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CHD	 Coronary Heart Disease
PCI	 Percutaneous Coronary Intervention
CABG	 Coronary Artery Bypass Grafting
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NOS	 Oxidase Synthase
MPO	 Myeloperoxidase
nNOS	 neuronal NOS
eNOS	 endothelial NOS
iNOS	 inducible NOS
NO	 Nitric Oxide
ONOO−	 peroxynitrite
BH4	 tetrahydrobiopterin
H2O2	 hydrogen peroxide
ETC	 Electron Transport Chain
XDH	 Xanthine dehydrogenase
IL-1	 Interleukine 1
IL-6	 Interleukine 6
TNF-α	 Tumor Necrosis Factor alpha
PMNs	 Polymorphonuclear Lukocytes
HIF-1α	 Hypoxia-inducible factor 1-alpha
MIM	 Mitochondrial Inner Membrane
MnSOD	 Manganese Superoxide Dismutase
H2O2	 Hydrogen peroxide
MAPKs	 Mitogen-activated Protein Kinases
RAF-MEK	 Rapidly Accelerated Fibrosarcoma- Mitogen-activated protein kinase 

kinase pathway
PI3K	 PI-3 kinase
HMGB1	 High-mobility box 1
TLRs	 Toll-Like Receptors
NFκB	 Nuclear factor kappa-light-chain-enhancer of activated B cells
PKA	 Protein Kinase A
Akt/PKB	 Protein kinase B
Bcl-2	 B-cell lymphoma 2
MMPs	 Matrix metalloproteinases
BK	 Big Potassium channels
mitoKATP	 Mitochondrial ATP-sensitive K+ channel

12.1	 �Introduction

Given the heart’s high energy demand and function, along with its vital physiologi-
cal role to the body, a prolonged and non-managed ischemia is detrimental with 
high risk of morbidity and mortality [1, 2]. Half a century ago, myocardial reperfu-
sion following coronary blood flow obstruction emerged as a promising therapy to 
rescue the heart from ischemic damage. However, challenging reports emerged 
since 1970s contradicting the beneficial role of reperfusion on myocardial tissue 
recovery following ischemia, and highlighting the myocardial ischemia-reperfusion 
injury (I/RI) concept [3]. Multiple studies, thereafter, exposed the underlying 

E. Abidi et al.



255

mechanisms behind those findings. Hearse et al [4] were among the first group to 
report that sudden resumption of metabolic activity to energy-(and oxygen-) starved 
tissue resulted in a reoxygenation-dependent injury response independent of the 
hypoxic stress, commonly called “reperfusion injury”. I/RI development is multi-
factorial involving alterations in both mitochondrial and cellular homeostasis, 
including a shortage in ATP production, alterations in ion gradient homeostasis, 
excessive inflammation, Ca2+ handling dysregulation, and excessive ROS produc-
tion. In fact, myocardial ROS surge following reperfusion was for long proposed to 
be the mediator of I/RI [5, 6]. Consistently, a large number of studies have inten-
sively addressed the role of excessive ROS formation during I/R [7]. Of note, ROS 
is a well-known potent mediator of metabolic disruption, inflammation, necrosis, 
and cell death in multiple diseases including myocardial injuries [8]. In this chapter 
we emphasize the importance of ROS-mediated reperfusion injury, and highlight 
the promising mito-targeted antioxidant therapy. We also examine the paradoxal 
evidence supporting the beneficial effects of ROS bursts in pre- and postcondition-
ing mechanisms.

12.2	 �From Permanent Occlusion to Reperfusion: The Bad, 
the Good, and the Ugly

12.2.1	 �The Bad: Myocardial Infarction

Coronary blood flow obstruction, commonly termed MI, is characterized by an 
inadequate blood flow and subsequent nutrient and oxygen deprivation to the 
affected area. The severity of MI is strongly dependent on the size of the area at risk, 
the duration of ischemia, and the presence or absence of comorbidities [9]. The 
onset of MI itself is characterized by multiple life-threatening pathologies, includ-
ing ventricular fibrillation, atrio-ventricular block [10] and cardiogenic shock [11]. 
Following hospitalization and stabilization of potentially existing arrhythmias, non-
reperfused MI patients undergo adverse remodeling of the myocardium with very 
poor prognosis and high risk of heart failure development and death. Based on the 
American Heart Association statistical report, an approximate number of 720,000 
Americans are hospitalized either for a first time MI or coronary heart disease 
(CHD) events with a projection of a median survival of 8.4, 5.6, 7, and 5.5 years for 
≥45 year old white males, white females, black males, and black females respec-
tively. Additionally, sudden cardiac death accounts for 13.5% of death certificates 
with a relatively high lifetime risk for cardiac arrest survivors [12].

12.2.2	 �The Good: Reperfusion

Given the well-established positive correlation between the duration of ischemia 
and the extent of myocardial damage, coronary blood flow restoration was an inevi-
table solution. In the last two decades, researchers have conducted a multitude of 
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studies and reported that the salvage of ischemic cells from inevitable death is only 
possible by revascularization. Thus, multiple interventions such as percutaneous 
coronary intervention (PCI), coronary artery bypass grafting (CABG), and pharma-
cological (thrombolysis) approaches to remove the occluding clot were developed 
and adopted [13]. Reperfusion has proven to limit the ischemic injury and subse-
quently the infarct size area. The importance of reperfusion therapy in MI patients 
was surveyed over the past 20 years and reported a continuous decline of 6-month 
mortality, along with a further 22% reduction in standardized mortality, from 2010 
to 2015 following reperfusion therapy [14] .

12.2.3	 �The Ugly: Reperfusion Injury

Despite the perpetual improvement of multiple procedures to ensure a rapid, com-
plete, effective, and permanent reopening of the acutely occluded coronary artery, 
numerous studies revealed that myocardium salvage following blood flow restora-
tion is highly predisposed to another form of injury, known as reperfusion injury 
[11]. Aside from the reperfusion impact on cardiac remodeling, multiple pathologi-
cal conditions are known to occur at the onset of blood flow restoration, including 
arrhythmias, myocardial stunning, and potential microvascular occlusion that could 
be life-threatening [15].

12.3	 �Mechanisms of Cellular Cardiac Injury Following I/R

12.3.1	 �At the Onset of Ischemia

Following coronary artery clotting, cessation of cellular oxygen supply halts mito-
chondrial membrane polarization, reducing therefore adenosine triphosphate (ATP) 
formation and increasing mitochondrial ROS production [16]. Subsequently, 
reduced ATP-dependent Na+/K+ pump activity, leads to Na+ accumulation in the 
myocyte and lowered mitochondrial resting membrane potential. Na+ overload 
within the cell is counter-regulated by the reverse activity of Na+/Ca2+-exchanger 
(NCX) that pumps Na+ out in exchange for Ca2+, resulting eventually in intracellular 
and intra-mitochondrial Ca2+ overload. Concurrently with Ca2+ and Na+ overload, 
the absence of oxygen supply switches cellular metabolism to anaerobic glycolysis 
promoting lactate accumulation and cellular acidosis [17]. In summary, ischemia-
induced accumulation of intracellular sodium, ROS, and calcium ions, favors, if 
sustained, the opening of the mitochondrial permeability transition pore (mPTP) 
[18]. This, together with ATP shortage, determines a loss of contractility, structural 
disorganization, and apoptotic, necroptotic, and necrotic cell death [19, 20]. 
However, the acidic conditions during ischemia prevent opening of the mPTP and 
subsequent cardiomyocyte death (Fig. 12.1a).
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12.3.2	 �At the Onset of Reperfusion

Reperfusion is intended to restore ATP production and reactivate the Na+/K+ ATPase 
to slowly re-establish the sodium gradient, leading to normal cation fluxes and even-
tually extruding the excess cytosolic and mitochondrial Ca2+. However a massive 
mitochondrial ROS burst follows reoxygenation during reperfusion, which is fur-
ther fueled by inflammation, increasing the risk of mPTP opening and cell death 
[18]. Additionally, persistent high intracellular Ca2+ levels observed during the early 
phase of reperfusion, increase the risk of a damaging myocardial hypercontracture 
that was otherwise inhibited during acidic ischemia (Fig. 12.1b). Besides, in the 
setting of ischemic–reperfusion injury, ROS burst is also responsible of the activa-
tion of protein kinase C delta (PKC-δ) stimulating its translocation to the mitochon-
dria where it results in cytochrome c release, caspase 3 activation, and a decrease in 
the activity of pro-survival Akt, as well as poly (ADP-ribose) polymerase (PARP) 
cleavage in the nucleus. Pharmacological inhibition of PKC-δ is exploited in many 
therapeutic strategies like preconditioning [21]. In summary, reperfusion-induced 
cellular damage is largely dependent on ROS burst, Ca2+ overload, and mPTP open-
ing [20].

12.4	 �Myocardial ROS in I/R: Types and Sources

Compelling evidence pointing to the causal interconnection between oxidative 
stress and I/RI is well established [22]. Oxidative stress is a consequence of the 
imbalance between ROS production and antioxidant capacity, either because of 
heightened ROS release and/or an ineffective antioxidant system [23]. Under isch-
emic conditions, mitochondrial complexes I and III are primarily responsible of the 
conversion of molecular oxygen to unstable/reactive superoxide (O2

−) [24]. 
Cardiomyocytes, containing the highest number of mitochondria, consume a higher 
level of oxygen than any other cell and subsequently become major ROS producers 
[25]. As a result, heightened cellular ROS levels ultimately alter cellular homeosta-
sis primarily by damaging proteins, lipids, and nucleic acids [26, 27]. In addition to 
local ROS production, immune cell infiltration into the myocardium following I/RI 
contributes substantially to increase ROS levels [28]. Upon reperfusion of the isch-
emic myocardium, inflammatory reaction is noticeably accelerated. Although 
inflammation is crucial for myocardial tissue healing, the re-establishment of blood 
flow to ischemic tissue accelerates and prolongs inflammatory response detrimen-
tally. Among multiple immune cell infiltrations, neutrophils are considered the ear-
liest and the most potent releaser of ROS, followed by macrophages [29]. 
Interestingly, clinical anti-neutrophil therapies did not succeed in slowing or pre-
venting adverse myocardial remodeling post-MI [30]. These findings imply that 
local free radical outburst following reperfusion is potentially the main source of 
ROS-mediated injury during I/R.  Xanthine oxidase (OX), nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidases, mitochondrial electron transport dam-
age and uncoupling, uncoupled nitric oxidase synthase (NOS), and 
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Fig. 12.1  Schematization of the key components of acute myocardial ischemia reperfusion 
injury: (a) Loss of oxygen supply in ischemia leads to a loss of ATP production and a switch to 
anaerobic respiration, resulting in a drop in intracellular pH, accompanied with an increased intra-
cellular and mitochondrial-derived ROS. The ATP consuming Na+-K+-pump ceases to function, 
leading to Na+ accumulation in the myocyte and the resting membrane potential is lowered. With 
the development of acidosis, the NHX further increases intracellular Na+ exacerbating Ca2+overload 
by forcing the NCX to manage, in a reverse mode the extrusion of Na+ and the influx of Ca2+ into 
the cell. The sarcolemmal L type voltage-gated Ca2+ (L-CC) are activated allowing more Ca2+entry 
as the resting membrane potential is low. Ca2+pump SERCA2 is now taken up the excess of 
Ca2+into the SR that releases it subsequently via RYR, leading to contraction and contracture. The 
acidic conditions during ischemia however prevent the opening of the mPTP and cardiomyocyte 
hypercontracture. (b) During reperfusion ATP production increases leading to the Na+-K+-pump 
reactivation, a slow restoration of both sodium gradient and NCX normal activity extruding the 
excess of cytosolic Ca2+. An excessive production of ROS accompanies reoxygenation, electron 
transport chain activation, and immune cells infiltration. ROS burst mediates myocardial reperfu-
sion injury by inducing the opening of the mPTP, causing outer mitochondrial membrane permea-
bilization, apoptosis, necrosis, acting as a neutrophil and cytokines chemoattractant, mediating 
dysfunction of the SR and causing myofibril hypercontacture. Restoration of physiological pH  
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myeloperoxidase (MPO) are the major producers of ROS in reperfused ischemic 
myocardium [31] and will be discussed in this chapter.

12.4.1	 �Nitric Oxide Synthases (NOS)

One of the most studied sources of physiological and pathophysiological ROS are 
the three well-recognized isoforms of NOS enzymes known as neuronal NOS 
(nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) that normally pro-
duce NO during the oxidation of L-arginine to L-citrulline [32]. While eNOS and 
nNOS are known to be constitutively expressed in the myocardium, iNOS, although 
primarily induced in immune cells, is expressed in cardiomyocytes under ischemic 
conditions [33, 34]. Constitutive myocardial nitric oxide (NO) generation under 
physiological conditions is essential for physiologic cell signaling [35]. Blood flow 
and oxygen restoration following reperfusion significantly increase NOS activity 
and subsequent NO production [36]. Although NO has been reported to be protec-
tive against I/R-induced injury in different organs of experimental animals [37] and 
humans [38], the beneficial effects of NO activity are negated by increased O2

−-
mediated peroxynitrite (ONOO−) generation following reperfusion (Table 12.1).

	 NO O ONOO+ =- -
2 	

Contrarily to NO, ONOO− is very detrimental to proteins and lipids. ONOO– can 
negatively and irreversibly alter the structure and function of NOS by damaging its 
heme domain and oxidizing the tetrahydrobiopterin (BH4) cofactor [32, 39, 40] 
ultimately leading to NOS uncoupling an important source of I/R-induced ROS 
generation [32]. NOS function during I/R depends as well on its structural form; 
two cellular forms of constitutive NOS exist, the monomer and the homodimer 
forms. The monomer form is responsible of O2

− generation in small amounts; the 
shift towards excessive O2

− production depends on the homodimer/monomer ratio, 
intracellular L-arginine supply, and on BH4 oxidation [1].

A decrease in the local BH4/NOS ratio makes the balance, of a stoichiometric 
relationship between BH4 and eNOS, fall towards increased O2

− instead of NO [41, 
42]. Uncoupled NOS, furthermore, produces more O2

− that acts as a positive feed-
back loop leading to further BH4 to BH2 oxidation and the propagation of NOS 
uncoupling. Besides the described loop, XO [43] and/or NADPH oxidase [44] play 
an important role in the I/R-induced reduction in BH4 levels by promoting O2

− gen-
eration.Also, an essential factor required for the synthesis of NO by eNOS is 

Fig. 12.1 (continued) following reperfusion along with Ca2+ overload accentuates mPTP opening 
leading to an increased infract size, cellular dysfunction, and cell death. Ca2+ calcium, Na+ sodium, 
K+ potassium, H+ hydrogen, O2 oxygen, SR sarcoplasmic reticulum, SERCA sarco/endoplasmic 
reticulum Ca2+-ATPase, ATP adenosine triphosphate, OxPHos oxidative phosphorylation, ROS 
reactive oxygen species, mPTP mitochondrial permeability transition pore, NCX 3Na+/1Ca2+-

exchanger, NHX Na+-H+-exchanger, PMNs polymorphonuclear lukocytes, (+) stimulation, (−) 
inhibition, ↑ increase, ↓ decrease
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Table 12.1  Potential sources of reactive oxygen species in the cardiac tissue exposed to ischemia 
and reperfusion

Evidence of ROS involvement in I/RI References

↓Superoxide dismutase activity [5]
↓Endogenous cellular antioxidant systems
↓Cellular glutathione-to-glutathione disulfide ratio
↑ Lipid peroxidation,
↑O2

− production at reperfusion
Oxygen-derived radicals act like mediators of reperfusion injury in isolated heart 
models in the presence or absence of superoxide

[116–118]

Oxygen-derived free radicals are directly implicated in I/RI [119–121]
O2

− was identified as the parent radical that serves as a precursor to the formation 
of both OH- and the carbon-centered radical
Free-radical are highly generated in an intact dog model of I/R
O2

− is the parent radical at reperfusion
Oxygen, nitrogen, and carbon-centered free radicals are generated during I/R in 
an isolated rabbit and rat heart models

[122–124]

Exogenous administered ROS at the same levels as those observed during 
reperfusion induced similar calcium overloading, functional depression, and 
metabolic changes
Major sources and outcomes of ROS generation in I/RI
Xanthine oxidase The time-course of ROS production elicited 

by I/R in isolated rat hearts is closely 
correlated with the kinetics of XO substrate 
accumulation.

[125, 126]

Increased tissue xanthine and hypoxanthine 
levels determine the severity of the I/RI
Pharmacologic blockade of xanthine 
oxidase (XO) substrate formation:
(−) XO-dependent ROS production
(−) Contractile dysfunction that 
accompanies reperfusion
Exogenous administration of 
hypoxanthine and xanthine :
(−) The protective effects of blockade of 
xanthine oxidase substrate formation
Inhibition of XO:
↑ Levels of XOR antigen in vascular 
endothelium of myocardial ischemic tissues

NADPH oxidase ↑ROS generation [127–131]
↑Tissue injury following reperfusion
Blunted reperfusion-induced neutrophil 
accumulation:
↓ Tissue injury and/or ROS production
The application of a simulated I/R on 
purified cardiomyocytes in culture:
(+) Tissue injury-related responses that are 
dependent on Nox activity
NOX inhibition:

(continued)
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Table 12.1  (continued)

Evidence of ROS involvement in I/RI References

↓ ROS production
↓ Myocardial infarct size
↓Cell death
↑Protective effect in isolated buffer (cell 
free) perfused hearts exposed to I/R
Mutant mice deficient in either Nox-1 or 
Nox-2/ Nox-1, Nox-2 and Nox-1/Nox-2 
double knockout mice :
↑Protective effect in buffer-perfused 
Langendorff preparations with I/R hearts 
models
Myocytes release of Nox isoforms:
↑ROS generation during I/R

Mitochondria I/RI: [125, 132, 
133]↑Mitochondrial H2O2 generation

↓Cytochrome c release from the MIM
↑Reduction state of cytochrome c
Ischemic damage to complex I and III:
↑Capacity to generate O2

- at reperfusion
Both associated and/or separated complex I 
and III isolated from mitochondria obtained 
from reperfused hearts can generate O2

-

Nitric oxide synthase I/R: [127–131]
↑Uncoupled NOS
↑Myocardial ONOO- generation by NOS
↓Endothelium-dependent vasodilation in 
porcine coronary arteries
In vitro and in vivo models of I/R:
BH4 supplementation replenish NOS 
activity in isolated rat hearts
↑↑ uncoupled NOS-derived O2

- production
↑ I/R-induced cardiac inflammation and 
tissue damage
After reperfusion of ischemic heart:
↑ Arginase activity
↑ O2

- generation increases
↓Arginine levels and NO production 
decrease
I/R+ treatment with a combination of 
arginine and BH4:
↓Infarct size

I/RI ischemia reperfusion injury, I/R ischemia reperfusion, O2
− superoxide, ROS reactive oxygen 

species, XO xantine oxidase, XOR xantine oxidase receptor, Nox NADPH oxidase, H2O2 hydrogen 
peroxide, MIM mitochondrial inner membrane, NOS nitric oxide synthase, ONOO− Peroxynitrite, 
BH4 tetrahydrobiopterin, NO nitric oxide, (+) stimulation, (−) inhibition, ↑ increase, ↓ decrease

12  Oxidative Stress in Cardiac Remodeling Post-Ischemia/Reperfusion: Friend or Foe?



262

arginine, the nitrogen donor, and substrate for arginase I and II [45]. Increased argi-
nase activity leads as well to increased production of O2

− by NOS, a mechanism 
called “arginine steal”. Finally, it was very early reported that myocardial eNOS 
actively produces NO during ischemia and reperfusion; however, parallel observa-
tions have shown that the enzyme is affected during ischemia. In fact, a prolonged 
ischemia is accompanied by intracellular acidosis that reversibly or irreversibly 
inhibits eNOS activity independently of the duration of acidosis [46] (Table 12.1).

12.4.2	 �Monoamine Oxidase and p66shc

During I/R, mitochondria are responsible of the generation of hydrogen peroxide 
(H2O2) through serotonin oxidization via monoamine oxidase [47]. Serotonin accu-
mulation, as well as increased monoamine oxidase activity, is noted during ischemia 
and substantially increased following reperfusion [48]. Moreover, mitochondria are 
also capable of H2O2 production using a novel pathway that involves the 66-kDa 
isoform of the growth factor adaptor protein, p66shc. Ischemic conditions are 
responsible of translocation of p66shc from the cytosol to the mitochondrial inter-
membrane space, allowing it to use reducing equivalents from the electron transport 
chain (ETC) via the oxidation of cytochrome c to make H2O2. This reaction acts in 
a vicious cycle to provide p66shc with increased substrate in the intermembrane 
space during ischemia [49].

12.4.3	 �Cellular Xanthine Dehydrogenase vs. Xanthine oxidase

During normoxic physiological conditions, xanthine dehydrogenase (XDH) cata-
lyzes the oxidation of hypoxanthine to xanthine and then to uric acid by coupling 
the reaction with NAD+ reduction to yield NADH.

	 hypoxanthine NAD xanthine NADH
XDH

+ ® ++ 	

	 xanthine NAD uricacid NADH
XDH

+ ® ++ 	

However, ischemic context enhances the conversion of XDH to XO by the modifi-
cation of a sulfhydryl group or by proteolytic cleavage. XO is a molybdo-
flavoenzyme complex that controls, in addition to uric acid production, ROS 
generation through catalyzing the oxidation of hypoxanthine to xanthine.

	 hypoxanthine O xanthine O
XO

+ ® + -
2 2 	

	 xanthine O uricacid O
XO

+ ® + -
2 2 	
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XO-derived ROS contribute to multiple pathologic conditions including I/RI 
(Table 12.1). The accumulation of XO following ischemia will increase O2

− forma-
tion. Besides, the oxygen burst at the onset of reperfusion drastically increases O2

− 
formation [50] .

12.4.4	 �Cellular Xanthine Dehydrogenase

Nevertheless, other mechanisms can explain the enhanced superoxide release, inde-
pendently of XDH to XO conversion. In fact, XDH has an NADH oxidase activity 
in the presence of acidic conditions (pH 6.5) wherein NADH is oxidized rather than 
xanthine [33]. XDH is capable of generating superoxide at 4-times the rate of 
XO. Besides, XDH is the dominant isoform in the early reperfusion period and is 
most likely a more important source of superoxide than the XO isoform at the onset 
of the reperfusion.

 

Post-transcriptional regulation of XDH expression is reported during I/R, 
wherein the hypoxic and inflammatory environments are stimuli associated with 
increased XDH transcription [51]. On the other hand, XO activity is also regulated 
at the post-translational level. These modifications have been attributed to O2 ten-
sion that results in phosphorylation of the enzyme by p38 kinase [52]. In addition, 
along with hypoxic environment, the inflammatory context (mast cell degranulation 
and macrophage activation), which accompanies I/R, participates via multiple cyto-
kines such as IL-1, IFN-γ, IL-6 and TNF-α to increase XDH/XO mRNA. Another 
feature of the XO capacity to produce ROS under ischemic conditions is its capacity 
to act as a nitrate/nitrite reductase (Table 12.1). This enzymatic reaction catalyzes 
the production of NO by one electron reduction of nitrite, and is optimal under 
anoxic/hypoxic and acidic conditions [53]. The generated NO, an important sub-
strate for peroxynitrite generation, enhances the oxidative burst in the presence of 
an ischemia/inflammation loop in the ischemic heart [54] (Table 12.1). Finally, XO 
participates in leucocyte recruitment upon I/R, followed by neutrophil recruitment 
and XO-derived ROS secretion [55].
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12.4.5	 �Nicotinamide Adenine Dinucleotide Phosphate (NADPH) 
Oxidase

The Noxs are a family of 7 isoforms expressed in multiple types of cells, including 
vascular endothelial cells, smooth muscle cells, fibroblasts, cardiomyocytes, and 
polymorphonuclear leukocytes (PMNs). Nox isoforms are known as Nox-1 to 
Nox-5 and dual oxidases (Duox)-1 and -2 [56, 57]. Nox/Duox are considered the 
major source of ROS in multiple pathological conditions including cardiac remod-
eling post-MI [58–60] (Table 12.1). The contribution of Nox enzymes to reperfu-
sion injury is documented by multiple studies reporting both an increased expression 
and/or activity of Nox in ischemic tissue and attenuation of I/R induced injury fol-
lowing Nox inhibition [61, 62]. A large amount of data reported the involvement of 
multiple factors in the activation of Noxs in I/RI. For example, studies confirmed 
that hypoxia inhibitory factor-1α (HIF-1α) activation, evoked by the hypoxic state 
that accompanies ischemia, promote production and activation of Noxs [63]. Among 
all Nox isoforms, Nox2 is one of the most widely expressed in cardiac cells and, 
therefore, a prominent ROS producer in myocardial I/R (Table 12.1). The activation 
of XO and the resulting increase in ROS and intracellular Ca2+ levels have been 
reported to be indispensable for Nox2 activation under ischemic conditions. The 
stimulation of PKC by XO-generated ROS also contributes to ischemic-evoked 
Nox2 activation. Furthermore, the inhibition of XO halts ischemic-induced upregu-
lation of HIF-1α proving that Nox2 activation by XO is essential for HIF-1α activa-
tion under ischemic conditions [64]. Of note, both the activation of the complement 
system and increased generation of angiotensin II are also associated with an 
increase in Nox activity in cardiac post-ischemic tissue [61, 65].

12.4.6	 �Mitochondrial ETC ROS Production

Mitochondria constitute 33% of the total cardiac myocyte cell volume, highlighting 
their fundamental role in cardiac function and the high energy demand of the myo-
cardium. The mitochondrial ETC complex is comprised of a series of multi-subunit 
complexes (complexes I–IV) located in the inner mitochondrial membrane (IMM) 
and coupled to mobile carriers such as coenzyme Q and cytochrome c. The com-
plexes and cytochrome c contain redox groups (Fe-S clusters and/or heme) that 
allow for the transfer of electrons along the components of the ETC, generating a 
proton electrochemical gradient, ultimately promoting ATP production via ATPase 
[25, 66]. Mitochondria are considered a normal source of ROS that play a crucial 
role as cell signaling intermediates in order to maintain cellular homeostasis. Under 
normal physiological conditions, ETC reduces oxygen to water using more than 
97% of the entire electron flux through mitochondria. The remaining 2–3% of elec-
trons consistently leak from ETC to form O2

−. In addition to its important role in 
signaling, physiological production of O2

− plays a critical role in multiple crucial 
cell functions such as metabolism, proliferation, and apoptosis [67].
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Following ischemia, the decrease in mitochondrial respiration as well as ATP 
production, along with complex I/III alterations, increases NADH:NAD+ ratio and 
reduces flavin mononucleotide prosthetic group within the NADH dehydrogenase 
component of complex I. These changes increase the leakage of electrons that form 
O2

− via univalent reduction of O2 and subsequent ROS production beyond physio-
logical levels [24, 25, 68, 69]. Although reduced cytochrome c controls mitochon-
drial ROS levels by scavenging O2

−, persistent ischemia increases the oxidized state 
of cytochrome c contributing further to mitochondrial damage and the accumulation 
of O2

− (Table 12.1).
Upon reperfusion, oxygen burst into an already stunned mitochondria drastically 

increase ROS production to a much higher extent than during ischemia. Additional 
sites within complex I may contribute to ROS generation. Mitochondrial increase in 
superoxide production is normally accompanied by an increase in H2O2 formation 
through MnSOD activity within the mitochondrial matrix [70]. Superoxide dis-
mutase enzymes contain either copper, manganese, or nickel metal centers that are 
reduced or oxidized to convert cellular O2

− into H2O2 (Table 12.1) [71, 72]. H2O2 
interaction with NO also increases formation of ONOO−. Of note, ROS is able to 
freely spread within the mitochondrial network mainly through the mPTP and inner 
membrane ion channels, centralizing therefore cellular damage [25, 73].

12.5	 �ROS Mediated Adverse Effects in I/R

ROS production during the ischemic, reperfusion, and remodeling phases contrib-
ute to cardiac injury post-MI. The extent of injury, however, varies based on the size 
of the affected myocardium, the magnitude of ROS reactions, and the severity of 
cardiomyocyte damage. Uncontrolled sustained ROS burst causes modification and 
denaturation of a multitude of structural and functional molecules leading to irre-
versible tissue damage. The effect of each ROS, however, depends on its type. OH- 
for instance acts instantly right after generation. O2

− and NO− radicals on the other 
hand, are of much lesser reactivity, more specific, and can mediate radical reactions 
on sites that are distant form their site of production. In the absence of appropriate 
ROS scavengers, sustained ROS production triggers oxidative vicious cycles that 
could permanently damage the cells. Of the well-known ROS-mediated cellular 
damage, lipid peroxidation, protein denaturation, mitochondrial, and DNA damage 
constitute the basis behind those effects.

12.5.1	 �DNA Oxidation

OH-mediated hydrogen extraction interferes with cellular DNA, causing purine 
and/or pyrimidine direct modification and/or fragmentation producing a plethora of 
DNA lethal lesions [74]. These lesions can induce mutagenesis, crosslinks between 
DNA strands and proteins, stand breaks, which affect thereafter DNA replication 
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and transcription [75] and ultimately promote a pro-apoptotic and pro-necrotic 
effect (Table 12.2).

12.5.2	 �Lipid Peroxidation

Lipid peroxidation is a typical 3 phase oxidative reaction that occurs abundantly 
during I/R. The alkenes, unsaturated fatty acids and major component of biological 
membrane’s phospholipid bilayers, are very susceptible to hydrogen extraction by 
ROS.  The generated carbon-centered and peroxyl radicals constitute the initial 
phase of ROS attack followed by an amplification phase also known as the propaga-
tion phase [76]. Lipid peroxidation continues with additional similar abstractions 
until two radical species combine in a termination phase. Reactive aldehydes such 
as malondialdehyde (MDA), 4-hydroxynonenal, and isoprostane are major end 
products of this classical oxidation cascade and are known to increase during I/R 
[77]. Lipid peroxidation byproducts are bioactive and well-involved in the adverse 
remodeling of I/R. 15-F2t-isoprostane, for example, is reported to induce a dose-
dependent vasoconstriction in coronary arteries, promoting therefore cardiac dys-
function following I/R [78] (Table 12.2).

12.5.3	 �Protein Oxidation

ROS-mediated activation of necrotic and pro-apoptotic proteins determines the 
severity and the extent of infarct size [79]. For instance, ROS can modify cellular 
proteins via oxidation and nitration, impairing subsequent myocardial contraction 
and promoting myocardial stunning following I/R [80]. Similarly to what is 
observed with lipids, hydrogen extraction by OH- is a key player in the initiation 
phase of the oxidative attack on proteins by affecting amino-acid functional groups 
[81]. Denaturation of proteins by ROS oxidation reactions is due to the cleavage of 
peptide bonds, functional group cross-linking, and by hydrophobicity alterations of 
amino acids on protein surfaces [81] (Table 12.2).

Proteins with signaling roles, such as kinases and phosphatases, can also be oxi-
dized by ONOO−, affecting therefore their signaling capacities and impact [82]. By 
regulating mitogen-activated protein kinases (MAPKs), ROS contribute to cellular 
responses to mitogens, inflammatory cytokines, and (un)physiological stimuli [83]. 
Activation of p38 can have either pro- or anti-apoptotic effects, and is exaggerated 
during I/R. Also, p38 has been reported to play a role in regulating mitochondrial 
ROS levels and intracellular signaling pathways, as well as controlling mitochon-
drial events associated with development of I/R-associated damage (Table 12.2). 
Other signaling pathways that have also been shown to be involved in this regulation 
include: the RAF-MEK pathway that, in contrast, prevents mitochondrial accumu-
lation of ROS/Ca2+ and cell death [83], and the PI-3 kinase (PI3K)/protein kinase C 
(PKC/AKT) pathway that has a protective role against cellular I/R-induced cell 
death.

E. Abidi et al.



267

Table 12.2  ROS targets following I/RI

Oxidized target Effects References
Lipids ↑Lipid peroxidation. [77, 134]

↑Alkene hydrogen abstraction
↑Generation of carbon-centered and peroxyl radicals
↑Peroxyl and lipid isoforms generation
↑Production of MDA ,4-hydroxynonenal, and 
isoprostane
↑Cardiolipin depletion

Proteins ↑ Physical and chemical modification of myocardial 
proteins

[79–81, 99, 
135–140]

↑Non-enzymatic modification of cellular proteins
↑ Amino acid oxidation and nitration
↑ Formation of nitrotyrosine residues on proteins
↑ Products of tyrosine oxidation: myocardial 
3-nitrotyrosine and dityrosine
↑ Particular risk of tyrosine nitration in mitochondrial 
proteins
↑ OH- hydrogen abstraction in functional groups and 
backbone α-carbons of all amino acids
↑ Cleavage of peptide bonds and cross-linking of 
functional groups
↑Alteration of the hydrophobicity of amino acids on 
protein surfaces
↑Cellular and mitochondrial sulfhydryl groups
↑Tyrosine kinases and protein tyrosine phosphatases 
oxidation
↑↑Mitochondrial tyrosine and cysteine residues 
nitration and oxidation
↑↑Reactive aldehydes-mediated electrophilic attack 
towards nucleophilic amino acids
↑4-hydroxynonenal provoked modification and 
inhibition of the cytochrome oxidase
↑ Oxidative activation of necrotic and pro-apoptotic 
protein
↑ MMP-9 cleavage and activation

DNA ↑ OH--mediated hydrogen abstraction [74, 75, 78, 
141–143]↑ Purine or pyrimidine direct modification and/or 

fragmentation
↑DNA lesions
↑DNA bases modification
(+) Inter and intra-strand crosslinks
↑ DNA–protein crosslinks
(+) strand break formation
↑Adducts with MDA, and ROS-mediated lipid-
peroxidation products
↓DNA replication and transcription

(continued)
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ROS are implicated as well in inflammatory signaling, not only by fueling the 
pro-inflammatory response in a self-perpetuating manner, but also by regulating the 
process of high-mobility box 1 (HMGB1) protein release that occurs especially in 
response to cellular damage. HMGB1 is an agonist for Toll-like Receptors (TLRs). 
Accordingly, TLR4-mediated NFκB activation is recruited for oxidative stress-
activated intracellular signaling pathways [84].

Two additional developmental pathways also figure among the most important 
pathways in this context: the Wnt/s-catenin signaling that is activated by ROS [84] 
and NOTCH signaling that suppresses ROS production [85]. Nevertheless, this sort 
of crosslink between intracellular signaling and regulation of mitochondrial ROS 
production has been demonstrated for p53 [86], protein kinase A (PKA) [87], rap-
idly accelerated fibrosarcoma (RAF) kinase, protein kinase B (Akt/PKB), and 
B-cell lymphoma 2 (Bcl-2) [83]. The tyrosine kinase pathway plays a role via 
p66shc, which acts as a redox enzyme that generates mitochondrial ROS through 
oxidation of cytochrome c [49]. In addition, oxidative stress leads to alterations in 
the activation state of different PKCs. This activation provides a protective role in 
the context of preconditioning by activating the specific PKC-ɛ isoform [88]. 
However, activation of PKCδ isoform increases, in a positive-loop manner, ROS 
generation. Activation of PKCδ by ROS regulates the expression and function of 
apoptosis-related proteins, and represents a target for caspases leading to cellular 
death [88].

Activation of enzymes including MMPs and caplains is also pronounced follow-
ing increased ROS production and pH restoration, and is capable subsequently of 
degrading crucial functional proteins, such as myosin light chain [89], α-actinin 
[90], and cardiac troponin [91, 92] (Table 12.2). During ischemia, oxidative stress is 

Table 12.2  (continued)

Oxidized target Effects References
Mitochondria 
homeostasis

↑Perturbation of the mitochondrial energy production [93, 96, 99, 
144]↑Overexuberant liberation of mitochondrial ROS

↑Mitochondrial DNA rearrangement and fragmentation
↓Mitochondrial enzymes activities
↑The susceptibility of mitochondrial DNA to oxidative 
modification in circulating leukocytes
↑Oxidative inactivation of mitochondrial aconitase
↑Mitochondrial production of hydroxyl radicals
↓Mitochondrial structure and function
↑Mitochondrial Ca2+ levels
↑mPTP opening
↑Perforation and lysis
↑Mitochondrial depolarization and cell death

MDA malondialdehyde, OH− hydroxyl radical, MMP-9 matrix metalloproteinase 9, DNA deoxyri-
bonucleic acid, ROS reactive oxygen species, Ca2+ calcium, mPTP mitochondrial permeability 
transition pore, (+) stimulation, (−) inhibition, ↑ increase, ↓ decrease
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also broadly responsible for Na+/H+ exchanger (NHX) activation, a mechanism that 
attempts to restore intracellular pH by increasing cellular Na+ levels. The Na+/Ca2+ 
exchanger (NCX) is thus activated, leading to intracellular accumulation of Ca2+ 
and a state of mitochondrial Ca2+ overload and depolarization. This phenomenon is 
exacerbated upon reperfusion with mitochondrial calcium uniporter (CaU) exagger-
ated opening. ROS-mediated alterations of anion exchanger function leads to pH 
recovery. Excessive ROS, however, favor opening of the mPTP (Fig. 12.1b) [93], 
leading to mitochondrial matrix swelling and loss of MOM. This result is fatal due 
to the pro-apoptotic molecules that are released from the mitochondrial intermem-
brane space (IMS). Additionally, another type of Ca2+ permeable cationic channel is 
affected by increased ROS production during I/R. The transient receptor potential 
melastatin 2 (TRPM2) is in fact a ROS sensor [94]. Oxidative stress-mediated acti-
vation of TRPM2 results in mitochondrial Na+ and Ca2+ overload, which leads to a 
disrupted mitochondrial membrane, cytochrome c release, PARP-1 cleavage via 
induction of caspase-8 activation, and finally apoptotic cell death [95].

It is worthwhile to point out that radical reactions are of a semi-random nature, 
so they do not necessarily yield irreversible cell damage. For example, the magni-
tude of the oxidative attack on membranes, proteins, or DNA may not be enough to 
have an adverse effect on their functions. Besides, if the damaged protein is not of 
critical functional relevance, normal cell processes, such as phospholipid and pro-
tein turnover, can remove the altered biomolecule and the cell will survive. 
Understanding the contribution of ROS to the development of I/RI may identify 
additional targets for therapeutic interference. That being said, the understanding of 
aberrant signaling in this particular pathological condition holds the promise for 
novel therapeutic approaches that specifically target the regulation of mitochondrial 
function (Table 12.3).

12.6	 �General and Mitochondria Targeted Antioxidants 
Reduce I /R Injury

Mitochondrial Ca2+ overload and overexuberant mitochondrial ROS burst, consti-
tute the hallmark of I/R-mediated cardiac cell injury [96, 97]. A massive burst of 
ROS following reperfusion localizes in mitochondrial regions that progress to 
swelling and eventually stimulates opening of the mPTP [98, 99]. mPTP opening is 

Table 12.3  Summary of selected clinical trials using general ROS scavengers therapeutics for MI

Antioxidant Effect Outcome References

β-carotene Harmful ↑ CAD risk [145]
Edaravone Effective ↓ Infarct size and reperfusion arrhythmia [145]
L-carnitine Effective ↓ Level of cardiac MI markers [146]
Vitamin E Effective ↓ CVD risk [145]

Harmful ↑ Increased HF risk

CAD coronary artery disease, MI myocardial infarction, CVD cardiovascular disease, HF heart 
failure, ↑ increase, ↓ decrease
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directly linked to mitochondrial DNA rearrangement and fragmentation, a complete 
disrupted mitochondrial structure and function (Table 12.2), followed by mitochon-
drial perforation and lysis [18]. Mitochondria-targeted antioxidant therapy has the 
ability to salvage I/R-assaulted cardiomyocytes more so than general antioxidants 
(Table 12.4) at different levels including: (1) preventing excessive detrimental cel-
lular ROS production that is largely and mainly produced by mitochondria with I/R, 
(2) promoting low and beneficial ROS signaling through protein kinase Cε and its 
downstream substrates, and (3) preventing harmful ROS signaling through protein 
kinase Cδ and its downstream effectors. Examples of protective therapies targeting 
mitochondrial ROS are detailed in Table 12.4.

12.7	 �The Paradoxal Cardioprotective Effects of ROS

Pre- and postconditioning are manipulations during which short periods or bouts 
of ischemia are applied by occluding and opening the coronary artery, prior or 
subsequent to, permanent occlusion [100]. Pharmacological and interventional 
ischemia pre- and postconditioning has gained immense attention due to its pro-
tective effects on cardiac remodeling prior to or following reperfusion [101, 102]. 
This protection is, however, impeded with application of antioxidants. In fact, 
unlike excessive and sustained ROS burst that is now proven to be detrimental, 
low levels of ROS are protective (Table 12.4). A growing body of recent evidence 
has established that generation of ROS at low levels can serve as a signal mediat-
ing physiologic responses. The protective role of preconditioning on the myocar-
dium was first described in 1986 by Murry et al., as a slower ATP depletion rate 
and smaller infarct size in the heart treated with brief episodes of I/R before pro-
longed occlusion, followed by reperfusion [101, 102]. Mitochondrial pathways 
play an important role in promoting the activation of cell survival programs fol-
lowing preconditioning via ROS signaling-dependent mechanisms [103]. A good 
example of cardioprotective roles of reliable amounts of ROS is the metabolic 
vasodilator effect of H2O2, produced by myocardial mitochondria. H2O2 serves as 
a mediator that couples oxygen consumption to coronary blood flow by acting as 
an activator of redox- and 4-aminopyridine-sensitive voltage-dependent potas-
sium (Kv) channels in smooth muscle cells [100]. In addition, H2O2 that derives 
from complexes I and III in the endothelial mitochondria’s electron transport 
chain is capable of triggering calcium activated potassium (BKCa) channels in 
order to enhance acetylcholine- and flow-induced coronary vasodilation [104, 
105]. More recently, several methods of preconditioning have been developed 
including ischemic preconditioning (IPC), exercise preconditioning, and pharma-
cological preconditioning [106–108]. The opening of mitochondrial ATP-sensitive 
K+ (mitoKATP) channel is one of the most important mechanisms activated by 
preconditioning stimuli (Table 12.4). This activation allows potassium to flow into 
mitochondria leading to depolarization and matrix alkalization. Subsequently, an 
increase in ROS production activates downstream survival signaling events 
through PKC, preventing mPTP opening [106, 109]. Additionally, the generation 
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of mild matrix swelling improves ATP synthesis and fatty acid oxidation, condi-
tioning the cells to any potential ischemic injury [109].

Ischemic postconditioning on the other hand was first introduced by Zhao et al. 
in 2003. This term refers to brief periods of ischemia alternating with brief periods 
of reflow applied at the onset of reperfusion following sustained ischemia. The tim-
ing of post-conditioning interference is crucial given that reperfusion injuries occurs 
only within several minutes following blood reflow [110]. The basics of precondi-
tioning- and postconditioning-mediated protection are very similar [110, 111]. In 
fact, similar to preconditioning, the mitoKATP/ROS/PKC axis pathway constitutes 
the basis of postconditioning protective therapy [110]. However, the degree of pro-
tection largely depends on the timing of axes activation following reperfusion [112]. 
Of note, both pre- and postconditioning share an important effect that underlines 
their cardioprotective efficacy. In fact, the associated prolongation of cellular acido-
sis that takes place initially during early reperfusion after ischemia favors inhibition 
of mPTP opening for a few minutes following reperfusion. Pre- and postcondition-
ing released ROS take advantage of delayed protective pH normalization to induce 
activation of cell survival programs. Therefore, following pH normalization, an 
arsenal of downstream effectors that prevent mPTP opening is boosted, to preserve 
mitochondrial and cellular integrity [113].

Several other signaling pathways are implicated in the infarct-sparing effect of 
pre- or postconditioning [114]. The Reperfusion Injury Salvage Kinases (RISK) 
pathway involves the activation of two signaling pathways consisting of pro-survival 
kinases ERK1/2 and Akt that converge on mitochondria to decrease mPTP opening 
[115]. The Survivor Activating Factor Enhancement (SAFE) pathway involves the 
induction of JAK-STAT3 signaling. The relative contribution of the RISK and SAFE 
pathways to cardiac protection varies with the experimental ischemic protocol, as 
well as species. Some studies have linked SAFE signaling to the initiation of the 
RISK pathway, although the mechanism is not defined [115]. Both the RISK and 
SAFE pathways are activated by ROS.

12.8	 �Conclusion and Future Direction

Reperfusion of the coronary circulation is necessary to prevent irreversible loss of 
the myocardium. Yet reperfusion causes further harm to the heart via the generation 
of ROS, which invariably leads to heart failure and shortened lifespan. These ROS 
target phospholipids of the cell membrane, various structural, transport, and signal-
ing proteins, and DNA, which may then act synergistically to further ROS genera-
tion and damage the heart. MMPs, caspases, and calpains are activated as well, 
further exacerbating structural damage. Much progress has been made in identify-
ing the sources of ROS, which include NOXs, MAO, uncoupled NOSs, p66shc, 
xanthine dehydrogenase/oxidase, and mitochondria. Paradoxically, lower levels of 
ROS may activate a number of signaling mechanisms that tamp down excessive 
ROS generation by mitochondria as initially revealed in preconditioning experi-
ments. The targets of this manipulation include both direct effects on mitochondria, 
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as well as the upregulation of protective proteins at later time points. For practical 
reasons, direct preconditioning strategies have little if any translational potential. 
However, complementary approaches, such as exercise-induced preconditioning 
and ischemic postconditioning, offer clinical promise. Pharmacological manipula-
tions that specifically target mitochondrial complexes that generate ROS during 
reperfusion are gaining interest as therapies. Although much progress has been real-
ized in the last decade in understanding the source and implications of ROS as foe 
in I/R-mediated injury to the heart, the upcoming decade should result in the practi-
cal application of therapeutic strategies that are based on the revelation of mecha-
nisms defined by the protective actions of ROS in the myocardium.
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