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Abstract
Polysaccharides show immense structural variability by virtue of their monomer
composition, linkages, oligomer units, branching, size, and interactions with
non-saccharide components. In cyanobacteria, polysaccharides are found as
storage molecules, in cell envelopes, and as extracellular polysaccharides
(EPS). Storage molecules exist as glycogen and cyanobacterial starch and exhibit
lowest diversity. As part of the cell envelope, lipopolysaccharides (LPS) in the
outer membrane contribute 70–75% to the cyanobacterial cell surface. O-antigen
polysaccharide imparts structural heterogeneity and thus strains specificity even
in the cyanobacterial species sharing the same habitat. LPS is responsible for a
diverse range of health effects in man. EPS that interfaces with the surrounding
environment shows maximal structural diversity and functional versatility.
Functions of the EPS vary with the species and provide as the primary mechanism
for survival in extremes, defence against toxins, heavy metals, predators, and
other antagonists. They modify fluidity of the external milieu and are involved in
cellular communication important in structuring the biofilm community. In fact,
both survival and growth of the organism are dependent on the organisms’ EPS
arsenal. Thus, the cyanobacteria spend up to 70% of the total energy reserve in the
production of EPS. Such diversity of polysaccharides is not easy to be replicated
through synthetic processes. This chapter provides glimpses of the diversity of
polysaccharides found in cyanobacteria and their industrial potential to encourage
prospective work in this area.
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15.1 Introduction

Cyanobacteria are efficient at solar energy capture investing as much as 9% of the
solar energy into biomass as compared to only 0.5–3% for higher plants (Dismukes
et al. 2008; Branco dos Santos et al. 2014). They can fix an estimated 25 gigatons of
carbon from CO2 per year into energy dense biomass (Paumann et al. 2005)
constituting 0.05% of global carbon in biomass (Garcia-Pichel et al. 2003).
Cyanobacteria have existed since the Proterozoic era (2500–570 Ma) where they
were the principal primary producers and the ultimate source of atmospheric oxygen
(Schopf and Walter 1982). The transition from a reductive to an oxidative environ-
ment triggered diversification of cyanobacterial lineages and appearance of new
traits (Schirrmeister et al. 2016). The group has acquired remarkable adaptations in
the evolutionary journey establishing them in the most diverse aquatic and terrestrial
environments across the latitudes, from the polar to the tropical, along all altitudes
and extremes and in a variety of ecological associations. Polysaccharides have
played a critical role in establishing these communities in the process.

Diverse structures can be created by simply linking different monosaccharides
through glycosidic bonds, different conformations, configurations, branching, and
interactions with other non-saccharidic components that further generate macro-
molecular, structural, and functional versatility to the roles that they perform.
Polysaccharides by nature are designed to perform various specific functions in a
living organism. They usually act as carbon sinks that provide energy reserve;
maintain structural integrity; alleviate stress; defend against toxins, parasites, and
preys; and act as information systems (Lohman 1990). Minor modifications in the
structure can cause major changes in the properties and attributes of the polysac-
charide. Remarkably, these modifications may be brought about in response to as
little changes in the abiotic and biotic factors. Cyanobacteria produce
polysaccharides either endogenously serving as storage polysaccharides as part
of the cell wall or exogenously, and discussion on these components is the primary
focus of this review.

15.2 Cell Wall Polysaccharides

Cyanobacterial cell walls resemble the Gram-negative bacterial architecture com-
prising of cytoplasmic membrane, peptidoglycan layer, and an outer membrane.
Though the overall structure of cyanobacterial cell wall is that of a Gram-negative
wall, the peptidoglycan layer is considerably thicker resembling a Gram-positive
wall. In unicellular strains like Synechococcus sp., the layer is about 10 nm thick,
and the filamentous forms like Phormidium uncinatum have a 15–35-nm-thick
peptidoglycan, while larger forms like Oscillatoria princeps have a 700-nm-thick
layer. The extent of crosslinking is also high: 55–63% in cyanobacteria as against
20–33% in Gram-negative bacteria (reviewed by Hoiczyk and Hansel 2000). The
outer membrane is composed of lipopolysaccharides that are amphiphilic
heteropolymers comprising 10–15% of the outer membrane and covering nearly
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75% of the total cell surface (Lerouge and Vanderleyden 2002). They are heat-
stable endotoxins and have been recognized as a key factor in septic shock in
humans. LPS contributes to the structural properties of the cell envelope and acts as
a physical barrier to protect the cell. More external layers like the capsule, S layer,
sheath, and slime that occur above the outer membrane along with the cell wall are
annotated as the cell envelope. Additionally, cell type-specific structures also exist
like glycolipid layer and polysaccharide layer around the heterocysts of filamen-
tous cyanobacteria (Herrero et al. 2016).

15.3 Lipopolysaccharides

Lipopolysaccharides (LPS) are highly acylated saccharolipids with a molecular mass
of about 10–20 kDa (Lerouge and Vanderleyden 2002). This complex amphiphilic
macromolecule is composed of a glucosamine disaccharide backbone with hexa- or
hepta-acyl chains, linked to a hydrophilic polysaccharidic core that extends out to the
environment (Raetz and Whitfield 2002). The O-antigen consists of repetitive
subunits that extend out from the bacteria and can include from 1 to 25 chemically
identical repeating oligosaccharide units, which, in turn, contain 2 to 7 monosaccha-
ride residues, generally hexoses (Wilkinson 1996). The polysaccharide chains show
heterogeneity in terms of monosaccharide composition, their alternative
configurations, and the innumerable types of glycosidic linkage, length, branching
degrees, and noncarbohydrate substituents. It exhibits interstrain as well as
intrastrain heterogeneity and is the basis of serological and antigenic specificity of
the organism (Lerouge and Vanderleyden 2002). Presence of O-antigen modifies the
appearance of a bacterial colony from rough to smooth. Another morphological
variant is called “semi-rough” and contains short-chain-type LPS having only one
O-chain repeating unit (Nazarenko et al. 2011).

15.3.1 Core

The core region is less varied than that of O-antigens comprising up to 15 sugar
residues and responsible for antigenicity in the rough-type LPS (Caroff and Karibian
2003; Steimle et al. 2016). It is divided into a proximal and a distal region. The
proximal region, called “inner core,” contains 3-deoxy D-manno-oct-2-ulosonic acid
(Kdo), heptoses, and negative charges usually derived from phosphate groups, and it
is important for maintaining the integrity of the outer membrane. The distal region,
called “outer core,” provides attachment to the O-antigen, if present, and is usually
composed of hexoses and shows more structural variability (Caroff et al. 2002;
Caroff and Karibian 2003; Gemma et al. 2016). The core region is further linked to
lipid A via a Kdo residue. Usually, the core region contains L-glycero-D-manno-
heptose (L,D-Hep) and an L-α-D-Hep(1,3)L-α-D-Hep(1,5) [α Kdo (2,4)] α-Kdo
tetrasaccharide (Hep II, Hep I, Kdo II, and Kdo I, respectively), which may be
further substituted by other sugars or phosphate residues or sometimes by acetyl
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groups or amino acids. In addition to L, D-Hep, several LPS contain its biosynthetic
precursor, D-glycerol-D-manno-heptose (D, D-Hep). There are other LPS that
contain only D, D-Hep or even lack any heptose. Kdo may be replaced by the
stereochemically similar sugar acid D-glycero-D-talo-oct-2-ulosonic acid
(Ko) (reviewed by Holst 2011).

15.3.2 Backbone

Lipid A (endotoxin), a glycophospholipid that provides anchorage to the molecule in
the outer membrane, is composed of a glucosamine disaccharide backbone in 1,6
linkage and is a highly conserved segment. At 10 and 40 positions, the disaccharide
contains α-glycosidic and nonglycosidic anionic phosphoryl groups, and at positions
O 2, O 3, O 20, and O 30 are (R) 3-hydroxy fatty acids in ester and amide linkages.
Two of these fatty acids are usually further acylated at their 3-hydroxyl group. Most
of the bacteria show acylation with 4–6 chains ranging from 10 to 16 carbon atoms in
length. The type of hexosamine present, degree of phosphorylation, the presence of
phosphate substituents, chain length, number, and position of the acyl groups impart
individuality to the cells (Kabanov and Prokheronko 2010; Steimle et al. 2016).

15.3.3 Cyanobacterial Lipopolysaccharides

Cyanobacterial lipopolysaccharides are structurally and functionally different from
the proteobacteria (Hoiczyk and Hansel 2000; Snyder et al. 2009). Most
cyanobacteria possess a simplified LPS structure containing 31–80% carbohydrates,
8–18% fatty acids, and 0.1–8% proteins (Durai et al. 2015). There are none or trace
amounts of 3-deoxy-D-manno-oct-2-ulosonic acid (KDO), which is ubiquitously
present in enteric Gram-negative bacteria. But some strains of cyanobacteria, viz.,
Spirulina platensis (Tornabene et al. 1985), Microcystis aeruginosa NRC1
(Raziuddin et al. 1983), Phormidium sp. (Mikheyskaya et al. 1977), Anacystis
nidulans (Synechococcus PCC 6301) (Katz et al. 1977), and Agmenellum
quadruplicatum (Synechococcus PCC73109) (Buttke and Ingram 1975),
possess KDO.

Heptoses are absent in most cyanobacteria. Some cyanobacteria do not have
phosphates, while others show its presence in variable amounts (Weckesser et al.
1974, 1979; Schmidt et al. 1980a, b; Keleti and Sykora 1982; Carillo et al. 2014;
Simkovsky et al. 2016). Unlike Gram-negative LPS, the presence of galactose and
glucosamine is also variable. Studies have indicated that neutral sugars like rham-
nose, fucose, xylose, mannose, galactose, and glucose are conserved among most of
the cyanobacterial species. Immense variability exists down to the chemotype
(Schmidt et al. 1980a, b). The LPS molecules also contain relatively large quantities
of oleic, palmitoleic, linoleic, and linolenic acids that are typically absent in Gram-
negative LPS molecules. They lack phosphate residues and instead have a single
galacturonic acid attached to glucosamine.
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The carbohydrate region in Anacystis nidulans is comprised of fucose, galactose,
glucose, mannose, rhamnose, KDO (2-keto-3-deoxy-octonic acid), glucosamine,
and 2-amino-2-deoxy-heptose (Weise et al. 1970). Katz et al. (1977) reported the
presence of KDO and β-hydroxymyristic acid in A. nidulans (Synechococcus PCC
6301), which are also seen in LPS of Gram-negative bacteria. However, it lacked
heptose and had phosphate and glucosamine in small amounts in its lipid moiety.
Besides the common core sugars and xylose, there is L-acofriose in Anabaena
variabilis, fucose in Anabaena flos-aquae, and 3,6-dideoxyhexose in Anabaena
cylindrica (Keleti and Sykora 1982), and galacturonic acid as the main component
in the core oligosaccharide of Oscillatoria planktothrix FP1 (Durai et al. 2015). LPS
in Schizothrix calcicola contained neutral sugars, viz., galactose, glucose, mannose,
rhamnose, xylose, and glucosamine as the only amino sugar without any KDO and
heptose (Keleti et al. 1979).

Snyder et al. (2009) working on Synechococcus sp. observed that the core region
was primarily composed of a 1,4-linked glucose chain with low levels of glucos-
amine and galacturonic acid. Its strain WH8102 also had a single rhamnose.
Raziuddin et al. (1983) reported substantial amounts of KDO, glucose and other
hexoses, 3-deoxy sugars, glucosamine, fatty acids and their esters, and phosphates in
the LPS of Microcystis aeruginosa NRC1, while Martin et al. (1989) reported
absence of KDO and heptoses in two strains of M. aeruginosa, PCC 7806 and
UV-017. A study by Fujii et al. (2012) on the O-chain of Microcystis aeruginosa
reported glucose (66%), rhamnose, xylose, mannose, and galactose and that of
M. aeruginosa NIES-87 was found to be composed of glucose alone. It suggested
that glucose (and its derivative) being the sole monosaccharide component in the
O-chain of M. aeruginosa may imply that the functional roles of the O-chain might
differ from its role in proteobacteria.

The O-antigen of Synechococcus elongatus PCC 6301 is reminiscent of the
polymannose O-antigen of Escherichia coli O8 and O9 (Katz et al. 1977). LPS of
Agmenellum quadruplicatum was found to be unique due to the presence of xylose
in the polar heads and unusual pentoses in the O-antigen, while galactose was absent.
Presence of rhamnose and mannose along with absence of heptoses conformed with
common cyanobacterial LPS structures (Durai et al. 2015). Sugar analysis of the
LPS of Spirulina platensis showed presence of common core sugars as glucose,
KDO, rhamnose, mannose, galactose, fucose, ribose, and xylose, along with a
variety of unique sugars such as inositol, D-glycero-D-manno-heptose, D-glycero-
L-mannoheptose, and 3- or 4-O methylhexoses and glucosamine as the lone amino
sugar. Minor quantities of 3-hydroxy palmitic acid were also detected (Tornabene
et al. 1985). Sugar composition of some of the cyanobacterial polysaccharides is
presented in Table 15.1.

Lipid A is an acylated glycolipid that anchors the LPS molecule in the outer
membrane of the Gram-negative bacteria and is the most conserved biochemical
structure of this group of organisms (Stewart et al. 2006). Its fatty acid composition
is reported to be highly heterogeneous both in terms of length and degree of
saturation, ranging from lauric acid (C12) to stearic acid (C18) along with other
polyunsaturated fatty acids like linoleic and linolenic acid. Such long- chain fatty
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acids and polyunsaturated fatty acids are mostly not known in the LPS of Gram-
negative bacteria (Weise et al. 1970; Buttke and Ingram 1975; Keleti et al. 1979;
Keleti and Sykora 1982; Tornabene et al. 1985; Martin et al. 1989). Only a few
studies are covered here to let the reader form a picture of the entire LPS in
cyanobacteria as lipid A requires a separate review.

Cyanobacterial lipopolysaccharides contain large amounts of oleic, palmitoleic,
linoleic, and sometimes linolenic acids also (Keleti and Sykora 1982). Snyder et al.
(2009) found that the lipid moieties in Synechococcus sp. had tri- and tetra-acylated
structures with odd-chain hydroxy and nonhydroxy fatty acids connected to the
diglucosamine backbone. In line with other cyanobacteria, LPS of Oscillatoria
planktothrix FP1 also had no KDO, heptose and phosphate; however, hydroxylated
and nonhydroxylated fatty acids have been reported in the glucosamine
disaccharidic backbone (Carillo et al. 2014). Digalactosyl diacylglycerol and phos-
phatidyl diacylglycerol along with unsaturated fatty acids and 3-hydroxy myristate
were observed by Tornabene et al. (1985) in Spirulina platensis. The lipid A portion
of Schizothrix calcicola is composed of β-hydroxylauric, β-hydroxypalmitic,
linoleic, myristic, oleic, palmitic, pentadecanoic, and stearic acids (Keleti et al.
1979). LPS of Agmenellum quadruplicatum and Anacystis nidulans contain behenic
acid along with β-hydroxy fatty acids analogous to other Gram-negative bacteria
(Buttke and Ingram 1975). The lipid portion of LPS from another strain of Anacystis
nidulans was composed of a series of long fatty acyl chains including
β-hydroxymyristic acid (Weise et al. 1970).

15.4 Storage Polysaccharides

15.4.1 Glycogen

Glycogen is a dynamic form of glucose storage that combines low osmotic activity
and accessibility to hydrosoluble enzymes. Typically, 5–15% of carbon fixed by
cyanobacteria is stored as glycogen, and under certain conditions, it can contribute to
up to 70% of dry biomass (Depraetere et al. 2015; Song et al. 2016). It is a highly
branched, homogeneous, amorphous, water-soluble polyglucan composed of 9–13,
(1,4)-linked α-D-glucose residue interlinked via (1,6)-α-D-glucosidic linkages. It
forms a rigid granular structure of about 107–108 Da (Ball et al. 2011; Damrow et al.
2016) and serves as the main carbon sink and energy storage molecule in
cyanobacteria. Each α-1,4-linked chain supports on an average two branched chains
reaching 8–10% that are randomly arranged but densely packed and get progres-
sively more crowded toward the periphery (Welkie et al. 2016). The size of the
particle increases to a maximum possible diameter of 42 nm (Shearer and Graham
2002) containing up to 55,000 glucose residues with over 36% resting in the outer
particle chains (Meléndez et al. 1999). These are readily accessible to cell
metabolism without the need for polysaccharide debranching. There is abundance
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of short chains with a degree of polymerization (DP) �8 (32–75%), and < 1%
consisted of long chains with a DP �37 as observed by Meléndez et al. (1999) in
Synechococcus elongatus PCC 7942.

Despite sharing the same chemical linkages, starch and glycogen differ widely in
physicochemical properties. Starch granules are semicrystalline and insoluble in
cytosol. They are usually made up of two α-glucan polymers, namely amylopectin
and amylose. The minor fraction, amylose, is composed of linear weakly branched
glucan chains (less than 1% of α-1,6 branches), while amylopectin, which is the
major component, has the same basic structure but has considerably shorter chains
and a lot of α-(1,6) branches. This results in a very complex, three-dimensional
structure (Hizukuri 1986; Bertoft et al. 2010; Laohaphatanaleart et al. 2010). In
amylopectin, α-1,6 glucosidic linkages are densely localized along the glucan chains
with 9–10-nm intervals forming unit clusters. Double-helical structures are formed
when the degree of polymerization (DP) approaches 10–20 glucosyl units within the
cluster (Kainuma and French 1972; Gidley and Bulpin 1987), which are further
closely packed with a radial orientation in a starch granule. The number of branches
increases with an increase in radius, and consequently, concentric lamellae of
alternating amorphous and crystalline regions are formed. The branching rate is
nearly half (5%) of that observed in glycogen. Average DP reaches 104–108 glucose
units per molecule corresponding to a molecular mass of 106–108 g mol�1 (Hizukuri
et al. 1983; Takeda et al. 1988).

According to Konopka (1984), the formation of polysaccharide is a function of
the relationship between energy generation and growth. It is induced when the
energy generated is more than that needed for growth. Thus, polysaccharide forma-
tion results from overflow metabolism. The biosynthetic pathway of bacterial glyco-
gen is very similar to that of starch biosynthesis in plants, using ADP-glucose as a
major substrate for starch biosynthesis with different elongation properties for
glucose extensions (Manners 1991; Sivak and Preiss 1998). The enzymes of glyco-
gen metabolism are conserved in all cyanobacteria (Beck et al. 2012). Glycogen is
synthesized by the sequential action of three enzymes: ADP-glucose
pyrophosphorylase (AGPase) that activates the glucose to form ADP-glucose
which is then polymerized to the nonreducing end of an α-1,4-linked glucan chain
by glycogen synthase (GS) and the branching enzyme (BE) that introduces symmet-
rically distributed α-(1,6) glucosidic linkages according to a binary branching
principle via a hydrolytic cleavage reaction. The tandem cluster structure of amylo-
pectin is considered to be synthesized by concerted reactions catalyzed by three
classes of enzymes, i.e. starch synthase (SS), starch branching enzyme, and starch
debranching enzyme, each of which is composed of multiple isozymes making a
different contribution to the cluster structure (Nakamura 2002; Ball and Morell
2003). In contrast, it was accepted that glycogen can be synthesized by a single
form of glycogen synthase and glycogen branching enzyme in animals and bacteria.
However, two types of glycogen synthases (GSI and GSII) have been reported in
Synechocystis sp. PCC6803 with different elongation capacities. While GSI prefer-
entially extends chains progressively by adding more glucose units to the same
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chain, thereby generating longer branch chains in the glycogen structure, GSII adds
single glucose units distributively one at a time to many chains adding intermediate-
length chains instead (Yoo et al. 2014). Breakdown of the glycogen granule occurs
through the actions of two enzymes, a debranching enzyme (DBE; GlgX) and the
glycogen phosphorylase (GPase and GlgP) [Reviewed by Shearer and Graham
2002; Welkie et al. 2016].

Glycogen metabolism is under the control of circadian oscillator in
Synechococcus elongatus PCC7942 (Suzuki et al. 2007), a phenomenon originally
considered to be restricted to eukaryotic organisms (Diamond et al. 2015). When
cyanobacteria are grown in a 24-h light:dark (LD) cycle, cells perform photosynthe-
sis and accumulate glycogen during the day which provides for cell integrity,
function, and viability during the dark period via the oxidative pentose phosphate
cycle (Osanai et al. 2007). LD transitions involve changes in cytoplasmic pH and
redox state, as well as changes in the intracellular concentration of specific
metabolites and metal ions. These factors mainly regulate the switch between
assimilatory (photosynthetic) and catabolic pathways in the cyanobacterial cell
(Smith 1982). In fact, enzymes in glycogen metabolism are sensitive to the cellular
redox state, and LD transitions alone may trigger changes in the glycogen content
(Díaz-Troya et al. 2014).

Glycogen metabolism enables efficient energy homeostasis (Cano et al. 2018)
acting as buffers and cellular tools for the compensation of stressful energetic
transitions, mainly to ameliorate and avoid futile cycles during the process of
changing photosynthetic activity and metabolic switching, as has been observed in
metabolic networks of Synechocystis sp. where glycogen provides for all the
precursors for biomass formation, metabolites, and cofactors in the dark (Puszynska
and O’Shea 2017). Pattanayak et al. (2014) showed that glycogen in S. elongatus
oscillates in continuous light conditions and that this oscillation depends on a
functional clock that segregates pathways for storage and degradation of carbon
temporally. Besides its role in maintenance metabolism under dark, glycogen is also
involved in creating homeostasis in periods of starvation, nutrient deficiency, and
salt and oxidative stress where again metabolic switching takes place (Suzuki et al.
2010; Zilliges 2014). Glycogen metabolism has also been associated with symbiotic
performance, colonization, and virulence in bacteria, but such a role has not been
reported in cyanobacteria (Wilson et al. 2010).

Though Synechocystis sp. and other forms in the order Chroococcales do not form
a resting cell under stress, like species of the orders Nostocales and Stigonematales,
these cells also switch stringently from an active photosynthetic protein status to a
dormant glycogen status (Kaprelyants et al. 1993). Glycogen is known to accumu-
late under nitrogen deficiency. In Arthrospira platensis, its content increases from
13.7 to 63.2%, while the protein content decreases from 42.7 to 15.4%.
Synechocystis PCC 6803 is capable of mixotrophic growth on glucose and stores
the excess carbon as glycogen increasing intracellularly from 1 to 19 mg g wet cell�1

in a nitrogen-deficient medium (Yoo et al. 2007), while nitrogen deprivation with
high light intensity (200 μmol photons m�2 s�1) further enhances its concentration to
41.35 mg g wet cell�1 (Monshupanee and Inchroesakdi 2014). Growth conditions
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also affect the structure of glycogen as observed in Synechocystis sp. PCC6803 (Yoo
et al. 2007). Glycogen production under nitrogen limitation (0.084 g NaNO3 L

�1)
with 5 mM glucose yielded glycogen with a DP of 10.4, which increased to 10.7 two
days after the cultures were transferred from a medium containing normal N
concentration (1.5 g L�1) and glucose to a nitrogen-limited glucose-supplemented
medium. Glycogen synthesis mutants in another study were found to lose their
viability on agar plates containing glucose (Gründel et al. 2012).

Enhanced glycogen production in response to nitrogen limitation has also been
reported in Spirulina maxima, Synechococcus sp. strain PCC 7002, Synechocystis
sp. strain PCC 6803, Arthrospira platensis, Arthrospira maxima, Anabaena
variabilis, and Anacystis nidulans (Lehmann and Wöber 1976; Earnst and Boger
1985; De Philippis et al. 1992; Aoyama et al. 1997; Aikawa et al. 2012; Guerra et al.
2013; Hasunuma et al. 2013; Xu et al. 2013). Under nitrogen deficiency, other than
photosynthesis, carbon skeleton of glycogen is probably derived from the amino
acids released from proteins by gluconeogenesis. Along with accumulation of
glycogen, cells undergo bleaching with concomitant breakdown of phycobilisomes
and chlorosis (Hasunuma et al. 2013). The cells maintain residual photosynthesis
(0.1% of the initial activity) (Sauer et al. 2001) allowing them to preserve full
viability for over 6 months (Klotz et al. 2016). Similar long-term survival time has
been reported for Synechocystis sp. also (Gründel et al. 2012). Mutants of
Synechocystis sp. incapable of glycogen synthesis cannot perform metabolic
switching, and thus, there is absence of chlorotic response while cells spill energy
in the form of pyruvate and 2-oxoglutarate with 30–60% loss of carbon. Viability of
cells on prolonged nitrogen starvation is lost in absence of glycogen. In the stenoha-
line cyanobacterium Synechocystis sp. PCC6803, a shift in osmotic response is
observed in absence of glycogen synthesis with 29 times increase in sucrose
synthesis under salt stress as glucosylglycerol, its primary osmolyte, could not be
synthesized (Miao et al. 2003).

15.4.2 Semi-Amylopectin/Cyanobacterial Starch

Though soluble glycogen is the primary storage molecule in cyanobacteria, certain
unicellular diazotrophs such as Cyanothece sp. ATCC 51142 and Cyanobacterium
sp. CLg1 (Reddy et al. 1993; Falcón et al. 2004), Synechococcus sp. BG043511
(Ikemoto and Mitsui 1994), Cyanobacterium sp. MBIC10216 (formerly
Synechocystis aquatilis SI-2), and Cyanobacterium sp. NBRC 102756 (Nakamura
et al. 2005) contain within their cells numerous carbohydrate storage granules of
distinct polysaccharidic nature that resemble amylopectin and thus were called semi-
amylopectin. Contrary to the glycogen and phytoglycogen (rice endosperm), the
cyanobacterial semiamylopectins were found to be slightly smaller in size
(Nakamura et al. 2005) (Table 15.2). Semiamylopectins are composed of 2–6%
long chains with a degree of polymerization of �37. Glycogen of Synechococcus
elongatus PCC 7942 is composed of only 0.4% long chains in contrast to the rice
endosperm that contains 6.2% long chains. The very short chains with a degree of
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Table 15.2 Differences in glycogen and starch

S. No. Property Glycogen Starch
Cyanobacterial
starch

1 Basic unit Glucose 2-α-Glucan polymers
amylopectin (75%–88%)
Amylose (20–25%)

Semiamylopectin,
some also contain
5% amylose

2 Crystallinity Amorphous Semicrystalline Semicrystalline

3 Branching α-1,4-Glucan
with 8–10%
α-1,6
branching

Amylopectin :
α-1,4-glucan with 5% α 1,6
branching
Amylose: α-1,4-glucan,
linear

α-1,4-Glucan,
α-1,6 branching at
intervals of
9–10 nm

4 Structure Random
arrangement
Dense
packing
Crowded
toward
periphery

Tandem cluster
arrangement: Branches
densely localized along the
chain forms. Unit clusters
arranged in double helix,
oriented radially in
concentric rings

Tandem cluster
amylose may or
may not be present

5 Degree of
polymerization
(DP)

Most
abundant
average
(DP)n: 6–8
Short chain
DP �8:
32–75%
Long chain
DP �37:
<1%
with
2 branches/
chain in
12 tiers. Up to
55,000
residues

(DP)n amylose: 11–12
(DP)n amylopectin: 20–30
DP �37: 6–7% (rice
endosperm)
DP �8: 7–8%
up to ~two million residual
molecules

(DP)n
semiamylopectin:
11–12
DP �37: 2–6%
DP �8: 7.5–25%

6 Particle
diameter (nm)

Max 42 nm
(Shearer &
Graham
2002)

0.5–100 μm 0.2–0.7, Spherical
or discoid granules

7 Solubility Soluble in
cytosol

Insoluble Insoluble

8 Synthesis ADPase,
glycogen
synthase (GSI
GSII), BE

Multiple isozymes of starch
synthase, starch branching
and starch debranching
enzymes

Isozymes reported
AGPase, GS/SS,
BE

9 Molecular mass 107–108 Da Amylopectin: 108–1010 Da
Amylose: 106–108 Da

Similar to
amylopectin

10 Branching
enzyme gene
copies

1 or 2 1 3

Reference: Welkie et al. (2013, 2016), Meléndez et al. (1998, 1999), Suzuki and Suzuki (2013),
Suzuki et al. (2013), Yoo (2001)
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polymerization �8 were in a range between 7.5% and 25%. The proportion of the
long to short chains in different species is intermediate between cyanobacterial
glycogen and rice endosperm (Nakamura et al. 2005; Shimonaga et al. 2008;
Hirabaru et al. 2010; Suzuki et al. 2013). A relative proportion of as low as 2%
long glucan chains with a DP of �37 is enough for the macromolecule to achieve a
cluster-like structure. The insoluble semiamylopectins form 0.2 to 0.7 μm spherical
or disk-shaped granules with a tandem cluster structure. While Cyanobacterium
sp. MBIC10216 polyglucan did not show the presence of amylase (Nakamura et al.
2005), starch-like granules in Cyanobacterium sp. CLg1 were found to be composed
of both an amylopectin-like high mass fraction and a smaller amylose fraction (linear
or scarcely branched (Suzuki et al. 2013)). The chain length distribution of the high-
mass polysaccharide complies with the definition given for semiamylopectin, as it
contains fewer of those chains exceeding a DP of 40 (Nakamura et al. 2005).
Because the granules also contain a significant amount of amylose (5%), this
material has been called cyanobacterial starch (Cenci et al. 2013). The average DP
of amylose ranges from 11 to 12 which has also been reported for semi-amylopectin
formed in cyanobacteria.

Analysis of storage polysaccharides from Cyanothece sp. ATCC 51142, Cyano-
bacterium strain Clg1, and Cyanobacterium strain NBRC 102756 revealed that their
storage granules have a molecular mass virtually indistinguishable from that of
amylopectin (Suzuki et al. 2013, 2015). Moreover, the thermal properties, crystal-
linity, and branching structure are similar to those of amylopectin, and the semi-
amylopectin material synthesized by these strains is organized in tandem cluster
structures. Isoforms have been reported for enzymes involved in the synthesis of
cyanobacterial starch. The Cyanothece sp. ATCC 51142 has two genes each
encoding ADP-glucose pyrophosphorylase (AGPase) and glycogen synthetase
(GS)/starch synthase (SS) and three genes for the branching enzyme (BE). The
presence of two GS/SS genes is observed in various species of cyanobacteria
(Suzuki et al. 2010). Two genes for AGPase are found only in a few strains of
Cyanothece and Acaryochloris marina and may not occur commonly among unicel-
lular diazotrophic cyanobacteria (Suzuki et al. 2013).

15.5 Exopolysaccharides

Cyanobacteria express high molecular weight glycans [extracellular polysaccharides
(EPS)] with varying gelling abilities. The gelatinous form that occurs as a thin, firm
fibrillar structure surrounding the cell wall, defining the shape of the cell, is called
sheath, while the organized, densely packed nonuniform thick layer around the
sheath that may/may not be tightly or covalently bound to the cell is called the
capsule. Phospholipids covalently bound to the cell wall function as anchors.
Attachment is through hydrogen bonds and hydrophobic and electrostatic
interactions (Mayer et al. 1999; Wingender et al. 1999). Another fraction may
exist loosely attached to the cell surface lacking definite margins or secreted in the
environment, which is called slime or mucilage (De Philippis and Vincenzini 1998).
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A particulate fraction corresponding to the transparent exopolymer particles (TEPs)
has also been found to be associated with cyanobacteria (Thornton 2004).

Nearly 60% of the dry biomass may be composed of exopolysaccharides (Hill
et al. 1997) that may be produced as a primary or secondary metabolite. In Anabaena
halophytica (Sudo et al. 1995), Spirulina platensis (Filali Mouhim et al. 1993), and
Cyanospira capsulata (Vincenzini et al. 1990), polysaccharide production parallels
biomass production, while in Cyanothece BH68K (Fattom and Shilo 1984), Nostoc
calcicola (Flaibani et al. 1989), Phormidium J-1 (Fattom and Shilo 1984, 1985),
A. flos-aquae A37 (Moore and Tischer 1964; Tischer and Davis 1971), and
A. cylindrica 10C (Lama et al. 1996), highest production rates were observed in
the late phase. Conversely, in the case of a Nostoc strain, the highest rates of
polysaccharide synthesis and release were achieved by young cultures (Mehta and
Vaidya 1978). While most cyanobacteria produce heteroglycans,
homopolysaccharide composed of α-D-1,6 glucose has been reported in a marine
diazotrophic Cyanothece sp. (Chi et al. 2007). Microcystis wesenbergii represents
another unique case where the polymer is exclusively composed of uronic acids
(Forni et al. 1997). The heteroglycans, common to most cyanobacteria, are com-
posed of 5–8 monomer repeats (Rossi and De Phillippis 2015); however, a
decasaccharide repeating unit has been proposed for Cyanospira capsulata (Marra
et al. 1990; Garrozo et al. 1995). EPS from Spirulina platensis and the thermophilic
Mastigocladus laminosus have a still complex structure being composed of 15 mono-
mer repeats (Filali Mouhim et al. 1993, Gloaguen et al. 1999). Fourteen
monosaccharides have been reported to be present in Chroococcus minutus B
41.79 (Fischer et al. 1997). Rossi and De Philippis (2016) in their review on algal
polysaccharides have listed the composition of 136 forms of cyanobacteria from
various reports. Analysis of this data shows that eight different neutral sugars are
generally present in various combinations and molar ratios, with glucose being the
most prevalent sugar followed by galactose, fucose, mannose, arabinose, ribose, and
fructose. In some cases, sugars such as xylose, galactose, arabinose, or fructose were
found to be higher than glucose (Pereira et al. 2009). Pentoses are generally absent in
other polysaccharides of prokaryotic origin (Sutherland 1994). The moiety protects
the neighboring glycosidic bonds from the more common glycan hydrolases (Helm
et al. 2000) and is partially responsible for the gelatinous consistency of the
polysaccharide. Presence of either galacturonic acid or glucuronic acid or both in
most cyanobacterial polysaccharides along with sulfates vest in negative charges and
thus impart adhesivity to the macromolecule (De Philippis et al. 2000; Mancuso
Nichols et al. 2005).

Sulfated sugars are involved in cell recognition and adhesion that are crucial in
biofilm formation and complexation of metal ions (Tease and Walker 1987). They
also provide stability over a range of temperature, pH, and salinity degrees (Arad and
Levy-Ontman 2013). Sulfated polysaccharides have been shown to have numerous
bioactivities of medicinal value. For cyanobacteria living in alkaline habitats like
Microcystis flos-aquae C3–40, the polysaccharide capsule accumulates iron and
manganese that are necessary for cyanobacterial growth but are relatively insoluble
in aerobic alkaline conditions (Parker et al. 1996). Gehrke et al. (1998) showed that
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iron species complexed by EPS allow bacteria to attach on pyrite and that Fe (III)-
ions complexed by uronic acids in the EPS were needed to dissolve pyrite.

Uronic acid is a highly hydrophilic substance and contributes to the highly
absorptive character of the EPS that can absorb over 95% water by weight (Decho
1994). This is critical for the survival of cyanobacteria through desiccation. Hydro-
philic moieties provide minerals, nutrients, and water to the growing cell (Rossi et al.
2012a, b). Uronic acids are present in nearly 90% polymers and can reach up to
20–30% of the released polysaccharide dry weight (De Philippis et al. 2007;
Laurienzo 2010). Polymers containing nosturonic acid or uronic acids with lactyl
moieties play a pivotal role in the ability of organisms to survive extreme
environments as in Nostoc commune DRH-1, a desiccation-tolerant cyanobacterium
that can survive �400 MPa (0% humidity) for centuries (Potts 1994). Such func-
tional groups act as a spacer arm or linker that aid adherence important for biofilm
formation and act as molecular scaffolds for covalent attachment of UV-absorbing
pigments and other antioxidative compounds. Lactyl-containing mannose
monomers have been reported in Cyanospira capsulata, a filamentous heterocystous
form that grows in saline lakes (Garozzo et al. 1998).

Cellulose, an insoluble polysaccharide of linear β-1,4-glucan, is present in the
sheath, slime tubes, or EPS of Oscillatoria sp. UTEX 2435, Oscillatoria princeps,
Nostoc sp. UTEX 2209, Gloeocapsa sp. UTEX L795, Scytonema hofmanni UTEX
2349, Anabaena sp. UTEX 2576, Phormidium autumnale UTEX 1580A,
Synechocystis sp., Nostoc sp. PCC7120, Crinalium epipsammum, and
Synechococcus 7002 (de Winder et al. 1990, Nobles et al. 2001; Zhao et al. 2015).
Depending on the extent of inter- and intramolecular hydrogen bonding, cellulose
exhibits varying degrees of crystallinity (O’Sullivan 1997). It could have roles in
gliding motility of hormogonia, desiccation tolerance, nitrogen-fixing efficiency of
heterocysts, enhancing viability of akinetes, or protection from UV light and could
serve as a means of attachment to the host plant in the formation of symbiotic
relationships (Matthysse 1983; Nobles et al. 2001). Synthesis of cellulose in
cyanobacteria has been correlated to the presence of cellulose synthase gene CesA
which has homology with the cellulose synthase in vascular plants. Cellulose occurs
possibly as a laminated layer between the inner and outer membrane and is an
important component of the extracellular glycocalyx in Synechococcus PCC7002
(Zhao et al. 2015). The thermophilic cyanobacterium Thermosynechococcus
vulcanus undergoes cell aggregation in response to light stress under suboptimal
temperatures induced by cellulose accumulation in the wall (Kawano et al. 2011).

Other rare monosaccharides identified in the EPS of cyanobacteria include
methylated sugars, amino sugars like N-acetyl glucosamine, 2,3-O-methyl rham-
nose, and acofriose as found in spirulan. 2-O-methyl D-xylose has been reported in
the sheath of Gloeothece sp. PCC 6501 (Weckesser et al. 1987). N-acetyl
fucosamine is found in large amounts in the arabinofucan EPS of Synechocystis
aquatilis (Flamm and Blaschek 2014). Other methylated sugars like 4-O-methyl
rhamnose and 3-O-methyl glucose have also been reported (Hu et al. 2003)
(reviewed by Delattre et al. 2016). Methyl sugars perhaps play a role in certain
recognition events (Staudacher 2012). The sugar moiety of EPS from Wollea
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saccata was reported to have 60% hexoses and 31% 6-deoxyhexoses and 9% of
pentoses with 40 types of methylated sugar derivatives suggestive of a very complex
structure (Šutovská et al. 2017).

Certain cyanobacterial EPS contain peptides and ester-linked acetyl groups (up to
12% of EPS dry weight) (De Phillipis et al. 1998; Richert et al. 2005). These
components along with deoxy-sugars like rhamnose and fucose confer hydrophobic
character on the EPS affecting its rheological, emulsifying, and adhesive properties
(Shepherd et al. 1995). Fattom and Shilo (1984) demonstrated that all benthic
cyanobacteria are hydrophobic, while all planktonic forms are hydrophilic. Presence
of cations was found to be necessary for the expression of hydrophobicity with
divalent cations being more effective than monovalents. Multivalent ions induce gel
formation (De Philippis et al. 1993). Metal ion sequestration or immobilization also
protects the cells from its toxic species and at times provides for certain ions essential
for growth. Some cyanobacteria are capable of modifying EPS from hydrophobic to
hydrophilic character and can detach from surfaces as observed in Phormidium
sp. when conditions become inappropriate (Fattom and Shilo 1985). Others have
both hydrophilic and hydrophobic fractions that enable adhesion as well as water
storage (Rossi et al. 2012a, b). Such amphiphilic exopolymers help stabilization of
emulsions or act as flocculants (Fattom and Shilo 1985). Aggregation and floccula-
tion of suspended particles by flocculants allow for light penetration to the sediment-
water interface, thus facilitating survival and growth of benthic cyanobacteria that
occupy a low-light zone. The flocculant may also carry nutrients to this zone (Bender
et al. 1994; Fattom and Shilo 1984). Emulcyan, a sulfated heteropolysaccharide
synthesized by Phormidium J-1, contains fatty acids and proteins that contribute
variable degrees of hydrophobicity to the macromolecule (Bar-Or and Shilo 1987).

Adhesivity is an important character in mat formation and creating associations
with plants as in Nostoc and wheat roots (Gantar et al. 1995) and symbiosis in
Anabaena azollae (Robins et al. 1986). Polypeptides enriched with alanine, glycine,
isoleucine, leucine, phenylalanine, and valine have been reported in the EPS of
Cyanospira capsulata and Nostoc calcicola (Flaibani et al. 1989; Marra et al. 1990).
Schizothrix sp. is a dominant cyanobacterium in the marine stromatolites found on
the margins of Exuma Sound, Bahamas. The EPS released by this organism contains
2.5% protein, specifically enriched with aspartic and glutamic acid. These proteins
act as nucleation centers for CaCO3 precipitation. Changes in the EPS composition
and stereochemistry lead to CaCO3 polymorphisms (Kawaguchi and Decho 2002).
The coccoid cyanobacterium Solentia (order Pleurocapsales) is an important com-
ponent of stromatolite climax community that bores into the grains. The cell and its
polysaccharidic sheath elongate as the cell divides and glides into the hole. Micrite
composed of aragonite needles (<4 μm long) deposited on this sheath acts as a
cement to form well-indurated layers (Reid et al. 2000; Dupraz et al. 2009). Other
non-saccharidic components include phosphates, acetates, pyruvates, lipids, and
DNA (De Philippis and Vincenzini 1998; Pereira et al. 2009).

The high number of different monosaccharides and their derivatives found in the
cyanobacterial EPS, variety of substituent groups, linkages, and a broad range of
possible macromolecular structures gives incalculable structural diversity and
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functional variability to polysaccharides. According to a calculation by Werz et al.
(2007), a trimer composed of 10 most frequently occurring mammalian
monosaccharides alone may arrange in 126,000 possible combinations. With enor-
mous versatility of their armor, cyanobacteria have an edge over other organisms
against environmental stresses and thus occupy a special trophic status in the most
extreme environments on earth.

EPS excretion serves multiple functions, including nutrient storage (organic
compounds containing C, N, or P and trace metals), structural organization, and
buffering against environmental stressors (Flemming and Wingender 2010). Studies
on Nostoc commune have showed that EPS prevents membrane fusion, during
periods of desiccation and subsequent rehydration. This, along with the synthesis
of osmotica like trehalose and sucrose, may be the key mechanism in desiccation
survival (Hill et al. 1997).

The highly hygroscopic EPS of Chroococcidiopsis maintains prolonged mois-
ture around the cells, releasing it slowly (Caiola et al. 1996). A recent study on
three strains of Nostoc, viz., N. commune, N. verrucosum, and N. sphaericum, that
produce massive extracellular matrices showed that only EPS does not render
desiccation tolerance. Expression of a 36kD Wsp A (water stress protein) and
Sod F (superoxide dismutase) in N. commune was responsible for the tolerance,
while the other strains without them were sensitive to desiccation (Sakamoto et al.
2018). Wsp A, perhaps, dynamically coordinates the flexibility and rigidity of the
EPS matrix in response to desiccation-rehydration (Liu et al. 2017). The presence
of capsules helps evade grazers as observed in Phormidium (Pajdak-Stós et al.
2001) and enhance nitrogen fixation by reducing oxygen permeability to nitroge-
nase as reported in the heterocysts of various species of Nostoc (Bergman et al.
1997; Soule et al. 2016) and in non-heterocystous forms like Gloeothece (Kallas
et al. 1983). EPS of cyanobacteria also contains diverse phytochemicals. Presence
of mycosporine-like amino acids in EPS has been reported by several authors.
Nostoc commune, Arthrospira platensis, and Microcoleus sp. and Leptolyngbya
sp. have been reported to actively secrete and accumulate them in their capsular
polysaccharides (Bohm et al. 1995; Trabelsi et al. 2009, 2016). Radical scavengers
have been reported in the EPS of Anabaena sp., Tolypothrix tenuis, Phormidium,
Nostoc, Oscillatoria, and Calothrix (Parwani et al. 2014; Babić et al. 2015). The
activity was attributed to the presence of phenolic acids, vitamin C, and flavonoids
in Leptolyngbya (Trabelsi et al. 2016). Anabaena PCC 7120 and Oscillatoria
angustissima have been reported to produce intra- as well as extracellular
polysaccharides as a means of protection to toxic species (El-Sheekh et al.
2012). Cyanobacterial sheaths play an important role in enabling the microbe to
survive environments subject to extensive mineralization. The sheath of Calothrix
sp. was reportedly impermeable to particles sized �11 nm diameter, thus
restricting silicification to the outer surface of the sheath preserving the cell wall
and cytoplasmic functions (Phoenix et al. 2000; Benning and Mountain 2004). In
natural environments, the complex EPS harbor numerous heterotrophic bacteria
and undergo arrangement, rearrangement, dissociation, and resynthesis in a
dynamic process buying time for acclimatization of the organism to changing
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environment. It contributes to the structural stability of biofilms and mats, helps
adhesion and attachment to substrate, and is implicated in cyanobacterial
locomotion.

15.5.1 Transparent Exopolymeric Particles (TEPs)

Cyanobacterial exopolysaccharides vary in molecular structure depending on the
producing species (Pereira et al. 2009). The sheaths of Anabaena C5 and Nostoc
2S9B have a sheetlike appearance, while Anabaena sheds its sheath by tearing off,
leaving behind the nude filaments throughout the lifecycle, but the sheath of Nostoc
is linked to hormogonia release which when liberated leave behind empty shells
(Gantar et al. 1995). When the cell coating/mucilage detaches from the surface, it
may further coagulate, gelate, or anneal to form submicron gels that further coagu-
late to form particulate (0.4–300 μm) TEP or colloidal TEP (0.05–0.4 μm) that can
be visualized by Alcian blue staining. TEP can directly form from the fragmentation
of capsules throughout the growth phase as observed in Anabaena spiroides or under
nutrient limitation and on senescence following cellular lysis (Grossart et al. 1997;
Berman and Viner-Mozzini 2001; Bittar and Vieira 2010; Verdugo and Santschi
2010; Berman-Frank et al. 2016) with dominance of the colloidal fraction (Villacorte
et al. 2015). They can also develop abiotically by gelation, coagulation, or bubble
adsorption (Chin et al. 1998; Passow 2000; Mari et al. 2017) under certain environ-
mental conditions from dissolved fibrillar polysaccharides released from various
planktonic organisms. TEPs exist as blobs, clouds, sheets, filaments, or clumps and
have been detected in various aquatic ecosystems like rivers, lakes, groundwater,
wastewater, brackish water, and seawater where they significantly contribute to the
trophic structure, carbon cycling, and export nutrients to deep waters (Passow and
Alldredge 1994; Passow 2000, 2002; Engel 2004; Berman-Frank et al. 2007).

The TEP macrogels (Verdugo et al. 2004) are composed of highly surface-active
polysaccharides (Mopper et al. 1995) and thus have a strong tendency to form
hydrogen bonds and bridge with ions like Na2+, Ca2+, and other metals. As a result,
TEPs are usually extremely sticky, about two to four orders of magnitude stickier
than phytoplankton or mineral particles with a high probability of attachment upon
collision (Passow 2002; Engel 2004; Mari and Dam 2004; Liu et al. 2018).

Visible aggregates of TEP (>1 mm) have been reported in tank cultures of
nutrient-depleted Synechococcus sp. (Deng et al. 2016) that sink at velocities of
more than 400 m d�1 in seawater.Microcystis sp. has been reported to produce 15 pg
Xanthan equivalents of TEP per cell (Liu et al. 2014). Interaction of this EPS with
Ca2+ has been reported to induce colony formation in this bloom-forming cyanobac-
terium (Sato et al. 2017). Crocosphaera, a marine diazotrophic cyanobacterium,
produces EPS and TEP constitutively during the exponential growth phase as has
also been reported for Anabaena flos-aquae (Surosz et al. 2006; Sohm et al. 2011),
while Phaeocystis antarctica produces them in stationary and death phase (Hong
et al. 1997) and Nostoc under N limitation (Otero and Vincenzini 2004).
Cyanobacterial blooms significantly contribute to the TEP pool (Bertocchi et al.
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1990; Gloaguen et al. 1995) and are known TEP precursors (Passow 2000). Positive
coupling between programmed cell death during bloom termination and Fe starva-
tion and TEP production has been reported for Trichodesmium blooms (Berman-
Frank et al. 2007). TEP concentrations reaching 1474 � 226 μg xanthan gum
equivalents L�1 have been reported in stationary phase cultures of Prochlorococcus
sp., a picocyanobacterium-dominant primary producer in the oligotrophic ocean
(Iuculano et al. 2017).

Because of their high abundance and unique properties, TEPs play a major role in
the dynamics of the aquatic ecosystems. For example, as gel-like free swimming
particles, TEP and TEP precursors show lectin-like property which can enable them to
act as a chemical conditioning layer and to agglutinate bacteria (Li et al. 2015). It has
been shown that about 0.5–25% of all bacteria present in seawater and freshwater were
attached onto TEP. This suggests that free swimming TEPs are hotspots of intense
microbial and chemical activity and act as a carrier to transport bacteria in aquatic
environments. Evidence suggests that TEP can play an active role in the development
of aquatic biofilms (Berman et al. 2011; Bar-Zeev et al. 2012) enhance surface
biofouling and cycle nutrients vertically in deep waters (Passow 2002). Additionally,
these particles together with their associated flora and fauna can serve as food
packages for protists, microzooplankton, and even larval fish (Grossart et al. 1998).
TEP-based aggregates or marine-snow containing TEP typically have high carbon
(C)-nitrogen (N) ratios (Berman-Frank and Dubinsky 1999), which can also fuel N2

fixation by heterotrophic diazotrophs (Rahav et al. 2013; Benavides et al. 2015).

15.5.2 Factors Affecting EPS Production

Composition of all structural and storage polysaccharides is more or less constant,
yet EPS show a high amount of compositional flexibility. They also show a wide
range of cellular N:P ratios, ranging from 5:1 to 100:1 depending on the type of
nutrient that was in short supply, deviating a lot from the Redfield ratio of 106:16:1
(Geider and Roche 2002; Rabouille et al. 2017). This flexibility explains the capacity
of these simple life forms to survive in nutrient extremes. The overconsumption of
carbon is exuded as EPS. EPS production by phytoplankton is highly variable, from
1 to 99.9% of the net photosynthetically fixed organic carbon, depending on species
and environmental conditions (Bertilsson and Jones 2003). Besides nutrient avail-
ability, other abiotic factors like light, temperature, pH, salinity, C:N ratio, nutrient
source, batch or continuous cultivation, aeration, dilution, and availability of
micronutrients also affect EPS production. Generally, exopolysaccharide production
increases under stress, but what is stress to an organism may be a normal situation for
another. Therefore, the responses are largely strain dependent.

An increase in EPS pool has been reported with increase in irradiance in
Crocosphaera watsonii while the growth becomes saturated, and a similar response
is observed at a low irradiance with nearly 30% of carbon occurring in TEPs
(Rabouille et al. 2017). Increase in EPS with light intensity has also been reported
in Cyanothece sp. (Su et al. 2007), Aphanocapsa halophytaMN11 (Matsunaga et al.
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1996), Gloeocapsa gelatinosa (Raungsomboon et al. 2006), Anabaena ATCC
33047 (Moreno et al. 1998), and Nostoc sp. (Otero and Vincenzini 2003, 2004).
The spectrum of energy also affects EPS productivity. Red and blue wavelengths
were shown to enhance EPS production in Nostoc flagelliforme (Han et al. 2014) by
altering carbon allocation and increasing carbon flow into the sugar nucleotide
synthesis pathway (Han et al. 2018). Light was found to be the key factor in
Cyanothece CCY0110 EPS production with a maximal yield being 1.77 gL�1 at
50 μE m�2 s�1 (Mota et al. 2013). Light intensity and temperature have a synergistic
effect (Carvalho et al. 2009). Temperature affects nutrient uptake, membrane fluid-
ity, and photosynthetic rate and thus the EPS production. While a positive effect of
temperature was observed on EPS production by Anabaena ATCC33047 (Moreno
et al. 1998), no effect was observed in Nostoc sp. PCC 7936 (Otero and Vincenzini
2003, 2004).

Increase in salt concentrations increased EPS production in Cyanothece
sp. ATCC51142, Synechocystis sp., Spirulina, and Anabaena PC1 (Nicolaus et al.
1999, Pereira et al. 2009; Ozturk and Aslim 2010), but Cyanothece CCY0110 being
a marine form did not show much response (Mota et al. 2013). EPS content in
Synechococcus strain CCAP1405 increases with salinity and age of cultures (Bemal
and Anil 2018). Spirulina subsalsa showed a 2.5% increase in EPS in the stationary
phase (Chakraborty et al. 2015) which suggests that nutrient starvation is needed to
induce a response in this organism. The composition of the EPS also changes with a
change in molar ratios of the monomers and composition.

Increase in C:N ratio has a critical role in EPS production. Usually, the presence
of combined nitrogen even in diazotrophic forms enhanced EPS productivity per-
haps because nitrogen fixation itself is an energy-intensive process (Kumar et al.
2007, Pereira et al. 2009). Reaction to N starvation is strain specific. An increase in
EPS on N limitation has been reported in Anacystis nidulans and Microcoleus
vaginatus (Chen et al. 2006). A study on 15 Cyanothece species by De Philippis
et al. (1998) showed that while a few strains showed an increase in intracellular
carbohydrate, others showed increase in extracellular carbohydrate under N limita-
tion. Response depended on the source of nitrogen in case of Anabaena cylindrica
(Lama et al. 1996) and A. flosaquae (Tischer and Davis 1971). Excess nitrogen as
nitrate generally does not affect significantly as it is the most easily metabolizable
source. Urea was found to be the best nitrogen source for EPS production in Nostoc
flagelliforme (Han et al. 2017). Phormidium tenue (Hu et al. 2003), Spirulina
subsalsa (Chakraborty et al. 2015), and Nostoc sp. (Otero and Vincenzini 2003)
showed an increase in EPS on N starvation, while no change was reported in
Synechocystis (Panoff et al. 1988), Cyanothece capsulata (De Philippis et al.
1998), Phormidium (Fattom and Shilo 1984), and Crocosphaera watsonii (Sohm
et al. 2011), and a negative effect was observed in Phormidium laminosum
(Fresnedo and Serra 1992) (reviewed by Pereira et al. 2009).

Cade Menun and Paytan (2010) suggested a lower threshold value of phospho-
rous concentration at which carbohydrate accumulation is observed in Spirulina
platensis (Markou et al. 2012). Increase in EPS in P starvation is reported in
Cyanothece 16SOM-2 (De Philippis et al. 1993), Synechococcus sp. (Roux 1996),
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Spirulina (Nicholaus et al. 1999), and Anabaena sp. (Huang et al. 2007), while no
effect was observed in Phormidium J1 (Rossi and De Philippis 2016) and
Cyanospira capsulata (De Phillipis et al. 1991), and a decrease has been reported
in Anabaena cylindrica (Lama et al. 1996).

Concentration of divalent ions also affects EPS synthesis as observed in
Anabaena sp. PCC7120 (Singh et al. 2016) in response to calcium chloride. High
EPS production was observed at the inhibitory concentration of 10 mM, which
suggests release of EPS as a means of chelation of the ion to protect the cell.

The composition of the EPS may vary with the age of the culture both quantita-
tively and qualitatively as observed for the sulfated polysaccharides produced by
Synechocystis strains (Panoff et al. 1988) and Spirulina platensis PCC8005. Spiru-
lina showed a decrease in the amount of galactose with culture aging, while
Synechocystis showed variation in molar ratios, and one strain formed an additional
polymer on aging (Filali Mouhim et al. 1993). On the other hand, the
exopolysaccharide from Cyanospira capsulata showed no alteration in composition
even after 10 years of cultivation (De Philippis and Vincenzini 1998). Cyanothece
16Som2 on continuous culturing for 5 years showed an additional sugar, rhamnose
with variation in molar ratio in its EPS (De Philippis et al. 1998).

15.5.3 Rheological Behavior

Most cyanobacterial polysaccharides are polyelectrolytes. The charged groups
ensure strong hydration. They may contain over 95% water by weight. A 20–40-
fold increase in the weight of colonies of Nostoc commune was observed by Shaw
et al. (2003) with most of it absorbed by the extracellular glycan. The EPS from
Anabaena sp., A. anomala, and A. oryzae absorbs 25.9, 7.16, and 12.3 g H2O g�1

polymer, while the polymer from Tolypothrix tenuis absorbs only 9.35 g (Bhatnagar
et al. 2014b). Sacran absorbs an exorbitant amount of 6100 mL water per gram
polysaccharide. The absorbing capacity is however dependent on the ionic strength
of the solvent and decreases to 2700 ml in saline (Mitsumata 2018).

Polysaccharides do not form a true solution in water; however, on hydration,
some of them undergo conformational transitions entering secondary, tertiary, and
quaternary interactions (Rees 1982). These inter- and intramolecular interactions
lead to characteristic hydrodynamic behavior such as viscoelasticity or gel-like
properties. Viscoelastic behavior of EPS is responsible for the cell’s mechanical
integrity and is required for normal cell functioning, cellular homeostasis, cell-cell
communication, stress response, and locomotive function (Bhat et al. 2012). An
understanding of the flow behavior not only is relevant to industrial applicability of
these polysaccharides but also gives an insight into the structure of the macromole-
cule. The viscosity and flow behavior (rheology) of the polysaccharides change in
response to a number of variables, viz., the structure of the polysaccharide, size,
concentration, temperature, pH, ionic strength, and shear. For Newtonian fluids, at
constant temperature and pressure, viscosity does not vary with shear rate. On the
other hand, for most non-Newtonian fluids, viscosity decreases with increase in
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shear and are thus classified as pseudoplastic as against dilatant fluids that show
increase in viscosity on increasing shear. Fluids that show increase in viscosity on
constant shear with time are called rheopectic, while the ones that show a decrease
are called thixotropic.

Cyanobacterial polysaccharides are characterized by high molecular weight
(MW) that contributes to the viscosity which in certain cases is even greater than
xanthan (Rossi and De Philippis 2015). Cyanospira capsulata has been reported to
produce EPS with a molecular weight of 4.5 MDa, the highest reported so far.
Table 15.3 summarizes some reported MW. Viscosities of cyanobacterial EPS may
vary from as low as 0.9 cps as in Nostoc calcicola (Bhatnagar et al. 2014a) to 400 cps

Table 15.3 Molecular mass of cyanobacterial exopolysaccharides

Species
Apparent molecular mass
(kDa) References

A. circularis PCC 6720 >1200 Bar-Or and Shilo (1987)

A. halophytica GR02 2100 Morris et al. (2001)

Anabaena anomala 864 Bhatnagar et al. (2014b)

Anabaena circularis PCC 6720 41,200 Bar-Or & Shilo (1987)

Anabaena oryzae 539 Bhatnagar et al. (2014b)

Anabaena sp 3679 Bhatnagar et al. (2014b)

Anabaena sp. ATCC 33047 1350 Moreno et al. (2000)

Anabaena spiroides 2000 Colombo et al. (2004)

Aphanothece sacrum 1.6 � 104 Okajima et al. (2012)

Aphanothece stagnina 3.14 � 104 Le Nguyen et al. (2012)

Arthrospira platensis 81–98 Tseng and Zhao (1994)

C. capsulata ATCC 43193 1400–1900 Vincenzini et al. (1993)

C. minutus B 41.79 1200–1600 Fischer et al. (1997)

Cyanothece sp. 4.5 � 104 Ohki et al. (2014)

Gloeocystis vesiculosa 680 Halaj et al. (2018)

Microcoleus vaginatus 380 Hu et al. (2003)

Nostoc insulare 54.79 540–1300 Fischer et al. (1997)

Nostoc sp. 460 Hu et al. (2003)

Nostoc sphaeroids 131 Liu et al. (2018)

Oscillatoria sp. 200 Bender et al. (1994)

Phormidium versicolor NCC466
(CFv-PS)

63.79 Belhaj et al. (2018)

Phormidium J-1 1200 Bar-Or and Shilo (1987)

Phormidum 94a 2000 Vicente-Garcia et al.
(2004)

Phormidum tenue 380 Hu et al. (2003)

Schizothrix sp. 300 Kawaguchi and Decho
(2002)

Scytonema javanicum 110–380 Hu et al. (2003)

Tolypothrix tenuis 1953 Bhatnagar et al. (2014a,
b)
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in Cyanothece CE4 (De Philippis et al. 2001). EPS from Nostoc calcicola, a
low-viscosity polymer (55–65 cps), showed a truly pseudoplastic, non-Newtonian,
time-independent behavior with good recovery from shear (Bhatnagar et al. 2014a).
Non-Newtonian shear-thinning properties have been reported for many other
cyanobacteria also like Spirulina platensis (Filali Mouhim et al. 1993), Anabaena
halophytica GRO2 EPS (Morris et al. 2001), Cyanospira capsulata (Lapasin et al.
1992), Limnothrix redekei (Moreno et al. 2000), Anabaena variabilis (Bhatnagar
et al. 2012), Nostoc carneum (Hussain et al. 2015), and Nostoc minutum (Pereyra
and Ferrari 2016). EPS from Phormidium 94a shows a Newtonian behavior at low
EPS concentration changing to pseudoplastic above 0.1% solution and increasing
hydration times perhaps due to increase in hydrogen bonding leading to a strong
polymer network and viscosity (Vicente-Garcıa et al. 2004). Aqueous dispersions
(0.1% w/v) of polysaccharide produced by Cyanothece strains were comparable to
xanthan (De Philippis et al. 1998). Mancuso Nichols et al. (2009) screened 800 algal
cultures for exosaccharide production and isolated the cyanobacterium Microcystis
aeruginosa f. flos-aquae that showed highest viscosity (6.55 cps, equivalent to
1.16 g L�1 xanthan gum) in the medium. Parikh and Madamwar (2006) studied
four cyanobacterial strains: Cyanothece sp., Oscillatoria sp., Nostoc sp., and Nostoc
carneum. All the polysaccharides were low-viscosity products (6.9–18.4 cps) and
showed decline in reduced viscosity with 0.1 M NaCl and precipitated with 0.1 M
CaCl2. A biphasic effect of metal ion concentration on the polysaccharide produced
byMicrocystis flos-aquae has been reported. The polysaccharide viscosity increased
with increasing metal ion concentration (CdC12, Pb(NO3)2,
FeC13 > MnCl2 > CuC12 > CaC12 > NaCl) reaching a maxima and then decreased
with further addition of that ion (Parker et al. 1996).

Kinematic viscosity of Nostoc strains (Nostoc commune, Nostoc flagelliforme,
and Nostoc sphaeroides) grown in the field was found to be higher than the
suspension cultures grown under controlled condition (Huang et al. 1998). Apparent
viscosity curves of EPS from Arthrospira sp. showed three phases. The first phase
was characterized by Newtonian behavior at zero shear with viscosity reaching up to
102 Pa.s at 5% concentration. Beyond a critical shear value, the flow behavior
became rheo-fluidifiant followed thereafter by another Newtonian region at a high
shear rate (Chentir et al. 2017).

Polysaccharide properties are integrals of many factors. The primary structure of
a polysaccharide is the main sequence of covalently linked sugar monomers. The
constitutively fixed bond lengths and angles controlling the ring orientations com-
prise a secondary structure (configuration). In solution, polymer chains align them-
selves to adopt an orientation with lowest energy that may be ordered or disordered.
Two general ordered conformations are ribbon-like and helix conformations. Poly-
saccharide with ribbon-like conformation is most easily aligned and closely packed
through numerous hydrogen bonds and van der Waals forces. The resultant compact
structures essentially prevent solvent penetration and retain insolubility in water. The
ribbon-like conformation is the least soluble followed by the hollow helix, while
polysaccharides with disordered conformation of a random coil are the most soluble.
Stiff structure that hinders the intermolecular association remains extended and
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usually leads to a higher solubility. Branched structure and presence of charged
groups (carboxylate group, sulfate, or phosphate groups) increase solubility, while
structural characters that promote the intermolecular association lead to poor solu-
bility, such as linear chain, large molecular weight, and other regular structural
characters. Zhang et al. (2007) reported the order of chain flexibility of glucan as
(1,4) β > (1,3) α > (1,4) α > (1,3) β > (1–6) α > (1–6) β, while β glucans are inherently
flexible. Besides molecular structure, concentration, degree of polymerization, poly-
dispersity, solvent characteristics, and temperature also affect the polysaccharide
conformation. In poor solvents, interactions of chain segments with themselves are
favored resulting in aggregation. In good solvent, interactions between solvent and
chain segments are favorable resulting in extended conformations and high solubil-
ity. Stability in aqueous environments can only be achieved when interchain and
intrachain interactions are favorable. Therefore, two or more stranded associations of
helices, of ribbons, or of helices with ribbons are found. These can be regarded as
tertiary and higher levels of structure (Rees and Welsch 1977). Native
polysaccharides can link up further to form three-dimensional networks resulting
in gels that help maintain hydration and integrity of the cells. An increase in viscosity
coincides with an increase in surface. The most extended conformation is the random
coil and thus exposes more surface area than does a helix and a single helix exposes
more than a double helix. With the structural complexity observed in cyanobacterial
polysaccharides, an immensely wide variety of solution behaviors are expected.
However, very few studies have been conducted. Since cyanobacterial
polysaccharides are generally polyelectrolytes, their conformation depends on the
ionic strength of the solvent and their concentrations. In very dilute salt-free
solutions, these macromolecules thus tend to adopt an extended rod-like
conformation; however, conformations ranging from rigid rod to random coils
have been reported.

A rigid/extra-rigid rod-type conformation has been envisaged for the
exopolysaccharide from Aphanothece halophytica GR02 (AH-EPS) (Morris et al.
2001). Polysaccharides extracted from four filamentous cyanobacteria, viz.,
Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue, and Nostoc sp.,
show a conformation intermediate to a stiff rod and a random coil (stiff coil or a
flexible rod) (Hokpusta et al. 2003), while EPS of Anabaena sp. ATCC 33047 takes
up an intermediate structure between a random coil polysaccharide and a weak gel.
Rheological studies on Cyanospira capsulata EPS show two different viscoelastic
responses at sufficiently high concentrations and molecular weights (Cesàro et al.
1990; Garozzo et al. 1995, 1998). The solution conformation of the EPS is that of a
random coil with moderate flexibility. As the concentration increases, overlapping
and entanglement coupling occurs along with flickering interchain cross-reactions
between semi-flexible segments creating order in the system. Further increase leads
to formation of an entanglement network locally stabilized through specific
non-covalent intermolecular interactions leading to a weak gel-like consistency
(Cesàro et al. 1990; Navarini et al. 1992). The gelatinous EPS of Nostoc commune
that grows in extreme conditions of desiccation is a biological gel that shows
properties of both physical and chemical gels. The gel shows a reversible stress
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softening behavior perhaps due to intensive physical crosslinking that makes it
behave as an elastomer, limiting the relaxation of individual chains.

Sacran, a megamolecular suprapolysaccharide produced by Aphanothece
sacrum, is an extremely high molecular weight (>1.6 � 107 g mol�1) polysaccha-
ride composed of five major monosaccharides (glucose, xylose, rhamnose, galac-
tose, and mannose) (Okajima et al. 2009; Ohki et al. 2018). Sacran shows a very
low overlap concentration of 0.004% indicating its megamolecular structure. The
chains are not fully extended in pure water and take double-helical conformation at
concentrations (c) >0.09 wt %, form a weak gel at c > 0.25 wt%, and finally form
huge domains of liquid crystalline gels considered to be an aggregate of highly
ordered helices, forming self-orienting micro-rods longer than 3 μm at c > 0.2 wt%
(Mitsumata et al. 2013). During the drying process of the sacran solution, the rigid
polysaccharides exhibit self-orientation and self-assemble to build a rod-like
microdomain in micrometer scale (~1 μm of outer diameter and > 20 μm length)
which have not been reported for any other soluble polysaccharides. Under certain
conditions, clear twisting structures are formed (Okeyoshi et al. 2016; Budpud
et al. 2018).

15.6 Industrial Applications

Cyanobacteria are gaining attention of the industry due to the ease of production
with minimum cheap supplements, eco-friendly nature, and immense functional
versatility that is difficult to reproduce synthetically. Though the productivity is
lesser than other bacteria and fungi, their unique composition and interesting
properties drive research in the field. Their potential for application in some areas
is discussed here.

15.6.1 Lipopolysaccharides

Cyanobacterial lipopolysaccharides are generally considered as toxins and are
attributed with a range of pathological effects. They can cause strong allergic
reactions and skin and eye irritations and can induce symptoms of influenza like
rigors, uneasiness, headaches, arthralgia, somnolence, marginal loss of memory, and
diarrhea (Jakubowska and Szelag-Wasielewska 2015). However, cyanobacterial
lipopolysaccharides are reported to be ten times less harmful than other bacterial
variants. LPS from Oscillatoria sp. has been reported to activate cells of the immune
system (Mayer et al. 2011, 2016; Ohkouchi et al. 2015). An exception was reported
by Best et al. (2002) who investigated the potential of isolated cyanobacterial LPS to
reduce the activity of glutathione S-transferases (GSTs) in zebra fish embryos which
was found to be greater than LPS from E. coli or Salmonella typhimurium. Reduc-
tion in GST decreased utilization of glutathione, and glutathione depletion prevented
LPS-induced inflammation as observed in case of lung injury (Nathens et al. 1998).
It also has a protective effect on various models of apoptotic and necrotic liver injury
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(Hentze et al. 1999, 2000). This property of cyanobacterial EPS has been proposed
as a novel anti-inflammatory pharmacotherapy (Szászi et al. 2005; Stewart et al.
2006).

An LPS-related molecule derived from the cyanobacterium Oscillatoria
planktothrix FP1, termed CyP, acts as a TLR4 receptor antagonist and blocks
toxicity associated with other Gram-negative bacteria (Carillo et al. 2014; Swanson
Mungerson et al. 2017). It acts as a competitive inhibitor of Escherichia coli LPS
binding to the receptor complex on human dendritic cells (Macagno et al. 2006).
Inhibition of cytokine production by Cyp in septicemia induced by Neisseria
meningitidis in a human whole-blood model was reported by Jemmett et al. (2008)
which thus can be considered as a new adjunctive therapy for treating septicemia.
LPS preparations from Oscillatoria planktothrix sp. have also been proposed for the
treatment and/or prevention of bacterial gum diseases primarily caused by
Actinobacillum actinomycetemcomitans, Tannerella forsythia, Treponema
denticola, and, more importantly, Porphyromonas gingivalis that causes gingivitis
and periodontitis (pyorrhea) (Molteni 2011). CyP actively inhibits the
proinflammatory cytokines induced by LPS in vitro even when added several
hours after LPS exposure (Macagno et al. 2006). Furthermore, the effect was not
species specific since it was reportedly active in human, mouse, and porcine cells
(Jemmett et al. 2008; Thorgersen et al. 2008). Thus, the potential of CyP can be
exploited for the treatment of noninfectious diseases, in which detrimental TLR4-
driven inflammatory processes induced by endogenous ligands play a pivotal role.
TLR4 antagonism by CyP can help in delaying seizures and reducing recurrence in
animal models of neurological and neurodegenerative diseases such as in epilepsy
and models of amyotrophic lateral sclerosis and Alzheimer’s diseases (Marosso et al.
2010; Iori et al. 2017; Molteni et al. 2016).

15.6.2 Exopolysaccharides

The immense structural variability in cyanobacterial exopolysaccharides manifests
into functional versatility. Due to various sol-gel properties resident in these
polysaccharides, they are variously used as thickening, emulsifying, gelling agents
and stabilizers in food industry (Delattre et al. 2011; Kraan 2012). Xanthan is widely
used in the food industry for its rheological behavior. EPS from Cyanospira
capsulata and Anabaena halophytica GRO2 show xanthan-like physical properties
(Cesàro et al. 1990; Navarini et al. 1990, 1992; Morris et al. 2001), while Anabaena
sp. ATCC 33047 EPS is similar in properties to Alkemir 110 that is widely used in
the food industry as a stabilizer (Moreno et al. 2000). Microcystis flos-aquae C3–40
resembles the plant polysaccharide pectin in its composition. Pectin is used as a
gelling agent but requires intensive processing. Thus, the ease of preparation of the
cyanobacterial polymer is a promising alternative. The exopolysaccharides of Nos-
toc commune are often used as a dietary ingredient in countries such as China and
Peru (Johnson et al. 2008). These polymers have been suggested for applications as
bioemulsifiers in cosmetics, swelling agents in food industry, and stabilizers in
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textile and pharmaceutical industry. They can also be of use as industrial gums
owing to their capacity to form weak gels (Parikh and Madamwar 2006).

Humectants that are commonly used in the cosmetic industry are glycerin, sodium
pyrrolidone carboxylic acid, propylene glycol, and urea (Rawlings et al. 2004). These
chemicals though have appreciable water absorption ability, and their retention ability
is poor, thereby necessitating the use of occlusive agents to minimize transepidermal
loss (Zhao et al. 2013) which may impart undesirable odor and greasy texture (Kraft
and Lynde 2005). Though generally considered safe, they may trigger adverse skin
reactions particularly in people with dermatitis (Zesch 1982). Cosmetic industry
therefore has a demand for safer, nonirritant alternatives (Lodén et al. 2002). Amphi-
pathic cyanobacterial exopolysaccharides trap water and protect live cells during
periods of desiccation by retarding water loss (Tamaru et al. 2005). The
exopolysaccharides of Nostoc commune exhibit a moisture absorption rate of 28%
on exposure to 43% relative humidity for 24 h, which was much higher than that of
chitosan (6.3%) and urea (5.8%) (Li et al. 2011). Sacran, a giant anionic polysaccha-
ride extracted from the cyanobacterium Aphanothece sacrum, exhibits tenfold higher
moisture retention than hyaluronic acid. This gummy polysaccharide consists of
11 different monosaccharides with ~12% carboxyl and ~11% sulfate groups per
sugar chain (Okajima et al. 2008; Derikvand et al. 2017). Due to their excellent
water-holding capacity, cyanobacterial EPS has great potential for being exploited
as humectants in the skin care industry without the need of occlusive agents.

Another feature which makes cyanobacterial exopolysaccharides suitable for skin
care is its antioxidant activity that, besides giving protection, also slows down the
aging process. EPS capable of scavenging both superoxide anions and hydroxyl
radicals in vitro (Li et al. 2011) can also mitigate oxidative damage induced by
paraquat (Li et al. 2011). Sed et al. (2017) proposed extraction of exopolysaccharides
for cosmetic use from spent culture systems of Arthrospira platensis that also
exhibited antioxidant activity.

Cyanobacterial polysaccharides have also garnered interest in commercializa-
tion due to their potential in medicine. Scytonemin, a commercialized extracellular
pigment present in the sheath of Scytonema, controls the cell cycle by regulating
mitotic spindle formation and activity of kinases. It also inhibits proliferation of
human endothelial and fibroblast cells (Stevenson et al. 2002). Polysaccharides
from Phormidium versicolor (NCC466) protect liver tissues from cadmium toxic-
ity (Belhaj et al. 2018). Consequent to their excellent biocompatibility, stability,
efficacy, nontoxicity, biodegradability, low cost, and distinctive physicochemical
properties, sulfated cyanobacterial polysaccharides can be used as nanocarriers for
bioimaging and therapeutic applications (Radonić et al. 2010). Spirulan that exists
as calcium (CaSp)/sodium spirulan (NaSp) is a sulfated polysaccharide prepared
from Arthrospira platensis. It exhibits antithrombin activity by the activation of
heparin cofactors (Hayakawa et al. 2003). Depolymerized NaSp can function as a
precursor of the agents that prevent atherosclerosis as it acts as a potent inhibitor of
arterial smooth muscle cell proliferation in vitro (Kaji et al. 2004) and selectively
inhibits the entry of enveloped viruses and is reported to be active against HIV-1,
HCMV, HSV-1, measles virus, mumps virus, and influenza A virus (Hayashi et al.
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1996; Ayehuni et al. 1998; Hayashi 2008). TK V3 polysaccharide, another variant,
was shown to inhibit replication of HIV, HCMV, HSV-1, human herpesvirus type
6 (HHV-6), and VACV, but not the enveloped viruses Epstein-Barr virus and
influenza A virus (Kolender et al. 1997). Mansour et al. (2011) found that the
polysaccharides isolated from Gloeocapsa turgidus and Synechococcus cedrorum
had higher antiviral activity against rabies virus than that against herpes-1 virus.
The exopolysaccharide from Aphanothece halophytica has antiviral activity
against influenza virus A (H1N1), which shows 30% inhibition of pneumonia in
infected mice (Zheng et al. 2006). Nostoflan from Nostoc flagelliforme shows
antiviral activity against a variety of enveloped viruses whose cell receptors are
carbohydrates such as influenza virus, herpes simplex virus-1, HSV-2, and human
cytomegalovirus (Kanekiyo et al. 2005, 2007). EPS from Nostoc commune shows
antimicrobial activity against Escherichia coli, Bacillus anthracis, Staphylococcus
aureus, Bacillus subtilis, Serratia marcescens, Aspergillus niger, and Candida
albicans (Qian et al. 2012; Matsui et al. 2012; Liao et al. 2015; Li and Guo 2018).
The polysaccharides from Synechocystis sp., Gloeocapsa sp., and Nostoc
entophytum inhibit the growth of selected pathogenic bacteria and the fungus
Candida albicans (Najdenski et al. 2013). Phormidium versicolor polysaccharides
have been reported to be active against Gram-positive and Gram-negative bacteria
as well as fungi (Belhaj et al. 2017). The elastomeric gel synthesized by
N. commune can also be exploited for producing hydrogel films and scaffolds for
tissue regeneration. The polysaccharides can also constitute scaffolds for tissue/
organ regeneration in regenerative medicine (Nielsen et al. 2010; Kurd and
Samavati 2015; Rodriguez et al. 2017).

Wounded skin exhibits a rise in the oxidant levels which can trigger chronicity of
wounds especially in diabetic patients, and carcinogenesis and promote tumor
progression via cell proliferation and cell death pathways. Reactive oxygen species
(ROS) are also associated with various degenerative diseases; inflammation; and
disorders such as cardiovascular disease, immune function decline, and aging
(Rahman et al. 2012; Zhang et al. 2015). Nostoglycan reduces reactive oxygen
species level and can suppress the proliferation of several types of tumor cells and
induce apoptosis of human lung adenocarcinoma A549 cells via caspase-3 activation
(Li et al. 2018). Spirulan inhibits pulmonary metastasis by preventing adhesion and
proliferation of tumor cells (Mishima et al. 1998). Attempts are being made to
prepare nanoformulations for commercialization against cancer (Bajpai et al.
2018). Potential of cyanobacterial polysaccharides in wound healing as a function
of antioxidant activity has also been reported in Anabaena anomala, A. variabilis,
A. oryzae, and Tolypothrix tenuis (Bhatnagar et al. 2014b). These hemostatic
polymers were proposed to be used in the recovery from hemorrhagic wounds.
Antioxidant activities have been reported in Phormidium versicolor (NCC 466)
ECP also (Belhaj et al. 2017).

High molecular weight polysaccharidic preparation from the Arthrospira, called
Immulina, has been commercialized as it exhibits significant immunostimulatory
activity by raising TNFα, IFNγ, and IL-6 blood levels (Løbner et al. 2008; Nielsen
et al. 2010). It is 100–1000 x more active as monocyte activation factor in vitro than
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the polysaccharide preparations that were being used at the time in clinical settings
for cancer immunotherapy (Løbner et al. 2008). Brevitoxin, another polysaccharide
isolated from Aphanizomenon flos-aquae is reported to be immunostimulatory (Pugh
et al. 2001).

The complex polysaccharide ofWollea saccata is antitussive and bronchodilatory
with the effect being equal to or better than salbutamol but lesser than codeine
(Šutovská et al. 2017). Antidiabetic activity in intracellular and extracellular
polysaccharides has been reported in Oscillatoria sp., Leptolyngbya sp.,
Pseudanabaena sp., Lyngbya sp., Coelastrella sp., Aphanothece sp., Synechococcus
sp., and Chroococcus sp. (Priatni et al. 2016). Sacran when applied topically shows
reduced transepidermal water loss in dry skin human subjects and displays
antiallergic effects similar to hydrocortisone and tacrolimus in animal experiments.
It decreases the severity of atopic dermatitis (AD) skin lesions, itch, and sleep
disorder in AD patients and thus may serve as an alternative adjuvant and therapeutic
antiallergic agent (Motoyama et al. 2018). Heteropolysaccharides from Phormidium
versicolor NCC466 (CFv-PS) displayed strong antioxidant and hepatoprotective
activity against cadmium toxicity (Belhaj et al. 2018).

Another area of interest in cyanobacterial polysaccharides is nanoparticle synthe-
sis. Silver nanoparticle synthesis with antibacterial activity has been reported in cell-
free extracts of Limnothrix sp., Anabaena sp., Synechocystis sp., and Nostoc com-
mune attributed to extracellular polysaccharides (Morsy et al. 2014; Patel et al.
2015). Lyngbya majuscula reduces gold to form nanoparticles. Nucleation occurs
on the cell surface, and surface-active molecules are suggested to be involved in
metal ion reduction and stabilization (Bakir et al. 2018).

Anionic polysaccharides rich in uronic acids can be developed as biosorbents for
easy metal recovery. Limnothrix sp. KO05 and Synechocystis sp. PCC6803 EPS
have been demonstrated to be instrumental in biosorbing cadmium (Haghigi et al.
2017; Shen et al. 2018). Preferential adsorption of uranium by functional groups of
the marine unicellular cyanobacterium Synechococcus elongatus BDU130911 has
been reported by Vijayaraghavan et al. (2018). Heterogels of sacran with polyvinyl
alcohol have been explored for selective neodynium (rare earth metal) sorption
(Okajima et al. 2010). Selectivity toward neodymium over other earth metals has
also been reported in sacran-sepiolite composites (Alcantara et al. 2014).
Bionanocomposite with sacran chains complexed with multiwall carbon nanotubes
has been synthesized that form hardened hydrogel beads with metals and can be
collected by electrophoresis for metal recovery (Okajima et al. 2013).

An exopolysaccharide with properties of a good hydrophobic dispersant, an
excellent emulsifier, as well as a flocculant has been isolated from a strain of
Cyanothece epiphytica. Its potential as a biolubricant with characteristics better
than the conventional lubricant “grease” has been proposed for tribological
applications (Borah et al. 2018). Halophilic cyanobacteria like Cyanothece
sp. ATCC 51142, Aphanocapsa halophytica, and Synechococcus sp., producing
copious amounts of EPS (Matsunaga et al. 1996; Moreno et al. 1998; Shah et al.
1999) can be relevant to oil recovery as they can decrease surface tension, thereby
increasing solubility and mobility (Abed et al. 2009).
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Adhesivity in cyanobacteria by virtue of the polysaccharidic sheath has always
been viewed as a nuisance for their role in biofilm formation; however, their
potential in wastewater remediation through turf scrubbing has been recognized
and adopted by numerous companies like Hydromentia, BioProcess Algae,
OneWater Inc., and Green Shift Corp. Biofilm formation as a source of biomass
for biofuel production has also been recognized (Choudhary et al. 2017). A xanthan
analogue excreted by the cyanobacteria CSIRO505 has been evaluated for its
adhesive property and was described as fourfold effective for wood (maple) bonding
(1.5 MPa shear strength) compared to commercial PVAc glue (Mancuso Nichols
et al. 2009). Role of EPS as a molecular glue in photosynthetic algal microbial fuel
cells, to generate electricity in a carbon neutral fashion, is also being explored. An
electrogenic response to light has been observed from sheathed cyanobacteria
(Phormidium, Nostoc, Spirulina, Anabaena, and Lyngbya) indicating that mucilagi-
nous sheaths do not insulate or prevent electrogenic activity (Pisciotta et al. 2010).
Further the role of EPS in direct electron transfer to the electrode and thus efficient
energy production has been reported for the chlorophyte, Scenedesmus sp. SB1
(Angelaalincy et al. 2017), that may have analogy in cyanobacteria and still needs
to be explored.

15.6.3 Glycogen

Glycogen extracted from natural sources is used in the cosmetics industry as an
emollient and hydrating agent (Marchitto et al. 2010), as an antiaging agent in
combination with a protein and a flavonoid (Mausner 1992), as a humectant (Jialun
et al. 2018), and as a lubricant in ophthalmic solutions (Cavallo et al. 2002).

Monodisperse glycogen or phytoglycogen nanoparticles and their derivatives are
polyfunctional additives suitable for use in aqueous- or alcohol-based pharmaceuti-
cal or food formulations (Korenevski et al. 2016), as rheological modifiers (includ-
ing modulation of thixotropic behavior), stabilizers of organic and biological
materials, and photostabilizers in sunscreens. Some of the products having glycogen
as one component are Dermosaccharides® GY, Oxygen® complex LS 9641, and
VitaplexTM LS 9799 by BSF; Amino-Glyco kviar, Bio-Hydractyl, Cobiodefender
EMR, Glycoenergyzer, Hairdensyl complex, and Hydrotensyl complex by Cobiosa;
Marine spheres by Chemir; and PhytoSpherix by Mirexus Biotechnologies
(SpecialChem c2018).

Amphoteric glycogen hydrogels using phosphorylase-catalyzed enzymatic poly-
merization have been prepared for biomedical applications (Izawa et al. 2009,
Kadokawa 2018). Hussain et al. (2018a,b) synthesized self-healing ultrastretchable
glycogen hydrogels with good mechanical properties. Patra et al. (2016) synthesized
stimuli-responsive glycogen/N isopropylamide hydrogels by free radical polymeri-
zation using ethylene glycol dimethylacrylate as a crosslinker for colon-specific
delivery of ornidazole and 5-aminosalicylic acid. Russo et al. (2014) describe a
high-quality slow-release pharmaceutical formulation made of glycogen and algi-
nate. Monodisperse spherical hyperbranched nano-polysaccharidic glycogen
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nanoballs have been synthesized by Takahashi et al. (2011) as a new building block
for biomedical engineering and to act as chaperone in protein engineering. Though
these preparations are resourced from other sources, cyanobacterial glycogen can
also be used on similar lines.

Interest in glycogen metabolism in cyanobacteria as a promising alternative for
biofuel production has also been explored. Möllers et al. (2014) demonstrated that
cyanobacterial biomass could be used as an efficient feedstock for bioethanol
production since it has simplified cell walls and glycogen as the main storage
polymer which is far easier to mobilize than starch, the main storage polymer for
eukaryotic algae.

Efflux engineering involving inactivation of pathways leading to glycogen
synthesis has been tried in Synechococcus sp. PCC 7002, S. elongatus PCC7942,
and Synechocystis sp. PCC 6803 wherein knocking out the enzymes necessary for
glycogen polymerization led to increased leakage of nonspecific carbohydrates,
organic acids, and a number of metabolites, including key intermediates of carbon
metabolism and compatible solutes (Carrieri et al. 2012; Grundel et al. 2012;
Hickman et al. 2013; Xu et al. 2013; Hays and Ducat 2015). Synechococcus
elongatus UTEX 2973 (Syn2973), the fastest-growing cyanobacterium, appears
to hold promise for the biofuel industry as this engineered strain can secrete
35.5 mg sucrose L�1 h�1 and accumulate glycogen at the rate of 0.75 g L�1 d�1

under nitrogen-replete conditions (Song et al. 2016). Synechococcus sp. PCC 7942
has also been genetically modified to secrete noncrystalline cellulose, which may
be converted to ethanol by yeast fermentation (Nobles and Brown 2008) and
Synechococcus sp. (Ducat et al. 2012). Synechococcus sp. PCC 7002 has been
engineered to produce mannitol that gave a yield of 10% of cell dry weight and
after genetic inactivation of glycogen the production of mannitol increased to 30%
(Jacobsen and Frigaard 2014). Similarly, production of other chemicals such as
isoprene in Synechocystis sp. PCC 6803 (Bentley et al. 2014) and lauric acid in
Synechococcus sp. PCC 7002 (Work et al. 2015) has been attempted in
glycogenless strains.
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