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Abstract  A complete analysis on the occurrence of arsenic (As) in aquifers and 
several superficial water bodies in Latin America, identified in 13 countries, is 
presented. The Chaco-Pampean plain in Argentina is the largest area affected by 
groundwater As contamination. Research on the chemical and hydrogeological 
processes of release and mobilization of As has also been developed in Mexico, 
Chile, Bolivia, Peru, and Nicaragua. In most of the contaminated areas, As originates 
from geogenic sources, mainly volcanic rocks, hydrothermal fluids, and As-bearing 
minerals. However, anthropogenic sources are also present in certain zones, most of 
them coming from mining operations and, in some cases, related to agriculture. 
Mining is indeed the main As source in Brazil. The physicochemical characteristics 
of the water, such as pH and Eh, and the presence of other ions influence the 
mobilization of As. Hydrogeological conditions also determine the occurrence of 
As contamination. It has been found that the element is in the As(V) form in most 
locations. In all Latin American countries, more research has still to be conducted 
to determine As concentrations and speciation in water bodies used as drinking 
water source, to unravel its origin and mobilization processes.

Regarding analytical methods on As determination, 167 papers in scientific jour-
nals have been identified in the last 18 years in Latin America. The most widely 
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analytical methodologies used for As determination are AAS (57%), specifically 
HG-AAS, and ICP (26%), mainly coupled with MS. Electrochemical methods have 
been applied in Chile, Brazil, and Argentina. UV-VIS spectrometry has been used 
mainly in Cuba and Mexico. XRF spectrometry, principally for solid samples, has 
been used in Mexico, Cuba, Brazil, Argentina, and Chile. Other used methodologies 
are INAA, the ARSOlux Biosensor and the SPRN technique.

Keywords  Argentina · Arsenic · Brazil · Chile · HG-AAS · XRF spectrometry

Abbreviations

AAS	 Atomic absorption spectrometry
AE	 Anion exchange
AEC	 Anion exchange chromatography
AES	 Atomic emission spectrometry
AFS	 Atomic fluorescence spectrometry
AS-SWV	 Anodic stripping square-wave voltammetry
ASV	 Anodic stripping voltammetry
ASV-(CAR-CPE)	 Adsorptive stripping voltammetric carrageenan modified 

carbon paste electrode
BDES	 Bi-directional electrostacking system
CPE	 Cloud point extraction
CSV	 Cathodic stripping voltammetry
CT	 Cryotrapping gas
DPP	 Differential pulse polarography
EcHG	 Electrochemical hydride generation
ETAAS	 Electrothermal atomic absorption spectrometry
ETV	 Electrothermal vaporizer
EVA	 Ethyl vinyl acetate
FI	 Flow injection
GC-PFPD	 Gas chromatography with pulsed flame photometric 

detection
GFAAS	 Graphite furnace atomic absorption spectrometry
GFH	 Granular ferric hydroxide
HG	 Hydride generation
HPLC	 High pressure liquid chromatography
HR-CS	 High-resolution continuum source
HS-SPME	 Headspace solid-phase micro-extraction
IC	 Ionic chromatography
ICPAES	 Inductively coupled plasma atomic emission spectroscopy
ICPMS	 Inductively coupled plasma mass spectrometry
ICPOES	 Inductively coupled plasma optical emission spectrometry
INAA	 Instrumental neutron activation analysis
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IXED	 Ion exchange/electrodialysis
LA	 Laser ablation
LC	 Liquid chromatography
MP	 Microwave plasma
MS	 Mass spectrometry
MSFIA	 Multisyringe flow injection analysis
PA-NCu	 Copper nanoparticles supported in polyamide pellets
SIA	 Sequential injection analysis
SPE	 Solid phase extraction
SPRN	 Surface plasmon resonance nanosensor
SWCSV	 Square wave cathodic stripping voltammetry
UV	 Ultraviolet
XRFS	 X-ray fluorescence spectrometry

1  �Situation of Arsenic in Latin America

The problem of arsenic (As) in drinking water is today very well-known due to the 
consequences on health all over the world. Arsenic (As) is a natural metalloid abun-
dantly present in the earth’s crust.1 It is one of the most toxic pollutants, present mainly 
in groundwater by the release of As to soils and aquifers due to natural processes such 
as volcanic phenomena and rock disintegration, and it can be detected in a wide range 
of concentrations. Human activities such as industrial processes, metal smelting, pes-
ticide production, and wood preservation increase the contamination of soils and aqui-
fers. The exposure of humans to the element occurs through the consumption of 
contaminated water and food (International Agency for Research on Cancer (IARC) 
2012; Argos et al. 2011; Arsénico en agua, informe Grupo Ad-Hoc Arsénico en agua 
2018; Murcott 2012; McCarty et  al. 2011; Bundschuh et  al. 2008, 2010, 2012; 
Bhattacharya et al. 2006; Smedley et al. 2009; Gomez et al. 2009; Alarcón-Herrera 
et al. 2013; Nicolli et al. 2009; Mukherjee et al. 2014; Blanes et al. 2011; Zabala et al. 
2016; World Health Organization (WHO) 2011; Nicolli et al. 2010; Sigrist et al. 2013; 
Vázquez et al. 2014; Farias et al. 2016; World Health Organization & International 
Programme on Chemical Safety 1996; Ormachea Muñoz et al. 2014).

The presence of As in water is a worldwide problem with high impact in the 
poorest regions, with more than 226 million exposed people (Murcott 2012; 
McCarty et al. 2011). Its presence has been identified in waters of many areas of 
Latin America since the twentieth century. Health effects from chronic exposure to 
As-enriched drinking water were first reported in Bell Ville, Argentina, in 1913 
(Bundschuh et  al. 2010). Since then, and mainly since the 1960 decade, As 

1 In this paper, Latin America will be referred to as the region comprising those countries in the 
Americas where the Spanish or Portuguese languages prevail: Mexico, all countries of Central 
America with the exception of Belize, all South American countries (with the exception of Guyana, 
Suriname, and Trinidad and Tobago), and, in the Caribbean, Cuba, Dominican Republic, and 
Puerto Rico.
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occurrence in aquifers and surface water has been found in other parts of Argentina 
and also in other Latin American countries (Bundschuh et al. 2008, 2012).

2  �Distribution of Arsenic in Latin America

2.1  �Generalities

Arsenic concentrations and sources vary among sites, although, in most of them, it 
has a natural origin. The release of As to the water may involve complex geochemical 
processes that have been unraveled only in certain zones. In many of those sites, 
most or all drinking water comes from As-enriched aquifers, posing a health threat 
to the population. Here, an overview of As natural occurrence in Latin American 
water resources will be presented, including identified sources and geochemical 
processes involved in its release and mobilization, focusing on water bodies used as 
a drinking water sources.

2.2  �Argentina

A compilation of studies conducted in Argentina related to the As presence in 
water was recently reported (Bundschuh et al. 2012), being the Chaco-Pampean 
plain (about 1 million km2) the largest area affected by groundwater As contamina-
tion in Latin America. In this study, the zones with As occurrence were divided in 
Chaco-Pampean plain, Andean highlands, sub-Andean valleys/Andean foothills, 
and Patagonia, each one with specific As concentration ranges. Main hydrogeo-
chemical characteristics and geochemical processes influencing As occurrence and 
mobilization were summarized in this publication. The factors controlling As 
mobilization in the aquifers of the Río Dulce alluvial cone, where groundwater 
contains an average As concentration of 743  μg/L, have been identified 
(Bhattacharya et al. 2006). Arsenic release involves the influx from dissolution of 
volcanic glass, adsorption of As on Fe and Al mineral phases in relatively low pH 
zones, and high mobility of As in high pH zones. Processes of As water enrichment 
and mobility in the Quaternary loess aquifer at the Chaco-Pampean plain were 
defined (Smedley et al. 2009). Accumulation of As in the groundwater flow toward 
the depression and lack of flushing seem to be responsible for the high As concen-
trations, which reach 5300 μg/L. Sorption/desorption on Fe oxides and possibly on 
Mn oxides were considered as important controls on As mobility. In addition, a 
high correlation (R2 = 0.84) between As and fluoride (F) contents in the groundwa-
ter of the phreatic aquifer of Coronel Moldes has been found (Gomez et al. 2009). 
Coexistence of As and F in groundwater of the Chaco-Pampean plain was also 
remarked (Alarcón-Herrera et  al. 2013). It has been informed that groundwater 
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flowing through Tertiary and Quaternary loess deposits at Tucumán province con-
tains also high As concentrations (up to 1610 μg/L), with lower concentrations at 
large depth (Nicolli et al. 2009). Sorption was also considered as a control of As 
mobility in this study. The role of the tectonic setting in the As concentration 
increase of groundwater in the Chaco-Pampean plain was evaluated through flow 
path modeling (Mukherjee et al. 2014). This study included the chemical analysis 
of major, minor, and trace elements in water from 60 wells. The PHREEQC hydro-
geochemical code was used to model reaction flow path for pairs of wells. The 
simulations considered chemical evolution through silicate weathering, dissolution 
of evaporites, reversible cation exchange reactions, and oxide phases. Arsenic con-
centration in water was as high as 7500 μg/L, with As(V) being the dominant spe-
cies. Volcanic glass was considered to be the primary source of As in the 
Chaco-Pampean groundwater. In addition, mineralized, hydrothermal zones and 
hot springs are also a major geogenic source. The As origin may be tectonically 
controlled; As is transported to the surface aquifers by extrusive volcanism or 
hydrothermal fluids. Rhyolitic glass in volcanic ash beds and silicate rocks undergo 
hydrolytic dissolution releasing trace oxy-anions to groundwater that then undergo 
other geochemical processes in the groundwater flow. Arsenic concentrations and 
distribution in groundwater of the Central-West region of Chaco have been deter-
mined (Blanes et al. 2011). Approximately 88% of 86 groundwater samples col-
lected in 2007 exceeded the WHO guideline value posing a risk to the population 
since this water is used for human and livestock consumption. Elevated As concen-
trations were associated to high pH and Na-HCO3-type groundwater. The processes 
controlling As and F distribution in groundwater of the Pampeano aquifer and the 
Del Azul Creek basin, located southeast of the Chaco-Pampean plain, in Buenos 
Aires province, have been evaluated (Zabala et al. 2016). Concentrations above the 
present WHO safe drinking level (10 μg/L) (World Health Organization (WHO) 
2011) were measured in 92% of 62 samples collected in the years 2011 and 2012. 
Hydrogeochemical, isotopic, and statistical interpretations within the hydrogeo-
logical framework allowed defining two main controls on As distribution. 
Hydrogeochemical processes control As distribution in low and moderately miner-
alized water of the middle and lower parts of the basin, while hydrogeological 
conditions control its distribution northeast and beyond the lower basin. 
Hydrogeochemical studies have also been performed in the Salí River basin part of 
the Tucumano-Santiagueña hydrogeological province, where 42 groundwater sam-
ples from shallow aquifers, 26 deep samples, and 17 from artesian aquifers were 
collected (Nicolli et  al. 2010). Arsenic concentrations ranged from 11.4 to 
1660 μg/L being 100% of the samples above the WHO guideline value. A strong 
positive correlation among As, F, and V was found in shallow groundwaters. 
Leaching from pyroclastic materials is favored by high pH and high bicarbonate 
waters. In another study, the distribution of inorganic arsenic (iAs) species in 
groundwater used for human consumption was determined in the Santa Fe prov-
ince (Sigrist et al. 2013). Results showed a prevalence of As(V) and As contents 
above the WHO limit in all of the samples collected in 27 counties with concentra-
tions up to 186.5 μg/L. Arsenic concentration in water, soils, human, and dog hair 
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was determined at La Matanza District, 31  km away from Buenos Aires City 
(Vázquez et  al. 2014). Average As concentration (measured by total reflection 
X-ray fluorescence, TXRF) in drinking groundwater was 57 μg/L, while As in 
human hair was below the reference level, and As in dog hair showed the occur-
rence of chronic As contamination. The presence of As in surface water and 
groundwater of the Argentine Altiplano (Puna) and sub-Andean valleys, which is 
consumed by 355,000 people, was also evaluated (Farias et al. 2016). The concen-
trations measured in 61% of the 62 samples collected in an area of 30,000 km2 
exceeded the WHO limit. Arsenic occurrence was ascribed to geogenic sources. 
Results showed that the daily As intake for the majority of the population from La 
Puna (561 μg/day average in summer and 280.5 μg/day in winter) was higher than 
the WHO reference value (146 μg/day) (World Health Organization & International 
Programme on Chemical Safety 1996).

2.3  �Bolivia

The presence of As has been identified in various areas of Bolivia, mainly related to 
mining activities, ore deposits, geothermal manifestations, and leaching of volcanic 
rocks. Its occurrence in various environmental compartments has been summarized 
in 2012 (Bundschuh et al. 2008). Many of the studies have focused on the Pilcomayo 
River basin and the Poopó Lake basin. The As concentration in the less developed 
area of the basin, where untreated surface water and groundwater are used as drink-
ing water, has been determined (Ormachea Muñoz et al. 2014). General physico-
chemical characteristics were slightly alkaline with high electrical conductivity and 
predominance of sodium, chloride, and bicarbonate. Arsenic concentrations were 
above the WHO guideline value in 95% of the 41 sampled wells and 7 sites along 4 
rivers, reaching 623 μg/L. The presence of As was related to water contact with 
alluvial material in lower terrains, besides arsenopyrite oxidation, and dissolution 
from volcanic rocks. Arsenic contamination in surface water, groundwater, and soils 
in the provinces of La Paz and Oruro of the Bolivian highland has been studied 
(Quintanilla et al. 2009). Groundwater average As concentration was 47 μg/L and 
ranged from below the detection limit (DL) to 200 μg/L in Kondo K, 245 μg/L in 
Santuario de Quillacas, 152 μg/L in the central region, and 187 μg/L in Pampa 
Aullagas. The Poopó lake contained the highest As concentrations of the sampled 
surface waters with 11,140 μg/L in the dry period. Geothermal processes are the 
main natural sources of As in the area; anthropogenic contamination is related to 
mine tailings located around San José, Huanuni, Poopó, Avicaya, Itos, and Llallagua. 
Arsenic presence in groundwater of the Poopó basin was ascribed to sulfide mineral 
oxidation. All the rivers that drain the mining area are enriched in As. The sources 
and geochemical processes controlling the mobilization of As and trace elements in 
shallow aquifers of the Antequera and Poopó sub-basins in the mining Oruro region 
have been evaluated (Ramos et al. 2014). In the Antequera sub-basin, As concentra-
tion was above the WHO limit in 89% of the samples, with a maximum value of 
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364 μg/L, while in the Poopó sub-basin, all samples were above that limit, reaching 
a maximum of 104.4 μg/L. Since high As concentrations were measured far from 
mining sites in the Antequera sub-basin, a natural origin related to the characteris-
tics of the sediments was ascribed to the presence of the element. Statistical factor 
analysis showed that four processes could produce the mobilization of As and trace 
elements: desorption from hydrous ferric oxide surfaces, reductive dissolution of Fe 
and Mn hydrous oxides, increased trace element concentrations at acidic pH values, 
and oxidation of sulfide minerals.

2.4  �Brazil

Mining has been an important As source in the Iron Quadrangle at the Minas Gerais 
state. This was assessed through an interdisciplinary project carried out from 1998 
to 2007 (Matschullat et  al. 2007). The main As source are primary ore deposits 
containing arsenopyrite and pyrite. Arsenic presence is related to natural leaching of 
rocks and soils as well as mining operations (Bundschuh et al. 2008). In the Ribeira 
Valley (southeastern Brazil), Pb and As have contaminated the Ribeira River as a 
result of Pb-Zn ore production and smelting. The Santana District in the Amazon 
region is also contaminated with As (up to 2.0 mg/L in some wells) produced from 
Mn ore benefit. However, low As exposure was identified in this latter area 
(Figueiredo et al. 2010). The occurrence of As in drinking waters at Paractu was 
also assessed (Bidone et al. 2014). The results showed that As concentrations in 
drinking water (surface water and groundwater) were below the WHO standard 
value in urban and rural communities and most of them below the instrumental 
DL. However, As reaches up to 40.10 μg/L in freshwater samples at Corrego Rico 
and Ribeirão Entre-Ribeiros watershed, due to the influence of a gold mining site 
and abandoned artisanal gold mining sites. In the Itapessoca catchment (northeast 
Brazil), As pollution due to a shrimp farm and fish ponds in surface waters, with 
concentrations up to 15.51 μg/L As, has been reported (Santos Pontes et al. 2014).

2.5  �Chile

The area of Atacama Desert, northern Chile, is naturally enriched in As. People 
from the Arica zone have been affected by this metalloid for more than 4500 years 
(Figueiredo et  al. 2010). Nevertheless, As-related health effects from As-rich 
drinking water pumped from the Loa river were identified only since 1962 at 
Antofagasta (Bundschuh et al. 2012). Arsenic concentrations up to 2000 μg/L were 
measured in the Loa river, as a result of high evaporation at alkaline pH and high 
salinity (Alarcón-Herrera et  al. 2013). Arsenic is mainly released from volcanic 
rocks and sulfide ore deposits at the Andean chain and mobilized by snowmelts and 
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rain to rivers and springs. At the Camarones Valley, about 100 km south of Arica 
City, drinking water from waterfalls and from the Camarones river contain 48.7 μg/L 
and 1252 μg/L of As, respectively, mostly as As(V) (Bundschuh et al. 2012). In the 
Tarapacá region, high As concentrations were determined in surface water and 
groundwater with a heterogeneous spatial distribution. Arsenic in drinking water of 
the rural area ranged from 0.1  μg/L in Guatacondo to 345.85  μg/L in Camiña, 
located at the north and south of the area, respectively. The highest As concentration 
in the sampled rivers was measured in Pachica. No correlation was found between 
As, boron (B), and salinity in the Tarapacá area. The occurrence of As was ascribed 
to the presence of volcanic sediments, salt lakes, thermal areas, predominance of 
closed basins, and anthropogenic sources like copper mining (Amaro et al. 2014). 
In the mining region of Antofagasta, high As concentrations were found in river 
waters (from 10 to 3000 μg/L). In addition, water used for human consumption 
ranged from 100 to 1900  μg/L.  Nevertheless, As exposure has decreased, and 
As-related problems have been solved in most part of the country (Bundschuh et al. 
2012; Figueiredo et al. 2010).

2.6  �Colombia

While Colombia geology indicates the presence of rocks containing As minerals, 
few studies have been developed to assess the actual concentrations in rocks or 
water. Arsenic was found in the Marmato river water in the Marmato mining district 
(Bundschuh et al. 2012). In 2010 and 2011, As concentrations were determined in 
319 samples of drinking water in Bogotá DC (Patiño-Reyes and Duarte Portocarrero 
2014). Concentrations were below the detection level in most of the samples 
(99.38%), and the rest was below the WHO guideline value. A review of the 
occurrence and sources of As in Colombia was reported in 2014 (Alonso et  al. 
2014). The presence of low As levels was determined in the Suratá river waters with 
concentrations up to 13 μg/L near the municipality of California. Arsenic occurrence 
was related to mining in the area (Alonso et al. 2014). Information reported in that 
review showed that As concentrations in surface water and groundwater exceeded 
national standards at some sites; its presence was ascribed to human activities, 
mainly to mining and agriculture. This last source of As (up to 255 μg/L) was 
detected in the phreatic water of several municipalities of the Bogotá savannah with 
intense irrigation of horticultural crops. Arsenic concentrations above the Colombian 
drinking water standard of 10 μg/L were also measured in the water near the Muña 
reservoir, which is used by people (41.8 μg/L average). Although concentrations are 
low at many of the studied sites, in several cases, the values exceed the national 
recommended levels for drinking, irrigation, livestock, and aquatic life. The authors 
of the review highlight the importance of performing more research to understand 
the occurrence, origin, and distribution of As in Colombia.
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2.7  �Cuba

Arsenic concentrations have been reported at some sites in Cuba. Studies carried out 
at Isla de la Juventud, Manzanillo bay, Cienfuegos bay, and Santa Lucía mine have 
been informed (Bundschuh et al. 2012). At Isla de la Juventud, only one spring close 
to the Delita mine out of eight sampled points in the watershed was contaminated 
with 25–250 μg/L As (Toujague et al. 2003). Arsenic concentrations were above the 
WHO guideline value in wells at other watersheds, representing a risk for 
noncancerous diseases for children. Streams impacted by acid mine drainage 
(AMD) from the Santa Lucía mine showed decreasing As contents downstream 
ranging from 4 to 24 μg/L at around 1500–1700 m from the mine.

2.8  �Ecuador

Concentrations of As from 220 to 369 μg/L at the surface and from 289 to 351 μg/L 
at depth were measured in the water of the Papallacta lake (Cumbal et al. 2009). The 
authors identified discharges of geothermal waters (containing up to 7853 μg/L of 
As) to the Tambo river as the main As sources to the lake. Arsenic concentrations 
ranging from 9 to 126 μg/L were found in wells used as drinking water sources in 
Tumbaco and Guayabamaba towns in 2006; treatment options were then applied by 
the municipality (Bundschuh et al. 2012).

2.9  �El Salvador

Arsenic is present in the largest lakes of the country (Ilopango, Coatepeque, and 
Olomega), with the highest concentration (4210 μg/L) measured at the Olomega 
lake in 2000. While this water is not used for centralized supply, it has been reported 
to be used by people living in the watersheds (Bundschuh et al. 2012; López et al. 
2012). High As contents (up to 770 μg/L) in the waters of the Ilopango lake are 
linked to hydrothermal fluid interaction with lake sediments. As and B concentra-
tions (up to 8.6 mg/L) were correlated in the lake water with higher values to the 
south (López et  al. 2009). Arsenic in springs and domestic wells of geothermal 
origin was determined in the Ahucahapán (from 20 to 210 μg/L) and Berlin (from 
2 to 285 μg/L) geothermal fields. Arsenic was also found in Las Burras (164 μg/L) 
and Obrajuelo (16 to 330 μg/L) aquifers (Bundschuh et al. 2012). Water collected 
in the Bajo Lempa region in October 2012 and March 2013 showed a maximum of 
12 μg/L As in surface water and 322 μg/L in groundwater. Arsenic presence is 
related to natural occurrence in rocks and geothermal fluid and probably to an 
anthropogenic source due to pesticides and fertilizers used in the area (López et al. 
2014). The San Miguel aquifer was recognized to present a high risk due to As 
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presence with up to 162 μg/L. Three rivers of the country (Paz, Sucio, and Jiboa) 
were identified to contain relatively high As concentrations with up to 123 μg/L in 
the Jiboa river (Bundschuh et al. 2012).

2.10  �Guatemala

In 2007, a concentration of 15 μg/L As, originated from leaching of volcanic rocks, 
was measured in the water of a well used as drinking water supply at Mexico 
(Bundschuh et al. 2012; Garrido Hoyos et al. 2007). Later, in the area of the Marlin 
mine (boundary between San Miguel Ixtahuacán and Sipacapa, San Marcos 
department, 300 km from Guatemala City), As concentration up to 261 μg/L was 
measured in wells downgradient from the tailings (Bundschuh et al. 2012).

2.11  �Mexico

Chronic As poisoning was first identified in Mexico in 1958 at the Comarca 
Lagunera, northern México (Cebrián et al. 1994). Since then, As has been detected 
in many areas of the country. Its presence is mainly related to geogenic sources, 
mineralization, geothermal systems, sorption and release from minerals, and 
salinization, but also to anthropogenic activities in some areas. An overview of the 
As presence in groundwater of Mexico and their possible sources was reported in 
2008 (Armienta and Segovia 2008); areas identified with the presence of As and F 
have been also reported in 2013 (Alarcón-Herrera et al. 2013), and occurrence and 
mechanisms of As enrichment in geothermal zones were described (Birkle et  al. 
2010). Here, some of the As-rich areas resulting from diverse sources and recent 
studies in places where groundwater is used as drinking water are included.

Comarca Lagunera in Durango and Coahuila states has been one of the most 
studied areas with As concentrations up to 750 μg/L. The zones were where the 
former lagoons Mayrán and Viesca (currently dried up), in the northeastern part of 
the basin, are reported as the most As-enriched areas. Higher As concentrations 
have been determined for thousands of years in old waters with respect to recent 
infiltrated, young waters. Intensive groundwater abstraction, besides arrest of the 
Nazas river infiltration due to its canalization, has induced the pumping of deeper 
As-enriched old waters. As a result, As contents increased in 2010 compared to 
1990, mainly in the northern part of the region. A correlation of As concentration 
with groundwater age, with older waters having higher As contents than the younger 
ones, has been identified (Boochs et al. 2014). From the interpretation of chemical 
and isotopic determinations and groundwater flow modeling, evaporation was pos-
tulated as the main process producing high As concentrations in the most southeast-
ern part of this area (Ortega-Guerrero 2004). Release of As from sediments to the 
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water due to pH increase was also proposed (Mejía-González et al. 2014). Recently, 
the geochemical influence of the aquitards on As enrichment at the edges of the 
Comarca Lagunera has been evaluated (Ortega-Guerrero 2017). Results of this 
study including geochemical modeling indicated that the advance of As-rich water 
to the main granular aquifer is due to a reversal of hydraulic gradients resulting from 
intensive groundwater exploitation and decrease of freshwater runoff from dam 
construction in the main rivers. Although various sources have been proposed as the 
origin of As, it was concluded that the most probable source is related to extinct 
hydrothermal activity and sedimentary process (Boochs et  al. 2014). Increased 
groundwater abstraction and canalization of the Nazas river induced a drawdown of 
the groundwater level reaching about 100 m in the center of the area. Irrigation with 
As-rich water contributed also to As increase. Concentrations of As and F above the 
Mexican drinking water standards (i.e., 25  μg/L for As and 1.5  mg/L for F, 
Modificación a la Norma Oficial Mexicana 2000) have also been measured in the 
alluvial aquifer system of the Chihuahua state (Espino-Valdés et al. 2009; Reyes-
Gómez et al. 2013). Interpretation of the distribution of concentrations within the 
hydrogeological and geological framework indicated a natural geogenic source 
related to the recharge flow coming from mountains presenting arsenopyrite depos-
its and from the contact of water with the aquifer sediments. Besides, at the Julimes 
municipality, geothermal water and high evaporation rate are also responsible of As 
contamination. A review including information from water, soils, and sediments 
reported natural (related to volcanic processes) and anthropogenic (related to min-
ing and smelting) sources in the Chihuahua and Coahuila states (Mar Camacho 
et al. 2011). The co-occurrence of F and As in the central part of the Chihuahua state 
was studied (Reyes-Gómez et al. 2013). Petrographic analyses showed the presence 
of F as fluorapatite. Distribution maps depicted temporal (since 2003–2010) and 
spatial concentration variations of As and F. Measured values of pH and Eh indi-
cated that As predominates as HAsO4

2− in groundwater. A geochemical conceptual 
model was proposed to reflect the mobility of As and F in groundwater. Highly 
fractured volcanic rocks and alluvial fans at the base of the sierras were identified 
as possible aquifer recharge zones. The alluvial fans contain rhyolites and shales 
with As and fluorapatite. Weathering releases these elements from the lithology of 
the area.

Arsenic contamination is related to natural and/or anthropogenic sources in min-
ing zones. At Zimapán, Hidalgo state, two anthropogenic and one natural source 
were identified as the origin of As groundwater pollution in the aquifer system. 
Arsenic was determined in rocks, mining wastes, soils, and sediments (Fig.  1); 
chemical analyses of water included main ions determined by standard methods and 
isotopic analyses (δ18O, δ2H in water, and δ34S in dissolved sulfates). Interpretation 
of the results within the hydrogeological framework allowed to define the 
contamination degree and the As source and mobility. Water interaction with 
As-bearing minerals in the aquifer matrix releases As to the deep fractured limestone 
aquifer, while AMD from tailings and infiltration of As-enriched water from smelter 
stacks contaminated the shallow aquifer (Armienta et al. 2001; Sracek et al. 2010). 
At the Independencia basin, Guanajuato state, concentrations above drinking water 
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standards have been measured in groundwater. A study to determine the processes 
involved in the geochemical evolution and mineralization of the area by means of 
chemical and isotopic (δ18O, 13C, 3H) analyses of groundwater, mineralogical 
determinations of rocks from boreholes by XRD, geochemical modeling 
(PHREEQC), and multivariate statistical analysis has been developed (Mahlknecht 
et al. 2004). Interpretation of the results led to the conclusion that weathering of 
rhyolites and oxidation of As-bearing minerals produce the high As and F concen-
trations. The concentrations, distribution, and source of As and F in the same basin 
were also investigated (Ortega-Guerrero 2009). The study included chemical (major 
and trace elements) and isotopic (δ18O, δ2H, 13C/14C, 3H) determinations inter-
preted in the hydrogeological framework. Hydrogeochemical and isotopic results 
indicated that As originates from the dissolution of silicates, while F is related to the 
dissolution of fluorite and silicates, thermal water, and a longer residence time of the 
water. The hydrogeological and geothermal factors related to the origin of As and F 
in another area of the Guanajuato state, at the Juventino Rosas municipality, were 
also studied (Morales-Arredondo et al. 2016). Interpretation of the results within the 
geological and hydrogeological framework using hydrogeochemical plots and sta-
tistical methods allowed to relate the water type with concentration ranges and cir-
culation patterns of the groundwater. Rhyolite units appeared to be the most probable 
source of As and F. At Los Altos de Jalisco, western Mexico, mean As concentration 
in drinking water varied from 14.7 to 101.9 μg/L, with the highest values in the city 
of Mexticacán (262.9 μg/L). While most of the surface water has low As contents, 
the concentrations reach values above the WHO standard value in all sampled wells 
in the Los Altos de Jalisco towns (Hurtado-Jiménez and Gardea-Torresdey 2006).

Fig. 1  Mine tailings at Zimapán, Mexico. Mining residues are one of the main anthropogenic 
sources of As in water in Latin America
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83

2.12  �Nicaragua

In the southwestern part of the Sébaco Valley, drinking water has been contaminated 
by As from geogenic sources (mainly weathering of Tertiary volcanic rocks). The 
valley is located at the eastern region of the Central American graben and is 
characterized by intensive tectonic stress, fracturing, presence of active and inactive 
faults, and hydrothermal alteration. Concentrations range from 10 to 122 μg/L. The 
high polluted well at El Zapote (As concentration, 1320 μg/L) was closed in 1996; 
arsenicosis was detected in people consuming that water for 2 years. The aquifer is 
used by several communities as drinking water source. Changes in redox conditions 
increase the As mobility. A study developed in 2004 showed that the northern zone 
of the country presented the highest As contents. In 2005, the presence of geogenic 
As was identified at San Juan de Limay (Bundschuh et  al. 2012; Altamirano 
Espinoza and Bundschuh 2009; Armienta et al. 2010).

2.13  �Peru

The presence of As has been detected at several sites in Peru, mainly in the Andean 
region, released by weathering and mining operations. The Locumba river and its 
tributaries contain up to 1680 μg/L. Volcanic rocks and pyroclastic materials release 
As in the area of the Yucamane volcano to the Collazas and Salado rivers. In the area 
of Puno, Andean highland As concentrations ranged from 140 to 230 μg/L in river 
water, mostly present as As(V). East of Lima City, the Rimac river basin has been 
contaminated by mining activities, leaching of volcanic rocks, and ore deposits. 
Concentrations present high temporal variations and reached up to 1630 μg/L in 
2000 in Puente Santa Rosa (Bundschuh et al. 2012).

2.14  �Uruguay

The presence of As (between 25 and 50 μg/L) was reported in the Raigón aquifer, at 
the southwestern part of the country. Arsenic source was related with the continental 
sediments containing volcanic ash, also occurring in the Santa Fe province in 
Argentina (Bundschuh et al. 2012; Guérèquiz et al. 2009). Concentrations below 
10 μg/L were only measured in 6 out of 37 samples collected in the Raigón aquifer 
system since 2007 (Mañay et  al. 2014). The importance of a multidisciplinary 
approach to assess the status of As in health and the environment in Uruguay has 
been remarked in this study.
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3  �Analytical Determination of Arsenic in Latin America

Due to the problems that can provoke the presence of As in quantities that can be 
toxic to human health, the study of the presence of the element and its derivative 
compounds, together with their quantification, has a great relevance. Arsenic is 
present in different matrices that impact the different geochemical spheres, i.e., 
lithosphere (rocks), pedosphere (soils), biosphere (living organisms), atmosphere 
(air), hydrosphere (water), and anthroposphere (man’s effect on the other spheres) 
(Hounslow 1995). The chemical behavior of As will depend on environmental 
conditions such as acidity conditions, oxidation-reduction state, presence of iron, 
organic matter or other ligands (e.g., sulfur), etc. Due to the low concentrations at 
which As may be present in an environment and its chemical behavior, the selection 
of an adequate analytical technique will greatly depend on the objectives of the 
study, the access to the adequate analytical methodology, the cost of the analyses, 
and the matrix to be studied. The analyst should take all these factors into account 
when selecting a technique, ensuring a high degree of precision and accuracy, as 
well as high sensitivity, which allow reaching concentrations below the μg/L range.

The presence of As in the environment has not been regulated until lethal dis-
eases appeared (e.g., skin, lung, bladder cancers). For this reason, permissible limits 
of As content in water have been established by environmental agencies, and differ-
ent maximum limits for As in drinking water can exist in each country. These limits 
are revised and lowered periodically to prevent the serious consequences on the 
human health.

In this chapter, different analytical methods for the determination of As in differ-
ent matrices are presented, mainly focused on the studies conducted in Latin 
American countries. This study is based on a bibliographic research; 167 scientific 
manuscripts and articles of the last 18 years have been considered. Table 1 shows 
the different analytical methodologies used for the analysis of As (total or speciation) 
in different matrices. Classical methods (e.g., atomic flame absorption) and the 
most advanced methodologies such as the micro-X-ray synchrotron method or 
electrochemical methods are presented. It includes different matrices of interest 
such as water, food (e.g., wine, milk, and rice), human fluids (urine and human 
hair), rock, plants and marine organisms, and natural and synthetic materials.

Figure 2 shows the number of analytical methodologies reported in Latin 
America for As determination. The data indicate that the most widely analytical 
technique is AAS (57%), specifically with the method of sample introduction 
through hydride generation (HG-AAS) (Table 1). The DL using HG-AAS is about 
0.1–0.6 μg/L (Arsénico en agua, informe Grupo Ad-Hoc Arsénico en agua 2018). 
This method has some advantages: the sensitivity and selectivity are improved, and 
the salinity of the sample does not influence the results (Arsénico en agua, informe 
Grupo Ad-Hoc Arsénico en agua 2018). Additionally, the methodology is simple 
and only requires relatively inexpensive and very versatile instrumentation, with 
excellent detection power for total and iAs (Litter et al. 2009). Figure 2 also shows 
that the second most used analytical technique is ICP (26%), with emphasis in 
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Table 1  Methods applied for the determination of As in Latin American countries

Analytical 
methodology Country Application References

Electrochemical ASV-(CAR-CPE) Chile Water Núñez et al. 
(2018)

ASV Ecuador 
and 
Venezuela

Water Carrera et al. 
(2017)

AS-SWV Argentina Water Robles et al. 
(2017)

ASV Chile Water Núñez et al. 
(2016)

CSV Brazil Food Teixeira et al. 
(2014)

DPP Chile Water Gamboa 
et al. (2013)

SWCSV Chile Carrots, beets, and 
irrigation water

Arancibia 
et al. (2006)

SWCSV Brazil Water Barra and 
Correia dos 
Santos 
(2001)

Atomic 
absorption 
spectrometry

HG-AAS Mexico Thermal spring Morales-
Arredondo 
et al. (2018)

HG-AAS Mexico Natural zeolitic sorbents Velázquez-
Peña et al. 
(2019)

AAS Mexico Endophyte-free plants, 
Methylobacterium 
sp.-colonized plants

Alcántara-
Martínez 
et al. (2018)

HG-AAS Brazil Seawater Dos Santos 
et al. (2018)

HG-AAS Mexico Groundwater Sandoval 
et al. (2018)

HR-CS-GFAAS Brazil-UK Agricultural soil Schneider 
et al. (2018)

AEC-ICP-MS/ETAAS Argentina Olive oils Torres et al. 
(2018)

FIAS-HG-AAS Argentina Soil and water Yáñez et al. 
(2018)

GFAAS Brazil Natural waters Alves et al. 
(2017)

HG-AAS USA and 
Mexico

Urine Kordas et al. 
(2017)

HG-AAS Mexico Human urine López 
Guzmán 
et al. (2017)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

HG-AAS Chile Food Muñoz et al. 
(2017)

HG-AAS Mexico Groundwater Navarro et al. 
(2017)

IXED cell-HG-AAS Mexico Wastewater effluents and 
groundwater

Ortega et al. 
(2017)

HG-AAS Mexico Soils Rodríguez 
Garrido et al. 
(2017)

FAAS Mexico Soils and plants Salas-
Luévano 
et al. (2017)

HG-AAS Mexico Fungal biomass Santos-
Domínguez 
et al. (2017)

HG-AAS Mexico Soils Sariñana-
Ruiz et al. 
(2017)

HG-AAS Mexico Drinking and potable 
water, urine, and blood

Arcega-
Cabrera and 
Fargher 
(2016)

GFAAS Mexico Contaminated soils Armienta 
et al. (2016)

HPLC-HG-AFS Argentina Ionic liquids Castro 
Grijalba et al. 
(2016)

MSFIA-HG-AFS Brazil Peanuts De Santana 
et al. (2016)

GFAAS Mexico-
France

Arsenopyrite leachates Lara René 
et al. (2016)

HG-AAS Brazil Salmon fish Oliveira et al. 
(2016)

ETAAS Argentina Tap water Peralta 
Ramos et al. 
(2016)

HR-CS-GFAAS Brazil-
UK-Chile

Fish oil Pereira et al. 
(2016)

CPE-HG-AFS Mexico-
Spain

Corn and rice Rosas-Castor 
et al. (2016)

FI-HG-AAS Argentina Food samples Sigrist et al. 
(2016)

HPLC-HG-AAS Mexico Urine Torres-
Sánchez et al. 
(2016)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

HG-AAS/
HPLC-HG-ICPMS

Uruguay Human urine Bühl et al. 
(2015)

EcHG-AAS Ecuador, 
Venezuela

Marine sediment Caiminagua 
et al. (2015)

MSFIA-HG-AFS Mexico-
Spain

Agricultural soil Rosas-Castor 
et al. (2015)

ETAAS Argentina Water Castro 
Grijalba et al. 
(2015)

AC-modified 
KR-ETAAS

Argentina Medicinal herbs and tea 
infusions

Castro 
Grijalba et al. 
(2015)

CPE-ETAAS Brazil Rice samples Dos Santos 
Costa et al. 
(2015)

HG-AAS Mexico Groundwater Esteller et al. 
(2015)

HG-AAS Mexico Groundwater Morales et al. 
(2015)

HG-AAS Mexico Water from shallow 
anddeep wells, irrigation 
canals and 
geothermalproduction 
wells

Armienta 
et al. (2014)

HG-AAS Mexico Surface waters Dótor 
Almazán 
et al. (2014)

HG-AAS Argentina Human urine Navoni et al. 
(2014)

HG-AAS Argentina Water and human urine De Pietri 
et al. (2014)

HG-AFS/IC-HG-AFS Mexico Agricultural soil and 
maize crops

Rosas-Castor 
et al. (2014)

Wagtech Arsenator 
field kit /HG-AAS

Mexico Water Avilés et al. 
(2013)

HG-AAS Ecuador Milk Ayala and 
Romero 
(2013)

ETAAS Argentina Wine Escudero 
et al. (2013)

HG-AAS Mexico Soils Hernández 
Ordáz et al. 
(2013)

HG-AAS Mexico Mining acid leachates Labastida 
et al. (2013)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

AAS Mexico Rocks, sediments and 
groundwater

Reyes-
Gómez et al. 
(2013)

Total As: FI-HG-
AAS. As speciation: 
SPE-FI-HG-AAS

Argentina Water Sigrist et al. 
(2013)

ETAAS Mexico Sediment Álvarez 
María and 
Carrillo 
(2012)

HG-AAS Mexico Tailing deposit Armienta 
et al. (2012)

FI-HG-AAS Chile and 
Spain

Algae Díaz et al. 
(2012)

HG-AAS Mexico River water Méndez-
Ramírez and 
Armienta 
Hernández 
(2012)

HG-AAS Uruguay Water Pistón et al. 
(2012)

FIAS-HG-AAS Mexico Plants, soils, and mine 
tailings

Ruiz Huerta 
and Armienta 
(2012)

SIA-HPLC-AFS Brazil Seafood Jesus et al. 
(2011)

IP-HPLC-HG-AFS Argentina Animal feed additives Monasterio 
et al. (2011)

HG-AAS Mexico Urine, blood, and 
bottled water

Rocha-
Amador et al. 
(2011)

SPE-FI-HG-AAS Argentina Groundwater Sigrist et al. 
(2011)

FIAS-HG-AAS USA and 
Mexico

Urine Roy et al. 
(2011)

AAS Mexico-
Germany

Geothermal and 
petroleum reservoir 
fluids

Birkle et al. 
(2010)

HG-CT-AAS Mexico Clays Cervini-Silva 
et al. (2010)

HG-AFS Spain and 
Brazil

Vegetables, pulses, and 
cereals

Matos-Reyes 
et al. (2010)

HG-AAS/ICPOES Brazil Humic acids Menezes and 
Maia (2010)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

ETAAS Argentina Natural waters Monasterio 
and Wuilloud 
(2010)

HG-AAS Argentina Urine Navoni et al. 
(2010)

HG-AAS Mexico Urine Moreno et al. 
(2010)

HG-AFS Mexico Urine and drinking 
water

Salgado-
Bustamante 
et al. (2010)

FI-HG-AAS Argentina Milk Sigrist et al. 
(2010)

FIAS-HG-AAS USA and 
Mexico

Shallow wells and 
shallow river

Sracek et al. 
(2010)

HG-AAS Mexico Surface sediments Villalobos-
Castañeda 
et al. (2010)

AE-FI-HG-AAS/
IC-FI-HG-AAS

Peru Water Chávez 
(2009)

GFAAS Mexico River sediments Espinosa 
et al. (2009)

HG-AAS Brazil Phosphate fertilizers and 
phosphate rocks

Macedo et al. 
(2009)

HG-AAS Mexico Groundwater Armienta and 
Segovia 
(2008)

ETAAS Chile Marine food Bruhn et al. 
(2007)

BDES-FI-ETAAS Brazil-
Spain

Water Coelho et al. 
(2007)

FIAS-AAS Brazil Food de Souza 
et al. (2007)

FI-HG-AAS Mexico Water, urine Valenzuela 
et al. (2007)

HG-AAS Chile Human urine Cáceres et al. 
(2005)

HG-AAS Argentina Water Martínez and 
Gazquez 
(2005)

ETAAS Brazil Petroleum products Reboucas 
et al. (2005)

GFAAS-XRFS Argentina Deep and shallow 
groundwater

García et al. 
(2004)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

HG-AAS Mexico Soil, stream sediment, 
surface water, and 
groundwater

Razo et al. 
(2004)

HG-AAS Mexico Water Rodríguez 
et al. (2004)

LC-UV-HG-AFS France-
Chile

Certified reference fish 
tissue and sea food 
samples

Simona et al. 
(2004)

GFAAS Brazil Environmental samples 
(sludges, soils, 
sediments, coal, ashes, 
and waters)

Lima et al. 
(2003)

HG-AAS Cuba Water Quevedo 
et al. (2003)

HG-AAS Brazil Sediments, coal, and fly 
ash slurries

Antunes et al. 
(2002)

ETAAS Brazil Petroleum refinery 
aqueous streams

Cassella et al. 
(2002)

HG-AAS Mexico Cooked food and water Del Razo 
et al. (2002)

FI-HG-AAS Venezuela Water Carrero et al. 
(2001)

HG-AAS Brazil Hair De Moraes 
et al. (2001)

HG-AAS Germany 
and 
Mexico

Groundwater Planer-
Friedich et al. 
(2001)

FI-HG-AFS Chile Environmental solid 
reference materials

Vergara 
Gallardo 
et al. (2001)

X-ray 
fluorescence 
spectrometry

Microwave-assisted 
distillation-HG-AFS

Brazil Soils Barra et al. 
(2000)

XRFS Mexico Plants Gómez-
Bernal et al. 
(2018)

XRFS Argentina Water Aranda et al. 
(2016)

XRFS Chile Rock Sepúlveda 
et al. (2015)

XFRS Mexico 
and UK

Plants and soils Gómez-
Bernal et al. 
(2014)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

XRFS Mexico-
Bolivia-
Spain

Tailings (mine wastes) Martín et al. 
(2014)

Synchrotron 
micro-X-ray

Mexico Soil López-
Zepeda et al. 
(2008)

XRFS Brazil Water Zucchi et al. 
(2005)

XRFS-CSV Cuba Water Valcárcel 
et al. (2008)

Inductively 
coupled plasma 
spectrometry

ICPMS Argentina Soil, water, grapevine, 
and onion

Funes Pinter 
et al. (2018)

LC-ICPMS Mexico 
and USA

Urine Quiller et al. 
(2018)

HG-MP-AES Mexico Forest Roque-
Álvarez et al. 
(2018)

HPLC-ICPMS Brazil Iron supplements Araujo-
Barbosa et al. 
(2017)

ICPOES Mexico Soil, irrigation water, 
and maize samples

Ruíz Huerta 
et al. (2017)

ICPMS USA-
Mexico

Urine and water Cárdenas-
González 
et al. (2016)

HPLC-ICPMS Mexico Human urine López-
Carrillo et al. 
(2016)

HG-ICPOES Mexico Tap water Martínez-
Acuña et al. 
(2016)

ICPOES Argentina Tailings (mine wastes) Nieva et al. 
(2016)

LC-ICPMS Chile and 
Spain

Carrots (Daucus carota), 
beets (Beta vulgaris), 
and quinoa 
(Chenopodium)

Pizarro et al. 
(2016)

MPAES Mexico Pure arsenopyrite 
crystals

Ramírez-
Aldaba et al. 
(2016)

Total As: ICPMS; As 
speciation: 
HPLC-ICP-MS

Brazil Rice samples Segura et al. 
(2016)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

ICPOES Brazil-
Mexico

Tropical peat de Oliveira 
et al. (2015)

ICPMS Argentina Biofilm Rodríguez 
Castro et al. 
(2015)

HPLC-ICPMS Brazil Plants Amaral et al. 
(2014)

ICPOES/HG-ICPMS Chile-
USA

Water from 
hydrothermal transect 
and sediments

Leiva et al. 
(2014)

HPLC-ICPMS Chile Human urine Muñoz et al. 
(2014)

ICPOES Bolivia Superficial and 
underground water

Ormachea 
and 
Quintanilla 
(2014)

ICPMS México Water Martínez-
Villegas et al. 
(2013)

LC-ICPMS Brazil Tissues of bivalve 
mollusks

Santos et al. 
(2013)

Arsenic in water 
samples was analyzed 
by ICPMS, and in 
rocks a sediment was 
determined by 
HG-AAS

Mexico Hydrothermal 
manifestations, seawater, 
and sediments

Villanueva-
Estrada et al. 
(2013)

ICPAES Mexico As adsorption by anchor 
iron nanoparticles onto 
activated carbon from 
groundwater

Vitela-
Rodriguez 
and 
Rangel-
Mendez 
(2013)

ICPAES Mexico Tailings and plants Santos-
Jallath et al. 
(2012)

ETV-ICPMS Brazil Biological tissue 
samples

Tormen et al. 
(2012)

ICPAES Mexico Wetlands Zurita et al. 
(2012)

HPLC-ICPMS Brazil Rice samples Batista et al. 
(2011)

LC-ICPMS Brazil and 
Germany

Wine Moreira et al. 
(2011)

ICPAES Mexico Acid mine leachates Romero et al. 
(2011)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

LA-ICPMS Chile Hair Arriaza et al. 
(2010)

ICPOES Brazil Plants Melo et al. 
(2010)

ICPOES Argentina Algae Pérez et al. 
(2010)

ICPOES Mexico 
and Cuba

Sulfide-rich waste rocks, 
surface water, and 
streambed sediments

Romero et al. 
(2010)

ICPOES Argentina Groundwater and humic 
acids

Morgada 
et al. (2009)

Total As; ICPOES, 
iAs: HG-AAS

Argentina 
and Spain

Macroalgae Farías et al. 
(2007)

EVA column/
HG-ICPOES

Argentina Water Gil et al. 
(2007)

INAA/ICPOES USA-
Mexico

Soils Ongley et al. 
(2007)

ICPAES Mexico Tailings (mine wastes) Romero et al. 
(2007)

LC-ICPMS USA and 
Argentina

Algae Wuilloud 
et al. (2006)

ICPMS Bolivia Hair, urine, and 
unfiltered water

Archer et al. 
(2005)

HPLC-ICPMS Brazil-
Spain

Beverages (beer, soft 
drink, and juices)

Coelho et al. 
(2005)

HPLC-HG-ICPMS Chile and 
USA

Human hair Yáñez et al. 
(2005)

ICPMS Mexico Mine tailings Armienta 
et al. (2003)

HG-ICPOES Argentina Groundwater Farías et al. 
(2003)

HG-ICPMS Brazil Water and plants Menegário 
and Gin 
(2000)

UV-VIS 
spectrometry

Colorimetry Mexico Groundwater Saldaña-
Robles et al. 
(2018)

Colorimetry (digital 
arsenic test kit)

Mexico Water Contreras 
et al. (2017)

UV-VIS 
spectrophotometry

Cuba Water Ramírez-
González 
et al. (2017)

Colorimetry Mexico Arsenic removal from 
irrigation water

Saldaña-
Robles et al. 
(2017)

(continued)
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Table 1  (continued)

Analytical 
methodology Country Application References

SIA-UV-VIS 
spectrophotometry

Mexico Mine tailings Ramírez 
Cordero and 
Cañizares-
Macías 
(2009)

UV-VIS 
spectrophotometry

Mexico Water Pérez 
Moreno et al. 
(2002)

UV-VIS 
spectrophotometry

Mexico Hair Armienta 
et al. (1997)

UV-VIS 
spectrophotometry

Mexico Well water Gómez-
Arroyo et al. 
(1997)

Others INAA Chile Hair Echeverría 
et al. (2018)

Surface plasmon 
resonance nanosensor

Colombia Water Salinas et al. 
(2014)

ARSOlux Biosensor Germany-
Argentina

Groundwater Siegfried 
et al. (2015)

Fig. 2  Analytical instrumentation reported in Latin America for As determination
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ICPMS (Table 1). The DL reached by this methodology is 0.1 μg/L, and there is no 
need of preconcentrating the sample (Arsénico en agua, informe Grupo Ad-Hoc 
Arsénico en agua 2018). In general, ICP-MS and ICP-OES are robust and sensitive 
techniques, but they require very expensive equipment, special facilities, and a long 
and complex training of analysts (Litter et al. 2009). Figure 2 indicates that electro-
chemical analytical methods are the third most applied methodologies (5%). This 
method has a high analytical sensitivity, has a low cost, and is easy to use, with a 
concentration interval between 0.1 and 300 μg/L by anodic voltammetry (Arsénico 
en agua, informe Grupo Ad-Hoc Arsénico en agua 2018). Chile, Brazil, Argentine, 
Ecuador, and Venezuela reported the use of electrochemical methodologies for the 
determination of As mainly in water and food samples (Table 1). The fourth most 
used method (5%) is UV-VIS molecular spectroscopy. The methods based on this 
analytical methodology are simple and economical; however, although the sensitivity 
is high (10–50 μg/L), the accuracy is low (Arsénico en agua, informe Grupo Ad-Hoc 
Arsénico en agua 2018). Mexico and Cuba are the main countries that reported the 
use of this methodology for As determination in water and in samples of mine 
tailings (Table 1).

Regarding speciation, the two most widely methodologies used in Latin America 
are AAS and ICP spectroscopy combined with separation techniques 
(chromatography), which has led to the use of hyphenated methodologies (Table 1). 
These coupled techniques are the best options for the determination of arsenical 
species, due to their selectivity, their adequate precision, their high level of 
automation, and their relatively short response (Litter et al. 2009).

XRF spectrometry is mainly used for the identification and determination of As 
in solid samples. In quartziferous sands, the DL reaches 40  mg/kg (without 
interferences). Portable equipments can detect up to 60 mg/kg (Arsénico en agua, 
informe Grupo Ad-Hoc Arsénico en agua 2018). According to reference (Arsénico 
en agua, informe Grupo Ad-Hoc Arsénico en agua 2018), the future of this technique, 
regarding the determination of As in waters at the trace level, will be focused mainly 
through the development of preconcentration methodologies adaptable to laboratory 
equipment and to on-site determination.

Other methodologies are the instrumental neutron activation analysis (INAA) 
(Echeverría et al. 2018) and surface plasmon resonance nanosensor (SPRN) (Salinas 
et al. 2014). INAA is an accurate and sensitive methodology; it has been used for the 
determination of total As in biological samples (nail, hair, and other tissues), with a 
DL of 0.001 μg/g (Arsénico en agua, informe Grupo Ad-Hoc Arsénico en agua 
2018). It is important to remark that SPRN is an autonomous sensor for mapping 
and monitoring As concentrations in water (Salinas et al. 2014). This system can be 
integrated to a portable suitcase, it is of low cost, and it is able to measure As 
concentrations below 5 μg/L. However, this method has been not yet applied to real 
cases. The ARSOlux sensor (Siegfried et  al. 2015) is a novel method for field 
measurements of As in groundwater. This biosensor is a robust and accurate method 
for the detection of total bioavailable As concentrations and uses a lyophilizate 
containing a bioreporter bacteria strain.
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Chemical speciation is an area of great importance for assessing the impact of As 
to evaluate its toxicity and bioavailability. In addition, the technological advance on 
development of analytical methods in the last two decades has allowed the application 
of chemical speciation. Chemical speciation is the qualitative and quantitative deter-
mination of the different chemical forms in which an element is present under envi-
ronmental conditions. Some reviews are focused on the preparation of the sample for 
the chemical speciation of As analytical determination in terrestrial plants through 
different analytical methodologies (Amaral et al. 2013). A review on chemical analy-
sis and speciation of traces of As in the environment, food, and industrial samples, 
mainly by the voltammetry technique, has been also published (Cavicchioli et  al. 
2004). An important review on the different techniques of extraction and derivatiza-
tion for the chemical speciation of As can be found in the literature (Vieira et al. 2009).

Figure 3 shows the number of scientific articles related to analytical methods for 
As determination reported in Latin America. The data indicates that Mexico is the 
country reporting the largest number of studies (Table 1).

Several studies have been conducted in a joint collaborative way between Latin 
American and European countries (Spain, Germany, the UK, and France) focused 
on analytical aspects (Fig. 4).

Collaborative works between the United States and Latin American countries 
regarding analytical methods for As are also reflected in scientific articles (Fig. 5). 
Mexico, Chile, and Argentina are the main countries collaborating with the United 
States.

Fig. 3  Number of scientific articles on As analytical methods published by country
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Fig. 4  Collaborative works between Latin America and Europe on development and application 
of analytical methodologies for As determination

Fig. 5  Collaborative works between Latin America and the United States on development and 
application of analytical methodologies for As determination
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4  �Conclusions

Arsenic is present in many aquifers and several superficial water bodies in most of 
the Latin American countries. Scientific publications related with As occurrence 
were identified in 13 out of the 19 countries considered in this review. This fact does 
not imply that concentrations of As above international or national drinking water 
standards are not present in the rest of the countries. The Chaco-Pampean plain in 
Argentina is the largest area affected by As contamination in groundwater. 
Occurrence, sources, geochemical, and mobilization processes of As, including 
hydrogeological influence, have been studied in diverse parts of this area. Research 
covering these aspects has also been developed in other countries such as Mexico, 
Chile, Bolivia, Peru, and Nicaragua. The origin of As in water has been identified in 
almost all the countries considered in this chapter. In most of the contaminated 
areas, As originates from geogenic sources, mainly volcanic rocks, hydrothermal 
fluids, and As-bearing minerals. However, anthropogenic sources are also present in 
certain zones, most of them as a result of mining operations and, in some cases, 
related with agriculture. Mining is indeed the main As source in Brazil. 
Physicochemical characteristics of the water, including pH and Eh, and presence of 
other ions influence the mobilization of As. Besides, hydrogeological conditions 
such as lack of flushing, evaporation, and flow-paths related with the tectonic setting 
also influence the occurrence of As contamination. Although As speciation has only 
been determined in some areas, it has been found to be mainly as As(V) in those 
locations. In all Latin American countries, more research has still to be conducted 
to determine As concentrations and speciation in all water bodies used as drinking 
water source and to unravel its origin and mobilization processes. This information 
is essential to develop adequate solutions to avoid the population exposure to this 
toxic element.

Regarding analytical methods on As determination in Latin American countries, 
167 papers in scientific journals have been identified in the last 18 years. The most 
widely analytical methodology used for As determination is AAS (57%), specifically 
HG-AAS. The second most used analytical technique is ICP (26%), mainly coupled 
with MS. Regarding electrochemical methods, Chile, Brazil, and Argentina are the 
Latin American countries that have published on this topic. Although UV-VIS 
spectrometry is the least used methodology (5%), it has been employed mainly in 
Cuba and Mexico, with three reports in 2017 and one in 2018. XRF spectrometry is 
mainly used for the identification and determination of As in solid samples, and it 
has been mainly used in Mexico, Cuba, Brazil, Argentina, and Chile. The 2% of 
other techniques used are INAA and SPRN, with reported studies on As determination 
in hair and water by Chile in 2018 and Colombia in 2014, respectively. A third novel 
methodology, ARSOlux Biosensor, developed between Argentine and Germany, is 
useful for determination of total bioavailable As concentrations in groundwater. 
Meanwhile, the SPRN technique is at test stage and is used for solid samples.

With respect to scientific publications focused on the analysis of As, it can be 
concluded that:
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–– Mexico, Brazil, Argentina, and Chile are the countries presenting the largest 
number of scientific publications.

–– The collaboration between Latin America and Europe is mainly with Spain, 
Germany, the UK, and France.

–– Mexico, Chile, and Argentine are the main countries that have published in col-
laboration with the United States.
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