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Abstract Shape-memory polymers (SMPs) have attracted considerable attention
in recent decades due to the characteristics of switching from permanent shape to
temporary shape and vice versa by the application of an external stimulus. The
significance and diverse applications of SMPs in the scientific and commercial scope
generate researchers to have keen knowledge in the manufacturing of new shape-
memory polymers and their blends and compositeswith improved thermomechanical
and other desired properties. This chapter will provide a generalized view on the
rheology of SMPs and their blends and composites that would give a holistic picture
of this promising area of research.

1 Introduction

Shape-memory polymers (SMPs) are smart polymeric materials capable of returning
from a deformed state to their original shape and vice versa induced by an external
stimulus such as temperature, electricity, magnetic field, UV light, change in pH, etc.
[1–5]. SMPs are materials with great potential for the use in intelligent materials and
structures [6–9]. The advantages of SMPs over shape-memory alloy and ceramics are
excellent elastic deformation, greater recoverable strain, low cost, and lightweight
[10, 11]. Polynorbornene, epoxy resin, polyurethane, poly(ε-caprolactone), etc. are
the generally used SMPs [12–17]. Owing to this, SMPs have found promising appli-
cations in fields as diverse as medicine (e.g., vascular stents and surgical sutures)
[18], flexible electronics, actuators, deployable space structures, and transport (e.g.,
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automobiles fenders, wings morphing), aerospace applications [19–22], and new
application areas such as repair of cracks and scratches in coatings [5, 23].

Polymers blends and composites are smart and economicalmaterials for the devel-
opment of new and improved polymeric materials that are difficult to obtain by direct
polymerization process [24–27]. The advantages of manufacturing shape-memory
polymer blends and composites are better shape recovery stress, simple technol-
ogy, tuning of shape-memory transition temperature, and also SMPs sensitive to
electricity, magnetic field, UV light, solvent, etc., could be developed [28, 29]. Sev-
eral shape-memory polymer blends have been reported by several authors including
polyethylene/nylon 6 [30], PVDF/PMMA [31], poly(D,L-lactide)/hydroxyapatite
[32], etc. The SMP composites containing nanofillers, such as carbon black [33],
carbon nanotube (CNTs) [34], carbon nanofiber (CNF)/SMP [35], etc., have been
reported.

2 Rheology of Shape-Memory Polymers

Rheology studies of SMPs enable the understanding of the processing of the poly-
mers. Since the rheological performance of polymers depends on a large extent on
the molar mass, processing temperature, and shear rate [36], the parameters obtained
from the rheological experiments are storage modulus, loss modulus, tan delta, com-
plex viscosity, shear stress, etc. The variations of above-said parameters with respect
to time, temperature, frequency, shear strain, etc., give an overview of the morphol-
ogy, polymer structure, phase separation, progress in curing, gelation (crossover
point), verification (the final plateau region in the rheological profile), etc. In ther-
mosetting SMP’s systems like epoxy, phenol formaldehyde, polyurethanes, etc., the
rheology can be used to study the curing of thermosets (either by isothermal curing
or by dynamic curing), the phase separation process, changes in phase morphology,
extend of phase separation, etc. [37–41]. Figure 1 shows the rheological profile of
neat epoxy and 10 wt% ABS-modified epoxy blends. For neat epoxy system, a typi-
cal rheological profile is observed (Fig. 1a). But for the 10 wt%ABS-modified epoxy
blend system, the phase separation took place at ca 600 s, and this is confirmed by
the drop in tan δ and the rise in G′ and G′′ [37].

In thermoplastic SMPs, the rheology enables the understanding of polymer struc-
ture, molecular weight, branching in polymers, processing parameters, etc. [42]. In
thermoplastic polymer blends, the phase separation, changes in phase morphology,
extend of phase separation, etc. can be easily studied by rheological studies [43,
44]. For polymer composites, the filler dispersion, interactions between the filler and
polymer, polymer–polymer interactions, and filler–filler interactions can be carefully
analyzed using rheological studies [45–48].

The different stages of shape-memory cycles are the deformation of the permanent
shape above Tg or Tm by the application of external stress, and this is followed by
slow cooling to room temperature with the applied external stress for shape fixing.
Once the stress is released, the temporary shape is fixed. Upon heating again, the
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Fig. 1 Rheology of a neat
epoxy, b 10 wt% ABS
different ABS-modified
epoxy blends at 180 °C [37]
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SMPs regain its original permanent shape. The breaking of the cross-linking chains
and their reforming during the shape-memory process are shown in Fig. 2 [10].

Different rheological models were introduced by the scientists for the study of
the shape-memory process in SMPs. Some of the interesting works are mentioned as
follows. Bhattacharyya et al. [49] derived the mechanical response of a four-element
rheological model for shape-memory polyurethane under the conditions of constant
stress (creep), constant strain (stress relaxation), constant stress rate, constant strain
rate, and periodic strain for the better understanding of the performance of shape-
memory polyurethane. They found that the shape-memory strain/damping could be
considerably reduced by the application of frequency higher than the threshold fre-
quency. The damping or shape-memory strain is maximum at the glass transition
temperature. Recently, Hosseini et al. [50] introduced a rheological model for the
understanding of the change in the size of the SMPs with respect to temperature.
The developed nonlinear viscoelastic model allows the better understanding of the
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Fig. 2 Breaking of the cross-linking chains and reforming during the shape-memory process [10].
(Reproduced with permission from Elsevier, License Number-4502761431416)

production of heat-shrinkable SMPs. In another work, Liu et al. [51] developed
a small-scale constitutive model for SMPs to study the strain and stress recovery
at the molecular level during the shape-memory cycle. Inomata et al. [52] studied
the shape-memory effect of poly (methyl methacrylate)-graft-poly (ethylene gly-
col) copolymers. Interestingly, the copolymer shows excellent shape-memory effect
because of the physical cross-links formed due to the entanglements of the copolymer
chains, confirmed by the stress relaxation studies of the SMPs.

3 Rheology of Polymer Blends and Composites

García-Huete et al. [5] studied the rheologyof polycyclooctene (PCO)/poly(ethylene-
co-methacrylic acid) (EMAA) zinc ionomer (Surlyn 9520) shape-memory blend for
the study of self-healing. They observe a crossover for Surlyn 9520 in the range of
0.01–0.1 Hz, suitable for good healing, but PCO is a poor healing agent and shows
a crossover at ca. 20 Hz. Three different blend systems were prepared 30/70, 50/50,
and 70/30 with 3 wt% DCP. The authors claim that only 30/70 (PCO/Surlyn 9520)
blend is suitable for self-healing, which shows a crossover at a lower frequency
range. Ping et al. [53] prepared poly(ε-caprolactone)-segmented polyurethane-based
shape-memory polymers. The phase separation of the hard segments in the PCL
matrix was carefully analyzed by rheological measurements. The hard segments
and the PCL crystals impart shape-memory properties for the PCL-segmented PU
system. Sungsanit et al. [54] investigated the rheological properties of linear PLA (L-
PLA) plasticized with varying content of poly(ethylene glycol) (PEG). The authors
observed reduced viscosity and modulus with increasing PEG content. Feng et al.
[55] successfully synthesizedPLA/poly(ethyleneglycol)-succinate copolymer (PES)
and PLA/poly(ethylene glycol)-succinate-l-lactide copolymer (PESL) blends. They
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observed a shear thinning behavior for both the blends and also the blends showed
reduced viscosity and modulus with an increasing amount of PES and PESL. The
rheological behaviors of PLA/PES and PLA/PESL are shown in Fig. 3.

Wei et al. [56] prepared hybrid composites containing both carbon black (CB)
and carbon nanotubes (CNTs) in a 70/30 blend of polylactide (PLA)/thermoplastic
poly(ether)urethane (TPU) for the making of an electrically actuated shape-memory
polymer composites. The concentrations of the CB and CNTs used for making the
composites are CB (3 phr, 5 phr) and CNTs (0, 0.25 phr, 0.5 phr, 0.75 phr, 1.0 phr,
2.0 phr). The rheology of the polymer composites was studied for the understanding
of the filler–filler interaction and polymer–filler interaction. The authors observed a
percolation threshold (filler network formation) for all the composites prepared. Sim-
ilarly, the percolation threshold in multiwalled carbon nanotube/polycarbonate and
multiwalled carbon nanotube/poly(methyl methacrylate) composites was reported
by Pötschke et al. [57, 58].

In a more recent work, Chen et al. [59] studied the network formation of CNTs
in thermoplastic polyurethane (TPU) by rheological measurements. From the rhe-
ological results, 2 wt% CNT provides a moderate level of network formation in
the polymer matrix. On the other hand, a dense network of nanofillers is formed
in the polymer composites at higher concentrations. The network formation by the
CNTs affects the stress/strain curve (stress increases considerably at higher filler
content). Similarly, storage modulus increases and the Tg shifted to higher temper-
atures due to the reduced mobility of the polymer chains because of the network
formation with increasing filler content. The strain sensitivity and shape-memory
performance of the composites can also be tuned with increasing filler content. In
another work, Haghayegh et al. [60] studied the network formation in shape-memory
polyurethane/clay nanocomposites using rheology. The best shape-memory proper-
ties were obtained for the composites containing 1 wt% clay.

Kim et al. [61] used rheology for the study of filler (Na-MMT intercalated with a
PEG) dispersion and role of Na-MMT intercalated with a PEG as a physical cross-
link in poly(ethyl methacrylate) (PEMA) nanocomposites. The authors observed a
pseudo-solid behavior of the composites from the rheological results. This pseudo-
solid behavior is due to the better dispersion of the Na-MMT fillers within the poly-
mer matrix, also the nanofillers intercalated with a PEG acts as effective physical
cross-links for the polymer composites even at 1.2 wt% filler content. In an inter-
esting work, Meng et al. [62] developed shape-memory polyurethane/multiwalled
carbon nanotube fibers. The fibers were spun by a single screw extruder. The authors
observed that the spinnability is significantly reduced with increasing MWCNTs.
In fact, at 8 wt% MWCNTs the spinnability of the composites is completely lost
due to its poor rheological properties. Gelfer et al. [63] introduced organoclay in
polystyrene (PS), poly(methyl methacrylate) (PMMA), and PS/PMMA blends by
the melt blending process. The authors studied the rheology of the polymer compos-
ites for the understanding of the interactions of the filler with the polymer matrix.
They found that the organoclay has no effect on the rheological properties of the
polymers, which means the fillers have no interaction/weak interaction with the neat
polymers or polymer blends.
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Fig. 3 The rheological behavior of PLA/PES and PLA/PESL blends [55]. (Reproduced with per-
mission from Elsevier, License Number-4502771066270)
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4 Conclusion

Rheological studies of polymers, polymer blends, and composites give an overview
of polymer structure, phase morphology, phase separation, polymer–polymer inter-
action, polymer filler interactions, filler dispersion, etc. The processing and shape-
memory performance of the polymer depends on all the above-said parameters,
underlining the importance of rheological measurements of SMPs for advanced
applications.
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