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Abstract  The critical stages during the growth of crops are the uniform seed ger-
mination, early seedling growth, and uniform plant stand. Low crop yield is attrib-
uted to uneven seed germination and seedling growth. Therefore, the quality of seed 
can be improved through priming in addition to the field management techniques 
for better seed germination. Priming is a physiological technique of seed hydration 
and drying to enhance the pregerminative metabolic process for rapid germination, 
seedling growth, and final yield under normal as well as stressed conditions. The 
primed seeds show faster and uniform seed germination due to different enzyme 
activation, metabolic activities, biochemical process of cell repair, protein synthe-
sis, and improvement of the antioxidant defense system as compared to unprimed 
seeds. There are many techniques of seed priming which are broadly divided into 
conventional methods (hydro-priming, osmo-priming, nutrient priming, chemical 
priming, bio-priming, and priming with plant growth regulators) and advanced 
methods (nano-priming and priming with physical agents). However, priming is 
strongly affected by various factors such as temperature, aeration, light, priming 
duration, and seed characteristics. This chapter highlights the priming mechanism 
and the available technologies as a tool for superficial seed germination and crop 
stand. An experiment with reference to the importance of priming toward vigor seed 
germination and seedling growth was conducted, and its results have been added in 
this chapter.

Keywords  Seed priming · Germination · Antioxidant defense system · Metabolic 
activities · Crop growth

1  �Introduction

Seed treatment before sowing is the foundation for activation of seed resources that 
in combination with external ingredients could contribute to the efficient plant 
growth and high yield. Various physiological and non-physiological techniques are 
available for enhancing seed performance as well as to combat environmental con-
straints. The physiological treatments for improving seed germination and stand 
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establishment are composed of seed hydration techniques such as humidification, 
wetting, and presoaking. The other techniques for promoting germination are com-
prised of chemical treatments, seed inoculation with beneficial microbes, and seed 
coating. Seed priming is a physiological method of controlled hydration and drying 
to enhance sufficient pre-germinative metabolic process for rapid germination 
(Dawood 2018). This is one of the economic and feasible technologies for uniform 
seed development in most of the field crops. Other benefits include efficient nutri-
ents uptake, water use efficiency, release photo- and thermo-dormancy, maturity, 
and crop yield (Hill et  al. 2008; Bagheri 2014; Lara et  al. 2014; Dutta 2018). 
However, many factors affect the performance of seed priming such as plant spe-
cies, priming duration, temperature, priming media, and their concentration and 
storage conditions. The treated seed with a proper reagent can germinate better, for 
instance, seed treatment with inorganic salts (KCl and KNO3) enhanced the germi-
nation and growth rates. The KCl improved the starch and protein contents, whereas 
KNO3 increased the fruit size and quality (Singh et al. 2015a, b).

The other priming reagents involved in breaking seed dormancy are gibberellic 
acid (GA) and cytokinins (Assefa et al. 2010). Priming induces a set of biochemical 
changes such as enzyme activation, metabolism of germination inhibitors, repair of 
cell damages, and imbibition to promote germination (Farooq et al. 2010). Priming 
also modifies biochemical and physiological nature of embryo and affects the 
release of substances during germination phase II that activates the production of 
hydrolytic enzymes. These substances make high-energy compounds and essential 
chemicals for the germinating seedlings available (Renugadevi and Vijayageetha 
2006). Therefore, the positive effects of seed priming are highly attributed to vari-
ous biochemical phenomena such as improvement of the antioxidant defense sys-
tem and restoration of metabolic activities through the synthesis of proteins and 
nucleic acids (RNA and DNA) (Di Girolamo and Barbanti 2012).

2  �History of Seed Priming

Various seed treatment techniques are introduced and examined for uniform germi-
nation under different environmental conditions. Evenari (1984) reported that the 
efforts for improving seed germination and growth are dated back to ancient Greeks. 
Theophrastus (371–287 B.C.), during an investigation, observed that cucumber 
seeds when soaked in water result in faster and uniform germination as compared to 
unprimed seeds (Theophrastus, Enquiry into Plants, Book VII, I.6). Likewise, the 
Roman naturalist Gaius Plinius Secundus (23–79 A.D.) in his Encyclopedia reported 
the positive effects of presoaking of cucumber seeds in honey and water for seed 
germination (Gaius 1949–1954). Afterward, in 1539–1619, the French botanist 
Oliver de Serres reported about the seed soaked in manure water for 2 days and then 
dried before sowing as an effective way of seed treatment for better crop growth. 
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Charles Darwin tested osmo-priming on lettuce and cress seeds in seawater and 
observed high germination in the treated seeds as compared to nonprimed seed 
(Darwin 1855). The modern concept of seed priming is presented by Ells (1963), 
who highlighted the critical parameters related to seed treatment. He observed high 
germination rates when seeds were treated with a specific nutrient solution. Koehler 
(1967) reported that treatment with salt solution promotes RNA accumulation that, 
in turn, enhances other physiological process and results in high seed emergence. 
May et al. (1962) stated that seed drying for certain time at specific level after prim-
ing exerts beneficial effect and leads to fast germination under normal as well as 
stressful conditions (Berrie and Drennan 1971). Heydecker et  al. (1973) used 
organic chemical polyethylene glycol (PEG) H–(O–CH2–CH2)n–OH, a high molec-
ular weight compound, for seed pretreatment to boost germination and avoid several 
problems associated with salts treatment like hardening. The priming technology, so 
far in research and development, has been adopted as a novel technique for getting 
a uniform crop standby several seed and agricultural companies.

3  �Phenomenon of Seed Priming

After sowing, seeds remain in the soil for a certain period to absorb water and some 
essential nutrients for their growth. Seed priming is a technique to reduce this time 
and makes the germination quickly and uniformly. In addition to hydration, priming 
also reduces the sensitivity of seed to external environmental factors (Afzal et al. 
2016). Priming promotes seed germination under three stages such as imbibition, 
germination, and growth (Fig.  1). During the imbibition stage, the water uptake 
promotes protein synthesis and respiratory activities through messenger ribonucleic 
acid (mRNA). The second stage is related to the initiation of different physiological 
activities related to germination such as protein synthesis, mitochondria synthesis, 
and alteration in soluble sugars (Varier et al. 2010). The critical factor during seed 
priming is the controlled water uptake during the second stage, before the emer-
gence and growth of radical from the seed coat during the last stage. The second 

Fig. 1  General phenomenon of seed priming
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stage (germination) is much sensitive to environmental factors than the third stage 
(Côme and Thévenot 1982). Therefore, during priming, the seeds that have passed 
through the second stage could germinate under variant environmental conditions as 
compared to unprimed seeds (Corbineau and Côme 2006).

4  �Methods of Seed Priming

There are several techniques of seed priming that are broadly divided into conven-
tional and advanced methods. The traditional techniques are comprised of hydro-
priming, osmo-priming, nutrient priming, chemical priming, bio-priming, seed 
priming with plant growth regulators, and priming with plant extracts, whereas the 
advanced techniques of seed priming include seed priming through nanoparticles 
and priming through physical agents (Table  1). These techniques are described 
below.

4.1  �Conventional Seed Priming Methods

4.1.1  �Hydro-priming

Hydro-priming is a simple and economical technique in which seeds are soaked in 
water for a specific period and dried to a certain moisture level before sowing (Singh 
et al. 2015a, b). This technology is useful in areas with adverse environmental con-
ditions including high heat and drought stress. Hydro-priming improves the water 
uptake efficiency and seed hydration under such conditions (McDonald 2000). 
However, it is critical to maintaining optimum humidity and temperature to avoid 
radical projection, as hydro-priming may result in noncontrolled water uptake 
(Taylor et al. 1998). The key technique of hydro-priming is “drum priming” invented 
by Rowse (1991). Drum priming is comprised of a drum containing seed lot con-
nected to a boiler producing vapors. The vapors upon entering the drum condense 
into water droplets. During treatment, the increase in relative seed mass is measured 
along with strict control of the volume of the water and time required for seed 
hydration (Warren and Bennett 1997). Various research studies have explained that 
during drought stress conditions, hydro-priming increases the germination and 
seedling growth by 3–4 times as compared to nonpriming (Kaur et  al. 2002). 
Likewise, Sung and Chiu (1995) reported that watermelon seeds when subjected to 
hydro-priming result in fast germination and seedling growth. In addition to several 
food crops such as Allium porrum, coriander, pyrethrum, and wheat, hydro-priming 
resulted in a uniform early germination in many desert plants like desert cacti 
(Dubrovsky 1996).
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Table 1  The effect of conventional and advance seed priming techniques on crops growth and 
development

Crop
Priming 
solutions

Priming 
duration 
(hours) Observations Studies

Pepper Marigold flowers 
petal extract

24 10% high seed germination
15% high seedling emergence rate
Reduced the MGT up to 40%
High germination index
High seedling weight

Mavi (2016)

Wheat Water, KCl, 
CaCl2

12, 14, 24 Improved crop performance under 
chilling temperature
Reduced time to start emergence by 
~16%
Reduced time to 50% germination 
and MET by ~17 and 33%, 
respectively
Increase the plant height, fertile 
tillers, and straw yield
Enhanced the grain yield by ~12

Farooq et al. 
(2008)

Rice Water 24 Improved seedling growth by 
enhancing germination index, 
seedling vigor index, and 
germination energy
Reduced mean germination time
Increased panicle number(m−2)
Improved crop growth and final yield

Mahajan et al. 
(2011)

Marigold Solution Zn and 
Mn

12 Enhanced the germination rate up to 
93%
Increased SVI by 18.5%
Flower yield was increased >63%
~50% increase in essential oil 
production

Mirshekari 
et al. (2012)

Barley Solution of Zn 
and P

12 Increased the germination rate from 
65 to 95%
50% germination was achieved after 
2 days
High nutrient accumulation without 
affecting germination
Increased the plant height, root, and 
shoot biomass
Stimulate root growth by 27%
Increased the water use efficiency by 
44% under drought conditions

Ajouri et al. 
(2004)

(continued)
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Table 1  (continued)

Crop
Priming 
solutions

Priming 
duration 
(hours) Observations Studies

Linseed Salicylic acid, 
CaCl2 and 
moringa leaf 
extract

12 Reduced time to 50% germination 
and mean germination time
Enhanced the GI and final 
germination
Increased the fresh and dry weight of 
root and shoot
Increase in seed weight by 9.30%, 
biological yield by 34.16%, seed 
yield by 39.49%, harvest index by 
4.12%, and oil contents by 13.39%

Rehman et al. 
(2014)

Cabbage Urea 8 Primed seed showed high 
germination rate
Enhanced antioxidative enzyme 
activity
Improved soluble sugar and proline 
content

Yan (2015)

Tomato Plants extracts 48 Maximum germination up to 90%
Perk up seed vigor index, seedling 
length, and fresh and dry biomass
Suppress plant disease and increased 
the survival rate up to 68%

Prabha et al. 
(2016)

Rice Polyamine 48 Increased seed germination and 
seedling length
Affect fresh and dry weight
Enhanced net photosynthesis, proline 
production, water use efficiency
Improved anthocyanins, soluble 
phenolics, and membrane properties

Farooq et al. 
(2009)

Mung 
bean

Water and 
polyethylene 
glycol

6, 12 Earlier emergence and flowering as 
compared to unprimed
Rapid physiological maturity
Increased the grain pod−1 by 14%, 
grain weight by 3.5%, and grain yield 
by 12%

Khan et al. 
(2008)

Rice Selenium 24 Triggered germination rate and early 
seedling growth
Greater α-amylase activity; enhanced 
activities of enzymatic antioxidants, 
peroxidase, catalase, and glutathione 
peroxidase; and higher soluble sugars 
were observed as compared to 
unprimed
High chlorophyll content
Greater membrane stability, high 
starch metabolism, and increased 
activities of antioxidant

Khaliq et al. 
(2015)

(continued)
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4.1.2  �Osmo-priming

The method of osmo-priming is patented by Heydecker et al. (1973). It is a widely 
used commercial technique in which seeds are hydrated to a controlled level to 
allow pregermination metabolic activities (Halmer 2004). During the process, seeds 
are exposed to a controlled level of imbibition because of excess water entry to seed 
resulting in reactive oxygen species (ROS) accumulation as well as oxidative dam-
age of cellular components such as proteins, lipid membranes, and nucleic acids. 
Osmo-priming through a delayed water entry to seed reduces the ROS accumulation 
and thus protects the cell from oxidative injury. Osmotica such as PEG [H-(O-
CH2-CH2)n-OH], sugar, mannitol (C6H14O6), and sorbitol (C6H14O6) are added to the 
solution for lowering water uptake. In addition, different salts such as NaNO3, 
MgCl2, NaCl, and KNO3 are used for osmo-priming. Singh et  al. (2014) experi-
mented on osmo-priming using cowpea. They used KNO3 as priming solution with 
three levels of time durations (6, 8, and 10 h). Their results showed that in compari-
son to unprimed treatments, osmo-priming was proved superior in terms of all ger-
mination and growth parameters. Furthermore, osmo-priming with KNO3 showed 

Table 1  (continued)

Crop
Priming 
solutions

Priming 
duration 
(hours) Observations Studies

Fennel Salicylic acid Enhanced germination rate
Increased seed stamina index, 
seedling fresh and dry weight

Farahbakhsh 
(2012)

Rice Water and 
KH2PO4

24 Priming with both water and P 
significantly enhanced seed 
emergence and seedling growth
Better performance for plant 
parameters
Increased shoot biomass and root 
length
High P concentration in shoot due to 
priming with P solution

Pame et al. 
(2015)

Peanut ZnO 
nanoparticles

3 Increased seed germination rate
Improved stem and root growth
Increased pod yield per plant by 34%
Enhanced growth and crop yield

Prasad et al. 
(2012)

Wheat Silver 
nanoparticles

– Increased percent germination
Increased plumule and radicle length

Salehi and 
Tamaskani 
(2008)

Rice Calcium-
phosphate 
nanoparticles

48 Improved seedling growth
Stimulate metabolites and enzymes 
related with antioxidative responses

Upadhyaya 
et al. (2017)

Rice SiO2 6 Nanoparticles showed no toxic effect 
on seedling growth
Improved root length, seedling dry 
weight, and root volume

Adhikari et al. 
(2013)
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greater results than hydro-priming for all tested parameters. Osmo-priming is tech-
nically and financially more feasible as compared to hydro-priming, because osmo-
primed seed results in quicker germination with low cost and better water 
conservation, thus providing a promising alternative to the farmers (Moradi and 
Younesi 2009). Jett et al. (1996) stated that the controlled seed hydration in osmo-
priming preserves plasma membrane and causes quicker germination. However, 
during solution selection for osmo-priming, the morphology of seed should be con-
sidered as the semipermeable outer layers in some seeds are highly sensitive that 
affect the efficacy of priming (Pill 1995). The semipermeability of this outer layer 
is due to the presence of amorphous tissue between seed coat and pericarp that 
inhibits solute exchange, thus controlling priming agent and water to enter to the 
seed (Zhou et al. 2013). The internal osmotic equilibrium and nutritional balance of 
the seed will be disturbed if the solution is not properly selected according to the 
permeability of the seed due to the penetration of ions released from priming solu-
tion (salts) (Bradford 1995).

4.1.3  �Nutrient Priming

The saturation of seeds with a certain concentration of nutrients for a specific period 
before sowing is known as nutrient priming (Shivay et al. 2016). Priming of crop 
seeds with either micro- or macronutrients enhances the nutrient substances and 
augments the germination, sprout (seedling) development, and water uptake effi-
ciency. Micronutrient seed priming is a well-known technique to increase the osmo-
sis for water regulation in seeds during the germination period (Singh 2007). For 
instance, seed primed with sodium molybdate dihydrate (0.02% and 0.04%) for 5 h 
improved the yield of mung bean (Umair et al. 2011). Likewise, macronutrient seed 
priming is the most effective technique (Rakshit et al. 2013). For example, potas-
sium (K) is a mineral nutrient, and soaking of crop seeds with K increases the toler-
ance possibility of plant life against the different environmental stress conditions 
(Cakmak 2005). Grain yield of wheat and chickpea can be improved by priming 
with Zn solutions (Arif et al. 2007). Likewise, in moderately Zn-deficient soils such 
as alkaline soil, Zn priming is helpful to mimic Zn deficiency in plants (Harris et al. 
2008). It also improves crop appearance, growth, yield, and nutrient absorption 
(Shivay et al. 2016). Chickpea seeds primed in 0.05% solution of ZnSO4.7H2O (zinc 
sulfate heptahydrate) give a 19% high seeds production and have 29% more seed’s 
Zn as compared to that of nonprimed chickpea seeds (Harris et al. 2008). Besides, 
mineral nutrient priming increases plants’ tolerance to various environmental stress 
conditions (Marschner 1995). Ascorbic acid is also an essential vitamin nutrient and 
has been used for seed priming because it is an antioxidant in nature. Seeds primed 
with elevated concentrations of internal plant ascorbate retain the antioxidant capa-
bility of plants and protect them from oxidative stress damage (Zhou et al. 2009). 
Tavili et  al. (2009) reported that seed treatment with ascorbic acid increases the 
germination rate of Agropyron elongatum grown in salt stress conditions.

Advances in the Concept and Methods of Seed Priming
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4.1.4  �Chemical Priming

Numerous chemicals are in use to soak a variety of crops seeds before germination. 
Natural and synthetic chemicals like choline, chitosan, putrescine, ethanol, 
paclobutrazol, ZnSO4, KH2PO4, CuSO4, and Se are used in seed priming to enhance 
growth and tolerance in crop plants (Jisha et al. 2013). Pretreatment of seeds with 
these chemicals increases crop plants growth, and plants attain resistance to various 
abiotic stresses. Priming of Salvia L. and Capsicum annuum L. seeds and other crop 
species with butenolide compound promotes seedling vitality and emergence 
(Demir et al. 2012). The improved seedling appearance, because of butenolide pre-
treatment, lessens the chance of plant pathogens’ attack. Similarly, presoaking rice 
seeds with (1% or 5%) ethanol solution results in more rapidly and consistent ger-
mination rate and high leaf numbers (Farooq et  al. 2006). Putrescine is another 
chemical compound that can be used for seed treatment. Soaking seeds of tobacco 
in this compound solution develop the cold stress tolerance at the stage of germina-
tion and seedling growth through the regulation of antioxidant system (Xu et al. 
2011). Also presoaking with a paclobutrazol compound developed salt stress toler-
ance for Catharanthus roseus because of antioxidant system regulation (Jaleel et al. 
2007). Shahrokhi et al. (2011) described that seed priming of turf grass with this 
compound in drought stress affects the plant physiology, though it is associated with 
the concentration of the paclobutrazol solution and the temperament of the cultivar. 
In addition, chitosan is a large-sized cationic polysaccharide molecule generally 
obtained during waste materials of seafood processing. Priming with chitosan 
increased disease resistance, the rate, and percentage of germination and the lipo-
lytic activity of lipase, GA3, and indole-3-acetic acid (IAA) quantity and as well 
enhanced the quality of seeds for crop plants (Shao et al. 2005). Wheat seeds pre-
treatment in chitosan solution stimulated resistance to several diseases of crops and 
improved seed quality (Reddy et al. 1999). Seeds layered with chitosan increased 
seed germination rate and tolerance in seedlings of hybrid rice during stress condi-
tion (Ruan and Xue 2002). Maize seeds when soaked in different acidic solutions of 
chitosan increased the vitality of seedlings (Shao et al. 2005). Furthermore, in cold 
stress conditions, it enhanced the maize seeds germination velocity and hence ben-
efited the seedlings growth (Guan et al. 2009).

4.1.5  �Bio-priming

It is a seed-presoaking technique along with the inoculation of beneficial microor-
ganisms. It combines both the biological agent (microorganisms) and physiological 
soaking (seed hydration) phase. Callan and Coworkers first depicted the bio-priming 
in 1990 for the biological management of Pythium pre-emergence of sh2 sweet 
corn. Incorporated imbibitions with a biocontrol mediator at certain temperature 
enhance fortification. Additionally, seed priming along with the beneficial microor-
ganisms possibly will promote the maturity of the crop plants, mainly if the inocu-
lated microorganisms colonize the rhizosphere of the plant and maintain plant 
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physiology and plant growth for a longer period (Bennett and Whipps 2008). Since 
it is a biological approach to use both bacteria and fungi, competitors will also coun-
ter to both soil and seeds endured pathogens (Afzal et al. 2016). Callan et al. (1990) 
reported that bio-priming involves the varnishing of seeds by bacterial biocontrol 
negotiator like Pseudomonas aureofaciens Kluyver AB254 strain and hydrating at 
23 °C for 20 h in damped vermiculite or on damped germination blotters in self-
sealing plastic bags. The leakage of seeds release during the period of bio-priming 
could provide nutrients and strength for inoculated biocontrol agents (Wright et al. 
2003). These flattering environments contribute to the migration and propagation of 
inoculated biocontrol mediators above the surface of the seed and assist water and 
nutrients uptake throughout the bio-priming period. Priming by a diverse group of 
beneficial microbes could not only augment the seed’s nature but also boost seed-
ling strength and capability to combat both biotic and abiotic stresses (Rakshit et al. 
2015). The microbes mostly designed for bio-priming of seeds belong to 
Pseudomonas spp., Enterobacter spp., Trichoderma spp., and Bacillus spp. (Raj 
et al. 2004). For vegetable seeds, adequate bio-priming remedies were accomplished 
with Trichoderma harzianum strain, followed by Trichoderma pseudokoningii, 
Bacillus spp., Gliocladium spp., and Pseudomonas fluorescens (Ilyas 2006). 
Recently, bio-priming used as a substitute to control several soil- and seed-borne 
pathogens. For instance, mutual response of both Trichoderma harzianum and 
Pseudomonas fluorescens, when applied on pepper seeds as bio-priming agent, 
results in a significant growth of seedlings (Kumar et al. 2010; Reddy 2012). Various 
rhizobacterial inoculants are used as priming agents to control pathogenic fungal 
strains and to enhance crop yield. Most of the rhizospheric bacterial strains boost 
plant growth and physiology and thus are called plant growth-promoting rhizobac-
teria (PGPR) (Tonelli et al. 2011). Within the roots of tomato and rice plants, mycor-
rhizal fungi activate the aggregation of several transcripts and proteins that also 
predicts function in the plant defense mechanism (Pozo and Azcon-Aguilar 2007).

4.1.6  �Priming with Plant Growth Regulators (PGR)

Seed treatment with plant growth regulators (PGR) is known to mitigate the harmful 
effects of several environmental stresses (Bahrani and Pourreza 2012; Jisha et al. 
2013). Mendoza et al. (2002) reported that priming pepper seeds in salicylic acid 
protected the seedlings from adverse effects of a chill. Bell pepper primed with GA3 
(200 ppm) showed a higher rate of several physiological parameters including ger-
mination, shoot root length, and seedling vigor indices as compared to the control 
(Yogananda et  al. 2004). In this context, indole-3-acetic acid (IAA), one of the 
prime auxins in plants, regulated cell division, enhanced photosynthetic activities, 
and activated the translocation of carbohydrates that enhance root initiation, flower-
ing, and fruit setting and ripening (MacDonald 1997; Awan et al. 1999; Naeem et al. 
2004). Similarly, gibberellins having antagonistic effects with abscisic acid (ABA) 
regulate seed germination and plant growth. Abu-Muriefah (2017) stated that the 
improved seed germination due to GA3 priming might be due to its effect on stored 
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food within seeds. He further described that GA3 is known to stimulate the synthesis 
and production of the hydrolases resulting in the germination of seeds. Certain 
hydrolase enzymes are involved in seed germination process that makes the endo-
sperm accessible to the embryo. In addition, cytokinins, ethylene, abscisic acid, and 
salicylic acid are some of the other plant growth promoter hormones that promote 
growth and regulate plant responses under various stress conditions. Similarly, cer-
tain new compounds such as KNO3 (3%), KH2PO4 (2%), and PEG solutions (10%) 
are now being used as priming agents showing enhanced germination as compared 
to nonprimed seeds (Korkmaz and Korkmaz 2009; Ozbay and Susluoglu 2016).

4.1.7  �Priming with Plant Extract

Allelochemicals such as phenolic compounds, terpenoids, flavonoids, saponins, 
alkaloids, and steroids may inhibit or stimulate plant growth (Narwal 1994). Saponins 
can enhance nutrient absorption as they are readily soluble in water. Alkaloids, sapo-
nins, and phenolic compounds present in the leaves of various plants are involved in 
the production of antioxidant activities and protect the plants against pathogens 
(Satish et al. 2007). Embryo and other associated structures are generally assumed to 
be activated by certain physiologically active substances that result in more water 
absorption and eventually in higher vigor index due to the development of an effi-
cient roots system (Rangaswamy et al. 1993). Some plants are rich in saponin and 
alkaloids such as Chlorophytum leaves, while others are rich in terpenoids, steroids, 
flavonoids, and antiquinone such as neem leaves (Raphael 2012; Chakraborthy et al. 
2014). Dawood et al. (2012) reported that amalgamation of fenugreek seeds (10%) 
or guava leaves or lantana leaves (20%) into the soil significantly enhanced carbohy-
drates and photosynthetic pigments of leaf tissues in sunflower. Similarly, the reduc-
tion in mortality and high seedling vigor in tomato was reported by priming tomato 
seeds with Azadirachta, Chlorophytum, and Vinca (Prabha et al. 2016).

4.2  �Advanced Methods of Seed Priming

4.2.1  �Seed Priming Through Nanoparticles

Nanotechnology utilizes nanoparticles less than 100 nm in size, and it has a promis-
ing role in transforming food production and agriculture (Fraceto et al. 2016). The 
excessive use of chemical fertilizers can be reduced by utilizing nanomaterials in 
agriculture (Upadhyaya et al. 2017). In this context, priming seeds with nanoparti-
cles has been reported to enhance seed germination and vigor in many crops. Ghafari 
and Razmjoo (2013) reported that seed priming with calcium-phosphate, SiO2, ZnO, 
and Ag nanoparticles enhanced germination and seedling development. The mecha-
nism behind high seed germination in nano-priming is the greater penetration via 
seed coat that improves nutrient and water uptake efficiency of the seed (Dutta 2018).
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4.2.2  �Seed Priming Through Physical Agents

The magnetic field, UV radiation, gamma radiation, X-rays, and microwaves are 
some of the physical agents that are used for seed priming (Bilalis et al. 2012). 
Priming with magnetic field has been reported to improve germination rate, vigor, 
and seedling biomass as well as tolerance to various environmental stresses. The 
tolerances to different stresses and improved germination rate have been attributed 
to a reduction in reactive oxygen species (ROS) with increasing activities of anti-
oxidant enzymes (Bhardwaj et al. 2012; Araujo et al. 2016). However, the effects 
of ionizing radiation such as gamma (γ) rays are dose and intensity dependent. 
These rays interact with cellular components directly and are reported to improve 
the germination at lower doses (less than 10 Gy). Certain changes in hormonal 
network of plant cells take place that in turn trigger the antioxidative capacity and 
lead to early dormancy breaking and improved germination (Qi et al. 2015). The 
application of mechanical waves (ultrasound) is another physical method of prim-
ing having a frequency in the range of 20–100  kHz. In ultrasound priming, 
mechanical pressure is imposed on seed coat that increases the seed’s porosity 
known as acoustic cavitation and activation of enzymatic and other biological 
reactions due to greater water uptake in the seed. Thus, in ultrasonic priming, mass 
transfer of the absorbed water is enhanced that allows it to react freely with the cell 
embryo. 

5  �Factors Affecting Seed Priming

Seed priming is highly affected by various biotic and abiotic factors such as aera-
tion, temperature, time, and seed quality. Among these, aeration is the most impor-
tant and effective factor affecting seed respiration, seed viability, and seed 
emergence/germination (Bujalski and Nienow 1991; Heydecker et  al. 1973). 
Heydecker and Coolbear (1977) and Bujalski et al. (1989) reported the impact of 
aeration in seed priming by observing enhanced germination percentage in aerated 
PEG solution treatment as compared to nonaerated. Similarly, the temperature is 
another important factor influencing the germination of seeds. Basra et al. (2005) 
reported that optimum temperature ranges from 15 to 30 °C for most of the seed 
germination. On the other hand, McDonald (2000) reported slow germination at a 
lower priming temperature. Wahid et al. (2008) documented a range of 15–20 °C for 
seed priming, and the duration of priming may extend from almost 8 h to 14 days 
based on plant species, osmotic solution, osmotic potential, and temperature (Finch-
Savage et al. 1991). Seed quality is another important factor in seed germination, 
and a viable and vigorous seed is the first most necessary for seed priming (Cantliffe 
1987). Other seed characteristics also play a role in seed priming and germination 
process. For instance, Patanè et al. (2008) reported osmo-priming with PEG solu-
tion unsuitable for sorghum seeds priming. Sorghum is rich in tannin that could be 
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removed with the solution during treatment and hence leads to lower seed germina-
tion. In this regard, Passam et al. (1989) stated that the salt solution is effective as 
compared to mannitol and PEG solutions. Similarly, O’Sullivan and Bouw (1984) 
reported KNO3 and K3PO4 as an effective priming solution in pepper seeds as com-
pared to PEG.

6  �Seed Priming: Physiological Basis and Plant Response

6.1  �Occurrence of Seed Germination and Seedling Growth

In vegetable crops, high yield and growth are primarily associated with seedling 
health and early emergence which induces a potential to cope with various biotic 
and abiotic stresses. These all result in high yield and quality crops (Cantliffe 2003). 
Seed priming is one of the primitive techniques used to enhance early seed emer-
gence and initiates several processes involved in seed germination (Asgedom and 
Becker 2001). Therefore, seed priming boosts the imbibition and metabolic pro-
cesses resulting in enhanced seed germination, germination uniformity, and seed-
ling growth and development in both normal and stress conditions (Ansari et  al. 
2012; Dey et al. 2014; Nayban et al. 2017). Several studies have reported that seed 
priming can enhance early seed emergence and growth in stress conditions as com-
pared to untreated seeds (Bradford 1986; Chen et al. 2012). Yogananda et al. (2004) 
observed the increased physiological response of bell pepper treated with GA3 and 
KNO3 solution. Similarly, Yadav et al. (2011) also reported cold and salt stress toler-
ance in primed seeds of pepper with 100% survival. In another study, Ahmadvand 
et al. (2012) evaluated the effect of KNO3-primed seeds of soybean in various culti-
vars and reported a significant increase in germination and seed emergence fol-
lowed by increased physiological parameters like fresh weight, dry weight, root 
length, and shoot length.

6.2  �Crop Nutrition and Yield

Crop nutrient deficiency known as hidden hunger is a global dilemma resulting in 
low yields and poor-quality products (Dey et al. 2014). Seed priming is an approach 
to provide nutrients to the seed emergence and activate various biochemical pro-
cesses necessary for seed germination. This not only provides the nutrients to estab-
lish seedling growth and emergence but also helps in enrichment of grain nutrient 
status (Singh et al. 2015a, b) and has been proved an economical method of nutri-
ents application as compared to soil application and has been found economical as 
compared to soil application (Slaton et al. 2001). Ajouri et al. (2004) reported Zn as 
an effective priming agent in barley (Hordeum vulgare L.). Another study was done 
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to assess the Zn content of early grown radicles and coleoptiles and was found much 
higher up to 200 mg kg−1. The study concluded that Zn might be involved in various 
processes during early seed development (Cakmak 2005). Additionally, higher con-
tents of Zn may enhance seed resistance to soil-borne diseases and ensure crop 
growth and development (Marschner 1995). Several studies by Khan et al. (2008), 
Bhowmick et al. (2010), Umair et al. (2013), and Bhowmick (2013) have reported 
seed priming as a suitable strategy for increased crop yields. Harris (2006) reported 
that increased crop yield might be attributed to crop density and individual crop 
performance. Srivastava and Bose (2012) studied the effect of (Mg(NO3)2 and 
KNO3) salts as a priming agent for rice crop and reported increased physiological 
response to primed seeds as compared to untreated. Similarly, Arif et al. (2008) also 
studied the effect of priming seeds in soybean and reported priming increased seed 
emergence and establishment and attributed all this to the early metabolic activities 
as it activates radical protrusion. However, they reported that extended priming 
duration might decrease crop yield and 6 h was found as a suitable duration for 
soybean seed priming.

6.3  �Seed Priming for Stress Management

Field crops are subject to various types of biotic and abiotic stress like herbivores, 
pathogens attack as well as cold, heat, heavy metal, nutrient deficiency, salinity, 
and drought (Fedoroff et al. 2010). Among these stresses, salinity, drought, and 
temperature cause low growth and development (Jaleel et al. 2007; Thakur et al. 
2010). These types of stress induce ROS production in a plant cell that results in 
cell injury and ultimately plants failure. In order to combat these ROS, plants have 
a self-defense mechanism that eliminates ROS species and protects plant cells 
from damage (Baxter et al. 2013). The intensity of stress injury depends upon vari-
ous stress-related factors like stress tolerance, timing, and intensity (Niinemets 
2009). Seed priming is considered one of the most promising techniques to enhance 
seed resistance to all these biotic and abiotic stresses (Van Hulten et  al. 2006). 
Uchida et al. (2002) reported the importance of compounds used in seed priming 
technique as they alleviate the deteriorating effects of both biotic and abiotic 
stresses concerning plant growth. Kibinza et al. (2011) explained that germination 
percentages were improved by priming that was due to the considerable drop in 
H2O2 accumulation. Catalase activity was restored by priming that protects the 
stressed seeds from reactive oxygen species. Furthermore, Kester et  al. (1997) 
reported that protein content in various plant tissues might be increased by seed 
priming via improved performance of protein synthesis system and increased pro-
duction of L-isoaspartyl methyltransferase enzyme that plays an important role in 
repairing plant tissue proteins. Priming also enhances seed germination by enhanc-
ing the activities of protease and amylase that hydrolyze protein and starch into 
simple forms to make them available for the embryo (Miransari and Smith 2014). 
Sajedi et al. (2011) stated that ROS produced under PbCl2 stress may be reduced 
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by hormonal priming. Similarly, in another study, Pereira et  al. (2009) showed 
improved seedling emergence by osmo-priming on carrot seed germination under 
extreme temperature conditions and water stress.

7  �Assessment of Priming Effects on Plant Growth 
and Development

7.1  �Seed Priming Using Compost Extract for Improving 
Germination Parameters

Compost tea, a liquid extract, is obtained when compost is steeped in water for a 
period with the aim of transferring soluble organic matters (OM), beneficial 
microbes, and nutrients into the solution (Mohd Din et al. 2017). The application of 
this microbial- and nutrient-rich tea is known for stimulating the plant’s growth and 
soil fertility (Ahmad et al. 2017). Compost tea is prepared aerobically (aerated tea) 
or anaerobically (nonaerated tea); however, little evidence exists as regards which 
method either aerated or nonaerated is more beneficial for agricultural purposes 
(Amos 2017). There have been numerous studies for evaluating the potential of 
compost tea in suppressing the plant diseases (Mengesha et  al. 2017). However, 
there are limited studies on the effect of compost tea on crop growth and develop-
ment (Kim et al. 2015). Therefore, an assessment that was carried out aims to exam-
ine the stimulatory and inhibitory effects of compost teas on seed germination and 
seedling growth through a novel method of seed priming in compost tea, since no 
previous study has been conducted.

7.2  �Preparation and Characteristics of Compost Tea

The compost used for compost teas production was prepared from food waste using 
an in-vessel compost bioreactor (Waqas et al. 2017). Two different types of compost 
teas, i.e., aerated and nonaerated, were prepared by mixing compost and water at 
1:10 ratio (i.e., 1 kg dry compost in 10 L distilled water). The mixture was steeped 
at 25 °C for 72 h. A standard brewing method was used for steeping and extraction 
period during which the compost was in contact with water (Scheuerell and 
Mahaffee 2006). The aeration, in aerated compost tea, was maintained on a continu-
ous basis by stirring the solution through a mechanical agitator with 80 revolutions 
per minute (RPM) throughout the extraction period of 72 h. The schematic diagram 
of the bioreactor used for making the aerated compost tea is shown in Fig.  2. 
Nonaerated compost tea was prepared by using a standard method of bucket fer-
mentation (Diver 2002). This approach is referred to as the European-style or 
European method for compost tea preparation and dates back to hundreds of years 
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(Brinton et al. 2004). During this process, the mixture was initially stirred and then 
left undisturbed at 25 °C for 3 days (Weltzien 1991). After the designated steeping 
time, the compost extracts were filtered through a muslin cloth. Different physio-
chemical characteristics of the compost tea were determined by following the stan-
dard methods of analysis, and the results are presented in Table 2. For experimentation, 
the compost tea was diluted using distilled water. The dilution concentrations were 
0% (100% extract), 25% (75% extract, 25% water), 50% (50% extract, 50% water), 
75% (25% extract, 75% water), and 100% (100% water). The 100% compost tea 
diluted solution was used as a control treatment for comparing the concentration 
effects of both compost teas.

7.3  �Seed Priming and Experimental Setup

Seed priming in the compost tea was introduced by soaking the mung bean seeds in 
compost tea for a definite period of time. Seeds’ surfaces were disinfected to avoid 
any bacterial or fungal contamination by imbibing them in a mixture of ethanol and 

Fig. 2  Schematic diagram of reactor used for producing aerated tea
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distilled water (70:30 v/v) for 5 min and subsequently rinsing them with distilled 
water. Ten seeds of mung bean were then primed/soaked over dampened filter paper 
to assess the compost tea phytotoxicity. 20 ml of a diluted solution of each compost 
tea was used as a priming solution in 15 cm petri dish (Fisher brand, Fisher Scientific, 
Waltham MA). The petri dishes were incubated for 24 h at 25 °C in the dark and 
were then covered with a plastic wrapping to avoid any water loss during the prim-
ing (Mavi 2014). After priming, the seeds were washed with distilled (for consis-
tency reasons) water and dried back to about 14% grain moisture at 36 °C in drying 
oven (Pame et al. 2015). A factorial experiment in a totally randomized design was 
used to investigate the effects of compost tea aeration methods (aerated vs. nonaer-
ated) and priming treatments (primed vs. unprimed) on a lot of ten mung bean seeds 
at five different dilution concentrations of 0%, 25%, 50%, 75%, and 100%. The tea 
dilution at 100% solution was referred to control treatment as it contained 0% com-
post tea and 100% distilled water. Three replicates were used for each treatment 
combination. Ten seeds of mung bean were homogenously distributed on two layers 
of sterile Whatman™ filter paper in each petri dish. For unprimed seeds, 5 ml of 
each diluted solution of compost tea was applied to moisten the filter paper, whereas 
the petri dishes containing primed seed in compost tea were applied with only dis-
tilled water when required. The petri dishes were monitored daily, and an equal 
amount of tea solutions/distilled water was supplied when necessary to keep the 
moisture of seeds or seedlings at adequate levels. Petri dishes were incubated in a 
growth chamber at 27 °C for 14 days. During experimentation, different germina-
tion and growth parameters were determined through standard formulas, and the 

Table 2  Characteristics of 
compost and compost tea 
through aerated and 
nonaerated fermentation

Parameters Compost

pH 8.02
Electrical conductivity (EC) (mS cm−1) 3.36
Moisture content (MC) (%) 39.31
Organic matter (OM) (%) 56.81
Ash content (%) 43.13
Carbon (%) 31.61
NH4-N (mg kg−1) 168.32
NO3-N (mg kg−1) 117.91
Nitrification index (NI) 1.42

Compost tea
pH 8.94
EC (mS cm−1) 4.48
Ca (mg L−1) 17.97
K (mg L−1) 52.33
Mg (mg L−1) 19.41
Na (mg L−1) 173.13
Fe (mg L−1) 5.31
Zn (mg L−1) 0.14
Total Kjeldahl Nitrogen (TKN) (%) 0.47
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obtained data were subjected to analysis of variance (ANOVA) and least significant 
difference (LSD) test at 5% probability level (Steel et al. 1997).

7.4  �Effects on Germination Parameters

7.4.1  �Germination Rate and Germination Index (GI)

The ANOVA results indicated that compost teas’ dilution and seed priming with 
compost tea significantly affected (state the level of significance, e.g., α = 0.05) the 
seed germination and germination index. No significant differences on seed germi-
nation rate and germination index were observed for the aeration system, i.e., aer-
ated and nonaerated teas exert the same effect on germination. The germination rate 
of the seeds exposed to aerated compost tea was equal to 86.3%, like nonaerated tea 
(86%). Among priming effects, the highest stimulation in germination rate was 
recorded for primed seeds, resulting in 91.6% germination, whereas that of unprimed 
seeds was recorded at 80.6% (Table 3). Similarly, among the tea dilution concentra-
tions, the highest germination rate (94.2%) was observed in dilution of tea to 50%. 
However, a drastic reduction in germination rate was observed with increasing the 
tea concentration, and it was noticed that at 0% dilution (100% tea concentration), 
the lowest germination rate of 72.5% was observed (Table 3). Similarly, the two-
way interaction between the aeration system with priming and dilution and the 
three-way combined interaction of aeration, dilution, and priming showed a nonsig-
nificant effect on germination rate.

Similarly, the results showed that the maximum GI of 4.5 was estimated for 
primed seed, whereas the lowest GI of 2.5 was recorded for unprimed seed (Table 3). 
It was observed that priming had an advantageous effect in terms of seed germina-

Table 3  Effect of aeration, dilution, and priming on the germination and growth parameters of 
mung bean

Compost tea G% GI MGT SVI Root length Shoot length

Aeration Aerated 86.3 a 3.6 a 6.1 a 221.7 a 2.4 a 5.6 a
Nonaerated 86 a 3.4 a 5.9 a 135.3 b 1.5 b 5.2 a

Priming Primed 91.6 a 4.5 a 4.8 b 234.1 a 2.5 a 7.1 a
Unprimed 80.6 b 2.5 b 7.1 a 122.9 b 1.5 b 3.8 b

Dilution 0% 72.5 c 2.8 c 6.3 ab 73.2 c 0.9 c 3.3 c
25% 84.2 b 3.3 b 6.2 ab 158.9 b 1.8 b 4.9 b
50% 94.2 a 3.8 a 5.6 bc 241 a 2.5 a 4.7 b
75% 88.3 ab 3.8 a 5.3 c 243.4 a 2.7 a 7.2 a
Control 91.6 ab 3.6 ab 6.5 a 176.1 b 1.9 b 6.7 a

Means of the same category followed by different letters are significantly different at P ≤ 0.05 
level using LSD test
G% germination percentage, GI germination index, MGT mean germination time, SVI seed vigor 
index
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tion parameters. Similarly, the mean data for tea dilution showed that the maximum 
GI of 3.8 in relation to control treatment was recorded at a dilution of tea to 50%, 
which was similar to 75% diluted solution with GI of 3.8 (Table 3). Moreover, like 
germination rate, reduction in values of GI was also observed in the low diluted 
solutions of compost tea. The results showed that the minimum GI values of 2.8 and 
3.3 were recorded at 0 and 25% diluted solutions, respectively (Table 3). In addition, 
the ANOVA results showed significant effects of the interaction of aeration with 
dilution ratios. The interaction data revealed that the maximum GI value of 4 was 
recorded in aerated tea at 50% dilution followed by dilution of tea to 75% with GI 
of 3.9 in the same tea (Table 4). Similarly, for nonaerated compost tea, the values for 
same tea diluted concentration (50 and 75%) were observed to be lower than aerated 
tea. For nonaerated compost tea, the results showed that the maximum GI value of 
3.9 had been recorded for control treatment followed by 75% and 50% dilution with 
the GI of 3.8 and 3.6, respectively. However, for both aerated and nonaerated teas, 
the lowest value for GI was observed for dilution of teas to 25% and 0% (Table 4).

7.4.2  �Mean Germination Time (MGT) and Seed Vigor Index (SVI)

MGT showed the rapidity of germination; hence, the lower the value of MGT, the 
earlier is the germination. The ANOVA results showed highly significant variation 
for MGT in dilution and priming of compost tea. The mean data in Table 3 revealed 
that the rapid germination was recorded for primed seeds with least MGT value of 
4.8, whereas the higher MGT value of 7.1 for unprimed depicts the delayed seed 
germination. For dilution of tea, the lowest MGT value of 5.3 was noticed at 75% 
tea dilution. However, this value for MGT was statistically near to dilution of tea to 
50% (5.6). Similarly, the maximum MGT value of 6.5 was computed for control 
treatment that showed low rapidity of seed germination. For aeration, the value for 
MGT in aerated tea was 6.1, which was statistically similar to the MGT value of 5.9 

Table 4  Interaction of aeration and dilution toward GI, SVI, and seedling growth of mung bean

Aeration Dilution GI SVI Root length Shoot length

Aerated 0% 3.1 e 80 cd 1.05 de 3.5 d
25% 3.5 bcde 192 b 2.2 b 5.6 bc
50% 4 a 336 a 3.4 a 5.6 bc
75% 3.9 ab 320.7 a 3.6 a 7.7 a
Control 3.4 cde 179.8 b 2.1 bc 6.8 ab

Nonaerated 0% 2.5 f 66.3 d 0.9 e 3.1 d
25% 3.2 de 125.8 bcd 1.4 cde 4.2 cd
50% 3.6 abcd 146 bc 1.6 bcd 3.9 d
75% 3.8 abc 166.2 b 1.9 bc 7.1 ab
Control 3.9 ab 172.3 b 1.8 bc 6.6 ab

Means of the same category followed by different letters are significantly different at P ≤ 0.05 
level using LSD test
GI germination index, SVI seed vigor index
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for nonaerated tea (Table 3). This nonsignificant difference showed that the aeration 
system did not affect MGT of the tested seeds. The overall results revealed that 
priming reduced the MGT by 31.2% in comparison with unpriming. Similarly, com-
pared to control, the solution containing 25% and 50% compost tea reduced the 
MGT by 18.4 and 12.9%, respectively.

SVI expressed the level of seed performance and activity during the germination 
and seedling emergence. It was found that SVI was significantly affected by aeration, 
tea dilution, and priming. Moreover, the results indicated that the two-way interac-
tion between aeration with dilution and priming also had significant effects toward 
SVI. The results showed that among the aeration systems, the utmost SVI of 221.7 
was recorded for aerated tea, leaving behind nonaerated tea with the value of 135.3 
(Table 3). Similarly, among the priming effects, the highest values were recorded for 
primed seed that was 234.1 whereas the least values (122.9) were estimated for 
unprimed seeds. In addition, compost tea dilution showed high variation toward 
SVI. The highest SVI (243.4) was observed for dilution of tea to 75% that was statis-
tically like 50% diluted tea (241), whereas the least SVI (73.2) was recorded for 
dilution of tea to 0% (Table 3). Furthermore, the mean data for the two-way interac-
tion of aeration with dilution showed that the maximum SVI (336) was observed for 
aerated tea diluted at 50% (Table 4). This value was found statistically similar to 75% 
tea dilution with the SVI value of 320.7. Similarly, the lowest SVI of 66.3 was 
recorded at 0% tea dilution in nonaerated (Table 4). Furthermore, the mean data for 
the interaction of priming with dilution showed that the utmost values for SVI (353.5) 
were observed for primed seeds with a dilution of tea to 50% followed by 25 and 
75% diluted tea solutions with SVI values of 272 and 270.3, respectively (Table 5), 
whereas the minimum SVI (28.2 and 45.8) was noticed for dilution of tea to 0 and 
25% in unprimed seeds, respectively (Table 5). The combined interaction of aeration, 
dilution, and priming showed that highest SVI (526.7) was noticed in primed seeds 
with the dilution of aerated compost tea to 50%. Similarly, the second highest peak 
value of 370.7 for SVI also observed for primed seed with aerated tea at tea dilution 

Table 5  Interaction of priming and dilution toward SVI and seedling growth of mung bean

Priming Dilution SVI Root length Shoot length

Primed 0% 118.2 d 1.5 e 6 c
25% 272 b 2.9 ab 8.6 a
50% 353.5 a 3.6 a 7.7 ab
75% 270.3 b 2.8 bc 7.7 ab
Control 156.7 cd 1.6 de 5.4 c

Unprimed 0% 28.2 e 0.4 f 0.6 d
25% 45.8 e 0.6 f 1.3 d
50% 128.5 d 1.4 e 1.8 d
75% 216.5 bc 2.7 bc 6.2 bc
Control 195.5 c 2.3 cd 9.1 a

Means of the same category followed by different letters are significantly different at P ≤ 0.05 
level using LSD test
SVI seed vigor index
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to 75%. Conversely, the lowest SVI (25.7 and 30.7) was noticed for unprimed seeds 
at 0% tea dilution in both the aerated and nonaerated teas, respectively (Fig. 3).

7.4.3  �Effects on Root and Shoot Length

The tea dilution and priming and their combined interaction affected significantly 
(a = 0.05) mung bean root and shoot length. However, the effect of aeration on the 
shoot length was observed nonsignificant. The results showed that the maximum 
mean root length (2.4 cm) was recorded for aerated tea. Similarly, the mean data for 
priming depict that the utmost root (2.5 cm) and shoot length (7.1 cm) were observed 
for primed seed, whereas for unprimed seed, the observed root and shoot length 
were 1.5 and 3.8 cm, respectively (Table 3). In addition, the mean data for compost 
tea dilution showed that the maximum root length (2.7 and 2.5 cm) was observed for 
dilution of teas to 75 and 50%, whereas the highest shoot length (7.2  cm) was 
noticed for dilution of tea to 75%. Correspondingly, the minimum root (0.9 cm) and 
shoot length (3.3 cm) was estimated for dilution of tea to 0% (Table 3). The interac-
tion of aeration with dilution showed that among the aerated and nonaerated com-
post teas, the highest root length (3.6 cm) was recorded for tea dilution to 75% that 
was statistically similar to dilution of tea to 50% (3.4 cm) (Table 4). Similarly, the 
highest shoot length (7.7 cm) was recorded in aerated compost tea at 75% dilution, 
whereas the least values for root and shoot length (0.9 and 3.1 cm) were observed in 
nonaerated compost tea at 0% dilution followed by 25% dilution of the same tea 
(Table  4). As the ANOVA results also showed significant differences among the 
interaction between priming and tea dilution, the utmost root length (3.6 cm) was 
observed for primed seed in compost tea at 50% dilution, whereas for shoot length, 
the maximum value (8.6 cm) was recorded at 25% dilution. The bare minimum root 
and shoot length (0.4 and 0.6 cm) were calculated for unprimed seeds treated with 
compost tea at 0% dilution followed with 25% dilution in the same tea (Table 5). 

Fig. 3  Interaction of aeration, dilution, and priming on seed vigor index of mung bean. Vertical 
bars represent ± standard error of the mean
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The combined interaction of aeration, tea dilution, and priming revealed that the 
maximum seedling root length (5.3  cm) was recorded for primed seed at 50% 
diluted solution of the aerated tea (Fig. 4). Similarly, the highest shoot length of 10 
and 9.2 cm was recorded for seeds primed with dilution of aerated tea to 25 and 
50%, respectively (Fig. 5), whereas the maximum inhibition in root and shoot length 
was resulted by 100% tea concentration (0% dilution). The recorded root and shoot 
length at the respective 0% dilution were 0.4 and 0.73 cm in aerated and 0.5 and 
0.6 cm in nonaerated compost tea (Figs. 4 and 5).

Fig. 4  Interaction of aeration, dilution, and priming on root length of mung bean. Vertical bars 
represent ± standard error of the mean

Fig. 5  Interaction of aeration, dilution, and priming on shoot length of mung bean. Vertical bars 
represent ± standard error of the mean
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8  �Limitations and Perspective in Seed Priming Technology

Seed priming has been developed as a promising technology for superficial crop 
stand in a variety of environmental conditions. However, many protocols such as 
seed desiccation (redrying) after priming may affect different physiochemical pro-
cess which reduces seed longevity and viability (Heydecker and Gibbins 1977; 
Halmer 2004). Other conditions for posttreatment such as storage temperature, air 
composition, and moisture also negatively affect seed viability (Schwember 
and Bradford 2005). Similarly, the prolonged seed treatment during priming may 
also cause loss of seed tolerance to desiccation (Sliwinska and Jendrzejczak 2002). 
Priming itself in certain circumstances may also cause different problems. For 
instance, all priming protocols may not lead to significant germination and growth 
where inappropriate priming conditions may cause degradation of the protective 
proteins (Capron et al. 2000). Hence, it is critical to select specific priming protocol 
for different plants about germination and growth in different environmental condi-
tions. Thus, for filling the gap and successful application of priming technology, 
detailed studies focusing on treatment technologies, gene expressions, and molecu-
lar mechanisms need to be fully explored (Araujo et al. 2016). Correspondingly, the 
advanced methods of seed priming such as priming with nanoparticles may also 
have deleterious effects on environment, plant, and human health. In this regard, 
solid studies need to be performed for resolving the impact of nanomaterials when 
enter the food chain by using them in agriculture. Extensive researches are still 
required for each priming technology in terms of optimal dose, exposure time, and 
dose rate that could affect plant growth and development.

9  �Conclusions

Seed priming is the physiological process of controlled seed hydration to enhance 
sufficient pregerminative metabolic process, efficient nutrient uptake and water use 
efficiency, breaking dormancy, timely maturity, and crop yield. During imbibition, 
the water uptake promotes protein synthesis and respiratory activities by using 
extant messenger ribonucleic acid (mRNA) with the initiation of different physio-
logical activities related to germination. This technology has been found to be the 
most feasible and economical for uniform seed emergence in most of the field crops. 
There are many well-developed seed-priming techniques such as hydro-priming, 
osmo-priming, nutrient priming, chemical priming, bio-priming, priming with plant 
growth regulators, priming with plant extracts, seed priming through nanoparticles, 
and priming through physical agents. However, priming technology still has several 
limitations. The prolonged seed treatment during priming may cause loss of seed 
tolerance to desiccation that reduces seed viability. Similarly, all priming protocols 
may not lead to significant germination and growth where inappropriate priming 
conditions may cause degradation in the protective proteins. Hence, extensive 
researches are required in selecting specific priming protocol for different plants 
regarding germination and growth under various environmental conditions.
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