
An Experimental Archaeology of CAD

Using Software Reconstruction to Explore the Past
and Future of Computer-Aided Design

Daniel Cardoso Llach(&) and Scott Donaldson

Computational Design Laboratory, School of Architecture,
Carnegie Mellon University, Pittsburgh, USA

dcardoso@cmu.edu

Abstract. This paper proposes software reconstruction as a method to shed
new light into the material, gestural, and sensual dimensions of computer-aided
design technologies. Specifically, it shows how by combining historical research
and creative prototyping this method can bring us closer to distant ways of
seeing, touching, drawing, and designing—while raising new questions about
the impact of CAD technologies on present-day architectural practices. It doc-
uments the development of two software reconstructions—of Ivan Sutherland’s
“Sketchpad” and of Steven A. Coons’s “Coons Patch”—and reflects on the
responses they elicited in the context of two exhibitions. The paper shows how
software reconstruction can offer access to overlooked aspects of computer-
aided design systems, specially their material and sensual dimensions, and how
we may explore its broader potential for research, preservation, pedagogy, and
speculative design of design technologies.

Keywords: Software reconstruction �Media archaeology � CAD � Sketchpad �
Steven A. Coons � Ivan Sutherland � Computational design history

1 Introduction

Computer-aided design (CAD) systems are artifacts of cultural and technical signifi-
cance which shape the intellectual labor and professional identities of many architects,
engineers, and other designers. Recent scholarship on these technologies, and their
impact on architecture, has examined their intellectual and institutional origins [1, 2],
studied the dynamics of their adoption by practitioners and educators [3–6], examined
their implications in professional cultures [7, 8], and explored their effects on archi-
tectural organizations and labor [9–11]. However, the usual vehicles of scholarly
research—text and, at best, illustrations—fail to account for their material, sensual, and
gestural dimensions, which are central to the new experiences, and the new types of
practice, that they elicited. This paper reports on Archaeology of CAD, a research
project initiated by the first author combining historical research and creative tech-
nology design in order to enrich our understanding of these systems by experimentally
reconstructing some of its pioneering technologies. Accordingly, the paper introduces
software reconstruction as a method of inquiry into computer-aided design and—more

© Springer Nature Singapore Pte Ltd. 2019
J.-H. Lee (Ed.): CAAD Futures 2019, CCIS 1028, pp. 105–119, 2019.
https://doi.org/10.1007/978-981-13-8410-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8410-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8410-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8410-3_8&domain=pdf
https://doi.org/10.1007/978-981-13-8410-3_8

generally—software artifacts, with ties to media archaeological and historical recon-
struction practices. It then documents our reconstruction of two foundational CAD
technologies: Steven A. Coons’s “Coons Patch”, and Ivan Sutherland’s “Sketchpad”. It
offers details about their development, which involved the analysis of both original
archival and oral sources, as well as a creative process involving technological re-
interpretations, translations, and adaptations.

The paper further documents the public installation of the two reconstructions in
exhibitions at the Miller Gallery at Carnegie Mellon University, Pittsburgh, and in the
SIGGRAPH 2018 Art Gallery, Vancouver. It shows how by approximating the logical,
gestural, and ergonomic signature of these systems, the reconstructions helped make
visible (and tangible) the new forms of design, drawing, and human-machine inter-
action that emerged with the rise of interactive computing. Finally, the paper discusses
some avenues for future work, as well as implications of software reconstruction for
scholarly research, pedagogy, preservation, and speculative technology design.

2 Software Reconstruction as Method

Software reconstruction draws inspiration from well-established practices of experi-
mental reworking in archaeology and the historiography of science and technology.
Archaeologists studying material culture have long used the term “experimental
archaeology” to describe a host of research methods aiming at reproducing the material
conditions of specific practices and processes [12]. More recently, historians of science
and technology have used experimental reworkings as a complement to textual anal-
ysis, and as a method to shed light on gaps in archival documentation—which typically
overlooks “sensual” aspects of scientific practices such as smell or touch [13: 91]. In
this way reworkings of historical experiments can offer richer portraits of the material
and social conditions surrounding scientific and technological production.

Software reconstruction also derives insight from the “undisciplined discipline” of
media archaeology [14: 323], which has sought to enrich the analytical repertoire of
media scholars by re-covering and re-contextualizing media artifacts, and by reflecting
upon the “regimes of memory” they elicit [15: 2]. In a similar vein, recent work in
human-computer interaction (HCI) has sought, for example, to enliven material prac-
tices of early computing incorporating them into renewed, feminist accounts of the
history of technology [16], or to revisit, through playful prototyping, salient artifacts in
the history of cybernetics [17]. These practices strand the scholarly and the artistic, and
involve the “creative remediation” [15: 142] of technological artifacts as a path towards
scholarly and/or creative inquiry. As proposed here, software reconstruction shares
with these works a desire to “thinker” with the past [18], and to performatively “re-
presence” it [14] in ways that foreground the materialities and dispositions of tech-
nological objects, rather than focusing on their narrative disclosures. Unique to soft-
ware reconstruction as proposed here is its concern with recuperating and reflecting
upon the gestural, ergonomic, and visual repertoires enabled by past design tools.

It is important to note that the goal of software reconstruction is not to replicate or
restore the original hardware and software systems as an antiquarian would do—this
would result on a cybernetic version of Madame Tussaud’s museum—filled with

106 D. Cardoso Llach and S. Donaldson

uncanny, glass-eyed look-alikes of technical artifacts. Accordingly, software recon-
struction does not require, for example, old mainframe computers or CRT monitors,
nor re-writing programs in assembly language. As the examples documented below
show, they can be constructed with modern languages (Java and JavaScript), digital
fabrication devices (laser cutters and CNC routers), and hardware components (low-
cost screens and controllers). However productive exact replicas might be, the more
humble—and more agile—technical repertoire of software reconstruction suits best its
goal of approximating the experience of using these technologies by enacting their
fundamental logic and their key visual, gestural, and ergonomic signatures.

3 Two Reconstructions

3.1 Reconstructing the “Coons Patch”

The “Coons Patch” is a mathematical technique to calculate curved surfaces, developed
in the early 1960s by MIT professor of mechanical engineering, computer graphics
pioneer, and early CAD theorist and promoter Steven A. Coons [19]. A direct ancestor
of non-uniform rational B-splines (NURBS), Coons’s technique was, in essence, a
clever interpolation algorithm. It allowed early computer graphics researchers to create
smooth surfaces between any four parametrically defined curves (Fig. 1). Displayed in
the phosphorescent light of CRT monitors, these “patches” were photographed, ani-
mated, and then circulated in both research and industry circles through books, films,
and research reports. Robin Forrest, one of Coons’s students, offers a succinct overview
of Coons’s technique: “the algorithm provides a means of generating a free-form
curved surface from any four arbitrary, boundary-defining curves, parameterized such
that for any t between 0 and 1, one can find the point on the curve at parameter t, and
with the curves joined at the endpoints” [20]. These patches were key in demonstrating
the computer’s potential as a modeling and visualization tool with applications in a
variety of fields including aeronautic, automotive, and architectural design. Further,
they helped trigger a fledgling computer graphics community as it formed across
dispersed university and industry laboratories on both sides of the Atlantic—many of
whose members came to see Coons as an inspiring, founding figure [1: 49–72]. The
“Coons Patch” thus foreshadowed present-day methods for parametric surface repre-
sentation and manipulation, which are ubiquitous in architectural, engineering, and
product design today.

As an algorithm, the “Coons Patch” does not have an associated hardware interface
—it is “platform independent”. Its earliest implementations involved direct manipu-
lation of numerical values in matrices, and working with memory registers in main-
frame computers such as the TX-2 at Lincoln Labs [21]. Given that a curve in its cubic
form can be represented mathematically by two end points and two control points, a
“Coons Patch” may be represented by 36 floating point numbers: four three-
dimensional endpoints, and eight three-dimensional control points. Individually
adjusting 36 numbers in order to transform a design would surely exceed the patience
of the average present-day designer, but this is how a computational designer of this era
operated. For example, a 1967 Ford Motors product research film produced at the MIT

An Experimental Archaeology of CAD 107

Lincoln Labs shows the construction of patches and their placement as car parts [22].
The process of preparing this two-and-a-half minute animation “hardcoding” the
numerical values describing the shape of the patch at each frame—as well as the
coordinates of the camera’s position—must have been painstaking.

Our reconstruction streamlines this process in order to emphasize the geometric
plasticity of Coons’s technique, and make visible its mathematical structure. A small
keypad interface and a knob placed on a 10″ � 10″ podium in front of a projection
wall allow users to toggle the point controls on and off, and manually move them along
the X, Y, and Z axes. When points are active, their changing numerical coordinates are
displayed, making visible the mathematical structure of the patch as the user transforms
it (Fig. 2). Aside from manipulating individual points in sequence, a user may choose
to randomly transform the entire surface.

Our reconstruction does this by translating each end and control point by a random
amount within a bounded range for each dimension, and animating the transformation
between the current and target states. Users may then rotate or zoom the camera to view

Fig. 1. The “Coons patch” foreshadowed modern methods of surface representation, such as
NURBS, which have since become commonplace in architectural and engineering design. Image
based on a drawing by Robin Forrest (c. 1970).

108 D. Cardoso Llach and S. Donaldson

the surface from another perspective, manipulate individual points, or restore the
surface to its initial form—a unit square on the XY plane, centered at the origin. When
left unattended, the patch randomly transforms itself every 20 s.

Fig. 2. Examples of patches generated using the software reconstruction of the “Coons Patch”.
The images illustrate the geometric plasticity of shapes generated using Coons’s technique.

Fig. 3. A simple hardware interface allows users of the reconstruction to visualize and
manipulate “Coons Patches”.

An Experimental Archaeology of CAD 109

Our reconstruction is a web-based app implemented using Three.js, a 3d graphics
and rendering library for the web and React, a user interface development framework
streamlined to work with present-day browsers. An advantage of Three.js is its har-
nessing of WebGL, a powerful low-level language for web graphics that is hardware-
accelerated to optimize computational geometry and rendering. React is a popular
component-based framework that streamlines the process of making HTML elements
interactive, and centralizes the state of an app. In this reconstruction the state may
change depending on whether a user is manipulating the geometric surface, rotating the
camera, or viewing the tutorial. The app’s visual display updates based on this state (for
example, to zoom in or out, or show the tutorial overlay).

On the hardware side, a keypad and control knob integrate with the “Coons Patch”
software via user events native to the web (Fig. 3). The app ‘listens’ for keypress and
scroll events and, depending on the React state, performs computations and updates the
visual display, a wall projection, accordingly.

3.2 Reconstructing “Sketchpad”

“Sketchpad” is a computer program developed in 1963 by Ivan Sutherland, which
famously pioneered graphic user interfaces and laid out the foundations of present-day
CAD systems. “Sketchpad” was the centerpiece of Sutherland’s PhD thesis at MIT, for
which Steven A. Coons was an advisor [23]. In contrast with Coons’s “patch”,
Sutherland’s “Sketchpad” was platform specific. It was in fact made possible by the
TX-2 computer at Lincoln Labs, which allowed Sutherland to develop “Sketchpad” as
an interactive, rather as a batch processing, system. Using a “light pen”, a keypad, and
control knobs “Sketchpad” users could conduct a variety of drawing operations on
7″ � 7″ CRT monitor. Aside from functions for drawing lines, circles, polygons, and
other shapes, Sutherland also implemented functions that extended beyond the capa-
bilities of traditional drafting media. For example, he included “save” and “transform”
functions, as well as “rubber-banding” and “linkages”—known today in parametric
modeling lingo as “constraints”. Notably, many of the innovative features that
Sutherland included in “Sketchpad” remain central to modern 3-D modeling and
computer-aided design systems today, more than 60 years after its development.
“Sketchpad” thus remains a milestone in the history of computing, and an essential
point of reference for computer-aided design.

Sutherland programmed “Sketchpad” directly in assembly language on the TX-2
computer—its entities were written, retrieved, and manipulated directly in the com-
puter’s memory at the hardware level. In order to store these entities, Sutherland used
an innovative data structure he calls “n-component elements”. The “n” refers to the
variable size of geometric entities—for example, a line segment may require less
storage space than a more complex shape. Objects occupying variable amounts of
space in memory could be stored as “n consecutive registers in storage”, all locatable in
TX-2’s core memory [23: 35]. Thanks to the higher-level abstractions made available
by present-day programming languages, this way of working—addressing memory
locations directly in the hardware—is mostly a relic of the past. In our reconstruction
geometric entities are simply instances of custom objects implemented in the object-
oriented programming language Java. A line segment in our reconstruction, for

110 D. Cardoso Llach and S. Donaldson

example, contains references to two points, which we call p1 and p2. This is nearly
identical to the way “Sketchpad” stored line segments by referring to its points
externally. However, instead of relying on machine-specific registers and memory
addresses, we use object named classes and instance data. This abstraction, as well as
the support of drawing APIs and the Android software development kit (SDK), allow
our code to run, with small concessions, on any Android device. Approximating the
original “Sketchpad” interface, a user may use a combination of “light pen” and knobs
gestures to draw geometric elements on the screen and to move, manipulate, copy, or
delete them (Fig. 4). It is also possible to create compound objects such as, for
example, a triangle inscribed in a circle, and for the individual entities to then act as one
—moving, scaling, rotating, copying, and deleting in tandem.

Our reconstruction relies on modern devices to approximate many of “Sketchpad’s”
functions, as well as its key visual, gestural, and ergonomic traits. It evokes the TX-2’s
original user interface of flywheels, switches, and keypad with low-cost hardware
including an Android tablet, a series of control knobs, a keypad, and a stylus (Fig. 5).
These hardware elements are organized in a custom work station designed to
approximate the ergonomics of the TX-2 desk. Instead of reconstructing or restoring an
actual mainframe computer, we use a small Android touch-screen tablet. Instead of
using a “photodiode and transistor preamplifier” [23: 55] as a light-pen, we use the
tablet’s stylus, which requires no additional hardware or software integration.

Fig. 4. Examples of drawings made using the “Sketchpad” reconstruction. Top left illustrates
the “copy” function. Top right illustrates “rubberbanding”. Bottom left illustrates the “rotate
function”. Bottom right illustrates the instantiation of compound objects.

An Experimental Archaeology of CAD 111

4 Results

This section documents the software reconstructions in the context of two different
exhibitions, and our observations of their engagements with the public.

4.1 Engaging an Architectural and Academic Audience

The reconstructions were first included as elements of the design of the exhibition
Designing the Computational Image, Imagining Computational Design, curated by the
first author. The exhibition, which was on display between September 22 and
November 12 of 2017, showcased “rare photographs, film, high-quality reproductions,
and interactive software reconstructions examining the formative period of numerical
control and Computer-Aided Design technologies, along with a selection of experi-
mental work by computational designers working today” [24]. The exhibition, which
was free and open to the public, was visited by an estimate of 1,600 people, in addition
to the 200 who visited the exhibition during the opening. In this context, the software
reconstructions complemented the exhibition’s curated artworks, which comprised
mostly visual materials.

The “Coons Patch” reconstruction was placed in a section entitled “Structured
Images” among a selection of historical materials describing the origins of computer
graphics and computational geometry. Directly behind the reconstruction was a series
of handwritten notes by Steven A. Coons describing the technique, and its potential for
design (Fig. 6). Nearby video screens displayed works from Lincoln Labs [22] along
with contemporary pieces. The “Sketchpad” reconstruction was placed in a separate
section of the exhibition entitled “Interaction and Intelligence” among a selection of
materials and artworks describing the influence of early artificial intelligence ideas in
design (Fig. 7). “Sketchpad” was placed besides a 1963 procedurally-generated

Fig. 5. Demonstration of a drawing procedure using the “Sketchpad” reconstruction. Photo
credit: Tom Little (2017).

112 D. Cardoso Llach and S. Donaldson

painting by design theorist George Stiny. Juxtaposing two radically different paradigms
of computational design—one visual, and another numerical—were thus juxtaposed.

Aside from offering additional context to the historical and contemporary pieces,
the reconstructions helped enliven the space and became points of attraction. Addi-
tionally, as weeks passed bugs and areas of improvement were identified, some of
which were addressed for the reconstructions’ second show.

Fig. 6. At the Miller Gallery, the “Coons Patch” software reconstruction was installed among a
curated selection of materials from the history of computer graphics. Image Credits: Tom Little
(top and bottom right) and Joshua Brown (bottom left).

An Experimental Archaeology of CAD 113

4.2 Engaging a Diverse, Computer-Focused Audience

The second exhibition took place in the SIGGRAPH 2018 Art Gallery in Vancouver.
The show was “conceived as a dialogical space that enables the viewer to reflect on
man’s diverse cultural values and rituals through contemporary creative practices” and
explored the concept of “origins”—broadly understood to encompass not only the
technological but also the cultural and ethnic dimensions of the term.

Accordingly, in contrast to the previous exhibition, which had a clear focus on the
history and contemporary practice of computer-aided design, this exhibition

Fig. 7. The reconstruction of “Sketchpad” was placed in the “Interaction and Intelligence”
section of the exhibition, among artworks that described the postwar intersection of ideas about
artificial intelligence, cognition, and design. Photo credits: Tom Little (2017).

114 D. Cardoso Llach and S. Donaldson

encompassed a more diverse selection of artworks and themes, including new media
artworks by native American artists, interactive films, and historical pieces by com-
putational art pioneers, curated by Andres Burbano. Featured artists included Ruth
Wilson, Skawenatti, Nicole L’Huillier, and John Edmonds, among others. During this
relatively short period the reconstructions were used by hundreds of people.

In this context, the reconstructions addressed the exhibition’s concept of “origin”
by invoking the earliest computer graphics and computer-aided design techniques,
which were central to the origin of the conference itself. Given the different context,
both pieces were concentrated in a single space—on opposite sides of a “fat wall”.
Which also and incorporating a tablet for the interactive display of contextual infor-
mation about the pieces. The whole installation occupied an area of 120″ � 190″ with

Fig. 8. Top: A knowledgeable visitor uses the “Sketchpad” reconstruction to explain the
concept of parametric linkages. Bottom: The reconstruction encouraged different kinds of social
interaction—from the playful to the rigorous. Photos by the authors.

An Experimental Archaeology of CAD 115

the “fat wall” dividing it through the short side at 60″. Instead of additional pieces from
the history of CAD, on the “Sketchpad” side a wall mounted iPad was installed offering
additional context through a selection of historical materials and films.

Located among a diverse collection of artworks—many of which employing more
sophisticated technologies—the reconstructions were a constant point of attraction for
visitors and groups in the gallery, many of whom recognized the historical context and
welcomed the opportunity to engage with it visually and tangibly. At times, the
reconstructions became pedagogical tools visitors used to explain the core concepts of
the technologies (Figs. 8 and 9).

5 Discussion

Two key insights can be drawn from the above experiences concerning the poten-
tialities of software reconstruction as a method in the study of computer-aided design
and—more generally—interactive technologies.

Fig. 9. The “Coons Patch” reconstruction attracted different kinds of users: the geometry savvy,
and the curious. Photos by the authors.

116 D. Cardoso Llach and S. Donaldson

Defamiliarizing Technologies to See Them Anew
The software reconstructions forced experienced users of CAD systems to temporarily
“unlearn” the logic of present-day CAD software in order to adopt an unfamiliar
repertoire of postures and gestures. It was common during the two exhibitions to see
such users spending a significant amount of time—between 5 and 10 min—in a
mixture of amusement and bewilderment, trying to figure out how to use the pen,
knobs, and keypad, to draw. A tutorial left on the “Sketchpad’s” desk helped guided
them on this. “Sketchpad” thus had the effect of de-familarizing conventional CAD
tools, and—by invoking an alien paradigm of interaction—prompting a reflection on
the embodied experience of designing computationally both then, and now.

De-mystifying Technological Novelty to Explore the Poetics of Computation in Design
Beyond the functional advantages they offered, architects adopted computer-aided
design software because of the novel visual languages that they made possible [25].
However, close to sixty years after their inception and widely adopted by the profes-
sion, these languages are far from novel. As a result, computationally-generated ima-
gery has become a new vernacular language of architectural representation, prompting
a “post-digital” reaction in many present-day architects and designers. This attitude is
often expressed through a nostalgic attachment to analog drawing media and (some-
what ironically) through the simulation of these analog media through software
remediations. While architects in the “post-digital” space reserve the romanticism to
hand drawing, the software reconstructions described here recuperate the undeniable
sense of wonder that arises when one draws a line on a screen and stretches it, twists it
around, and entangles it with others to form more intricate shapes.

6 Conclusion

This paper has outlined software reconstruction as a method combining historical
research and creative technology prototyping, and documented its potential to shed new
light into the material, gestural, and sensual dimensions of computer-aided design
technologies. Specifically, it shows how software reconstruction can bring us closer to
distant ways of seeing, touching, drawing, and designing while raising new questions
about the impact of these historical practices on our present. As playful artifacts of
scholarly and design inquiry, software reconstructions can operate at multiple registers,
and for multiple publics.

From an architectural and design perspective, software reconstruction confront us
with the origins of a visual, gestural, and ergonomic repertoire that has shaped the
ideas, practices, and professional identities of those in these fields over the last 30
years. By creating a situation in which present-day CAD systems are defamiliarized,
software reconstructions create the opportunity for the tacit knowledge [26] involved in
their operation to be recuperated and made subject to historical analysis. In other
words, software reconstruction makes computer-aided design technologies visible (and
tangible) again as devices that fundamentally re-structure architectural labors, bodies,
and the intellectual life of practitioners. While focusing on CAD, software recon-
struction is naturally transferable to other systems.

An Experimental Archaeology of CAD 117

From a media and science and technology studies perspective, we acquire a deeper
understanding of the decision-making process behind the systems we study, and of the
logical and material constraints confronted by their authors. Experimentally recon-
structing “Sketchpad”, for example, highlighted for us the limitations of early data
structures for geometric representation and hardware, and the critical interplay between
these constraints and the image of design that emerged in conjunction with it. This
insight was organic to the messy processes of adapting, translating, and re-interpreting
the system’s functionality in a modern programming language, and would be difficult
to acquire (let alone convey) through documentary accounts. Therefore, software
reconstruction complements and adds nuance to our reading of the historical texts and
interpretation of oral accounts.

Finally, from a pedagogical perspective, the process of making experimental
reconstructions is useful to introduce students to concepts of interaction, programming,
digital fabrication, and hardware design. Software reconstruction then not only enriches
our understanding of technological and design histories, outlining the origins of con-
temporary architectural languages and subjects, but also engages with present-day
technological frameworks, thus opening avenues for speculative tool-making and
design.

Acknowledgments. The first author wishes to thank CAD pioneers Timothy E. Johnson, Robin
Forrest, and Malcolm Sabin for valuable contributions to this project through interviews, doc-
uments, and informal conversations—any inaccuracies and undue liberties in this paper are not
their fault; Francois Penz, The Martin Centre of Architectural and Urban Studies at the University
of Cambridge, UK, and Allan Blackwell, who helped make some of these conversations possible;
and The Graham Foundation for Advanced Study in the Fine Arts and the Berkman Fund for
Faculty Development at Carnegie Mellon, for granting essential material support. Thanks also to
Margaret Cox and Kara Skylling at the Miller Institute of Contemporary Art for valuable
assistance as coordinators of the 2017 exhibition Designing the Computational Image, Imagining
Computational Design. Thanks to the SIGGRAPH 2018 Art Gallery team, specially to curator
Andres Burbano for selecting the two installations for the Original Narratives exhibition in
Vancouver, and to Elizia Artis for expert management and coordination.

References

1. Cardoso Llach, D.: Builders of the Vision: Software and the Imagination of Design.
Routledge, London; New York (2015)

2. Steenson, M.W.: Architectural Intelligence: How Designers and Architects Created the
Digital Landscape. The MIT Press, Cambridge (2017)

3. Fallon, K.K.: The AEC Technology Survival Guide: Managing Today’s Information
Practice, 1st edn. Wiley, Hoboken (1997)

4. Andia, A.: Reconstructing the effects of computers on practice and education during the past
three decades. J. Archit. Educ. 56(2), 7–13 (2002). https://doi.org/10.1162/1046488026
0472512

5. Coyne, R.: The impact of computer use on design practice. In: Computer Aided Architectural
Design Futures: Education, Research, Applications [CAAD Futures 1991 Conference
Proceedings/ISBN 3-528-08821-4] Zürich (Switzerland), pp. 413–424 (CUMINCAD 1991),
July 1991. http://papers.cumincad.org/cgi-bin/works/paper/403c

118 D. Cardoso Llach and S. Donaldson

http://dx.doi.org/10.1162/10464880260472512
http://dx.doi.org/10.1162/10464880260472512
http://papers.cumincad.org/cgi-bin/works/paper/403c

6. Akin, Ö.: Computational design instruction: toward a pedagogy. In: The Electronic Design
Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures 1989
Conference Proceedings/ISBN 0-262-13254-0] Cambridge (Massachusetts/USA), pp. 302–
316 (CUMINCAD 1990) (1989). http://papers.cumincad.org/cgi-bin/works/paper/450c

7. Downey, G.L.: The Machine in Me: An Anthropologist Sits Among Computer Engineers.
Routledge, Abingdon (1998)

8. Loukissas, Y.A.: Co-Designers: Cultures of Computer Simulation in Architecture.
Routledge, New York (2012)

9. Gutman, R.: Architectural Practice: A Critical View, 5th edn. Princeton Architectural Press,
New York (1997)

10. Yaneva, A.: Mapping Controversies in Architecture, 1 edn. Routledge, London; New York
(2016)

11. Cardoso Llach, D.: Architecture and the structured image: software simulations as
infrastructures for building production. In: Ammon, S., Capdevila-Werning, R. (eds.) The
Active Image. PET, vol. 28, pp. 23–52. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56466-1_2

12. Ingersoll, D., Yellen, J.E., Macdonald, W. (eds.): Experimental Archeology. Columbia
University Press, New York (1977)

13. Fors, H., Principe, L.M., Sibum, H.O.: From the library to the laboratory and back again:
experiment as a tool for historians of science. Ambix 63(2), 85–97 (2016). https://doi.org/10.
1080/00026980.2016.1213009

14. Sobchak, V.: Afterword: media archaeology and re-presencing the past. In: Huhtamo, E.,
Parikka, J. (eds.) Media Archaeology: Approaches, Applications, and Implications, pp. 323–
333. University of California Press (2011)

15. Parikka, J.: What Is Media Archaeology? 1 edn. Polity, Cambridge (2012)
16. Rosner, D.K., et al.: Making core memory: design inquiry into gendered legacies of

engineering and craftwork. In: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI 2018, pp. 531:1–531:13. ACM, New York (2018). https://doi.
org/10.1145/3173574.3174105

17. Pangaro, P., et al.: “Colloquyofmobiles,” Colloquy 2018 (2018). https://www.colloquyo
fmobiles.com

18. Huhtamo, E.: Thinkering with media: on the art of paul DeMarinis. In: Beirer, I.,
Himmelsbach, S., Seiffarth, C. (eds.) Paul DeMarinis: Buried in Noise, pp. 33–46. Kehrer
Verlag, Heidelberg and Berlin (2010)

19. Coons, S.A.: Surfaces for Computer-Aided Design of Space Forms, MAC-TR, 41. M.I.T.
Project MAC, Cambridge (1967)

20. Forrest, R.: Interview with the first author (2016)
21. Johnson, T.E.: Personal communication with the first author (2016)
22. Surface Generation by Computer: Ford Motors Product Research at MIT Lincoln Labs,

16 mm (1967). Courtesy of Timothy E. Johnson
23. Sutherland, I.E.: Sketchpad, a Man-Machine Graphical Communication System. Mas-

sachusetts Institute of Technology (1963)
24. Cardoso Llach, D.: Designing the Computational Image, Imagining Computational Design

(Exhibition Catalogue). Carnegie Mellon University School of Architecture, Pittsburgh
(2017)

25. Bruegmann, R.: The pencil and the electronic sketchpad: architectural representation and the
computer. In: Blau, E., Kaufman, N. (eds.) Architecture and Its Image. Montreal (1989)

26. Collins, H.: Tacit and Explicit Knowledge. Reprint edition. University of Chicago Press,
Chicago (2012)

An Experimental Archaeology of CAD 119

http://papers.cumincad.org/cgi-bin/works/paper/450c
http://dx.doi.org/10.1007/978-3-319-56466-1_2
http://dx.doi.org/10.1007/978-3-319-56466-1_2
http://dx.doi.org/10.1080/00026980.2016.1213009
http://dx.doi.org/10.1080/00026980.2016.1213009
http://dx.doi.org/10.1145/3173574.3174105
http://dx.doi.org/10.1145/3173574.3174105
https://www.colloquyofmobiles.com
https://www.colloquyofmobiles.com

	An Experimental Archaeology of CAD
	Abstract
	1 Introduction
	2 Software Reconstruction as Method
	3 Two Reconstructions
	3.1 Reconstructing the “Coons Patch”
	3.2 Reconstructing “Sketchpad”

	4 Results
	4.1 Engaging an Architectural and Academic Audience
	4.2 Engaging a Diverse, Computer-Focused Audience

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

