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Abstract. Despite the expansion of shared mobility-on-demand (MoD) sys-
tems as sustainable modes of urban transport, a growing debate among planners
and urban scientists regarding what constitutes cost and how to compute it,
divides opinions on the benefits that autonomous MoD systems may bring. We
present a comprehensive definition of cost of traveling by MoD systems as the
cost of the vehicle hours (VH), the vehicle-hours-traveled (VHT), the vehicle-
hours-dispatched (VHD), and the vehicle-hours-parked (VHP) required to serve
a pattern of trips. Next, we discuss an approach to estimate empty (dispatch)
trips and idle periods from a user trip dataset. Finally, we model, compute, and
visualize the relationship between the dynamics of VHP, VHT, and VHD using
Chicago’s taxi cab system as a case. Our results show that the total fleet of taxis
in Chicago can decrease by 51% if all trips, currently served by conventional
taxis, were served by autonomous ones.
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1 Introduction

Widely considered as emerging modes of sustainable transport, mobility on demand
(MoD) systems utilize shared vehicles, parking spaces, and advanced information
technology, allowing citizens to move from point to point on demand while minimizing
resource utilization and carbon footprint [1]. With an industry doubling biannually, and
pilot autonomous vehicles (AV) already cruising in streets of cities, MoD systems are
one of the most rapidly growing sectors of urban transport. Yet, a growing debate
among scholars and practitioners on what constitutes cost and how to compute it, has
divided opinions on the benefits that autonomous MoD systems may bring. Some
studies claim that sharing reduces congestion, improves air quality, and enhances
accessibility while reducing dependence on private ownership [2–4]. Others, however,
show that vehicle-miles traveled (VMT) and traffic congestion will increase up to 8%
and 14.0% respectively due to increased empty trips for charging and pickup [5–7].
Understanding what aspects, and how, affect performance is important, not only for
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assessing the potential of on-demand mobility, but also for designing, planning, and
operating future MoD systems that perform better than today’s ones.

For planners and urban scientists, estimating the quantities of vehicles, parking
land, and dispatch flows (movements of empty vehicles from one drop-off to the next
pickup), required to mobilize a demand for trips, is essential because they determine the
cost, the infrastructure size and planning requirements, and the environmental impact of
a MoD system. While recent studies have used microsimulation techniques to address
such questions for AV MoD systems [4–6, 8], their modeling assumptions of how
vehicles move in space and time are often too idealized. It is therefore important to
complement results from such theoretical models with similar results from data-driven
evidence-based simulation models that describe real systems in high detail.

In this paper, we analyze a dataset of user trips from taxi cabs, asking the question:
How many vehicles, parking land, and dispatch work are required to serve the same
trips with AVs, and how would these quantities change as technology improves? We
consider a taxi system as the closest contemporary analogy to an AV MoD system.
Since an AV is a taxi with a restless computerized driver, studying taxi systems can
reveal important information about a lower bound in performance of AV MoD systems.
At each moment, a taxi cab can be in one of three possible states: active (carrying a
passenger), dispatched (driving empty in search of a new passenger), or parked (either
temporarily or overnight). In particular, we focus on three questions in estimating the
minimum capacity of a MoD system: how many taxis are required to serve a given
demand for trips? How much parking land do these taxis occupy when not in use? How
much traffic do these taxis create when in use or being dispatched?

In previous work [9] we developed a novel method to reconstruct and visualize
accumulation dynamics of MoD systems by numerically integrating trip data over time,
and we used this method to model the dynamic relationship between the active, dis-
patched, and parked portions of the fleet in Boston’s bike sharing system. In this paper,
we expand this method to compute and visualize the dynamics of the actual and
minimum quantities of vehicles, parking land, and dispatch work, required to mobilize
a pattern of trips in a taxi cab system. We analyze a trip dataset from Chicago’s taxi
system with over 100 million rides dating back to 2013, and focus on July 13, 2017 as a
case.

Our paper makes three contributions in the fields of Smart Cities, Data Analytics,
and Urban Modeling and Simulation. (1) We present a holistic definition of cost of
traveling by taxi. (2) We discuss a novel method to estimate dispatch trips and idle
periods from user trips in taxi systems and we apply this method to estimate the number
of dispatch taxi trips and idle periods in Chicago. (3) We model, compute, and visu-
alize the relationship between the dynamics of the vehicle-hours-traveled (VHT), the
vehicle-hours-dispatched (VHD) and the vehicle-hours-parked (VHP) for serving users
with taxi MoD systems in Chicago.

The rest of the paper is organized as follows. Section 2 discusses related works.
Section 3 defines the cost of shared mobility from a dynamics’ perspective. Section 4
describes the Chicago taxi trip dataset. Section 5 describes the method to estimate the
empty (dispatch) trips and idle periods from the user trip dataset. Section 6 describes
the method to reconstruct dynamics of vehicle accumulations and a validation method.
Section 7 presents a scenario analysis in Chicago visualizing both the existing and the
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hypothetical accumulation dynamics if all current trips were served by autonomous taxi
cabs that minimize empty trip and idle durations. Finally, Sect. 8 discusses significance
and future steps of our work, specifically in relation to MoD systems.

2 Background

Sizing and rebalancing, is the fundamental planning and operations problem of
deciding the optimal combination of infrastructure size (number of vehicles, parking
spaces, road capacity) and rebalancing work (dispatches of empty vehicles from full to
empty locations) for serving a pattern of trips. The two quantities are in a tradeoff
relationship. Increasing one, decreases the need for the other. Sizing-rebalancing
problems in MoD systems summarize into three directions: sizing optimization [10];
routing optimization [11–13]; and joint sizing-rebalancing optimization which are
significantly more complex [4, 14]. State-of-the-art approaches use stochastic
microsimulations [4–6, 8, 14], however, developing such models is laborious, data
intensive, and computationally expensive, without guaranteeing results [15]. Estimat-
ing rebalancing work requires solving routing but routing depends on assumptions
about network structure and trip demand, which in MoD systems are often random.
This makes micromodeling approaches speculative and, for the scope of our research,
unnecessarily complex.

Recent studies on various data sources show that even though individual trip pat-
terns are random, human mobility patterns are macroscopically consistent and pre-
dictable [16–21]. In particular, intra-city commuting patterns are found to be periodic
[22–24] and universal across cities [25, 26] with a trip duration consistent at 25–35 min
[25]. This relationship has been observed in multiple data sources from taxi [16, 23, 27]
and bike sharing [28, 29] trips. Finally, other studies on bike sharing [11, 29, 30] and car
sharing [8] data found that trip patterns are not only periodic but also cumulatively
imbalanced, creating increasingly uneven distributions of vehicles. These studies sug-
gest that accurate dynamic macromodeling is scientifically possible [18].

There are two cultures in building dynamic models from time series data. The first,
coming from data science, views time series data as samples from an unknown
stochastic process and uses machine learning techniques to invent a mechanism that
can emulate them without explicitly knowing the physical system that may have
generated them. Despite their usefulness in modeling data patterns when the system
that created them is unknown, these techniques work as black boxes without explaining
why data have been clustered one way or another [31], or what the resulting model and
its parameters mean. As such, they cannot substitute valid theoretical models for
planners. The second approach is hypothesis-based and comes from areas of physics,
complex systems, and dynamics. It views time series data as measurements of a
dynamic physical system which aims to reconstruct by postulating its structure and
behavior based on first principles, empirical evidence, or established theories [32].
System dynamic (SD) models, lump accumulations of quantities into compartments
representing different states (called stocks), and compute accumulation levels by
numerically integrating inflows and outflows to and from each compartment over time.
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By describing mathematically flow rates with equations, SD models can simulate a
variety of what-if scenarios, with applications in urban studies [33–35].

Our work extends the aforementioned works in three ways. First, we introduce a
novel general method to derive empty trips and idle periods from a user trip dataset.
Second, we show the relationship between cost and accumulation dynamics, and we
introduce a novel method to reconstruct accumulation dynamics and to find the min-
imum fleet for serving demand, as a time-series dynamic problem. Third, we introduce
a novel way to visualize accumulation dynamics and, to our knowledge, for the first
time, we visualize the dynamic relationship between accumulation dynamics of all
areas in the city for taxicab systems.

3 Cost as Rent and Work

Every shared mobility system requires four fundamental types of resources to mobilize
a pattern of trips: vehicles, parking land, work to mobilize user trips, and work to
dispatch empty trips (also known as rebalancing). We quantify these quantities as
vehicle-hours (VH), vehicle-hours-parked (VHP), vehicle-hours-travelled (VHT), and
vehicle-hours-dispatched (VHD), and we define as cost, the cost of these quantities
over time, measured as vehicle rent, parking rent, useful work, and rebalancing (empty)
work.

From a dynamics’ perspective, trip paths are unimportant. If two trips between a
pair of locations have the same duration, their effect on accumulations at locations is
the same even if their paths are different. What matters instead is where and when
departures (outflows) and arrivals (inflows) occur and, consequently, which locations,
at what rate, and to what extent, fill with or empty from vehicles. These fluctuations
determine minimum fleet size, parking size, and traffic requirements.

If a dataset of user and dispatch trips is available, then VH, VHP, VHT, and VHD
can be directly computed by numerically integrating the difference of departures and
arrivals over time. The vehicle and land rent of each location during a period, is the cost
of the net number of vehicle-hours or parking-hours required to serve a pattern of
outgoing and incoming trips during that period. If 10 vehicles depart from a location
and arrive after 8 h, the location will require 80 vehicle-hours of vehicle rent for the
temporary absence of vehicles. If the 10 vehicles arrive and then depart after 8 h, the
location will require 80 parking-hours of land rent to accommodate the temporary
presence of vehicles. If each of the 10 vehicles traveled 30 min for each one-way trip,
then a total of 10 vehicle-hours-traveled of work was done (5 VHT in each direction) to
move them. The vehicle and land rent of a system during a period is the sum of the
individual vehicle and land rents of its locations during that period. Since the system is
closed and mass is conserved, VHT and VHD can be calculated from the VHP: if a
portion of vehicle mass is absent from parking areas then it must be traveling in streets.
VHP can be directly computed from locations from their occupancy. We define as
occupancy of a location, the aggregate presence or absence of vehicle mass during a
period of time. Positive occupancy indicates net presence while negative occupancy
indicates net absence of vehicles. In this paper, we show that minimum VH, VHP,
VHT, and VHD can be estimated from a user trip dataset, even if no information about
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dispatch trips is available, using the average dispatch duration as a parameter. The next
sections describe a method to derive empty trips from a user trip dataset and a method
to compute the dynamics of VHT, VHD, and VHP over time.

4 Chicago Taxi Trip Data

The study is based on a dataset that the City of Chicago started publishing on
November 16, 2016. Today, the dataset includes over 100 million taxi ride entries,
dating back to 2013. The data can be accessed through the Chicago Socrata API in
JSON, XML and CSV formats. Our study focuses on three weekdays of July 12–15,
2017 using the 13th as a reference day. Each entry in the dataset describes a trip and
contains 23 attributes:

Trip ID, Taxi ID, Trip Start Timestamp, Trip End Timestamp, Trip Seconds, Trip
Miles, Pickup Census Tract, Dropoff Census Tract, Pickup Community Area, Dropoff
Community Area, Fare, Tips, Tolls, Extras, Trip Total, Payment Type, Company,
Pickup Centroid Latitude, Pickup Centroid Longitude, Pickup Centroid Location,
Dropoff Centroid Latitude, Dropoff Centroid Longitude, Dropoff Centroid Location.

All start and end times were rounded to the nearest 15 min. In order to preserve
costumer and driver’s privacy, location is provided only at Census Tract and Com-
munity Area level (“pickup_community_area”, “dropoff_community_area”). Census
Tract data is not available for some trips for privacy purposes. The data attributes
“fare”, “tips”, “tolls”, “extras”, “trip_total” and “payement_type” are all cost related
and provide details about the cost of each trip and how costumers paid the cost. The
pickup and dropoff centroid latitudes and longitudes, as well as the pickup and dropoff
centroid location attributes, provide geographic coordinates for the pick-ups and drop
offs. These coordinates are either the center of the census tract in which the trip began
and ended or the community area if the census tract has been removed for privacy.

Initial exploration of the data revealed that certain entries seem either implausible
or have specific meanings that are not described in the dataset. For example, several trip
entries appeared to have either zero-second duration or zero-mile distance. Other
entries appeared to have non-zero durations but zero-miles distance or non-zero-miles
distance but zero-seconds durations. To avoid unsupported interpretations, we con-
tacted the Chicago Data Portal and inquired about these specific cases. According to
Chicago data portal, due to the unavoidable circumstances in data collection having 0
values for trip_seconds and trip_miles may occur and these values are wrong. There-
fore, we decided to remove all entries with 0 durations. Another problem with data is
that several trips had as start or end locations, areas with no name and 0 latitude and
longitude. To address these inconsistencies, we filtered out these data trip entries. In
total, from the 105,037 entries of the 3-day focus period, we filtered-out 8,941 such
entries.
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5 Identification of Empty Trips and Idle Periods

We consider as empty trip, the movement that a taxi makes from the dropoff location of a
client to the pickup location of the next client. We consider as idle period, the duration
that a taxi remains parked at a rest area. Therefore, we consider three possible states for
each taxi: “full”, when the taxi is occupied by a passenger; “empty”, when the taxi driver
is driving to find the next passenger; and “idle”, when the taxi is parked without looking
for passengers (sleeping, having lunch, waiting, etc.). Since the dataset contains only user
trips, we developed a method to identify empty trips and idle periods from the periods
between consecutive rides from the same taxi ID. We labeled each such period as a
combined duration because it combines both the duration of an empty trip and the
duration of a potential idle period. The distribution of full trip durations has one sharp
peak that centers at about 900 s and is skewed to the left. This means that while most user
trips are short and similar (about 15 min), there are several user trips that are longer and
have durations that vary. The histogram in Fig. 1 shows the distribution of combined
durations (empty and idle). The distribution has a sharp peak that centers at about 1,000 s
and is skewed to the left. A closer look reveals a second peak, shorter and fatter, that
centers at about 8,000 s. This means that while many durations between consecutive
drop-offs and pickups are similar to the duration of a typical ride, there is a smaller cluster
of such durations that are much longer, with a range of 1 to 8 h, and an average of 2.2 h.

We interpreted the first peak of short durations as empty trips (trips from a dropoff to a
pickup similar in duration to user trips) and we interpreted the second peak of long
durations as idle periods. The interpretation is based both on empirical evidence and on
common sense: idle periods include overnight rests during sleep hours and can therefore
be several hours long. On the other hand, empty trips cannot be overly long: if they were,
on average, longer than idle periods, then empty taxis in streets would outnumber
occupied ones. This, however, cannot be the case: first, because demand during peak
hours is higher than supply, and second, because during off-peak hours, spending more
time empty than occupied would be financially unsustainable for taxi operators.

To distinguish between empty trips and idle periods, we analyzed the duration
between a user drop-off and the next user pickup for each pair of consecutive trips with the

Fig. 1. Histogram of the durations of empty trips.
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same taxi ID. Some of these durations signify an empty trip while others include idle
periods (driver rests temporarily or overnight). We consider three possible cases (Fig. 2).

In the first case, the taxi is assumed to do an empty trip from the drop-off location of
the last client to a parking location (presumably the house of the taxi driver or the
central taxi facility) and an empty trip from the parking location to the pickup location
of the next client. In the second and third cases, the taxi is assumed to stay idle
immediately after dropping-off a client and then perform an empty trip to pick up the
next new client (second case) or perform an empty trip to the location of the next client
pickup and sojourn at that location until the next pickup (third case). While the first
case is more plausible than the second and third cases, we have no data that suggest
whether rest areas are different than last dropoff or first pickup areas. On the other hand,
while second and third cases are less plausible today, they imply a future scenario in
which an AV, if not in use, parks anywhere and stays idle until someone calls it. We
therefore decided to choose either the second or third cases. Since these cases make no
practical difference for the dynamics of the system, we chose the third case.

To identify empty trips, we developed an algorithm that takes as input a user trip
dataset and a duration threshold, and it outputs a dataset of full and empty trips. The
duration threshold is used as a classifier. If the duration between a consecutive dropoff
and pickup is below the threshold, we assume the duration to signify an empty trip
from the dropoff location to the pickup location. If the duration is above the threshold,
we assumed that at least one empty trip and an idle duration exist.

To define the threshold duration that is used as a classifier to distinguish empty trips
from idle periods, we used a duration of 1,800 s (30 min) which is close to twice the
mean trip duration. By filtering the duration values, we labeled trips longer than
5,455.60 s as “idle” and the rest as “empty”. While this method is crude, it provides an
empirical separation between empty trips and idle periods and can therefore be used in
combination with a sensitivity analysis, in which, a range of datasets are computed and
tested for a range of possible thresholds. A future improvement of this method will use

Fig. 2. Three cases for an empty trip. Left: a taxi drives empty from dropoff area A to a rest area
(blue dot), remains idle, and then drives empty to pickup area B. Middle: a taxi remains idle after
dropping off a client and then drives empty to a pickup area. Right: a taxi drives empty after
dropping off a client to a rest area, remains idle, and then picks up the next client. (Color figure
online)
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the application of a mixture bivariant model and use of Machine Learning (Expectation
Maximization) to find the mean times of the two peaks.

6 Reconstruction of Accumulation Dynamics

After calculating the empty and full trips, we used them to reconstruct the accumulation
dynamics of the system. A central concept in dynamic analysis and modeling is the
reconstruction of the trajectory of the system, which is the collection of all the states
that the system takes over a time period [19–21]. The state of a taxi system at each
moment, is defined by the accumulation levels of stationary, in-use, and in-dispatch
taxi vehicles. A dynamic system is defined by its inflow/outflow time series, the
difference equations (conservation laws), and the state of the system at a reference time,
known as the initial state. Any state can be derived by the initial state by numerical
integrating inflows and outflows. In this section, we show that, by combining data
(uncontrollable input) with mathematical functions (controllable input), we can build
interactive data driven dynamic models that can be used for scenario analysis.

To reconstruct dynamics of VHP, VHT, and VHD, first, we obtain the set of
community areas from the origins and destinations of trip data. Next, we create inflow
and outflow time series data from user and empty (dispatch) trip data, by computing
departures and arrivals per location per unit of time. Next, we compute accumulation
level time series data per community area, by integrating numerically inflow and
outflow time series over timeline. Finally, we compute the accumulation time series
data for the stocks in transit and in dispatch. The total stock of the system is the sum of
the stock in locations, in dispatch, and in transit, and remains constant over time. Initial
values for accumulation levels may be obtained from any known state of the system
with backward numerical integration.

Fig. 3. Stock-flow diagram of a taxi system consisting of all community areas (represented by
different stocks) and two stocks representing vehicles in transit (full and empty).
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Create Closed System of Locations. To construct a trajectory that conserves mass, it
is important that the number of locations derive from trip data. To create locations:
(1) Create empty array for locations. (2) For each trip in trips array, for each location in
locations array: if location is the same as origin or destination location of trip, go to
next trip; else, add origin or destination location of trip in locations array, and go to
next trip. (3) End. Figure 3 shows the resulting stock-flow model from this process
consisting of stocks for each community area containing parked vehicles (s1, s2,…, sn)
and of two additional stocks containing vehicles in transit and dispatched vehicles.

Create User Inflow and Outflow Time Series. To create user inflow and outflow
time series per location: (1) Divide timeline into timesteps. (2) For each location in the
locations array, create four empty arrays: departures, arrivals, outflows, and inflows.
(3) For each trip in trips array, get origin and destination locations of trip; add one
departure event in the departures array of the origin location; add one arrival event in
the arrivals array of the destination location. (4) For each time-step, for each location in
the locations array: add the sum of all departures that occurred within the time-step
in the outflows array; add the sum of all arrivals that occurred within time-step in the
inflows array. (5) End. The resulting system contains the set S of Sj j locations (where
Sj j is the size of S). Each location si contains 4 time-series with Tj j data points each
(where Tj j is number of time-steps within timeline T): user outflows Xi, user inflows Yi,
dispatch outflows X̂i, and dispatch inflows Ŷi:

S ¼ s1; s2; . . .; s Sj j
� �

: si ¼
Xi ¼ x1; x2; . . .x Tj j

� �

Yi ¼ y1; y2; . . .y Tj j
� �

X̂i ¼ x̂1; x̂2; . . .x̂ Tj j
� �

Ŷi ¼ ŷ1; ŷ2; . . .ŷ Tj j
� �

8
>><

>>:

9
>>=

>>;
ð1Þ

Compute Accumulation Dynamics at Locations. The user accumulation level Li of
location si, at time-step j, is computed by adding and subtracting inflows and outflows

from t ¼ 1 to t ¼ j, where Li is the initial level t ¼ 0ð Þ:

Li jð Þ ¼ Li þ
X j

t¼1
xi tð Þ � yi tð Þ ð2Þ

Likewise, the corrected accumulation level L̂i of location si at time-step j is:

L̂i jð Þ ¼ Li þ
X j

t¼1
xi tð Þ � yi tð Þþ x̂i tð Þ � ŷi tð Þ ð3Þ

Compute Accumulation Dynamics of Stocks in Transit. The stock of vehicles in
transit (stock-in-transit) contains vehicles in use by users. Since the system is closed,
inflows to stock-in-transit equal outflows from locations, and outflows from stock-in-
transit equal inflows to locations. In the model diagram, stock-in-transit’s compartment
connects to each location’s compartment through the departure and arrival flow rates
(pipelines). The level of stock-in-transit LT at time-step j, is computed by adding and
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subtracting user outflows and inflows from t ¼ 1 to t ¼ j for each of the Sj j locations,
where LT is the initial level:

LT jð Þ ¼ LT þ
X Sj j

i¼1

X j

t¼1
yi tð Þ � xi tð Þ ð4Þ

Add Dispatch Flows and Reconstruct System Trajectory. To reconstruct the tra-
jectory of the system with dispatching, we add dispatch inflows and outflows and
recompute accumulation levels. The dispatch stock contains empty vehicles. In the
model diagram, the dispatched compartment connects to each location’s compartment
through the dispatch departures and dispatch arrivals flow rates (pipelines). The level of
the dispatch stock LD at time-step j, is computed by adding and subtracting dispatch

outflows and dispatch inflows from t ¼ 1 to t ¼ j for each of the Sj j locations where LD
is the initial level:

LD jð Þ ¼ LD þ
X Sj j

i¼1

X j

t¼1
ŷi tð Þ � x̂i tð Þ ð5Þ

Set Minimum Initial Values of Accumulation Levels. Initial values for accumulation
levels may be obtained from any known state of the system with backward numerical

integration. If no such state is known, then the minimum initial level Li of any location
si, is the opposite of the minimum value Limin that Li had over timeline T:

Li ¼ �Limin ; Limin ¼ mint2T
Xt

z¼1
xi zð Þ � yi zð Þ ð6Þ

The minimum parking capacity Pi of location si is the range (max-min) of its
accumulation level values over timeline:

Pi ¼ Limax � Limin ; Limax ¼ maxt2T
Xt

z¼1
xi zð Þ � yi zð Þ ð7Þ

Set Actual Initial Values of Accumulation Levels. Finding the initial values for the
actual accumulation levels was a two-step process. First, we found initial levels of all
trips that were considered in the time window. Second, we found initial levels at
locations at the beginning of the time window. To find initial levels for each location,
for each vehicle ID, we filtered all trips from the same vehicle ID, and we obtained the
first trip. Then, we got the start location of the first trip and we incremented unitarily the
initial level of that location. This process provided the initial levels of the first trips that
either ended or started from the time window. To get the initial levels at time zero, we
constructed accumulation dynamics from the start time of the first trip till the end time
of the desired range, and we then trimmed the timeseries to the desired length.
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6.1 Validation

In reconstructing an empty trip dataset from a given user trip dataset, two possible
types of inconsistencies may occur: inconsistencies in time and inconsistencies in
space. Inconsistencies in time occur if (1) an estimated empty trip appears to start
before the previous full trip of the same vehicle ends, (2) an estimated empty trip
appears to end after the next full trip of the same vehicle starts, or (3) an empty trip
appears to end before it has started. Inconsistencies in space occur if an estimated
empty trip appears to start from, or end to, different locations than its previous and next
full trips. Results of such inconsistencies create accumulation dynamics that violate the
law of mass preservation. For example, if a vehicle departs from a location before its
previous trip arrives at that location, or if a vehicle arrives at a location after its next trip
departs from that location, then the quantity of the vehicle at the location appears
negative while the quantity of the vehicle in the streets (travelling) appears double.
Likewise, if a vehicle arrives at a location but then departs from another location, then
there must two vehicles in the system with the same ID. The resulting dataset of both
empty and full trips can be validated for topological connectivity as follows. For each
chain of trips of the same vehicle, the origin location of each trip is the same as the
destination location of the previous trip, and the departure time of each trip is after the
arrival time of the previous trip and before the departure time of the next trip. Likewise,
the destination location of each trip is the same as the origin location of the next trip,
and the arrival time of each trip is after the departure time of the trip and before the
departure of the next trip. To validate the reconstructed accumulation dynamics, we
analyzed the resulting empty and full trips dataset for mass preservation. If recon-
structed empty trips were valid, then the mass of each individual vehicle in the system
should remain constant over time. If a vehicle is removed from an area, it must be
added to the transitionary stock and if it added in another area, it must be first removed
from the transitionary stock. For each vehicle, we traced the chains of empty, idle, and
full durations, and we analyzed whether there was any timestep during which the
vehicle mass in the system increased or decreased. Moreover, for each location, we
found the initial values for each vehicle. In total, the sum of the initial values for all
locations for a vehicle were found to be 1, and the sum of all departures and arrivals in
the system for that vehicle were found to be zero.

7 Scenario Analysis

An extensive scenario analysis is beyond the scope of this paper. Here, we present two
scenario cases: The actual-fleet accumulation dynamics (Fig. 4), and the minimum-fleet
accumulation dynamics (Fig. 5). For each case, we used a threshold duration of 1,800 s
which classifies every combined duration below 30 min as an empty trip, and every
combined duration above 30 min, as a 30-min empty trip and the remainder as idle
period. The actual fleet was found to be 2,398 which matches the number of distinct
vehicle IDs in the trip dataset. The minimum fleet was found to be 1,220 vehicles or
50.9% smaller than the actual fleet size. In total, for the selected day, taxis in Chicago
spent 57,552 VH, 43,550 VHP, 8,071 VHT, and 5,931 VHD.
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8 Discussion

We presented a definition of cost for shared mobility and a novel method to compute and
visualize dynamics of VHP, VHT and VHD for a taxi cab system. Moreover, we pre-
sented a method for exploring how this cost changes in two scenario cases: actual and
minimum fleet accumulation dynamics. In this section, we discuss insights from the
results, and limitations of the presented method. First of all, the cost of traveling by taxi is
substantially dominated by the size of the inactive stationary stock compared to the active
transitionary stock. While this hidden stock is a consequence of the current business
model for most taxi cab systems around the world, it also constitutes an inefficiency that
can be greatly reduced in a future scenario of autonomous vehicles (AVs).

Fig. 4. Reconstruction of the actual accumulation dynamics for the City of Chicago.
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In such scenario, an autonomous cab can immediately drive to pick up the next
client, reducing the total VHP for the system. In particular, we showed that if each
empty vehicle arrival to an idle area coincided with an empty vehicle departure from
the same area, the total fleet could reduce by 50% assuming that empty trip duration is
not increasing. While our results show that the fleet can reduce by roughly 50%, this
reduction reflects only the reduction in vehicle rent. The total cost change i Atefeh
Mahdavi Goloujeh <amahdavi@uncc.edu>s different. In particular, the total work that
must be done to mobilize full and empty trips (VHT and VHD) either does not change
or it increases, assuming that AVs must travel longer distances for empty trips. What
decreases instead is the rent that must be paid for locations and parked vehicles
(measured as VHP). Second, a strength of the presented method is that, in contrast to
existing approaches that rely on solving routing for calculating cost, we showed that by
using a very simple assumption, we can show that using MoD, we can significantly
reduce the cost of travel in our system by enabling cars to stay idle and wait for other
passengers rather than searching for passengers. Constructing empty trips data from full
trips allow us to understand approximately how efficient and cost effective the mobility
system in Chicago is. First, it shows the true cost of traveling by taxi as the distribution
in time of VHP, VHT, and VHD. The main current limitation of the method is that the
classification of combined durations into empty trips and idle periods uses an average
empty trip duration which is obtained empirically, by observing the shape of the
bimodal distribution of combined durations. A future improvement of this approach
involves using Machine Learning (ML) techniques to distinguish between empty trips
and idle periods.

Fig. 5. Reconstruction of the actual accumulation dynamics for the City of Chicago.
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