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Abstract. The problem of vibration-response-only damage detection
for a composite beam under variable and non-measurable Environmen-
tal and Operational Conditions (EOCs) is considered via three unsu-
pervised Statistical Time Series (STS) type robust detection methods.
These include three versions of a novel Functional Model (FM) based
method, a Multiple Model (MM) based method, and a Principal Com-
ponent Analysis (PCA) based method. Performance assessment is based
on hundreds of inspection experiments under temperature ranging from
0 to 28 ◦C and tightening torque ranging from 1 to 4Nm. The results
confirm the methods’ high effectiveness, with a version of the FM based
method and the MM based method achieving ideal performance, char-
acterized by 100% correct detection rate for 0% false alarm rate.

Keywords: Robust damage detection ·
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1 Introduction

Random vibration based Structural Health Monitoring (SHM) has rapidly pro-
gressed over the past several years, reaching high levels of technological maturity
[1–3]. Statistical Time Series (STS) type methods [4], which employ correspond-
ing models of the structural dynamics, are popular as they offer various advan-
tages, including the exclusive use of data-based stochastic models which may be
quite compact, only partially describing the dynamics.

Yet, a major challenge relating to effective damage diagnosis under variable
Environmental and Operating Conditions (EOCs) still remains. The fundamen-
tal reason behind it has to do with the fact that variable EOCs may affect the
underlying structural dynamics to a degree that may be similar or even greater
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than that caused by damage, and as such changes are at the core of damage diag-
nosis, the latter may become highly challenging and ineffective [5]. Overcoming
this challenge requires the development of robust diagnosis methods, that are
methods capable of ‘separating’, to the extent possible, the effects of variable
EOCs from those of damage on the structural dynamics [5,6].

This generally requires the modeling of the considered dynamics under vari-
able EOCs and uncertainty. Such modeling may assume various forms and be
broadly classified—along with corresponding methods—as ‘explicit’ or ‘implicit’.
‘Implicit’ methods include Principal Component Analysis (PCA) [7] and Factor
Analysis (FA) [8] based methods, while ‘explicit’ methods model the dynamics
(for instance the ‘healthy’ structural dynamics in the context of damage detec-
tion) via explicit deterministic or stochastic modeling techniques and include
Multiple Model (MM) [9], Random Coefficient (RC) model based [10], and
the newly introduced Functional Model (FM) based methods [11–15]. Although
assessment of individual methods are available, systematic and critical compar-
ative assessments are still scarce in the literature.

This study aims at contributing in this direction via the systematic and
critical comparison of three distinct STS robust methods for damage detection
which are based on random vibration response signals, that is:

(a) Versions of the Functional Model (FM) based method introduced by the
authors and co-workers in a series of recent conference papers [12–15],

(b) a Multiple Model (MM) based method [9], and,
(c) a Principal Component Analysis (PCA) based method [9].

A new Residual Variance (FM-RV) based version of the FM based method
is presently introduced and included in the assessment, along with two Residual
Uncorrelatedness versions, one using the Portmanteau test (FM-RU-P version)
[15] and one using the Peña-Rodŕıguez Test (FM-RU-PR version) [12].

All methods are unsupervised in nature, implying that random vibration
signals only from the healthy structure are employed for their training in the
baseline phase. Moreover, the variable EOCs are assumed non-measurable under
the methods’ normal (diagnostic) operation; yet, the FM method assumes their
availability in the baseline (training) phase. Also, as only response signals are
employed, the methods are based on transmittance type dynamics obtained
through stochastic data-based parametric models of the AutoRegressive with
eXogenous excitation (ARX) type [15–17].

It is also noted that the damage detection problem is tackled in a batch mode,
implying that the methods operate on short duration batches of signal records
collected periodically or on demand over time, with diagnostic decision making
implemented at the end of a complete batch; not at each time instant, as it
would be the case with sequential methods (for instance see [18]).

The comparative critical assessment of the methods is based on an experi-
mental procedure employing a composite structure, which represents the topol-
ogy of a commercial Unmanned Aerial Vehicle (UAV) boom that operates under
variations in Environmental (temperature ranging from 0 to 28 ◦C) and Operat-
ing (tightening torque ranging from 1 to 4 Nm, simulating assembly variability)
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Conditions (EOCs). Damage is simulated via the attachment of a small (12.6 g)
mass on the beam, while additional uncertainty is introduced via the occasional
attachment of a special adhesive tape. Damage detection is assessed in a system-
atic and statistically reliable way employing hundreds of inspection experiments,
with the results presented in terms of Receiver Operating Characteristic (ROC)
curves [19, pp. 34–35].

The rest of this article is organized as follows: The experimental set-up is
presented in Sect. 2, the STS type robust damage detection methods are reviewed
in Sect. 3, and their experimental assessment is presented in Sect. 4. Concluding
remarks are finally summarized in Sect. 5.

Fig. 1. The beam and the experimental set-up. a photo of the set-up. b schematic
of the beam with the damage position (Point D), adhesive tape position (Point T),
excitation position (Point X), and vibration measurement positions (Points Y1 and
Y2). c geometrical details [12].

2 The Experimental Set-Up

The Structure, the Varying EOCs, and the Damage Scenario. The
experiments are based on a lab-scale composite beam (further details in [12]),
representing the topology of the main part of a commercial Unmanned Aerial
Vehicle (UAV) boom. The beam is clamped at one end, simulating its connection
to the fuselage, while its free end is attached to an aluminum mass representing
part of the aircraft tail (Fig. 1(a)). The beam is placed in a freezer for temper-
ature variation in the range [0–28] ◦C, while the tightening torque of Bolt A
(Fig. 1(b)) is changed from 1 up to 4 Nm simulating assembly variability. The
considered damage scenario is simulated via the attachment of a small, 12.6 g,
mass at Point D (Fig. 1(b)) on the beam. Additional uncertainty is introduced
via a piece of special (reinforced by plastic mesh) adhesive tape, placed (in cer-
tain experiments) at Point T on the surface of the beam (Fig. 1(b)). This serves
to simulate potential material and/or manufacturing variability, such as varia-
tion in resin, fiber orientation, and so on, among nominally identical composite
beams, thus exploring the methods’ robustness to unknown uncertainty factors.
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Table 1. Experimental details [12].

Structural state Temperature range (◦C) Torque (Nm) No. of exps

Baseline (training) phase

Healthy Set A := [0◦ – 28◦] with a

step of 2◦
1, 2, 3, 4 60∗

Inspection (diagnosis) phase

Healthy (H) A & {3◦, 21◦} 1 51♦

A & {9◦, 19◦, 25◦} 2 54♦

A & {15◦, 25◦} 3 51♦

A & {3◦, 9◦, 15◦, 19◦, 21◦} 4 60♦

Healthy (H1) (tape) [0◦ 1◦ 3◦ 7◦ 9◦ 10◦ 14◦ ...

15◦ 17◦ 21◦ 23◦ 25◦ 27◦]

1, 3, 4 117♦

Damaged (D) (12.6 g mass) -//- -//- -//-
∗ 1 experiment per temperature and torque value.
♦ 3 experiments per temperature and torque value.
Sampling frequency fs = 4 654.5 Hz; signal length 2 500 samples (0.54 s).
BWD [5–2 327.25] Hz.

The Vibration Signals. Vibration experiments are performed using an elec-
tromechanical shaker applying a random, low frequency and band limited, white
Gaussian force vertically at Point X, while the acceleration response signals at
Points Y1 and Y2 on the beam are acquired through lightweight accelerometers
(Fig. 1(a),(b)). Details on the experiments are provided in Table 1; also in [12].
Each measured vibration response signal is sample mean corrected and normal-
ized by its own sample standard deviation.

Preliminary Analysis: Effects of Damage on the Uncertain Dynamics.
Welch-based estimates [20, pp. 186–187] of the Transmittance Function (TF)
[17] magnitude with the healthy and damaged beams under various EOCs are
presented in Fig. 2. Significant variability is observed in the healthy dynamics,
which, to a certain extent ‘masks’ the effects of damage.

3 The Statistical Time Series (STS) Type Robust
Damage Detection Methods

Three Statistical Time Series (STS) type robust damage detection methods are
employed and assessed. As aforementioned, they are all unsupervised, imply-
ing that signals obtained only from the healthy structure are employed in the
baseline (training) phase, and do not require measurement of the EOC variabil-
ity factors during their operation (in the inspection phase), although the first
method assumes that such measurements are available in the preliminary base-
line (training) phase. As the force excitation is assumed non-measurable, all three
methods are based on the vibration response signals measured at Points Y1 and
Y2, specifically on the corresponding transmittance dynamics. The three meth-
ods include: (a) The recently introduced Functional Model (FM) based method,
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Fig. 2. Effects of damage on the transmittance dynamics under varying conditions:
Welch-based transmittance function magnitude estimates based on 333 experiments
with the healthy structure (H, H1) and 117 experiments with the damaged structure.
(Point Y1 to Point Y2 transmittance; Estimation based on N = 100 000 sample long
signals, Hamming windowing, segment length of 8 192 samples, 95% overlap, MATLAB
function: tfestimate.m) [12].

with two versions making use of the Residual Uncorrelatedness (versions FM-
RU-P and FM-RU-PR) and a third, new version, making use of the Residual
Variance (version FM-RV); (b) a Multiple Model (MM) based method; and (c)
a Principal Component Analysis (PCA) based method. Brief accounts of the
methods are provided below.

3.1 The Functional Model (FM) Based Method

The cornerstone of the FM based method is the proper representation of the
healthy structural dynamics under any EOCs in a parameter space, referred
to as the ‘healthy subspace’. This subspace is constructed in the baseline phase
using signal records obtained from controlled experiments (allowing—only in
this phase—for measurement of the EOCs) and a data-based Functional Model
(FM) [13–15,21].

Baseline (Training) Phase: Off-Line ‘Healthy Subspace’ Construction.
The FM employed—for the healthy subspace construction—in this study is a
Vector-dependent Functionally Pooled AutoRegressive with eXogenous excita-
tion (VFP-ARX) model that incorporates the varying temperature and tighten-
ing torque through a 2-dimensional operating (scheduling) parameter vector1

k. The determination of this model is based on a total number of M con-
trolled experiments under a specific combination of temperature and torque
1 Vector/matrix quantities are designated by bold face lower/upper characters, respec-

tively.
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values. Thus, the operating parameter vector k = [kl km]T (l = 1, 2, . . . M1,
m = 1, 2, . . . M2) is employed, where kl and km designate variable temperature
and torque, respectively, and the subscript discretization index.

The complete set of baseline experiments then provides M = M1 × M2 ran-
dom vibration response signal pairs xk[t], yk[t] with each signal being N samples
long. Based on this set, a VFP-ARX(na, nb)p model of the form [22,23]:

yk[t] +
na∑

i=1

ai(k) · yk[t − i] =
nb∑

i=0

bi(k) · xk[t − i] + ek[t] (1a)

ek[t] ∼ iid N (
0, σ2

e(k)
)

k ∈ R
2 (1b)

ai(k) =
p∑

j=1

ai,j · Gj(k), bi(k) =
p∑

j=1

bi,j · Gj(k), σ2
e(k) =

q∑

j=1

sj · Gj(k)

(1c)

is obtained. na, nb designate the AR and X orders, respectively, iid identically
independently distributed, N Gaussian distribution, t = 1, 2, 3, . . . the normal-
ized (by the sampling period) discrete time, and ek[t] the innovations (model
residual) signal under conditions k, which is assumed to be zero-mean, white
(serially uncorrelated) with variance σ2

e(k) and potentially cross-correlated with
their counterparts corresponding to different EOCs (different k’s). As indicated
by (1c), the AR and X parameters and variance σ2

e(k) are modeled as explicit
functions of k, by using p- and q-dimensional functional subspaces, respec-
tively, spanned by the mutually independent functions Gj(k). These form one
functional subspace basis for the model parameters and one for the residual
sequence variance, both consisting of bivariate polynomials obtained as tensor
products from typical univariate polynomials such as Legendre, Chebyshev and
so on (details in [22]). The constants ai,j , bi,j , sj , designate the AR, X and
σ2

e(k) coefficients of projection, respectively. ai,j and bi,j are estimated based
on Ordinary Least Squares (OLS) [22]. Then the residual variance is estimated2

as [22]:

σ̂2
eo

(k, θ̂) =
1
N

N∑

t=1

e2k[t, θ̂] ∀ k = [kl km]T (l = 1, 2, . . . M1, m = 1, 2, . . . M2)

(2)
with the subscript o designating the structure under its healthy state (baseline
phase) and θ = [a1,1 . . . ana,p b0,1 . . . bnb,p]T . Based on the above estimates and
(1c), it may be written:

σ̂2
eo

(k1) = s1G1(k1) + s2G2(k1) + · · · + sqGq(k1)
σ̂2

eo
(k2) = s1G1(k2) + s2G2(k2) + · · · + sqGq(k2)
...

...
σ̂2

eo
(kM ) = s1G1(kM ) + s2G2(kM ) + · · · + sqGq(kM )

2 Estimators/estimates are designated by a hat.
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Stacking the above in matrix form leads to:
⎡

⎢⎢⎢⎣

σ̂2
eo

(k1)
σ̂2

eo
(k2)
...

σ̂2
eo

(kM )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

G1(k1) G2(k1) . . . Gq(k1)
G1(k2) G2(k2) . . . Gq(k2)

...
...

. . .
...

G1(kM ) G2(kM ) . . . Gq(kM )

⎤

⎥⎥⎥⎦ ·

⎡

⎢⎢⎢⎣

s1
s2
...
sq

⎤

⎥⎥⎥⎦ ⇔ σeo
= G · s (3)

based on which s is estimated as (T designating matrix transposition):

ŝ = [GT · G]−1 · [GT · σeo
] (4)

The determination of the VFP-ARX model orders and its AR and X param-
eters functional subspace dimensionality p, for a given basis function family, is
based on standard procedures using a Genetic Algorithm (GA) for the mini-
mization of the Bayesian Information Criterion (BIC) and the Residual Sum
of Squares (RSS), while model validation is based on formal verification of the
residual sequence uncorrelatedness (whiteness) hypothesis corresponding to the
M experiments used in model estimation. Full details on VFP-ARX model esti-
mation and validation are provided in [22,23]. A similar procedure with a GA
is also used for the determination of the residual variance functional subspace
dimensionality q.

Inspection (Diagnosis) Phase: On-Line Damage Detection. Damage
detection is achieved by examining—using a fresh random vibration signal pair3

xu[t], yu[t] obtained under unknown EOCs (that is unknown current value of k)—
whether or not the structural dynamics reside within the ‘healthy subspace’, so
that the structure may or may not, respectively, be declared as healthy. This
is essentially equivalent to examining whether or not the current signal pair
xu[t], yu[t] is ‘consistent’ with the available VFP-ARX model expressing the
healthy subspace. This consistency examination may be realized in two steps
[24]:

Step 1: Employ the VFP-ARX model of the baseline phase to estimate the
unknown EOCs vector k that ‘best’ (according to a proper criterion) expresses
the current signal pair. That is, given the current random vibration response
signal pair xu[t], yu[t], the estimates k̂ and σ̂2

eu
(k̂) (innovations variance) are

obtained using the equations of VFP-ARX model (1a) and (1c), as follows4:

k̂ = arg min
k

N∑

t=1

e2u[t,k], σ̂2
eu

(k̂) =
1
N

N∑

t=1

e2u[t, k̂] (5)

The estimate of k is obtained based on a GA algorithm followed by nonlinear
refinement using Sequential Quadratic Programming [22,23].

3 The subscript u designates the structure in an unknown health state.
4 eu[t, k] corresponds to the residual ek [t] in (1a).
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Step 2: ‘Consistency’ with the healthy subspace is confirmed through the suc-
cessful validation of the model corresponding to k̂. This may be achieved via
two model residual based schemes, resulting in corresponding versions of the
method: (a) A Residual Uncorrelatedness (RU) based version, and, (b) a Resid-
ual Variance (RV) based version that is presently postulated, motivated by [4].

(2a) The Residual Uncorrelatedness (RU) Based Versions. The residual
eu[t, k̂] whiteness testing, at a user selected risk level, may be achieved via two
distinct tests, the Portmanteau Test or the Peña-Rodŕıguez Test, thus giving
rise to the FM-RU-P or the FM-RU-PR versions of the method, respectively.
(i) The Portmanteau Test based (FM-RU-P) version: Residual whiteness is
examined via the hypothesis test:

Ho : ρ[τ ] = 0 τ = 1, 2, . . . , h (null hypothesis – healthy structure)
H1 : ρ[τ ] �= 0 for some τ (alternative hypothesis – damaged structure) (6)

where ρ[τ ] designates the normalized autocovariance of the residual sequence at
lag τ . The Q statistic below follows chi-square (χ2) distribution with h degrees
of freedom under the null (Ho) hypothesis of a valid model5, that is [4]:

Q := N(N + 2)
h∑

τ=1

(N − τ)−1ρ̂2[τ ] ∼ χ2(h) (7)

where h is the (user selected) maximum lag. The null hypothesis is then accepted,
at a (user selected) risk level α (probability of rejecting Ho even though it is
correct) as follows:

Q < χ2
1−α(h) ⇒ (null hypothesis - healthy structure)

Else ⇒ (alternative hypothesis - damaged structure)
(8)

with χ2
1−α(h) designating the chi-square distribution’s (1 − α) critical point.

(ii) The Peña-Rodŕıguez Test based (FM-RU-PR) version: The partial autocor-
relation πeu

[τ ] is examined via this testing procedure, according to which under
the Ho hypothesis the D statistic below follows a standard normal distribu-
tion [25]:

D := (λ/β)−1/ζ(ζ/
√

λ)
(

Q1/ζ − (λ/β)1/ζ

(
1 − 1

2λ

(
ζ − 1
ζ2

)))
∼ N (0, 1) (9)

with:

Q = −N

h∑

τ=1

h + 1 − τ

h + 1
log

(
1 − N + 2

N − ρ
π̂2

eu
[τ ]

)

5 In which case the estimated innovations (residual) series eu[t, ̂k] is uncorrelated
(white).
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β =
3(h + 1)(h − 2(na + nb))

2h(2h + 1) − 12(h + 1)(na + nb)
, λ =

3(h + 1)h2

2(2h(2h + 1) − 12(h + 1))

ζ =
(

1 − 2(h/2 − (na + nb))(h2/(4(h + 1)) − (na + nb))
3(h(2h + 1)/(6(h + 1)) − (na + nb))2

)−1

where π̂eu
[τ ] designates the estimated partial autocorrelation of the residual

series eu[t, k̂] at lag τ = 1, 2, . . . , h.
Thus the following test is used at the α risk level as follows:

|D| ≤ Z1−a ⇒ Ho is accepted
Else ⇒ H1 is accepted (10)

with Z1−a designating the standard normal distribution’ s (1− a) critical point.

(2b) The Residual Variance (RV) Based Version. In this version damage
detection is based on the fact that the variance σ2

eu
(k) becomes minimal, specif-

ically equal to σ2
eo

(k) (see (2)), if and only if the current structure is healthy.
Thus, the following hypothesis testing problem is constructed:

Ho : σ2
eo

(k) = σ2
eu

(k) (null hypothesis – healthy structure)
H1 : σ2

eo
(k) < σ2

eu
(k) (alternative hypothesis – damaged structure) (11)

The F statistic below follows F distribution with (Nu, No − d) degrees of
freedom (No and Nu designate the number of samples used in estimating the
residual variance in the healthy and current states, typically No = Nu = N ; and
d designates the dimensionality of vector θ) [4]:

Under Ho : F =
σ̂2

eu
(k̂)

σ̂2
eo

(k̂)
∼ F (Nu, No − d) (12)

where σ̂2
eo

(k̂) is obtained via (1c) using the projection coefficients estimates as
obtained by (4) and the q basis functions Gj(k). The following test is then
constructed at the α risk level:

F ≤ f1−α(Nu, No − d) ⇒ Ho is accepted (healthy structure)
Else ⇒ H1 is accepted (damaged structure) (13)

with f1−α(Nu, No − d) designating the corresponding F distribution’s 1 − α
critical point.

It is worth stressing that in the case where the structure is declared as healthy,
the FM method also provides precise estimates of the current EOCs through k̂.

3.2 A Multiple Model (MM) Based Method

In this method a Multiple Model (MM) representation is employed for model-
ing the healthy structural dynamics under variable EOCs. This representation
consists of a set of conventional ARX-type models along with the Gaussian prob-
ability density functions of their estimated parameter vectors (also see [26]).
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Baseline (Training) Phase. The M pairs of vibration response signals (also
used in the FM based method) obtained under different EOCs are employed for
the determination of the MM representation (‘healthy set’ of models) mo, based
on M transmittance ARX(na, nb) models [17], mo,i (i = 1, . . . , M), with corre-
sponding parameter vectors {ao} = {ao,1, . . . ,ao,M}. Each estimated vector is
(asymptotically, that is as the signal length N → ∞) associated with a Gaussian
probability density function, with mean equal to each point estimate αo,i and
estimated covariance Σo,i.

Inspection (Diagnosis) Phase. Once a fresh pair of vibration response sig-
nals is obtained from the structure in unknown health state, the objective is
to decide whether or not its dynamics is adequately represented by the MM
representation mo, in which case the structure is declared as healthy, otherwise
as damaged. Towards this end, a fresh transmittance function ARX model mu

(with parameter vector au) and of same orders as those in mo, is estimated. A
distance metric D(mo,mu) between mo and mu is then obtained (details in [9]),
which is presently defined as:

D(mo,mu) :=
M∑

k=1

d(mo,k,mu) (14)

with d(mo,k,mu) designating the Kullback–Leibler (KL) divergence (pseudo–
distance) [27, pp. 756–758] between the standard ARX models mo and mu.

The structure is then declared as healthy if and only if D(mo,mu) is smaller
than a user–selected threshold; else it is declared as damaged.

3.3 A Principal Component Analysis (PCA) Based Method

This method (referred to as U-PCA-ARX) employs Principal Component Anal-
ysis (PCA) on the parameter vector of the transmittance ARX based represen-
tation of the structural dynamics [9].

Baseline (Training) Phase. Like in the previous method, M transmit-
tance ARX(na, nb) models [17], with corresponding parameter vectors ao =
{ao,1, . . . ,ao,M}, are estimated and their sample mean and covariance matrix are
then obtained. Each vector is centered by subtracting its sample mean. The Sin-
gular Value Decomposition of the covariance matrix is subsequently performed
as PPP = UUU SSS2 UUUT , where SSS2 is a diagonal matrix that contains the positive
eigenvalues in decreasing order, while UUU is a real unitary matrix including the
corresponding eigenvectors.

The first n eigenvectors of UUU , which explain a certain, user–selected, frac-
tion γ (%) of the total parameter vector variability, are dropped, assuming
that they are mainly affected by the varying EOCs. The last m eigenvectors
(presumably associated with damage) are stacked in a matrix UUUm (containing
m columns) that is used by the PCA to transform the (centered) parameter
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vectors {ao} = {ao,1, . . . ,ao,M} (‘healthy set’ of parameters), into a reduced
m-dimensional space [9]. It is noted that, as with all PCA–based methods, the
detection performance may be significantly affected by the selected γ [9].

Inspection (Diagnosis) Phase. A new (transmittance) ARX model mu of
the same order as those of the baseline phase and parameter vector au is esti-
mated based on a pair of vibration acceleration signals acquired from the cur-
rent, unknown health state of the beam. The parameter vector’s sample mean
obtained in the baseline phase is then used to center au, which is subsequently
transformed, as āu = UT

mau, into the m-dimensional space. The Euclidean norm
of āu is then obtained:

D := ||āu||l2 (15)

and the structure is declared as healthy if and only if D is smaller than a user–
selected threshold; else it is declared as damaged [9].

4 Experimental Assessment of the Methods

The experimental assessment of the three Statistical Time Series robust damage
detection methods is based on 117 experiments with the damaged structure and
333 experiments with the healthy structure, all under various temperature and
torque conditions which are different from those used in the baseline (training)
phase (see Table 1). The comparative assessment of the methods’ damage detec-
tion performance is based on Receiver Operating Characteristic (ROC) curves
[19, pp. 34–35], each one representing the true positive rate (percentage of correct
damage detections), versus the false positive rate (percentage of false alarms)
for varying detection thresholds.

4.1 Baseline (Training) Phase

A transmittance (function) ARX model is initially obtained based on a pair
of vibration-response signals from points Y1 and Y2 (Fig. 1(a)) under certain
values of temperature (0◦C) and tightening torque (2 Nm) from the structure
under healthy state, and a standard identification procedure [20, pp. 203–205].
This includes model order selection based on the Bayesian Information Criterion
(BIC) and the Residual Sum of Squares/Signal Sum of Squares (RSS/SSS), as
well as model parameter estimation via OLS (MATLAB function: arx.m). This
leads to an ARX(70,70) model characterized by zero delay, that is b0 �= 0 in the
exogenous polynomial.

The Functional Model (FM) Based Method. Maintaining the AR and
X orders and the zero delay for the VFP-ARX model, its AR and X param-
eters functional subspace is determined using M = 60 experiments and a GA
based optimization procedure [12]. This procedure leads to a VFP-ARX(70,70)30
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Fig. 3. Functional Model (FM) based method: innovations variance σ̂2
eo(k) estimate as

a function of temperature and torque.

model with functional subspace spanned by p = 30 bivariate Shifted Legendre
polynomials. Then, the dimensionality of the residual variance functional sub-
space is selected as q = 30, using the 60 variance estimates (corresponding to
the above experiments) obtained by (3), and bivariate Chebyshev type II poly-
nomials. The functional dependence of the residual variance σ̂2

eo
(k) with respect

to temperature and torque is presented in Fig. 3.

Table 2. Details on the detection methods.

The FM based method

Selected model No. of train.
experim.

Samples Per
Param. (SPP)

Condition
number

Whiteness testing
maximum lag h

Portmanteau: 10

VFP-ARX(70, 70)30 60 70.92 1.73 × 107 Peña-Rodŕıguez: 210

The MM and PCA based methods

Selected model No. of train.
experim.

Samples Per
Param. (SPP)

Condition
number

No. of rejected
components/ γ
(PCA based method)

ARX(70, 70) 60 35.46 1.10 × 105 2 / 45.5%

The Multiple Model (MM) Based Method. Using the available vibra-
tion response signals (the exact same 60 experiments as previously reported),
the ‘healthy set’ mo that consists of 60 transmittance function ARX(70,70)
models (mo,i, i = 1, . . . , 60) is constructed and the corresponding parameter
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vectors {ao} = {ao,1, . . . ,ao,60} and covariance matrices are obtained. Estima-
tion details are provided in Table 2.

The PCA Based Method. This is also based on the same 60 transmit-
tance function ARX(70,70) models, mo,i (i = 1, . . . , 60), previously reported.
The obtained model parameters are centered by subtracting their sample mean,
which leads to the ‘healthy set’ of parameters. The dimensionality of the sample
covariance matrix is selected equal to 50 × 50, and it is constructed using the
first 25 AR and first 25 X parameters from the 60 transmittance ARX models.
Based on the fact that the number of variability (uncertainty) sources affecting
the structural dynamics is two (temperature and tightening torque), the eigen-
vectors (principal components) which are removed are n = 2, which leads to
m = 48 and γ = 45.5% (details in Table 2).

Fig. 4. Comparative damage detection performance assessment: ROC curves for the a
three versions of the FM based method, and, b the FM based (RV version), the MM
based, and the PCA based methods. (333 experiments with the healthy and 117 with
the damaged structure.)

4.2 Inspection (Diagnosis) Phase

Based on the results of Fig. 4(a), it is evident that the Functional Model Resid-
ual Variance (FM-RV) version outperforms the two Residual Uncorrelatedness
(FM-RU) versions, with the ROC curve being ideal (reaching the point (0,1)),
implying the achievement of 100% correct detection rate with 0% false alarm
rate. Among the two RU versions, the FM-RU-PR (h = 210) reaches some-
what lower, but still very good performance, while the FM-RU-P lags behind
significantly.

A comparison of the best (FM-RV) FM method version with the MM and
PCA based methods is provided in Fig. 4(b). Evidently, the MM based method
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achieves perfect performance as well, with the ROC coinciding with that of the
FM-RV based method. On the other hand, the PCA based method achieves the
lowest performance, characterized by 100% correct detection rate for false alarm
rate greater than 8% (or 97% correct detection rate for 5% false alarm rate).

5 Concluding Remarks

The problem of vibration-response-only damage detection for a composite beam
under variable and non-measurable Environmental and Operational Conditions
(EOCs) was considered via three unsupervised, batch, Statistical Time Series
(STS) type robust detection methods. These included a novel Functional Model
(FM) based method in three distinct versions (FM-RU-P, FM-RU-PR, FM-RV),
a Multiple Model (MM) based method, and a Principal Component Analysis
(PCA) based method. Performance assessment was based on a total of 450
inspection experiments (333 with the healthy and 117 with the damaged struc-
ture), which were all excluded from the methods’ baseline (training) phase. The
main conclusions of the study may be summarized as follows:

(a) Despite the variations in Environmental (temperature ranging from 0 to
28 ◦C) and Operating (tightening torque ranging from 1 to 4 Nm) Con-
ditions (EOCs), vibration-response-only damage detection was possible via
the STS robust methods, with ideal performance—corresponding to 100%
correct detection rate for 0% false alarm rate—achieved.

(b) Ideal performance was achieved by the Functional Model (FM) based and
the Multiple Model (MM) based methods.

(c) The FM based method requires explicit knowledge of the precise EOC mag-
nitudes in the baseline phase; this is not the case with the other methods.

(d) Of the three versions of the FM based method considered, the presently
introduced, Residual Variance (RV) based version, achieved the best (ideal)
performance.
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