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11.1	 �Introduction

Microorganisms distressing plant health, i.e., plant pathogens are one of the key 
threats for sustainable global food production and ecosystem sustainability. These 
pathogenic microbes cause approximately 25% reduction in the global crop yield 
every year (Lugtenberg 2015). To increase the food production, fiber and biomate-
rial, strategies of plant pests and diseases (DP) management are crucial. Recently, 
the concern about global food security is growing and the total world production of 
food has to be increased by 70% until 2050 (Ingram 2011; Keinan and Clark 2012). 
The total food requirement in the world will keep on rising for upcoming 40 years 
with increasing human populations (Rahman et al. 2018). Globally, the food pro-
duction system is accountable for loss of terrestrial biodiversity about 60% and 
increasing greenhouse gas emissions by 25% (Westhoek et  al. 2016). There is a 
need to develop relatively reliable and more sustainable agricultural methods that 
can reduce the dependence on chemical pesticides.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8391-5_11&domain=pdf
https://doi.org/10.1007/978-981-13-8391-5_11
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The microbes demonstrate different modes of antagonistic properties (Table 11.1) 
by producing antimicrobial compounds or by competing with phytopathogens com-
monly known as biocontrol agents or biological control agents (BCAs). There is a 
growing interest in BCAs as viable alternatives for DP management because of the 
harmful effects of chemical pesticides (Waghunde et al. 2016). The recent findings 
provide evidence of some bacterial and fungal endophytes which act as a nutrient 
distributor, tolerance enhancer under drought and abiotic stress, and promoter of 
growth and yield in plants (Jaber and Araj 2017; Waghunde et al. 2017; Bamisile 
et al. 2018). The application of entomopathogenic fungi as BCAs has been effective 
in DP management that also supports plant growth-promoting (PGP) activity (sum-
marized in Tables 11.2 and 11.3). Therefore, more attention has been given to plant 
growth-promoting rhizobacteria and fungi (PGPR and PGPF, respectively) to 
replace or supplement agrochemicals in recent times. Their interactions with plants 
and phytopathogens lead to the activation of plant defense mechanisms such as 
induced systemic or systemic acquired resistance (ISR or SAR) pathways. The 
PGPR and PGPF help plants by many other ways such as decomposition of organic 
matter, increasing availability of nutrients, mineral solubilization, producing numer-
ous phytohormones, and biocontrol of phytopathogens (Sivasakhti et al. 2014). The 
application of PGPR/PGPF is progressively increasing in agriculture and also offers 
a smart and economical way to substitute chemically synthesized pesticides and 
fertilizers (Borah et al. 2018).

This chapter is presented as the advanced survey of the literature currently avail-
able on the BCAs for DP management. The application of beneficial PGPR/PGPF 
reported in different host plants for the plant health management (PHM) are sum-
marized. This work reviews the effects of PGPR and PGPF on host plants and their 
active role in plant DP management. It also addresses the possible mechanisms of 
protection and recent advancement conferred by these beneficial microbes as BCAs. 
Moreover, this chapter addresses the current trends in application and overall adop-
tion of bacterial, fungal, and other microbials for DP management.

Table 11.1  Antagonisms exhibited by biological control agents

Type Mechanism
Direct antagonism Parasitism—symbiotic interaction between two phylogenetically unrelated 

organisms
Hyperparasitism—parasites using other parasites as their host
Commensalism—one partner benefits while other is neither benefited nor 
harmed

Indirect 
antagonism

Competition—interaction harmful to both the partners
SAR—systemic acquired resistance
ISR—induced systemic resistance

Mixed path 
antagonism

Antibiosis, lytic enzyme production, siderophore production, organic, and 
inorganic volatile substances

P. P. Verma et al.
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Table 11.3  Recent studies reporting biocontrol activities of PGPR, PGPF, and other microbes 
against different pests are summarized

Biological control 
agents Pest PGP traits Plant species References
Bacteria
Pseudomonas, 
Bacillus sp.

Meloidogyne 
javanica, 
Ditylenchus sp

Production of 
phytohormones, 
antibiotic production

Garlic, 
soybean

Turatto 
et al. (2018)

Bacillus cereus, B. 
licheniformis, 
Lysinibacillus 
sphaericus, P. 
fluorescens, P. 
brassicacearum

Meloidogyne 
incognita

– Tomato Colagiero 
et al. (2018)

Bacillus sp., 
Pseudomonas sp.

Aphid Yield enhancement Wheat Naeem 
et al. (2018)

Pseudomonas 
fluorescens, Bacillus 
subtilis

Plutella 
xylostella

– Chinese kale Rahardjo 
and Tarno 
(2018)

Serratia 
proteamaculans

Meloidogyne 
incognita

Increase in root and 
shoot growth

Tomato Zhao et al. 
(2018)

Pseudomonas putida 
strain, BG2 and 
Bacillus cereus BC1

Meloidogyne 
incognita

Increase in plant 
growth and essential 
oil

Patchouli Borah et al. 
(2018)

Kosakonia 
radicincitans

Brevicoryne 
brassicae and 
Myzus 
persicae

– Arabidopsis Brock et al. 
(2018)

Bacillus velezensis, 
B. mojavensis, B. 
safensis

Heterodera 
glycine (cyst 
nematode)

Increased in plant 
height, plant biomass 
and yield

Soybean Xiang et al. 
(2017)

Bacillus sp. BC27 
and BC29

Meloidogyne 
javanica

Increase in shoot 
weight

Soybean Chinheya 
et al. (2017)

Pseudomonas putida 
and Rothia sp.

Spodoptera 
litura

Increase in plant 
biomass and yield

Tomato Bano and 
Muqarab 
(2017)

Bacillus 
methylotrophicus 
strain R2-2

Meloidogyne 
incognita

Yield enhancement Tomato Zhou et al. 
(2016)

Lysobacter 
antibioticus strain 
13-6
Bacillus subtilis 
isolates Sb4–23, 
Mc5-Re2, and 
Mc2-Re2,

Meloidogyne 
incognita

– Tomato Adam et al. 
(2014)

(continued)
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Table 11.3  (continued)

Biological control 
agents Pest PGP traits Plant species References
Fungus
Beauveria bassiana Spodoptera 

littoralisn
Boosted spike 
production

Wheat Sánchez-
Rodríguez 
et al. (2018)

Purpureocillium 
lilacinum

Meloidogyne 
javanica, 
Meloidogyne 
incognita

Increase in yield Tomato Kepenekci 
et al. (2018)

Beauveria bassiana 
GHA

– Enhance the root sett Sugarcane Donga et al. 
(2018)

Metarhizium 
brunneum CB15

– Biomass, leaf area, 
nitrogen and 
phosphorus contents 
were enhanced

Potato Krell et al. 
(2018)

Beauveria bassiana, 
Isaria fumosorosea, 
and Metarhizium 
brunneum

– Positive effect on 
survival, growth, 
health, length, and dry 
weight of cabbage

Cabbage Dara et al. 
(2017)

Syncephalastrum 
racemosum, 
Paecilomyces 
lilacinus

Meloidogyne 
incognita

Stimulated root 
length, shoot length 
and increased the 
cucumber yield

Cucumber Huang et al. 
(2016)

Beauveria bassiana 
and Metarhizium 
brunneum

– Plant growth 
enhancement

Vicia faba Jaber and 
Enkerli 
(2016)

Beauveria bassiana 
and Purpureocillium 
lilacinum

Helicoverpa 
zea (cotton 
bollworm)

Plant growth 
enhancement

Cotton Lopez and 
Sword 
(2015)

Metarhizium 
robertsii

Several insects Induced root hair 
proliferation and plant 
root growth

Switchgrass, 
haricot beans

Sasan and 
Bidochka 
(2012)

Metarhizium 
anisopliae LHL07

– Higher shoot length, 
shoot fresh and dry 
biomass, chlorophyll 
contents, transpiration 
rate, photosynthetic 
rate and leaf area

Soybean Khan et al. 
(2012)

Metarhizium 
anisopliae

– Increased plant height, 
root length, shoot and 
root dry weigh

Tomato Elena et al. 
(2011)

Actinomycetes
S. rubrogriseus 
HDZ-9-47

Meloidogyne 
incognita

Increase in yield Tomato Jin et al. 
(2017a, b)

S. galilaeus strain 
KPS-C004

Meloidogyne 
incognita

Increase in plant 
biomass, shoot-root 
length

Chili Nimnoi 
et al. (2017)
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11.2	 �Plant Growth-Promoting Rhizobacteria (PGPR)

The term “PGPR” was first used for soil-borne bacteria supporting PGP activity by 
root colonization in plants (Kloepper and Schroth 1978). The PGPR comprises the 
heterogeneous group of nonpathogenic, root-colonizing bacteria that ameliorate 
plant growth. This group of rhizobacteria found in the narrow region of soil around 
plant root, known as the rhizosphere, primarily influenced by the plant root system. 
Lorenz Hiltner was the first to use term “rhizosphere,” a word primarily originating 
from the Greek word “rhiza” (Hiltner 1904). The rhizosphere is a highly competi-
tive microenvironment for diverse groups of microbes to obtain nutrients and prolif-
erative growth that helps plants in development and PGP activity.

The growth promotion by PGPR occurs by the modification of the rhizospheric 
microbial community. Generally, PGPR affect plant growth by exhibiting a variety 
of direct and indirect mechanisms. The direct PGP activity entails either facilitating 
the resource acquisition (essential minerals and nutrients) from the surrounding 
environment or by providing synthesized compounds. The indirect mechanisms are 
related to reduce the harmful effects of phytopathogens by synthesis of antibiotics, 
lytic enzymes (chitinases, cellulases, 1,3-glucanases, proteases, and lipases), and 
chelation of available iron in the plant-root interface.

11.2.1	 �Categories of PGPRs

The PGPR are categorized into extracellular (ePGPR-symbiotics) and intracellular 
(iPGPR-free-living) PGPR depending on their habitat in plant compartment (Gray 
and Smith 2005). The ePGPR exists among the spaces in the root cortex cells, rhi-
zosphere and rhizoplane, whereas iPGPRs reside in the nodular structures of root 
cells (Figueiredo et al. 2010). The ePGPR include different bacterial genera such as 
Erwinia, Flavobacterium, Arthrobacter, Agrobacterium, Azotobacter, Azospirillum, 
Burkholderia, Bacillus, Caulobacter, Chromobacterium, Micrococcous, 
Pseudomonas, and Serratia (Ahemad and Kibret 2014). The iPGPR includes the 
members of Rhizobiaceae family (such as Rhizobium, Bradyrhizobium, 
Allorhizobium, Mesorhizobium), Frankia species, and endophytes (Bhattacharyya 
and Jha 2012).

The PGPR can be also classified on the bases of their functional activities. This 
classification includes biofertilizer (enhances the availability of primary nutrients 
and growth of host plant), biopesticide (suppress or control diseases, mainly by 
antifungal metabolites and antibiotic production), phytostimulators (the ability to 
produce phytohormones like IAA, GAs, etc.), and rhizoremediators (degrading 
organic pollutants) (Bhardwaj et al. 2014). The PGPRs employ number of mecha-
nisms to interact with their host plants either simultaneously or separately under 
different time and conditions.

P. P. Verma et al.



293

11.3	 �Plant Growth-Promoting Fungi (PGPF)

Most of the previous studies have focused on PGPR and their association with phy-
topathogens whereas little is known about the PGPF. The PGPF are nonpathogenic 
saprophytes that exert advantageous effects on plants. They are known to enhance 
plant growth, suppress plant diseases, and induce ISR. Some PGPFs species reported 
to suppress the bacterial and fungal diseases of some crop plants. The well-known 
nonpathogenic fungal genera include Aspergillus, Piriformospora, Fusarium, 
Penicillium, Phoma, Rhizoctonia, and Trichoderma and stimulate different plant 
traits helpful for higher yields (Jaber and Enkerli 2017; Lopez and Sword 2015).

Some examples of PGPF with BCA activity include endophytes, ectomycorrhi-
zas (EcM), arbuscular mycorrhizae (AMF), yeasts, Trichoderma sp., and certain 
avirulent strains of phytopathogens like Fusarium oxysporum, Cryphonectria para-
sitica, and Muscodor albus (Waghunde et  al. 2017). These beneficial fungi have 
been produced in large quantities and widely applied for management of plant dis-
eases (Ghorbanpour et al. 2017). The PGPF and plant root association has shown to 
modulate plant growth, mineral nutrient uptake, increased biomass, and yield of 
crop plants (Deshmukh et al. 2006). Plant beneficial microorganisms are of great 
interest for applications in agriculture as biofertilizers and biopesticides and for 
phytoremediation (Berg 2009; Weyens et al. 2009; Shelake et al. 2018).

11.4	 �Biological Control by PGPR and PGPF

The term “biological control” was first coined to describe the use of natural enemies 
(introduced or manipulated) to control insect pests by Harry Scott Smith (1919). 
Later, Paul H. DeBach and Hagen (1964), an entomologist, redefined “natural con-
trol” from “biological control.” The natural control includes biotic (such as food 
availability and competition) and abiotic (like weather and soil) factors, and also the 
natural enemies (like predators, parasites, and pathogens) mediated effects. The 
natural enemies are affecting or regulating the pest populations. The biological con-
trol or biocontrol is a part of the natural control and described as the use of natural 
or living organisms to inhibit pathogen and suppress plant diseases. The chief mode 
of action of biocontrol in PGPR/PGPF implicates competition for nutrients, SAR/
ISR induction, niche exclusion, and production of antifungal/antibacterial metabo-
lites like antibiotics, bacteriocins, and lytic enzymes (Salomon et  al. 2017). The 
biological control is generally separated into three types: classical biological control 
(CBC), conservation, and augmentation. Each of these approaches can be used sep-
arately or in combination with each other in the biological control program.

11.4.1	 �Classical Biological Control

The importation of natural enemies to control an introduced or “exotic” pest is 
known as CBC.  The initial step in CBC involves the determination of the pest 
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origin, and then an exploration for its natural enemies in its habitat. The potential 
BCAs then introduced to the new pest location and released for its establishment. 
For example, in the late 1800s, the cottony cushion scale, a pest which is native to 
Australia devastated California citrus industry. The Vedalia beetle (predatory insect) 
was then introduced from Australia, and the pest control achieved in short time. 
Three exotic encyrtid parasitoids (Anagyrus loecki, Acerophagus papayae, and 
P. Mexicana) were introduced in Southern state of India (Tamil Nadu) against a 
papaya mealybug Paracoccus marginatus, causing damage to mulberry fields 
(Sakthivel 2010).

11.4.2	 �Conservation

Conservation involves the practices that protect, maintain, and enhance the existing 
natural enemies. Conservation practices include either reducing or eliminating the 
factors which interfere with or destroy the natural enemies, for example, use of 
selective chemical pesticides or providing resources that natural enemies need in 
their environment.

11.4.3	 �Augmentation

Augmentation involves the mass culture and release of natural enemies. It consists 
of two types: inoculative and inundative. The inoculative involves the release of few 
natural enemies seasonally and suppresses pest outbreaks whereas inundative 
involves the release of enormous numbers of natural enemies to outcompete the pest 
population completely. In inundative release, immediate control of pest population 
is achieved by massive release of their natural enemies.

11.5	 �PGPR and PGPF as Biological Control Agents (BCAs)

The term BCA generally used in broader sense that includes naturally occurring 
materials (biochemical pesticides), microbes (microbial pesticides), and plants-
produced materials consisting genetic material or plant-incorporated protectants 
(US EPA 2012). The biochemical pesticides include organic acids, plant and insect 
growth regulators, plant extracts, pheromones, minerals, and other substances. The 
Association of Southeast Asian Nations (ASEAN) Sustainable Agrifood Systems 
(Biocontrol) Project (ABC) classified BCA into four product categories to accom-
modate living and nonliving active agents: microbial control agents (microbial), 
macroorganisms (macrobials), semiochemicals, and natural products. Microbial 
control agents often called as “biopesticides” include a variety of microbes, viz., 
bacteria, fungi, protozoa, nematodes, and viruses. Among these, bacteria and fungi 
dominate the commercial BCA formulations including PGPR/PGPF.
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The macrobials agents include the mites and insects. Their mode of deployment 
includes the conservation and CBC. A more recent example includes the release of 
the Anagyrus lopezi (wasp) from Benin to control Phenacossus manihoti (mealy-
bug) of pink cassava in Thailand (Winotai et al. 2012). The semiochemcials refers 
to the biochemical molecules or mixtures that carry specific messages between indi-
viduals of the same or different species. These semiochemicals often used as insect 
attractants (pheromones) and repellents in extremely low dosage. The last one 
includes the natural plant extracts or “botanicals” which cover diverse natural sub-
stances like azadirachtin, pyrethrum, ginseng extract, etc. with different biological 
activity (Regnault-Roger et al. 2005). In this work, microbials that include PGPR/
PGPF are discussed in detail and other BCA categories.

11.6	 �Mechanisms of Biological Control by PGPR and PGPF

Prediction of disease epidemiology in plants is determined by the associations 
among the constituents of disease triangle, i.e., pathogen, susceptible host and envi-
ronment. The interactions among these three components show the severity and 
occurrence of the disease. The BCAs interact with all the three components of the 
disease triangle. The BCAs-pathogens interactions studies have revealed the multi-
ple mechanisms of biological control (Table 11.1). The BCAs act on phytopatho-
gens through one or more multifarious mechanisms resulting in plant growth 
inhibition and spread of phytopathogens (summarized in Tables 11.2 and 11.3). The 
various mechanisms employed in controlling the plant diseases can broadly classi-
fied into direct, indirect, and mixed path antagonism.

11.6.1	 �Direct Antagonism

11.6.1.1	 �Parasitism and Hyperparasitism
Parasitism is a type of interaction between two phylogenetically unrelated organ-
isms in which one organism, the parasite, is usually benefitted and the other called 
the “host” is harmed. For example, Trichoderma spp. have a parasitic activity toward 
a wide variety of phytopathogens such as Botrytis cinerea, Rhizoctonia solani, 
Pythium spp., Sclerotium rolfsii, Sclerotinia sclerotiorum, and Fusarium spp. (sum-
marized in Waghunde et al. 2016). The Rhizoctonia solani cause several plant dis-
eases like rice blight and black scurf of potato and Trichoderma spp. is being used 
as a potential BCA for all these diseases (Jia et al. 2013; Rahman et al. 2014).

The terms mycoparasitism and hyperparasitism have been used for fungal spe-
cies parasitic on another fungus. The involved pathogen is known as hyperparasite 
or mycoparasite, or parasite. The mycoparasitism involves the chemotropic growth 
of the BCA toward the pathogen, recognition through the host lectins and carbohy-
drate receptors present on the biocontrol fungus. The next step involves the coiling 
and making of cell wall-degrading (CWD) enzymes and penetration. Some exam-
ples include the powdery mildew pathogen parasitized by multiple hyperparasites 
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like Ampelomyces quisqualis, Acrodontium crateriforme, A. alternatum, 
Cladosporium oxysporum, and Gliocladium virens (Kiss 2003; Heydari and 
Pessarakli 2010). An additional case is the virus causing hypovirulence on 
Cryphonectria parasitica, an ascomycete causing chestnut blight (Tjamos et  al. 
2010).

11.6.1.2	 �Commensalism
Commensalism is a type of symbiotic interaction benefiting one partner while the 
other is neither harmed nor benefited. The benefited organism is known as commen-
sal and obtains its nutrients and shelter from its host species. A good example of 
commensals comprises rhizobacteria. The rhizobacteria such as PGPR control soil-
borne phytopathogens through antibiotic production, nutrient competition thereby 
helping plants to survive from phytopathogens.

11.6.2	 �Indirect Antagonism

11.6.2.1	 �Competition
Competition is an indirect mechanism and plays a significant role in the biocontrol 
of pathogens. Biocontrol by competition occurs when nonpathogenic microbes 
compete for organic nutrients with pathogens to proliferate and survive in host 
plant. Predominantly, the BCAs have more competent nutrient uptake system than 
phytopathogens. One of the examples includes control of Fusarium wilt due to car-
bon competition between pathogenic and nonpathogenic strains of F. oxysporum 
(Alabouvette et al. 2009). Fire blight, a contagious disease caused by Erwinia amy-
lovora is suppressed by its closely related saprophytic species E. herbicola due to 
nutrient competition on the leaf surface.

11.6.2.2	 �Systemic Acquired Resistance (SAR)
During the biotic or abiotic stress, the plant produces chemical signals like gluta-
mate thereby activating the plant defense pathways (Toyota et al. 2018). In order to 
tackle abiotic and biotic stresses plants express a variety of active defense system. 
The PGPR and PGPF produce chemical stimuli which can induce a persistent varia-
tion in plants increasing its capacity to tolerate pathogenic infection and induce 
systemic host defense against wide-ranging pathogens, known as induced resis-
tance. The induced resistance is of two different forms: the SAR and ISR represent 
the plant defense response active against phytopathogens. The SAR is the inherent 
resistance capacity of a plant which activates after being exposed to chemical elici-
tors from nonpathogenic, virulent, or avirulent microbes or artificial chemical stim-
uli (Gozzo and Faoro 2013). It remains active against broad-spectrum pathogens for 
a prolonged time. The SAR induction is mediated by the buildup of accumulated 
chemical stimuli like salicylic acid (SA) generally secreted after pathogen attack. 
The SA is the first chemical signal inducing the production of pathogenesis-related 
(PR) proteins, for example, chitinase, β-1, 3 glucanse. The PR genes code for chi-
tinases and β-1, 3-glucanases which play a significant role in reducing or preventing 
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the pathogen colonization (Sudisha et al. 2012). The SAR has been showed against 
some pathogens and pests, including Uromyces viciae-fabae, Ascochyta fabae, M. 
incognita, and R. solanacearum (Pradhanang et al. 2005; Molinari and Baser 2010; 
Sillero et al. 2012).

11.6.2.3	 �Induced Systemic Resistance (ISR)
The ISR naturally exists in plants and is generally associated to stimulation by non-
pathogenic plant-associated rhizobacteria (Pieterse and Van Wees 2015). The ISR is 
independent of the SA-mediated pathway, and PR proteins are not involved. It is 
plant specific and depends upon the plant genotype. The applications of nonpatho-
genic PGPR/PGPF induce ISR facilitated by phytohormones production (viz., jas-
monic acid and ethylene). The PGPRs induces ISR in several plants against 
numerous environmental stressors. The plant defense system produces an enormous 
number of enzymes involved in plant defense, like polyphenol oxidase, β-1, 
3-glucanase, chitinase, phenylalanine ammonia lyase, peroxidase, etc. Even though 
ISR is not precisely against a specific pathogen, it plays a major role in control of a 
range of diseases in plant (Kamal et al. 2014). For example, the ISR activity induced 
by application of Trichoderma strains in the leaves was found effective against sev-
eral diseases in tomato plants (Saksirirat et al. 2009). Rice plant treated with Bacillus 
sp. showed resistance against bacterial leaf blight (Udayashankar et al. 2011).

11.6.3	 �Mixed Path Antagonism

11.6.3.1	 �Antibiosis
Antibiosis is defined as the interactions involving a low-molecular-weight com-
pound or an antibiotic that is detrimental to another microorganism. Antibiosis 
plays a significant role in the suppression of plant diseases and pathogens (Nikolić 
et al. 2018; Kumari et al. 2018). The PGPR like Bacillus sp. and Pseudomonas sp., 
produces a diverse range of antibiotics against different phytopathogens and is sig-
nificantly more efficient biocontrol mechanism over the past decade (Ulloa-Ogaz 
et al. 2015). The antibiotics such as phenazine-1-carboxylic acid (PCA), phenazine-
1-carboxamide, N-butylbenzene sulfonamide, pyrrolnitrin, pyoluteorin, rhamnolip-
ids, oomycin A, cepaciamide A, 2,4-diacetylphloroglucinol, ecomycins, 
viscosinamide, butyrolactones, pyocyanin (antifungal), azomycin, pseudomonic 
acid, cepafungins, and Karalicine are produced by Pseudomonas sp. (Ramadan 
et al. 2016). Bacillus sp. also produces subtilintas A, subtilosin A, bacillaene, sub-
lancin, difficidin, mycobacillin, chlorotetain bacilysin, rhizocticins, iturins, surfac-
tin, and bacillomycin (Wang et al. 2015). The antibiotic 2,4-diacetyl phloroglucinol 
produced by Pseudomonas sp. is reported to inhibit Pythium sp. Similarly, iturin is 
reported to suppress B. cinerea and R. solani (Padaria et al. 2016).

11.6.3.2	 �Siderophores
In addition to water, carbon dioxide, and oxygen, all living plants need total 14 
essential elements that include iron (Shelake et  al. 2018). The PGPR produces 

11  Plant Growth-Promoting Rhizobacteria (PGPR) and Fungi (PGPF): Potential…



298

low-molecular-weight (500–1500  Da) organic compounds called siderophores to 
competitively capture ferric ion under iron-lacking conditions. Siderophore-
producing PGPRs gain more attention because of their distinctive property to extract 
iron from their surrounding (Saha et al. 2016). They sequester iron from their micro-
environment, forming a ferric-siderophore complex that progress through diffusion 
and reverted to the cell surface (Andrews et al. 2003). The bacterial siderophores are 
of four classes depending on their iron coordinating functional groups: hydroxa-
mates, carboxylate, pyoverdines and phenol catecholates (Crowley 2006).

The PGPRs exert their antagonism to several phytopathogens using secreted sid-
erophores (Tables 11.2 and 11.3). They function by sequestering iron in the root 
zone, making it unavailable to phytopathogens and inhibiting their growth. Also, 
PGPR-secreted siderophores augment plant uptake of iron that can distinguish the 
bacterial ferric-siderophore complex (Katiyar and Goel 2004; Dimkpa et al. 2009). 
Siderophores produced by Pesudomonas group suppress several fungal pathogens 
and also enhanced growth of numerous crops (Bensidhoum et  al. 2016; Sharma 
et al. 2017a, b, c; Tabli et al. 2018).

11.6.3.3	 �Volatile Substances
Soil microbes including PGPR produce and release various organic and inorganic 
volatile compounds (Audrain et al. 2015). The volatile compounds synthesized by 
PGPR suppressed diverse kind of phytopathogens, indicating their role in biocon-
trol of soil-borne pathogens (Karimi et al. 2016; Gotor-Vila et al. 2017; Rath et al. 
2018). The volatile compounds from PGPR, for instance, Pseudomonas, Bacillus, 
and Arthrobacter, directly or indirectly facilitate enhanced resistance against dis-
eases, tolerance against abiotic stress, and higher biomass production. The Bacillus 
sp. produces acetoin and 2, 3-butanediol, effective against fungal pathogens (Santoro 
et al. 2016). Bacillus megaterium was found to produce ammonia which inhibits 
Fusarium oxysporum (Shobha and Kumudini 2012). Several other studies on 
Pseudomonas sp. reported the production of ammonia and hydrocyanic acid serving 
PGP and biocontrol activity (Verma et al. 2016; Sharma et al. 2017a, b, c).

11.6.3.4	 �Lytic Enzyme Production
The PGPR/PGPF can suppress the growth and activities of phytopathogens by 
secreting lytic enzymes. The PGPR produces a diverse number of enzymes like 
ACC-deaminase, cellulases, chitinase, lipases, proteases, β-1,3-glucanase which are 
involved in the lysis of fungal cell wall (Goswami et al. 2016). The fungal cell wall 
primarily consists of chitin, glucans, and polysaccharides; hence β-1,3-glucanase- 
and chitinase-producing bacteria are effective to suppress their growth. The expres-
sion of lytic enzymes by PGPR can enhance the suppression of phytopathogens. For 
instance, chitinase produced by S. plymuthica strain C48 inhibits germ-tube elonga-
tion and spore germination in Botrytis cinerea (Frankowski et al. 2001). Chitinase 
secreted by Paenibacillus sp., Streptomyces sp., and Serratia marcescens was found 
to constrain the growth of Botrytis cinerea, Sclerotium rolfsii, and Fusarium oxys-
porum f. sp. cucumerinum. Lysobacter produces enzyme glucanase which inhibits 
Bipolaris and Pythium sp. (Palumbo et  al. 2005). Micromonospora chalcea and 
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Actinoplanes philippinensis inhibit Pythium aphanidermatum in cucumber through 
the secretion of β-1, 3-glucanase (El-Tarabily 2006).

11.7	 �Advantages of PGPR and PGPF as BCAs

The agrochemicals and genetic approaches used as tools to control plant diseases, 
but they are not always effective. Moreover, several agrochemicals are nonbiode-
gradable and exert a harmful effect on the environment. The excessive usage of 
pesticides for plant disease management has increased pathogen-resistant strains 
(Burketova et al. 2015). In this regard, PGPR have been seen as an attractive strat-
egy and a sustainable means of controlling soil-borne pathogens and diseases. The 
application of PGPR and PGPF in sustainable agriculture has been increased in 
several regions. The PGPR with biocontrol efficacy often provides long-term pro-
tection against soil-borne phytopathogens because of their rhizosphere competency, 
i.e., capacity to rapidly colonize the rhizosphere.

The PGPR/PGPF utilizes the plant’s rhizodeposits as a chief carbon source for 
their development (Denef et  al. 2007). The PGPF protect plants from harmful 
microbes by producing antibiotics while some act as a parasite and some compete 
for space and food with pathogens (described in earlier sections). They also protect 
plants by ISR against pathogenic bacteria (Yoshioka et  al. 2012; Hossain and 
Sultana 2015), fungi (Murali et al. 2013; Tohid and Taheri 2015, Nassimi and Taheri 
2017), viruses (Elsharkawy et al. 2013), and nematodes (Vu et al. 2006). The arbus-
cular mycorrhiza fungi (AMF) also help plants in resource acquisition, suppression 
of diseases, and tolerance to soil pollution and development (Wani et  al. 2017). 
Many studies suggested AMF as an efficient BCAs against phytopathogens and 
nematodes (Veresoglou and Rillig 2012; Vos et al. 2012, 2013; Akhtar and Panwar 
2013). The use of PGPR/PGPF as BCAs reduces the burden of agrochemicals (fer-
tilizers and pesticides) in agricultural ecosystem thus preventing environmental pol-
lution. The BCAs have several other advantages as compared to pesticides mentioned 
as follows:

	 1.	 The PGPR enhances growth and protects plants against phytopathogens.
	 2.	 The PGPR can act as a biofertilizer, biopesticide, phytostimulators, and 

rhizoremediators.
	 3.	 The PGPR multiply in soil, leaving no residual problem.
	 4.	 A single PGPR can protect against multiple plant pathogens.
	 5.	 The PGPR possess multifarious mechanisms including antibiosis, CWD 

enzymes and siderophore production and also induce SAR/ISR in plants.
	 6.	 They are nontoxic to plants and humans.
	 7.	 They are ecofriendly and easy to manufacture.
	 8.	 BCAs are cheaper as compared to the agrochemicals.
	 9.	 The PGPR can be handled easily and applied in the field.
	10.	 The use of PGPR is sustainable in long-term.
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11.8	 �Global Status of Biopesticides

The biopesticides have attracted more interest of global research community due to 
the harmful effects of chemical pesticides on human health through produced food 
and environmental safety. Consequently, the global crop protection chemical and 
conventional pesticide market have experienced major variations over the recent 
years (Pelaez and Mizukawa 2017). At present, biopesticides comprise only 5% of 
the total global crop protection market, with 3 billion dollars in revenue worldwide 
(Damalas and Koutroubas 2018). In the market of the United States, there are more 
than 200 products registered for use in comparison with 60 similar products in the 
market of European Union (EU). The global consumption of biopesticides is rising 
at a rate of 10% every year and is projected to increase further in the future (Kumar 
and Singh 2015).

The biopesticide development has prompted to replace the chemical pesticide for 
crop protection. The PGPR/PGPF seems effective in small amounts and much more 
specific to their target as compared to the conventional pesticides. A large number 
of biopesticides have already been registered and released in the market. Recently, 
novel substances have been formulated and reported for use as a biopesticides, like 
the products derived from plants (Clitoria ternatea), fungus (Talaromyces flavus 
SAY-Y-94-01, Trichoderma harzianum), bacteria (Bacillus thuringiensis var. tene-
brionis strain Xd3, Lactobacillus casei LPT-111), oxymatrine (an alkaloid) 
(Damalas and Koutroubas 2018). It is anticipated that between the middle of 2040s 
and 2050s, biopesticide market will equalize with synthetic pesticides and major 
uncertainties will be due to its uptake in African and Southeast Asian countries 
(Olson 2015).

The biopesticide market development have improved the management practices 
and reduced the use of chemical pesticides. Various products have been certificated 
and commercialized for use in crop protection in different countries. However, in 
EU, there are very fewer biopesticides being registered as compared to Brazil, 
China, India, and the United States because of the complex and time-consuming 
registration processes. The main problem of the biopesticide industry is the lengthy 
submission process at the EU and other member state levels. The quicker imple-
mentation of registration procedures and time limits are essential if more new prod-
ucts have to be commercialized.

Furthermore, the high cost of registering a new BA or product is another limiting 
factor in its commercialization (Pavela 2014). Therefore, the regulatory authorities 
must try to ensure smooth and fast biopesticide registration processes and help to 
promote the safe technologies for product development. The small- and medium-
sized firms should be developed to provide farmers with the reliable tools and prod-
ucts for pest management (Damalas and Koutroubas 2018).
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11.9	 �Status of Biopesticide in India

In India, the organic pesticides market has generated total revenue of $102 million 
in 2016 and is projected to contribute $778 million by 2025. According to the mar-
ket research report published by Inkwood research (2017) the market for biopesti-
cides in India is anticipated to rise at a growth rate of 25.4% compounded annually 
during the 2017–2025 forecast period. The biopesticide industry in India represents 
only 4.2% of the entire pesticide market and is immensely driven by the sale of 
Trichoderma viride, Pseudomonas fluorescens, Bacillus thuringinsis, Beauveria 
bassiana, Metarhizium anisopliae, Verticillium lecanii, Paecilomyces lilacinus. The 
Indian biopesticides market, to a high degree, is dominated by numerous unorga-
nized and organized companies like Pest Control India (PCI) and International 
Panaacea Ltd. (2015). There are around 150 companies involved in biopesticide 
manufacturing and 12 different types of bioinsecticides registered under the 
Insecticides Act, 1968 (Gautam et al. 2018).

11.10	 �Conclusion and Future Perspectives

There has been a considerable rise in the crop yields over the last century, which is 
mainly attributed to the utilization of chemical pesticides and agrochemicals. 
Globally, these agrochemicals have become a significant component of agriculture 
systems. Because of public concern about the damage caused by the intensive use 
of agrochemicals, an alternative path to their usage in agriculture production system 
has to be developed. Over the past decade, the use of BCAs has significantly 
increased in agriculture and is being recommended as an alternative.

Understanding the stimulation of plant responses by PGPR, PGPF, and other 
microbials is crucial for developing novel methodologies to regulate plant diseases 
and growth. The exploitation of these microbials relates to their use in PGP activity 
and mode of action against a variety of pathogens. Future research needs to focus on 
attaining integrated management of microbial communities in the rhizospheric soil. 
The advances in biotechnological and molecular approaches will provide more 
understanding of the cellular processes and signaling pathways linked to growth and 
DP resistance, resulting from plant-microbe interactions. Recently, genome editing, 
a modern genetic tool was used to study different aspects of plant-microbe interac-
tions in two species, Bacillus subtilis HS3 and B. mycoides EC18 (Yi et al. 2018). 
Such studies will help to understand molecular mechanisms that support plant 
growth and to identify the superior PGPR/PGPF species in the future. The new 
alternatives should be discovered to be used as bioinoculants for different crops 
such as fruits, vegetables, pulses, and flowers. The application of compatible PFPR 
and PGPF consortium over single strain could be an effective method for reducing 
plant diseases. Also, compatible combinations of PGP microbes with the agrochem-
icals or organic amendments needed in the near future.
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Many agricultural companies are working in crop protection especially in BCA 
products. The PGPR, PGPF, and other microbials are already being used in different 
countries under a different name and are expecting to grow at enormous speed. 
Eventually, for effective use of these microbes as BCAs, practical techniques for its 
mass culturing, formulation development, and storage need to be addressed and 
established. Additionally, an effort is needed to educate the farmers about the BCAs. 
We advocate the application of multifarious PGP microbial singly or in consortia 
for development of ecofriendly sustainable agriculture.
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