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Abstract. Searching for spatial objects in CAD tools is mostly based on the
ability to compare properties of different objects. Instead, the matching mecha-
nism(s) underlying a shape grammar interpreter offers a much wider potential for
search, including the emergence of shapes that were unanticipated at the point of
specification. This paper provides an overview of different rule types that can be
discerned in the context of shape grammars, and explores the impact these have
on the ability for search. It specifically considers two alternative matching
algorithms, either determining a transformation matrix or an association of
graphical elements, the latter complemented with constraining predicates,
applying over different data types, e.g., shapes, shapes augmented with attributes,
and descriptions, to provide for a wide range of spatial search variations.
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1 Introduction

A rule-based design generation scheme can be considered to consist of a set of gen-
erative rules that can be applied to a set of initial objects in order to generate a variety
of solutions or design objects. The set of rules, together with the initial object(s) and the
vocabulary of elements from which the rules are composed, is termed a grammar and
the objects resulting from a generative application of such a grammar constitute the
derived language. Specifically, a shape grammar is a formal rewriting system for
producing languages of shapes [1].

However, the paradigm of design as search [2, 3]—within which rule-based design
generation fits particularly well—is more fundamental to design than its generational
form alone might imply. Any mutation of an object into another one, or parts thereof,
whether as the result of a transformation or operation, constitutes an action of search.
A rule can be deemed to constitute a particular compound operation or mutation, that is,
a composition of a number of operations and/or transformations that is recognized as a
new operation and can be applied as such. Similarly, a grammar may be viewed as just a
collection of rules or operations that yields a certain set (or language) of design objects
given an initial object (or set thereof). As such, the creation of a grammar is only a tool
that allows a structuring of a set of operations that has proved its applicability to the
creation of a certain set of objects, rather than a framework for generation.

A rewriting rule can generally be expressed in the form lhs — rhs, with the left-
hand-side (Ihs) of the rule specifying the part to be recognized in the current design and
the right-hand-side (rhs) of the rule specifying the part to replace the recognized part
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with. Thus a rewriting rule specifies two actions, an action of search or recognition
specified by the left-hand-side and an action of mutation specified by the right-hand-
side with respect to the left-hand-side. Recognizing the left-hand-side of the rule in the
current design involves determining a transformation under which the left-hand-side
becomes part of the design, that is, denoting the current design d and the transformation
£, determining f such that f{(lhs) < d. Once fis found, the mutation involves replacing
the left-hand-side with the right-hand-side under the same transformation, that is, the
resulting design is the result of d — f{lhs) + f(rhs). An additive rule is a rule that only
adds elements to the current design, that is, /hs < rhs. Similarly, a subtractive rule
only removes elements from the current design, that is, lhs > rhs.

Transformations may be of different kinds [4]. A shape grammar commonly con-
siders transformations of similarity, allowing for translation, rotation, reflection and
uniform scaling. However, a more narrow or broad definition of transformations can be
considered as well. For example, Stiny and Mitchell’s Palladian grammar [5] can be
considered to allow for only isometric (or Euclidean) transformations, including
translation, rotation and reflection, but no scaling, as the rules potentially operate on a
simple grid of rectangular shapes of equal size. In practice, as exemplified by the
underlying grid for the Villa Malcontenta [5], the size of grid cell may vary implying
the inclusion of non-uniform scaling or, instead, the specification of parametric shape
rules. Theoretically, in a parametric shape rule, the left-hand-side and right-hand-side
of the shape rule can have parameters specified and constraints over these parameters
[6]. However, no implementation of a general parametric shape grammar interpreter
exists that allows for the explication of parameters, unless for description rules. So-
called parametric shape grammar interpreters instead allow for the recognition of
associations between spatial elements that serve to constrain rule matching. For this
reason, we prefer the term associative (or parametric-associative) shape rules. Applied
to shapes of line segments, associations that are recognized may include intersecting
lines, parallel or perpendicular lines, or segments of equal length. Depending on the
associations recognized, a rectangle may be a set of four line segments, either with
twice two parallel segments that are perpendicular with respect to one another, or with
twice two segments of equal length and with diagonals of equal length as well.

It is obvious that the types of allowable rules greatly impact the expressiveness and
applicability of a grammar system. In this paper, we present an overview of different
types of rules (not entirely exhaustive) that can be discerned in the context of shape
grammars. Subsequently, we narrow our focus to the left-hand-side of the shape rule
and the related action of search or shape recognition, in the context of different types of
rules. That is, we focus our attention on search not as a paradigm of design but as a
technique of recognizing shapes within a design. Specifically, we explore to what
extent the shape recognition mechanism underlying a shape grammar interpreter can
support graphical search within a Computer Aided Design (CAD) environment. Cur-
rently, searching and finding spatial elements and objects in CAD software tools, if
available, is mostly based on the ability to compare properties of different objects, for
example, object type, area, etc. The shape recognition or matching mechanism(s)
underlying a shape grammar interpreter offers a much wider potential for search,
including the emergence of shapes that were unanticipated at the point of specification.
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2 Types of Rules

We base our exploration on an overview of different types of rules, as these support
different approaches to search. Shape grammar rules can be distinguished, among
others, by data type, e.g., shape and description rules, by the relationship between the
rule’s left-hand-side and right-hand-side, e.g., addition and subtraction rules, and by
matching algorithm, parametric-associative and non-parametric rules. In the context of
search, where the emphasis lies on the left-hand-side of the shape rule, the first and last
categorization are the most interesting, as the right-hand-side of the rule doesn’t affect
the search process. We limit our exploration to these two categorizations.

2.1 By Data Type

Most examples of shape grammars rely on labeled shapes, a combination of line
segments and labeled points (in two dimensions) [1]. Krishnamurti [7, 8] extends the
underlying maximal element representation to plane segments and Stouffs [9, 10] to
volume segments and higher-dimensional hyperplane segments. Jowers [11, 12] con-
siders the application of shape grammars to curves, such as quadratic Bezier curves.

Next to labels, other non-geometric attributes have been considered for shapes.
Stiny [13] proposes numeric weights as attributes to denote line thicknesses or surface
tones. Knight [14, 15] considers an extension to the shape grammar formalism that
allows for a variety of qualitative aspects of design, such as color, to be integrated in
the rules of a shape grammar. Though not specific to colors, the resulting grammar is
called a color grammar and notions of transparency, opacity and ranking are intro-
duced to regulate the behavior of interacting quality-defined areas or volumes. Stiny
[16] also proposes to augment a shape grammar with a description function in order to
enable the construction of verbal descriptions of designs. Although most authors do not
consider descriptions as attributes to shapes, Beirdo [17] specifically considers
descriptions as attributes to spatial objects. Other kinds of attributes, or even variations
in the specification of a kind of attribute, can also be considered. For example, colors
can be specified in different ways, as a three-dimensional RGB or HSV (Hue, Satu-
ration, Value) space, or in an enumerative way as Knight [14, 15] considers.

Sortal grammars [18, 19] are a class of shape grammar formalisms that enable a
single sortal grammar interpreter to support all of the above shape grammars, and any
variations thereof. Adopting an algebraic abstraction enabling the algebraic derivation
of combinations of basic shape algebras with attribute algebras, this abstraction at the
same time serves as a procedural abstraction, giving insights into the modular imple-
mentation of a general shape grammar interpreter for different grammar forms [20].
Representationally, sortal grammars utilize sortal structures as representational struc-
tures, where these structures are defined as formal compositions of other, primitive,
sortal structures, termed sorts [21]. Sortal grammars benefit from the fact that every
component sort specifies a partial order relationship on its individuals and forms,
defining both the matching operation and the arithmetic operations for rule application.
The SortalGI sortal grammar interpreter [22], developed as a library and API in the
Python programming language, implements this approach and supports most data types
and their combinations identified above. Specifically, SortalGI operates on points, lines
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and planes, line segments and (rectilinear) plane segments, circles and ellipses, circular
and elliptical arcs, quadratic Bezier curves, labels, weights, colors, enumerated values,
dates, and descriptions, and any combination thereof, within both 2D and 3D.

2.2 By Matching Mechanism

As stated above, applying a rule l[hs — rhs onto a design d requires determining a
transformation f such that f{lhs) is a part of d, f(lhs) < d. The mechanism that supports
this shape recognition process is called the matching mechanism. It generally relies on
the identification of distinguishing elements within the rule’s left-hand-side and the
design under investigation, and mapping distinguishing elements of the same kind
between both shapes in order to determine the corresponding transformation. Distin-
guishing elements are commonly points that form part of the shape or points of
intersection among infinite lines that carry line segments forming part of the shape
[23, 24].

As noted above, transformations may be of different kinds [4] and the kind of
transformation necessarily impacts the matching mechanism. In three dimensions, three
distinguishable points from the rule’s left-hand-side and three mapped counterparts
from the design under investigation uniquely determine up to two possible similarity
transformations (under reflection). Evaluating each possible transformation can take
two steps: a first step focused on the selected distinguishable points and a second step
involving the entire left-hand-side shape. The first step looks at invariants under
similarity transformations, e.g., angles and length ratios, that can be compared between
the two sets of distinguishable points. The second step applies the respective trans-
formation to the entire left-hand-side in order to check its embedding in the design
under investigation. Note that it is assumed that the embedding relationship for shape
grammars supports emergence. For example, when matching for a square of line
segments, any square of line segments from the given shape will do, even if these line
segments extend beyond the corner points of the square. The same applies when
matching for a rectangle, however, only rectangles with the same ratio between length
and width will be matched.

If the allowable transformations are reduced from similarity to, e.g., isometric
transformations, the number of invariants will increase, thus constraining the matching
process and, potentially, reducing the number of possible matches [4]. However, in the
case of isometric transformations, or whenever rotations are allowed, three distin-
guishable points remain necessary in three dimensions and, therefore, the same
matching mechanism, with the additional constraints, may be adopted. Relaxing the
allowable transformations is, in principle, also possible, although a so-called parametric
matching process may become more appropriate. Woodbury [25] presents the mech-
anisms of a shape schema grammar, a grammar specifying parametric shape rules that
operate on parametric shapes. The matching mechanism is one of constraint satisfac-
tion. However, the algorithm is intractable, no shape grammar interpreter yet exists,
and there is no indication as of yet of how designers would use shape schema grammars
or rules.

All other (proposed) implementations of a parametric shape grammar rely on a
graph-based representation to underlie the matching process [26-29]. Although the
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exact graph representation may differ from one implementation to another, commonly,
intersection points between line segments, or between the infinite lines carrying these
segments, are considered as distinguishable points. As such, graph-based implemen-
tations can be used to find polygons of a specified number of sides, while additional
constraints can be specified on (the coordinates of) the vertices, in a similar way to the
shape schema grammar. In that sense, graph-based implementations are much more
general than Stiny’s [6] parametric shape grammar implies. Where Stiny adds
parameters to loosen the matching constraints, graph-based implementations can ignore
geometric coordinates altogether and, instead, require constraints to be added where
invariants should apply. However, rather than requiring such constraints to be expli-
cated, graph-based implementations generally consider implicit constraints that can be
automatically recognized from associations between spatial elements. For example,
Grasl and Economou’s GRAPE shape grammar interpreter considers equal length as an
associative relationship among line segments [26]. As such, an equilateral triangle will
only match onto equilateral triangles and an isosceles triangle onto isosceles triangles.
Any other triangle will match any triangle, irrespective of its shape. The lengths of
diagonals are also considered to apply under this associative relationship. Therefore,
any regular polygon only matches onto a regular polygon with the same number of
sides.

Instead, the SortalGI sortal grammar interpreter considers associative relationships
of parallelism and perpendicularity among lines and planes, instead of length. As such,
an equilateral or isosceles triangle of line segments will match any triangle of line
segments, as there are no parallel or perpendicular lines involved. Only a right-angled
triangle will limit any matches to right-angled triangles. Similarly, a rectangle of line
segments will only match rectangles of line segments, although, a square of line
segments will also match all rectangles of line segments, as equal lengths are not
recognized. To allow for further fine-tuning of the matching process, SortalGI allows
for additional constraints to be specified in the form of predicates [30, 31]. We elab-
orate on the roles of associative relationships and predicates below.

3 Shape Recognition and Search

In the sequel, we narrow our focus to the left-hand-side of the shape rule and the related
action of search or shape recognition, while reflecting on the different rule types
identified above. Specifically, we investigate to what extent the shape recognition
mechanism underlying a shape grammar interpreter can support graphical search within
a CAD environment. If available, searching for spatial objects in CAD software tools is
mostly based on the ability to compare properties of different objects, for example,
object type, area, etc. Instead, the shape recognition or matching mechanism(s)
underlying a shape grammar interpreter offers a much wider potential for search,
including the emergence of shapes that were unanticipated at the point of specification.

We adopt the SortalGI shape grammar interpreter [22] as the reference point for our
exploration of spatial search. As a modular implementation of a generalized shape
grammar interpreter for different grammar forms, it supports both parametric-
associative and non-parametric shape grammars, including points, line and plane
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segments, circular and elliptical arcs, quadratic Bezier curves, labels, weights, colors,
enumerated values, and (parametric) descriptions, in 2D and 3D. Emergence is natu-
rally supported. As such, it supports both different types of rules by data type and by
matching mechanism, at least to some extent.

The SortalGI shape grammar interpreter exists in the form of a library and API in
the Python programming language, as well as a Rhino/Grasshopper plug-in. As such,
the SortalGI library can be accessed and employed in at least three different ways:
within a Python development environment, within the Rhino 3D modeling environ-
ment and within the Grasshopper algorithmic modelling environment. Note that the
API and plug-in necessarily limit the extent of geometric and non-geometric element
types that are supported, due to the need to graphically visualize the data within the
Rhino 3D modeling environment. Nevertheless, we adopt the plug-in as a reference for
this study for reasons of simplicity and reproducibility. The SortalGI Grasshopper plug-
in encapsulates the SortalGI library and supports the specification and application of
shape rules, both non-parametric and parametric-associative, including points, line
segments, plane segments, circles, ellipses, (circular) arcs and quadratic Bezier curves,
descriptions and attribute descriptions (or labels), and the generation of single or
multiple rule application results. It also includes a node that, given a shape rule and a
shape under investigation, returns a list of all possible matches, without rule applica-
tion. As such, it can be used for spatial search, depending on the left-hand-side of the
rule and irrespective of the right-hand-side of the rule.

3.1 Emergence

The SortalGI plug-in offers two different components to create a rule object. The Rule
component constructs a non-parametric rule object from a rule name and brief expla-
nation of the rule, a left-hand-side shape object and a right-hand-side shape object.
While the right-hand-side of a rule may be left empty, the left-hand-side must have a
minimum set of geometry and/or descriptions present. The pRule component takes the
same inputs as the Rule component but returns a parametric-associative rule object.

The SortalGI library, underlying the plug-in, only supports transformations of
similarity for non-parametric rules, allowing for translation, rotation, reflection and
uniform scaling. As such, a rule’s left-hand-side specifying a simple square composed
of four line segments will match any square of four line segments, irrespective of size,
orientation and position. In addition, any of these four line segments may be part of
longer line segments that extend beyond the corner points of the square, or they may
(originally) be drawn as multiple smaller pieces of line segments that extend one
another or even overlap (Fig. 1). Internally, the matching mechanism will automati-
cally reduce any line segments that overlap or extend one another into the corre-
sponding maximal line segment and match maximal line segments, in the left-hand-side
of the rule, onto (parts of) maximal line segments, in the shape under investigation.
This mechanism specifically supports emergence, the square emerges from any number
of line segments that together cover the four sides of the square and, possibly, more.
The same applies to any other shape of line segments.
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Fig. 1. A single line (left) may constitute one or more line segments that touch or overlap
(right). The matching mechanism automatically reduces any such line segments to the single
maximal line segment (left).

To constrain the matching process, the rule application node additionally accepts a
subshape as input. While rule application always applies to the entire shape specified,
the matching mechanism compares the left-hand-side of the rule only to the subshape,
if specified, thereby ignoring any spatial elements that do not belong to the subshape.

3.2 Shape Descriptions

While the non-parametric matching mechanism only supports similarity transforma-
tions, it is not impossible to require only a subset of transformations, such as Euclidean
transformations (omitting scaling). However, the process will not be as straightforward.
In principle it is possible to use shape descriptions to constrain rule application. Shape
descriptions are verbal descriptions accompanying a shape; these can be structured or
unstructured [32, 33]. When included in the left-hand-side of the shape rule, they may
include parameters that are matched onto part of the respective descriptions of the
shape under investigation, as well as conditional expressions that constrain these
matches. Such conditional expressions can include explicit references to shapes and
shape rules. Such a reference must minimally specify the spatial data kind and its
numeric property but, in the case of multiple elements of the same spatial data kind,
must additionally specify a filter to distinguish the specific spatial element.

In the SortalGI plug-in, the spatial data kinds can be identified as ‘point3D’,
‘lineSeg3D’, ‘planeSeg3D’, ‘circle3D’, ‘ellipse3D’, ‘arc3D’, ‘bezier3D’, respectively,
for points, line segments, plane segments, circles, ellipses, circular arcs and (quadratic)
Bezier curves. Note that these names are specific to non-parametric rules and are
slightly different within parametric-associative rules. Attribute labels as a data kind are
identified as ‘labelD’ (or a variant thereof). As such, the length of a line segment with
label “11” can be retrieved using the partial description ‘lineSeg3D.length:labelD.-
value = “11”’. The colon should be read as ‘where’, as in the length of a lineSeg3D
where the value of labelD equals /,. However, this will only work if at least one of the
line segments of the square has been labelled uniquely with respect to the other line
segments of the square. Unfortunately, any rule to do so would necessarily match the
same square four times, as each of the four line segments may receive the label.
Therefore, a better approach may be to add an extra spatial data kind to the rule, such as
a plane segment covering the square, that can be used to constrain the allowable
matches (Fig. 2). Given that the plane segment retains the full symmetry of the square,
a rule that adds such plane segment to a square will only match each square once. The
plug-in includes a component ‘Apply All Together’ that applies a rule in parallel
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according to every match found. As each square specifies a single plane segment, no
additional label is necessary to uniquely identify the plane segment. Given a descrip-
tion specifying the exact area of the square to be matched, a description rule ‘pre-
scribed_area? = planeSeg3D.area — prescribed_area’ will constrain the rule matching
appropriately. Here, prescribed_area is a parameter matching whatever (numeric)
value is specified in the description accompanying the shape under investigation, and
will constrain rule matching to squares that have the exact area, thus omitting scaling as
an allowable transformation. Note that the rule necessarily also specifies a right-hand-
side. In this case, the rule leaves the description unchanged.

AN \
) VA

prescribed_area?=planeSeg3D.area — prescribed_area

Fig. 2. A preparatory rule to add a plane segment to the triangle (top), and the search rule
constraining matching to triangles with a given area (bottom). Each rule combines a shape rule
and a description rule, although the description rule of the preparatory rule may be omitted.

In general, description rules with conditional expressions referencing shape rules
can assist in constraining rule matching, but may require a preparatory rule that is
performed first and matches a larger set of shapes, and adds additional information to
the shape in the form of spatial elements or attribute labels, or both, before a second
rule including an appropriate description rule can be applied to retrieve only the desired
matches.

3.3 Parametric-Associative Rules: Searching Triangles

The parametric-associative matching mechanism supports a much wider set of trans-
formations, although the matching transformation is not specified numerically, e.g., in
the form of a transformation matrix. Instead, the transformation associates specific
spatial elements in the given shape with respective spatial elements in the left-hand-side
of the rule. For example, revisiting Stiny’s [6] grammar for Chinese ice-ray lattice
designs, one rule splits (almost) any triangle into a triangle and a quadrilateral by
placing a single line segment between two of the original triangle’s edges. As stated
before, any triangle that does not include a right angle will match any other triangle,
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including right-angled triangles. At a minimum, searching for arbitrary triangles within
a given shape only requires the specification of a non-right-angled triangle as the left-
hand-side of a rule (ignoring the right-hand-side of the same rule). However, Stiny’s
grammar is not intended to apply to any triangle, but only to triangles of a certain
minimum size that have not been the subject of a rule application—have not been split
—before. Addressing the latter condition first, one solution is to label the edges of each
polygon and include the labels as parametric descriptions using the same parameter in
the left-hand-side of the rule. However, this procedure works fine within the context of
a grammar application/derivation, but is rather useless as a search mechanism. Instead,
SortalGI supports Liew’s [30] void predicate, prescribing the area to be devoid of any
spatial elements. The specific area is necessarily a polygonal area specified by its
vertices, i.e., a list of position vectors. While these position vectors are defined in
absolute coordinates in order to achieve a compact description, it is of utmost
importance that the vertices coincide with points, line segments or intersection points
between line segments, or between the infinite lines carrying these segments. Such
associations will be automatically recognized by the matching algorithm and applied in
the matching process, instead of the actual coordinates. As a necessary consequence,
note that only the inside of the area must be devoid of spatial elements, the vertices
themselves and the edges of the polygon may coincide with, overlap or partially bound
a spatial element in the given shape.

To address the other condition, we can apply the plane segment trick previously
described to compute the area of the triangle and constrain this area to be larger than a
specified value. However, adding a plane segment will violate the void clause and open
the possibility to match a larger triangle composed of smaller triangles. One solution to
this problem is to assign each plane segment a unique label, such that the individual
plane segments remain distinguishable, rather than possibly combining into a maximal
plane segment. The parametric description assigned to the corresponding plane seg-
ment in the left-hand-side of the rule will match only a single label, limiting the
matching to an individual plane segment. It should be noted that while this is a
perfectly valid solution it is not a very efficient one. The matching mechanism will
initially focus on matching the triangle, before checking the presence of the plane
segment and its label. This means that all possible triangles will be exhaustively found
and tested. While this is no different from the void rule (without the plane segment), the
trick with the plane segment necessarily requires the void rule to be applied previously,
adding the plane segment with a unique label within the right-hand-side of the rule.
Improving efficiency could be achieved by labelling the edges of the triangle, in
addition to or instead of the plane segment. The edge labels will already play a role in
the matching of the triangle, before the plane segment is matched. Of course, this
comes at the cost of even more additional information added to the shape. Another
solution to the problem may be to use a variant of the void predicate as provided by
SortalGI. The void predicate additionally allows one to specify a type of spatial element
that should be absent from the area, while spatial elements of other types are ignored. In
the case of searching for a triangle as defined by three line segments, specifying a void
predicate to apply only to ‘lineSegP3D’ (the parametric-associative equivalent of
‘lineSeg3D’) spatial elements, would be able to complement the plane segment in the
left-hand-side of the rule and the corresponding matching process. Note that this
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doesn’t address the efficiency problem but it does avoid cluttering the shape with
numerous labels (Fig. 3).

yz

minimum_area?<=planeSegP3D.area — minimum_area

Fig. 3. A preparatory rule (top) and search rule (bottom) to identify an empty triangle with a
specified minimum area. Each rule combines a shape rule and a description rule, although the
description rule of the preparatory rule may be omitted.

So far, we have focused on searching for arbitrary triangles, but we might also be
interested in more specific kinds of triangles. Searching for right-angled triangles is
straightforward. If the left-hand-side of a rule constitutes a right-angled triangle than
the rule will match only right-angled triangles. The matching mechanism automatically
recognizes parallel and perpendicular associations between spatial elements (of the
same kind). However, if the left-hand-side of a rule constitutes an equilateral triangle
then the rule will still match an arbitrary triangle, as equal length associations are not
automatically recognized. For this purpose, we can make use of a description that
collects the lengths of the respective line segments and compares them. Unfortunately,
this requires a preparatory rule to collect the lengths of the respective line segments,
before the search rule can compare the different lengths.

SortalGI allows spatial elements within the left-hand-side of a parametric-
associative rule to be tagged. Tags may be considered similar to labels, to some
extent, but tags only exist within the matching process of the rule. The ability to tag a
spatial element is mainly intended to support predicate specifications. As predicate
specifications form a separate input, the tag serves to identify the spatial element the
predicate is referencing. As such, tagging is only available in parametric-associative
rules. However, tags as references can also be used in description rules that accompany
parametric-associative shape rules. Thus, the description rule can identify different line
segments by their tag, without these tags to be assigned as labels in another preparatory
rule application. Instead, assigning tags as actual labels would not only require an
additional preparatory rule but also have the labels persist unless another rule is used to
remove the labels once again.
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Assuming the line segments of the triangle are tagged as #11, #12 and #13 (tags are
recognized by the ‘#° symbol), the description rule to collect the lengths of the line
segments may take the form ‘a — (#l1.length, #12.length, #13.length)’ where ‘a’ is a
parameter that will be assigned any and all content of the description, to be subse-
quently ignored and replaced by a tuple of three length values. Next, the description
rule to compare the lengths of the line segments can take the form ‘(11, 12?7 =11,
13? = 11) — nil’. Here, the tuple ‘(11, 12, 13)’ matches the tuple available in the
description and the conditional expressions assigned to ‘12° and ‘13” ensure all lengths
are the same. Nil is a keyword to indicate an empty value, however any other value
might be assigned to the description as well.

As there may be any number of triangles in the shape under investigation, any
number of descriptions may be created as a result of the parallel application of the
preparatory rule. To link each description with the respective triangle, a labelled plane
segment is created. However, rather than labelling the triangle and adding this label
into the description, instead, we assign the description itself as attribute to the plane
segment. The same applies to the description rule (at least the left-hand-side of the rule)
comparing the lengths (Fig. 4).

Fig. 4. A preparatory rule (top) and search rule (bottom) to identify an equilateral triangle. The
preparatory rule adds a plane segment and adds the edge lengths as an attribute description to the
plane segment. The search rule checks whether the edge lengths have equal values.

The search rule (Fig. 4 bottom) could be easily adapted to search for isosceles
triangles by removing one of the conditional expressions. Instead of line lengths, it is
also possible to identify equilateral and isosceles triangles by computing and com-
paring angles between respective line segments. The right-hand-side of a description
rule may include an expression specifying an angle function that calculates the
(counterclockwise) angle between two direction vectors (from the first to the second
vector), e.g., ‘a — (angle(#11.direction, #12.direction), angle(#12.direction, #13.direc-
tion), angle(#13.direction, #l1.direction))’. However, it should be noted that the
direction of a line segment is not always univocal. In principle, the direction vector
reflects on the direction the line was drawn in, from one end to another. However, if the
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maximal line segment is the result of multiple overlapping or touching line segments,
then the direction may be overwritten by the maximalization process, which specifies
that the tail of the line segment has the lowest x-value, or if both x-values are equal then
the lowest y-value, etc.

3.4 Parametric-Associative Rules: Searching Quadrilaterals

To further clarify the search and matching process, let us consider quadrilaterals instead
of triangles. If the left-hand-side of a rule specifies a convex quadrilateral without any
parallel or perpendicular line segments, then this rule will match any convex quadri-
lateral, irrespective of whether the matching quadrilateral has parallel or perpendicular
segments. If, instead we want to search for concave quadrilaterals, we must specify a
concave quadrilateral as the left-hand-side of the search rule. The matching process
identifies all points of intersection among infinite lines that carry line segments forming
part of the shape as well as their ordering along the infinite lines. In the case of a
convex quadrilateral, all intersection points either define the vertices of the quadrilateral
or lie outside of the quadrilateral (Fig. 5). In the case of a concave quadrilateral, the two
intersection points each lie on a line segment in between its two vertices (not coinciding
with any vertex).

1 T

Fig. 5. A convex (left) and concave (right) quadrilateral. Each infinite (edge) line specifies (at
most) three intersection points with the other infinite (edge) lines, two of which are vertices of the
quadrilateral. In the case of the concave quadrilateral, the third intersection point lies between the
two vertices for two of the edges. In the case of the convex quadrilateral, this never happens.

As indicated before, if the left-hand-side of the search rule specifies a rectangle, the
rule will match any rectangle. However, the same applies as well for a square, that is, if
the left-hand-side of the search rule specifies a square, the rule will still match any
rectangle, because associations of equal lengths are not automatically recognized.
Instead a description (and a preparatory rule) can be used to constrain matching rect-
angles to squares. The same applies to the relationship between a parallelogram and a
rhombus. Where a rectangle is uniquely defined by its perpendicular corners (the
parallel edges are an automatic consequence), a parallelogram is uniquely defined by its
parallel edges. Thus, if the left-hand-side of the search rule specifies a parallelogram,
the rule will match any parallelogram. Similar to a square with respect to a rectangle, a
rhombus can be conceived as a parallelogram where all four sides have the same
length. Thus, if the left-hand-side of the search rule specifies a thombus, the rule will
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still match any parallelogram, because associations of equal lengths are not automat-
ically recognized, and a description (and a preparatory rule) can be used instead to
constrain matching parallelograms to rhombi. Note that an arbitrary convex quadri-
lateral with the additional constraint of equal length sides will also match rhombi only,
however, the matching process will be less efficient as associations of parallelism and
perpendicularity will be considered at an earlier stage, whereas constraints of equal
length expressed through a description rule will necessarily need to be checked after the
respective quadrilateral has been identified. Similarly, if the left-hand-side of the search

Table 1. Overview of the relationship between the left-hand-side of the search rule and
matching shapes for various quadrilaterals. Restricting the matching to a smaller set of shapes
necessarily requires the use of descriptions and a preparatory rule.

Left-hand-side of
the search rule

Matching shapes

Left-hand-side of
the search rule

Matching shapes

A convex quadrilat-
eral without parallel
or perpendicular
edges

Any convex quadri-
lateral

A rectangle or
square

Any rectangle or
square

Any parallelogram
or rhombus

Any parallelogram
or rhombus

A non-right-angled
trapezoid

Any trapezoid

quadrilateral with a 90
degrees exterior angle

quadrilateral with a 90
degrees exterior angle

quadrilateral with a 90
degrees interior angle

A right-angled trape- | Any right-angled A concave Any concave

zoid trapezoid quadrilateral without | quadrilateral
perpendicular edges

A concave Any concave A concave Any concave

quadrilateral with a 90
degrees interior angle
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rule specifies a non-right-angled trapezoid, the rule will match any trapezoid; a right-
angled trapezoid will match only right-angled trapezoids. In order to search for
isosceles trapezoids, an additional description rule will be required. The same applies if
we would like to distinguish trapezoids with an obtuse angle from trapezoids with only
acute angles. Any other quadrilateral figures that rely on equal lengths (such as a kite)
or particular types of angles require a similar approach (Table 1).

4 Conclusion

The combination of two alternative matching algorithms, either determining a trans-
formation matrix or an association of graphical elements, the latter complemented with
constraining predicates, applying over different data types, e.g., shapes, shapes aug-
mented with attributes and descriptions (the latter allowing for parametric description
rules) provides for a wide range of spatial search variations, beyond what CAD soft-
ware tools mostly offer today. Obviously, the elaboration above far from exhausts the
possibilities of search based on the shape recognition or matching mechanism(s)
underlying a shape grammar interpreter, in general, and SortalGI, in particular.

Acknowledgments. I would like to thank Bui Do Phuong Tung for his development work on
the SortalGI library, Bianchi Dy for her development work on the SortalGI plug-in for
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