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Abstract. In damage detection processes, the accuracy of estimating the
eigenfrequencies of structures is crucial because the frequencies are not highly
sensitive to damage. This paper analyses the accuracy of the Discrete Fourier
Transform when estimating the frequency and amplitude of sine waves, iden-
tifies its limitations and proposes an algorithm to significantly improve the
attained results. Standard methods used to evaluate the eigenfrequencies fail
because the results depend on the position of the spectral lines, which are related
to the acquisition time. Frequently, interpolation involving the amplitude peaks
displayed on several spectral lines located around the maximizer is employed to
improve the frequency readability. The estimated results are improved indeed,
but the achieved precision still depends on the acquisition time. We develop an
algorithm that uses the maximizer of signals with different time lengths, which
are obtained from the original acquired signal by cropping. The three selected
maximizer are used for parabolic interpolation input data. The maximum of the
regression curve represents a precise estimate of the amplitude, associated with
the true frequency of the targeted harmonic component. The efficiency of the
algorithm is demonstrated for harmonic and multi-harmonic signals.

Keywords: Signal processing � Accurate frequency estimation �
Discrete Fourier Transform � Interpolation � Excel VBA

1 Introduction

Damage detection using modal parameters extracted from vibration signals gained the
attention of numerous researchers and practitioners in the last decades [1–5]. The most
common parameter is the eigenfrequency because, in the market, simple and robust
equipment is available to measure it.

However, there is a problem when using this modal parameter, namely the low
sensitivity of the frequency change due to the damage [6], which makes the accurate
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frequency estimation a necessity. It is also important to ensure the repeatability of the
results because measurement confidence guarantees early stage damage detection.

Most beam-like structures have large intervals between their harmonics, so it is
easy to discern between consecutive frequencies. Observing incipient damage is still
difficult because in an early state the damage produces a small frequency drop [7]. If
involving standard frequency evaluation, the frequencies of the signal components are
calculated and displayed in the spectrum at equidistantly distributed lines. The position
of these lines depends on the signal length so that the frequency drop is observed just if
the damage grows enough to produce such shift of the frequency that determines the
maximizer to move to the anterior line in the spectrum [8]. Even if no structural change
occurs, it is possible that for a different signal length the maximizer moves to a
neighbor spectral line. As a consequence, an apparent frequency decrease or increase
can be suggested without the structure being subject of deterioration [9]. This is why
there is a need for using advanced frequency estimation algorithms that provide exact
information regarding the frequency even if it has the value between two spectral lines.

This paper presents a review of some actual interpolation methods used to increase
the precision of the frequency estimation and proposes a new algorithm implemented in
MS Excel-VBA that can precisely indicate the frequency components of a signal
irrespective to the signal length taken for the analysis.

2 Review of the Main Actual Interpolation Methods

2.1 Discrete Fourier Transform

Let us consider an analog signal x(t) representing the vibration response of a structure.
To give computers the possibility to transmit, store, and process the signal, it must be
converted in a digital signal x(n). This is a sequence of N samples (x0, …xn, …xN−1)
representing the values of the analog signal captured in N equidistantly taken time
intervals. The distance between two successive samples is referred to as time resolution
s and depends on the sampling rate FS that is defined as the number of samples taken in
one second. For the digital signal x(n), the relation between its length tS, number of
samples and the sampling rate is:

tS ¼ ðN � 1Þs ¼ N � 1
fS

ð1Þ

Discrete Fourier Transform (DFT) find a set of sinusoids, which can be added
together to reconstruct the original signal x(n). The period T1 of the first sinusoid is
equal to the length in time of the analyzed signal. For this period, the fundamental
frequency is f1 ¼ 1=T1. The reconstructed signal component having this frequency is
displayed in the spectrum as the first spectral line.

The next sinusoid fit the signal length twice, hence tS = 2T2, so that the second
component is displayed on the spectral line where the frequency is f2 = 2f1. For the
general case, we can write the frequency of the k-th harmonic component fk = kf1,
where k is referred to as the spectral line number. The distance between the spectral
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lines is constantly f1. Therefore this value is known as the frequency resolution and is
denoted with Df. For k = 0, this is not sinusoid but the DC value. If the signal contains
no continuous component, the amplitude value displayed at f0 = 0 Hz should be null,
but the DFT is not always able to ensure it. In fact, DFT creates, for each spectral line, a
sequence of values:

Xk ¼
XN�1

n¼0

xn cos �2pkn=Nð Þþ i sin �2pkn=Nð Þ½ � ð2Þ

If the number of spectral lines is k = 0… N−1, thus equal to the number of samples
of the time-domain signal, it results in a number of N linearly independent equations
with N unknowns and it is possible to calculate the real and imaginary parts of the
coefficients Xk, as:

ReXk ¼
2
N

XN�1

n¼0

xn cos �2pkn=Nð Þ½ � ð3Þ

ImXk ¼
2
N

XN�1

n¼0

xn sin �2pkn=Nð Þ½ � ð4Þ

Hence, the find the absolute values of the coefficients using the relation:

Xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReXkð Þ2 þ ImXkð Þ2

q
ð5Þ

DFT represented by these coefficients contains N spectral lines, from which it is
sufficient to display only half of them, due to symmetry [10]. It is known that the
precision achieved by frequency evaluation using DFT depends on the signal acqui-
sition time. Two favorable cases exist: (1) it is possible to acquire a signal in an
extremely long time in order to obtain a fine frequency resolution, or (2) the signal
length fit a whole number of periods T for the targeted frequency. For damage
detection, the fulfillment of the first condition is problematic because vibration signals
acquired as a structural response are rapidly damped, especially in the case of higher
frequencies [11]. Consequently, the estimated frequencies have a significant deviation
from the true values. Because the period of the targeted component is not known, we
can acquire the whole cycles just by accident. The problem in estimating frequencies if
this condition is not met is the occurrence of spectral leakage, which introduces errors
in the estimated frequencies [12]. This aspect is detailed below.

Let us consider a discrete signal with period T and frequency f, acquired in the time
tS. If the acquisition time does not contain a whole number k of cycles with length T but
is a little bit longer, which is usually the case, we can write:

tS ¼ Tðkþ dÞ ð6Þ

where d is a fraction of one cycle. It follows:
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1
tS
¼ 1

Tðkþ dÞ ð7Þ

Or, taking the inverse of the two fractions, results:

f ¼ Df ðkþ dÞ ð8Þ

Hence, the true frequency falls between two spectral lines. Some researchers prefer
to work with the normalized frequency, which is obtained by dividing the frequency at
the frequency resolution. For the general case, the normalized frequency is:

�f ¼ f
Df

¼ kþ d ð9Þ

From Eq. (9) it can easily be deduced that for the frequency that is the value
corresponding to a spectral line, the normalized frequency value is even number of the
spectral line. This is illustrated in DFT representation in Fig. 1, where on the spectral
line k is plotted against the amplitude of the harmonic signal component Ak. If Ak is the
biggest value in a given frequency bandwidth, it is known as the maximizer. Figure 1
shows also the two neighbor spectral lines k − 1 and k + 1 and the two amplitudes Ak−1

and Ak−1 displayed at these lines.

One can observe in Fig. 1 that the frequency freal 6¼ kDf is not correctly estimated
by the frequency associated to the maximizer Ak. Some interpolation methods were
developed to find the frequency between two spectral lines. An analysis of the results
achieved by using these interpolation methods is given in next subsection.
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Fig. 1. DFT output for a sinusoid (frequency f = 5 Hz) by standard evaluation.
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2.2 Determining the Precision of the Main Actual Interpolation Methods

So far as we know, the frequency values estimated with standard methods, e.g. DFT,
provide results directly linked to the position of the spectral lines of one spectrum
obtained for a single time length, which is in most cases the acquisition time. Finding
freal at an inter-line position relies on finding the regression curve fitting to several
points obtained in the DFT. If just two points in the spectrum are considered, a method
to weight their influence is employed. In all cases, finding the correction term d
ensuring a corrected frequency fcorr as close as possible to freal is targeted. This can be
made either by using at the abscissa the spectral line numbers or the frequencies. In the
first case the corrected spectral line number is estimated as:

kcorr ¼ kþ d ð10Þ

Or, for the latter case the corrected frequency is found from Eq. (9).
The estimation of fcorr employing the correction coefficient d is referred to as the

fine frequency estimation, as opposed to the coarse frequency estimation performed by
directly locating the DFT maximum [13].
Interpolation Based on Two Points in the Spectrum.
Grandke developed a method [14] that involves the peak Ak and the largest neighbor
amplitude of DFT achieved from a signal windowed by a Hann window. In the spectral
representation in Fig. 15 the maximizer largest neighbor is Ak−1. It is also possible to
get the larges neighbor at the spectral line Ak+1. In both cases, following steps are
performed to calculate the corrected frequency. First the ratios

a� ¼ Ak�1

Ak
or aþ ¼ Akþ 1

Ak
ð11Þ

are calculated I function of the bigger neighbor of the maximizer. Afterwards, the
correction term is calculated as:

d� ¼ 2a� � 1
a� þ 1

or dþ ¼ 2aþ � 1
aþ þ 1

ð12Þ

Finally, the frequency result as:

fcorr ¼ ðkþ d�ÞDf or fcorr ¼ ðkþ 1þ dþ ÞDf ð13Þ

Quinn proposed a method [15] that directly uses the DFT of the signal. Because no
windowing is employed, the method is much faster as that proposed by Grandke. The
method implies both neighbor amplitudes of the maximizer and request two

Efficient Algorithm for Frequency Estimation 287



interpolations, each of them involving just two amplitudes. The following ratios are
calculated for Quinn’s estimator:

a ¼ Ak�1

Ak
and a ¼ Akþ 1

Ak
ð14Þ

Next, the correction terms are calculated as:

d1 ¼ a1
1� a1

and d2 ¼ � a2
1� a2

ð15Þ

Finally, the frequency result as:

fcorr ¼ ðkþ d1;2ÞDf ð16Þ

If d1j j\ d2j j, then the correction term d2 is chosen in Eq. (16), else d1 is chosen.
Jain et al. [16] proposed an interpolation method similar to that proposed by Quinn,

but the correction coefficients were calculated in a different way. For Ak−1 > Ak+1, the
correction term is calculated from the relations:

a1 ¼ Ak

Ak�1
and d1 ¼ a1

1þ a1
ð17Þ

and the frequency results from the relation:

fcorr ¼ ðk � 1þ d1ÞDf ð18Þ

If Ak−1 � Ak+1, the correction term is calculated from the relations:

a2 ¼ Akþ 1

Ak
and d2 ¼ � a2

1� a2
ð19Þ

and the corrected frequency is derived as:

fcorr ¼ ðkþ d2ÞDf ð20Þ

The tests are performed on a signal with the frequency freal ¼ 4:89Hz, the ampli-
tude Areal ¼ 1mm/s2 and the initial time length tS ¼ 1:5 s. The original signal is gen-
erated using NS ¼ 301 samples by a sampling rate fS ¼ 200Hz, resulting a time
resolution Dt ¼ 0:005 s. The efficiency of the interpolation methods is tested for eleven
time lengths achieved by stepwise truncating the original sinusoidal signal. To obtain
the ten shorter signals, NS�it ¼ 8 samples (i.e. tS�it ¼ 0:05 s) are removed at each
step. The results achieved employing the three above described methods are presented
in Fig. 2.
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Interpolation Based on Three Points in the Spectrum.
The next analyzed methods involve three amplitudes at interpolation. Ding [17] pro-
posed a barycentric method, where the correction term d results from the relation:

d ¼ Akþ 1 � Ak�1

Ak�1 þAk þAkþ 1
ð21Þ

Instead, Voglewede [18] proposed a correction term that involves the quadratic
method. The correction term is found from the relation:

d ¼ Akþ 1 � Ak�1

2ð2Ak � Ak�1 � Akþ 1Þ ð22Þ

A quite similar quadratic estimator of the correction term is introduced by Jacobsen
in [19], which results from the relation:

dJac ¼ Akþ 1 � Ak�1

2Ak � Ak�1 � Akþ 1
ð23Þ

For all these methods, the corrected frequency is calculated as:

fcorr ¼ ðkþ dÞDf ð24Þ

Tests are performed by involving the same signal and procedure as previously
described. The results are presented in Fig. 3.

From Figs. 2 and 3, it can be seen that the errors in frequency estimation still
depend on the acquisition time, i.e. the closer the time length tS to a multiple of periods
T, the higher the precision of the estimation is. However, the errors are significant and
unpredictable, so this approach is not recommended to evaluate the eigenfrequencies of
structures for damage detection purposes.

Fig. 2. Frequency estimation tests employing interpolation methods based on two points.
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3 The Proposed Frequency Estimation Method

3.1 Description of the Propose Frequency Estimation Method

The weakness of the existing interpolation methods mainly consist in the fact that the
points on which the interpolation is made come from the same DFT. We develop a new
frequency estimation method based on three points achieved from three different DFTs
that are points of a sinc function [20]. The peak values distributed of this function is
close to a polynomial one, so that a second-order polynomial interpolation is made. To
obtain the three points for interpolation, the method involves shortening the signal in
time domain and calculating the DFT at iteration. In the following sub-sections we
present the algorithm implemented in a program developed by the authors in MS-VBA,
which is used for the accurate frequency estimation.
Signal Generation.
The test signal is generated involving the “SignalGeneration” sheet, but it is also
possible to import real measured signals. To evaluate the accuracy of the results, in the
paper we use signals generated with known frequencies. It is possible to create signals
composed by up to three harmonic components whit defined amplitudes and fre-
quencies. The operator can also impose the number of samples NS and time resolution
Dt. The signal generated or taken directly from the acquisition system is transferred to
the “DFT” sheet.
Standard DFT Analysis.
After it is created or imported, the signal is transferred from to the “DFT” sheet. Here,
it is represented in a chart, as that shown in Fig. 4a. By click on the “DFT calculation”
button, the real and imaginary coefficients are generated according to Eqs. (3) and (4),
which are further used to calculate the complex module with Eq. (5). These values are
displayed in a spectral representation as that shown in Fig. 4b. In these calculations, the
ratio 2/NS is not considered, because we intend obtaining dissimilar amplitudes in the
frequency domain representations for the truncated signals. The amplitudes attain in
this way higher values for longer signals in the time domain, i.e. bigger number of
samples contained in the signal.

Fig. 3. Frequency estimation tests employing interpolation methods based on two points.
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Setting of the Number of Peaks to be Considered in the DFTs Obtained After
Signal Truncation.
After DFT is calculated, a window is displayed that request setting the number m of
peaks to be extracted from DFTs calculated after each signal truncation. In the normal
case, because the frequencies of a beam are not close together and leakage does not
significantly affect the amplitudes of the neighbor harmonic components, the selected
number should be the number of the components observed in DFT. But, if the structure
is excited with a frequency close to the targeted frequency component, it achieves here
the highest amplitudes and the number of peaks can be set as one. A procedure to excite
the structure in such way is described in [20].

After entering the value of m, the signal is truncated by 2 samples at iteration, until
the half signal length remains. DFTs are calculated for each truncated signal. From
these spectra, the number of peaks set before is selected and displayed in an overlapped
spectrum, as shown in Fig. 5.

Fig. 4. Generated harmonic signal and its standard

Fig. 5. Overlapped DFT for the cropped signals
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Each curve in Fig. 5 represents the peak amplitudes for DFTs that correspond to a
value of m. Note that, because we didn’t consider the value 2/NS when calculating the
complex coefficients, the amplitudes of these curves differ. Dissimilar happens if
considering 2/NS. In this case, the amplitudes of the curves are equal, but do not permit
identifying the points to be used for interpolation.
Selection of the Frequency Bandwidth of Interest.
The next approach is setting the frequency bandwidth of interest. This should include
the targeted frequency and frame it as narrow as possible. An indication of the coarse
estimated frequency is found in the overlapped spectrum displayed in Fig. 5. This
information permits selecting the lowest and highest value for the bandwidth. The
values are typed in two windows which open one after the other. As a consequence, the
limits of the overlapped spectrum are set, and it displays the results for just one
harmonic component, as shown in Fig. 6.

Selection of the Number of Cycles of the Targeted Harmonic Component.
Next, a window opens, showing the number of cycles k for which the curve with the
highest amplitude (see Fig. 6) is calculated. It requests setting the number of cycles for
which the amplitudes are selected for interpolation. Here, the number of maximum
integer cycles should be specified in the window. This is the number displayed in the
window if the highest curve has a clear maximum, else the number should be reduced
with one. For the specified number, the software selects all frequency-amplitude points
and displays them graphically in Fig. 7
Performing interpolation and obtaining the estimated frequency.
From the set of selected values, the maximizer and the two neighbors are found, for
which a second order polynomial regression curve is calculated. For this curve, the
maximum if found analytically. The estimated frequency is now found as the abscissa
of the maximum. The three values extracted as maximizer from the three DFTs and the
maximum found by interpolation are shown in Fig. 8. In a similar way is found the
estimated frequency for the second harmonic component that constitutes the original
signal. Finally, the estimated amplitude is calculated using the constant 2/NS-max, and is

Fig. 6. Zoom on the overlapped DFT displaying the selected bandwidth.
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displayed along with the estimated amplitude. NS-max represents the number of samples
contained in the truncated signal which ensures the maximizer in Fig. 7.

Overlapping DFTs ensure a fine frequency resolution. Because the interpolation is
made by using three amplitudes from different DFTs, all close to the real amplitude, the
results are expected to be accurate. However, a slight deviation to the right is noticed,
because the distribution of the maximizer is not symmetric but follows a pseudo-sinc
function [21].

Fig. 7. Overlapped DFT for the cropped signals

Fig. 8. The interpolation performed for three points that belong to three DFT
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3.2 Numerical Tests to Validate the Precision of the Frequency
Estimation

To highlight the accuracy of the contrived method and the subsequent developed
program, we made simulation on signals with known harmonic components. This
facilitates comparing the results achieved from the frequency estimation with that of the
generated frequency. The frequency estimation results are also compared with those
obtained from DFT of the original signal and simulations made by applying the
interpolation methods presented in Sect. 2.
Signal Containing One Harmonic Component.
The original signal with the frequency f = 4.89 Hz is again considered in this sub-
section, generated in the same conditions as the signal tested with known interpolation
methods presented in Sect. 2, and for the same time lengths. The results, obtained
involving the developed algorithm, are presented in Table 1.

From Table 1 and Fig. 9 one can observe that the frequencies estimated with the
proposed method do not depend on the acquisition time and are definitely more
accurate as these obtained by actual frequency estimators which use interpolation
methods. The error is found to be 0.02%, which totally fulfill the requirements for early
damage detection. Another advantage of the proposed method consists in the fact that it
makes possible to estimate the amplitude, which is impossible when current frequency
estimation methods based on interpolation are used.

Table 1. Data used for tests and the achieved results for the signal with f = 4.89 Hz.

tS [s] Df [Hz] NS m fmin fmax k fcorr [Hz] Acorr [mm/s2]

1.50 0.666667 301 1 4 6 6 4.8889816 0.9945186
1.46 0.684932 293 1 4 6 6 4.8889816 0.9945186
1.42 0.704225 285 1 4 6 6 4.8889816 0.9945186
1.38 0.724638 277 1 4 6 6 4.8889816 0.9945186
1.34 0.746269 269 1 4 6 6 4.8889816 0.9945186
1.30 0.769231 261 1 4 6 6 4.8889816 0.9945186

Fig. 9. Frequency estimation results achieved by employing the known methods in comparison
with those achieved by the proposed method
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Signal Containing Two Harmonic Components.
To show the method works if the analyzed signal contains more harmonic components,
we performed tests for a signal simulating the first two out of plane vibration modes of
a cantilever beam. The first component is again the sinusoidal signal with the frequency
f1 = 4.89 Hz and the amplitude A1 ¼ 1mm/s2. For the second harmonic component we
choose the frequency f2 = 28.75 Hz, which is expected for the second harmonic of an
Euler–Bernoulli cantilever beam. The amplitude is considered A2 ¼ 0:3mm/s2. The
two components are found separately.

First, the fundamental frequency is estimated. We use the same truncation strategy
as for the single component signal. Accurate frequency estimation is possible, the
results presented in Table 2 sustaining this conclusion. The error is still 0.02%.

We did not succeed to find the second harmonic with the strategy described for the
previous tests. This happened because the number of samples per cycle was too low.
For higher frequencies, the algorithm requests a minimum number of samples per
cycle, which is found to be 20 for an accurate estimation. Therefore, we reduced the
time resolution from Dt = 0.005 s to Dt* = 0.002 s and maintained unaltered the
number of samples of the original signal, that are NS = 301. The shortened signals are
obtained by extracting 8 samples by iteration. The results are presented in Table 3. One
can observe that the frequency is well estimated, the maximum error being 0.127 Hz.
This shows that, even for signals containing more harmonics, the frequencies can be
estimated well even for the harmonics with small amplitude.

Table 2. Data used for tests and the achieved results for the fundamental frequency.

tS [s] Df [Hz] NS m fmin fmax k fcorr [Hz] Acorr [mm/s2]

1.50 0.666667 301 2 4 6 6 4.888632 0.995148
1.46 0.684932 293 2 4 6 6 4.888632 0.995148
1.42 0.704225 285 2 4 6 6 4.888632 0.995148
1.38 0.724638 277 2 4 6 6 4.888632 0.995148
1.34 0.746269 269 2 4 6 6 4.888632 0.995148
1.30 0.769231 261 2 4 6 6 4.888632 0.995148

Table 3. Data used for tests and the achieved results for the second harmonic.

tS [s] Df [Hz] NS m fmin fmax k fcorr [Hz] Acorr [mm/s2]

0.600 0.666666667 301 10 27 30 16 28.83255 0.319129
0.584 0.684931507 293 10 27 30 16 28.83255 0.319129
0.568 0.704225352 285 10 27 30 16 28.83255 0.319129
0.552 0.724637681 277 10 27 30 15 28.83457 0.306852
0.536 0.746268657 269 10 27 30 15 28.83457 0.306852
0.520 0.769230769 261 10 27 30 14 28.87619 0.285024
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The next approach was testing if a small frequency drop, as that occurring in early
damage state, can be accurately quantified. The original signal is that described above,
hence it is generated with NS = 301 samples and time resolution Dt = 0.002 s, resulting
the signal time length tS = 0.6 s. It has two harmonic components that have the fre-
quency f1 = 4.89 Hz and the amplitude A1 ¼ 1mm/s2, respectively the frequency
f2 = 28.75 Hz and the amplitude A2 ¼ 0:3mm/s2. To see if small frequency changes
are observable and possible to be quantified accurately, we simulated five small fre-
quency drops Df2 and obtained five reduced frequencies f2−R. Afterward, we estimated
the frequency for each generated signal and compared the generated frequency drop
with that obtained by estimation. The absolute error is also calculated and used to
appreciate the accuracy of the performed frequency estimations.

From Table 4 one can observe that, even for the component with the smaller
amplitude, the proposed frequency estimator is able to find fine frequency changes. The
accuracy permitted observing the differences between the generated frequency drops
28.6056 Hz and 2.6 Hz and even quantifying this difference. On the other hand, the
bigger frequency changes are also estimated with accuracy, which is proved by the
results in last row in Table 4.

Damage detection methods developed by the authors [22–25] make use of the
Relative Frequency Shift (RFS), which is calculated as:

Table 4. Estimator’s sensitivity analysis to frequency changes for the second harmonic.

Generated data Estimated data Error [%]
f2 [Hz] f2−R [Hz] Df2 [Hz] f2 [Hz] f2−R [Hz] Df2 [Hz]

28.75 28.73 0.02000 28.83255 28.81252 0.02003 0.32
28.75 28.71 0.04000 28.83255 28.79265 0.03990 0.32
28.75 28.69 0.06000 28.83255 28.77289 0.05966 0.32
28.75 28.6056 0.14440 28.83255 28.68969 0.14286 0.31
28.75 28.60 0.15000 28.83255 28.68412 0.14843 0.31
28.75 27.50 1.25000 28.83255 27.59033 1.24222 0.29

Table 5. RSFs obtained from generated signals and estimations for the second harmonic.

Generated data Estimated data Error [%]
f2 [Hz] f2−R [Hz] RFS [%] f2 [Hz] f2−R [Hz] RFS [%]

28.75 28.73 0.069565 28.83255 28.81252 0.069467 0.14
28.75 28.71 0.139130 28.83255 28.79265 0.138396 0.52
28.75 28.69 0.208695 28.83255 28.77289 0.206925 0.84
28.75 28.6056 0.502260 28.83255 28.68969 0.495485 1.34
28.75 28.60 0.521739 28.83255 28.68412 0.514813 1.32
28.75 27.50 4.347826 28.83255 27.59033 4.308380 0.90
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RFSi ¼ D�fi ¼ fi � fi�R

fi
ð24Þ

where fi is the frequency of the healthy beam and fi−R that of the damaged beam for the
i-th vibration mode. Usually we express this values in percent, thus these are multiplied
by 100. The RSF values for the frequency drops are presented in Table 5. It clearly
results that the estimated frequency values permit finding correct RFSs.

The question is if the method works for low frequencies, being known here are the
biggest problems in observing frequency changes. This happen mainly because the
frequency drops due to damage in early stage, for the first vibration mode, are much
smaller as the half of the frequency resolution. As a consequence, the damage
occurrence is observable just until the frequency drop approaches Df/2. For a signal
with the time length tS = 1.5 s results Df = 0.667 Hz, so that a frequency drop
Df1 = 0.02 Hz will not be observed. The change in the spectrum consists, in this case,
in an amplitude alteration because another distribution on the same spectral lines
results. Therefore, if the original signal’s frequency f1 = 4.89 Hz drops to f1
−R = 4.87 Hz the change will not be noticed. By employing the proposed method to
test if the frequency drop Df1 = 0.02 Hz is observed, we obtained the results presented
in Table 6. We conclude this small change is observable and the achieved results
permit calculating a reliable RFS. Another test, made for a bigger frequency drop
which is still not observable by applying the standard frequency evaluation, lead to the
same conclusion. The results are also presented in Table 6.

3.3 Recommendation

After performing a series of simulations, we found out the settings that should be
imposed on the acquisition system and the developed software to allow evaluating the
highest and the lowest frequency of interest. These are following:

– The length in time of the original signal should cover at least six and a half periods
of the fundamental frequency, i.e. tS > 6.5T1. This condition refers to the lowest
frequency and aims ensuring a symmetric distribution of the peaks in the over-
lapped spectrum;

– The time resolution of the original signal should ensure twenty samples for each
period of the highest frequency of interest, i.e. Tmax > 20Dt. This condition refers to
the highest frequency and aims achieving a dense overlapped spectrum around the
presumed inter-spectral line;

Table 6. RSFs obtained from generated signals and estimations for the first harmonic.

Generated data Estimated data
f1 [Hz] f1-R [Hz] Df1 [Hz] RFS [%] f1 [Hz] f1-R [Hz] Df1 [Hz] RFS [%]

4.89 4.87 0.02 0.4089 4.88863 4.86946 0.01917 0.3921
4.89 4.79 0.10 2.0449 4.88863 4.78471 0.10391 2.1256
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– The number of maxima m, searched when plotting the overlapped spectrum, can be
set much bigger as the presumed harmonics. This condition refers to the harmonic
with low amplitude for which ensuring sufficient maxima is necessary.

– The number k of cycles selected when estimating the frequency of the original
signal should be maintained in all further estimations for the damaged beam. This
refers to all harmonic components and aims to guarantee the repeatability of results.

– The number k of cycles for a given component should be estimated from the signal
length tS and the coarse estimated frequency of that component and should be taken
in such way to ensure sufficient time for truncation, so the condition tS �
kTi [ 0:3 Ti and tS � kTi\0:6 Ti should be met. This condition refers to all har-
monic components and aims ensuring conditions to keep k unchanged when lower
frequencies are assessed.

It is sometimes challenging to fulfill simultaneously the first two conditions, as a
substantial number of samples are needed. In such cases, the measurements should be
focused on acquiring signals to be processed to evaluate low frequencies. Afterward,
shorter signals with improved time resolution should address the high frequencies.

4 Conclusion

Accurate frequency estimation is crucial for the detection of damage in early stage.
Current frequency estimation methods, both the standard estimation by DFT as well as
estimations involving interpolation fail in detecting small frequency changes. This
prevents structural changes from being observed at an early stage. To overcome this
limitation, we developed a frequency estimation method and software based on it,
which have shown that even a small frequency drop can be estimated.

Tests performed with this software have shown it can separately evaluate the
frequencies of a signal composed by more harmonics with different amplitudes. Dif-
ferences between the results obtained for the fundamental frequency when it was
estimated from the harmonic signal and from the composed signal are insignificant
(less than 0.0003 Hz). It was also shown that the harmonics with low amplitude from
multi-tone signals can be accurately estimated. Repeatability was assured for all esti-
mations. When simulating a slight frequency drop, the software was able to identify it.
It was observed a difference even if the generated frequencies are 28.6056 Hz and
28.6 Hz. For all frequency changes we succeed to calculate the Relative Frequency
Shifts, irrespective to how small the frequency drop was.

Future research will focus on the complete automation of the estimation process,
which will be based on the features extracted through the coarse analysis of the signal
in its incipient phase.
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