
205© Springer Nature Singapore Pte Ltd. 2019 
M. Hasanuzzaman, V. Fotopoulos (eds.), Priming and Pretreatment of Seeds 
and Seedlings, https://doi.org/10.1007/978-981-13-8625-1_10

Seed Priming-Mediated Improvement 
of Plant Morphophysiology Under Salt 
Stress

Abdul Rehman, Babar Shahzad, Aman Ullah, Faisal Nadeem, 
Mohsin Tanveer, Anket Sharma, and Dong Jin Lee

Contents

1  �Introduction�   206
2  �Priming and Salt Stress Tolerance�   208

2.1  �Plant Morphology�   208
2.2  �Plant Physiology�   209
2.3  �Leaf Gas Exchange�   210
2.4  �Transpiration�   210
2.5  �Photosynthesis�   211
2.6  �Antioxidant Activities�   211

3  �Summary and Future Research Perspectives�   212
�References�   212

Abstract  This chapter is describing the adverse effect of the salinity stress on the 
crop growth and development and how seed priming can alleviate salinity-induced 
devastating effects on plants. Growth of plant under salt stress is affected negatively 
due to oversynthesis of reactive oxygen species (ROS), leading to oxidative damage 
to biomolecule and plant membranes. The water stress and accumulation of toxic 
ions are the other major effects observed under salt stress. Overproduction of ROS 
reacts with key cellular molecules and metabolites including proteins, lipids, photo-
synthetic pigments, and DNA.  However, numerous plant species have effective 
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defense system based on antioxidants that activates once plant undergoes any abi-
otic stress. Among various antioxidants, nonenzymatic and enzymatic are essential 
to detoxify ROS and its scavenging. Recently, seed priming has gained popularity 
as it develops tolerance in plants against salinity during the germination process and 
seedling development stage. In various types of environmental stresses, the different 
priming techniques as osmopriming, hydropriming, hormonal priming, nutrient 
priming, chemical priming, bio-priming, matrix priming, and redox priming are 
employed. There has been increasing evidence that priming stimulates the cellular 
defense response that induces tolerance to biotic and abiotic stresses upon exposure 
in the field.

Keywords  Seed priming · Salt stress · Reactive oxygen species · Antioxidants · 
Abiotic stress tolerance

1  �Introduction

Among various abiotic stresses, salt stress is considered as a major threat to agricul-
tural crops globally. Crop plant experiencing salinity shows poor growth due to 
toxic ion accumulation and disturbed water relation balance (Rehman et al. 2016). 
The enhanced accumulation of reactive oxygen species including hydrogen perox-
ide (H2O2), singlet oxygen (1O2), and superoxide anions (O2

•−) under salt stress 
induces oxidative damage to plants (Ashraf 2009; Ali et al. 2017). These species are 
highly reactive and promptly react with biomolecule substances and essential cel-
lular metabolites such as DNA, proteins, pigments, and lipids (Ashraf 2009). 
Accumulation of ROS leads to multiple impairments such as deactivation of anti-
oxidative defense system and lipid peroxidation (Tanou et al. 2009; Anjum et al. 
2015, 2016a; Shahzad et al. 2018 a, b; Fahad et al. 2019), although H2O2 production 
under stressful environment causes oxidative damage. However, this molecule func-
tions as a signaling molecule in a variety of biological processes including activa-
tion of antioxidant enzymatic system that helps plant to adjust under stress 
environment (Qiao and Fan 2008; Tanou et al. 2009; Hernandez et al. 2010; Tanveer 
and Shabala 2018).

Accumulation of ROS, e.g., malondialdehyde, that appears to be mutagenic 
product of lipid peroxidation resulting in cell damage and effectively used as marker 
for cell membrane injury (Riahi and Ehsanpour 2013; Anjum et  al. 2016a, b). 
Conversely, Li et al. (2010) reported that malondialdehyde production depends on 
stress type, cultivar/crop type, and strength of antioxidative defense mechanism. 
Effective antioxidative plant defense system including accumulation of enzymatic 
[catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX)] and non-
enzymatic (phenolics, proline, flavonoids, tocopherol, ascorbic acid) antioxidants 
helps in ROS detoxification (Ali and Ashraf 2011; Anjum et al. 2017).
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Ascorbic acid (AsA) and phenolics are important physiological nonenzymatic 
antioxidant (Rice-Evans et  al. 1996); AsA has a powerful role to complete and 
strengthen the antioxidation and plant defense process. Moreover, proline concen-
tration in leaf, AsA, tocopherol, and glutathione significantly contribute to ROS 
scavenging and are able to maintain cell water potential, i.e., osmotic adjustment 
(Kishor et  al. 2014). Contrarily, a study by Signorelli et  al. (2016) reported that 
proline has no significant ability to scavenge ROS (NO2, O2

•−, NO, peroxynitrite) 
due to its selective antioxidant potential to convert OH as a second defense line. 
Generally, it has been observed that proline accumulates in plants under salt stress; 
but salt-sensitive plant accumulates less proline than salt tolerant (Habib et al. 2012; 
Anjum et al. 2015).

Under stress conditions, cultivars having high yield potential seem to be more 
stress sensitive leading to their poor growth and performance. To achieve high yield 
potential, stress tolerance imparts in cultivars following various non-breeding and 
breeding approaches with particular focus on imperative physiological and bio-
chemical traits. Furthermore, exogenous application of different chemicals (with 
required nutrient) using different methods is also an attractive option to enhance 
stress tolerance (Anwar et al. 2012) in crops. Among various methods, seed priming 
with nutrients is considered as handsome and effective approach (Ibrahim 2016; 
Rehman et al. 2018).

In many crops, germination and seedling emergence are more sensitive to adverse 
growing conditions and significantly contribute in uniform crop stand (Ali et  al. 
2017), resulting in higher yield. Similarly, salt stress negatively affects the germina-
tion by disturbing physio-biochemical processes including ionic imbalance, oxida-
tive stress, and osmotic stress. Various studies show that salt stress slows down the 
germination of seed by reducing water imbibition, disruption of proteins structure, 
and stored food mobilization (Ibrahim 2016; Shahzad et  al. 2019). Conversely, 
priming of seed helps in early seed germination by accelerating the pre-germination 
metabolic process (Paparella et al. 2015).

Seed priming stimulates the germination and improves seedling development 
predominantly through decreasing the time period of lag phase, DNA repair during 
water imbibition, activation of enzymes and germination metabolites, and osmotic 
adjustment (Lee and Kim 2000; Farooq et  al. 2006; Brocklehurst and Dearman 
2008; Hussian et  al. 2015). Seed priming includes different methods such as 
hydropriming, osmopriming, chemical priming, nutrient priming, hormonal prim-
ing, and redox priming which are considered promising techniques for various 
crops and can be adopted under wide stressful environments (Jisha et  al. 2013; 
Paparella et al. 2015). Various reports have confirmed the beneficial impact of seed 
priming under stress conditions that includes cellular defense response activation 
that helps crop plant to tolerate under abiotic and biotic stress under field conditions 
(jisha et al. 2013).
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2  �Priming and Salt Stress Tolerance

2.1  �Plant Morphology

In salinity stress, the germination is substantially reduced or delayed because of ion 
toxicity (Na+, Cl−) and obstructed water uptake that induce osmotic stress (Hasegawa 
et  al. 2000; Khaje-Hosseini et  al. 2003; Farsiani and Ghobadi 2009). However, 
under salinity stress, seed priming seems to be an effective technique that helps to 
remove problem of poor germination. For instance, germination rate and seedling 
vigor index of salt-stressed maize crop substantially improved with hydropriming 
(Janmohammadi et  al. 2008). A research study conducted by Ashraf and Rauf 
(2001) found that under salt stress, water soaking of maize seed showed uniform 
and vigorous germination.

Different seed priming methods have been evolved and widely practiced in vari-
ous field crops including wheat, chickpea, and cotton (Iqbal and Ashraf 2007; Kaur 
et al. 2002; Casenave and Toselli 2007a; Ullah et al. 2019) to enhance the unifor-
mity of germination, seedling vigor, and acceleration of vegetative growth resulting 
in higher grain yield (Farooq et  al. 2018a, b, c). Under suboptimal conditions, 
primed seed showed early germination, healthy seedling, and overall better growth 
than non-primed seeds (Khalil et al. 2001; Sivritepe et al. 2003). Earlier, several 
reports are available that support the positive impact of seed priming on the germi-
nation, growth, and tolerance against stressful environment in various crops such as 
maize, wheat, lentil, sugarcane, and cucumber (Foti et al. 2008; Ghiyasi et al. 2008; 
Ghassemi-Golezani et  al. 2008; Patade et  al. 2009; Ghassemi-Golezani and 
Esmaeilpour 2008).

Under salinity stress, higher amount of salt accumulated in spaces between the 
cells that cause imbalance in water relations (Zhang et al. 2006). Seed priming has 
also been adopted in numerous field and horticultural crops, to decrease the emer-
gence/germination time, to ensure uniform stand establishment (Farooq et al. 2005; 
Ashraf and Foolad 2005), and to improve the allometric traits.

Uniform germination, growth, and vigorous crop stand are not achieved in late-
planted wheat causing low yield under rice-wheat rotation; thereby, sowing of 
primed wheat seed helps in early germination with uniform crop stand, ultimately 
leading to better grain yield (Kant et al. 2006). Lee et al. 1998; Kant et al. 2006 
stated that uniform crop stand in response to seed priming occurs due to stimulation 
in germination metabolism, which accelerates germination rate with uniform seed-
ling. Seed priming ensures the timely breakdown of food reserve through activating 
germination metabolism which helps seed to make up germination process within 
less time (Kant et al. 2006; Farooq et al. 2007, 2017).

In addition, sowing of primed seed produced highest tillers in terms of number 
and fertility. In a comparison of osmopriming and hydropriming, it was found that 
hydropriming shortens the emergence period and improved the vigor and dry weight 
of seedling (Ahmadi et  al. 2007). Harris (2006) also found  that seed priming in 
wheat (for <12 h) proves to be more beneficial than other techniques as it positively 

A. Rehman et al.



209

improves germination, decreases emergence time, and has early flowering and 
maturity phase, resulting in higher grain yield.

Priming of various canola cultivars with different solutions (KCl 2%, KCl 0.5%, KH2PO4 
0.01%) showed positive relation with germination, stem growth, and root dry biomass and 
also strengthens plant defense to cope stressful environment (Saeidi et al. 2008).

2.2  �Plant Physiology

Seed imbibition and lag phase are completed during the process of priming, and 
when these primed seeds are sown, these two phases of water absorption of seed are 
shortened (Khan et  al. 2009). Improved germination of primed seed attributed to 
inside swelling of seed embryo (Elouaer and Hannachi 2012) that mediates in water 
uptake. Activation of pre-germination metabolism except radicle protrusion occurs 
during the process of seed priming (Farooq et al. 2007). During the process of imbi-
bition, certain steps including, decrease in resistance of endosperm, membrane and 
DNA repairing, embryos become mature and the germination inhibitors are leached 
(Bewley et al. 2013). Hence, under adverse environments, the seedlings grow/emerge 
at a faster and vigorous rate and perform better than the non-primed seeds (Sadeghi 
et al. 2011).

Induction of tolerance against stress conditions in primed germinated seeds may 
be attributed to manifestation of cross tolerance mechanism which consists of two 
approaches (Chen and Arora 2013). The first strategy is the activation of germina-
tion metabolism such as mobilization of reserve materials, endosperm weakening, 
embryo expansion, and enhanced energy metabolism (Li et al. 2010; Sun et al. 2010) 
which cause quiescent dry seed transition into a germinating phase with high germi-
nation vigor. The second approach reflects the imposition of abiotic stress environ-
ment on seed which inhibits emergence of radicle but accelerates cross tolerance in 
response to stress. The combination of these approaches establishes “priming mem-
ory” within the seed that reactivates later, upon exposure to stress which builds up 
strong tolerance in germinated seeds (Bruce et al. 2007; Pastor et al. 2013).

The process of osmoregulation in plant starts upon the active uptake of inorganic 
ions. Alleviation of negative impact of salt stress on seed germination and health 
seedling development can be achieved by seed priming that increases the accumula-
tion of Ca+2 and K+ and reduces accumulation of Cl− and Na+ in developing seedling 
(Iqbal et  al. 2006; Afzal et  al. 2008; Bakht et  al. 2011), resulting in more water 
uptake with low osmotic potential (Ashraf 2009). Potassium is essential for activa-
tion of enzymes, for turgor and membrane potential balance, and in osmotic regula-
tion in cells (Cherel 2004). Like potassium, calcium (Ca) also plays very important 
roles in cell elongation and division, maintains cell wall integrity, regulates the 
uptake of nutrients across the membrane, and improves uptake of water in plants 
and alleviates the adverse effect of Na+ during plant growth (Patade et  al. 2009; 
Gobinathan et al. 2009; Summart et al. 2010).
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2.3  �Leaf Gas Exchange

Seed priming with saponin improves the tolerance against salinity in quinoa by 
stabilizing the stomatal conductance and leaf photosynthetic rate resulting in better 
gas relations (Yang et al. 2018). Under salinity, abscisic acid (ABA) concentration 
increases in leaf (Amjad et al. 2014) which may inhibit some CO2 diffusion rate due 
to increased stomatal closure induced by higher ABA concentration resulting in 
disrupted stomatal conductance (Liu et al. 2005, 2006). Contrarily, priming with 
saponin decreases the ABA concentration and improves gas relations, i.e., stomatal 
conductance (Yang et al. 2018). Another study showed that seed priming with tria-
contanol improves leaf gas exchange (Sarwar et al. 2017) due to its substantial role 
in stomatal regulation by upregulating the photosynthetic genes and increases CO2 
rate under salt stress (Chen et al. 2002; Perveen et al. 2010). Seed priming with 
auxin enhances the gas relations in salt-tolerant and non-salt-tolerant cultivars that 
is attributed to the tryptophan-dependent indole acetic acid involving in the opening 
of stomata (Merritt et al. 2001) and enhances CO2 assimilation rate under salinity 
(Iqbal and Ashraf 2013).

2.4  �Transpiration

Seed priming with tryptophan increased the rate of transpiration in both salt-sensitive 
and salt-tolerant wheat cultivars (Iqbal and Ashraf 2013). Brassinolide priming in 
maize improved the transpiration rate by 11% under drought stress (Anjum et al. 
2011). This could be due to the improvement in leaf water balance by brassinolide 
application (Sairam 1994). Various studies in literature show extensive work on 
brassinosteroid application in improving abiotic stress tolerance in plants (Shahzad 
et al. 2018a; Sharma et al. 2018; Tanveer et al. 2018a, b). Priming of barley seeds 
with CaCl2 improved drought tolerance attributed to enhanced transpiration rate 
without negative effects on the leaf turgor status and better stomatal aperture 
(Kaczmarek et al. 2017). Priming of Brassica juncea (Fariduddin et al. 2003) and 
safflower (Mohammadi et al. 2017) with salicylic acid helped to improve the stoma-
tal conductance, better water status, and mesophyll conductance resulting in higher 
transpiration rate. A positive correlation has been established between transpiration 
and  stomatal conductance, with increase in stomata opening rise in transpiration 
observed. Seed priming helps in vigorous plant growth with well-established root 
system; thus, enhancement of transpiration rate directly links with better plant water 
status that may be due to more water uptake by deeper roots (Mohammadi et al. 
2011; Abdolahi and Shekari 2013).
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2.5  �Photosynthesis

In mung bean, priming of β-amino butyric acid aided in alleviating several abiotic 
stresses, i.e., salinity, high temperature, and drought (Jakab et al. 2001; Cohen 2001; 
Zimmerli et  al. 2008) by enhancing mitochondrial activities, photosynthetic pig-
ments, photosynthesis, and chlorophyll a contents resulting in better photosynthesis 
process (Jisha and Puthur 2016). Moreover, β-amino butyric acid priming substan-
tially stimulated the activities of photosystems I and II and increased the transport, 
absorption, and trapping of electron per photosystem II (Jisha and Puthur 2016). In 
rice seeds, priming with PEG (Li and Zhang 2012) and polyamine priming in 
cucumber (Zhang et al. 2009) enhanced the photosynthetic efficiency by increasing 
the photochemical efficiency of photosystem II.  Seed priming helps to increase 
mitochondrial number and improve the outer membrane integrity of mitochondria 
(Benamar et  al. 2003; Varier et  al. 2010). In maize, seed priming with silicon 
enhanced the photosynthetic efficiency by improving the chlorophyll contents under 
alkaline stress (Abdel Latef and Tran 2016) that helped plant to stay green for lon-
ger time and tolerate under stressful environment. Another study reported that soy-
bean primed seeds with CaCl2, ZnSO4, and gibberellic acid improved the 
photosynthesis attributed to higher photosynthetic pigments and better integrity of 
chloroplast, mitochondria, and membranes (Dai et al. 2017). In safflower, salicylic 
acid application through seed priming enhanced the photosynthetic rate and chloro-
phyll content index and the number of chlorophyll pigments such as photoreceptor 
antennas that also has direct positive effect on the photosynthetic device such as 
improvement in electron transport chain and stimulates the activities of enzymes 
involving in the photosynthesis, e.g., rubisco (Mohammadi et al. 2017). Furthermore, 
salicylic acid prevented the degradation of chloroplast and improved the electron 
transport capacity by photosystem II resulting in stimulation of net photosynthetic 
rate and overall photosynthesis process (Shakirova et  al. 2003; Fariduddin et  al. 
2003; Khodary 2004) as observed in soybean, corn, and barley.

2.6  �Antioxidant Activities

Seed priming with comprehensive agents aids plant to tolerate against abiotic stresses 
by improving the activities of antioxidant enzymes by detoxifying the ROS (reactive 
oxygen species) (Dai et al. 2017). Improvement in antioxidant capacity improves the 
potential of plant to mitigate damage induced by ROS. Catalase (CAT) and superox-
ide dismutase (SOD) are considered as the most effective antioxidant enzymes that 
provide first-line defense against toxic ROS level (Gill and Tuteja 2010). Catalases 
with maximum turnover have the ability to convert about six million hydrogen per-
oxide (H2O2) molecules to oxygen (O2) and water (H2O) per minute only using one 
molecule of catalases (Gill and Tuteja 2010). Seed priming with CaCl2 and ZnSO4 
enhances antioxidant enzyme activities including CAT and SOD and reduces the 
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malondialdehyde contents and lipid peroxidation (Dai et al. 2017). Priming of seed 
with silicon plays pivotal role in enhancing the tolerance against alkaline stress by 
accumulating the osmoprotectants and activating the antioxidant machinery (Abdel 
Latif and Tran 2016) such as SOD, CAT, and peroxidases leading to oxidative stress 
mitigation. Moreover, silicon application through seed priming improves the con-
tents of antioxidant phenols under alkaline stress (Abdel Latif and Tran 2016). 
Another study indicated that β-amino butyric acid alleviated the oxidative stress and 
lipid peroxidation by reducing the malondialdehyde contents and enhancing the pro-
line contents and activities of SOD and guaiacol peroxidase, chitinase, nitrate reduc-
tase, and polyphenol oxidase (Jisha and Puthur 2016) under drought and saline stress. 
Ascorbic acid and salicylic acid priming stimulate antioxidant enzyme activities such 
as ascorbic acid, ascorbate peroxidases, POD, and CAT and accumulate the osmo-
protectants that help to maintain the plant water status under abiotic stress, e.g., salt 
stress (Carvalho et al. 2011; Ahmad et al. 2012), and protect plant from oxidative 
stress. In a study, Carvalho et al. (2011) showed that hormonal priming (methyl jas-
monate, salicylic acid, and chloroethylphosphonic acid (CEA)) protected maize 
seedlings from salt stress damage by activating the antioxidant machinery such as 
glutathione reductase, ascorbate peroxidase, SOD, POD, and CAT.

3  �Summary and Future Research Perspectives

Seed priming is an important technique to attain desirable results against several 
abiotic stresses including salt stress. During the last few years, it has been emerged 
as a promising approach in inducing stress tolerance due to its involvement in 
improving overall plant defense against these abiotic stresses. Moreover, it provides 
a realistic, effective, and smart choice for successful plant protection. Although 
exact mechanism behind crop improvement is still unknown, however, it has been 
suggested that seed priming normally helps to regulate plant signaling through acti-
vating certain cell signaling pathways and cellular responses. It is therefore needed 
to further explore the molecular mechanism involving these signaling pathways.
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