptors (GPR4, GPR65, GPR68, and GPR132) in class A GPCRs sense pH
and are involved in cancer cell regulation [30]. The recognition of acidic pH is
achieved by protonation of histidine residues in the extracellular region [43, 59];
thus, the pocket among transmembrane helices is not the orthosteric site and is
potentially involved in allosteric modulating. Allosteric modulators of GPR4,
GPR65, and GPR68 have been reported [24, 59].
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10.5 Many GPCR Allosteric Modulators Have Been
Reported

10.5.1 Basic Statistics of Reported GPCR Allosteric
Modulators in The Allosteric Database

The Allosteric Database 16-18 (ASD, http://mdl.shsmu.edu.cn/ASD/) [22] records
30712 allosteric modulating on 92 different GPCRs. Most modulators are organic
compounds (29694), and the rest are polypeptides (409) and ions (7). The data was
manually extracted from 729 citations, including 545 journal articles and 184 patents.
However, patents contribute more than half of the modulating data (18472/30712,
60%).

Among all 30712 modulating records, 18861 are recorded as “activator,” 6010 as
“inhibitor,” and 5841 as “regulator” for the impact on activity is not clear.

10.5.2 Target Analysis of Reported Allosteric Modulating

For targets that have more than 50 allosteric modulators reported in ASD, the
distribution of allosteric modulators is shown in Fig. 10.3 and representative allo-
steric ligands for top 27 GPCRs with most allosteric ligands are shown in Fig. 10.4.
The number of modulators for each GPCR is largely different: each of the top three
receptors (metabotropic glutamate receptor 5, muscarinic acetylcholine receptor M1,

Fig. 10.3 Allosteric ligands of GPCRs in Allosteric Database (ASD). Green bars indicate the
amount of allosteric modulators of GPCRs in ASD; red bars indicate the clusters of GPCRs when all
ligands are clustered with a similarity cutoff of 0.60
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and metabotropic glutamate receptor 2) has more than 5000 modulators, and they
contribute to 59% of all the modulating records in total; the top ten receptors have
over 500 modulators in average and contribute to 83% of all the modulating records.
This high inequality of the number of reported modulators for different GPCR is

Fig. 10.4 Representative allosteric ligands for top 27 GPCRs with most allosteric ligands
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caused by three major reasons: (1) some GPCR members can easily target in
allosteric sites; (2) some GPCR members are highly focused in research, and thus
their allosteric modulators are more likely to be discovered; (3) after an allosteric

Fig. 10.4 (continued)
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modulator is identified, derivatives from this parent compound would be soon
developed and tested on the same target.

Among the 92 GPCR targets registered in ASD, the majority (71) belong to the
class A receptors (the rhodopsin family), while class C (the metabotropic glutamate
family, 11) and class B1 (the secretin family, 6) have fewer members. However, the
class C receptors contribute to more than half of the modulating molecules (16858/
30712, 55%). Binding to endogenous ligand using the extracellular domain, and
keeping the pocket among transmembrane helices, an allosteric site easy to target is
the main reason for having a considerable amount of allosteric modulators from class
C GPCRs reported in literature. Besides, these receptors show a role related to the
specific functions in the nervous system, a fact that makes them widely studied. In
class A GPCRs, the most notable group is the muscarinic acetylcholine receptors
(CHRMs) 1–5: all five members are on the list, and CHRM1 has the largest number
of modulators (5200) in class A receptors.

10.6 GPCR Allosteric Binding Sites Identified
by Crystallography

The breakthrough of GPCR structural biology in the past decade has resulted ~300
structure for more than 50 receptors. Although most of these structures are in
complex with orthosteric ligands, more and more allosteric-receptor complexes
become available in PDB. In total, the structures of 32 unique allosteric ligand-
receptors complexes have been solved (Table. 10.1). Detailed analyses for binding
sites of these structures are in the following.

10.6.1 Lipidic Interface

As shown by many structures, GPCRs can bind allosteric ligands using the extra-
helical region, between the interface of GPCR and membrane lipids. So far, four
different binding sites at GPCR lipidic interface have been identified by crystal
structures, and they are referred as AS3, AS4, AS5, and AS6 (Table. 10.1, Fig. 10.5
and 10.6). Although the predominant interactions are hydrophobic, at least one
hydrogen bond can be identified in each case. Therefore, hydrogen bond donor/
acceptor atoms exposed at the lipidic interface are likely to be hot spots for such
allosteric ligand binding. However, these binding sites are usually quite shallow
compared to typical sites in soluble proteins and the orthosteric binding pockets in
GPCRs, which make allosteric drug discovery targeting pockets in protein-lipid
interface extremely difficult. Even after the validation of the binding site, the
discovery of a ligand using molecular docking remains challenging. This is because
many scoring functions were developed for pockets exposed to water environment,
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so the empirical and/or statistical terms are not suitable for pockets embedded in
membrane.

By analyzing these cases, it is possible to obtain some valuable and comprehen-
sive understanding of the mechanisms of these modulators.

Three out of four lipidic interface allosteric sites are for NAM binding (AS3, AS4,
and AS6 in Fig. 10.6), whereas the other one is for both PAM and NAM binding
(AS5 in Fig. 10.6). Interestingly, all the NAMs were not identified as allosteric
modulators but as antagonists/inverse agonists, until their binding sites were deter-
mined by crystallography (except for AZ3451 in protease-activated receptor 2, firstly

Table 10.1 Crystal structures of GPCRs in complex with allosteric ligands

Class GPCR Ligand name Site Ligand function PDB ID

Class A CCR2 CCR2-RA-[R] AS2 NAM 5T1A [70]

CCR5 Maraviroc AS1 NAM 4MBS [57]

Compound 21 AS1 NAM 6AKX [48]

Compound 34 AS1 NAM 6AKY [48]

CCR9 Vercirnon AS2 NAM 5LWE [47]

ACM2 LY2119620 AS1 PAM 4MQT [33]

P2RY1 BPTU AS3 NAM 4XNV [67]

ADRB2 Cmpd-15 AS2 NAM 5X7D [36]

C5AR1 NDT9513727 AS5 NAM 6C1Q [37], 5O9H [50]

Avacopan AS5 NAM 6C1R [37]

PAR2 AZ3451 AS4 NAM 5NDZ [8]

FFAR1 Ap8 AS5 PAM 5TZY [38]

Compound 1 AS5 PAM 5KW2 [18]

Class B CRFR1 CP-376395 AS7 NAM 4K5Y [19], 4Z9G [13]

GCGR MK-0893 AS6 NAM 5EE7 [28]

NNC0640 AS6 NAM 5XF1,5XEZ [68]

GLP1R PF-06372222 AS6 NAM 5VEW [54]

NNC0640 AS6 NAM 5VEX [54]

Class C GRM1 FITM AS8 NAM 4OR2 [64]

GRM5 Mavoglurant AS8 NAM 4OO9 [12]

Compound 14 AS8 NAM 5CGC [9]

HTL14242 AS8 NAM 5CGD [9]

Fenobam AS8 NAM 6FFH [10]

MMPEP AS8 NAM 6FFI [10]

Class F SMO LY2940680 AS8 NAM 4JKV [61]

SANT-1 AS8 NAM 4N4W [61]

Cyclopamine AS8 NAM 4O9R [63]

SAG1.5 AS8 PAM 4QIN [61]

ANTA XV AS8 NAM 4QIM [61]

Vismodegib AS8 NAM 5L7I [6]

TC114 AS8 NAM 5V56, 5V57 [69]

xSMO Cyclopamine AS8 NAM 6D32 [25]
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Fig. 10.5 Binding sites and interactions with receptors for all co-crystallized allosteric ligands
and bitopic ligands of GPCR. For each ligand, left figure shows binding pocket. Upper left of left
figure shows PDB ID and lower right shows ligand name. Right figure shows interactions between
receptor and ligand. Blue dotted lines indicate hydrogen bonds. GPCRs in different classes are
shown in different color: class A in black, class B in purple, class C in green, and class F in blue.
Receptors of bitopic ligands are shown in gray

10 GPCR Allosteric Modulator Discovery 237



Fig. 10.5 (continued)
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Fig. 10.5 (continued)
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reported with the crystal structure [8]). Among these NAMs, NDT9513727 in C5a
anaphylatoxin chemotactic receptor 1 [50] was even tested in radioligand binding
experiments in previous work and was found to have the same effect as competitor to
the endogenous ligand [4]. This phenomenon firmly reveals that the determination of
NAMs by pharmacological experiments is not trivial.

The positions of the allosteric sites are quite dispersed: two in four sites stay close
to the extracellular end and the other two close to the cytoplasmic end. Although all
transmembrane helices are likely involved in allosteric modulator binding, the
distribution of allosteric sites around the receptor is unequal: from the side view,
it’s possible to conclude that AS3–5 (Fig. 10.6a) is mainly concentrated on one side
(TM1-2-3-4-5), while only AS6 (Fig. 10.6b) stands at the other side of the structure
(TM5-6-7-1). There are two possible reasons for this inequality: (1) TM2–4 gener-
ally remain stable during activation, while TM5–7 are much more flexible; thus, it is
easier for modulators to bind to TM2–4. Another reason lays in the fact that
modulators, interacting with TM2–4, stabilize the helices and are easier to be
crystalized. (2) Only a few GPCR allosteric sites have been found, and these new
sites interacting with TM6–7 may remain unrevealed.

Fig. 10.5 (continued)
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Unlike AS3–5 that were identified from receptors in the rhodopsin family, AS6
keeps unique for its specific distribution in secretin family (Fig. 10.6b). Two
ago-PAMs of glucagon-like peptide 1 receptor, compound 2 and BTEP, covalently
link to Cys347 close to this site [5, 46], the ago-PAM effect of which was investi-
gated by performing MD simulations. PF-06372222 (NAM) stabilizes the ionic
interactions among TM2-3-6-7 and blocking TM6–7 separation which is required
for receptor activation. Compound 2 (PAM) induces a conformational change in the
intracellular regions of TM5 and 6 that results in disruption of the intracellular ionic
lock, leading to a cavity at a similar location for G protein binding in class A
GPCRs [54].

AS5 is an interesting site since both NAM and PAM can bind in this pocket, even
though the interacting segments are different. AS5 resides at a position TM4-3-5
packing more tightly in active state than in inactive state; therefore, horizontally
extending modulators such as NDT9513727 and avacopan of C5a anaphylatoxin

Fig. 10.6 Summary of allosteric sites for all co-crystallized allosteric ligands of GPCRs.
Orthosteric ligands are shown in gray. Allosteric site (AS) of each class are numbered and shown
in different color, respectively: class A in orange, class B in purple, class C in green, and class F
in blue
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chemotactic receptor 1 (Table. 10.1, Fig. 10.5 and 10.6b) stabilizing the loosely
packing conformation are NAMs, while vertically extending modulators such as
AP8 and compound 1 in FFAR1 (Table. 10.1, Fig. 10.5 and 10.6b) stabilizing the
tightly packing conformation are PAMs. In addition, the ternary complex of FFAR1/
MK-8666/AP8 [38] provides a very special case of a receptor simultaneously
binding to two allosteric modulators.

BPTU in AS3 (Fig. 10.5 and 10.6b) of P2Y purinoceptor 1 (P2RY1) [67] is
special since it forms two hydrogen bonds to the backbone carbonyl of Leu1022.55
(Fig. 10.5). The unpaired backbone carbonyl locates in the bulge on helix II, which is
caused by Pro1052.58. This case suggests a possible universal mechanism for lipidic
allosteric modulators: using bulges on transmembrane helices as an anchor for
binding. Pro2.58 is conserved in 74% (nonolfactory, the same for the below in this
section) class A GPCRs. There are only three other proline residues conserved in
more than 50% class A GPCRs, 4.60, 6.50, and 7.50, but none of them faces to the
lipidic interface. Therefore, Pro2.58 and other nonconserved proline residues that face
the lipidic interface are possible anchors for allosteric modulators.

10.6.2 Extracellular Interface

The allosteric modulator binding close to the orthosteric ligand, at the extracellular
vestibule of a GPCR, is a straightforward mechanism. LY2119620 in AS1
(Fig. 10.6a) of muscarinic acetylcholine receptor 2 (CHRM2) [33] is the only
example for this case. Many analogs of LY2119620 reported as PAMs to CHRM
1, 2, and 4 have proved these sites possessing potential universal distribution in
muscarinic acetylcholine receptors.

The muscarinic acetylcholine receptors are highly concentrated in allosteric
modulator study. The endogenous ligand, acetylcholine, is a tiny quaternary ammo-
nium and small in size. The dominant interaction is cation-π between the quaternary
ammonium cation of acetylcholine and conserved aromatic residues in the receptors.
The binding site of acetylcholine has three aromatic residues as ceiling: Tyr3.33,
Tyr6.51, and Tyr7.39. The three tyrosine residues isolate the orthosteric binding site
from the allosteric pocket above it, which locates in the extracellular vestibule and
exposes to water. It is highly possible that this site is responsible for the thousands of
reported allosteric modulators (both NAMs and PAMs) for muscarinic acetylcholine
receptors.

Most GPCRs do not have separate pockets above the orthosteric site, but alloste-
ric binding is still possible. Unidentified density other than orthosteric ligand at this
position was observed in crystal structure of orexin receptor type 2 (PDB ID: 5WQC
[56]) and assigned as polyethylene glycol, just like such unidentified density in
CHRM4 without allosteric modulator (PDB ID: 5DSG [58]).
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10.6.3 Cytoplasmic Interface

GPCRs use their cytoplasmic interface to bind to downstream partners including G
proteins and arrestins. This interface can also be targeted by allosteric modulators
and is referred as AS2, which have been proved by three cases (Table. 10.1, Fig. 10.5
and Fig. 10.6a). In the three cases, the small-molecule modulators are all NAMs
stabilizing inactive states of the receptors and blocking G protein recruitment. The
NAMs all interact with TM2, 7, and helix 8. They show π-π interaction (parallel or
T-shaped) with Y7.53, and this interaction blocks the NP7.50xxY motif in TM7 to
move which is necessary for activation.

As this cytoplasmic NAM mechanism is found in receptors with distant evolu-
tionarily relationship (aminergic and chemokine receptors), it is possible that the
mechanism is universal to class A GPCRs. However, this strategy has not yet been
considered in drug design due to lower selectivity for these sites among different
GPCRs.

High-affinity nanobodies were also developed to bind in this pocket, and they
showed ability to stabilize multiple states of the receptors (Fig. 10.7), including
active state (PDB ID: 3P0G), inactive state (PDB ID: 5JQH), and partial active state
(PDB ID: 6MXT).

10.6.4 Classic Orthosteric Site

For a GPCR using other positions to recognize the endogenous ligand, the traditional
binding site of GPCRs (referred as AS8 in Fig. 10.6) is potentially a good pocket for
allosteric modulators. As stated in Sects. 10.2 and 10.3, this allosteric modulating
mechanism has been found in class C receptors, smoothened receptor, leucine-rich
repeat-containing protein receptors, and GPR65/68, with class C and smoothened
receptors having available crystal structures.

For class C GPCRs, complex structures of metabotropic glutamate receptor
1 (GRM1) with one allosteric modulator and metabotropic glutamate receptor
5 (GRM5) with five different modulators have been obtained. All the modulators
are NAMs. All the NAMs of GRM5 are highly overlapped and form similar
interactions to TM2, 3, 5, 6, and 7. The NAM of GRM1, FITM (Table. 10.1),
binds at a shallower position and interacts with ECL2.

For smoothened receptor, seven TM modulators (7 NAMs and 1 PAM) are
observed by crystal structures (Table. 10.1). The depth of the NAMs largely varies,
with cyclopamine and SANT-1 representing too extreme cases. The position of the
only PAM, SAG1.5 (Table. 10.1), occupies about the same depth as that of the
shallowest NAMs. However, the structures fail to display active/inactive conforma-
tional transition. Vismodegib (a crystalized NAM) is an FDA-approved drug to treat
basal cell carcinoma. The frizzled receptors share the same class with smoothened
receptor and some of them have been proved to be involved in cancer onset.
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Unfortunately, according to the recent discovery provided by their crystal structure
of the first frizzled receptor TMD domain, it has been found that the hypothetical
binding pocket is very narrow and hard to accommodate small molecules (PDB ID:
6BD4 [66]).

Fig. 10.7 Nanobody-stabilized structures of GPCR. For each structure, upper left shows the
PDB ID, and lower right shows name of nanobody. The same receptors and nanobody are in the
same color
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10.6.5 Na+ and Na+ Binding Pocket

In addition to the allosteric sites occupied by G proteins and other GPCR effectors,
Na+ binding site formed by D2.50, S3.39, N7.45, and N7.49 is highly conserved in
class A GPCRs. The pocket has been reported in dozens of high-resolution crystal
structures including adenosine A2a (PDB ID: 4EIY [62]) and protease-activated
receptor 1 (PDB ID: 3VW7 [7]). Na+ stabilizes the inactive state of GPCRs, and
agonist initiates GPCR activation by triggering the collapse of Na+ binding pocket
[31] and the inward movement of TM7 toward TM3. The possibility to design
bitopic ligands which occupy both Na+ pocket and traditional orthosteric binding
pocket via connection of two pharmacophores is possible due to the proximity of the
two pockets. The pharmacophores of orthosteric sites in many GPCRs are quite well
known; in contrast, there are limited choices for pharmacophores in the small and
polar Na+ pocket. As a result, it is convenient to generate possible bitopic ligands for
many class A GPCRs by linking orthosteric pharmacophore and several Na+ mimic
pharmacophores. The bitopic ligands occupying both orthosteric pocket and Na+

pocket are likely to be antagonist since they prevent the pocket to collapse which is
essential for GPCR activation.

10.6.6 Bitopic Ligands

Bitopic ligands have been reported to target both orthosteric and allosteric sites, so
that they can provide higher selectivity and binding affinity by taking advantages
from both the types of ligands. Three receptors, free fatty acid receptor 1, leukotriene
B4 (LTB4) receptor, and beta2AR, have been co-crystalized with their bitopic
ligands TAK-875 (PDB ID: 4PHU [1]) or MK-8666 (PDB ID: 5TZY [38]),
BIIL260 (PDB ID: 5X33 [21]), and salmeterol (PDB ID:6MXT [39]), respectively
(Fig. 10.5). The structure of BLT1 shows that the amidine group of BIIL260
occupies the Na+ pocket and interacts with D2.50, stabilizing the inactive state of
BLT1 (Fig. 10.5), while salmeterol in B2AR extends to the exosite where B1AR and
B2AR are distinct. CP-376395 in corticotropin-releasing factor receptor 1, a class B
receptor (PDB ID: 4K5Y in Fig. 10.5), shows a unique allosteric binding site
(referred as AS7 in Fig. 10.6c) formed by TM3, TM5, and TM6.

10.7 Concluding Remarks

Allosteric regulation of GPCRs has substantial implications in both fundamental and
translational biological research. Over the past decade, studies regarding the allo-
steric regulation of GPCRs have been flourishing. Many allosteric modulators have
been identified for different classes of GPCRs, with a large number of modulators
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having unknown binding sites. As a result, many questions regarding functions and
mechanisms of these allosteric modulators remain less well understood due to lack of
structural information. Till today, only 32 novel allosteric modulator-GPCR com-
plex structures with 8 different allosteric sites have been solved, and the best method
to identify novel binding sites of allosteric ligands is still X-ray crystallography.
Effective and efficient approaches, either experimental or computational, for accu-
rately locating allosteric sites of GPCRs with/without structures are needed in the
future. Furthermore, identifying binding pockets in lipidic environment requires
extra attention, since 4 out of 8 discovered allosteric ligand binding sites in
GPCRs are exposed to lipidic environment. With more and more allosteric sites
discovered, bitopic ligands that target two sites (either orthosteric-allosteric or two
allosteric) through linking the pharmacophores of the sites can be readily developed
as tool compounds and therapeutic agents. While there are obstacles to identify
allosteric binding pockets, to screen allosteric modulators from high-throughput
functional assays, to design allosteric modulators through computer-aided drug
discovery, etc., progresses have been made for each of these obstacles during the
past 10 years. GPCR allosteric ligands still hold the promise to reach better subtype
selectivity, spatiotemporal sensitivity, and possible biased property.

Glossary

Transmembrane domains (TMD) the core domain that is common to all GPCRs,
consisted by seven-transmembrane helices (TM1–7) that are linked by three
extracellular loops (ECL1–3) and three intracellular loops (ICL1–3).

Agonist a molecule that binds to and activates a receptor to increase the receptor
signaling over basal levels.

Antagonist a molecule that binds to a receptor and inhibits agonist signaling.
Positive allosteric modulator (PAM) an allosteric ligand that potentiates an

agonist-mediated receptor response is referred to as a positive allosteric
modulator.

Negative allosteric modulator (NAM) an allosteric ligand that attenuates an
agonist-mediated receptor response is referred as a negative allosteric modulator.

Neutral allosteric ligand (NAL) an allosteric ligand that does not affect receptor or
orthosteric ligand activity is referred as a neutral allosteric ligand.

Ago-PAM an allosteric ligand that is capable of directly activating the receptor
from an allosteric site even in the absence of an orthosteric agonist is referred as
an ago-PAM.

Bitopic ligand a hybrid molecule that occupies both orthosteric and allosteric sites
to mediate a novel pharmacology.

GPCR generic numbering systems sequence-based generic GPCR residue num-
bering systems exist for class A (Ballesteros-Weinstein numbering) [2], class B
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(Wootten numbering) [20], class C (Pin numbering) [29], and class F (Wang
numbering) [61]. A numbering is two numbers separated by a dot. The first
number denotes the transmembrane helix (1–7). For the second number, the
most conserved position in the helix is assigned as 50. That is, the most conserved
residue in a helix x is denoted x 50, while all other residues on the same helix are
numbered relative to it. For example, 2.50 denotes the most conserved residue in
transmembrane helix 2, while one position after it is 2.51.

Orthosteric binding site where endogenous ligands bind. For GPCR there are
different orthosteric binding site in different classes. In class A and B, the
orthosteric site locates among the transmembrane helices close to the extracellular
end. In class C and D, the orthosteric site locates in extracellular domain.

Allosteric binding site sites for ligand binding to a receptor that are remote from
the orthosteric binding site.
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Chapter 11
Allosteric Small-Molecule Serine/Threonine
Kinase Inhibitors

Resmi C. Panicker, Souvik Chattopadhaya, Anthony G. Coyne,
and Rajavel Srinivasan

Abstract Deregulation of protein kinase activity has been linked to many diseases
ranging from cancer to AIDS and neurodegenerative diseases. Not surprisingly,
drugging the human kinome – the complete set of kinases encoded by the human
genome – has been one of the major drug discovery pipelines. Majority of the
approved clinical kinase inhibitors target the ATP binding site of kinases. However,
the remarkable sequence and structural similarity of ATP binding pockets of kinases
make selective inhibition of kinases a daunting task. To circumvent these issues,
allosteric inhibitors that target sites other than the orthosteric ATP binding pocket
have been developed. The structural diversity of the allosteric sites allows these
inhibitors to have higher selectivity, lower toxicity and improved physiochemical
properties and overcome drug resistance associated with the use of conventional
kinase inhibitors. In this chapter, we will focus on the allosteric inhibitors of selected
serine/threonine kinases, outline the benefits of using these inhibitors and discuss the
challenges and future opportunities.
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11.1 Introduction

11.1.1 Kinases and Small-Molecule Kinase Inhibitors

Protein kinases catalyse the transfer of the gamma phosphoryl group of ATP to
specific hydroxyl (-OH) group of their substrates, including proteins, lipids and
sugars, and provide key mechanisms for control of cellular signalling processes
[30, 60]. The human “kinome” has been known to encompass 518 kinases and
phosphorylate up to one-third of the proteome [36, 80]. Phosphorylation occurs on
serine, threonine or tyrosine residues, and kinases can therefore be broadly classified
as serine/threonine kinases or tyrosine kinases and, in some instances, dual-
specificity kinases wherein they phosphorylate both serine/threonine and tyrosine
residues. Dysregulation of kinase signalling pathways and/or overexpression of
kinases is associated with a variety of pathophysiological conditions ranging from
cancer, inflammatory diseases to metabolic disorders and neurodegenerative dis-
eases [42]. Kinases have been intensively pursued as important therapeutic targets
by pharmaceutical industries given the pivotal role of enzymes in diseases as well as
the established druggability and clinical safety profile of approved kinase inhibitors.
Small-molecule kinase inhibitors (SMKIs) entered clinical stage in the 1990s, and
discovery efforts were bolstered in 2001 with the FDA approval of imatinib (also
known as Gleevec®) – the first oral kinase inhibitor used in the treatment of patients
with chronic myeloid leukaemia (CML) [59]. Culmination of the work done in the
past three decades has resulted in 38 kinase inhibitors being approved till date [35].

SMKIs can be classified as Types I–IV [96, 115]. Type I inhibitors bind to ATP
pocket of active kinases when the conserved aspartate–phenylalanine–glycine
(DFG) motif at the N-terminus of the activation lobe is “in” conformation. In
contrast, Type II inhibitors like imatinib, nilotinib and sorafenib stabilize inactive
kinases by binding to an extended pocket that includes the DGF motif in the “out”
conformation and an adjacent, less-conserved allosteric site [38]. Both Types I and II
are ATP-competitive inhibitors. Type III and IV inhibitors are allosteric inhibitors.
While Type III inhibitors like trametinib and cobimetinib bind within the cleft
between the small and large lobes adjacent to the ATP binding pocket [96, 114],
Type IV inhibitors bind out of the cleft and phosphoacceptor region [40]. Besides
these main classes of kinase inhibitors, there are other types of non-covalent kinase
inhibitors. Lamba and Ghosh [69] labelled bivalent or bisubstrate molecules that
span two regions of the protein kinase domain as Type V inhibitors. Zuccotto et al.
introduced Type 1½ inhibitors as compounds that bind kinases in the DFG-Asp in
and C-helix out conformation [116]. Due to the remarkable structural and sequence
similarity of ATP binding site, finding selective SMKIs with good physiochemical
and pharmacokinetic properties is a daunting task. In some cases, the multikinase
inhibition can be advantageous, as exemplified by the MAPK inhibitor sorafenib,
which also inhibits kinases involved in tumour signalling and vasculature, making it
effective in targeting tumour growth [108]. However, in general, the clinical appli-
cations of Type I and II SMKIs have been undermined from undesired target
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selectivity and specificity profiles resulting in off-target side effects [37]. Besides
attaining selectivity required for pharmacological target validation, several other
challenges need to be overcome in order to realize the full potential of kinases as
therapeutic targets in cancer and beyond. These include validation of novel kinases
(such as atypical and pseudokinases) as targets, targeting non-cysteine residues like
lysine [3] or methionine [74], developing specific modulators that can inhibit kinase
signalling cascades or promote kinase degradation, overcoming drug resistance due
to mutations in ATP binding pocket and developing new technologies for efficient
screening and profiling of kinase inhibitors [19, 35].

11.1.2 Allosteric Kinase Inhibitors

To circumvent the issues associated with the use of ATP-competitive inhibitors, an
alternate approach relies on the development of allosteric inhibitors. The idea of
allosteric inhibition stems from the observation that non-catalytic functions of
kinases involve scaffolding, protein-protein interaction, allosteric effector on other
enzymes and DNA binding functions. Unlike phosphorylation, these functions are
not as conserved among the different kinases and hence blocking or enhancing these
functions would allow for modulation of kinase activities [92]. Allosteric inhibitors
bind to an effector site distinct from the orthosteric ATP binding pocket in kinases or
to other interacting proteins [76]. Even though allosteric inhibitors are non-ATP-
competitive, some of these inhibitors stabilize the inactive kinase conformation and
appear “ATP-competitive”, while others show “non-ATP-competitive” kinetics of
inhibition [22, 81]. Since trametinib was granted FDA approval as the first allosteric
SMKI in 2013, the field of allosteric inhibitors has rapidly burgeoned with more than
ten other allosteric inhibitors of MEK (CI-1040, GDC-0973, pimasertib) [61] and
Akt (MK- 2206) [109] in clinical trials. Inhibitors for LIMK2, PAK, IRE1 and RIP1
have also been now reported [110]. Identification of allosteric sites and modulators
has become a central theme in the kinase drug discovery programs.

11.1.3 Advantages of Allosteric Inhibitors

Allosteric inhibitors have the advantage of specific inhibition and minimal off-target
pharmacology, given the low sequence homology of allosteric sites [34]. Even
isoform selectivity is possible as demonstrated by the cases of AKT1/2/3 [4] and
PAK1/2 [64] inhibitors. Such inhibitors expand the chemical space for the identifi-
cation of novel kinase inhibitors. The ATP pocket is deep and hydrophobic – so
ATP-competitive pharmacophores tend to be poorly soluble in water and can be of
higher molecular weight. On the contrary, allosteric modulators have a pronounced
shape dictated by the allosteric site itself and it is possible to develop compounds
with improved physiochemical properties [22]. Since allosteric inhibitors need not
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compete with high levels of intracellular ATP, weak binders can be easily identified
in compound screens. Resistance to therapy is a particular problem with cancer and
anti-infectives. For example, leukaemia patients become resistant to the kinase
inhibitor imatinib, due to mutation in the gatekeeper residue (T315I) at the ATP
binding pocket of BCR-ABL1 [43]. Identification of allosteric sites provides a
means to “rescue” treatment for such patients. In addition, one can envisage that
resistance can be avoided by using combination therapies in which both the catalytic
and non-catalytic sites are targeted simultaneously [113]. As allosteric modulators
do not interfere with native ligands, their binding can cause activation or inhibition
of kinase activity, and therefore these compounds can be used as mechanistic probes
to delineate kinase pathways [41] and better understand their catalytic and
non-catalytic activities (scaffolding, homo- and heterodimerization) and regulation
[34, 110].

11.2 Experimental Methods to Identify Allosteric Ligands

One of the prerequisites for identification, screening and optimization of allosteric mod-
ulators is a knowledge of the allosteric site. But the detection of such sites on proteins is
not straightforward. Serendipity has played an important role in the discovery of most
allosteric inhibitors. These inhibitors have been found generally through high-throughput
screenings (HTS) while measuring the binding affinities or kinetics of protein-ligand
interactions such as the identification of compound binding to myristate pocket of ABL
kinase using a cytotoxicity screen of combinatorial kinase-directed heterocycle library
[1]. Confirmation of binding sites and mechanism of action of allosteric modulators tends
to be even more laborious relative to ATP-mimetic inhibitors. In recent years, guided by
the knowledge of allosteric proteins and modulators, several experimental and computa-
tional approaches have been developed to identify allosteric sites. These approaches have
been discussed in detail in several excellent reviews [22, 76]. For the sake of brevity, this
chapter will only highlight those approaches which have been used to find the allosteric
sites on kinases.

11.2.1 High-Throughput Screening (HTS)

HTS, as the name suggests, attempt to identify potent chemical leads (IC50 < 10 μM)
by screening millions of rule-of-five compliant small (< 500 Da) molecules. HTS
assays require rigorous kinetic experiments to ascertain activation/inactivation of
kinases prior to X-ray crystallographic studies to determine binding sites. The
earliest allosteric inhibitors identified, like those targeting MEK, AKT and
Bcr-Abl, were mostly discovered starting with hits derived from HTS assays. As
the initial hits from HTS assays of allosteric inhibitors are usually of low or moderate
potency, they require optimizations guided by NMR or co-crystal structures to yield
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potent compounds with improved physicochemical properties. HTS are done using
biochemical or cellular assays in high-throughput format. The following paragraphs
give a snippet of some of the allosteric inhibitors identified from HTS screens. Care
has been taken to include diverse inhibitors identified using biochemical (LIMK2)
and cellular assays (MEK) to give the readers an overview of HTS in the realm of
allosteric inhibitor discovery [106].

HTS of LIMK2 identified a sulphonamide 1 with an IC50 of 2.3 μM (Fig. 11.1a).
Subsequent SAR optimizations led to sulphonamide 2 that showed 800-fold selec-
tivity for LIMK2 (IC50 39 nM) over LIMK1 (IC50 3.2 μM). Even in the presence of
300 μM ATP, sulphonamide 2 showed no significant activity (IC50 > 100 μM)
against a plethora of kinases – PKA, PKC, CDKs, Abl, etc. A further optimized
analogue when co-crystallized with LIMK2 indeed confirms that the inhibitor was a
Type III binding mode [47].

Cellular-based HTS followed by deconvolution of the target using biochemical
assays have been used to identify MEK inhibitors (Fig. 11.1b). In one such reporter
assay, employing the transcription factor activator protein 1 (AP-1) in transfected
COS-7 cells led to the identification of urea 1 with modest binding and cellular
activity against p38α MAPK (Kd ¼ 1.2 μM). Resolution of co-crystal complex of
urea 1 with p38α confirmed an allosteric binding mode [89].

Fig. 11.1 Allosteric ligands identified through different experimental methods (a–f)
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11.2.2 Fluorescent Labelling

Fluorescent labelling entails selective, covalent labelling of a macromolecule like
proteins using a reactive derivative of an environmentally sensitive fluorophore
[82]. Choice of amino acid is crucial for the success of this approach as the amino
acid should be solvent exposed (for fluorophore attachment) and must undergo
significant movement upon ligand binding. This method is particularly amenable
to detecting allosteric modulators since allosteric regulation frequently involves
large conformational changes in proteins like kinases. Kinase activation involves
the movement of the conserved DFG motif from the “out” to the “in” configuration.
Based on this structural transition and using an acrylodan dye to label A172C mutant
of p38α, Simard et al. were able to deduce the SAR of pyrazolourea derivatives that
bind to allosteric pockets of p38α [102]. Urea 2 had a Kd of 9.4 nm against the
A172C mutant of p38α (Fig. 11.1c).

11.2.3 Disulfide Trapping

Disulfide trapping (or tethering) developed by Wells [31, 32] is another useful
approach to detect and characterize known, suspected or orphan allosteric sites on
proteins. The method entails screening of disulfide-containing compounds, under
partially reducing conditions, for their ability to form a mixed disulfide with a natural
or an engineered cysteine residue near a site of interest of protein target. Mass
spectrometry is used to identify the small molecule, and binding mode is further
confirmed by X-ray crystallographic studies. Allosteric ligand (1F8) (Fig. 11.1d)
binding at the PIF pocket of 3-phosphoinositide-dependent kinase 1 (PDK1) have
been identified by this approach [97].

11.2.4 Fragment-Based Drug Discovery (FBDD)

Although HTS is a powerful method to identify lead molecules, there are several
limitations – limited chemical diversity, lower “hit” rates and difficulties in lead
optimization to drug-like molecules. Fragment-based drug discovery (FBDD) has
emerged as a powerful, complementary method to HTS for the generation of new
chemical hits. FBDD involves the detection and subsequent elaboration of weak
binding chemical fragments into high-binding lead compounds [24]. Fragments are
usually defined as having less than 20 non-hydrogen (or “heavy”) atoms [32]. Most
fragment libraries adhere to the “rule-of-three” molecular weight < 300 Da, fewer
than three hydrogen bond donors and acceptors, fewer than three rotatable bonds and
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cLogP of three or below [20]. The binding mode of these fragments is determined
using both “classical” methods of fragment screening like X-ray crystallography,
NMR spectroscopy, surface plasmon resonance (SPR) and more recent approaches
such as thermal shift assays (TSAs) and microscale thermophoresis. In contrast to
HTS methods which identify potent chemical leads (<10 μM), FBDD fragments
have lower affinities (μM to mM) but possess higher ligand efficiency
(LE) [9]. FBDD also allows a chemically unbiased screen of the available protein
surface, thereby maximizing the probability of finding alternate binding sites as well
as uncovering cooperativity between the various binding sites [67]. In several cases,
identification of clinical candidates has been accelerated by FBDD. The first
fragment-derived FDA-approved drug on the market – vemurafenib – took only
6 years from project initiation to FDA approval. Vemurafenib is an inhibitor for
mutant BRAF kinase and has been approved for treatment of melanoma [12]. Frag-
ment screens allow sampling of a greater chemical space using smaller chemical
libraries [83] and provide opportunities for selectivity and intellectual property.

Fragment-based screening led to the identification of dibenzodiazepine
1 (Fig. 11.1e) PAK1 inhibitor that bound to the allosteric pocket next to the ATP
binding pocket with the DFG motif in the “out” conformation. Structure-assisted
optimizations delivered dibenzodiazepine 2 with improved physiochemical proper-
ties. The dibenzodiazepine 2 compound showed a high selectivity when profiled
against 442 kinases. It was also able to preferentially bind PAK1 isoform (Kd¼ 7 nM)
over PAK2 (Kd ¼ 400 nM) even though both isoforms have a 93% sequence
similarity [64]. However, the in vitro studies were not promising due to the poor
solubility of the inhibitor in the rat liver microsomes.

11.2.5 In Situ Click Chemistry

In situ click chemistry is another fragment-based approach that helps identify ligands
that bind at secondary sites that are adjacent to the active site [66]. This method relies
on near-perfect and robust chemical transformations that are modular in nature. The
most widely used reaction for this approach is the copper (I)-catalysed 1,3-dipolar
cycloaddition between azide and alkyne fragments which is generally referred to as
“click” chemistry. A prerequisite for this approach is the a priori knowledge about
the nature of the allosteric site and its distance from the active site. Following
assembly, the compound library can be directly screened against the biological
target as the efficiency of the “click” reaction obviates the need for further purifica-
tion of the assembled molecules. This method has been used to identify secondary
site binding fragments on several different protein targets including tyrosine phos-
phatases [104, 105] and Abelson (Abl) tyrosine kinase [63] (Fig. 11.1f).
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11.2.6 Computational Approaches to Identify Allosteric
Modulators

Structure-based virtual screening techniques are some of the most successful
methods for augmenting the drug discovery process. Recent advances in computing
power, MD simulation and bioinformatic analyses have allowed the development of
a suite of computational methods to identify allosteric sites. These approaches seek
to complement experimental approaches highlighted in the previous section. Several
different prediction approaches based on sequence, dynamics, structure, topology
and normal mode analysis are available. For a detailed review on all these
approaches, readers are referred to recent publication by Jian Zhang [84]. One
such web server for the accurate prediction tool of allosteric sites is AlloSite
(http://mdl.shsmu.edu.cn/AST). AlloSite was developed using pocket-based analy-
sis and support vector machine (SVM) classifier. From a total of 218 allosteric sites
deposited in ASDv2.0, Huang and co-workers selected 90 nonredundant allosteric
sites and 1360 non-allosteric sites predicted by Fpocket to carry out SVM learning.
A set of 21 descriptors was selected to characterize these allosteric sites and these
descriptors were further optimized using the SVM classifier. This resulted in the
structure-based model AlloSite [55, 56] which has a 96% accuracy rate to predict
allosteric sites.

Other web servers that predict allosteric sites based on normal mode analysis
(NMA) are AllositePro [103], PARS (http://bioinf.uab.cat/pars) [88] and more
recently CavityPlus (http://repharma.pku.edu.cn/cavityplus) – a webserver that
allows pharmacophore modelling and protein cavity detection in addition to alloste-
ric site detection [111]. CavityPlus detects potential binding sites on the surface of
target protein and ranks these sites with ligandability and druggability scores.

The next part of this chapter will focus on selected allosteric Ser/Thr kinase
inhibitors of therapeutic relevance.

11.3 Allosteric Serine/Kinase Inhibitors

11.3.1 Allosteric MEK Inhibitors

Mitogen-activated protein kinases (MAPK) are serine/threonine kinases that mediate
intracellular signalling via protein phosphorylation. About 70 genes are now known
to encode close to 200 distinct components of the MAPK system (Table 11.1).
MAPK signalling system consists of three separate pathways that transduce extra-
cellular signals including growth factors, cytokines, mitogens and chemical and
physical stresses to control a plethora of intracellular processes such as gene
transcription, metabolism, cell proliferation, synaptic plasticity, apoptosis, etc. The
three main signalling pathways are (A) c-Jun N-terminal kinase (JNK) pathway,
(B) extracellular signal-regulated kinase (ERK) pathway and (C) p38 pathways.
Signalling starts by binding of an extracellular signal/stimuli binding to cell surface
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receptors. Transmission of these signals is then mediated by activation of G-protein
(e.g. Ras) or by interaction of the upstream components with adaptor proteins.
Signals are transduced further by cytosolic kinases that are organized generally in
three tiers (MAPKKK, MAPKK, MAPK). The kinases in each tier phosphorylate
and activate downstream kinases to allow rapid and regulated transmission to signals
to the cellular targets. The MAPK cascade is a critical pathway for cancer cell
survival, dissemination and resistance to drug therapy, and its understanding is
crucial to designing drugs that can alter/regulate tumour signalling in this complex
network of co-dependent pathways

The Ras-Raf-MEK1/2-ERK1/2 pathway is a highly conserved pathway in
eukaryotic cells that transduces extracellular signals into cellular responses. The
canonical MAPK signalling cascade is activated by binding of a mitogen to trans-
membrane receptors – GPCRs, cytokine receptors and receptor tyrosine kinases
(RTKs). Activated receptors undergo dimerization and transphosphorylation at
tyrosine residues, leading to their activation. Thereafter, small adapter proteins,
such as SHC, SOS and GRB, associate with activated receptors and recruit guanine
nucleotide exchange factors (GEFs). GEFs mediate conversion of inactive Ras-GDP
(H-, K-, N-Ras) to active Ras-GTP at the inner leaflet of the plasma member.
Ras-GTP promotes the homo- or heterodimerization of A-Raf, B-Raf and C-Raf
through a multistage process. Phosphorylated Raf, a serine/threonine kinase, catal-
yses the phosphorylation and activation of MAPK/ERK kinase 1 (MEK1) and
MEK2. MEK1/2 are dual specificity kinases and in turn phosphorylate ERK1/2 on
the conserved Thr-Glu-Tyr (TEY) sequence that occurs on the activation loop of
ERK (Thr202/Tyr204 for human ERK1 and Thr 185/Tyr187 for human ERK2).
Significant ERK activation requires phosphorylation at both sites, with tyrosine
phosphorylation preceding that of threonine. Unlike Raf and MEK1/2 which are
fastidious in terms of the substrate, ERK1/2 has broad substrate specificity and can
catalyse the phosphorylation of hundreds of downstream proteins such as kinases,
phosphatases, transcription factors such as MYC and FOS, cell cycle proteins like
cyclin D as well as regulatory proteins SPRY and DUSP which mediate negative
feedback on MAPK pathway.

Table 11.1 Components of the MAPK signalling pathway

Erk JNK p38

Transducer GCK, GLK, HPK1, SOS, Rac, cdc42, Ras

MAPKKKs Raf-1, B-Raf, PAK MEKK1-4, MLK1-3, ASK1,
ASK3, TAK1,Tpl2

TAK

MAPKKs MEK1, MEK2,
MEK5

MEK4, MEK7 MEK3

MAPK Erk1, Erk2, Erk5,
Erk7, Erk8

JNK1, JNK2, JNK3 p38α, p38α,
p38δ, p38γ

Target
proteins

ATF2, ETS, Elk1, c-Jun, Jun-B, Jun-D, MEF2, MSK1,2, SAP-1

Phosphatases MKP-1, MKP-2, MKP-3, MKP-4, MKP-5, VHR, PAC1, Pyst2, STEP, hVH3/
B23
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One of the most frequently deregulated pathways in human cancer is the signal-
ling cascades mediated by Ras-Raf-MEK-ERK [17, 29].

Since the downstream effectors of this pathway have important roles in regulation
of cell fate, genomic integrity and cellular survival, mutations in genes can lead to
increase protein amplification and alter the tumour microenvironment, thus
overactivating the pathways. These mutations can occur upstream in membrane
receptor genes, such as epithelial growth factor receptor (EGFR), signal transducers
(RAS), regulatory partners and downstream kinases belonging to MAPK/ERK
pathway itself (BRAF). Genetic profiling of tumours has revealed that BRAF is the
most frequently mutated oncogene in human cancer [95]. BRAF somatic missense
mutation has been reported in 66% of malignant melanoma and at a lower frequency
in a wide range of human cancer [26]. Two FDA-approved compounds
(vemurafenib and dabrafenib) were used for the treatment of metastatic and
unresectable BRAF-mutated melanomas. However, it has since become apparent
that BRAF mutational status alone does not predict therapeutic responses in all
cancer types. Preclinical and early clinical data strongly suggest that combination
therapy of BRAF inhibitor and either MEK or conceivably an ERK inhibitor will
have the greatest efficacy [53]. This has prompted the search for novel Akt and MEK
inhibitors – both ATP-competitive and allosteric binders.

The first-generation MEK1/2 inhibitors such as CI-1040 demonstrated poor
exposure in human subjects, while second-generation inhibitors like PD325901
had toxicity issues. Subsequent generation of MEK inhibitors are now being inves-
tigated and appear to be more potent and better tolerated. The subsequent paragraphs
discuss only those allosteric MEK1/2 inhibitors that are approved or in preclinical
stages (Fig. 11.2)

Fig. 11.2 Selected MEK1/2 inhibitors of clinical significance
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Trametinib (Mekinist®) is a pyridone-based non-ATP-competitive MEK1/2
inhibitor that was developed by GSK [45]. This drug is the first FDA-approved
allosteric inhibitor for MEK1/2. It was approved in 2013 as a single agent for treating
patients with advanced melanoma with either B-Raf V600E or V600K mutation.
Trametinib inhibits phosphorylation by RAF on serine 217 of MEK1 and supresses
phosphorylated ERK [77]. Besides its use as a single agent, trametinib has also been
used in combination therapies with BRAF inhibitor dabrafenib (combination therapy
was given FDA approval in 2014).

Another allosteric MEK inhibitor approved for combination therapy is
cobimetinib (GDC-0973, XL518). Cobimetinib was developed by Roche in collab-
oration with Exelixis. It is a diarylamino compound tethered to an azetidine deriv-
ative via an amide linkage. X-ray crystal structure analysis indicated the binding of
cobimetinib to a pocket adjacent to the ATP binding site of MEK1, picking up
several interactions with the activation segment, catalytic, C-helix and G-rich loops
of the kinase [94]. The drug stabilizes the inactive conformation of MEK1/2 and
promotes the dislocation of Raf-MEK1/2 complexes similar to that of trametinib.
But, unlike trametinib, it does not block the Ras-catalysed phosphorylation of
MEK1/2. The FDA has approved the use of cobimetinib in 2015 along with the
FDA-approved B-Raf inhibitor vemurafenib (Zelboraf®) to treat metastasized mel-
anoma with B-Raf V600E/K mutation [49]. It is also being investigated for the
treatment of a number of other cancers.

Binimetinib (MEK162, ARRY-438162) is a diarylamine-based MEK1/2 inhibi-
tor developed by Array Biopharma. Binimetinib has been documented to inhibit
tumour volume in KRAS, NRAS and BRAG mutant in vitro cell line and in vivo
tumour models. FDA-approved binimetinib is to be used along with a B-Raf
inhibitor, encorafenib, for the treatment of metastasized melanoma with B-Raf
V600E/K mutation [65]. The drug combination therapy received FDA approval
in 2018.

Selumetinib (AZD6244, ARRY-142886) is a selective allosteric inhibitor for
MEK 1 and 2 with an IC50 of 10–14 nM and currently undergoing clinical trials
[33]. Selectivity of selumetinib for MEK has been documented using a panel of
kinases at concentration of 10 μM [112]. The compound has shown antitumour
activity in BRAF and NRAF mutant preclinical models including cell lines and
xenografts from a variety of carcinomas like pancreas, lung, colon, breast, etc. In
Phase I–III trials, selumetinib has been evaluated in a variety of tumours, either alone
or in combination with other agents, such as cytotoxic chemotherapy. When used in
conjunction with docetaxel, AZD6244 showed enhanced antitumour efficacy. Clin-
ical trials have also been conducted using AZD6244 and Akt inhibitor (MK-2202) as
it has been speculated that activation of the PI3K and AKT pathway could render
melanomas refractory to MEK inhibitors.

Refametinib (BAY 869766, RDEA119) developed by Bayer is a sulphonamide-
based diarylamino compound. It is an orally active exquisitely selective MEK1
inhibitor (IC50 ¼ 19 nM) with potential antineoplastic activity. X-ray crystallo-
graphic analysis indicated that the molecule binds to an allosteric pocket adjacent
to the Mg-ATP binding site and makes hydrogen bond and hydrophobic interaction
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with the ATP, activation loops and adjacent residues. In vivo, it has shown signif-
icant activity in xenograft models of colon cancer, melanoma and epidermal carci-
noma. In Phase I clinical trials, the molecule was well tolerated in patients with solid
tumours. Refametinib has also been used in combination therapies with sorafenib for
treatment with Ras mutant hepatocellular carcinoma (HCC) and is currently being
evaluated in Phase II trials [73].

For more information on other types of MEK inhibitors, readers are referred to
recent reviews by Luke [77] and Zhang [100].

11.3.2 Aurora A (AurA) Kinase

Aurora kinases are Ser/Thr kinases that play vital roles during cell division
[46]. Aurora A, B and C are three highly conserved kinases in this family but have
distinct functions [18]. Aurora B is involved in the late anaphase and cytokinesis,
while Aurora A regulates the initial stages of the mitosis, which include centrosome
maturation and separation, mitotic entry, the formation of the bipolar spindle and
recruitment and regulations of other proteins at centrosomes during mitosis [5, 10,
23, 44, 48]. Overall AurA is responsible for safeguarding the genomic integrity of
the daughter cells [46]. AurA kinase is overexpressed in a wide range of human
cancers including ovarian, prostatic, pancreatic, breast, gastric and colon [37]. The
overexpression of AurA is known to induce resistance to taxol, a first-line chemo-
therapeutic agent that targets the spindle checkpoint [2]. Apart from this, AurA has
also been shown to phosphorylate and deregulate tumour suppressor proteins such as
p53 [75] and BRCA1. The inhibition of AurA in tumour cells results in the
premature exit from mitosis and ultimately to cell death. All of these factors suggest
that AurA is a potential drug target for treatments against various types of cancers. A
number of companies are working to deliver drugs targeting AurA for cancer
treatments, and there are already several AurA inhibitors in various phases of clinical
trials [6]. For example, alisertib (Phase II), danusertib (Phase II) and VX-689
(completed Phase I) are at various stages [13]; however, all these compounds bind
to the ATP binding pocket of the kinase. This poses possible serious selectivity
problems as the ATP binding site is highly conserved among different kinases
[27]. Hence, there is a pressing need to develop inhibitors that could selectively
target AurA with fewer off-target effects. These inhibitors can be considered as the
next-generation therapies for treating cancers and various other diseases.

Kinases interact with their protein partners using their allosteric sites. The
selective modulation of a kinase could be achieved by targeting those sites as they
are not conserved among the members of kinases [76, 85, 110]. AurA interacts with
various protein partners such as targeting protein for Xenopus kinesin-like protein
2 (TPX2) [68], Ajuba [52], Bora [57] and N-Myc [86]. The interaction with TPX2 is
well characterized both structurally and functionally. TPX2 is a much larger protein
than AurA, but the residues 1–43 of TPX2 are sufficient for binding and activating
AurA. The phosphorylation of Thr288 residue located within the activation segment
of AurA is crucial for the kinase activity. The exposed phosphorylated Thr288
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(P-Thr288) residue is susceptible to hydrolysis by phosphatase PP1. TPX2 binding
locks AurA into an active conformation and pulls in P-Thr288 residue and keeps it
away from PP1 (Fig. 11.3). TPX2 is also responsible for localizing AurA onto
spindle microtubules. Mutation (Y8, Y10 and D11) on TPX2 peptide results in
spindle defects [11]. Hence, TPX2 is essential for the activation and function of
AurA. The X-ray crystal structure of AurA-TPX2(1–43) complex has been well
studied. TPX2(1–43) binds to AurA at two sites. The upstream site of TPX2(8–19)
binds at N-terminus lobe of the kinase and is responsible for fastening TPX2 on
AurA, while the helical downstream site (residues 30–38) interacts with the activa-
tion segment of AurA and thus keeping P-Thr288 hidden from PP1 [7]. Both AurA
and TPX2 work in concert with each other and this has been identified as an
oncogenic holoenzyme. The targeting of this interaction using small molecules
would deliver selective inhibitors without targeting the ATP binding site [87]. A
number of research groups are working on targeting this protein-protein interaction
using single-domain antibody [8], peptides [93] and small molecules [87]. The
research is still at an early stage, and no clinical candidates are known as of now
for this target. Some of the published works on small-molecule-based AurA-TPX
inhibitors are summarized below.

Conti, Bayliss and co-workers were among the pioneers in elucidating the
activation mechanism of AurA by TPX2(1–43) peptide using the X-ray crystal
structures of phosphorylated AurA and AurA-TPX2(1–43) complex [7]. Based on
the structural information and computational studies, they came up with a series of
indole and indene derivatives as allosteric inhibitors of AurA [21]. They found that
some of these compounds bind to the TPX2 binding site on AurA and decrease the
activity of the kinase. However, no X-ray crystal structures of these compounds
bound to AurA were reported or have been deposited in the PDB. In the cell-based
assay, compounds 1 and 2 showed selectivity of AurA over protein kinase A (PKA)
and compound 2 displayed an IC50 of 37 μM against AurA-TPX2 interaction
(Fig. 11.4). Apart from the work by Conti and co-workers, a handful of other groups
recently identified allosteric inhibitors of AurA by using in silico methods. However,
no X-ray crystal structures of the inhibitor-AurA complexes were reported to verify
the binding site.

Fig. 11.3 Diagrammatic representation of AurA activation by TPX2
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Lewis and co-workers at EMBL, Heidelberg, were among the first to identify
non-ATP-competitive small-molecule AurA inhibitors through their high-
throughput screening campaign [72]. A commercial library of 53,000 compounds
was screened for the AurA kinase activity using standard kinase assay. The active
compounds identified were subjected to a fluorescence resonance energy transfer
(FRET)-based biochemical assay (Z’Lyte Kinase™ assay) to ascertain if they were
ATP-competitive. Four compounds (compounds 3–6, Hela IC50 of 0.53–12.12 μM)
were identified and shown to be non-ATP-competitive inhibitors (Fig. 11.5). Three
of these four compounds are based on 4,4’-bipiperidine scaffold containing urea
linkages. The fourth hit was a simple nicotinoyl derivative with two different amides
linkages. Further, to ascertain if the compounds bind at the TPX2 binding site on
AurA, a TPX2 competition assay was performed using recombinant TPX2 protein.
The IC50 value of compound 6 increased from 4.8 μM in the absence of TPX2 to
78.8 μM in the presence of TPX2 suggesting that the compound is competing with
TPX2 and possibly it is binding on the TPX2 binding site on AurA. However, no
X-ray crystal structure of compound 6 bound to AurA was reported.

A team of researchers at the University of Cambridge discovered an allosteric
inhibitor against AurA-TPX2 interaction and characterized the binding by X-ray
crystal structure in vivo and in vitro studies [58]. At the onset of the study, the team
screened a library of 170,000 compounds using an in-house developed FP assay and
identified 15 hit compounds. In order to ascertain if these hits are non-ATP-com-
petitive, further screening was performed by blocking the APT binding site on AurA

Fig. 11.4 AurA-TPX2 inhibitors developed using computational modelling

Fig. 11.5 AurA-TPX2 inhibitors identified through HTS
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using a potent Aurora kinase inhibitor JNJ-7706621 (JNJ). The binding of JNJ was
also shown to have no significant observed effect on binding of the TPX2(1–43)
peptide to AurA. A quinoline-based compound 7 was identified to be the most
promising hit with a Kd of 10.6 μM (ITC) and an ligand efficiency (LE) of 0.25
(Fig. 11.6). A small amount of SAR was explored around compound 7. The
Introduction of fluorine and bromine atoms on compound 7 delivered a better affinity
(AurkinA) with a Kd of 3.77 μM and LE of 0.36. Upon examination of the X-ray
crystal structures, it was found that AurkinA fits into a hydrophobic pocket called the
“Y-pocket” on AurA where a part of the upstream stretch of TPX2 containing the
YSY motif binds. The binding of AurkinA to the Y-pocket prevents TPX2 from
binding to AurA and also induces a structural chance making the kinase inactive but
at the same time does not affect the ATP binding, demonstrating a new allosteric
inhibition mechanism. In the cell-based assay, it was found that AurkinA was
capable of mislocalizing AurA in mitotic cells and also arresting the kinase activity
suggesting the druggability of the Y-pocket. This work has laid the foundation for
the development of small-molecule-based allosteric inhibitors of AurA using struc-
tural studies.

11.3.3 Cyclin-Dependent Kinases (CDKs)

Cyclin-dependent kinases (CDKs) are serine/threonine kinases that are important
targets for cancer treatment [70, 98]. The human CDK family consists of 21 mem-
bers, and some of them (such as CDKs 1–4, 6) regulate the cell cycle processes,
while others are involved in cell cycle-independent processes such as regulating
transcription, DNA repair and neuronal functions [50, 79]. To date, three inhibitors
targeting CDK4/6 have been approved as drugs and all these three drugs,

Fig. 11.6 Structurally characterized AurA-TPX2 inhibitor
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palbociclib, ribociclib and abemaciclib, are ATP-competitive inhibitors for the
treatment of advanced breast cancer [78]. However, over 100 different
ATP-competitive inhibitors of CDKs are known, but a majority of them lack
selectivity and are associated with toxicity problems [62]. There is a burgeoning
interest in the development of allosteric inhibitors of CDK kinases.

Following the discovery of an open allosteric pocket adjacent to the αC-helix of
the CDK2, Rastelli and co-workers used computational and docking methods to
identify ligands capable of binding into this allosteric pocket [91]. Screening iden-
tified a small series of hit compounds, and competition experiments were performed
with the ATP binding site ligand staurosporine to confirm that the hit compounds
were not binding at the ATP binding site. The best hit was a tetrahydroquinolinone
(compound 8) (Fig. 11.7) which inhibited the proliferation of breast cancer cells with
an IC50 value of 4 μM. More recently, mutagenesis studies also confirmed the
binding of compound 8 to the allosteric pocket on CDK2.

Non-ATP binding site ligands have been identified for CDK8/cyclin C (CycC)
complex [99]. This complex is characterized by a deep DMG-out pocket (equivalent
to the DGF-out pocket on other kinases) that is amenable for targeting by small
molecules. A designed fragment library was screened and this led to the identifica-
tion of a pyrazolyl urea (compound 9) (Fig. 11.7) with a long residence time and a Kd

value of 3.24 μM against this complex. It was shown by X-ray crystallography that
compound 9 binds deep into the DMG-out pocket of CDK8, picking up hydrophobic
and H-bonding interactions with the DMG motif and the surrounding residues but
without any contact with the hinge region of the kinase.

Zhang and co-workers have discovered non-peptide allosteric inhibitors of CDK2
that could disrupt the CDK2-cyclin A3 interaction [54]. The hit compounds were
identified via virtual high-throughput screening and were further evaluated using
kinase assay. The imine-based lead compound 10 (Fig. 11.7) displayed an IC50 of
52 μM against CDK2-cyclin A3 interaction and was active against an array of human
cancer cell lines. Computational and docking studies suggested that the compound
10 fits well into an allosteric pocket close to the interface of the CDK2-cyclin A3
complex.

Fig. 11.7 Allosteric CDK inhibitors
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11.3.4 CK2α (Casein Kinase 2α)

Casein kinase 2 (CK2) is a serine/threonine selective kinase and is capable of
phosphorylating over 300 substrates. These substrates have an acidic consensus
sequence flanking the phosphoacceptor residue which uses either ATP or GTP as
the phosphate source. In humans, CK2 is a heterotetrameric holoenzyme (α2/β2).
This is composed of two catalytic subunits (CK2α) attached to a dimer of two
regulatory subunits (CK2β). CK2 is involved in a wide range of cellular process
and elevated levels of CK2 are associated with a number of different cancer types
due to dysregulated CK2 activity. It has been shown that cancer cells are susceptible
to CK2 inhibition as they rely on high levels of CK2 to survive. Because of this, the
development of inhibitors of CK2 has become a major area for the development of
anticancer therapies [14, 25, 90].

A diverse range of compounds have been developed against the ATP binding site
of CK2. The most advanced inhibitor CX-4945 (silmitasertib) is a potent, selective
and orally bioavailable inhibitor that targets the ATP binding site. Currently, this
drug is in clinical trials and has been granted orphan drug status by the FDA for
treatment of cholangiocarcinoma, a cancer of the bile cell ducts. While
ATP-competitive inhibitors have been shown to be hugely successful in targeting
kinases, they do suffer from drawbacks such as selectivity. In the case of CX-4945,
this has been shown to inhibit at least 12 other kinases with nanomolar affinities
[101]. There have been many elegant strategies to targeting kinase selectivity
including covalent inhibition [35]. However, one of the more interesting, all be it
challenging, methods is allosteric inhibition.

Hyvonen, Spring and co-workers have developed a small-molecule inhibitor that
targets a selective pocket adjacent to the ATP binding site of CK2. This site was
identified using a fragment-based approach where X-ray crystallography was used as
the primary screening method [15, 16, 28]. Fragment-based drug discovery is a
methodology that uses small molecules or fragments as start points for elaboration.
These fragments typically have a molecular weight of approximately 180 Da, and
while they are weakly binding, they can make optimal interactions with the protein.
Once a fragment has been identified, this is then elaborated using a number of
different strategies, fragment growing, fragment merging and fragment linking.
This methodology has been widely adapted in both academia and industry, and
this is now used routinely in conjunction with high-throughput screening (HTS).

A fragment screen was carried out against CK2α and this led to the identification
of 3,4-dichlorophenethylamine 11 as a fragment hit by X-ray crystallography. This
fragment was observed to bind to CK2α at multiple binding sites. One of the sites
identified was the opening of a pocket adjacent to the ATP binding site of the kinase.
This new binding site (αD pocket) is located behind the αD-helix and is hydrophobic
in character. Upon binding, this fragment displaces Tyr125 from its normal position
and releases the αD-helix from the C-lobe opening up this allosteric pocket.

The initial fragment hit 11 was optimized to 12 which was found to have KD on
270 μM. Upon examination of the X-ray crystal structure of this elaborated
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fragment, it was hypothesized that this could be linked to fragments bound into the
ATP site. In the screening of the fragment library, fragment 13 was identified to bind
to the ATP binding site. Interestingly for both the fragment that bound to the αD site
and the fragment that bound to the ATP binding site, no measurable KD (ITC) was
obtained for these. When these fragments were linked, this led to the development of
compound CAM4066 which was shown to have a KD of 0.32 μM which has an
almost 1000-fold improvement over the fragment 12 (Fig. 11.8a). When this com-
pound was screened in a CK2α kinase assay, this compound was shown to have an
IC50 of 370 nM. In order to explore the selectivity, CAM4066 was screened across a
panel of 52 kinases at a concentration of 2 μM; no other kinases in the panel showed
any significant inhibition. The greatest inhibition was shown to be the kinase IGF-1R
with an %inhibition of 20% (SD 9%). A number of closely related kinases
(DYRK1A, HIPK2, HIPK3 and SRPK1) were shown not to be inhibited by
CAM4066. The compound CAM4066 was screened against three different cell
lines, HCT116, Jurkat and A549 cells; however they showed no effect, possibly

Fig. 11.8 Fragment-based drug discovery of allosteric inhibitors of CK2α (a). Fragment 11 was
identified to bind to multiple sites on CK2α and one molecule was shown to bind to the αD pocket.
This fragment hit was elaborated to fragment 12 which had a measurable KD of 0.27mM. Fragment
13 was identified by X-ray crystallography to bind to the ATP site and a fragment-linking strategy
led to the development of CAM4066 which was shown to have a KD of 0.32 μM. The pro-
CAM4066 was shown to have good cell activity, whereas CAM4066was shown to have none. The
compound CX-4945, which is currently in clinical trials, is shown in the box. (b) The fragment 12
was optimized on both of the phenyl rings of the biaryl which led to the development of compound
15 which had an affinity of 7 μM. Subsequent elaboration of the fragment led to the development of
CAM4712
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due to poor cell penetration. When the methyl ester derivative, pro-CAM4066, was
screened against the cell lines, this showed good dose response with GI50’s 9 μM
(HCT116), 6 μM (Jurkat) and 20 μM (A549). Interestingly when compared to the
compound CX4945 (GI50 of 5 μM (HCT116), 15 μM (Jurkat) and 17 μM (A549)),
this compared favourably although the IC50 of CX-4945 is considerably better.

Hyvonen, Spring and co-workers further optimized CAM4066 by improving the
physicochemical properties of the molecule [71]. This optimization first focused on
the αD site fragment. It was observed that the phenyl ring of the biaryl bound into a
hydrophobic pocket; however, a side channel was observed filled by several water
molecules. A number of different substituents were introduced onto the ortho-
position of the ring, and it was found that an ethyl substituent proved beneficial
for the affinity. The subsequent introduction of a chlorine atom onto the second
phenyl ring in the 6-position led to the development of fragment 15 which had an
affinity of 6.5 μM (Fig. 11.8b).

In the development of CAM4066, a number of linkers were explored to build to
the ATP site, and it was observed that these compounds opened a small channel
between the αD and ATP sites, and the aim was to see whether this small channel
could be targeted. This led to the introduction of a benzimidazole ring linked to the
fragment at the αD pocket. This compound, CAM4712, was shown to have an IC50

of 7 μM; however, due to solubility issues, direct ITC measurements could not be
carried out. A number of competition experiments were carried out and a KD of
approximately 4 μM was measured. This compound was screened against the
HCT116 cell line and a GI50 of 10.0 � 3.6 μM was obtained which is comparable
to that of pro-CAM4066. Upon screening of the compound CAM4712 against a
panel of kinases, the selectivity was shown to be reduced where it was observed that
inhibition of CAMK1, SmMLCK, EF2K and SGK1 was at over 50%. This study
showed a good correlation between the measured IC50 and the GI50 where no
observable drop-off was seen.

11.3.5 Akt (Protein Kinase B)

The serine/threonine kinase Akt, also known as protein kinase B, is involved in the
cellular survival pathways. There have been a number of ATP-competitive inhibitors
of Akt developed; however, these have shown poor selectivity especially with the
AGC class of kinases. Because of this, the development of inhibitors of Atk is still a
challenge, and only a handful of small molecules have been developed as lead
candidates. One of the best compounds which has been identified is MK-2206
[51]. This compound targets a unique allosteric pocket at the interface of the catalytic
kinase domain and the regulatory pleckstrin homology (PH) domain of the inactive
conformation of Atk. Currently, this is in Phase I and II clinical trials, and it has been
shown to be highly selective to the three Atk isoforms, Atk1, Atk2 and Atk3.

The allosteric inhibitor MK-2206 stabilizes an inactive conformation where it
binds at the interface of the PH and kinase domains. The IC50 for this compound is
6.5� 0.8 nM, against the wtAkt1 isoform. Rauh and co-workers developed covalent
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allosteric inhibitors of Akt1 [107]. Two inhibitors were developed based on the
1,6-naphthyridine 16 and imidazo-1,2-pyridine 17 scaffolds. Compound 16 was
shown to have an affinity of 0.2 � 0.1 nM for wtAkt1. The alternative covalent
allosteric scaffold was shown to have an IC50 of 372� 48 nM, which is significantly
less than that of MK2206 and the covalent allosteric compound 16 (Fig. 11.9b). The
covalent interaction of compounds 16 and 17 was confirmed by ESI-MS when these
compounds incubated with wtAkt1. This resulted in the mass increases equivalent to
the corresponding single labelled Akt1 (587 and 572 Da, respectively), compared to
the control when treated with DMSO. Upon tryptic digest, it was found that
compound 16 was bound to Cys296 and compound 17 was covalently bound to
Cys301, both of which are in close proximity to the allosteric interface. The covalent
allosteric inhibitor 16 shows selectivity for Akt1 when screened against a panel of
over 100 kinases. The Akt isoforms 1–3 showed >80% inhibition at a concentration
of 1 μM. The kinase MAP 4K5 was shown to be moderately inhibited at 37%.
Compound 16 was screened against a range of cancer cell lines and induced a
sensitive dose-dependent decrease of pAkt1 at both Thr308 and Ser473 in PC3
and BT474 cancer cell lines.

11.4 Conclusion

Allosteric inhibition of kinases using small molecules is of paramount importance in
the kinase drug discovery arena. These small molecules are considered to be the
next-generation medicines with high selectivity, fewer off-target effects and less
prone to drug resistance problems when compared to that of the ATP site targeting
compounds. Apart from potential clinical use, allosteric inhibitors could also act as
valuable tools in deciphering new scientific understanding concerning the biological

Fig. 11.9 (a) Structure of Akt showing the active and inactive conformations. The allosteric
inhibitors bind to the interface of the PH and kinase domains. The covalent allosteric inhibitors
irreversibly stabilize the inactive conformation through covalent attachment to a cysteine residue in
the kinase domain. (b) Chemical structures of MK-2206 and two covalent allosteric inhibitors 16
and 17
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roles of kinases and their protein partners. However, identification of allosteric site
binding ligands is a significant challenge. Several computational and experimental
approaches such as fragment-based drug discovery techniques are evolving to
identify these ligands. Here, we outline these approaches, with a focus on examples
of the successful use of such techniques. On a closing note, research towards kinase
allostery is advancing at a faster pace and expected to deliver fruitful outcome in
terms of novel therapeutics and provide insights into the complex cellular mecha-
nism of kinases.
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Chapter 12
Allosteric Regulation of Protein Kinases
Downstream of PI3-Kinase Signalling

Alejandro E. Leroux, Lissy Z. F. Gross, Mariana Sacerdoti,
and Ricardo M. Biondi

Abstract Allostery is a basic principle that enables proteins to process and transmit
cellular information. Protein kinases evolved allosteric mechanisms to transduce
cellular signals to downstream signalling components or effector molecules. Protein
kinases catalyse the transfer of the terminal phosphate from ATP to protein sub-
strates upon specific stimuli. Protein kinases are targets for the development of small
molecule inhibitors for the treatment of human diseases. Drug development has
focussed on ATP-binding site, while there is increase interest in the development of
drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism
of regulation of protein kinases, which often involve the allosteric modulation of the
ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular
mechanism of allostery in protein kinases downstream of PI3-kinase signalling with
a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase
where small compounds can allosterically modulate the conformation of the kinase
bidirectionally.
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12.1 Allostery in Cellular Signalling

Allostery is a mechanism of intramolecular signal transmission whereby local
perturbations on a protein affect the structure and dynamics of specific distal regions
[1–3]. Today, the definition of allostery also includes cases where dimerisation or
oligomerisation is not known to occur [4, 5].

Allostery is central for the passage of the information from the cellular receptors
to the intracellular effectors, in a process termed cellular signalling or signal trans-
duction [6]. Protein kinases are enzymes that, once active, have the ability to transfer
a terminal phosphate from ATP to protein substrates in a process termed protein
phosphorylation. The phosphorylation of proteins catalysed by protein kinases is one
key mechanism used by cells to transduce the intracellular signals [7].

There are more than 500 genes coding for protein kinases in humans [8], while
most of the proteins in human cells are phosphorylated. In this complex context,
protein kinases have evolved the ability to phosphorylate specific substrate proteins
at a particular location and time. Protein phosphatases will dephosphorylate the
target proteins and stop the protein kinase signalling, stimulating or inhibiting the
function of the effector molecules. Thus, protein kinases and protein phosphatases
need to act in concert to transmit the appropriate signals and produce the physio-
logical effects.

The phosphates placed at specific locations in substrate proteins can change the
properties of the targeted proteins, in particular, enabling them to form hydrogen
bonds or salt bridges either intra- or intermolecularly [9]. In turn, the change
produced by the phosphorylation may be important to relay the information down-
stream or to produce the final effect. For example, the binding of insulin to a cellular
membrane receptor will produce a cascade of protein phosphorylations catalysed by
protein kinases, which increases the activity of PI3-kinase, generating the second
messenger Ptdins(3,4,5)P3; in the presence of Ptdins(3,4,5)P3, the phosphoinositide-
dependent protein kinase-1 (PDK1) will phosphorylate its substrate protein kinase B
(Akt/PKB). Once active, Akt/PKB phosphorylates glycogen synthase kinase
3 (GSK3), which reduces its activity. Inhibition of GSK3 eventually leads to the
dephosphorylation and activation of glycogen synthase, the enzyme that catalyses
the synthesis of glycogen in response to insulin. With a different timing after
PI3-kinase activation, PDK1 phosphorylates p70-S6-kinase (S6K) leading to
insulin-stimulated protein synthesis. S6K, in turn, participates in a negative feedback
loop, inhibiting the pathway. This simplified linear path is then part of a broad
network of cellular phosphorylation cascades that are stimulated by insulin and
growth factors, which are dysfunctional in cancer, insulin resistance, type II diabe-
tes, neurological disorders, etc. [10]. Allosteric processes coupled to conformational
sensors (i.e. PDK1 [11]) are central to the transmission of information within the
cell, being arguably the core of the intracellular signal transduction language [6, 12].
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12.2 Allostery in Protein Kinases

The sequencing of DNA from cancers that are resistant to protein kinase inhibitors
unveiled that numerous mutations that constitutively activate the kinase or promote
drug resistance, are located far from the active site and drug-binding site, as observed
for Bcr-Abl [13]. Mutations can allosterically affect the active site of the kinase by a
static effect, stabilising on or off states or, alternatively, by affecting the propagation
of the allosteric effects [3]. Molecular dynamic simulations verified that the effect of
mutations found in cancer can be explained from their allosteric effects [14, 15]. On
the other hand, perhaps the most abundant source of information on the allosteric
systems in protein kinases arose from information obtained from crystal structures of
protein kinases stabilised either in active conformations or in different inactive
conformations [16, 17]. Although these are static pictures that only poorly provide
a whole vision of the dynamics, they also provide strong support to the existence of
allosteric communications that must participate in the conformational changes from
inactive to active forms of the kinase.

12.3 Allostery: The Traditional Use and Misuse
of the Terminology in the Field of Protein Kinases

The concept of allostery requires the definition of at least two sites. The interaction
of a metabolite, an interacting protein, a substrate or a small molecule binding to a
first site is said to produce an allosteric effect if it affects the function or interactions
at a second site, which is not in direct contact with the first one.

The protein kinase research field named “type I inhibitors” to compounds binding
at the ATP-binding site, “type II inhibitors” to those binding at the ATP-binding site
and at a neighbouring site and “type III inhibitors” to those targeting a pocket
different to the ATP-binding site [18]. However, in the common language for
those in the field, the “type III” compounds were often considered equivalent to
“truly allosteric” drugs. Indeed, the nomenclature on the mode of action of com-
pounds on protein kinases has been rather confusing regarding the “allosteric”
terminology because the wording has been often used in cases where a second site
is not known to be affected. The recommendations of the International Union of
Basic and Clinical Pharmacology for the nomenclature of receptor allosterism and
allosteric ligands is that the term “allosteric” “be reserved for instances where the
properties of one ligand (small molecule or protein) are altered upon binding of a
second ligand at a nonoverlapping, topographically distinct site and where, ideally,
reciprocity in this interaction can be demonstrated” [19]. To avoid confusion, the
suggestion is to employ the “allostery” terminology only when two sites are being
mentioned, a binding site and a second site that is being affected. In addition, the
classical protein kinase inhibitor nomenclature (types I, II and III) should be reserved
to describe the location of the compound binding site.
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12.4 The Protein Kinase Catalytic Domain

The current chapter focusses on the catalytic domain of protein kinases as an
allosteric system. The catalytic domain of the protein kinase PKA was the first one
to be crystallised and it is still today the protein kinase prototype [20]; the state of
activation of protein kinases are often evaluated in comparison to it (PDB: 1ATP).
PKA is an AGC kinase regulated by allosteric effects on the regulatory subunit
(PKA-R). PKA-R has two cAMP binding sites and binds to the catalytic domain,
occupying the peptide substrate binding site and inhibiting the ability of the catalytic
subunit to phosphorylate its substrates. The interaction of cAMP with the regulatory
subunit produces conformational changes on PKA-R that free the catalytic subunit
from the inhibition, enabling PKA to phosphorylate its substrates. In this case,
PKA-R is thus the central regulatory allosteric unit, while the PKA kinase domain
is locked in an active conformation by N- and C-terminal extensions to the catalytic
domain [21].

The conserved features of protein kinase catalytic domain include the general
structure that resembles a “bean”, with a small lobe and a large lobe and the
ATP-binding site sitting in between the two lobes [22] (Fig. 12.1). Thus, the bottom
of the ATP-binding site corresponds to regions on the large lobe, while the ceiling of
the ATP-binding site is the small lobe, including the β1 and β2 strands and the
Gly-rich loop that connects both β-strands. In all structures of protein kinase in
complex with substrates, the region of the substrate to be phosphorylated is
extended, sitting at the edge of the small lobe-large lobe interface as first depicted
by the interaction of PKA with the peptide pseudosubstrate PKI [22], and also found
in substrate peptides bound to insulin receptor kinase [23], Akt/PKB [24], etc.

One important feature from protein kinases is the dynamic open-close conforma-
tional changes that open and close relative positions of the small and large lobes. The
catalytic domain of the prototype protein kinase PKA was crystalised in “open”,
“intermediate” and “closed” conformations [21]. The open-close conformational
changes correlate with catalysis in PKA and is expected to help in the release of
ADP, which is the rate-limiting step in the activity of PKA [25].

The open-close structures reveal the most widely observed dynamic feature
conserved in protein kinases, the hinge motion. In the protein kinases that have
been studied, the close structure provides the snapshot of the catalytically competent
structure, which would enable the transfer of the terminal phosphate of ATP to the
peptide substrate.

12.4.1 The Activation Loop

The activation loop is varied in amino acid length but is always present. An
important feature is the ability to participate in the activation of many kinases by
phosphorylation. In PKA and other AGC kinases, the phosphate at the activation
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loop makes specific interactions with His87 in PKA (Arg129 in PDK1), a residue
from the αC helix and Arg165 in PKA (Arg204 in PDK1), located in the large lobe.
Thus, the phosphorylation fixes the loop at a particular position in between the small
and large lobes. Furthermore, by this fixing, the activation loop phosphate also
stabilises a conformation of the kinase and the αC helix. Although the activation
of protein kinases by phosphorylation of the activation loop is widely conserved, the
mechanism of activation may differ between different kinases.

12.4.2 The ATP-Binding Site

The ATP-binding site has some features that are worth mentioning. The adenine ring
makes specific interactions with the so-called hinge region (the hinge between the
small and large lobe). This site is almost invariably participating in the interaction
with compounds that bind at the ATP-binding site. The phosphates of ATP are
positioned for catalysis by their interaction with Mg2+ and Lys72 in PKA (Lys111 in
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Fig. 12.1 The overall structure of AGC protein kinases. (a) The crystal structure of PKA (PDB
code 1ATP) is shown in cartoon representation. The C-terminal extension is shown in red, with the
Phe residues of the truncated hydrophobic motif (shown as sticks) binding to the PIF-pocket
(flanked by the β-sheet, αB and αC helices). Indicated are common features of AGC protein
kinases. (b) Close-up representation of the Glu-Lys salt bridge that enables the correct position of
the ATP phosphates at the active site. (c) Close-up representation of the interactions between the
phosphorylated residue of the activation loop and residues of the small (His87) and large lobe
(Arg165) that contribute to position the activation loop and stabilise the “closed” active structure
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PDK1). In turn, Lys72 in PKA is positioned by a salt bridge interaction with Glu91
(Glu130 in PDK1) from the αC helix, an interaction that turned out to be a hallmark
of active protein kinases and is considered one of the most important features in
eukaryotic protein kinases.

12.4.3 The αB and αC Helices

In the detailed studies to be described subsequently, we will name the αB helix,
which is present in the active forms of AGC kinases. This helix is most often not
present in other groups of protein kinases, where it is generally a loop that connects
β3 strand with the αC helix. In AGC kinases, the region between αB helix, αC helix
and the β-sheet is the region termed “PIF-binding pocket” or PIF-pocket (see Sect.
12.6.2). Since the β-sheet is very stable, the regulatory properties of the PIF-pocket
are thus given by the αB and αC helices. One key structural element is the so-called
regulatory spine [26], where the αC helix also takes part. It consists of a stack of four
hydrophobic residues (RS1/RS2 from the large lobe and RS3/RS4 from the small
lobe) that are aligned in active kinases but broken in inactive kinases. RS1 (Tyr164
in PKA) comes from the HRD sequence, RS2 (Phe185 in PKA) from the DFG
sequence that marks the beginning of the activation loop, RS3 (Leu95 in PKA) from
the αC helix and RS4 (Leu106 in PKA) from the β4 strand.

In addition to the dynamic equilibrium between “open” and “closed” structures,
the αC helix (and αB helix) can also be very dynamic and is a key regulatory element
in protein kinases from different groups. In PKA, where the catalytic domain is
constitutively in the active conformation, the αC helix is stabilised by a “truncated”
hydrophobic motif (HM, Phe-Xaa-Xaa-Phe350-COOH) located at the C-terminus of
the protein sequence. The Phe residues of the truncated HM dock into the hydro-
phobic cavity of the PIF-pocket. On the other side of the αC helix, the phosphate
from the activation loop brings together the αC helix and the large lobe. Together,
the truncated HM and the activation loop stabilise the αC helix from both sides
allowing the generation of the Glu91-Lys72 salt bridge. This interaction builds the
active regulatory spine, enabling Lys72 to fruitfully position the terminal phosphates
from ATP, thus connecting the stabilisation of the helix αC with the catalytic site.

In contrast to the constitutive stability observed in PKA, the αC helix is a central
node for the regulation of protein kinases from diverse groups. The regulatory
properties of the αC helix were first obtained from crystal structures of CDKs. In
CDK2, the inactive structure has the αC helix bended outwards, lacking the Glu-Lys
salt bridge. The binding of the cyclin stabilises the active form, bringing the αC helix
closer to the catalytic core and establishing the Glu51-Lys33 salt bridge
[27, 28]. This inwards/outwards bending of the αC helix and the formation/breakage
of the Glu-Lys salt bridge was first described in CDKs and now appears as a feature
broadly disseminated in the kinome [29]. Cyclins bind to CDKs occupying a broad
surface that encompasses the region in between the αC helix and the β-sheet and also
extends to the other side of the αC helix, interacting with the activation loop. While
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the overall interaction stabilised the active conformation of the catalytic domain, it
was not originally known if any specific interacting region was the key to the
activation of CDKs. A considerably smaller viral cyclin (cyclin T1) was later
crystallised in complex with CDK9 [30]. The viral cyclin T1 produces the activation
of CDK9 by occupying only the region between the αC helix and the β-sheet. Thus,
the stabilisation of the αC helix and the activation of CDKs can be achieved by
interacting molecules binding at a localised hydrophobic site that is equivalent to the
PIF-pocket regulatory site in AGC kinases.

The activation of transmembrane tyrosine kinases like the epidermal growth
factor receptor (EGFR) requires the formation of a head-to-tail asymmetric dimer
in which an activator kinase domain allosterically activates a receiver kinase
[31]. This interaction stabilises the αC helix and is analogous to the activation of
AGC kinases by interactions with the HM and the activation of CDKs by cyclin.
EGFR allosteric activation by dimerisation is also regulated by the intracellular
juxtamembrane segment (for a review, see [32]). More recently, the juxtamembrane
region has also been described to play an important role on RET kinase activation.
Interactions between the juxtamembrane segment and the αC helix regulate RET
kinase activity with striking similarities to the PIF-pocket/hydrophobic motif inter-
action of AGC kinases [33]. The αC helix also has a regulatory role in non-receptor
tyrosine kinases from the Src family [34, 35], in Bruton’s tyrosine kinase (BTK)
[36], in the zeta chain-associated protein of 70 kDa (ZAP-70) [37, 38], in c-Fes [39]
and in protein kinase Csk [40].

In conclusion, a wide variety of mechanisms exist in different kinase families that
ultimately affect the conformation of the αC helix, which in turn transfers the
information to the active site. The αC helix can be observed as a central hub to
relay the effects of inter- and intramolecular interactions to the catalytic pocket. The
regulation of AGC kinases, described below in more detail, represents a particular
allosteric regulation which resembles the allosteric regulation mediated by the helix
αC in many other protein kinases.

12.4.4 The Recognition of Protein Kinase Substrates
by Docking Interactions

Most substrates of protein kinases are known to be recognised by means of specific
recognition motifs around the actual phosphorylation site [41–45]. However, even
early research has found that many protein substrates of kinases had different
kinetics from the isolated polypeptide [46]. An alternative mechanism for the
specificity of kinases for their substrates is referred to as “docking sites”. These
are very common in protein kinases from the MAPK family, in CDKs and also in the
recognition of substrates by PDK1 [47].
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Mitogen-activated protein kinases (MAPKs) are divided in 3 subgroups, extra-
cellular signal-regulated kinases (ERKs), p38 MAP kinases and c-Jun amino-termi-
nal kinases (JNKs). The substrates of the different MAPKs have a very loose
recognition motif around the phosphorylation site. To achieve substrate recognition,
the substrates possess a separate sequence that docks at a site behind the hinge
region, at the back of the kinase domain. Interestingly, a related sequence that binds
at the same docking pocket is present in MAPK substrates, in MAPK upstream
kinases and in phosphatases that dephosphorylate the MAPK [47–50]. Notably, the
fact that the same site is used by different regulators suggests that these docking
interactions must be regulated.

Thus, even if the concept of recognition of linear substrate epitopes for phos-
phorylation has enormously helped the field, it is still not clear if most protein kinase
substrates will follow such simple model, or, if alternatively, recognition may be
more often mediated by docking interactions or combined models. As will be
detailed subsequently in the PDK1 example (Sect. 12.6.2), docking interactions
are a possible source of allosteric regulatory mechanisms in protein kinases.

12.5 The Active and Inactive Structures of Protein Kinases

12.5.1 The Active Structures of Protein Kinases

The crystal structure of the active form of PKA in complex with ATP-Mg and PKI
unveiled the overall common aspects of the catalytic domain of all protein kinases in
active conformations. The crystal structures of all protein kinases in overall active
conformations reveal a similar disposition of residues around the ATP-binding site,
in the relative position of the two lobes and in the Glu91-Lys72 salt bridge (PKA
numbering). As stated earlier, the case of PKA is special in that the catalytic domain
structure of the active and inactive conformations are identical. Other protein kinases
that are also inhibited with a pseudosubstrate mechanism do not share this property.

The structures of active protein kinases are very well conserved, and the salt
bridges equivalent to Glu91-Lys72 are almost invariably present in the protein
kinase superfamily. One known exception is the eukaryotic-like Ser/Thr protein
kinase PknG from Mycobacterium tuberculosis, which is active in the absence of
this salt bridge [51].

12.5.2 The Snapshots of Inactive Structures of Protein
Kinases

While there is a consensus that the active structures of protein kinases are very
conserved, the inactive structures of the protein kinases, on the other hand, are
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represented by a broad range of different conformations of the catalytic domain.
However, there is a set of structural sites in the catalytic domain that are almost
always distorted when a kinase is in an inactive state which include activation loop,
Gly-rich loop and αC helix. In addition, the blocking of the ATP-binding pocket by
intra- or intermolecular interactions (i.e. pseudosubstrate sequences) can be observed
in some inactive structures [52].

For example, in Aurora kinase, c-Abl, B-RAF and insulin receptor, the inactive
structure is stabilised by a flipped DFG motif and a non-phosphorylated activation
loop sticking into the inactive structure of the catalytic core. This conformation
yields an active site that is not aligned for ATP and peptide recognition [53–55].

In Src family protein kinases, phosphorylation of a highly conserved tyrosine
residue in the tail region (Tyr-527 in c-Src) induces an intramolecular interaction
with the SH2 domain in addition to an interaction of the SH3 domain with the
linker connecting the SH2 and catalytic domain. The interactions cause the αC
helix to swing outwards into a conformation incompatible with catalytic activity.
Therefore, the SH2 and SH3 are essential to achieve an inhibited conformation (for
a review, see [35]). The inactive form of Abl shares a lot of similarities with
autoinhibited Src, where SH2 and SH3 domains interact with the catalytic domain
and negatively regulate the activity. The autoinhibition is stabilised by the binding
of an N-terminal myristic acid group to a deep hydrophobic pocket in the large lobe
of the catalytic domain which induces a bend in αI helix. The interaction of the
myristoylated N-terminus with the large lobe is essential to maintain the
autoinhibited state as mutations affecting the interaction yield a highly active
kinase. The myristoyl binding pocket is allosterically linked to the active site, as
small molecules targeting the regulatory pocket affect the kinase activity (for a
review, see [56]).

The earlier snapshots of inactive conformation of kinases reveal a large number of
potential mechanisms to keep different protein kinases inactive. To some degree,
those inactive structures also show the different regions of the kinase that must have
important dynamics, in order to enable the switch between inactive and active
structures.

12.6 The AGC Group of Protein Kinases

The AGC kinases comprise group of 63 protein kinases that include protein
kinase A, protein kinase G and protein kinase C isoforms that give the name to the
group. The group also comprises three pseudokinases, RSKL1, RSKL2 and RSKLK
(previously termed Sgk494) [17].

PKAs, PKGs and PKCs acquire their active conformations soon after synthesis
and are afterwards regulated by second messengers that bind to the regulatory
domains, releasing pseudosubstrate interactions. PRK/PKNs, MRCK and ROCK
are important downstream effectors of the GTP-binding protein Rho. NDR and
LATS are implicated in the Hippo signalling pathway. RSK and MSK are important

12 Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling 287



downstream mediators of the Ras-ERK and p38-MAPK signal transduction path-
ways. Akt/PKB is a central node for PI3K signalling and its deregulation has been
linked to cancer, diabetes and cardiovascular and neurological diseases. S6K is also
a downstream effector of PI3-kinase, but its activation also requires phosphorylation
by mTOR. It is involved on metabolism and protein synthesis control and is part of a
negative feedback loop on insulin/growth factor signalling. SGK is involved in cell
proliferation, aldosterone and insulin release and the regulation of ion transporters
(see reviews [17, 57]).

12.6.1 The αC Helix, the PIF-Pocket and Their Dynamics
in AGC Kinases

Experiments have shown that the αC and αB helices in AGC kinases are very
dynamic in solution, as evidenced by hydrogen-deuterium exchange (HDX) exper-
iments in PDK1 [58], PKCzeta [59] and PKCiota [60]. In these examples, the αC
helix is always well resolved in the crystal structure of the active conformations of
these protein kinases; however, the HDX studies of the isolated catalytic domains
revealed that both αB and αC helices are prominently exposed to HDX in solution,
revealing that the helices are dynamically formed and unformed. The original data
from the HDX experiments on the catalytic domain of PDK1 are shown in Fig. 12.2.

Some regions of the protein kinase catalytic domain of PDK1 have a very low
exchange throughout experiments lasting several hours. For example, polypeptides
49–69 and 146–155 do not show any HDX throughout the 2-h experiment (see black
lines in Fig. 12.2). On the opposite spectrum, polypeptides 218–247 and 225–247
comprising the activation loop show 80% H exchanged for D already at the first time
point. This is not surprising since loops are expected to have a maximal exchange in
the time frame investigated. In addition to the activation loop, an almost complete
exchange is also observed in overlapping polypeptides encompassing the αB and the
αC helices (see Fig. 12.2b, c and e). Polypeptides showing time-dependent HDX
between 2 min and 2 h correspond to the glycine-rich loop (polypeptides 49–93 and
52–93; Fig. 12.2f, g).

12.6.2 The PIF-Pocket Regulatory Site

PKA has a C-terminal extension to the catalytic core, with a truncated HM (Phe-Xaa-
Xaa-Phe350-COOH) that docks into a hydrophobic pocket on the small lobe of the
kinase domain. The C-terminal extension to the catalytic core is quite divergent in
different AGC kinases. However, it was found that most AGC kinases also have an
extended HM (Phe-Xaa-Xaa-Phe-Ser/Thr-Tyr), often comprising a phosphoryla-
tion at a Ser or Thr site, indicated in bold.
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Similarly to the active structures of PKA, the active structures of different AGC
kinases have the HM bound to the PIF-pocket. In contrast to PKA, the binding of the
HM to the PIF-pocket in other AGC kinases is the essential regulatory mechanism
participating in the concerted activation by the phosphorylation of the activation
loop and HM. The phosphorylation of the HM site acts in concert with the activation
loop phosphate to stabilise the helices from both sides of the αC helix. This allosteric
communication between the PIF-pocket and the ATP-binding site is central to the
intramolecular mechanism of phosphorylation-dependent activation of AGC
kinases. Also, the PIF-pocket on PDK1 is key to the docking interaction with its
AGC kinase substrates.

12.6.2.1 AGC Kinases Constitutively Phosphorylated by PDK1
and Phosphorylated by PDK1 upon Insulin/Growth Factor
Stimulation of PI3-Kinase Pathway

The PIF-pocket regulatory site in PDK1 is used for the docking interaction with
substrates. A subset of substrates of PDK1, such as PKA, PKG and PKC isoforms,
are constitutively phosphorylated by PDK1. Those phosphorylations do not activate

2

3

4

5

6

7

1 10 100
Time (min)

146-155

d

4

5

6

7

8

9

1 10 100
Time (min)

22

23

24

25

26

27

1 10 100
Time (min)

10

11

12

13

14

15

1 10 100
Time (min)

13
14
15
16
17
18
19

1 10 100

D
eu

te
ro

ns
 In

co
rp

or
at

ed

Time (min)

b c

g

14

15

16

17

18

19

1 10 100
Time (min)

225-247

j
D

eu
te

ro
ns

 In
co

rp
or

at
ed

108-121

52-93

49-66

108-134

D
eu

te
ro

ns
 In

co
rp

or
at

ed

25

26

27

28

29

6

7

8

9

10

11

1 10 100
Time (min)

e

122-134

h

16

17

18

19

20

21

1 10 100
Time (min)

218-247

i

f
30

1 10 100
Time (min)

49-93

Max. 11.7 Max. 23.5 Max. 7.1

Max. 10.2 Max. 32.7 Max. 29,8

Max. 13.2 Max. 24.2 Max. 18.4

a

Activation loop

aC-helix
Gly-rich loop

ATP

75

93

146

155

108

121

134

218

225

247

DFG

PDK1
PDK1 + PS08 (125 μM)

Fig. 12.2 Hydrogen/deuterium exchange coupled with mass spectrometry to measure PDK1
dynamics and the effects of an allosteric compound. (a) Structure of the catalytic domain of
PDK1 (PBD code 3HRF), indicating the analysed peptides. (b–j) Deuterium incorporation at
1, 5, 15 and 45 min in the indicated peptides from PDK1 samples incubated in the presence or
absence of the allosteric activator PS08 that binds to the PIF-pocket. Filled black circles correspond
to the peptides in the absence of added compound; empty red circles correspond to peptides in the
presence of PS08. (Modified from [58])

12 Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling 289



the kinases but keep them competent to be activated by different second messengers
(i.e. Ca2+ and DAG will activate classical PKCs). On the other hand, a number of
other substrates are phosphorylated by PDK1 in response to growth factors and the
subsequent stimulation of PI3-kinase signalling (i.e. PKB/Akt, S6K, SGK, RSK,
PRK/PKNs).

How is PDK1 regulated so that it can phosphorylate some substrates constitu-
tively and other substrates at different times after growth factor stimulation? How are
those AGC kinases activated by phosphorylation?

12.6.2.2 The PIF-Pocket of PDK1 Provides Substrate Recognition,
a Regulated Docking Interaction and Differential Timing
for the Phosphorylation of Substrates

The C-terminal region of the protein kinase PRK2 was identified by 2-hybrid
screening to bind to PDK1 and termed “PDK1 interacting fragment”, PIF [61]. In
PRK2, the HM has a phosphate-mimicking Asp residue (Phe-Xaa-Xaa-Phe-Asp-
Tyr). The binding site for PIF on PDK1 was suggested by the homology of the HM
of PRK2 with the truncated HM of PKA. The binding site for the HM of PIF on
PDK1 was termed PIF-binding pocket, or PIF-pocket [62].

Most of the substrates of PDK1 require the docking interaction between the
PIF-pocket of PDK1 and the hydrophobic motif from substrates. An exception is
the phosphorylation of PKB/Akt upon PI3-kinase activation, which is independent
of the PIF-pocket docking interaction [63]. The requirement of the docking interac-
tion between the HM from substrates and the PIF-pocket on PDK1 was first
described in vitro [62], then validated in knock-in cells that express a PDK1 mutant
affected in the PIF-pocket and further validated by small compounds that bind to the
PIF-pocket of PDK1 and inhibit S6K phosphorylation and activation but do not
inhibit the PI3-kinase-stimulated phosphorylation of PKB/Akt by PDK1 [64–66].

Even then, these protein kinase substrates are phosphorylated at different
timing. What defines that a substrate will become phosphorylated by PDK1?
The available data supports a model where the substrates acquire the regulated
ability to interact with PDK1. In this model, the activity of PDK1 does not need
to vary, but instead the substrates are modified to acquire the ability to dock to
PDK1 (see Fig. 12.3). In SGK, the phosphorylation of the HM is considered to
trigger the interaction with PDK1. In S6K, phosphorylations within an
autoinhibitory segment (about 100 C-terminal residues) are required to enable
the HM phosphorylation, which enhances the interaction with PDK1 [63]. RSK
has two catalytic domains: the C-terminal kinase domain is activated by ERK1/2
and then phosphorylates the HM, triggering the interaction with PDK1 and the
activation of the N-terminal kinase domain that phosphorylates transcription
factor effectors of the signal [67]. As a note of caution, we should comment
that some of the studies that lead us to reach the aforementioned model arise from
experiments where the non-phosphorylated forms of substrates also interact with
PDK1 under overexpression conditions and the phosphorylations are often mim-
icked with Asp or Glu.
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In PRK2, the HM comprised within PIF does not have a phosphorylation site but
has an Asp instead. In this case, the binding to PDK1 is regulated by phosphorylation
of PRK2 at the turn-motif/zipper site (Thr958), 15 amino acids preceding the HM
[68] (see Sect. 12.6.3). The phosphorylation does not directly inhibit the interaction
of PRK2 with PDK1 but it indirectly disrupts the interaction by enhancing the
intramolecular interaction of the turn-motif/zipper phosphate with a phosphate-
binding site on the small lobe of PRK2.

12.6.2.3 Activation of PDK1 and Other AGC Kinases by HM
Phosphorylation

Interestingly, the docking interaction with the PIF-pocket of PDK1 not only provides
specificity for substrate recognition but the binding also allosterically “activates”
PDK1. Phosphorylated HM polypeptides and the particular HM corresponding to
PRK2 (REPRILSEEEQEMFRDFDYIADWC; PIFtide; HM in bold, Asp978
replacing the phosphorylation site underlined) bind to the PIF-pocket of PDK1
and allosterically activate PDK1 [62, 63, 69].

The intrinsic activity of the protein kinase PDK1 can be measured using a peptide
substrate derived from the PDK1 phosphorylation site in substrates, i.e. a peptide
derived from the activation loop of Akt/PKB, termed T308tide [62, 64]. The isolated
peptide is a weak in vitro substrate for the kinase; physiologically, the activation
loop polypeptide substrate sites are phosphorylated because PDK1 possesses other
means of interaction with substrates, as described earlier. PDKtide was designed by
joining PIFtide with T308tide. PDKtide is a vastly improved substrate because it
provides PIFtide-mediated docking interaction to the T308tide substrate [62].

P

PDK1

P P

P

P

AGC kinase
Active

P

AGC kinase
Inactive

P

Fig. 12.3 Schematic representation of the regulated docking interaction between PDK1 and its
substrates. PDK1 is a conformational sensor that detects the exposed HMs of the inactive forms of
AGC kinase substrates. Interaction of phosphorylated HMs of substrates with PDK1 PIF-pocket
promotes allosteric effects on the active site of PDK1, increasing its specific activity and enabling
the phosphorylation of substrates at the activation loop. In turn, the phosphorylation by PDK1
prompts conformational changes in the substrate, where the binding of the phosphorylated HM to
their own PIF-pockets allosterically activates the substrate kinase by stabilising its helix αC and
affecting the ATP-binding site
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The isolated PDK1 has a basal specific activity, which is increased three- to
fourfold by the interaction with peptides derived from the HM of its substrates
[62]. Similarly to the case with PDK1, other AGC kinases (i.e. Akt/PKB, PKCzeta,
RSK, MSK, SGK, S6K) are also activated in vitro by phospho-HM polypeptide but
not by the non-phosphorylated peptides (see Fig. 12.4) [70]. Thus, it is considered
that the activation of most AGC kinases involves the intramolecular docking of the
phosphorylated HM to the PIF-pocket and the consequent allosteric effects on the
ATP-binding site.

The HM of PRK2, PIF, has Asp in place of the HM phosphorylation site. The role
of Asp978 within the HM of PIF on the activation of PDK1 was investigated by
testing the effect of PIFtide or the PIFtide [Asp978Ala] mutated polypeptide on the
activation of PDK1. The PIFtide [Asp978Ala] mutated polypeptide had 10 times
decreased affinity and fully activated PDK1 at 10 times the concentration [62]. The
same happens when the activation of Akt/PKB by PIFtide is studied in comparison
to the activation by PIFtide [Asp978Ala] [71]. Together, the data indicates that the
negative charge provides increased affinity of the HM to the PIF-pocket and thus
participates indirectly in the mechanism of activation of PDK1 and Akt/PKB.

12.6.3 Active Structures of AGC Kinases

The active structures of the catalytic domain of protein kinases are highly conserved.
Active structures of AGC kinases PKA (i.e. PDB code 1ATP), PDK1 (i.e. PDB code
1H1W), ROCK (PDB code 2F2U), PRK1/2 (PDB codes 4CRS, 4OTD), Akt/PKB
(PDB codes 1O6K, 1O6L, 4EKK, 6BUU)[63, 72, 73], MRCK/DMPK (PDB code
3TKU), PKCiota (PDB code 3A8W), PKCbeta2 (PDB code 2I0E) [74], GSKs
(i.e. PDB code 3NYN) [75] as well as the active structure of the related kinase
Aurora kinase (PDB code 1OL5) [76] have been published. Except for PDK1, all
other active structures have the Phe residues from the HM (Akt/PKB, F-P-Q-F-S-Y;
SGK, F-L/V-G-F-S-Y; ROCK, F-V/I-G-F-T-Y; LATS, F-Y-E-F-T-F; PKCiota, F-
E-G-F-E-Y) bound to their corresponding PIF-pockets as originally identified for the
truncated hydrophobic motif of PKA (F-T-E-F). The first crystal structure of PDK1
was solved with a sulphate making interactions with Arg131, Thr148, Lys76 and
Gln150 and suggested to form the phosphate binding site that interacts with the
phosphate from the hydrophobic motif. Indeed, Gln150 and Lys76 provide interac-
tions with phosphate from the HM of Akt/PKB and with the Asp from the HM of PIF
in the crystal structures of PDK1 in complex with the HM of Akt/PKB (PDB code
5LVP) [77] and the HM of PRK2 (PIF) (PDB code 4RRV) [66].

An Akt/PKB-PRK2 chimera was produced comprising the PH domain and the
catalytic domain of Akt/PKB as a fusion with the C-terminal region of PRK2
(Akt/PKB-CT-PIF), the resulting Akt/PKB-CT-PIF chimera was constitutively
active in vitro [63]. The crystal of Akt/PKB-CT-PIF shows a kinase domain
stabilised by the C-terminal region of PRK2 (PIF) in the active conformation
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interactions at the site equivalent to the PIF-pocket is expected in other distant protein kinases,
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[24]. Notably, the generation of LATS-CT-PIF and NDR-CT-PIF chimeras also
produces a constitutively active kinase [78–80]. The binding of the hydrophobic
motif to the PIF-pocket of Akt/PKB was important to achieve the active structure.
The construct lacking the HM or where the HM was not phosphorylated crystallised
inactive [71] (see Sect. 12.6.4).

Besides the activation loop phosphorylation site and the hydrophobic motif
phosphorylation site, many AGC kinases also possess a third phosphorylation site,
located about 15 amino acids preceding the hydrophobic motif. It was originally
termed “turn motif” phosphorylation site, because in PKA, the only crystallised
AGC kinase at the time, the phosphorylation is located next to a turn in the
C-terminal segment. In PKA, the phosphate points outwards and does not make
interactions with the catalytic domain. In contrast, the phosphate from other AGC
kinases makes specific interactions with residues from the small lobe, i.e. in PRK2,
the turn-motif/zipper phosphates interact with Lys689 and with Arg665 and Lys670
from the Gly-rich loop; therefore, it does not seem equivalent in function to the turn-
motif phosphate in PKA. This rather conserved phosphorylation site participates in
the activation of AGC kinases by providing an additional interaction of the
C-terminal segment to the catalytic domain, enhancing the docking of the HM to
the PIF-pocket. Because of this function, the site was also termed “zipper” phos-
phorylation site [59]. Two of the three residues forming the zipper phosphate
binding site (i.e. Arg665 and Lys670 in PRK2) are located in the Gly-rich loop,
which corresponds to the “ceiling” of the ATP-binding site, thus suggesting that the
phosphorylation at this site could also affect the ATP-binding site more directly. In
PRK2, the turn-motif/zipper phosphate plays two known roles: it decreases the
binding of PRK2 to PDK1 [68] and promotes the interaction of the C-terminal
HM to it’s own PIF-pocket, enhancing activity by stabilising the αC helix
[59]. The phosphate at the turn-motif/zipper site could in addition support the
stabilisation of the active conformation of the ATP-binding site by its interaction
with Arg665 and Lys670 located in the Gly-rich loop. More recently, studies on
Akt/PKB estimated very high Km values for ATP in comparison to previous work
[72]. Interestingly, the Akt/PKB protein used lacked the “zipper” phosphorylation
site, while Akt/PKB structure suggested the existence of the conserved binding site
for the zipper phosphate (Arg184 from the β-strand preceding the helix αB, Lys160
and Lys165 located in the Gly-rich loop). It is tempting to speculate that the increase
Km was due to the lack of the turn motif/zipper phosphorylation. If this were the
case, the “zipper” phosphorylation site would have a second function, directly on the
conformation of the ATP-binding site, controlling the Km towards ATP.

In summary, the full activity of AGC kinases relies on the stabilisation of the
small lobe and the closing of the small lobe into the large lobe. On the one hand, the
αC helix is stabilised by the phosphorylated HM binding to the PIF-pocket on one
side of the helix and the phosphate of the activation loop at the other side. In turn, the
activation loop phosphate interacts with Arg/Lys residue on the large lobe. Together,
the chain of interactions produces the stabilisation of the αC helix and the closure of
the catalytic domain. On the other hand, the “zipper” phosphorylation stabilises the
HM into the PIF-pocket and also stabilises the Gly-rich loop, possibly also affecting
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the conformation of the ATP-binding site. Finally, besides these general aspects,
each AGC kinase has its own particular modifications on the general theme.

12.6.4 The Inactive and Inhibited Forms of Selected AGC
Kinases: Akt/PKB and PRKs

While the active form of the kinases are all equivalent, the inhibited forms have each
their own characteristics (see Fig. 12.5). The catalytic subunit of PKA is inhibited by
the polypeptide inhibitor PKI, or the regulatory subunit, like a pseudosubstrate. In
this case, the inhibited kinase keeps the active conformation of the catalytic domain.

Inactive Akt/PKB 
CD
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(AGC kinase domain)
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Fig. 12.5 Comparison of different inactive structures of AGC kinases. While the active forms of
kinases are all equivalent (represented here by the structure of PKA; PDB code 1ATP), the inhibited
forms differ from each other with their own characteristics. Helices αB and αC (marked in green)
are affected in all inactive states. RSK (PDB code 2Z7Q), S6K (PDB code 3A60), SGK (PDB code
2R5T), MSK1 (PDB code 1VZO), Akt/PKB catalytic domain (CD; PDB code 1GZN) and Akt/PKB
full length (FL; PDB code 3O96)
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This is not a generality in protein kinases inhibited by a pseudosubstrate mechanism.
The isoforms of PKC are inhibited by an intramolecular pseudosubstrate sequence;
however, in these cases, there is no crystal structure of the inhibited kinase domain,
and several lines of evidence [60, 81] suggest that the kinase domain is not stabilised
by the pseudosubstrate in the active conformation as in PKA.

Akt/PKB is possibly the most complete example of an inactive structure of an
AGC kinase. A crystal structure of the inactive conformation of the catalytic domain
of Akt/PKB was published in 2002 (i.e. PDB codes 1GZO, 1GZN) [71]. The
catalytic domain not phosphorylated at the HM or lacking the C-terminal segment
crystallised in an inactive conformation, with disordered regions in the area
corresponding to the helices αB and αC [71]. For comparison, the active structure
of the catalytic domain was obtained with a constitutively active construct compris-
ing the fusion of the catalytic domain of Akt/PKB with the C-terminal region of the
protein kinase PRK2 (Akt/PKB-CT-PIF) [24, 63]. The active structure of the
catalytic domain was therefore modulated by the C-terminal regulation and the
HM binding to the PIF-pocket on Akt/PKB and stabilising the αB and αC helices.

In the case of Akt/PKB, we know the mechanism of the allosteric inhibition from
the crystal structure of the full-length protein in complex with the allosteric inhibitor
Akti1-2 (PDB code 3O96) [82]. The structure shows that the PH domain folds onto
the small lobe at the site where normally the αB and αC helices form the active
PIF-pocket in the active structures (Fig. 12.5). The small compound Akti1-2 sits as
the ham of the sandwich between the small lobe and the PH domain of Akt/PKB.
Follow-up compounds from Merck (i.e. MK2206 [83]) and Bayer
(i.e. BAY1125976 [84]) are also expected to interact with Akt/PKB using a similar
mode of action. Interestingly, the HM of Akt/PKB is not present in the inactive
structure. One possibility is that in the inactive form the HM interacts with heat
shock proteins or alternatively that it could sit at a position overlapping with the
Akti1-2 site. The activation of Akt/PKB is considered to require two steps: first, the
binding of the second messenger Ptdins(3,4,5)P3 to the PH domain would open the
structure, and only after this step happens, PDK1 would phosphorylate the activation
loop. Recent studies show that phosphorylation of Ser473 by mTORC2 can facilitate
Akt/PKB activation via the interaction of pSer473 with Arg144 within the
PH-kinase linker which would help relieving the autoinhibition by the PH domain
[72]. It was shown that the phosphorylation of the activation loop of Akt/PKB by
PDK1 upon PI3-kinase activation does not require the docking interaction of its HM
with the PIF-pocket of PDK1 [63]. Also it was recently observed that the phosphor-
ylated form of Akt/PKB can be activated directly by Ptdins(3,4,5)P3 [85]. The dual
phosphorylation of Ser477/Thr479 has also been proposed as an alternative activa-
tion mechanism [86]. The phosphorylation of those residues within the C-terminal
tail can trigger an interaction with the activation loop and relieve Akt/PKB
autoinhibition [72]. In addition, recent data shows that Akt/PKB can become
phosphorylated and activated independently of Ptdins(3,4,5)P3, with the requirement
of E3 ubiquitin ligase Skp2 and ubiquitination of Akt/PKB [87]. The mechanism of
phosphorylation by PDK1 may also be different if the process happens in the
presence of Ptdins(3,4,5)P3 or in its absence. In the absence of Ptdins(3,4,5)P3, the
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activation of Akt/PKB may be dependent on the docking interaction with the
PIF-pocket of PDK1, just as the other substrates of PDK1.

12.7 Allostery in AGC Kinases: From the Regulatory
PIF-Pocket Site to the ATP-Binding Site

The allosteric communication between the PIF-pocket and the activation loop has
been studied in PDK1 using a polypeptide comprising the HM of PRK2, PIFtide,
and using small compounds that specifically bind to the PIF-pocket. While PIFtide
has 23 amino acids and may exert its effects by interaction at the PIF-pocket and
additionally at different sites, the small compounds precisely unveil the effect of the
binding solely to the PIF-pocket.

In vitro, PIFtide increases the ability of PDK1 to phosphorylate a peptide
substrate derived from the activation loop of PKB/Akt. Small compounds PS46
[64], PS48 (PDB code 3HRF) [58, 88], PS114 (PDB code 4A06) [81, 89], PS189
(PDB code 4AW0), PS210 (PDB code 4AW1) [65, 90] and RS1 (PDB code 4RQK)
[66] are reversible allosteric activators that bind to the PIF-pocket as revealed in the
crystal structure of the complexes and, like PIFtide (PDB code 4RRV) and phospho-
HM of Akt/PKB (PDB code 5LVP), also activate PDK1 in vitro.

The polypeptides or small compound activators do not modify the Km of ATP but
rather increase the Vmax, thus providing evidence that more molecules are stabilised
in active conformation by the compound activators [62, 64]. The crystal structure of
the PDK1-ATP-PS48 complex was very similar to the protein in complex with ATP,
with the structure in an overall active conformation—but not fully active conforma-
tion because the structure of PDK1 in complex with ATP and PS48 was not in a
closed conformation but an “intermediate” conformation—and the beta and gamma
phosphates of ATP were not positioned as in the closed-active structure of PKA (see
Fig. 12.6a, b) [58]. The structure of PDK1 in complex with ATP and PS48 showed
small but significant changes upon the binding of PS48. The deeper binding of PS48
into the PIF-pocket induced local changes (i.e. Phe159 changed conformation). In
addition, the structure revealed small changes in distant regions, i.e. the Gly-rich
loop region and stabilisation of the activation loop. The allosteric effect of com-
pounds binding at the PIF-pocket site was studied in solution using a fluorescent
ATP analogue, TNP-ATP, to probe the conformation of the ATP-binding site (see
Fig. 12.6c). Binding of PS48 or PS08 to PDK1 decreases the fluorescence of
TNP-ATP [58]. The specificity of the signal was validated using compounds PS47
and PS133, which are stereoisomers of PS48 and PS08 where the carboxylate points
to the opposite direction. These control compounds do not activate PDK1 and do not
affect the fluorescence of TNP-ATP. The allosteric effect in solution in the presence
of PS48 was also studied using HDX experiments (see Fig. 12.2, red lines in
comparison to black lines) [58]. Addition of PS48 produced local protection of the
polypeptides that are part of the PIF-pocket, i.e. polypeptide from the αB and αC
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helices. In addition, PS48 induced protection of overlapping polypeptides that are
not in direct contact with the compound, comprising the Gly-rich loop and
encompassing a large polypeptide that corresponds to the activation loop and the
DFG motif. Interestingly, the binding of PS48 to the PIF-pocket of PDK1 also
produced a significant protection of a polypeptide that forms the αG helix within
the large lobe of PDK1, at about 30 Å distance from the PIF-pocket [58]. The
meaning of this protection remains unclear but may be related to the interaction of
PDK1 with full-length substrates. The conformational change induced by the bind-
ing to the PIF-pocket could potentially support the binding or the release of sub-
strates from PDK1.

The crystallisation of PDK1 in complex with the potent compound PS210
unveiled the completely closed PDK1 structure (Fig. 12.6d). The PS210-related
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compound PS182, which induces half of the maximal activation produced by PS210,
did not show the closure of the structure, indicating that the stronger allosteric effect
is due to the larger displacement of the Gly-rich loop which makes specific interac-
tions with the uncoordinated β-phosphate of ATP. In the structure of PDK1 in
complex with ATP and PS210 (PDB code 4AW1), the nucleotide is positioned
exactly as in the structure of the active-closed form of PKA (PDB code 1ATP).

The allosteric communication between the PIF-pocket and the ATP-binding site
in PDK1 was also investigated using molecular dynamics simulations. As a first step,
non-biased simulations of the catalytic domain of PDK1 in the PDK1-ATP complex
identified two dynamic features, the open-close motion and the extension of the helix
αB. To fully sample the conformational changes from μs to ms, the detailed analysis
was then performed using long multiple-replica parallel tempering (PT; [91]) sim-
ulations in the well-tempered ensemble (WTE; [92]). The effects of the compounds
on the open-close populations and on the conformation of the helix αB are graph-
ically presented in Fig. 12.7. The distance between residues Asp205 and the Gly-rich
loop measures the open-close conformation, while the end-to-end distance of helix
αB represents the effects on the conformation of that helix (the smaller distance
represents the well-folded helix αB). PDK1 in complex with ATP shows two
populations that represent an equilibrium between open and closed conformations
and two populations in relation to the conformation of the helix αB. PS210 restricts
the kinase open-close dynamics, enforcing a more closed (active) catalytic domain
and further stabilises the better folded helix αB.

The aforementioned studies show an allosteric communication between the
PIF-pocket and the ATP-binding site of PDK1. A similar allosteric communication
is expected to happen in other AGC kinases that are activated by HM-polypeptides
binding to the PIF-pocket. In an equivalent manner, AGC kinases also inhibit the
kinase catalytic domain by interactions with the αC helix (or what is left from the αC
helix), as demonstrated for Akt/PKB and also aPKCs [81]. Small compound variants
of PDK1 activators resulted in allosteric inhibitors of aPKCs, i.e. PS171 that is a
weak inhibitor of PKCζ was obtained as a variant from PS114 that is an activator of
PDK1 [81, 89]. Follow-up small compounds directed to the PIF-pocket of aPKCs
have been developed [93–95]. In particular, HDX experiments indicate that the
compound PS315 binds to the PIF-pocket with minor allosteric effects, while the
crystal structure of PS315 in complex with a chimera comprising the catalytic
domain of PDK1 with PIF-pocket residues corresponding to PKCζ shows that
PS315 occupies a deep tunnel at the bottom of the PIF-pocket (PDB code 4CT1).
PS315 binding disturbs the localisation of Lys111 [60], which positions the terminal
phosphates of ATP for catalysis in active structures by participating in the salt bridge
with Glu130 (from helix αC). Thus, the compounds binding to the PIF-pocket can
also inhibit the kinase activity of aPKCs by subtly affecting the active site of the
kinase, allosterically.

A similar phenomenon and similar possibilities for allosteric modulation with
small compounds are expected to take place in more evolutionary distant protein
kinases where the site equivalent to the PIF-pocket or the stabilisation of the αC helix
participates in the activation of kinases. Aurora A is activated by TPX2 [76, 96] and
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was recently found to be allosterically inhibited by small compounds binding to the
TPX2-binding site, which is equivalent to the PIF-pocket [97–100]. CDK7 is
activated by viral cyclin T1, which precisely binds into the site equivalent to the
PIF-pocket [30]. EGFR is activated by dimerisation at a site equivalent to the
PIF-pocket [31]. Interestingly, it is claimed that small allosteric inhibitors of
CDKs and EGFR also bind at the site equivalent to the PIF-pocket [101].

Notably, as there is an allosteric communication from the PIF-pocket to the
ATP-binding site, then due to thermodynamics, the reverse should also be possible;
thus compounds, proteins or intramolecular interactions at the active site could also
modulate the conformation or dynamics of the PIF-pocket.
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Fig. 12.7 Molecular dynamics simulation to assess kinase dynamics and allosteric effects. (a)
Schematic representation of the parameters evaluated during the PDK1 simulations: conformation
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and Asp205). (b) Free energy calculation of PDK1 in the presence of ATP, PS210, PS653 and
adenosine. (For the original data, see [77])
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12.8 Allostery in AGC Kinases: From the ATP-Binding Site
to the PIF-Pocket Regulatory Site

A screening of libraries of compounds, using a PDK1 homogeneous assay that
measures the interaction between PDK1 and the polypeptide PIFtide, identified
hits that displaced the interaction by two different mechanisms. Further
characterisations proved that some of the compounds that were activators of PDK1
in vitro did not affect the activity of PDK1 [Leu155Glu] (a PIF-pocket mutant that
does not bind small compounds) and crystalised at the PIF-pocket, i.e. PSE10 (PDB
code 5LVO) [77]. Such kind of compound inhibited the binding of PDK1 to PIFtide
by competing with the interaction site with PIFtide (see Fig. 12.8).

More interestingly, another hit compound termed PS653 was identified to dis-
place the interaction of PDK1 with PIFtide (see Fig. 12.8a) but in secondary assays
proved to inhibit the activity of PDK1 in vitro, where its potency was maintained
against the PDK1 mutated at the PIF-pocket [Leu155Glu]. PS653 crystallised in
complex with PDK1 occupying the ATP-binding site (PDB code 5LVL) [77]. Thus,
PS653 displaced the interaction of PDK1 with PIFtide allosterically but in the
opposite direction to the allosteric activation by compounds such as PS48 and
PS210 and by the known physiological mechanism of regulation of the kinase by
HM polypeptides from substrates that bind to the PIF-pocket of PDK1.

PS653 is a very small compound that, in the crystal, made specific interactions
with the hinge region, similarly to the interactions made by de adenine ring of ATP.
Adenine, AMP, ADP and ATP do not produce any significant allosteric effect on the
interactions of PDK1 with PIFtide. However, adenosine produces an effect that is the
opposite of the allosteric effect produced by PS653. Adenosine binds to the
ATP-binding site and enhances the binding of PIFtide at the PIF-pocket [77] (see
Fig. 12.8b).The crystal structure of PDK1 in complex with PS653, adenine (PDB
code 5LVM) and adenosine (PDB code 5LVN) did not provide clues about the
mechanism of the negative or positive allosteric modulation of PIFtide binding.

Molecular dynamics simulations were performed to investigate the mechanism
by which PS653 and adenosine modulated the interaction of PDK1 with PIFtide
(Fig. 12.7) [77]. PT-WTE simulations show that in the presence of PS653 the
interactions between the large lobe and the small lobe are lost. Without such
interactions, the PIF-pocket is stabilised with well-structured αB and αC helices
but with a more open conformation of the catalytic domain. In contrast, the binding
of adenosine stabilises a more wobbly structure of the PIF-pocket, where the
overall populations are in a more closed conformation than in the presence of
PS653 but with less structured αB and αC helices. These findings suggest that the
increased binding of PIFtide is a product from a less rigid structure of the
PIF-pocket to enable the binding.

Altogether, the PDK1 model here presented represents a conclusive example of
allostery, where the bidirectionality of the system has been depicted with a series of
complementing approaches, including biochemical and biophysical studies, syn-
thetic chemistry, crystallography of PDK1 with the allosteric compounds and
molecular dynamic simulations.
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12.9 Allosteric Modulation of Protein Kinases by Inhibitors
(Drugs) Binding to the ATP-Binding Site

Having reviewed the data on bidirectional allosteric communication between the
PIF-pocket regulatory site and the ATP-binding site, it becomes obvious that drugs
developed by the pharmaceutical industry occupying the ATP-binding site could
produce allosteric effects at regulatory regions of the kinase.

UCN01 and GSK2334470 are small compounds developed by the pharmaceuti-
cal industry that potently inhibit the protein kinase PDK1 by occupying the
ATP-binding site [102, 103]. Interestingly, in cellular assays, GSK2334470 com-
pound was found to inhibit more potently the activation of one of its substrates S6K
but not Akt/PKB [104]. We found that the binding of UCN01 on PDK1 does not
affect the interaction of PDK1 with PIFtide (see Fig. 12.8c). However, in sharp
contrast, GSK2334470, also binding at the ATP-binding site, produced a potent
inhibition of the interaction with PIFtide [77]. The findings indicate that
GSK2334470 binds to the ATP-binding site and allosterically affects the conforma-
tion or dynamics of the PIF-pocket, inhibiting the docking interaction with HM
polypeptide. Interestingly, the “reverse allosteric effect” by GSK2334470 could
explain the stronger inhibition of S6K activation comparing to Akt/PKB, since
S6K requires docking interaction of its HM to the PIF-pocket of PDK1, while
PI3-kinase-mediated activation of Akt/PKB does not require the docking to the
PIF-pocket of PDK1. The finding suggests that different ATP-binding site drugs in
development by the pharmaceutical industry can have important allosteric effects on
the regulatory sites, affecting docking interactions with substrates, localisation, etc.

Aurora kinases are closely related to the AGC group of protein kinases. Drugs
targeting the ATP-binding site that inhibit the Aurora kinase activity are of interest
for the treatment of cancers. Aurora A is activated by TPX2 [76, 96] in a manner that
resembles the activation of PDK1 by HM polypeptides [97–100]. TPX2 provides
activation and also the proper localisation of the kinase. In addition, Aurora A
stabilises the oncogenes N-Myc and C-Myc [105]. The ideal drug against Aurora
A would be one that binds to the ATP-binding site and allosterically displaces the
interaction with TPX2, affecting the localisation of Aurora and, in addition,
destabilising C-Myc and N-Myc to promote their degradation. VX680 and
MLN8237 are both potent inhibitors of Aurora A. But they differ in their ability to
allosterically inhibit the interaction of Aurora A with TPX2. While VX680 is
virtually ineffective in allosterically displacing the interaction with TPX2,

⁄�

Fig. 12.8 (continued) ATP-competitive inhibitors of PDK1, on the interaction between the catalytic
domain of PDK1 and PIFtide. While UCN01 does not show any effect, GSK2334470 strongly
displaces the interaction. (d) Effect of VX680 and MLN8237, two ATP- competitive inhibitors of
Aurora kinase, on the interaction between Aurora A and TPX2tide, a peptide derived from the
Aurora kinase regulator TPX2. MLN8237 is a potent inhibitor of the interaction, while VX680 does
not affect the interaction. (For the original data, see [77])
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MLN8237 binds to the ATP-binding site and allosterically displaces the interaction
with TPX2 (Fig. 12.8d) [77]. Gustafson et al. further identified a series of com-
pounds that also target the ATP-binding site on Aurora A and are far more potent
than MLN8237 in destabilising N-Myc [106].

Compounds binding at the ATP-binding site can also allosterically enhance the
dimer interactions of B-Raf [107, 108] and RNASE activity of IRE1 [109]. Also,
compounds targeting the ATP-binding site of the JNK can differentially affect the
interaction of peptides that bind at a docking site that is located at the back of the
kinase catalytic domain [110].

12.10 Perspectives

The PI3-kinase signalling pathway is important for proper response to insulin.
Deregulation of the pathway is responsible for the lack of response to insulin in
type II diabetes, while mutations that activate PI3-kinase or inactivate the Ptdins
(3,4,5)P3 phosphatase PTEN are present in almost 40% of all cancers. The under-
standing of the allosteric mechanisms by which the PDK1 and its AGC kinase
substrates are regulated can set the bases for innovative drugs to inhibit the signalling
in cancers or to specifically activate certain phosphorylations and mimic essential
insulin signalling for the treatment of type II diabetes.

The perspectives on the discovery and development of protein kinase inhibitors
have evolved through the years. Two decades ago, the perspective was the potential
to identify and develop sufficiently selective inhibitors of protein kinases for treat-
ment of human disorders. Later, the perspective was shifted to the possibility of
developing allosteric drugs, binding to regulatory sites or docking sites and alloste-
rically affecting the active site and the consequent kinase activity. Today, those
perspectives have been achieved for many protein kinases and new developments
are constantly being disclosed. The understanding of the allosteric process in protein
kinases lags behind those developments. The description of the allosteric mechanism
in PDK1 is perhaps the best understood allosteric system within protein kinases,
where for the first time, the bidirectionality using small compounds has been
described. Those studies reinforce potentially important features both for drug
discovery and physiological regulation of protein kinases.

Recent work shows that drugs developed by the pharmaceutical industry
targeting the ATP-binding site can have strong allosteric effects and positively or
negatively modulate protein kinase interactions. This realisation should encourage
the revision of the programs where drugs failed clinical trials and should stimulate
checking the allosteric effects of those compounds as well as alternative leads and
clinical candidates, which, by having different allosteric effects, could have different
effects on patients. On the other hand, the recent detailed studies on the allosteric
system on PDK1 identified that adenosine binds to the active site of PDK1 and
enhances the interaction of PDK1 with the peptide PIFtide, which binds to the
PIF-pocket regulatory site on PDK1. The identification of adenosine suggests that
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protein kinase docking interactions could be modulated physiologically by cellular
metabolites. Although it seems early to emphasise the importance of the finding, the
discovery opens a potentially important regulatory mechanism used by nature to
modulate protein kinases signalling by modulating the interaction with substrates
and the formation of multiprotein complexes. Such mechanisms of regulation of
protein kinase conformations by metabolites targeting the ATP-binding site could
also regulate the catalytically dead pseudokinases.
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Chapter 13
Allosteric Modulators of Protein–Protein
Interactions (PPIs)

Duan Ni, Na Liu, and Chunquan Sheng

Abstract Protein–protein interactions (PPIs) represent promising drug targets of
broad-spectrum therapeutic interests due to their critical implications in both health
and disease circumstances. Hence, they are widely accepted as the Holy Grail of
drug development. Historically, PPIs were rendered “undruggable” for their large,
flat, and pocket-less structures. Current attempts to drug these “intractable” targets
include orthosteric and allosteric methodologies. Previous efforts employing
orthosteric approaches like protein therapeutics and orthosteric small molecules
frequently suffered from poor performance caused by the difficulties in directly
targeting PPI interfaces. As structural biology progresses rapidly, allosteric modu-
lators, which direct to the allosteric regulatory sites remote to the PPI surfaces, have
gradually established as a potential solution. Allosteric pockets are topologically
distal from the PPI orthosteric sites, and their ligands do not need to compete with
the PPI partners, which helps to improve the physiochemical and pharmacological
properties of allosteric PPI modulators. Thus, exploiting allostery to tailor PPIs is
regarded as a tempting strategy in future PPI drug discovery. Here, we provide a
comprehensive review of our representative achievements along the way we utilize
allosteric effects to tame the difficult PPI systems into druggable targets. Impor-
tantly, we provide an in-depth mechanistic analysis of this success, which will be
instructive to future related lead optimizations and drug design. Finally, we discuss
the current challenges in allosteric PPI drug discovery. Their solutions as well as
future perspectives are also presented.

Keywords Protein–protein interaction · Allostery · Allosteric modulator · Drug
design

D. Ni
Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of
Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai,
China

N. Liu · C. Sheng (*)
School of Pharmacy, Second Military Medical University, Shanghai, China
e-mail: shengcq@smmu.edu.cn

© Springer Nature Singapore Pte Ltd. 2019
J. Zhang, R. Nussinov (eds.), Protein Allostery in Drug Discovery,
Advances in Experimental Medicine and Biology 1163,
https://doi.org/10.1007/978-981-13-8719-7_13

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8719-7_13&domain=pdf
mailto:shengcq@smmu.edu.cn


13.1 Introduction

A number of important biological processes, such as cell division, adaption, and
extracellular signal response, are modulated by protein-protein interactions (PPIs)
[5, 10, 83, 122]. The complex network of human PPIs (interactome) is estimated to
comprise about 130,000 to 650,000 types of PPI [98, 110, 111, 116]. Due to the
pivotal role of PPIs both in normal and disease states, PPIs represent a rich source of
drug targets for the development of new generation of therapeutics [1, 5, 62, 83, 104,
113, 122, 128]. PPI complexes can be modulated by peptides or small molecules
through orthosteric binding (inhibition or stabilization) and allosteric binding (inhi-
bition or stabilization). An orthosteric PPI modulator binds to the PPI interaction
surface, thus sterically preventing or stabilizing the binding of one protein to its
partner protein. Orthosteric PPI inhibition represents a major strategy in current
PPI-based drug discovery because most PPI modulators marketed or in clinical
development are small molecule inhibitors [50, 63, 79, 83, 117, 129]. However,
the discovery of drug-like small-molecule PPI inhibitors is still considered to be
highly challenging [39, 104, 123]. As compared to traditional drug targets (e.g.,
enzymes, G-protein-coupled receptors) with well-defined pockets for binding small
molecules, the PPI interface is generally large (about 1500–6000 Å2) [6, 56, 109],
flat [10], and dominated with hydrophobic or charged residues [6, 52, 56, 64]. Thus,
these features of PPI interfaces make it difficult to design selective and potent small-
molecule inhibitors [16]. Stabilization of PPI complexes is an alternative way to
interfere with the PPI-associated biological functions [113, 125]. Instead of compet-
ing with any of the protein partners, PPI stabilizers target the regions at or near the
PPI interfaces. Thus, PPI stabilizers are able to exert desired biological response with
relatively low binding affinity (micromolar range) and are more likely to achieve
specificity [74, 113, 125]. Recently, there is an increase of research interests in
investigating the mode of action, molecular design, and therapeutic effects of PPI
stabilizers (e.g., stabilizers of 14-3-3 PPI) [74, 113, 125].

In contrast to orthosteric modulators, allosteric PPI modulators bind at a remote
site outside the PPI interface and interfere with the protein binding by triggering
conformational change [14, 23, 41, 83, 104, 106]. Due to the unique binding
mechanism that targeting regions spatially distinct from intractable PPI interfaces,
allosteric modulators have several advantages over orthosteric PPI ligands and could
partly address the difficulties in designing orthosteric modulators. First, PPI targets
that are fundamentally intractable to orthosteric small molecule binders can be
modulated by allosteric binding toward remote pockets. The structures of allosteric
sites are more suitable to bind drug-like small molecules relative to large and flat PPI
interfaces. Also, allosteric ligands do not need to compete with the bulky, and
relatively high-affinity PPI partners, which is the major obstacle for orthosteric
binding. Hence, allosteric modulators generally have lower molecular weight and
less hydrophobicity than orthosteric PPI ligands, and thus are considered to be more
drug-like [61, 115, 119]. Second, allosteric mechanism of modulation allows for the
possibility to achieve better functional control of a drug target in which binding and
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functional modulations can be separated [14, 41, 66, 85]. Currently, various alloste-
ric PPI modulators were identified, and particularly modulators for tubulin dimer-
ization [60, 76] have been intensively studied and even reached clinic.

Although allosteric regulation has shown promising future in PPI-based drug
discovery, it is still highly challenging to discover small molecule allosteric PPI
modulators with desired functions. This is probably due to limited knowledge about
the allosteric mechanisms of PPI [4]. Instead of rational design, most allosteric PPI
modulators were discovered serendipitously, but still, rapid progress has been made
in theories and drug design approaches for allosteric PPI modulators [14, 65, 66, 84,
118]. The improvement of chemical and structural biology techniques facilitated
better understanding of allosteric binding mechanisms and rational drug design.

In this chapter, we aim to provide an overview of allosteric PPI modulators.
Design strategies and successful examples for the discovery of allosteric modulators
will be highlighted. Current challenges and future perspectives will also be provided
to inspire future research of allosteric PPI-based drug discovery.

13.2 CDK2–Cyclin A3

Cell cycle or cell division is an important cellular event strictly controlled throughout
the process of development and growth. In addition to its critical role in normal
physiological conditions, malfunctions of division frequently lead to the pathogen-
esis of series of diseases such as cancers [69, 70, 77, 80, 96, 105]. The accurate
process of cell cycle is exactly regulated by a family of serine/threonine kinases, the
cyclin-dependent protein kinases (CDKs), and their PPI partner cyclins [9, 68]. Dur-
ing cell division, cyclins form heterodimers with CDKs [68, 96], which further
phosphorylate downstream targets such as Whi5 and Ndd1 [24, 27, 28, 94] and drive
cell cycle in a timely manner. Malfunction of the CDK–cyclin PPIs results in the loss
of correct timing and order of cell division processes, leading to pathophysiological
conditions such as cancers [29, 43, 77, 80, 105]. Hence, the interactions between
CDKs and cyclins have been intensively investigated as attractive antitumor targets
and the CDK2–cyclin A3 PPI is among one of them [31, 33, 36, 68]. Previous small
peptides or peptidomimetic inhibitors for this PPI system are frequently hampered
by poor metabolic stability, low oral bioavailability, and easy degradation. There-
fore, allosteric modulators supply a new opportunity for targeting CDK2–cyclin A3
PPI with improved performances and represent a novel direction for cancer thera-
peutics development [31, 33, 36, 69].

Recently, a novel allosteric pocket on CDK2 was uncovered [55] and it was
quickly translated into the development of a set of allosteric inhibitors for the
CDK2–cyclin A3 PPI [46] (Fig. 13.1). In the research carried out by Hu et al.,
virtual screening is combined with bioassays to yield the promising lead compounds.
SPECS chemical library (http://www.specs.net) and Chemdiv chemical library
(http://www.chemdiv.com) were employed for in silico screening using Grid-
based ligand docking from GLIDE software [38] (Schrödinger, Portland, OR) on
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the co-crystal structure of CDK2 and cyclin A [17] (PDB ID: 2CCI). Two rounds of
screening and docking with standard-precision (SP) and extra-precision
(XP) docking were carried out and the screening hits and their potential binding
poses were retrieved. Final choices for the possible candidates were based on the
Glide scoring function (G-Score), docking analysis, and manual selection, during
which docking free energy, binding pose, and molecular interactions were major
criteria for decisions. Fifteen compounds were obtained from virtual screening, and
they were tested using a commercially available luminescent-based approach
(ADP-Glo™ Max Assay, Promega). Since the phosphorylation activity of CDK2
depends on its PPI with cyclin A3, the ability of CDK2 in the complex system to
phosphorylate synthetic peptide substrate was applied to the measurement of the
capacity of the compound candidates to disrupt the CDK2–cyclin A3 interaction.
Two compounds, B2 and C5, were found to be effective PPI inhibitors with IC50 of
52.12 � 1.350 μM and 105.1 � 1.428 μM (Fig. 13.1). Their inhibitory effects were
also confirmed through GST pull-down assays. Further mutagenesis experiments
verified the allosteric binding of the compounds into a pocket distinct from the PPI
interface, composed of R126, R150, and Y180 (Fig. 13.1).

Fig. 13.1 Structural
overview of the CDK2–
cyclin A PPI complex
system with the allosteric
site highlighted (PDB ID,
2CCI; CDK2, grey;
cyclin A, pink; ATP, blue;
and allosteric site, cyan) and
chemical structure of two
allosteric PPI inhibitors for
CDK2–cyclin A system, B2
and C5
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The lead compound, B2, was tested in human cancer cell lines A549 (non-small
cell lung carcinoma), HepG2 (liver hepatocellular carcinoma), and MDA-MB-231
(breast carcinoma) by MTS assays. It showed that B2 exhibits a concentration-
dependent anti-proliferative activity. Flow cytometry showed that B2 arrested cell
cycle at S phage and therefore prevents cell growth. Thus, as allosteric PPI inhibitors
for CDK2–cyclin A3 system, B2 and its derivatives shed light on drug discovery
relevant to cell cycle and may serve as the starting point for future optimization and
development of related therapeutic agents.

13.3 CD40 � CD40L

PPI between the TNF family cytokine CD40 ligand (CD40L, aka CD154) and CD40
has long been regarded as a compelling target for drug development due to its critical
role in immune system and involvement in diseases such as atherothrombosis and
cancers [3, 32, 93, 126]. Previously, a number of antibodies had been developed to
block the CD40 � CD40L interaction, and some of them like hu5c8 had even
advanced into clinical trials for autoimmune diseases such as alloislet graft rejection
[18, 107] and lupus nephritis [26]. However, most of these protein therapeutics for
the CD40 � CD40L system failed due to adverse events such as thromboembolic
complications [11], which mainly resulted from the cross-linking or effector func-
tions of the antibodies [34]. Hence, small molecule inhibitors may be a new direction
for drug design targeting the PPI between CD40 and CD40L.

One of the recent advances in the development of CD40 � CD40L inhibitors is
BIO8898 (Fig. 13.2a), reported by Biogen Idec. Based on compound library screen-
ing, BIO8898 was identified as a CD40L binder, and it was further characterized as
an inhibitor for the interaction between CD40L and CD40 by Silvian et al.
[108]. With a dissociation-enhanced lanthanide fluorescence immunoassay
(DELFIA) [54], researchers first demonstrated that BIO8898 could inhibit CD40L
binding toward CD40 with an IC50 of ~25 μM. The inhibitory effect of BIO8898 was
also tested in cellular context utilizing a baby hamster kidney (BHK) cell line with a
chimeric receptor fusing CD40 to TNFRp75, which could trigger apoptosis upon
CD40� CD40L interaction [91, 103]. The PPI-induced cell death in BHK cell could
be inhibited by BIO8898, thereby confirming its PPI disruption activity in vivo.

To investigate the binding mode and structural mechanisms underlying the action
of BIO8898, the crystal structure of CD40L in complex with the compound was
solved. Apo CD40L was constitutively homotrimeric comprising of three identical
subunits Chain A, B, and C. Surprisingly, BIO8898 was found to intercalate between
subunits, distal to the CD40 � CD40L interface, therefore indicating its allosteric
regulatory role on the PPI system (Fig. 13.2b). This compound positioned into an
induced cleft made up of L168, Y170, V228, E230, L259, and L261 from Chain A;
Y170, Y172, A173, Q174, H224, and L225 from Chain B; and A123, H125, Y145,
Y146, Y170, Y172, H224, S255, L259, and L261 from Chain C. The binding pocket
is 81% hydrophobic, 11% neutral, and 6% polar. The bipyridyl core of BIO8898
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Fig. 13.2 (a) Chemical structure of the allosteric CD40 � CD40L PPI inhibitor BIO8898. (b)
BIO8898 intercalates between 3 subunits of CD40L (PDB ID: 3LKJ, 3 subunits are colored
differently, and the PPI binding sites for CD40 are labeled with red arrows). (c and d) Interaction
details between BIO8898 and CD40L. (e) BIO8898 intercalates into the CD40L trimer, disrupting
the trimeric symmetry, affecting the CD40 binding surface, and therefore allosterically inhibit the
CD40� CD40L PPI. (f) Contacts between CD40 and CD40L are disrupted upon BIO8898 binding
and thus result in the allosteric PPI inhibition (PDB ID: BIO8898-bound CD40L: 3LKJ, CD40-
bound CD40L: 3QD6, color representations and labeling are shown in Panel E)



made π-stack with Y172 in Chain C, and the biphenyl moiety of Arm 4 in the
inhibitor formed a perpendicular π–π interaction with Y172 from Chain B. Several
hydrogen bonds were found between the compound and Chain C. The carboxylate
group in BIO8898 was hydrogen bonded to Y145 and made water-mediated hydro-
gen bonds with H125 and Y146. The amide NH of the biphenyl arm in the ligand
made a hydrogen bond with Y170 and the amide carbonyl in this arm formed a
water-mediated hydrogen bond with S255 (Fig. 13.2c and d). These inter-molecular
interactions stabilized the ligand binding, and affected the overall conformations of
the trimeric CD40L as well as the CD40 � CD40L interface.

Structural superposition revealed that BIO8898 would not cause dissociation of
the CD40L homotrimer, but rather, it would interrupt the original symmetry of the
protein trimer, and allosterically distort the binding site for CD40 (Fig. 13.2e). The
CD40 � CD40L interface became relatively disordered upon inhibitor binding,
especially the elastic β sheets involved. Also, the conformations of the interfacial
hot spot residues such as R200 and R203 in Chain C from CD40L were significantly
altered, which thereby interfered the CD40 � CD40L contacts, such as hydrogen
bonds (Fig. 13.2f). Hence, BIO8898 represented a novel mode for the inhibition of
the critical CD40� CD40L PPI target through allostery and supplied a starting point
for future PPI drug development related to autoimmune diseases and cancer immune
therapy [18, 107] with great prospects.

13.4 α-Tubulin�β-Tubulin

In addition to the majority of allosteric PPI inhibitors, allosteric modulators to
stabilize PPIs also possess great potential for drug discovery, since in many biolog-
ical contexts, both physiological and pathological, prolonged lifespans of PPIs will
be more desirable [113, 125]. Previous research on this topic reveals that nature has
already offered fruitful impressive examples of allosteric PPI stabilizers. The most
representative one of them is Paclitaxel (Taxol®) from Taxus brevifolia stabilizing
the inter-tubulin PPI, which has achieved great success as an anti-cancer agent
[25, 53, 88] (Fig. 13.3a).

Cytoskeleton is a major cellular mechanical structure, and microtubules (MTs)
are its key components. MTs are built up of α- and β-tubulin subunits [2, 12, 113],
and the PPIs between them are involved in the growth and shrinkage of MTs and the
cytoskeleton dynamics. Hence, inter-tubulin PPIs are central to various
cytoskeleton-mediated cellular activities like cell cycle and subcellular transport
[90] and malfunctions of them frequently lead to oncogenesis, during which cells
feature over-activated self-replication and proliferation [19, 73, 86]. Microtubule-
stabilizing agents (MSAs), which stabilize these PPIs and thereby halt abnormal cell
cycle and induce apoptosis [30, 86, 100], have been established as a promising
direction for anti-mitotic agents development as cancer therapies [53], and Paclitaxel
(Taxol®) is among the best example.

Paclitaxel (Taxol®) is extracted from the bark of the tree Taxus brevifolia. It
stabilizes the inter-tubulins PPIs both in vitro and in vivo [100, 101] and displays
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antitumor capacity in several experimental systems [120]. In 1992, Paclitaxel
(Taxol®) was clinically approved as the first MSA chemotherapeutic drug and
administered to treat breast cancer, non-small-cell lung cancer, and ovarian
cancer [71].

Despite the great success of Paclitaxel (Taxol®), its underlying mechanism has
long been under debate. Only until very recently, with the help of cryo-EM,
researchers revealed the binding of Paclitaxel (Taxol®) in a pocket distal to the
tubulins PPI interface and therefore unraveled its allosteric PPI stabilization effect
[2] (Fig. 13.3a). Binding of the compound restores the microtubule lattice and
remodels the interfaces between α- and β-tubulins, and therefore, the tubulin PPIs
are stabilized allosterically [2]. More in-depth mechanistic details for Paclitaxel’s
action remain elusive due to the vulnerabilities of microtubule and tubulin structures
during crystallography study, but Paclitaxel (Taxol®) still supplies great opportuni-
ties for related allosteric PPI drug development. Based on its ligand-binding pocket,
more allosteric inter-tubulin PPI stabilizers have been reported, especially the
derivatives of Paclitaxel (Taxol®) itself. Some of these compounds have also reached
clinic [12, 30, 35, 40]. For example, docetaxel (Taxotere®) (Fig. 13.3b) was
approved in 2006 and is now used for treatment of prostate, head, and neck cancers
[30]; and cabazitazel (Jevtana®) (Fig. 13.3c) was approved in 2010 and is effective

Fig. 13.3 (a) Structural
overview of the α- and
β-tubulins with the allosteric
PPI stabilizer Paclitaxel
(Taxol®) (PDB ID: 3J6G).
(b) Chemical structure of
allosteric PPI stabilizer
docetaxel (Taxotere®). (c)
Chemical structure of
allosteric PPI stabilizer
cabazitazel (Jevtana®)
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for treating metastatic hormone-refractory prostate cancer [35, 40]. As allosteric PPI
stabilizers, Paclitaxel series have achieved great success in both pharmaceutical
research and clinical application; and they still represent a promising direction for
future rational design of MSAs and anti-mitotic cancer drugs.

13.5 Cdc34A–Ubiquitin

Another representative example of a PPI amenable to allosteric stabilization is that
occurring between Cdc34A, an E2 ubiquitin-conjugating enzyme, and ubiquitin.
Ubiquitination is one of the most important protein post-translational modifications
[57, 124], and its functions are closely related to the ubiquitin-proteasome system
(UPS), which comprises a conserved cycle of E1 activating enzymes, E2 conjugat-
ing enzymes, and E3 ubiquitin ligases [57, 82]. Perturbation of UPS is commonly
associated with neurological and immunological disorders [7, 20, 82] as well as
cancers. Thus, regulation of the UPS enzymatic cascade has attracted intense interest
for drug discovery [20, 82].

One of the latest advances in UPS drug discovery is a first-in-class Cdc34A small
molecule inhibitor, CC0651 (Fig. 13.4a), that allosterically stabilizes the
Cdc34A � ubiquitin PPI [13], thereby interfering the normal functions of
Cdc34A. In search of small molecule inhibitors for ubiquitination catalyzed by the
multisubunit Skp1-Cdc53/Cullin-F box protein (SCF) ubiquitin ligases, Ceccarelli
et al. performed a high-throughput-compatible assay based on the ubiquitination
reaction of human CDK inhibitor p27Kip1 by the SCFSkp2 E3 complex
[13, 15]. CC0651 was identified as a potent hit (IC50 ¼ 1.72 μM), and its target
was revealed to be Cdc34A after numerous tests with different enzymes involved in
that process [13]. Further biochemical analysis unveiled that the PPI between
Cdc34A and ubiquitin was enhanced upon CC0651 treatment and the time-resolved
Förster resonance energy transfer (TR-FRET) assay also confirmed that CC0651
could potentiate the binding of ubiquitin to Cdc34A with a half-maximum effective
concentration (EC50) of 14 � 2 μM. Hence, CC0651 was proposed to inhibit
Cdc34A through stabilizing the Cdc34A � ubiquitin PPI and trapping this E2
enzyme in an intermediate state along the ubiquitination process.

To investigate into the underlying mechanism, crystal structures of apo and holo
forms of Cdc34A were solved. CC0651 was found to sit in a partially induced pocket
distinct from the ubiquitin binding surface, which indicated its allosteric mechanism
for the PPI stabilization. This cavity was formed by the α1-β1 linker, C-terminal end
of the α2 helix, β2-β3 linker, C-terminal end of the α3 helix, and α3-α4 linker
(Fig. 13.4b). Comparison of the apo and holo structures showed that the most
significant conformational changes induced by CC0651 were located at the α2
helix (Fig. 13.4c), which in turn leads to conformational changes on the
Cdc34A � ubiquitin interface. Researchers inferred that the interfacial structural
alterations might impair the reactivity of the labile thioester intermediate between
Cdc34A� ubiquitin and further strengthen the Cdc34A� ubiquitin linkage, thereby
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arresting this PPI. Also, NMR analysis uncovered that more pronounced interactions
were induced by CC0651 between Cdc34A and ubiquitin and the low-affinity
interactions between them were stabilized by the compound binding. In the liganded
form, notable hydrogen bonds and electrostatic interactions were found between
S129, N132, and E133 in Cdc34A and R42, Q49, and R72 in ubiquitin. T122, L125,
S126, I128, and S129 in Cdc34A also formed hydrophobic contacts with L8, I44,
and V70 in ubiquitin (Fig. 13.4d). Hence, through strengthening both the covalent
and non-covalent interactions between Cdc34A and ubiquitin, CC0651 allosterically
stabilize this PPI system.

Further cellular experiments unveiled that CC0651 and its analogs can inhibit the
proliferation of cancer cell lines. They increased the intracellular level of the
ubiquitination substrate of Cdc34A and prevented it from proteasomal degradation
[13]. Given its central role in UPS, the E2 ubiquitin-conjugating enzyme Cdc34A
was established as a novel viable therapeutic target through the success of CC0651,
which provides a feasible strategy for drugging the critical UPS in cell.

Fig. 13.4 (a) Structural overview of the Cdc34A � ubiquitin PPI system in complex with the
allosteric PPI stabilizer CC0651 (PDB ID: 4MDK). (b) Structural details into the binding pocket of
CC0651. (c) Conformational changes induced by CC0651 binding. (d) CC0651 binding can
enhance interactions between Cdc34A and ubiquitin and thereby stabilize the PPI
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13.6 AmtB–GlnK

Most allosteric PPI modulators exert a sole effect, for example, stabilizing or
inhibiting the PPI activity. However, recent studies have revealed that under specific
circumstances, endogenous allosteric molecules such as lipids can confer different
effects by fine-tuning PPIs in different ways [21, 59, 97]. Allosteric PPI modulators
with multiple functions have been exemplified by the various regulatory roles of
lipid molecules with different modifications [21, 59]. Recently, Laganowsky et al.
determined the effects of individual binding events for a series of lipid molecules on
the PPI between two membrane proteins, ammonium channel, AmtB, and GlnK
[21, 59]. To explore the allosteric effects of lipid molecules on the AmtB�GlnK PPI,
the protein complex system was titrated with lipid molecules with different
headgroups, tails or stereochemistries. The results showed that the addition of
phosphatidylglycerol (PG) results in dramatic enhancement of the AmtB�GlnK
PPI via an allosteric mechanism (Fig. 13.5). Then, the effects of different headgroups
of lipid molecules on the AmtB�GlnK PPI were analyzed. Phosphatidic acid (PA),
phosphatidylcholine (PC), phosphatidylethanolamine (PE), PG, phosphatidylserine
(PS) containing 1-palmitoyl-2-oleoyl (PO, 16:0–18:1) tails and cardiolipin (TOCDL,
1,102,20-tetraoleyl-cardiolipin) were chosen as representatives of lipid molecules.
Analysis of the coupling factors suggested that individual binding of POPE and
POPG exerts an activation effect of stabilizing PPI, while adding POPS and TOCDL
alone has no effect on the AmtB�GlnK interaction. Intriguingly, adding POPA
resulted in a slight inhibitory effect. Investigation of the effects of the lipid tails was
further carried out using PG harboring tails with different lengths. However, upon
modification with different types of tails, the function of PG was subtly altered. Tails

Fig. 13.5 Structural
overview of AmtB�GlnK
PPI system in complex with
allosteric PPI modulator
phosphatidylglycerol
(PG) (PDB ID: GlnK: 2NS1,
AmtB: 4NH2, and PG:
4NH2)
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with lengths of 12 and 16 carbons were found to exhibit activation allosteric effects,
whereas a 14-carbon tail resulted in neither stabilizing nor disrupting performance
for PG. In addition to the modification of different headgroups and tails, the impact
of stereochemistry was also studied, and PE lipids with dioleoyl (DO, 18:1) tails in
both cis and trans configurations and with 1-stearoyl-2-oleoyl (SO, 18:0 saturated,
18:1 cis-monounsaturated) tails were investigated. The results showed that both the
cis and trans configurations of DOPE display activation effects, but that of the cis
form is less pronounced. As for SOPE, it conveys an effect similar to that of DOPE.

Taken together, this is the first report that individual lipid-binding events can
exert allosteric modulation on PPI and it also revealed that even though with similar
parent cores, the regulatory events of allosteric compounds on PPIs may have large
dependence on their structural modifications and stereochemistry.

13.7 Conclusions

Underlying various kinds of cellular processes as well as both normal and medical
conditions, PPIs are regarded as the Holy Grail of therapeutic intervention and drug
development [4, 51, 83, 104, 122]. They provide a plethora of unique structural
landscapes as promising drug targets [22, 39, 62, 83, 104, 113, 122, 128], and have
gathered pace in pharmaceutical field with the rapid advances in chemical biology
and structural biology.

Traditional PPI drug design mainly focuses on direct binding toward PPI inter-
faces [51, 83, 106, 122]. However, as a result of the relatively large, flat, and
featureless interaction surfaces, limited success has been achieved using orthosteric
methodology. Also, orthosteric approaches targeting the PPI interfaces such as
antibodies frequently suffer from problems such as poor bioavailability [83, 104,
109, 122]. Hence, as one of the cutting-edge breakthrough in structural biology and
drug discovery, harnessing allostery to tailor PPIs has emerged as a promising
alternative and complement to orthosteric modulators [4, 37, 41, 66, 84, 109].

Compared with the difficult topology and conformations of the orthosteric PPI
interfaces, allosteric pockets are more suitable for drug design and the following
optimization. Additionally, targeting the allosteric sites spatially and topologically
remote from the orthosteric interfaces, allosteric ligands do not need to compete with
the bulky PPI partners, which can contribute to their improved physiochemical
properties and pharmacological performances [14, 84, 115, 119]. In the recent
decades, even though we have already witnessed an upsurge in the success of
allosteric PPI modulators in drug development, suggesting the promising future in
this aspect (Table 13.1), there still exist series of problems and challenges. Obstacles
like suboptimal pharmacokinetic properties frequently emerge, and our understand-
ing toward PPI allostery is still relatively limited. In the field of PPI drug discovery,
most of the allosteric success so far are achieved completely by serendipity, which
largely hampers the further optimizations and structure-based rational design. How-
ever, we still believe that more momentum will be fueled into this field with the

324 D. Ni et al.



T
ab

le
13

.1
R
ec
en
te
xa
m
pl
es

of
al
lo
st
er
ic
P
P
I
m
od

ul
at
or
s
in

di
ff
er
en
t
cl
in
ic
al
ph

ag
es

G
en
er
ic
na
m
e

C
he
m
ic
al
st
ru
ct
ur
e

T
ar
ge
t
P
P
I

R
eg
ul
at
or
y

ef
fe
ct

C
lin

ic
al
ph

ag
e

R
ef
s

V
in
fl
un

in
e
di
ta
rt
ra
te
or

P
M
39

1
α-
T
ub

ul
in

�β
-t
ub

ul
in

In
hi
bi
tio

n
In

th
e
cl
in
ic

V
u
et
al
.[
11

7]

E
ri
bu

lin
m
es
yl
at
e
or

E
73

89
α-
T
ub

ul
in

�β
-t
ub

ul
in

In
hi
bi
tio

n
In

th
e
cl
in
ic

T
ow

le
et
al
.[
11

4]
an
d
M
or
ri
s
[7
8]

Ix
ab
ep
ilo

ne
α-
T
ub

ul
in

�β
-t
ub

ul
in

S
ta
bi
liz
at
io
n

In
th
e
cl
in
ic

O
sb
or
ne

et
al
.[
87
]
an
d
L
ee

et
al
.

[6
0]

P
ac
lit
ax
el
or

T
ax
ol
®

α-
T
ub

ul
in

�β
-t
ub

ul
in

S
ta
bi
liz
at
io
n

In
th
e
cl
in
ic

R
ic
ha
rd
so
n
et
al
.[
95
]
an
d

S
al
ou

st
ro
s
et
al
.[
99
]

(c
on

tin
ue
d)

13 Allosteric Modulators of Protein–Protein Interactions (PPIs) 325



T
ab

le
13

.1
(c
on

tin
ue
d)

G
en
er
ic
na
m
e

C
he
m
ic
al
st
ru
ct
ur
e

T
ar
ge
t
P
P
I

R
eg
ul
at
or
y

ef
fe
ct

C
lin

ic
al
ph

ag
e

R
ef
s

D
oc
et
ax
el
or

T
ax
ot
er
e®

α-
T
ub

ul
in

�β
-t
ub

ul
in

S
ta
bi
liz
at
io
n

In
th
e
cl
in
ic

Ja
m
es

et
al
.[
49

]
an
d
H
ee
ry

et
al
.

[4
4]

C
ab
az
ita
xe
l
or

Je
vt
an
a®

α-
T
ub

ul
in

�β
-t
ub

ul
in

S
ta
bi
liz
at
io
n

In
th
e
cl
in
ic

M
ita

et
al
.[
75
]
an
d
N
ab
ho

ltz
an
d

G
lig

or
ov

[8
1]

T
em

si
ro
lim

us
or

C
C
I-
77

9
m
T
O
R
�F

K
B
P
12

In
hi
bi
tio

n
In

th
e
cl
in
ic

S
ch
ul
ze

et
al
.[
10

2]
an
d
B
el
lm

un
t

et
al
.[
8]

L
ifi
te
gr
as
t
or

S
A
R
11

18
L
F
A
-1

�
IC
A
M
-

1
In
hi
bi
tio

n
In

th
e
cl
in
ic

Z
ho

ng
et
al
.[
12

7]
an
d
H
ol
la
nd

et
al
.

[4
5]

326 D. Ni et al.



B
M
S
-6
88

52
1

L
F
A
-1

�
IC
A
M
-

1
In
hi
bi
tio

n
P
re
cl
in
ic

W
at
te
rs
on

et
al
.[
12

1]

B
M
S
-5
87

10
1

L
F
A
-1

�
IC
A
M
-

1
In
hi
bi
tio

n
P
re
cl
in
ic

S
uc
ha
rd

et
al
.[
11

2]

M
K
T
-0
77

H
S
P
70

-B
A
G
3

In
hi
bi
tio

n
P
re
cl
in
ic
al
bu

t
ab
an
do

ne
d

P
ro
pp

er
et
al
.[
92
]
an
d
K
oy

a
et
al
.

[5
8]

13 Allosteric Modulators of Protein–Protein Interactions (PPIs) 327



advances in bioinformatics allosteric site prediction tools like AlloFinder [47, 48],
AlloSigMa [42], and PARS [89] and breakthroughs in structural biology such as
cryo-EM method for atomistic resolution of the previously inaccessible PPI systems
[2, 72]. With these state-of-the-art technologies, allosteric strategy for PPI modula-
tion undoubtedly has great potential to enter into the mainstream of pharmaceutical
industry and related research in the near future.

Previously, allosteric effect has been well-known for taming the historically
challenging targets such as GPCRs and protein kinases [66, 67, 84, 85]. Given
their prominent advantageous characteristics in PPI modulations, we believe allo-
steric modulators can still follow their path of success and tackle the obstacles posed
by the diversified and fascinating PPI targets and supply a novel methodology for
future drug discovery with great expectations.
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Chapter 14
Allosteric Modulation of Intrinsically
Disordered Proteins

Ashfaq Ur Rehman, Mueed Ur Rahman, Taaha Arshad, and Hai-Feng Chen

Abstract The allosteric property of globular proteins is applauded as their intrinsic
ability to regulate distant sites, and this property further plays a critical role in a wide
variety of cellular regulatory mechanisms. Recent advancements and studies have
revealed the manifestation of allostery in intrinsically disordered proteins or regions
as allosteric sites present within or mediated by IDP/IDRs facilitates the signaling
interactions for various biological mechanisms which would otherwise be impossi-
ble for globular proteins to regulate. This thematic review has highlighted the
biological outcomes that can be achieved by the mechanism of allosteric regulation
of intrinsically disordered proteins or regions. The similar mechanism has been
implemented on Adenovirus 5 early region 1A and tumor apoptosis protein p53 in
correspondence with other partners in binary and ternary complexes, which are the
subject of the current review. Both these proteins regulate once they bind to their
partners, consequently, forming either a binary or a ternary complex. Allosteric
regulation by IDPs is currently a subject undergoing intense study, and the ongoing
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research work will ensure a better understanding of precision and efficiency of
cellular regulation by them. Allosteric regulation mechanism can also be researched
by intrinsically disordered protein-specific force field.

Keywords Allosteric regulation · IDPs · E1A · p53 · Partners

Abbreviations

ATM Ataxia-telangiectasia mutated (gene ATM)
ATR Ataxia-telangiectasia and Rad3-related (ATR)
CAK CDK-activating kinase
CBP CREB-binding protein (CREBBP)
CDC2 Cell division cycle 2 kinase
CDKs Cyclin-dependent kinases (multiple members)
CHK1 Cell cycle checkpoint kinase 1 (CHEK1)
CHK2 Cell cycle checkpoint kinase 2 (CHEK2)
CK1 Casein kinase 1 (multiple isoforms)
CK2 Casein kinase 2 (multiple isoforms)
CSN COP9 signalosome (protein complex)
DNA-PK DNA-dependent protein kinase (PRKDC)
ERK2 p42 mitogen-activated protein kinase (MAPK1)
FACT Facilitating chromatin-mediated transcription
HIPK2 Homeodomain-interacting protein kinase 2
JNK Jun N-terminal kinase (MAPK8)
MDM2 Mouse double-minute 2 homologue
P38 p38 mitogen-activated protein kinase (MAPK14)
P300 E1A-binding protein, 300-kDa (EP300)
PCAF P300/CBP-associated factor
PKC Protein kinase C (multiple isoforms)
PKR Double-stranded RNA-dependent protein kinase (PRKR)
PIAS Protein inhibitor of activated STAT (multiple isoforms)
PIN1 Peptidyl-prolyl-cis-trans isomerase 1
RSK2 Ribosomal S6 kinase 2 (RPS6KA3)
SET9 SET domain-containing protein 9 (SET9)
STK15 Serine/threonine protein kinase 15
TAF II250 TATA-binding protein-associated factor 250-kD (TAF1)

14.1 Introduction

This thematic issue focuses on allosteric modulation of intrinsically disordered
proteins and regions (IDPs and IDRs). The word allostery is initially articulated
over 50 years before [1–3] and had endured a central focus in the field of biology.
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To understand most of the biological processes beyond the molecular level, such as
cellular disease and signaling, the quantitative description of allostery plays a
critically important role and is a fundamental tool [4, 5]. Allostery has even been
stated as the “second secret of life” [4, 5]. The classical characterization of the word
allostery [6] was ground on the three-dimensional (3D) protein subunit, structural
annotations of their cooperative behaviors. The concept has since been expanded to
accommodate a wide variety of cellular regulatory proteins to reveal the regulatory
mechanisms concerning an isoform of proteins, where a single modulator (either
protein or small molecule) binds at the active or catalytic site and ultimately can
modulate functions at a distant site. Extensive research about the allosteric regulation
from theoretical and experimental data focused on the presence of distinct energy
conformational states of an allosteric effector (in the presence and absence). Subse-
quently from these concepts regarding the allosteric regulation mechanism from
distinct energy states has been broadly advanced our understanding of how small
molecule or macromolecule can facilitate a wide range of cellular signals to reveal
the specific regulation. It became clear since the discovery of word allostery that
conformational changes in the protein structure alone could not interpret for all
observations of allosteric processes in the biological system [7, 8]. The modulatory
properties are interdependent with the ternary complex consisting of the target
protein, the primary ligand, and the modulator. There is a different type of allosteric
modulator, which can be described as positive, negative, and silent allosteric mod-
ulators, respectively. The positive allosteric modulators (PAMs) strengthen the
effect of the primary ligand (PL) [9]. Most benzodiazepines act as PAMs at the
GABAA receptor, while the negative allosteric modulators (NAMs) ultimately
reduce the impact of the PL-(Ro15-4513) at the α1β2γ2-GABAA receptor. The silent
allosteric modulators (SAMs) occupy the allosteric binding site and behave func-
tionally neutral.

Over the past decade, extensive research work has driven a reevaluation of the
descriptions of allosteric phenomena of IDPs and IDRs. Nearly 1/3 of human pro-
teins contain disordered regions around ¼>30 amino acid in length [10]. IDPs and
IDRs are flexible in behavior and proficient of quickly sampling an ensemble of
energy states protein conformational [11]. Generally, the IDPs often function as a
molecular hub in molecular interaction networks and are highly enriched in sites for
posttranslational modification [12–14]. These fundamental characteristics of IDPs
make them ideally appropriate for cellular function (regulation and signaling)
[14, 15]. Recent studies have shown that the tremendous capability of these IDPs
to rapidly participate with a wide variety of cellular proteins and convey a wide range
of cellular signals could be linked to a mechanistic process called allostery [11, 16,
17]. Though, in some cases, the phenomena of allostery were observed within a
single disordered polypeptide chain, in which a coupled folding and binding event in
one site influences subsequent interactions or modifications at a distant site, in other
cases, these IDPs act as extremely particular allosteric effectors, cooperatively
controlling various cellular protein binding networks on protein surfaces and sophis-
ticatedly orchestrating cellular responses to stimuli and decisions about cell fortune.
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Despite its importance, allosteric mechanisms in most instances remain a bio-
physical enigma, eluding a general, quantifiable, and predictive atomic description.
Here in this review, we focused on the binary and ternary complexes of the
intrinsically disordered proteins (IDPs), for example, the adenovirus early region
1A (E1A) oncoprotein that de/regulates cell growth by interacting with multiple
cellular proteins and playing a role as a hub in such allosteric regulation/deregula-
tion. In this review, we highlight the multiplicity of an allosteric mechanism for
IDP-associated molecular process and distinctive regulatory sensitivity that can be
accomplished over IDP-facilitated allostery. Each example is going to be cited with a
spotlight on the biological and purposeful significance of the IDPs concerned,
further as inside the context of presently offered theoretical descriptions and mech-
anistic models of allosteric regulation mediated by IDPs. Finally, we will provide our
perspective on the longer-term growth of the thought of allostery to incorporate the
processes delineated here and on the experimental strategies and theoretical frame-
work which will allow for further characterization of these complex yet highly
essential systems.

14.2 Adenovirus 5 Early Region 1A Is an Intrinsically
Disordered Protein

The previous literature study regarding virus and their genome ensure the researcher
to let propose that virus is the obligate intracellular parasites and their genomes do
not seem to be massive enough to encode all the functions mandatory to produce
progeny independently; thus, all the viruses are entirely dependent on host cell
functions. Mechanistically, in eukaryotes, these processes (host cell) are finely
established on a complex series of molecular interactions. Specifically, the imple-
mentation of these complex biological processes let based on the interaction of
thousands of different partner proteins and hence called complex molecular net-
works [18, 19]. Generally, the protein interaction network among the partner pro-
teins is associated with the cellular proteins either two or one in number. However,
the minority of proteins form protein network hub via interaction with tens, or even
hundreds, of other proteins.

Consequently, this protein network hub plays essential roles in regulating the
activity of the partner protein and efficiently forming useful modules within the
cellular interactome [20, 21]. In the time of or during viral infection, the cellular hub
protein served a central role in regulating cell functions, more ever making them an
ideal target. Targeting single or multiple cellular hub effect differently; by targeting
single, a virus-related regulatory protein can effectively gain control over an entire
module, potentially contained plenty of proteins (>100s), while, on the other hand,
targeting multiple, a virally encoded hub can transform the configuration of the
entire cellular protein network, and virtually reprogrammed the entire physiology
and related function. The virus-related oncogenes of the small DNA tumor viruses
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encode potent viral hub proteins. Among them, the intrinsically disordered Adeno-
virus 5 early region 1A (E1A) is one of the best and well-characterized viral hub
proteins. The E1A oncogene performs many genes and growth regulatory activities,
making E1A a useful tool with which to study important cellular allosteric processes.

The transcription from the intrinsically disordered Adenovirus type 5 and highly
related type 2 becomes detectable after 1 hour of infection. Subsequently, the first
transcribed viral gene is E1A [22]. Next, this primary E1A transcript is further
processed by differential splicing to produce five distinct messages (13S-9S) as
shown in Fig. 14.1a [23, 24]. At the early time of infection, these transcripts (13S
and 12S) are the most abundant one among all the five transcripts. The rest of the
transcript become more abundant at late times after infection, i.e., the mRNAs 11S and
10S which are less abundant at an early stage and are minor species [23, 24]. The
mRNAs of E1A (13S, 12S, 11S, 10S, and 9S) encode for distinct protein like
289 residues (R), 243R, 217R, 171R, and 55R as shown in Fig. 14.1a. All the product

Fig. 14.1 The graphical representation of the E1A mRNAs and their proteins containing conserved
regions. (a) The viral protein E1A coding regions represented as a black color-filled box all read in
the same frame except for the second exon of the 9S mRNA (light brown color-filled box), and (b)
different regions of the conserved residue sequence in the E1A proteins were labeled as CR1, CR2,
and CR3. (c) Representation of an idealized fluorograph of the proteins co-immunoprecipitated with
E1A from lysates of radiolabeled Ad5-infected cells. (d) The structural basis of positive
cooperativity for ligand binding by the KIX domain of CBP/p300; the structures of the binary
KIX:c-Myb complex (left; PDB ID, 1SB0) and the ternary MLL:KIX:c-Myb complex (right; PDB
ID, 2AGH). (e) Folding of the intrinsically disordered protein E1A induced by binding to pRb and
the TAZ2 domain of CBP/p300. An E1A binding and folding equilibrium, showing the formation
of the ternary complex from the unbound intrinsically disordered protein state by way of two binary
intermediate complexes
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is detectable in vivo except the 9S product, which has only been detected in vitro
[23]. In the infected cell, mainly, the major E1A proteins (289R and 243R) regulate
transcription of both cellular and viral genes.

The major products encoded by the viral E1A proteins (289R and 243R) possess
similar N- and C-terminal amino acid sequence. The E1A protein 289R possess
additionally 46 amino acids which makes them bigger and different from the other
isoforms of the same protein, and these additional 46 residues are the result of the
differential splicing of the primary E1A transcript as shown in Fig. 14.1a. This extra
internal stretch is often stated as the “unique region.” The extra stretch comprised of
46 amino acids required for efficient transactivation of early viral promoters [25].

Comparing E1A sequences of various human and chimpanzee, gorilla, monkey
(all simian) adenovirus serotypes has similarities in the CR1-3 regions have con-
served amino acid [26, 27]. In Ad5, the amino acid sequences (from res 40 to res 80)
of the conserved region 1 (CR1) maps, CR2 between amino acids res 121 to res
139, and CR3 between res 140 to res 188 which roughly overlaps with the 13S
unique region as shown in Fig. 14.1b. The evolutionary conservation of these
sequences further suggests that these sequences have a critically important role
(critical) in E1A function but by no means limit the possibility that other regions
are at least correspondingly important.

The protein sequence of E1A have plenty of proline contents (P), acidic, and
localized in the nucleus. The rapid nuclear localization is facilitated by a small
peptide comprised of highly basic amino acid sequence (L-R-P-R-P) at the extreme
C-terminus of the polypeptides [28]. The presence of the rich proline contents in the
E1A protein executes a conformational constraint which likely limits the formation
of substantial secondary structure in the E1A proteins. The extreme heat stability of
bacterially produced E1A protein, which recalls strong transcriptional activation
activity even after boiling for 5 minutes [29], suggests that E1A either can readily
refold to an active conformation or can function as a random coil. The viral E1A
protein possesses a remarkable ability to tolerate insertions of new sequences or
deletions without interruption of its biological function, and by such ability, the
researchers emphasized to propose the concept that E1A could be a series of small
allosteric modular domains that are comparatively independent of surrounding
sequences.

The extra internal stretch among the encoded conserved regions (in 289R) has
been identified that this extra stretch residue is the potential target for the metal
binding with a consensus zinc finger motif (cysteine-Xaa2-cysteine-Xaa13-cysteine-
Xaa2-cysteine) as in Fig. 14.2a [25]. In the consensus sequence, the cysteine (Cys)
residues serve as postulated ligands [25]. The E1A isoform 289R does bind a single
zinc ion, and as expected the other E1A isoform (smaller E1A) that lacks this unique
region does not bind. The binding of Zn2+ to four Cys residues plays an essential role
in transcriptional activation [25]. While replacing a single Cys residue of the finger
with other amino acids destroying the transactivating capability of the 289R of E1A,
even though replaced amino acid belongs to structurally or functionally conserved
[25]. To date, it has remained unclear whether this Zn2+ would facilitate or not the
interaction among the E1A and DNA or with other cellular proteins.
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Fig. 14.2 (a) The current model of E1A CR3-dependent activation of transcription. Top, linear
representation of 289R E1A. CRs are labeled, and AR1 is denoted in yellow. Bottom, residues of
E1A CR3 from 139 to 200 are indicated using a one-letter code. The coordinating cysteines are
circled, and the critical targets of CR3 are shown in green, blue, and red, respectively. The
corresponding colors indicate the key residues interacting with each target. The boundaries of the
residues of CR3 known to be required for interaction with APIS (residues 169–188) and the 20S
proteasome (residues 161–177) are marked by # and � Published in J Virol, vol. 82, p. 7252–7263.
(b) A cooperativity switch in the adenoviral oncoprotein E1A. Phase diagrams for pRb and TAZ2
binding illustrate how the formation of pRb:E1A:TAZ2 ternary complexes can be described by
either negative (left) or positive cooperativity (right), depending on the availability of binding sites.
Kd values for the formation of various complexes with the E1A constructs shown above the phase
diagrams are indicated at the phase boundaries. Published in Nature, vol. 498, p. 392, 2013 by
Springer Nature, and (c) Interactions of the N-terminal, CR1 and CR2 motifs of E1A with cellular
proteins
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14.3 Intrinsically Disordered Proteins Act as Allosteric Hub

It is generally expected that the E1A protein indirectly affects the activity of the
associated cellular protein, subsequently either enhancing or reducing their activi-
ties. Due to that reason, the E1A protein does not possess the specific DNA binding
activity nor an intrinsic enzymatic activity. The immunoprecipitation of E1A pro-
teins, extracted from [35S]-Met-labeled infected cells, shows that the E1A com-
plexes specifically with numerous cellular regulatory proteins. Moreover, the major
species of coprecipitating proteins migrate at rates corresponding to 105 kDa,
107 kDa, and 300kDa, with minor species migrating at 33 kDa, 60 kDa, and
130 kDa, respectively, as shown in Fig. 14.1c [30, 31]. From the previous literature
study, it is identified that the E1A protein interacts with numerous cellular proteins as
shown in Fig. 14.2c. For example, CREB-binding protein (CBP), a known tran-
scriptional regulatory protein, and its associated protein p300 both function as
principal regulators of cellular machinery by mediating interactions between the
basal transcription machinery and different transcriptional factors [32, 33]. The CBP
is bulky, contains multiple functional protein domain features, and even possesses
stably folded domains, single molten globular domain, and many disordered regions;
among them, some have known function, and many of them have unknown function
[34, 35]. These both disordered and fully structured regions of the CBP protein
interacting with a wide variety of other disordered protein partners, for example
recent studies revealed the allosteric regulation mechanism of the CBP and its related
protein p300. Additionally, it was assumed that the allosteric mechanism plays an
essential role in modulating the transcriptional co-activation function of CBP/p300
as well as interact with the retinoblastoma protein (pRb) [36, 37], subsequently
provoke the acetylation of RB1 through engaging EP300 and RB1 into a multiple
interactive protein complexes [38]. The interaction of E1A with host CTBP1-2 and
associated protein seems to be involved in viral replication [39, 40], and likely E1A
interacts with a wide variety of cellular proteins like BS69 [41], p60/cyclin A [42],
p107 [43], p33 cdk2 [44], and p130 [45, 46]. Similarly, interaction of E1A with host
KPNA4 allows E1A import into the host nucleus [47]. While EIA-TBP interaction
probably disrupts the TBP-TATA complex [48], the TATA-binding protein (TBP)
[48–50], and various other components of the TFIID complex [51].

In biochemistry, the KIX domain (kinase-inducible domain (KID) interacting
domain) or CREB-binding domain is a protein domain of the eukaryotic transcrip
tional co-activators CBP and P300. It serves as a docking site for the formation of
heterodimers between the coactivator and specific transcription factors. Structurally,
the KIX domain is a globular domain consisting of three α-helices and two short
310 helices. This KIX domain is an essential binding site for several disordered
transcriptional factors involved in cell differentiation, leukemogenesis, and viral
transformation [52, 53].

The activation domains of both transcriptional factors (pKID and c-Myb) bind to
a common site on this KIX, whereas the mixed lineage leukemia (MLL) protein
binds to a distinct surface on the opposite face of KIX as shown in Fig. 14.1d
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[54, 55]. The structural and biochemical studies show the cooperative binding
behavior of the polypeptide complexes (pKID and MLL or c-Myb and MLL) to
KIX to make ternary complexes; the binding of MLL in its related site increases the
binding of both c-Myb and pKID and vice versa [54, 56, 57]. The mentioned studies
indicated that KIX functions not only as a structured scaffold for binding of
disordered ligands but also as an allosteric modulator of transcription. Moreover,
the researchers mapped the regions of the E1A protein required for interaction with
other proteins in a variety of cells using a multitude of mutants. However, it seems
likely that the targeted protein E1A functions indirectly through its association with
these and other yet unidentified cellular proteins.

To the best of our knowledge, the deep literature search regarding the interaction
of E1A with other associated proteins lets the researcher conclude and assume that
E1A binds to these associated proteins and either sequesters them, preventing their
action or modifying their enzymatic activities. The critically important property of
IDPs is always appreciated that they possess multiple interaction motifs for their
interactive cellular partners, hence, they can potentially bind to multiple cellular
partners in a variety of combinations, and allowing them to function as molecular
hubs in interaction complex protein networks [13, 58]. As previously mentioned, the
one of the tremendous characteristic of the IDPs is used as a hub protein in a wide
variety of protein networks, for example adenovirus oncoprotein early region (E1A),
which interacts with the TAZ2 domain of CBP/p300 and the retinoblastoma protein
(pRb) to further induce epigenetically reprograming cellular transcriptional pro-
cesses in the host cell as reported previously [59, 60]. Interestingly, the protein
complex of E1A with its partner can be modulated by both (+ve) and (�ve)
cooperativity, based on the availability of various binding sites for its partner
[61]. For example, the construct of unbound E1A contains the only CR1, which is
capable of binding to both pRb and TAZ2 and displays (�ve) cooperativity in the
formation of a ternary complex of an E1A-TAZ2-pRb, once the E1A CR1 region is
already bound to other cellular partners as shown in Fig. 14.2bleft. In case of displays
(+ve) cooperativity, once extension in the E1A construct conduct is to include the
amino-terminal domain further and results in complex ternary formation
(E1A-TAZ2-pRb) as shown in Fig. 14.2bright. The switching pattern of cooperativity
from (�ve) to (+ve) for both ternary complexes is determined by the incorporation of
additional interaction site of the TAZ2 domain, hence suggesting an allosteric
regulatory mechanism in which occupancy of the amino-terminal domain controls
the interaction of pRb in the CR1 region. Remarkably, binding promiscuity of E1A
with partner protein complex has significant consequences for the functional output.
The binary complex of E1A and pRb regulates the cell cycle, whereas the binary
complex between E1A and TAZ2 eases acetylation of E1A by CBP/p300 and
subsequently induces epigenetic regulation of cellular transcription. The allosteri-
cally enhanced ternary complex formed between E1A, CBP/p300, and pRb permits
for efficient interruption of the cell cycle by endorsing pRb acetylation through
CBP/p300 cellular protein, thus targeting this pRb protein for degradation and
further permitting the virus to take over the whole machinery of cellular transcrip-
tion, compelling cell cycle progression, and unrestrained cellular proliferation [62].
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14.4 The p53 Protein as an IDP

The pattern of disorder within molecular hub proteins can modulate functional
output. Intrinsically disordered proteins (IDPs) can modulate their multiple interac-
tion motifs (fully or partially disordered binding sites) according to the structural
propensity of their molecular partners. By this way, they function as molecular hubs
in interaction networks where they can potentially bind to multiple cellular partners
in a variety of combinations [13, 58]. Molecular hub proteins show varying degrees
of binding propensity, i.e., some binding modules prefer interactions with high
affinity and specificity, while other interactions can favor low affinity and low
specificity and all possible combinations in between. Among the other IDPs, p53
protein is considered as a major intrinsically disordered hub protein. To improve
understanding of the use of disorder for binding diversity, p53 was studied as a
prototypical example of hub proteins involved in crucial biological functions.

p53 is a key player in a large signaling network involving the expression of genes
carrying out such processes as cell cycle progression, apoptosis induction, DNA
repair, and response to cellular stress [63]. Loss of p53 function, either directly
through mutation or indirectly through several other mechanisms, is often accom-
panied by cancerous transformation [64]. The p53 protein interacts with many other
proteins in order to carry out its signal transduction function. The disordered regions
enable p53 to bind with its multiple partners at the same time, as reported previously
[65–81]. A number of these binding partners are downstream targets, such as
transcription factors, and others are activators or inhibitors of p53’s transactivation
function. From the disorder point of view, four regions or domains in p53 are
characterized as the N-terminal transcriptional activation domain, the central DNA
binding domain, the C-terminal tetramerization domain, and the C-terminal regula-
tory domain. The last two could be a single C-terminal domain with two subregions.
The tetramerization domain is intrinsically disordered, and the structure is acquired
upon the formation of the complex, while the DNA binding domain is intrinsically
structured, and the terminal domains are intrinsically disordered [82, 83].

14.4.1 The Associated Binding Partners for the Formation
of a Ternary Complex with p53

The IDPs/IDRs could be implemented in protein-protein interactions in at least two
different modes: One disordered region could bind to many partners (one-to-many
signaling), and multiple disordered regions could bind to one site on one partner
(many-to-one signaling) [84–86]. The p53 adopts the one-to-many mode of interac-
tion due to the intrinsically structured and disordered nature of the proteins. The
interacting partners are characterized into three main categories due to the binding
site they interacted with and shown in Table 14.1. For example, experimentally
characterized intrinsically disordered C-terminal domain is making a complex with
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cyclin A (PDB ID: 1H26) [75], sirtuin (PDB ID: 1MA3) [65], CREB-binding
protein (CBP; PDB ID: 1JSP) [76], S100ββ (PDB ID: 1DT7) [81], set9 (PDB ID:
1XQH) [68], and tGcn5 (PDB ID: 1Q2D) [79], while intrinsically disordered
N-terminal domain interacts with Rpa70 (PDB ID: 2B3G) [66], Mdm2 (PDB ID:
1YCR) [72], Tfb1 (PDB ID:2GS0) [69], and itself [73]. The interactions mediated by
the structured region (DBD) of p53 and its partners are DNA (PDB ID: 1TSR) [67],
the BRCT domain of BP1 (PDB ID: 1L0B) [71], the SH3 domain of BP2 (PDB ID:
1YCS) [70] and large T-antigen (LTag) from simian virus 40 (PDB ID: 2H1L)
[74]. More interestingly, the disordered C-terminal regulatory region (from residues
374 to 388) forms all three major secondary structure types in the bound state: a helix
when associating with S100ββ, a sheet with sirtuin, and distinct irregular structures
with CBP and cyclin A2 (Fig. 14.3).

Table 14.1 p53 associated with protein partner

N-terminal domain PR DBD C-terminal domain

TFIID Sin3 SV40 Tag TBP Brca1-exon11

TAFII31 WOX1 hRAD51 YB1 MUC1

Polβ IkBa Sp1 DNMT1 ATF3

Pin1 Tip60 NF-Y hRAD51

CREB JNK Axin E2F1 hRAD54

COP9 Brca1-BRCT2 Sp3 NIR

Seladin-1 HIF-1α ik3-1/cables GRP75

ING1b Bcl-2 hCdc14A/B hSir2/SIRT1

FAK Plk1 TFIIH Cdk9

PRMT1 MAML1 WRN CSB

CHC 53BP1 BLM 14-3-3

PID/MTA2 Pirh2 topoI IFI16

Smad2/3 Bak topoII Nucleolin

Rpa70 Chk2 hRAD51 Securin

MDM2 ASPP2 hRAD54 parc

Tfb1 Bcl-X NIR CUL7

DMC1 GRP75 CK2b

PML-IV hSir2/SIRT1 Cyclin A

ZBP-89 Cdk9 PTEN

NIR ERα
Brn-3a ZBP-89 CARM1

E4F1 YY1 mot-2

TR-3 STK15 Sp1

DNA AP2α C/EBPβ
53BP1 HAUSP/USP7 p18

53BP2 HSF3

sv40 TR-3 set9

CBP tGcn5
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Similarly, the structural study reveals that intrinsically disordered N-terminal
transactivation domain (TAD) utilizes two molecular recognition elements, the
amphipathic AD1 and AD2, to interact with a variety of cellular targets [87, 88],
including complexes with multiple domains of the transcriptional coactivators
CBP/p300 [89, 90], MDMX [91], and MDM2 [92]. In its free form, AD1 of the
N-terminal TAD exists in equilibrium between disordered and partially helical
conformations [83, 91–93], whereas residues 19–25 form a stable amphipathic
α-helix in the Mdm2 complex [72]. Recently, it has been reported that the mutation
of proline in residue C-terminal of MDM2-binding motif substantially increases both
the residual helicity and the binding affinity for MDM2. Conserved proline residues
outside the Mdm2 binding site preserve these defined levels of helicity, which is
ultimately required for productive p53 signaling [94]. In p53, drastic conformational
changes enable distinct disordered regions to modulate into conformations suitable
for binding with different binding partners, in which the structured partner alters the
propensity of the disordered region via a binding-induced manner (Fig. 14.4).

Fig. 14.3 Structural comparison of p53 as an IDP hub protein. Primary, secondary, and quaternary
structure of p53 complexes. (Published in BMC Genomics 2008, doi:10.1186/1471-2164-9-S1-S1)
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14.4.2 Posttranslational Modifications (PTMs)

Posttranslational modification (PTM) of proteins refers to the chemical changes that
occur after mRNA is translated into protein products, which can play important roles
in controlling the affinity and the order of binding events in IDPs. Multiple different
posttranslational modifications (PTMs) have been identified in p53 (Fig. 14.5),
thereby altering protein interactions, namely, phosphorylation, cis-trans isomeriza-
tion, acetylation, ubiquitination, methylation, SUMOylating, and neddylation at
more than one site. The conformational flexibility of the intrinsically disordered
sites/regions facilitates the access and the sequential regulation by multiple PTMs
[95]. Multiple studies have shown that the PTMs occur most often in disordered
regions [96, 97]. For example, the C-terminal domain of p53 contains residues
modified by different PTMs in order to tune its specific interaction properties of
p53 [98].

14.4.2.1 Phosphorylation

p53 phosphorylation has been widely investigated and associated with protein
stabilization. For example, the interaction between p53 and its significant negative
regulator, MDM2, is diminished when three N-terminal sites, Ser15, Thr18, and
Ser20, are phosphorylated, while P300 (acetyltransferase) binding is increasing the
level and stability of p53. Interestingly, increase in the number of phosphorylation
events on the N-terminal TAD directly increases the binding affinity of the TAD for

Fig. 14.4 Protein interaction network for p53 protein
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the TAZ1, TAZ2, and KIX domains of CBP/p300, with each successive phosphor-
ylation event having an additive effect on the measured binding affinity [99]. Sim-
ilarly, phosphorylation at Ser46 prefer to bind at PTEN (a tumor suppressor)
promoter for MDM2, thus abolish the autoregulatory loop that contributes to control
the p53 level, while phosphorylation of a single threonine residue (Thr18) as part of
a signaling cascade impairs binding to the E3 ubiquitin ligase HDM2 [99, 100]. In
both of these cases, a single phosphorylation event is sufficient for the regulation of
critical cellular processes, highlighting the exquisite sensitivity and responsiveness
of IDPs to posttranslational modifications. The disordered N-terminal transactivation
domain (TAD) contains nine known phosphorylation sites which targeted serine,
threonine, and proline residues (Fig. 14.5).

14.4.2.2 Cis-Trans Isomerization

Another PTM is the cis-trans isomerization which alters the affinity of p53 for
specific partners. p53-peptidyl-prolyl-cis-trans isomerase 1 (PIN1) interaction
involves the pro-activation conformational change of p53, thus generating cis-trans
isomerization of specific proline residues. PIN1 interacting with Ser33–Pro34,

Fig. 14.5 p53 posttranslational modifications (PTMs) at different sites via various interacting
partners
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Ser46–Pro47, Ser127–Pro128, Ser315–Pro316, Thr81–Pro82, and Thr150–Pro151
residues consisting of a phosphorylated ser-pro or the-pro motif, followed by proline
isomerization, which changes the conformation of p53. MDM2 pre-binding inhibi-
tion or detachment is induced by the modulation of p53 via PIN1 brought about by
p53 stabilization. Moreover, p53 acetylation regulated by P300 at C-terminal lysine
can be promoted due to the possible conformational change, and consequently it can
enhance the binding affinity of p53 core domain for specific promoter-associated
sites, particularly apoptosis-promoting sites [101]. PIN1 also regulated the CHK2-
Pro82 binding as well as the consequent Ser20 phosphorylation in response to DNA
damage. In another sequence of events, the Thr81 phosphorylation allows PIN1 p53
isomerization, which further promotes the Ser20 phosphorylation and p53-CHK2
interaction [102].

14.4.2.3 Acetylation

The role of acetylation has been reported as the regulation of p53-DNA binding at
DNA binding site, stabilization by impairing ubiquitination, and p53-mediated
transactivation of target genes through the recruitment of coactivators
[103, 104]. P300, CBP, and PCAF proteins are involved in p53 acetylation.
According to the previous study, phosphorylation of N-terminal sites (specifically
Ser15) may promote P300/CBP binding for MDM2 to N-terminal transactivation
domain, so that a reduction in MDM2-p53 interaction is related with acetylation of
Lys373 and Lys382 [105]. Other p53 residues acetylated by P300/CBP are Lys370,
Lys372, and Lys381. P300/CBP-associated factor (PCAF) along with
homeodomain-interacting protein kinase 2 (HIPK2) may upregulate the p53 acety-
lation at site Lys320 upon non-apoptotic DNA damage [106].

14.4.2.4 Ubiquitination

Ubiquitination involves the protein degradation into peptides by ubiquitin-26S
proteasome system (or a highly conserved independent ubiquitin protein) in normal
cells and shows a high level of target specificity. MDM2 is considered as the
significant ubiquitin ligase that regulates the amount of p53 by binding to the
N-terminal region and represses p53 activity via two mechanisms: by promoting
the export of p53 to the cytoplasm and its consequent degradation and by blocking
its transcriptional activation. Another protein which interacts and promotes the
export of p53 is a nuclear export signal (NES). Lys370, Lys372, Lys373, Lys381,
Lys382, and Lys386 residues located at the C-terminus of p53 are involved in
MDM2 ubiquitination [107], resulting in exposure of NES. Moreover, a
p53-MDM2 autoregulatory loop is generated in case of MDM2 upregulation.

Other proteins involved in p53 interaction during ubiquitination are the COP1
(constitutive photomorphogenesis protein 1), a RING domain ubiquitin ligase that
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negatively regulates p53-dependent transcription [108], the cytosolic chaperone-
associated U-box domain ubiquitin ligase CHIP (C-terminus of hsc70-interacting
protein) that is involved in degradation of p53 using the proteasome machinery
[109], and the cullin-domain ubiquitin ligase CUL4A (cullin 4a) associated with
MDM2-p53; PARC (p53-associated parkin-like cytoplasmic protein) is a RING
domain ubiquitin ligase considered as a critical regulator in p53 subcellular locali-
zation that directly interacts with p53 in the cytoplasm and subsequently restrains its
function [110]. The PIRH2 (p53-induced protein, RING-H2-domain-containing) is a
RING domain ubiquitin ligase that participates in an autoregulatory feedback loop
that controls p53 function as well as promotes MDM2-independent p53
ubiquitination [111].

14.4.2.5 SUMOylating, Methylation, and Neddylation

The p53 residue Lys386 may be sumoylated. SUMO (small ubiquitin-related mod-
ifier) proteins covalently bind to their partners via a mechanism similar to
ubiquitination. For example, protein inhibitor of activated STAT (PIAS)-1, PIASxa,
PIASxb, and PIASy function as SUMO ligases, interact with p53, and affect protein
function either by promoting specific alteration (i.e., ubiquitination at the same
acceptor site) or by altering subcellular localization [112]. Methylation of p53 is
taking place by binding of SET9 (SET domain-containing protein 9) and target
Lys372. As a result, it enhances the protein stability in the nucleus [68]. Neddylation
is catalyzed by NEDD8 (neuronal precursor cell-expressed developmentally
downregulated protein 8), a small ubiquitin-like protein which has been reported
as a p53 modulator in an MDM2-dependent manner and inhibits its transcriptional
activity [113].

14.5 Future Perspectives

Intrinsically disordered proteins (IDPs) have unique structural and functional pecu-
liarities among the other proteins in cell regulation and recognition and signal
transduction. Their functional behavior is modulated via interaction with its protein
partner and various PTMs; by this way they can change their binding specificity and
affinity in signaling interactions. Among many IDPs, three proteins KID, E1A, and
p53 are discussed here, which have a vital role as major hub proteins in cellular
protein network. These proteins carry a wide variety of functional regulators of
transcription and cell cycle, thereby act as a molecular hub and physically interact
with various cellular partner proteins, and harmonize their activities, while many of
them act as a molecular hub themselves. Intrinsically disordered proteins participate
in one-to-many signaling cascade which confers the induced folding mechanism for
the target protein and most probably forms the root for the multifunctional properties
of the complex, which are obligatory for defining a cell fate. The IDPs discussed in
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this review revealed their role in the allosteric regulation of various cellular signaling
processes. The role of IDPs in cellular control mechanism has been explained at
various levels. However, the work that has been done so far in this field indisputably
signifies only the tip of the iceberg. With the emergent progress about the flexible
nature in biological functions of IDPs, we can expect prompt advances toward an
understanding of the allosteric mechanisms associated with IDPs which can exert
and consequently drive the potential allosteric control throughout the crucial cellar
progression. The human proteomes contain plenty of proteins that can be categorized
into various sizes (from large complexes to small peptides) and structural types
(from fully ordered to partially and fully disordered), which function synergistically
to regulate various cellular activities; this might be a valuable strategy to develop
novel allosteric inhibitors again challenging drug targets. Extensive research regard-
ing IDP-specific force field had opened new windows in order to further study the
allosteric mechanism between IDPs and their partners [114–118]. Further study
regarding IDP dynamics and molecular mechanism of allostery will undoubtedly
boost our thought about the function of a substantial class of related proteins, driving
their critically important role in cellular protein regulation and offering new oppor-
tunities for targeted therapeutic intervention.
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Chapter 15
Engineering Allostery into Proteins

Scott D. Gorman, Rebecca N. D’Amico, Dennis S. Winston,
and David D. Boehr

Abstract Our ability to engineer protein structure and function has grown dramat-
ically over recent years. Perhaps the next level in protein design is to develop
proteins whose function can be regulated in response to various stimuli, including
ligand binding, pH changes, and light. Endeavors toward these goals have tested and
expanded on our understanding of protein function and allosteric regulation. In this
chapter, we provide examples from different methods for developing new allosteri-
cally regulated proteins. These methods range from whole insertion of regulatory
domains into new host proteins, to covalent attachment of photoswitches to generate
light-responsive proteins, and to targeted changes to specific amino acid residues,
especially to residues identified to be important for relaying allosteric information
across the protein framework. Many of the examples we discuss have already found
practical use in medical and biotechnology applications.

Keywords Allostery · Protein regulation · Protein engineering · Energy landscape ·
Amino acid network · Domain insertion · Covalent modification

15.1 Introduction

Allostery in biomacromolecules can be broadly defined as “action at a distance,” in
which a perturbation at one site (e.g., ligand binding, amino acid change) has an
effect on the structure or function of some other distant site. The ability to alloste-
rically regulate biomacromolecules is essential for life itself, with examples in DNA
replication [57, 116], gene regulation [21, 56, 66, 119, 129], and biosynthetic
pathways [2, 38, 58]. There is renewed interest in the design of therapeutics that
target allosteric sites in proteins involved in disease [18, 60, 64, 100, 106, 121,
132]. There have also been significant advances in the engineering of novel allosteric
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regulation mechanisms into proteins. Such proteins are of substantial interest in
biotechnology and medical fields, including in the production of biofuels and
pharmaceuticals [80, 102, 103].

We have only just begun to understand allostery, this “second secret of life”
[53, 136]. While some details differ among allosteric proteins, it is often useful to
develop more general models to both understand and then even design new allosteric
proteins. Towards this end, we first briefly outline two of the most widely accepted
modern frameworks for allostery, the free energy landscape and network models,
and then present examples that leverage these models toward engineering allostery
into proteins. It should be noted that our examples are representative of recent work,
but are not exhaustive.

15.1.1 The Energy Landscape Model

The best-known early models for describing allostery are the Monod-Wyman-
Changeux (MWC) and Koshland-Nemethy-Filmer (KNF) models, which focused
on conformational changes in multimeric complexes [73]. While these models have
proven extremely useful for quantifying conformational states for large complexes
such as hemoglobin, they do not take into account non-rigid body dynamics. For
example, there are now well-known examples of allosteric proteins that do not
undergo substantial structural changes upon ligand binding [88, 94, 97], which
could thus not be described by either the MWC or KNF type models. The free
energy landscape model [25] can be viewed as a broader generalization of these early
models, which can then also describe allostery in proteins that lack large conforma-
tional changes, and also expand our definition of allostery to include the effects of
amino acid changes or changes to other physiochemical parameters (e.g., tempera-
ture, pressure). Within the free energy landscape model, proteins can fluctuate
among many unique substates populated according to their relative free energies.
Low-amplitude, high-frequency motions such as a methyl rotation or a change in a
side chain dihedral angle are represented as small energy barriers between substates,
while larger barriers represent lower-frequency, higher-amplitude motions such as
exchange between major and minor conformational states. Molecular dynamics
(MD) techniques such as Markov state models [93] and biophysical techniques
such as nuclear magnetic resonance (NMR) spin relaxation [19] and relaxation
dispersion [3], fluorescence resonance energy transfer (FRET) [78], and isothermal
titration calorimetry (ITC) [92] are commonly used together to better understand
these energy landscapes.

The free energy landscape of a protein can be highly malleable in that it changes
in response to stimuli [76] such as ligand binding, mutagenesis, or even pressure
[83, 139]. Efforts to engineer allostery in the context of the energy landscape model
therefore focus on ways to restrict or increase conformational exchange under certain
conditions, or to stabilize certain minor states correlated with protein function
(Fig. 15.1a).
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15.1.2 The Network Model

Another way to view a protein is to focus on the atomic-level noncovalent interac-
tions that hold together its three-dimensional structure [89]. Within an amino acid

Fig. 15.1 Frameworks for understanding allostery. (a) In the free energy landscape model, proteins
are considered to be ensembles of different conformations. Local minima represent different
conformations, with their free energies determining relative populations, and free energy barriers
determining exchange rates between conformations. Allosteric inhibitors and activators can change
the topology of the energy landscape by altering populations or the kinetics of exchange between
conformations. (b) The network model places emphasis on correlated structural dynamics of amino
acid residues being responsible for allosteric effects. A perturbation at one site can have an effect on
a surrounding cluster of amino acids, which then can propagate through the amino acid residue
interaction network to effect changes at a distant active site or other binding site. The network
signals travel through highly connected hub residues, which may be important engineering points to
change protein function and regulation
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interaction network, the nodes are usually full amino acid residues, and the edges
contain information on which residues are interacting and the relative strength of
those interactions (Fig. 15.1b). Residues with a large number of interactions are
often considered to be important “hub” residues, and groups of interacting residues
are sorted into cliques, communities, or clusters depending on the connectivity
within the group [123]. Networks can be identified through a variety of techniques
including bioinformatics analyses of multiple sequence alignments to identify evo-
lutionarily coupled residues as performed by the statistical coupling analysis [63]
(SCA) and direct coupling analysis [75] (DCA) algorithms. MD cross-correlation
analysis [29] can identify energetically and dynamically coupled residues. NMR
spectroscopy also offers a number of physics-based methods to identify networks,
including the Chemical Shift Covariance Analysis (CHESCA) [11] and RASSMM
[40] algorithms.

Ligand binding to an allosteric protein at one site may transmit a series of
structural changes, and changes to the noncovalent interactions lead to structural
and functional changes at a distant site. Efforts to engineer allostery in the context of
the network model focus on changing network residues by mutagenesis or covalent
modification to allosterically “tune” an enzyme’s activity or even give it new
functionality by modifying these network connections [1, 6, 7].

In our view, the network model is compatible with the free energy landscape
model; the network model focuses on paths and webs of physical interactions within
the protein, while the free energy landscape attempts to assign these interactions to
various conformational substates. Traversing over the free energy landscape from
one conformational substate to another necessitates the breakage and formation of
noncovalent interactions that might be identified as part of an important amino acid
interaction network.

15.2 Engineering Protein Allostery Through Domain
Insertion

Under favorable circumstances, new allosteric proteins can be created by inserting a
regulatory domain from a known allosteric protein into a new host protein (Fig. 15.2
and 15.3). Upon allosteric effector binding, the regulatory domain undergoes a large
conformational change, leading to substantial structural and functional changes in
the host protein. The regulatory domain often changes the free energy landscape of
the host protein by introducing new steric interactions between the regulatory
domain and host protein. The goals of this section are to present select examples
that highlight the different approaches for creating these chimeric proteins.
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Fig. 15.2 Methods of rational domain insertion. (a) Homologous proteins with catalytic domains
are often structurally similar enough that regulatory domains sensitive to different effectors can be
swapped or added to homologs without a regulatory domain, as in the above example where the
blue regulatory domain is spliced onto the orange catalytic domain. (b) In cases where the protein
with the desired function does not have any allosteric homologs, a conditionally disordered linker
that becomes ordered in response to environmental changes or a regulatory domain can be inserted
into the middle of a loop in the host protein sequence. In this example, the green enzymatic domain
is inactive when the yellow regulatory domain is in its open apo conformation. Once the regulatory
domain binds its effector ligand, it adopts a conformation that allows the enzymatic domain to adopt
its active conformation

Fig. 15.3 Examples of allosteric enzymes engineered through domain insertion. (A)
PfuACTTmaDAH7PS with Tyr (yellow) bound to the ACT domain (magenta) with the DAH7PS
domain in slate (PDB: 4GRS) [16]. PfuACTTmaDAH7PS is typically depicted as a homotetramer. It
should be noted that only one subunit is shown here for clarity. (B) DHFR-LOV2 with LOV2
domain inserted at residue 120 of DHFR (PDBs: 1RX2, 2V0U) [59]. Upon irradiation with light,
C450 covalently bonds to the flavin cofactor in the LOV2 domain. The changes in conformation
and dynamics propagate through both domains. (C) The MBP-BLA construct RG13 generated by
random domain insertion of BLA (red) into MBP (blue) (PDB: 4DXB) [48]
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15.2.1 Rational Insertion of Regulatory Domains

The Parker lab has explored how allostery has evolved in nature, specifically in the
amino acid biosynthesis pathways of various bacteria [4, 5, 16, 23, 43, 47, 58,
126]. Their method has primarily consisted of splicing ACT or CM regulatory
domains from one (β/α)8 barrel enzyme onto another, similar to the schematic in
Fig. 15.2a. The ACT domain is named for aspartate kinase, (AroH) chorismate
mutase, and TyrA (i.e., TyrA is the bifunctional chorismate mutase/prephenate
dehydratase in the Tyr biosynthetic pathway), all of which contain this domain.
ACT domains consist of a βαββαβ fold, and typically occur when in contact with a
second ACT domain to form a binding pocket for one or more small molecule
effector ligands [58]. Ligand binding triggers a conformational change or a change in
the oligomeric state of the enzyme that in turn modulates function of the catalytic
domain. The AroQ chorismate mutase effector binding (CM) domain, in contrast, is
an all-α-helical bundle that can turnover chorismic acid to prephenic acid, and binds
prephenic acid when used as a regulatory binding domain [23]. Upon binding
prephenic acid, the CM domain also undergoes a large conformational change.
Cross et al. [16] spliced an ACT domain from Thermotoga maritima 3-deoxy-D-
arabino-heptulosonate 7-phosphate synthase (DAH7PS) onto the catalytic (β/α)8
barrel domain of the unregulated DAH7PS from Pyrococcus furiosus via a flexible
linker on the N-terminus of P. furiosus DAH7PS (Fig. 15.3a). Surprisingly, the new
chimeric protein was both catalytically active and allosterically inhibited by Tyr in a
manner similar to that of T. maritima DAH7PS without any further modification. In
a later publication, Fan et al. [23] swapped the regulatory domains of DAH7PS from
T. maritima and Geobacillus sp. (TmaDAH7PS and GspDAH7PS, respectively).
TmaDAH7PS and GspDAH7PS differ structurally, primarily in that TmaDAH7PS
has an ACT regulatory domain and GspDAH7PS has an AroQ CM regulatory
domain. In GspDAH7PS, the CM reduces DAH7PS activity in response to binding
prephenic acid, and when transplanted onto the TmaDAH7PS (β/α)8 catalytic domain
conferred that regulation. Similarly, the fusion of the TmaDAH7PS Tyr-binding ACT
domain onto the (β/α)8 catalytic domain of GspDAH7PS conferred inhibition upon
Tyr binding. These studies (and others48) were remarkable in how readily new
allosteric mechanisms could be conferred onto these proteins, suggesting that the
ability to allosterically regulate the catalytic domains may be intrinsic to these
proteins, and perhaps to these types of protein folds.

For the creation of new allosteric chimeric proteins, it is common to insert the
regulatory domain into the middle of the catalytic domain (Fig. 15.2b). Some of
these new allosteric proteins have inserted an intrinsically disordered protein (IDP)
domain that undergoes a transition between a high entropy disordered state to a low
entropy ordered state, depending on the ligand-bound state, temperature, and/or
pH. For example, Choi et al. [14] designed a maltose-dependent β-lactamase-malt-
ose binding protein (BLA-MBP) chimeric protein in which the BLA domain was
inserted in place of residues 317 and 318 of the MBP domain, and the amino acid
sequence Asp-Lys-Thr was placed between the N-terminus of BLA and residue
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319 of MBP. The construct, known as C4, was not allosterically regulated but did
have BLA activity. Nonetheless, by changing the linker, they were able to develop
allosterically regulated variants. For example, they added varying amounts of Gly
residues to the linker resulting in temperature-dependent allosteric regulation, which
was attributed to differences to entropic contributions with and without maltose. In
another variant, a varying repeat Glu-Ala-Gln-Ala linker was substituted for
Asp-Lys-Thr. Since Glu-Ala-Gln-Ala is more α-helical at low pH and more random
coil at high pH, the proposal was to create variants that had a pH-dependent
sensitivity to maltose. Indeed, experimental evidence showed that higher linker
flexibility at high pH or high temperature resulted in greater conformational hetero-
geneity in the BLA domain, resulting in a higher population of less-active states until
maltose was bound. Maltose binding under high pH or high temperature conditions
reduced conformational entropy but increased the population of the active confor-
mations, resulting in greater β-lactamase activity. The constructs lacked allosteric
regulation when their respective linkers were α-helical at low pH or under low
temperature conditions. These studies indicated that proteins can be engineered to
respond simultaneously to ligand binding and changes to physiochemical parameters
(i.e., pH and temperature), providing additional levels of control over protein
function.

In a similar example, Meister et al. [71] took advantage of a previously identified
insertion site in BLA [31–33] and inserted calmodulin (CaM) in such a way that
BLA was split into two halves, BLA 24–194 and BLA 196–286, in a manner
analogous to Fig. 15.2b. The resulting chimeric protein had β-lactamase activity in
the absence of Ca2+ because the central helix of CaM was disordered under those
conditions, allowing the two halves of the BLA domain to come together. Upon
addition of Ca2+, the helix became rigid, which separated the two half BLA domains
and abrogated catalytic activity. In this case, the high-entropy state was more active
because it is likely thermodynamically favorable for the hydrophobic core of BLA to
come back together and exclude solvent from those nonpolar residues. These sets of
studies indicated that domain insertion and thoughtful linker engineering can lead to
rational enthalpy and entropy changes to the underlying free energy landscapes of
these proteins.

In a rather unique example, Guo et al. [34] created an allosteric Ca2+ electro-
chemical sensor. A calmodulin domain was inserted into the redox enzyme
PQQ-glucose dehydrogenase with the goal of creating a biosensor that could quan-
tify Ca2+ concentrations in biological fluids. PQQ-glucose dehydrogenase had been
used as an electrochemical biosensor for glucose, but Guo et al. attempted to further
engineer this enzyme through domain insertion of a calmodulin domain. The loop
connecting strands A and B of β-sheet 3 of PQQ-glucose dehydrogenase was chosen
as the insertion site since strand A is part of the catalytic domain involved in
abstracting a proton from the glucose O1 atom. The thought was that the large
conformational change in the CaM domain upon binding Ca2+ would result in a
structural change that would activate the redox reaction catalyzed by PQQ-glucose
dehydrogenase, resulting in an electrical impulse. Indeed, the chimeric protein could
detect dilute Ca2+ in saliva. In a later refinement, the chimeric protein was placed in
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direct contact with conducting electrodes and a semiconductor by conjugating it to a
graphene nanosheet associating ligand, PBSE [54].

In the above examples, new allosteric proteins were created that responded to
ligand binding. There are also several examples of newly designed light-controlled
proteins. The LOV2 domain from Avena sativa has been used to control the function
of a variety of proteins via photoswitchable allosteric regulation [15, 26, 27, 39, 59,
65, 72, 74, 77, 84, 86, 105, 110, 114, 117, 125, 127, 130, 133, 137, 138]. A
conformational change occurs upon absorption of blue light due to a conserved
cysteine in the LOV2 domain forming a covalent bond with the flavin cofactor,
altering the conformation of the Jα helix at the C-terminus and a helix at the
N-terminus (Fig. 15.3b). The differences in structure and conformational dynamics
between the “dark” and “light” states allow the LOV2 domain to be used as a
photoswitch [35, 36]. Another strategy for rationally engineering light-controllable
allostery is exemplified in the design of a photoswitchable mammalian pyruvate
kinase by Gehrig et al. [27]. Through MD simulations, they found sites on the kinase
that are highly surface-exposed and undergo conformational changes when an
allosteric effector is bound. They inserted the LOV2 domain into these locations
and demonstrated reversible control of the enzyme by light in mammalian cells.

Most of the aforementioned examples can be framed within the free energy
landscape model, but in one notable example, Lee et al. fused a LOV2 domain
and Escherichia coli dihydrofolate reductase (DHFR) at surface sites in each protein
that are connected to allosteric amino acid interaction networks (Fig. 15.3b). By
connecting the allosteric networks of the two proteins, they were able to control the
catalytic activity of the DHFR enzyme with light [59].

15.2.2 Random Insertion of Regulatory Domains

While there are many elegant examples of well-designed chimeric allosteric pro-
teins, rational domain insertion often requires prior knowledge of the regulatory
domain and host proteins’ mechanisms and structures, which may not be generally
available for proteins of interest. In these cases, random domain insertion may still
generate new allosteric proteins, regardless of the depth of protein structure and
function knowledge. For random domain insertion, an appropriate library of inser-
tion variants must be created, and then a method for screening functional allosteric
enzymes must be available. The Ostermeier lab’s methods for the creation of
insertion libraries include random double-stranded breaks introduced by DNase I
[17, 31, 32] or S1 nuclease [132], or by inverse PCR [91] into the insertion target
within an expression vector (Fig. 15.4). The Ostermeier methods utilize random
deletions and insertions of amino acids near the gene insertion site and random
circular permutations of the insertion DNA to increase the diversity of the library.
The resulting plasmid prior to insertion is blunt-ended linear DNA, with productive
linear plasmids having the insert target split on either end. The blunt-ended DNA
insert is then ligated into the plasmid, resulting in a circular expression vector for the
chimeric protein. In contrast, the method of the Kim lab [95, 112, 113] involves the
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use of a Mu transposon for gene insertion (Fig. 15.4). A transposon is a double-
stranded DNA sequence that can be randomly inserted into a target DNA sequence
through the use of a transposase. This method also allows for random circular
permutations. In both methods, the resulting libraries contain many variations on
the insert sequence. The need for screening limits which chimeric proteins can be
generated through random domain insertion. There must be an observable indication
that either the insertion target or the insertion domain is active, where cell- or lysate-
based assays are more amenable to high throughput screening.

The work of Guntas et al. [31–33] provided an early template for random domain
insertion for chimeric protein production with circular permutations and tandem deletions
and repeats. The initial screening process for the target maltose-dependent β-lactamase
consisted of transforming the vector library into E. coli and plating the cells on Luria-
Bertani agar with ampicillin and maltose. Only cells that contained library members with

Fig. 15.4 Methods of random domain insertion. Details on the major steps of creating gene
insertion libraries are shown in brief
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functional β-lactamase activity were further tested for maltose-dependent β-lactamase
activity. In the first iterations of this study [32], 70% of library members had
β-lactamase successfully inserted into MBP, and 4% could also bind maltose. One
member, RG13 (Fig. 15.3c), was shown to have a great amount of switching behavior,
with very little β-lactamase activity in the absence of maltose and a 25-fold increase in the
β-lactamase activity in the presence of maltose. Wright et al. [131] determined that the
BLA domain of the chimeric protein primarily samples conformations where it is less
active, and addition of maltose allows BLA to sample conformations closer to its native
state in the full BLA protein.

Wright et al. [132] later applied the blunt-end random domain insertion method
(Fig. 15.4) to create a prodrug-activating protein that selectively activates in the
presence of the hypoxia-inducible factor 1α (HIF-1α), a marker for some types of
cancer. This protein, Haps59, was a fusion of the HIF-1α-binding CH1 domain of
the p300 protein and yeast cytosine deaminase (yCD), an enzyme that converts the
prodrug 5-fluorocytosine (5FC) to the toxic 5-fluorouracil (5FU), a chemotherapeu-
tic agent. The library was first transformed into GIA39 E. coli, a uracil auxotroph
lacking cytosine deaminase. Since the target chimeric protein would convert 5FC
into the toxin 5FU in the presence of HIF-1α, the first stage of screening consisted of
negative selection where 5FC and uracil were present and cells possessing cytosine
deaminase activity in the absence of HIF-1α did not grow due to 5FU toxicity.
Surviving cells then had their plasmids isolated and transformed into GIA39 cells
containing a glutathione-s-transferase-HIF-1a fusion (gstHIF-1α) plasmid with an
arabinose promoter. The cells were plated on agar supplemented with cytosine and
arabinose so that members that had cytosine deaminase activity in the presence of
HIF-1α could grow but members without cytosine deaminase activity could not. The
most promising chimeric protein, Haps59, was demonstrated to significantly
decrease cell survival in human breast cancer and colorectal cancer cells in the
presence of 5FC under hypoxic conditions similar to those in tumors, but not under
normal oxygen conditions present outside of tumors.

Flow cytometry analysis fluorescent-assisted cell sorting (i.e., FACS) has become
a popular method for screening libraries for desired functions. Ribeiro et al. [102,
103] used this selection method to create a more efficient endo-β-1,4-xylanase.
Xylanase is an important enzyme for the conversion of plant biomass to fermentable
sugars for biofuel production. Unfortunately, product inhibition from xylose is a
significant limiting factor for xylanase function. The xylose binding domain from
xylose binding protein (XBP) was selected as an insert domain since it undergoes a
significant conformational change upon binding xylose. The resulting protein pos-
sessed increased xylanase activity even after large amounts of xylose product were
formed. Because the goal was to create an improved version of an already active
enzyme where the effector molecule was also the product, initial screening consisted
of determining xylose-binding activity. E. coli cells lacking wild-type XBP were
used since XBP is required for the efficient uptake of xylose. Cells were transformed
with a pT7T3GFP_XBP plasmid, which contained a xylose promoter and would
express GFP and the chimeric protein containing the XBP domain. FACS was used
to sort for cells that displayed xylose binding, and these cells were further screened
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for xylanase activity. Cells with xylanase activity were determined by the formation
of halos on agar xylan plates after staining with Congo Red, indicating xylan
breakdown to xylose.

Nadler et al. [81] utilized the Mu transposon to insert GFP (green fluorescent protein)
into a ligand-binding domain to demonstrate the creation of allosteric metabolite sensors.
To demonstrate their technique, they created a single-fluorescent protein biosensor (SFPB)
to quantify in-cell levels of trehalose. A binding event in the ligand binding domain was
predicted to trigger an allosteric change in fluorescence in the inserted circularly permuted
GFP domain. Oakes et al. [90] also utilized this technique with the goal of introducing
allosteric regulation into the CRISPR-associated protein Cas9 by inserting the alpha
estrogen receptor, which crystallographic evidence had shown undergoes a significant
conformational change upon ligand binding. To identify sites where the estrogen receptor
domain could be inserted, mouse PDZ-domain insertion sites were screened for several
rounds in E. coli, with round one selecting for insertions that did not cause a frameshift
and were not reversed. Round two screened for Cas9’s ability to suppress RFP (red
fluorescent protein) expression with the insertion present at a random site to weed out
non-functional Cas9 activity. Sites on Cas9 that best tolerated insertion were clustered
around flexible loops, the ends of helices, and on the surface of the protein. Once
functional insertion sites were identified, the protein variants were then screened for
estrogen receptor insertion and assayed for Cas9 activity in a similar way to the PDZ
screening in the presence and absence of a 4-hydroxytamoxifen ligand.

The rational design methods of regulatory domain insertion benefit from compu-
tation and structural knowledge to tune the thermodynamic and steric parameters of
the chimeric protein to achieve the desired functional modulation. The random
domain insertion methods take advantage of clever library development and screen-
ing assays, benefitting from but not necessitating structural knowledge of the
regulatory domains and host proteins. These methods have brought new insights
into the free energy landscapes underlying protein regulation, and have already
resulted in new allosteric proteins finding practical use in biotechnology and medical
applications.

15.3 Engineering Protein Allostery Through Covalent
Modification

Allostery and long-range communication may be intrinsic to all protein folds.
Instead of whole domain insertions, more subtle changes may likewise result in
new allosteric regulation. Covalent modification of protein scaffolds represents
another method for altering or creating allostery in proteins. Rather than adding a
new domain to perturb a structural ensemble, covalent modification often either
restricts the accessible conformations with a linker or perturbs an amino acid
interaction network by conjugating a bulky molecule to a labile, surface-exposed
amino acid.
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Putri et al. used a spiropyrin photoswitch linker (Fig. 15.5a) to engineer a light-
sensitive human serum albumin (HSA) [98]. The linker was conjugated to a surface-
accessible cysteine via Michael addition in subdomain IA, which resulted in the
regulation of ligand release at subdomain IB greater than 130 Å away. For example,
the HSA ligands methylene orange and bromocresol green were released upon UV
irradiation, and methyl orange binding affinity decreased by three-fold after UV

Fig. 15.5 Covalent modification of proteins to control allostery. (a) Conjugation of spiropyran to a
Cys residue and isomerization to the merocyanine form. (b) Conjugation of the bifunctional
azobenzene derivative 4,40-bis (maleimido)azobenzene to two cysteine residues and isomerization
between trans and cis forms. (c) Conjugation of the bifunctional azobenzene derivative 3,30-bis
(sulfonato)-4,40-bis (chloroacetamido)azobenzene (BSBCA) to two Cys residues and isomerization
between trans and cis forms. (d) Isomerization of the genetically encoded azobenzene derivative
AzoPhe. (e) Covalent modification of a Lys residue by quinazolin-4 (3H)-one hydroxamic ester. (f)
Covalent modification of PvuII with azomal (PDB: 1NI0), adapted from Schierling et al.
[108]. Active site residues (cyan) are disrupted upon isomerization of azomal to the trans form
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irradiation. MD simulations confirmed that the subdomains were not directly inter-
actions, indicating that changes to ligand affinities were due to longer-range network
interactions.

One of the most common and useful covalent attachments is the azobenzene
photoswitch, which reversibly isomerizes between cis and trans conformations
[67, 98, 101]. Several strategies have been employed to integrate the azobenzene
photoswitch: it can be directly incorporated into a peptide during peptide synthesis
reactions [61, 122], incorporated into a protein via non-natural amino acids in vitro
[79, 82] or in vivo [9], crosslinked to the protein to one or two solvent-exposed
cysteines [79, 128, 135], and/or incorporated into a protein-binding ligand [96, 109,
124]. Generally, the isomerization of an azobenzene derivative between trans and cis
conformations changes the relative free energies of the active and inactive protein
conformations. In one example, Schierling et al. crosslinked an azobenzene deriv-
ative to the restriction enzyme PvuII, allowing allosteric inhibition to be reversibly
controlled by light. Here, two cysteine residues were conjugated to the bifunctional
azobenzene derivative 4,40-bis (maleimido)azobenzene (Fig. 15.5b, f). The switch
from cis to trans conformation disrupted the PvuII secondary structure, altered the
active site structure, and reduced enzyme activity by 16-fold [108]. In another
example, Ritterson et al. crosslinked two cysteine residues in cadherin, a cell-cell
adhesion protein, using the bifunctional azobenzene derivative BSBCA (Fig. 15.5c).
Upon irradiation with near-UV light, the apparent Ca2+ binding affinity decreased
18-fold. Because Ca2+ binding is linked to cadherin dimerization, the function of
cadherin was controlled by light. The photoswitch was reversible up to at least three
light/dark cycles. A genetically encoded azobenzene derivative has also been devel-
oped for use in E. coli allowing for the generation of azobenzene photoswitches in
live cells [79] (Fig. 15.5d).

Key surface exposed residues might also be covalently labeled to control protein
function. For example, Bongard et al. [8] discovered a class of small molecules,
quinazolin-4 (3H)-one hydroxamic esters, that covalently modify Lys residues
(Fig. 15.5e). They found that these molecules allosterically activate DegS, a bacterial
serine protease, by modifying the conformation of a loop in the protease domain. By
changing the Lys residues that were covalently modified, they were able to deter-
mine which modifications were responsible for allosteric activation. The Lys residue
responsible for the activation was found to be part of an allosteric amino acid
interaction network. This strategy of covalent modification can be applied to other
proteins for allosteric regulation or to find noncatalytic residues that are part of
allosteric amino acid interaction networks (see Fig. 15.1b).

15.4 Modifying Protein Allostery Through Mutagenesis

The ability to quickly create point mutations in a target protein has been a boon for
molecular biology and biochemistry. With some prior knowledge about a protein’s
structure and amino acid sequence, small modifications to the amino acid sequence
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can be made to create pH switchable proteins or identify and modify the amino acid
interaction networks that allow a protein to function. These studies generally repre-
sent more subtle changes than whole domain insertions or covalent modification.
This section will summarize select examples from the literature where mutagenesis
was used as a tool to modify, study, or create new allostery.

15.4.1 Generating pH-Dependent Proteins Through
Mutagenesis

Since a protein’s conformation is so dependent on its charge, there are many
examples of pH-switchable proteins [44, 51, 68, 70, 87, 107, 115, 120]. Examples
found in nature include the E. coli chaperone HdeA [41], β-ureidopropionase in the
pyrimidine catabolic pathway [69], bovine β-lactoglobulin [99], human prolactin
[49, 55], and nitrophorin 4 (NP4) [20]. The ability to engineer pH-dependent
allosteric proteins has great medical potential. For example, it is well known that
tumors often create an acidic environment, which may allow for pH-sensitive pro-
teins to functionally target cancer cells. There are also stark pH differences within
cells, potentially allowing for even more specific targeting in diseased states that
affect membrane-bound organelles such as mitochondria or lysosomes.

NP4 is a protein used by the kissing bug Rhodnius prolixus to selectively release
nitric oxide into its victim’s tissues via pH-dependent conformational changes.
When deprotonated at the higher pH in the tissue, a hydrogen bond with Asp30 is
broken, causing a conformational change that results in the release of bound nitric
oxide (Fig. 15.6). Di Russo et al. used pH replica exchange molecular dynamics
(pH-REMD) [46, 118] to describe the free energy landscape of NP4’s pH-dependent
conformational change. By creating a variant that destabilized the open conforma-
tion but did not affect the pKa of Asp30 in either conformation, they were able to
show that the observed pKa depends on both the equilibrium constant for the
conformations and the pKa at each conformation as predicted by their model. In
addition to changing the equilibrium constant between conformations, the pKa and
local dynamics of buried ionizable residues in proteins can be altered by changing
the distribution of surface charges, as demonstrated by Pey et al. using E. coli
thioredoxin [104].

In these studies, the coupling between protonation state equilibrium and confor-
mational equilibrium must be considered in order to understand the thermodynamics
of the pH-dependent conformational change. Exploring this further, Liu et al. studied
the coupling of the protonation state to the conformation of the inner residues of
staphylococcal nuclease by substituting ionizable residues into the interior of the
protein and measuring the pKa values of these residues [62]. By taking into account
the conformational equilibrium and the pKa of the residue of interest in each
conformation there was excellent agreement with the experimentally observed pKa
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values and structural information for buried ionizable residues in the same
protein [45].

There are now various examples of engineering proteins to be responsive to pH
changes by substituting buried residues for ionizable residues. Zimenkov et al. [140]
designed peptides that reversibly self-assemble into fibrils in response to pH
changes. The self-assembly results from helix-coil transitions in the peptides when
His residues in the helix are protonated. There are also biomedical applications to
engineering pH-sensitive proteins. The fibronectin (Fn3) domain is a useful scaffold
for engineering proteins that bind to proteins associated with cardiovascular disease
and cancer. By engineering His residues into the hydrophobic core, Heinzelman
et al. [37] engineered Fn3 domains that bind epidermal growth factor receptor
(EGFR) with much lower affinity at low pH, and the effect was shown to be
reversible. A similar strategy was used to engineer pH-responsive binding proteins
for the Fc portion of human immunoglobulin (HIgG) derived from the hyper-
thermophilic Sso7d protein by Gera et al. [28]

Although most examples of engineered pH-dependent allostery involve substitut-
ing ionizable residues into the hydrophobic core of a protein, other residues can also
be substituted to create pH-dependent allostery. Lysteriolysin O, a pore-forming
protein secreted by Listeria cytogenes that destroys cholesterol-rich cell membranes,
was engineered to be activated at slightly acidic pH via an allosteric mechanism.
Kisovec et al. [50] substituted an Ala residue for a Tyr residue in the vicinity of
ionizable residues previously identified to affect pH-dependent stability of the
protein, changing the pKa values of the buried ionizable residues.

Fig. 15.6 pH-dependent
modulation of the NP4
protein. Closed (top) and
open (bottom)
conformations of NP4.
Protonation of Asp30
stabilizes the closed
conformation, while
deprotonation stabilizes the
open conformation.
(Reprinted with permission
from Di Russo, N. V.; Martí,
M. A.; Roitberg, A. E.
Underlying
Thermodynamics of
PH-Dependent Allostery.
J. Phys. Chem. B 2014,
118 (45), 12,818–12,826.
Copyright 2014 American
Chemical Society)
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15.4.2 Perturbing Allosteric Amino Acid Interaction
Networks with Mutagenesis

In the past decade, there have been several examples of mutational studies that
identified and perturbed amino acid interaction networks. In several cases described
here, changing network residues distal from the binding or active sites of proteins
have wide implications for protein function and allostery. These studies have been of
recent interest due to the rise of allosteric drugs and the hunt for druggable “cryptic”
allosteric sites.

A long-standing problem in cellular signaling is tuning substrate and protein
interaction specificity. For example, several PDZ domains have intersecting sub-
strate specificity but play discrete roles in signaling pathways [24]. Gianni et al.
investigated this problem using double mutant cycle analysis [42] on two specific
PDZ domains that have computational evidence supporting distinct allosteric net-
works [52]. Double mutant cycle analysis helps to determine if two sites are
allosterically and energetically coupled. Through these studies, they were able to
determine the binding kinetics for 31 protein variants of each binding partner. These
energetic constraints determined that the two binding partners had distinct allosteric
mechanisms and that these allosteric networks were not conserved across the protein
family. The authors emphasized the importance of amino acid composition to
allosteric networks [30].

Introducing point mutations can also provide experimental evidence for the
presence of amino acid interaction networks that play a critical role in allostery.
Holliday and coworkers identified two dynamic amino acid clusters within
cyclophilin A using RASSMM (relaxation techniques and single-site multiple muta-
tions) [40]. RASSMM utilizes the high sensitivity of NMR methods to identify hot
spots that are related to active site structural dynamics. Within the two coupled
networks in cyclophilin A, two key “hot spot” residues were identified (Fig. 15.7).
When these residues were perturbed, the active site dynamics and enzyme turnover
were negatively impacted, despite both residues being greater than 15 Å from the
active site. Similar methods can be applied to discover dynamically-coupled net-
works in other proteins.

There are several other NMR methods that can be used to identify and perturb
allosteric networks in proteins. Among these is chemical shift covariance analysis
(CHESCA) [111], which is similar to RASSMM in that it helps to elucidate
allosteric mechanisms in proteins. CHESCA has been utilized to determine amino
acid interaction networks in several proteins, including the alpha subunit of trypto-
phan synthase [2], a DNA repair protein (Rad50) [10], and phosophohexomutase
[134]. In a different NMR approach to allostery, Cui and coworkers described a
method that solely relies on total protein 1H, 15N chemical shift perturbations, or
CSPs [17]. In order to probe the allosteric sites in tyrosine phosphatases, they
introduced several Ala substitutions in an acidic loop region and then monitored
chemical shift changes in residues distal from the active site. Using this method, they
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identified two separate amino acid interaction networks. When network residues
were changed, a marked decrease in enzyme activity was noted, despite the distance
of these network residues from the active site. Tyrosine phosphatases have been
proposed to be potential drug targets for the treatment of diabetes, cancer, and
obesity, and so the identification of these network residues helps to identify protein
surfaces that might be targetable by allosteric drugs.

Fig. 15.7 The RASMM method for identifying dynamically coupled amino acid interaction
networks in proteins. Amino acids distal from the active site are identified as “hot spots” based
on their R2 relaxation dispersion profiles in the apo and substrate-bound states. Residues that are
linked allosterically to the active site are expected to show a measurable change in R2 relaxation
dispersion behavior in the presence of substrate. To identify the global communications networks,
single site mutations of “hot spot” residues are generated and global R2 relaxation dispersion
profiles are examined. Reprinted from Structure, Volume 25 Issue 2, MJ Holliday, C Camilloni,
GS Armstrong, M Vendruscolo, EZ Eisenmesser. Networks of Dynamic Allostery Regulate
Enzyme Function, 276–286, Copyright (2017), with permission from Elsevier
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15.4.3 Engineering Allostery “Out Of” Proteins

All of the examples above have explored ways to generate new allosteric proteins.
However, it is sometimes advantageous to render a protein unresponsive to allosteric
regulation while maintaining other functions. For example, metabolic enzymes are
often allosterically regulated, but such regulation might interfere in a particular
synthetic scheme [22]. One great recent example is the engineering of tryptophan
synthase (TS) for the synthesis of novel indole analogs. TS is composed of two
subunits, the alpha subunit (αTS) that generates indole, which is then directly
channeled through a hydrophobic tunnel to the beta subunit (βTS) that completes
tryptophan biosynthesis. Only the catalytic activity of βTS was desired for the
synthesis of indole analogs, but the large decrease in βTS activity in the absence
of αTS made synthesis difficult [85]. The Arnold lab [13] sought to remedy this
problem by using directed evolution to generate βTS that recapitulated the allosteric
activation in the absence of αTS. The resulting βTS had greater catalytic activity than
the native complex and also a more diversified substrate portfolio.

In further studies, Buller and coworkers sought to identify the mechanism by
which their evolved βTS was able to fully function in the absence of αTS [12]. By
monitoring the steady-state concentrations of βTS intermediates, they determined
that their directed evolution variants progressively changed the rate-limiting step of
the reaction. In addition, their variants shifted the steady-state distribution, favoring
the tryptophan bound products (Fig. 15.8). They concluded that the amino acid

Fig. 15.8 Engineering allostery “out of” the beta subunit of tryptophan synthase. (a) A crystal
structure of the COMM domain of βTS representing the differences in the open/closed conforma-
tions through the catalytic cycle. The “extended” state represents the open conformation. As the
reaction proceeds, the COMM domain enters the fully closed conformation (E (A-A)). (b) A
theoretical reaction coordinate illustrating the energy levels of the βTS intermediates. The
engineered beta subunit (PfTrpB2B9) creates a decrease in energy of the product bound state. This
results in a more efficient enzyme without the presence of the allosteric effector (αTS). Reprinted
with permission from Buller, A. R. et al. Directed Evolution Mimics Allosteric Activation by
Stepwise Tuning of the Conformational Ensemble. J. Am. Chem. Soc. 140, 7256–7266 (2018).
Copyright 2018 American Chemical Society
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substitutions stabilized a population in βTS that is typically only favored when
bound to αTS – therefore recapitulating the complex activity in just the βTS subunit.
The TS example provides an important counterexample for allostery engineering –

instead of engineering in allostery, the goal was to engineer allostery out of βTS so
the enzyme was fully capable of functioning alone.

15.5 Conclusion

The ability to control engineered proteins allosterically would revolutionize medi-
cine and industry. Here, we have provided examples that illuminated the fundamen-
tals of allostery, and have shown that there are newly designed allosteric proteins
already finding practical use. Rational and random domain insertion methods appear
to be the most prolific in creating novel allosteric proteins. The modular nature of
certain types of catalytic and regulatory domains may be why these approaches are
so successful. The ability to engineer photoswitchable proteins is especially exciting,
which has been accomplished mainly through LOV2 domain insertion and/or
insertion of the azobenzene photoswitch through covalent modification. Likewise,
pH-switchable proteins could offer means to specifically target different cellular
locations or activate only under certain disease conditions. The identification of
amino acid interaction networks through a variety of biophysical and computational
methods [1] offers not only a means to potentially engineer allostery and function,
but these methods can also identify protein surfaces that may be amenable to small
molecule targeting and allosteric regulation.
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