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Abstract. When small damage is detected in its initial stage in a
real structure, it is necessary to decide if the user must repair imme-
diately or keep on safely monitoring it. Regarding the second choice,
the present paper proposes a methodology for damage severity quan-
tification of delamination extension in composite structures based on a
data-driven strategy using autoregressive modeling approach for Lamb
wave propagation. A pair of features is used based on the autoregressive
(AR) model coefficients and residuals and a machine learning algorithm
with Mahalanobis Squared Distance for outlier detection. The damage
severity quantification is proposed through an experimentally identified
smoothing spline trend curve between the damage index and its severity.
The application of the methodology is demonstrated in a composite plate
with various progressive damage scenarios. The proposed method proved
to be able to identify and predict the localization and the damage index
related to its respective extension of minimal simulated damage with
promising accuracy.

Keywords: Damage quantification · Composite structures ·
Autoregressive models

1 Introduction

The use of composite materials in industrial applications has increased substan-
tially in the last decades, due to their unique properties, such as high strength
and stiffness combined with a low-density [1]. On the other hand, they have vari-
ous and more complex types of damage such as matrix cracking, fiber debonding,
and delamination [2]. Then, a drawback for the use of composite materials is to
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assure their reliability in service. In this scenario, structural health monitoring
(SHM) techniques have been the focus of intensive research and development in
recent years as a plausible solution, motivated by the potential of a substantial
improvement in the safety of structures and economic benefits with maintenance
cost reduction.

Damage identification methods can be decomposed in five levels that are
related with: (1) detection, (2) localization, (3) classification, (4) quantification
and (5) prognosis [3]. SHM methods based on guided waves and Lamb waves
are the most widely used for damage identification [4]. They typically comprise
the use of a network of piezoelectric elements (PZT) acting as both sensors and
actuators to capture a baseline condition that after is related to an unknown
condition to be classified. To ensure the reliability of damage identification is
necessary to separate environmental and operational conditions from the struc-
tural changes associated with damages. Several works in the literature focused
on damage detection and localization techniques in this context. However, a
limited number of contributions have addressed the damage quantification level
[5–8]. Ghrib et al. [9] presented a study of damage type classification and sever-
ity quantification in a composite structure with Support Vector Machine (SVM)
using nonlinear model-based features to damage severity classification into the
categories: “low,” “mid” or “severe.” Vitola Oyaga et al. [10] applied an app-
roach for damage localization and quantification close to what will be employed
in this work, using autoregressive models (AR). Nevertheless, it was based on
vibration signals applied for civil structures and they did not verify a direct
correlation among the index proposed and the damage size.

Thus, the primary purpose of this paper is to introduce a methodology for
damage severity quantification of delamination size in composite structures based
on a data-driven strategy. The paper is organized as follows: first, the proposed
methodology of damage quantification is presented, where the damage identifi-
cation using AR models is discussed concomitantly with the damage-sensitive
features proposed. Next, the last step of the methodology of trend curve extrap-
olation to quantify the damage is detailed and discussed. Then, an experimental
application of the methodology is demonstrated for a composite plate consider-
ing simulated damage. Finally, the results are discussed and further directions
are suggested.

2 Quantification Methodology Proposed

Figure 1 illustrates the methodology proposed herein for damage quantification.
The methodology can be separated into two steps: (1) learning and (2) test.
First, a data set from the healthy state and small damage conditions known a
priori is used to identify an AR model and to construct a trend curve between
damage severity and the damage index. Next, this connection represented by a
smoothing spline is used into the test step to quantify the damage severity of
an unknown condition in a future state based on the curve extrapolation. As
the methodology requires data from undamaged and damaged conditions, it is
posed in the context of supervised methods [3].
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Fig. 1. Proposed methodology for damage quantification in composite structures.

2.1 Damage-Sensitive Index Using AR Models

An AR model in healthy condition using a time-series measured using a set of
PZTs can be described by [11]:

Ahij
(q)xij(k) = ehij

(k) (1)

where xij(k) is the output signal in i position caused by an excitation signal1

applied in j spot in a sample time k, the healthy polynomial of the AR model
is Ahij

(q) = 1 + a1q
−1 + · · · + ana

q−na , where q−1 is a lag operator, i. e.,
a1q

−1xij(k) = a1xij(k−1), and ehij
(k) is the reference error prediction assumed

to be a white noise. The order na can be found using Bayesian information
criterion (BIC) and the parameters of the polynomial Ahij

(q) are identified using
a simple least squares method with a focus in a one-step-ahead prediction [11–
13]. Equation 1 can be used for monitoring an unknown situation signal yij(k)
in the path i − j through:
1 The input signal assumed here is a burst signal and it is not used to create the

predictions models.
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Ahij
(q)yij(k) = εij(k) (2)

If the new error εij(k) has the same distribution (white noise) of the reference
error, the system is in the healthy condition [14,15]. On another hand, if the error
varies, probably it is induced by damage or environmental/operation variations.
So, a new model must be identified:

Adij
(q)xij(k) = edij

(k) (3)

where Adij
(q) = 1 + a−1

d1q
+ · · · + adna

q−na is the new polynomial in unknown
condition. Important to note that it is assumed the same model order because
there is an assumption of a small variation between the two states. Two features
can be well applied to describe a damage detection procedure. First, to compute
the ratio of variance of the error obtained:

X1 =
σ(edij

)
σ(ehij

)
(4)

and second using the parameters given by:

X2 =
1
na

na∑

j=1

(aj − adj
)2 (5)

The Mahalanobis Squared Distance D2 is applied as the damage index for
statistical outlier detection using a test matrix Z in a multivariate data set,
including the two features presented previously [3]:

D2(Z) = (Z− μ)
−1∑

(Z− μ)T (6)

where μ is the mean vector and
∑

is the covariance matrix assuming a training
matrix formed by the indices in a defined baseline condition X = [X1 X2].

To perform the detection is required the establishment of a threshold value to
separate the damaged and healthy states. The strategy presented by Figueiredo
et al. [16] is used in this study, where the threshold for outliers detection is defined
by the most significant value of the D2(Z) considering all signals corresponding
to the safe condition.

2.2 Trend Curve Extrapolation

To establish a direct ratio among the damage index and its severity, it is proposed
a trend curve fitting by a smoothing spline, where the data from undamaged and
damaged states of the learning steps are used to define the curve, that can be
extrapolated in order to predict the damage index and its respective severity in
the next test step.

The damage severity (s) examined in this work corresponds to the area cov-
ered by simulated damage and can be measured for each state. As for each dam-
age condition, it is considered a population of computed damage indices; then,
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its statistical model is used to relate to its particular severity. The statistical dis-
tribution of the damage indices is unknown a priori. Then, the kernel smoothing
technique is used to estimate their probability density function (PDF) to obtain
the mode of a set of damage index values in each damaged condition [17].

Suppose observed n pairs of damage index and severity (D2
i , si), i = 1..., n,

relating to the general smoothing spline regression [18]

D2
i = f(si) + ξi (7)

where ξi is an independent random error. A smoothing spline estimate fp for f
is defined as the minimizer of the penalized criterion [18].

1
n

n∑

i=1

D2
i − f(si)

2
+ (1 − δ)

∫
(
∂2f

∂s2
)2ds (8)

where δ is a positive known as smoothing parameter. As long as the smoothing
spline curve is estimated on the learning step of the methodology, it can be
applied to predict an unknown damage size on the test step in a future state.

3 Experimental Application

Figure 2(a) illustrates a carbon-epoxy laminated with layup containing 10 plies
unidirectionally oriented along 0◦ with four PZTs SMART Layers from Accelent
Technologies, with 6.35 mm in diameter and 0.25 mm in thickness. A pitch-catch
configuration is employed where the PZT 1 is used as an actuator. A five-cycle
tone burst signal with 35 V of amplitude and center frequency of 250 kHz is
applied. The outputs used are measured in PZT 2, PZT 3 and PZT 4 with a sam-
pling frequency of 5 MHz and timespan of 200µs. All signal generation and the
acquisition was performed using the setup schematically described in Fig. 2(b),
composed by a NI USB 6353 from National Instrument, a power amplifier EL
1225 from Mide QuickPack and an oscilloscope DSO7034B from Keysight, both
controlled by Labview.

To simulate the damage reversibly, an industrial adhesive putty was inserted
on the plate surface [19]. The additional mass introduced by the putty simulates
local changes in the damping of the plate, which is an effect similar to the
delamination in composites according to Lee et al. [19]. The damage severity of
all states on the learning and test steps are presented in Table 1.

The experiments were conducted inside a temperature chamber SM-8 from
Thermotron with a controlled temperature of 30 ◦C and placed in a free-free
boundary condition in order to eliminate the effects from environmental and
operational variability.

Therefore, in total, the structure was submitted to 12 conditions and, for each
one, the experiments were performed 100 times to have enough data for statistical
analysis. The signals used in the learning and test steps of the methodology were
collected in different days and state conditions. The first condition corresponds
to the healthy state (H30) used as a baseline condition. The next seven conditions
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Fig. 2. Composite plate and schematic view of the experimental setup.

Table 1. Structural states examined.

Step Learning Test

Structural
state

H30 D1 D2 D3 D4 D5 D6 D7 DF1 DF2 DF3 DF4

Damage
severity
[mm2]

0 490 707 962 1256 1963 2827 3848 2375 5026 5674 6361

Percentage
of area
covered [%]

0 0.19 0.28 0.38 0.50 0.78 1.13 1.54 0.95 2.01 2.27 2.54

correspond to the progressive damaged states (D1 to D7), used on the learning
step to create the trend curve. Finally, the last four conditions correspond to
the conditions of damage in future states of severity progression used on the test
step (DF1 to DF4).

Figure 3 shows the consequence of the introduction of the progressive damage
on the first arrival mode measured by PZT 2. An increase in the area covered
by the damage is observed to be proportional to a reduction of the response
signal amplitude. This phenomena is due to the nature of damage introduced,
which adds local damping in the transducer path causing a higher attenuation
of the wave [19]. Figure 4 presents the response signal acquired on all PZTs
considering the baseline and a damaged condition D7, where it can be observed
a more pronounced difference on the PZT 2 than on the others, as the damage
is situated in a path along this transducer.
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Fig. 3. Output time-series of first arrival mode for PZT 2 measured in mV for the
structure in a healthy state ( ) and progressive damage states. represents the last
state of damage D7 and represents the progressive damage stages from D1 to D7.

Based on the BIC method, the model order was chosen as na = 20 for all
PZTs. Figure 5 shows the response signals measured by the PZTs, the predicted
signals with the estimated AR models and the residues. The residues are used
as one of the features to interrogate the structure condition. As observed on
the signals, the amplitude of residues is slightly more evident on the arrival
modes. Then, the effectiveness of the damage detection is more dependent on
the damage sensitivity from these modes.

Figure 6 shows the state-space of the two features, where it is observed a
separation between the cluster states (points) for the healthy condition from the
damaged one.

The proposed machine learning algorithm, based on the MSD for outlier
detection, calculates the distance of the points from the test matrix to the cen-
troid of the ellipse formed by the points from train matrix, which in this case
corresponds to the features measured for the baseline condition. Figure 7 shows
the damage index D2 calculated using the machine learning algorithm. It was
employed 70% of the data from the damage features assuming the baseline con-
dition. As can be noted in Fig. 7, the damage index manifested more accentuated
for PZT 2 than PZTs 3 and 4, as the damage is positioned in the path between
the transducers PZT 1 to PZT 2. The classification of the structural condi-
tion was performed based on the statistical model of PDF estimated for each
condition, estimated using the kernel smoothing technique with cross-validation
method to choose the smoothing parameter [17].
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Fig. 4. Output time-series signal of the PZTs 2, 3 and 4 measured in mV for the
structure in a healthy state ( ) and the last state of damage D7 ( ) in the learning
step.

Fig. 5. Measured output signal in mV ( ) compared with predicted signal using the
AR reference model ( ) and residuals in mV ( ) for PZTs 2, 3 and 4 assuming the
baseline condition.
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Fig. 6. Features for all structural conditions for the PZT 2. is the data set in the
healthy condition, is the data set for progressive damage conditions used on the
learning step and is the data set for the damaged conditions used on the test step.

Based on a direct ratio among the mode of the statistical model estimated of
the population of D2 index in each condition and the respective damage severity,
a trend curve was fitted using a smoothing spline function to obtain a direct
relationship between the two variables. Figure 8 shows the trend curve obtained
using the smoothing fitted spline function and the boxplot of the population
of damage index in each condition. The trend curve was obtained using only
the pairs of data from the learning step (H30 and D1 to D7) of the mode for
damage index in each condition and its particular severity. The extrapolation of
the trend curve was performed until a damage severity of 8000 mm2.

On the test step, the damaged conditions DF1 to DF4 were used to validate
the trend curve extrapolation. The extrapolated curve is very close to the damage
index distribution in all conditions. The trend curve can be used for the inverse
problem and to obtain the damage severity using the mode of damage index.
Table 2 presents the damage severity obtained using the trend curve and mode of
damage index distribution compared with the measured one, for each condition,
where it can be noticed a sufficient similarity presenting a low percentage error,
mainly for the extrapolated damaged states in a possible future state before the
occurrence. In this work, the damage quantification was performed only assuming
the damage positioned in the path between the transducers PZT 1 and PZT 2
that corresponds the position where the small initial damage to be monitored
is detected. However, each path of the PZT network has its trend curve, and it
can be created on the learning step of the methodology.
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Fig. 7. Damage index D2 computed for all performed tests (learning and test steps)
and the three PZTs. represents the index considering healthy condition (H30),
represents the index for progressive damage conditions used on the learning test (D1
to D7) and represents the index for the damaged conditions used on the test step
(DU1 to DU4) and ( ) is the threshold line considered for the outliers detection.

Table 2. Estimated damage severity for the damaged conditions on the test step

Structural state [mm2] DF1 DF2 DF3 DF4

Damage severity measured [mm2] 2375 5026 5674 6361

Damage severity estimated [mm2] 2892 5419 5625 6515

Error [%] 21.75 7.82 0.86 2.41

4 Final Remarks

The methodology presented in this paper, based on the use of AR models for
damage quantification in composite structures, can predict the size and location
of simulated damage with adequate precision. The set of features proposed was
a combination of residuals and coefficients used along with a machine learning
algorithm based on the Mahalanobis Squared Distance. This methodology was
also able to extract information about the damage severity in a future state.
The proposed methodology to obtain the relation between the damage index
and its severity using smoothing spline fitting was validated in the test step by
estimating the damage size, that presented a small percentage error. Additional
research of the methodology is being carried about the influence of environ-
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Fig. 8. Trend curve relating the damage severity to the damage index (D2) considering
the PZT 2 and the boxplot of index population for the conditions of the learning test
( ) and test step ( ). The threshold line is represented by the dashed line ( ).

mental/operational variability, that represents the central shortcoming to be
overcome.
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