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“Brooding over this immensity
I ask,
On this boundless land
Who rules over man’s destiny?”

(From the Selected Poems of Mao Tse Tung)

About nine decades ago during the Long March, upon looking on to the setting sun 
from a mountain in Yenan, Mao’s ingenious poetic stance swings momentarily from 
his revolutionary mind-set to the beauty and immensity of nature. Accordingly, we 
the scientists are astonished considering the complexity of physiological and bio-
chemical mechanisms that interplay in our body, for instance, in the cardiovascular 
system, in response to different threats from environmental, behavioral, and occu-
pational agents, drugs, genetic, and age-related disorders.

The quest for understanding the regulatory mechanisms of the functioning of the 
heart in health and disease in true scientific outlook started in 1883, when Sidney 
Ringer discovered that calcium has the potentiality to contract isolated rat hearts. 
This momentous observation initiated biochemical and physiological aspects of 
research on cardiovascular system in health and disease. The role of oxidants and 
redox imbalance in the progression of a variety of heart diseases gained tremendous 
impetus among biomedical scientists especially in the past two decades.

Reactive oxygen species (ROS) are primarily produced intracellularly, and their 
productions are inherent to normal physiology. Cells have evolved both enzymatic 
and nonenzymatic antioxidant defense mechanisms to scavenge excess ROS in 
order to maintain redox balance. A shift in redox homeostasis to an imbalance 
between ROS generation and endogenous antioxidant components results in oxida-
tive stress, which has been implicated in the pathogenesis of many diseases includ-
ing heart diseases. Data from different studies strongly support that dysregulation of 
redox signaling is integral to the pathogenesis of heart diseases such as ischemia, 
hypertension, atherosclerosis, diabetic cardiomyopathy, and heart failure.

This book contains 26 chapters which are divided into 4 sections. Dr. Gemma 
Figtree, Dr. Rajabrata Bhuyan, Dr. Carolina Panis, and Dr. Thomas Hansen 
elucidated different aspects of oxidant-induced heart diseases in general, while  
Dr. Cristina Vasselle, Dr. Veena Dhawan, Dr. Shantanu Sengupta, and  
Dr. Krishnapura Srinivasan exposed us with protective influence of novel 
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therapeutics and antioxidants in mitigating oxidative stress-induced cardiovascular 
diseases. The impact of molecular biology and genetics on cardiovascular diseases 
is growing rapidly. A chapter, “Reactive Oxygen Species and Their Epigenetic 
Consequences in Heart Diseases,” by Dr. Seema Bhargava provided important 
information in this area. The section on “atherosclerosis and ischemic heart disease” 
reflects novel insights provided by Dr. Perimur Bozaykut, Dr. Branislav Rovcanin, 
Dr. Fouad Zouein, Dr. Pasquale Pagliaro, Dr. Bodh Jugdutt, Dr. Jawahar Mehta, and 
Dr. Monika Bartekova. These authors in their chapters provided novel information 
pertaining to the risk factors for initiation and progression of atherosclerosis and 
pliable ways for its prevention.

The prevalence of diabetes has reached to a high level globally. Different charac-
teristics of diabetes such as endothelial dysfunction and prothrombotic state are 
known to enhance the chance of plaque instability. Diabetes can cause myocardial 
damage, resulting in cardiovascular diseases and eventually heart failure. In view of 
the increasing importance of diabetes as a risk factor for vascular diseases, a sec-
tion, titled “Diabetes-Induced Cardiovascular Dysfunction,” has been incorporated 
in the book, where Dr. Belma Turan, Dr. Bhoomika Goyal Patel, Dr. Paras Mishra, 
Dr. Savita Bansal, Dr. Hobby Aggarwal, and Dr. Surekha Rani described the grow-
ing understanding of the interrelationship between diabetes and cardiovascular 
diseases.

Hypertension and heart failure are the most common diagnoses for cardiovascu-
lar patients. In this section, Dr. Pedro Gomes, Dr. Gerald Maarman, Dr. Sanjay 
Banerjee, and Dr. Lorenzo Calo provided contemporary description on the mecha-
nisms of this important sub-specialty of cardiology.

This book will prove useful to those who wish to broaden their knowledge of 
cardiovascular research especially the role of oxidants and redox signaling in the 
pathophysiological aspects of different types of heart diseases. Thanks should go to 
all authors for their professional expertise, knowledge, and devoted scholarship. 
Thanks are also due to Dr. Madhurima Kahali and Dr. Uma Maheswari (Springer 
Nature, New Delhi) for their sincere cooperation and support during the preparation 
of this book.

Kalyani, India�   Sajal Chakraborti
�  
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1Oxidative Stress and Cardiovascular Risk 
and Prevention in Children 
and Adolescents

Francesca Mastorci, Irene Traghella, Laura Sabatino, 
Alessandro Pingitore, Rudina Ndreu, and Cristina Vassalle

1.1	 �Introduction

It is now well established that non-communicable diseases, especially cardiovascu-
lar diseases (CVD) are major causes of mortality and morbidity both in industrial-
ized and developing countries. Importance of CVD is given by a combination of 
factors that include obesity, physical inactivity, adoption of unhealthy dietary hab-
its, and smoking. Fortunately, most cardiovascular (CV) clinical manifestations are 
preventable or at least can be delayed later in old age reducing events, morbidity, 
disability, and sanitary costs. Nonetheless, although it is never too late to improve 
unhealthy lifestyle habits, early initiation of prevention is more likely to be effective 
against onset and development of disease, delaying manifestations, and reducing 
adverse events [1]. In particular, as exposure to CV risk factors occurs from early 
ages, this strategy must be started and adjusted throughout the life of an individual. 
Thus, CVD prevention in at-risk subjects (primary prevention) as well as the pre-
vention of the onset of risk factors in otherwise healthy subjects (primordial preven-
tion), before intervention aimed to reduce the impact of a disease that has already 
occurred (secondary prevention), represent a social and sanitary priority (Fig. 1.1).

Fetal life, and neonatal physiology (which are not included in the present review) 
together with childhood and adolescence are all critical phases for the development 
of cardiometabolic risk (CMR) and later onset of atherosclerosis, hypertension and 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8273-4_1&domain=pdf
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diabetes [2]. Whether majority of children and adolescents are clearly free of mani-
fest cardiometabolic disease, very few do not present any CMR factor, especially 
when considering sedentary lifestyle and unhealthy diet [2]. Thus, implementation 
of primordial prevention at this level is valuable, and for children and adolescents in 
whom risk factors emerge, the focus must be directed to promotion of healthful 
dietary habits and physical activity. Education to health from primary school may 
represent one pivotal approach to begin primordial prevention and should be 
included in public education along with the traditional education matter [3].

Since atherosclerosis begins with endothelial activation, oxidative stress is 
among the earliest series of adverse events, also closely related to futures of cardio-
metabolic risk in children and adolescents [4].

This review aims to provide an overview of all these aspects, focusing on the 
relationship between cardiometabolic parameters and oxidative stress.

1.2	 �Cardiovascular Primordial Prevention in Children 
and Adolescents

Childhood and adolescence are often considered the healthiest time of life. In most 
countries, especially developed ones, they are the points of lowest mortality across 
life course, placed between the early life mortality and cardiovascular disease 

Fig. 1.1  Health Promotion and Cardiovascular Disease Prevention phases

F. Mastorci et al.
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(CVD) in adulthood [5]. They are time windows in life where many health determi-
nants are at their height, determining the so-called “ideal cardiovascular health 
(iCVH)”. According to this new vision, starting from 2010, the American Heart 
Association defined a new concept of cardiovascular health, on the basis of four 
main behaviours (smoking status, body mass index-BMI, physical activity and diet) 
and three traditional cardiovascular risk factors (cholesterol, blood pressure and 
glucose).

Previous studies suggested that a high iCVH in adolescence is related to a better 
vascular health condition, whose main indicators for a primordial prevention are: a 
reduced vascular intima-media thickness and an augmented vascular elasticity [6]. 
Also, longitudinal studies have reported that high iCVH during adolescence is con-
nected with a more positive cardiac structure and function, as well as a lower risk of 
hypertension and metabolic syndrome (MetS) in adulthood [7].

However, epidemiological, pathological, and risk factor data demonstrates that 
childhood and youth are susceptible stages of life since CVD may be deeply rooted 
in early life, and social determinants of health and many conventional risk factors 
start to accumulate in childhood and progress during the life course [8]. This is 
reflected in Barkers’ ‘developmental origin of adult disease’ hypothesis, suggesting 
that adverse influences in early phases of development, including those in intrauter-
ine life, can result in permanent changes in physiology and metabolism, resulting in 
increased disease risk in adulthood [9]. Accordingly, as the level of cardiovascular 
risk factors in children and young people is growing, with one-third of this popula-
tion overweight or obese, the need to understand the potential future public health 
impact of the obesity epidemic in the currently younger critical.

The pathology of early stages of CVD in children and adolescents is a function 
of the same traditional risk factors that affect adults, but while CV prevention among 
adults is typically limited to primary or secondary prevention of CV outcomes, in 
children and adolescents primordial prevention is possible.

The Bogalusa Heart Study, collecting data and their lifetime consequences for 
39 years, has recognised the role of risk factors in youth [10], proposing that the 
major etiologies of adult heart disease and atherosclerosis begin early in life, with 
evident anatomical changes by 5–8  years of age. Furthermore, one of the most 
important result in the Bogalusa study, in addition to the early identification of 
childhood risk factors, was their tracking into adulthood. A retrospective cohort 
study demonstrated, for example, that glucose homeostasis variables in childhood 
predicted adult diabetes correlating with CMR factors, and showing that the pres-
ence of multiple risk factors is associated with an even higher risk of atherosclerotic 
lesions [8].

Population-based data from prospective cohort studies, beginning in children 
and youth with a follow-up later in life, have shown that the modifiable risk factors 
associate with preclinical markers of CVD in adulthood, range from purely genetic 
to behavioural, psychosocial and environmental. This opens to the concept of pri-
mordial prevention of CVD as a valid tool either for CV epidemiologists or clini-
cians, in order to reduce the burden of CVD in the population before its clinical 
manifestations. So far, different policies have responded non adequately on how 

1  Oxidative Stress and Cardiovascular Risk and Prevention in Children…
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certain risk behaviours affect health outcomes. The more accredited strategies aim-
ing to lower the CVD risk involve re-education, reorientation and motivation. To 
date, preventive strategies mainly concern nutrients intake and physical activity. 
The special Turku Coronary Risk Factor Intervention Project (STRIP), for example, 
has been able to provide important information on diet throughout childhood and its 
role in the primordial prevention of atherosclerosis, through dietary counselling for 
families, with clinical and public health implications [11].

On the contrary, psychological dimension is predominantly directed towards 
adolescents with mental disorders rather than the healthy ones. Instead, according 
to AHA 2020 Impact Goals, it is pivotal to examine all aspects, including psychoso-
cial ones that have been identified as predictors of ideal cardiovascular health in 
adulthood [12].

In line with the American Heart Association’s Social Determinants of Risk and 
Outcomes of Cardiovascular Disease Scientific Statement, common findings sug-
gest that socioeconomic adversity and exposure to poor parenting practices during 
adolescence predict greater levels of cardiovascular risk factors in adulthood [13]. 
Also, the prospective Collaborative Perinatal Project, which examined psychosocial 
predictors of a favorable cardiovascular profile, showed that high childhood atten-
tion regulation, high cognitive ability, and a positive childhood environment were 
associated with a more favorable cardiovascular profile in adulthood [14].

Furthermore, socioeconomic and emotional factors, parental health behaviours, 
stressful events, and self-regulation data obtained from Cardiovascular Risk in 
Young Finns Study suggest a dose-response relationship between psychosocial fac-
tors in youth and CV health in adulthood [15]. In this perspective and on the basis 
of the clinical evidence that half of all CVD events, regardless of age, occur in sub-
jects who are not classified at high risk, in accord with conventional risk factor 
profile [16], more recent epidemiological studies have focused on psychosocial fac-
tors potentially increasing CV risk [17]. According to this view, a foundational con-
cept in adolescence is the “Positive Youth Development” that highlights the 
significance of psychosocial assets in understanding how life-long preservation of 
ideal cardiovascular health can actually occur. In this context, in children but mostly 
in adolescence it is necessary to promote social inclusion skills in school environ-
ment in order to reduce health risk behaviours [18]. In fact, socialization encourages 
physical activity and development of social support networks and prevents antiso-
cial behaviours reducing unhealthy habits [19].

Current data show that small-scale interventions have begun to apply the concept 
of Positive Youth Development in CV health promotion among adolescents in 
school setting, although outcomes have not yet well characterized [1].

Given the central role of school in preventive approach, potentially effective 
interventions should include school-based programs, corroborating the idea that 
schools serve as “context of socialization” that influence students’ developmental 
outcomes. Future studies should specifically aim in delivering school-based plat-
forms adopting an “user-friendly language” in order to encourage children and ado-
lescents to improve their health status and thus, evaluating the efficacy of 
interventions.

F. Mastorci et al.
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1.3	 �Oxidative Stress Biochemical Markers

Oxidative stress is defined as an imbalance between oxidants (reactive oxygen spe-
cies – ROS) and antioxidants, leading to a disruption of redox signaling and control 
and molecular damage [20]. When the stress level exceeds defense capacity, a toxic 
effect may occur through the production of peroxides and free radicals; as major 
consequence nucleic acid, lipids, carbohydrates and proteins are damaged, cell 
health is compromised and generation of reactive species may lead to cell death by 
necrosis or apoptosis [21].

Nowadays is widely accepted a crucial role of oxidative stress in many disorders, 
like cardiovascular and neurodegenerative diseases, cancer, atherosclerosis and dia-
betes mellitus [22]. Biomarkers of oxidative stress are molecules modified by the 
interactions with ROS in the cellular microenvironment, or molecules of the anti-
oxidant system that change in response to increased redox stress [23]. These bio-
markers are indicators to assess the degree of oxidative stress and to evaluate 
antioxidant capacity.

Several markers of oxidative stress are available, but most are of limited value 
because of the instability of many reactive species. Furthermore, ROS are generally 
too reactive and have too short half-life to allow direct measurement in body fluids; 
for these reasons molecular products of ROS are generally considered more stable 
than ROS themselves, and are used to track ROS concentration, especially by mea-
suring lipid peroxidation products and oxidized proteins [21]. Antioxidant biomark-
ers are included in the total antioxidant capacity (TAC) and divided into enzymatic 
biomarkers, such as catalase, glutathione peroxidase (GPX), superoxide dismutase 
(SOD), and non-enzymatic biomarkers like vitamins A, C, E, glutathione and uric 
acid [22].

Different oxidative stress biomarkers (e.g malondialdehyde-MDA, 
F2-isoprostanes, nitric oxide) have been found associated to obesity, BMI and adi-
pokines and shown improvement in response to dietary or lifestyle modification in 
children and adolescents [24–26].

A recent longitudinal study (subjects aged 5–19), characterized by a mean 
12.0  years follow-up, showed interesting correlations between childhood MetS 
severity and later measures of insulin resistance and uric acid, as oxidative stress 
biomarker, leading to a greater cardiometabolic risk [27].

Noninvasive tools to assess CMR could increase participation in screening and 
treatment programs and improve adherence to dietary and lifestyle intervention, 
especially in children and adolescent cohorts. Thus, the possibility of salivary col-
lection and analysis of many oxidative stress biomarkers is valuable, especially in 
children and adolescents, because it is a simple, subject- and parent-friendly, and 
non-invasive specimen collection. In particular, it is very peculiar that for some 
oxidative stress biomarker a good correlation was found between salivary and serum 
concentrations tested in overweight/obese subjects or patients with MetS, suggest-
ing that saliva sampling may be an useful surrogate for blood testing especially in 
CMR evaluation [28, 29].

1  Oxidative Stress and Cardiovascular Risk and Prevention in Children…
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Among the number of available oxidative stress biomarkers reflecting damage to 
lipids, proteins, carbohydrates, and nucleic acids, the most used are MDA, hydro-
peroxides, conjugated dienes, 4-hydroxynonenal, hydrocarbons, F2-isoprostanes, 
and oxidized-low density lipoproteins.

LIPIDS: are susceptible targets of oxidation because of their molecular structure 
[23]. Lipid peroxidation generates a variety of relatively stable products, mainly 
MDA, 4-hydroxy-2-nonenal, and isoprostanes [21].

MDA is generally quantified on plasma samples with a colorimetric assay named 
TBARS which uses thiobarbituric acid reacting with MDA, but this method has low 
specificity [23, 30]. Several commercial ELISA kits and high-performance liquid 
chromatography (HPLC) procedures are available for MDA detection [23].

Moreover, isoprostanes, generated from peroxidation of arachidonic acid, mostly 
present in cell membrane, can be measured in various samples using gas 
chromatography-mass spectrometry (GC/MS), liquid chromatography-mass spec-
trometry (LC/MS), enzyme-linked immunosorbent assays (ELISA) and radioim-
munoassay (RIA) [23, 31].

PROTEINS: are major targets for ROS because of their great abundance in bio-
logical systems. Exposure of proteins to ROS may alter every level of protein struc-
ture; the major fate of oxidized proteins is catabolism by proteasomal and lysosomal 
pathways, but some functionally inactive proteins appear to be inadequately 
degraded, forming protein aggregates, and accumulating in separate compartments 
within cells or in the extracellular environment. The accumulation of such damaged 
material increases during the normal aging process, and may contribute to a range 
of human pathologies [21].

Oxidized-low density lipoproteins (OxLDL) play a central role in the pathogen-
esis of atherosclerosis and their accumulation inside the vascular wall also stimu-
lates the production of proinflammatory cytokines including adhesion molecules 
such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion mole-
cule-1 (VCAM-1) and endothelial selectin (E-selectin) [32]. Currently, there are 
different OxLDL ELISA kit available for research, using plasma as sample [33].

ANTIOXIDANT CAPACITY: total antioxidant capacity [TAC] can be estimated 
as a whole, or as its enzymatic (e.g CAT, GPx, SOD) or non-enzymatic (e.g. E, A, 
C, and GSH and uric acid) components in different biological samples, which can 
be easily estimated by colorimetric and ELISA assays [34].

1.4	 �Oxidative Stress and Cardiovascular Risk 
and Prevention in Children and Adolescents

As stated before, the four components of a healthy lifestyle most frequently focused 
in primordial prevention interventions include diet, physical activity, body weight 
maintaining (although clearly largely related to the two previous elements), and 
absence of smoking.

F. Mastorci et al.
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1.4.1	 �Smoking Habit

Although smoking habit is a minor problem in children, almost in developed coun-
tries, passive smoking may be more diffuse. As such, passive smoking has been 
associated with impaired serum lipids in children and adolescents exposed to 
second-hand smoke in the household, which presented significantly reduced high-
density lipoprotein concentration [35]. More recent data showed that biomarkers of 
oxidative stress are elevated and inversely associated with impaired artery dilation 
in children exposed to passive smoking [36]. In another population of children and 
adolescents second-hand smoke exposure resulted associated with increased oxida-
tive stress and decreased paraoxonase-1 [37]. Other data confirmed a passive 
smoking-related reduction of total antioxidant capacity, parallel to an increase of 
total peroxide levels in children (9–13 years), 61 of whom never been exposed to 
passive smoking, and 82 exposed to passive smoking at least 10 cigarettes per day 
for at least 1 year in their house [38]. Accordingly with smoking adverse effects, 
smoking habit in adolescents was found to be associated with increased oxidative 
damage [39].

Cigarette smoke–induced oxidative stress activates the endothelium through 
many mechanisms, including induction of adhesion molecule expression, macro-
phages and platelets [40]. Moreover, there is a reduction of NO cellular concentra-
tion, and increase of inflammatory and proatherogenic cytokines. Smoke contains a 
great number of different chemicals, including oxidants and prooxidants, capable of 
damage endothelial cell leading to apoptosis or necrosis [40]. Macrophages are acti-
vated by the expression of adhesion molecule receptors (eg, intracellular adhesion 
molecule, vascular cell adhesion molecule), adhesion and transendothelial migra-
tion are increased, as well as upload of oxidized lipids produced by smoke-increased 
oxidative stress, foam cells production, and lipid plaques [40]. Smoking induces an 
increase in smooth muscle cell proliferation and migration inducing intimal thick-
ening [40]. Destruction of extracellular matrix is driven by increased expression of 
matrix metalloproteinases (MMPs) and reduced expression of tissue inhibitors of 
MMPs (TIMPs) [40].

1.4.2	 �Diet, Physical Activity, Body Size

Dietary habits, physical activity and weight of children and adolescents are closely 
related in a complex interactive pattern. In fact, some data suggested that active 
boys and girls frequently consumed breakfast cereals and fresh fruit, while seden-
tary girls eat more high fat foods and soft drinks, and that sedentary behaviour is 
inversely related to adherence to Mediterranean diet [41]. However, there are some 
determinants other than diet and physical activity which may affect weight and 
body size, including genetic factors, stress, sleep hours, and meal timing and num-
ber. In particular, psycho-emotional factors may be critical in children and adoles-
cents, although generally neglected in preventive cardiology.
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There are many data showing higher oxidative stress biomarker levels related to 
unhealthy dietary habit, physical inactivity, and weight gain in children and adoles-
cents [42–44]. Clearly, energy intake must take into account age, gender, growth 
stage, body weight, and type and level of exercise of the specific child or adolescent, 
which cannot be considered as “small adults” since fundamental biological differ-
ences exist (e.g. lower sympatho-adrenal activity, immature hormonal system) [45]. 
Thus, results obtained in adults cannot be simply translated to children or 
adolescents.

Numerous clinical trials have showed the benefits of healthy eating patterns [34, 
46]. Accordingly, children following a diet low in total fat (less than 30% of energy), 
saturated fat (8–10% of energy), and cholesterol (200–300 mg/d) presented reduced 
total cholesterol, LDL-C, and C-reactive protein [47]. In obese children (mean age, 
9.18 ± 1.54 year), a dietary restriction-weight loss program (an equivalent to 70% 
of the needs for sex and stature age, subdivided in five meals per day, and including 
50/60% carbohydrates, 25/30% lipids, and 10/15% proteins) improve oxidative 
stress, restoring levels of MDA and vitamin E to those shown by normal weight 
children [47].

Children and adolescents generally show an active participation in sports, how-
ever they rarely have a constant application in a sport, fact which might give the 
highest benefits. In any case, data available suggest evident positive effects of exer-
cise training on oxidative status, increasing antioxidant capacity and reducing 
parameters belonging to the oxidant counterpart [48]. Clearly, these effects are 
influenced by different variables, such as training duration and load, type of sports 
etc. As an example, chronic endurance training (cycling and running) in adolescents 
(12–16  years) increased antioxidants (xanthine oxidase, glutathione and catalase 
activity) in comparison to controls, whereas this antioxidant upregulation correlates 
with an increase of endurance performance [43]. Accordingly, 1 year-training of 
running improved endurance performance, increasing anti-oxidation and lowering 
pro-oxidation parameters in adolescents (14–15  years) [49]. Moreover, physical 
activity has been shown as an effective tool in overweight children, where a 2-week 
training program consisting of 2–2.5 h/day (tennis, beach games, and gym-based 
exercises) induces significant reductions in lipids (except HDL cholesterol), and 
biomarkers of oxidative stress and endothelial activation (8-isoprostaglandin 
F2alpha, myeloperoxidase, soluble intracellular adhesion molecule, sE-selectin, 
C-reactive protein CRP, total matrix metalloproteinase-9, and cellular monocyte 
chemotactic protein-1 production) [50].

Taken into account that physical activity and healthy dietary habit have indepen-
dent beneficial effects, the combination of exercise and dietary plans may enhance 
positive health-related changes. Accordingly, increased endothelial dysfunction-
associated oxidative stress and inflammation were partially normalized by a 6-week 
diet and physical training intervention (aerobic physical activity for 60 min, 3 days a 
week for 6 consecutive weeks plus diet including 30% energy derived from fat, 15% 
from protein, and 55% from carbohydrate, with energy content based on the calorie 
requirement for height) in obese insulin-resistance adolescents (12–18 years), where 
changes in BMI, waist circumference, CRP, ox-LDL and MDA were inversely 
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correlated with flow mediated dilation [51]. Moreover, short-term lifestyle changes 
(high-fiber, low-fat diet and 2–2.5 h daily exercise in a 2-week plan) in overweight 
children and adolescents (age 8–17) induced significant decrease in BMI, and mark-
ers of inflammation and oxidative stress (C reactive protein, sE-selectin, soluble 
inter-cell adhesion molecule 1, monocyte chemoattractant protein 1, matrix metal-
loproteinase 9, oxidative stress and lipid peroxidation, myeloperoxidase, 8-isopros-
tane) [50]. Recent data demonstrated that a 4-week exercise training, coupled with 
dietary restriction, improved BMI, lean body mass, fat body mass and fat mass ratio 
in male adolescents [52]. In addition, the activities of antioxidant enzymes (superox-
ide dismutase, and glutathione peroxidase) showed a significant increase [52].

It must be also considered that some adverse effects on oxidative stress, adipose 
tissue metabolism, and inflammation are influenced by pubertal hormonal changes. 
Children with growth hormone deficiency showed an unbalanced oxidant-
antioxidant status with a reduced nitric oxide (NO) bioavailability and vascular 
reactivity [53]. Recent experimental data obtained in sedentary adolescent male 
rats, suggested that elevated testosterone may modulate oxidative stress status [54]. 
In this context, physical activity and dietary habit may beneficially influence oxida-
tive stress, also modulating hormonal status during puberty [55–57]. Oxidative 
stress is associated with metabolic-related hormones in obese children and adoles-
cents [58]. Specifically, a study evaluated pre- (11 years old, 28 normal-weight, 11 
obese) and early- (11 years old, 25 normal-weight, 12 obese) pubertal Greek boys, 
for a wide panel of hormonal and oxidative and inflammatory panels (leptin, adipo-
nectin, C reactive protein, IL-6, thiobarbitouric acid reactive substances, protein 
carbonyls, glutathione, oxidized glutathione, glutathione peroxidase, catalase, total 
antioxidant capacity) and results suggested that childhood obesity is associated with 
oxidative stress and inflammation [58]. Moreover, leptin and adiponectin predict 
negatively and positively anti-oxidation, respectively, while IL-6 predicts positively 
pro-oxidation and negatively and anti-oxidation [58]. Moreover, C reactive protein 
is increased and negatively associated with anti-oxidation in pre-pubertal obese 
boys [58]. Conversely, exercise and healthy dietary habit may improve oxidative 
stress in obese children and adolescents [25, 48].

1.5	 �Oxidative Stress Molecular and Genetics Biomarkers

Many metabolic processes produce free radicals, not necessarily dangerous for 
human body, since they often play a crucial role in defeating viral and bacterial 
infections. Oxidative stress occurs because of free radicals overload inside the cells 
and cell inability to dispose excessive oxidative products. In this case, oxidative 
stress induces damaging factors to produce lesions on DNA, promoting the loss of 
genetic information and genomic instability, which may lead to severe diseases such 
as cancer [59].

Since lesions to DNA are followed by cellular repair machinery activation, repair 
proteins are considered important biomarkers helping in the prediction of genotoxic 
stress level. An example is the phosphorylated H2AX (gamma-H2AX), one of the key 
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molecules for the recognition and repair of DNA double strand breaks (DSBs). In fact, 
when DSB occurs within a nucleus, several H2AX molecules are rapidly phosphory-
lated on Ser-139, originating the so-called gamma-H2AX nuclear foci [60]. Therefore, 
gamma-H2AX focus assay is one of the principal methods to investigate early genome 
damage in cells exposed to various genotoxic agents, or in cells from people affected 
by cancer of other pathological conditions. Interestingly, this approach has been 
recently used to study the oxidative stress level and DNA damage in lymphocytes of 
adolescents affected by type 1 diabetes mellitus, in order to explore the possibility of 
employing the gamma-H2AX focus assay as molecular marker of future possible 
complications (i.e. cardiovascular disease or some type of cancer) in adulthood [61].

Oxidative stress is also demonstrated to be associated with the shortening of telo-
meres, specialized DNA/protein structures acting as final caps of chromosomes, pre-
venting end-fusion and distinguishing the chromosome ends from DSBs [62]. 
Because of their low reduction potential, the G-rich telomere repeats are particularly 
prone to damage induced by reactive oxygen species, easily bringing to telomere 
shortening process. According to this idea, a recent study associated the leukocyte 
telomere length (LTL) to obesity at age 9, evaluating LTL in a cohort of young (age 
4–5) Latino children in United States abusing of sugar-sweetened beverage con-
sumption [63]. LTL has been demonstrated to be a good predictor of future obesity 
occurrence and, consequently, to development of cardiometabolic diseases [64].

Moreover, in a large case-control study on French obese children (average age, 
11 years) a highly significant inverse association between obesity onset and mean 
LTL was demonstrated [65]. Mean LTL in the obeses is almost 25% less than con-
trols, and LTL decreases with increasing age, weight, and height in both groups, 
with comparable effect sizes for all three variables in both cases and controls. 
Although the most evident difference between obese cohort and controls, it is rea-
sonable to hypothesize that the association with LTL may reflect some other clinical 
characteristic of obesity, such as circulating lipid levels or inflammation. In fact, 
longitudinal studies in adults showed that LTL is positively associated with HDL-
cholesterol levels [66]. Interestingly, the fact that obese children have an apparent 
biological age significantly greater than their effective age (lower LTL), suggests 
the urgency of intervention and support in order to reduce the highly probable risk 
of future disease at the earliest possible.

Moreover, several environmental factors leading to marked cellular oxidative 
stress are crucial in the determination of telomere attrition rate: air pollution [67] 
and second-hand smoke [68] are among the more significant contributors in DNA 
damage in relation to oxidative stress in young children. Telomere shortening in 
childhood is a potentially important biomarker in the evaluation of environmental 
impact, and damaging factors reasonably have stronger effects on children, when 
telomere attrition rate is at its maximum [67].

Among the different tests used to investigate early damage to genomic DNA, the 
single cell gel electrophoresis assay (Comet assay) is a simple and fast method for 
quantification of different types and levels of DNA lesions [69]. As an example, the 
comet assay has been used to evaluate DNA damaging caused by cigarette smoke 
on lymphocytes of passive smoking children. The increase in DNA fragmentation is 
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shown by comet-looking nuclei, having the head of the comet made by unfrag-
mented DNA and the tail showing the damaged DNA [68].

In summary, the characterization of molecular and genetic biomarkers for quan-
tification of DNA damages in children and adolescents and the studies carried out to 
understand how the damage can be restored, may be of crucial significance in mul-
tiple disease prevention, including cancer and diabetes.

1.6	 �Conclusion

Considering the epidemic of obesity and cardiometabolic disease, prevention from 
early life is necessary. In particular, it is alarming the prevalence of obesity in child-
hood and adolescence, which has increased greatly during the last decades. Thus, 
improving the cardiovascular health of children and adolescence with a coordinated 
and comprehensive approach based on multifaceted and multidimensional perspec-
tive is a crucial public health priority and can yield incremental success in improv-
ing cardiovascular health assets into adulthood. In fact, in a society where population 
age is increasing, now more than ever, the focus must be directed to the reduction of 
cardiometabolic risk in future generations. Actually, children are at a crossroad, 
they can teach how improve lifestyle to their actual families of origin, as well as to 
their future ones, with a significant gain in terms of social, sanitary and economic 
aspects. In this radical change of mentality, school-based interventions can be effec-
tive in lifestyle improving and preventing the development of obesity in children. 
Schools can provide the education to practice healthy behaviours and achieve envi-
ronment changes, giving tools for an active lifestyle and for a better food choices at 
home and outside of the scholastic context.

As oxidative stress is pivotal in the onset and development of cardiometabolic 
disease, also in children and adolescents, longitudinal trials will provide further 
clarification on the oxidative stress-related underlying mechanisms involved in 
CMR. Notably, the reduction of atherosclerosis progression and its clinical conse-
quences in adulthood, as well as the mantainement of a balanced oxidative/antioxi-
dant status, can be achieved efficaciously in childhood by a healthy diet adoption 
and active life, although it must be considered that effects of dietary and exercise 
interventions are closely dependent by children’s maturity stage (hormonal status) 
and body weight (Fig. 1.2).

It is conceivable that oxidative stress biomarkers might serve in future as one 
early tool to predict risk of developing cardiometabolic and lifestyle-related dis-
eases in childhood and adolescence and later in adulthood, as well as to formulate 
some mechanistic hypotheses. In this context, the availability of salivary measure-
ments of several oxidative stress-related biomarkers can facilitate their evaluation as 
non-invasive sampling in large cohorts.

Taken together, available knowledge evidences the critical significance of pri-
mordial prevention in the context of cardiometabolic disease, but also to the impor-
tance of health campaigns at school levels, focused on the role of an healthy lifestyle 
factors, and the potential of evaluating oxidative stress status as cardiometabolic 
risk determinant (Fig. 1.3).
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Fig. 1.2  Interrelationship 
between lifestyle, 
hormonal status, and 
oxidative stress in children 
and adolescents

Fig. 1.3  Primordial prevention strategy in children and adolescents
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2The Role of Redox Signalling 
in Cardiovascular Regeneration

Thomas Hansen, Soloman Saleh, Gemma A. Figtree, 
and Carmine Gentile

2.1	 �Introduction: Heart Failure, Redox Signalling, 
and the Need for Regenerative Therapies

Heart disease is a major cause of morbidity and mortality globally. The major causes 
of heart failure, including ischaemic, hypertensive, alcoholic and valvular heart fail-
ure, are most prevalent in ageing Western society, affecting over 10% of adults aged 
over 65 in Australia [67].

Ischaemic heart disease (IHD) is not only the most common cause of all heart 
failure, but further is the most common cause of death worldwide [5]. There is a 
steadily increasing number of people living in the world with IHD- a consequence of 
both increasing obesity and diabetes, as well as increased survival of patients after 
myocardial infarction (MI) through improved early reperfusion strategies (throm-
bolysis and primary percutaneous coronary intervention). However, many of these 
individuals surviving heart attack are left with significant morbidity related to adverse 
left ventricular remodelling and left ventricular systolic dysfunction and associated 
chronic heart failure, occurring in approximately one in five patients [15].

Despite improving medical therapy, chronic heart failure carries a 5-year 50% 
mortality rate [67]. Existing therapies include beta-adrenergic receptor antagonists, 
angiotensin converting enzyme inhibitors, and aldosterone antagonists. These pro-
vide symptomatic relief and modest mortality benefits through the prevention of left 
ventricular remodelling; however, they do not replace the infarcted myocardium, 
and therefore are unable to restore cardiac function to pre-infarct baseline [65]. 
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Further advances have been made in device therapy, including left ventricular assist 
devices, resynchronization therapy, and automated implantable cardiac defibrilla-
tors [34]. Heart transplantation, perhaps the most definitive therapy for those with 
severe, end-stage dilated cardiomyopathy, is not a therapeutic approach with high 
enough scalability to accommodate the spiralling incidence of heart failure, due to 
the significant shortage of donors and complex nature of transplantation candidates 
[36]. Cardiac regeneration therapy though, offers a promising, relatively new 
approach to ameliorating cardiac function through either the direct replacement of 
cardiomyocytes, or by inducing their proliferation via modulation of endogenous 
signalling pathways.

Redox signalling is an important regulator of numerous cardiac signalling path-
ways involved in cardiac regeneration. Basal levels of reactive oxygen species 
(ROS) including superoxide (O2

−) and hydrogen peroxide (H2O2) are important in 
physiological cell signalling. However, their imbalance can lead to oxidative stress, 
and often deleterious effects on the cardiomyocyte and its repair processes [26]. 
Despite this, clinical trials using antioxidant therapy in CVD have been largely dis-
appointing, likely due to an indiscriminate, non-targeted approach, without regulat-
ing redox signalling in specific subcellular compartments.

Elevated levels of ROS are known to mediate myocardial ischaemia reperfusion 
(IR) injury and altered metabolic energetics and apoptotic cardiomyocyte cell path-
ways that drive heart failure [29]. It is also understood that many of the pathways 
that are altered in the transition from young to ageing heart are redox-sensitive [10]. 
However, ROS are also believed to be cardio-protective at basal physiological levels 
[8]. ROS are tightly correlated with cell oxygenation in specific cell types and com-
partments, with low levels favouring adult cardiomyocyte growth, and higher levels 
providing a nurturing environment for physiological stem cell differentiation. There 
is therefore a sound mechanistic basis for the use of cellular and molecular pharma-
cotherapies to modulate ROS and redox signalling to ameliorate heart failure and 
degenerative processes in the ageing heart. However, clinical stem cell trials have 
been limited by an often hostile (and redox-sensitive) myocardial niche, resulting in 
lack of cellular engraftment and proliferation. Through achieving a more complete 
understanding of the complexities of redox signalling in the cardiomyocyte micro-
environment, we may uncover better targets its therapeutic potential for treating 
heart disease, and improving the efficiency of cellular and molecular approaches to 
cardiac regeneration.

2.2	 �Cellular Approaches to Cardiac Repair & Their 
Redox-Regulation

Significant research has been undertaken into the endogenous regenerative capacity 
of the human heart. Embryonic cardiomyocytes are capable of proliferation- but 
significant controversy has abounded regarding whether this capacity is retained 
throughout adulthood. Studies using carbon dating technologies have demonstrated 
that whilst cardiomyocyte turnover persists in adults, the rate of renewal is low 
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(~1–2%) and declines with age [3]. There is a fourfold increase in cardiomyocyte 
division in peri-infarct zones [66]- however, myocardial infarction causes the loss of 
approximately one billion cardiomyocytes in the adult heart, overwhelming this 
nominal gain in regenerative capacity [41]. Therefore, much focus has revolved 
around the potential of exogenously replacing cardiomyocytes with stem cells, and 
enhancing the proliferation and differentiation of these stem cells once engrafted- 
processes regulated by ROS. The following sections will summarise the different 
cell types that have been trialled for cardiac repair, and their redox-relevance.

2.2.1	 �Skeletal Myoblasts & Bone Marrow-Derived Mesenchymal 
Stem Cells:

Cellular therapy for cardiac regeneration first began with administration of skeletal 
myoblasts injected intramyocardially during coronary artery bypass grafting 
(CABG) surgery [51]. These cells initially yielded positive safety data and demon-
strated excellent engraftment. However, they elicited concerns of being pro-
arrhythmic, with downregulated N-cadherin and connexin-43 suggesting a lack of 
electrophysiological coupling [9, 63], later confirmed in the phase II MAGIC study 
[52], likely secondary to the delivery of multiple intramyocardial injections. A simi-
lar approach soon followed with bone marrow-derived cells and considerable 
excitement abounded after release of the seminal study demonstrating that injection 
of discrete haematopoietic progenitor cells regenerated 68% of infarcted mouse 
myocardium [56]. However, multiple studies have failed to reproduce these find-
ings. The variable results produced from trials using bone marrow-derived cells has 
perhaps been attributed to impairment of these cells associated with patient-specific 
risk factors [16]. The randomised phase III CardiAMP trial is aiming to overcome 
this by trans-endocardial delivery of patient derived bone marrow cells that have 
been ‘pre-screened’ for certain criteria feasibly associated with an increased chance 
of therapeutic benefit (Table 2.1) [72].

A recent study demonstrated that treatment of bone-marrow derived mesenchy-
mal stem cells (MSC) with bone morphogenetic protein-2 (BMP-2) stimulates their 
differentiation into functional cardiomyocytes [80]. BMP-2 is known to induce dif-
ferentiation of other precursor cell types through ROS-mediated signalling path-
ways [44], highlighting the possibility that the same ROS-driven pathways occur 
and may be targeted in mesenchymal stem cells.

2.2.2	 �Cardiac Stem Cells

Cardiac stem cells (CSCs) were first identified and in the heart based upon expres-
sion of c-kit. c-kit-positive CSCs are multipotent, self-renewing, and capable of 
forming cardiomyocytes, smooth muscle cells, and endothelial cells [78].

CSCs can be propagated over long-term culture and maintained in an undifferen-
tiated, self-renewing state [40]. Preclinical studies have demonstrated c-kit+ 
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Table 2.1  Outcomes of some recent and ongoing clinical trials using stem cell therapy to treat 
cardiovascular disease

Study
Cell type and 
dose Delivery Patient cohort Primary outcome

CardiAMP 
[72]

Autologous, 
bone marrow-
derived cells 
(pre-screened 
for specific 
pre-set criteria)

Percutaneous 
Intramyocardial

Refractory, 
chronic 
myocardial 
ischaemia.

Recruiting: 
Primary 
Outcome- change 
in time on 
treadmill using 
the Modified 
Bruce Protocol 
from baseline

ESCORT [53] Embryonic 
stem cell 
derived CD15+ 
Isl-1+ 
progenitors

Fibrin hydrogel 
delivered directly 
onto epicardium

Ischaemic heart 
disease 
undergoing 
CABG and/or 
MVR

Met primary 
safety outcome 
measures

Dream-HF 
[74]

Allogeneic 
mesenchymal 
stem cells 
(STRO3+)

Transendocardial Ischaemic and 
nonischaemic 
heart failure

Ongoing: Time to 
nonfatal, recurrent 
decompensated 
heart failure

SCIPIO [4] cKit+ CSC 
1∗10^6 cells

Intracoronary 
injection

Ischaemic 
cardiomyopathy 
(LVEF <40%)

Improvement in 
LVEF, reduction 
in infarct size 
compared to 
baseline

MSC-HF [49] 77.5 ∗ 10^6 
MSC cells

Intramyocardial 
injection

Severe IHD 
(LVEF <45%)

Improvement in 
LVESV and 
LVEF
No difference in 
NYHA, 6-min 
walk test

MAGIC [52] 4–8∗10^6 
myoblasts or 
placebo

Intramyocardial 
injection

Severe IHD 
(LVEF <35%), 
MI, indication 
for coronary 
usrgery

No significant 
change in EF
High dose had 
decreased 
LVESV
Higher rate of 
arrhythmias

REPEAT [71] Autologous 
bone marrow-
derived cells

Intramyocardial 
infusion

Ischaemic 
cardiomyopathy 
(within 3 months 
of MI) LVEF < 
45%

Mortality at 
2 years- 
Recruiting

CONCERT-HF 
[73]

Mesenchymal 
stem cells (1.5 
∗ 10^8) and/or 
Cardiac stem 
cells (5 ∗ 10^6)

LV injection Ischaemic 
cardiomyopathy 
(LVEF < 40%)

Primary outcome 
is change in 
LVEF/strain/other 
indices of cardiac 
function per 
MRI. Also, 
mortality, 
hospitalisation for 
HF. Recruiting
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CSC-induced cardiomyocyte regeneration post-infarction via neo-proliferation and 
insulin-like growth factor 1 (IGF-1) secretion inhibiting apoptosis [20, 30]. Concern 
has been raised regarding c-kit+ CSCs having predilection for differentiating into 
vascular cells rather than cardimyocytes, and becoming senescent in culture [51].

The SCIPIO trial showed that intracoronary infusion of autologous c-kit-positive 
CSCs improved left ventricular systolic function by 8.2% at 4 months post-infarct, 
and decreased 12-month infarct size [4] – it should be noted that this trial is the 
subject of a Lancet expression of concern regarding its data integrity [69].

Oxidative stress is detrimental to cardiac stem cells, and has been specifically 
shown to induce telomeric shortening and progenitor cell death [24].

2.2.3	 �ESCs and iPSCs

Whilst the aforementioned studies use cells derived from adult tissue sources, 
embryonic stem cells (ESCs) are cells taken from 4 to 6 day old embryos that are 
pluripotent (i.e., they have the capacity to develop into any cell type, given the 
appropriate stimulus or growth factors) [81]. Research using ESCs has been enor-
mously promising, and already shown efficacy in several preclinical trials [42]. The 
primary advantage of these cells lie in their ability to flexibly direct the specific 
cellular differentiation pathway, allowing implantation at the time of preferred car-
diac commitment. However, there are ethical and safety concerns surrounding the 
use of ESCs, specifically with the risk of teratoma formation from residual undif-
ferentiated cells [9].

The ESCORT trial is an ongoing study using human ESCs to generate cardiovas-
cular progenitors, characterised by dual expression of insulin gene enhancer protein 
ISL1 and stage-specific embryonic antigen 1 (SSEA1/FUT4). These cells are trans-
planted using a fibrin-scaffold delivered onto a patient’s epicardium at time of coro-
nary artery bypass grafting, using pericardium as a flap to provide trophic factors 
[53]. Preliminary results have determined that primary safety outcomes were met, 
although the study was not powered to demonstrate efficacy.

Induced pluripotent stem cells (iPSCs) have been reprogrammed from adult 
somatic cells to adopt the functional capacity of pluripotency. They have also dem-
onstrated efficacy and safety in preliminary preclinical studies, and are not as ethi-
cally polarising [83]. Redox-status is known to play an important role in these cell 
types. Mice with diabetes-induced cardiomyopathy injected with human iPSCs 
demonstrated improved cardiac function mediated by an increase in antioxidant 
level and alteration of adverse cardiac remodelling pathways [82]. It would there-
fore be reasonable to infer that reducing oxidative burden in the specific milieu of 
iPSC-cardiomyocyte administration may improve proliferation and retention. 
However, it is likely that it is not only the level of ROS, but also their subcellular 
location that influences effects on cellular survival processes- that is to say that 
compartmentalised and balanced ROS production play an essential role in guiding 
cellular differentiation and proliferation. Further investigation into the exact mecha-
nisms and subcellular localisation are necessary to manipulate the redox state and 
thereby facilitate engraftment of exogenously delivered iPSCs and other stem cells.

2  The Role of Redox Signalling in Cardiovascular Regeneration
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2.3	 �Redox-Related Changes in the Ageing and Failing Heart

Cardiomyocyte function and proliferative capacity progressively decline in the age-
ing heart. Gradual accumulation of direct oxidative damage and redox-sensitive 
post-translational modifications contribute to the phenotypic cardiovascular changes 
of both normal ageing and cardiac failure. This comes as no surprise, given that age 
is the principal risk factor for CVD [39]. This leads to: (i) reduced contractile and 
diastolic function; (ii) hypertrophy and adverse remodelling; and (iii) increased 
apoptosis in differentiated/progenitor populations [62]. The following section will 
detail some of the major changes that occur in the ageing and failing heart (sum-
marised in Fig. 2.1), and how they impact on cardiac regeneration.

2.3.1	 �Hypoxia and Redox State

In the highly oxygenated milieu of the myocardium, shielding CSCs from oxidative 
stress poses a significant biological challenge. Cardiac stem cells must reside in 
specialised microdomains – cardiac niches – in which oxygen tensions are tightly 
regulated, and function to direct stem cell fate towards either quiescence or lineage 
commitment [60]. In the young mouse heart, a balance of proliferative ‘lineage-
committed’ normoxic niches has been observed alongside quiescent hypoxic niches, 
which act as a reserve to replenish depleted populations [64]. However, the 

Fig. 2.1  Schematic representation of the changes involved in transition from healthy to age-
ing and/or failing heart. A primary increase in the ROS-generators that may occur in age and/or 
heart failure has a multitude of effects including an increase in post-translational modifications of 
key proteins including endothelial nitric oxide synthase (eNOS) and the sarcoplasmic-endoplasmic 
reticulum calcium ATPase (SERCA), and loss of proliferative and migratory potential of cardiac 
stem cells, and impaired cardiomyocyte excitation-contraction coupling. These collectively char-
acterise the ageing/failing cardiac phenotype
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proportion of niches maintained in a hypoxic state is now known to increase with 
age; these dormant niches force the remaining normoxic CSCs to become senescent 
through telomere erosion.

The control of stem cell lineage commitment is at least partially controlled by the 
‘metabolic switch’ that determines either anaerobic glycolysis or oxidative phos-
phorylation [32]. B lymphoma Mo-MLV insertion region 1 (BMI1) is an important 
player in this metabolic switch [28]. BMI1 is a controller protein of cellular multi-
potency, mediating epigenetic modification of chromatin structure [76]. BMI1 
expression prevents CSC commitment by down-regulating differentiation path-
ways, while H2O2-induced oxidative stress reverses this process [28]. This was mir-
rored in-vivo, where a heterozygous BMI1 knockout mouse model’s ageing cardiac 
phenotype could be partially rescued by crossbreeding with transgenic G6DP+ 
mice – known to reduce oxidative cardiac stress [55]. This phenotypic change was 
accompanied by a partial normalisation of DNA deactivation, suggesting the sensi-
tivity of BMI1’s commitment-repressive function to redox- and thus mitochondrial 
activity in the cell.

2.3.2	 �Neurohormonal Stimulation and Primary ROS Generators

The cardiovascular system has considerable neurohormonal control, which may 
become dysfunctional during ageing [10]. Angiotensin II (AngII) is well known for 
its role in the progression of cardiac failure, particularly in fibrosis and hypertrophy. 
In fact, inhibition of AngII is one of the few current pharmacotherapies shown to 
attenuate disease remodeling in heart failure and provide mortality benefit, at least 
partially through mediating a reduction in oxidative stress [6] Expression analysis 
of AngII and related proteins in mouse vasculature has revealed increasing AngII 
activity with ageing [85]. The study characterises AngII’s communication with the 
redox system through the stimulation of Nox4 and subsequent generation of H2O2, 
as well as increasing O2

− leading to eNOS uncoupling. This results in the activation 
of Transforming Growth Factor β (TGF-β), which triggers the transdifferentiation 
of cardiomyocytes to myofibroblasts leading to adverse remodelling [85].

Furthermore, a decrease in growth hormone (GH) activity with age contributes to 
cardiovascular disease in a redox-dependent manner [17]. Long-term replacement 
of GH in aged rats preserved diastolic function and reduced LV remodelling com-
pared to controls. This appeared to be mediated in part by a reduction in both intra-
cardiac and plasma AngII, and through a GH-mediated increase in insulin-like 
growth factor (IGF-1). On a broader clinical level, a below-median serum IGF-1 
level doubled the risk of cardiac failure as compared to those above the median in 
the Framingham population [77]. Accordingly, mice with chronic hypopituitarism 
and thus low GH levels display reduced antioxidant capacity – namely superoxide 
dismutase and glutathione peroxidase [17]. This was accompanied by O2

- and H2O2 
increases in vascular and cardiac tissue, predominantly in the mitochondria.

2  The Role of Redox Signalling in Cardiovascular Regeneration
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2.3.3	 �Post-translational modifications

With the increased ROS of ageing and heart failure, there is an increasing propen-
sity for post-translational modifications of key molecular proteins- one such modi-
fication is S-glutathionylation, characterised by the addition of a glutathione [19] 
adduct to proteins with reactive cysteine residues regulating cardiac ion conductiv-
ity, cardiac proliferative capacity and vascular function [7]. eNOS is a key mem-
brane protein which is susceptible to glutathionylation and subsequent uncoupling 
in conditions of oxidative stress [12]. A recent elegant study using cardiac spher-
oids- a 3D co-culture model that biologically mimics the heart in vitro- demon-
strated that doxorubicin likely exerts its cardiotoxic effects via eNOS uncoupling 
(secondary to ROS-mediated glutathionylation) [59]. This study also demonstrated 
that EC-derived nitric oxide protected against these ROS-driven changes, evidence 
that delivery of the correct supporting cells with contractile cardiac-committed cells 
would support their engraftment, by protecting against oxidative insults.

Beyond apoptosis and structural remodelling, the heart’s contractile function 
decays with age on a cellular level [54]. Cardiac contractility is closely tied to redox 
state; unregulated and non-specific oxidative modifications compromise contractile 
function and contribute to cardiac failure, arrhythmias, and further oxidative dys-
function [38]. Cytosolic Ca2+ flux from the sarcoplasmic reticulum (SR) is a key 
determinant of contractility – conversely, diastole depends on the ability to clear 
cytosolic Ca2+ through re-sequestration in the SR or extracellular flux [61]. This is 
dictated in part by activity of the sarcoplasmic-endoplasmic reticulum calcium 
ATPase (SERCA), and the ryanodine receptor (RyR2) [38]. Both SERCA and RyR2 
are subject to S-gluthathionylation in chronic cardiac disease [57]. The net effect is 
sarcoplasmic Ca2+ depletion and cytosolic overload. Reduced ability to clear cyto-
solic Ca2+ reduces diastolic filling, while depleted sarcomeric reserves compromise 
contractility.

2.4	 �Molecular Targets to Enhance Heart Regeneration

The emerging field of cardiac regenerative therapy involves the manipulation of 
molecular mechanisms to promote cellular renewal – often through a direct or indi-
rect effect on oxidative signalling in cardiomyocytes and supporting cells. Here we 
discuss potential target pathways in cardiac regenerative therapy, with focus on 
points of regulatory control by the oxidative signalling system. While there is no 
singular redox-driven mechanism that determines stemness, several pathways have 
been characterised, with notable crosstalk and functional interdependence (Fig. 2.2).

Molecular therapies targeting cellular renewal offer a promising avenue towards 
addressing and reversing true disease progression beyond symptomatic relief. These 
approaches may stand alone, or serve as adjuncts for cell-based therapies. Here we 
discuss potential target pathways in cardiac regenerative therapy, with focus on 
points of regulatory control by the oxidative signalling system. Several redox-driven 
mechanisms directly relevant to stem cells and their ‘stemness’ are described, in 
addition to the capacity for future therapeutic targeting of these pathways.
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Fig. 2.2  Summary of molecular pathways influencing cardiac regeneration, and emerging 
therapeutic targets. (a) HIF and APE1 pathways control quiescence and apoptosis in CSCs; (b) 
SIRT and p38-MAPK pathways interact in a negative feedback loop on mitochondrial function, 
ROS, apoptosis, and remodelling in adult cardiomyocytes; (c) Eph and Notch1/Jagged pathways 
mediate migratory response of cardiac stem cells towards injured cardiomyocytes. Green inserts 
indicate promising therapies for improving regenerative capacity of the heart. APE1 Apurinic/
apyrimidinic endonuclease 1, ATMK Ataxia telangiectasia mutated kinase, Eph Ephrine, HIF 
Hypoxia Inducible Factor, MMP matrix metalloproteinase; mTOR Mechanistic target of rapamy-
cin, NAD+/NADH Oxidised/reduced nicotinamide adenine dinucleotide, NADHNox4 NADPH 
Oxidase 4, ROS Reactive oxygen species, SIRT Sirtuin, SOD Superoxide dismutase, Trx 
Thioredoxin
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2.4.1	 �Hypoxia Inducible Factor 1-α

Hypoxia inducible factor-1α (HIF-1α) is an O2-sensitive transcription factor respon-
sive to tissue oxygenation and redox signalling; binding sites for molecular O2 mark 
HIF-1α for ubiquitin proteasome degradation, and ROS have been shown to stabi-
lise HIF-1α even under normoxic conditions [33]. HIF-1α upregulates key glyco-
lytic enzymes and transporters  – hexokinase, lactate dehydrogenase, and related 
proteins – whilst supressing mitochondrial activity; related isoform HIF-2α is acti-
vated similarly and induces redox defence mechanisms and antioxidant pathways 
[46]. As a result, mitochondrial ROS production is reduced, and oxidative resilience 
increased as the cell relies on glycolytic energy production. This exerts a protective 
effect against DNA damage and premature exhaustion and maintains a relatively 
quiescent state.

Accordingly, in the healthy adult mouse heart it has been shown that HIF-1α 
expressing CSCs had lower O2 consumption as compared to cardiac fibroblasts, 
mirrored by increased viability in hypoxic or anoxic conditions [37]. Further, 
knockdown of HIF-1α in CSCs increased O2 consumption while reducing glyco-
lytic flux, and this was associated with a proliferative increase. Interestingly, this 
oxidative-metabolic signal is also significant in maintenance of the primitive undif-
ferentiated phenotype; HIF-1α knockdown induced CSC differentiation, specifi-
cally favouring cardiomyocyte or endothelial lineages over fibroblast and smooth 
muscle differentiation as compared to wild type. This suggests that mitochondrial 
ROS production plays an important role in triggering CSC differentiation.

Conversely, HIF-1α signalling in differentiated cardiomyocytes may have a role 
in stem cell migration and differentiation [31]. Cardiomyocytes are supporting cells 
in the stem cell niche, and HIF-1α appears to activate/attract both distant haemato-
poetic and local stem cells post-infarct in a paracrine fashion [79]. A putative mech-
anism by which this occurs is the Notch1/Jagged1 pathway. Notch1 receptors on 
CSCs may be triggered by Jagged1 ligands on insulted cardiomyocytes to prompt 
differentiation. However, these pathways have largely been explored in neonatal 
models and have not been fully elucidated in the adult heart [25, 31, 80]. Other data 
yet suggest that extreme hypoxia (0.1% O2) may directly increase the chemokine 
response in stem cells [68]. Taken together, this highlights the complexity of hypoxia 
signalling pathways, and the interplay between the central role of HIF-1α in main-
taining progenitor metabolic quiescence and its post-infarct mobilisation of stem 
cell populations.

2.4.2	 �Apurinic/Apyrimidinic Endonuclease 1

CSC fate demonstrates a remarkable specificity to the nature, origin, and locale of a 
given oxidative stimulus [1]. Enzyme Apurinic/apyrimidinic Endonuclease (APE1) 
has a dual function of activating the DNA base excision repair pathway, and 

T. Hansen et al.



29

controlling an array of transcription factors implicated in both cardiac cellular sur-
vival and termination [35]. Notably, APE1 appears to be able to selectively induce 
transcription factors by acting as a molecular chaperone; in a stimulus-specific 
response, APE1 facilitates interaction between target factors and reducing agents 
such as thioredoxin or glutathione and subsequently maintains the factors reduced 
state. Targets of APE1 include maintainers of the primitive cardiac stem phenotype 
HIF-1α and Ataxia Telangiectasia Mutated Kinase, as well as the apoptosis-regulat-
ing factors p53 and the mTOR pathway of cell cycle control [11]. This suggests 
APE1 is of great interest as a therapeutic target for its role in controlling the balance 
between proliferative and apoptotic transcription.

In-vivo, the therapeutic impact of APE1 has been promising; murine APE1 over-
expression has been shown to increase the viability of transplanted CSCs, while 
inhibiting apoptosis in surrounding untreated cardiomyocytes and reducing the host 
inflammatory response to the graft [1]. Overexpressed transplants showed signifi-
cantly improved functional echo status over 4 weeks and reduced fibrotic change. 
This suggests that APE1 may have a role in both purely molecular therapies and as 
an adjuvant/preconditioning in cell-based approaches.

2.4.3	 �The Sirtuin Family

In the mitochondria, Nicotinamide Adenine Dinucleotide’s (NAD+) position in the 
electron transport chain makes the ratio of NAD+ and NADH a functional indicator 
of oxidative phosphorylation and redox balance of the cell, and regulates several 
protective and regenerative mechanisms [48]. Signal transduction is largely through 
the post-translational and epigenetic processes deacetylation and mono-ADP-
ribosylation, carried out by NAD+-dependent enzymes. The Sirtuin enzyme family 
is known to catalyse both processes and have demonstrated a cardioprotective role – 
notably Sirtuin 1 (SIRT1) knockout induces in-vitro cardiomyopathy in a mouse 
model and conversely overexpression partially attenuates isoproterenol-induced 
cardiac hypertrophy [58]. Putative mechanisms are blocking pathological down-
regulation of fatty acid oxidation, increased MnSOD activity and deacetylation of 
pro-apoptotic factor p53.

Conversely, SIRT4 has been shown to be a promising therapeutic target for inhi-
bition. Notably, observed deacetylation activity is minimal by SIRT4, which pri-
marily acts through inhibitory mono-ADP-ribosylation of glycolytic and fatty acid 
oxidation enzymes. Further, SIRT4 demonstrates a role in AngII-induced cardiac 
remodelling and hypertrophy, with overexpression exacerbating pathological phe-
notype and knockout attenuating AngII effect in in-vivo mice [43]. This may be 
explained by an effect on protective enzyme MnSOD – SIRT4 has been shown to 
inhibit the deacetylation-mediated increase in MnSOD activity by other members of 
the Sirtuin family.
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2.4.4	 �Ephrine/EphA2

An important signalling pathway that guides stem cell commitment and migration 
is the family of Eph receptor tyrosine kinases and ephrin ligands [13], whereby 
ephrine A1 binds to EphA2, with resultant signal transduction promoting CSC 
mobilization at times of cardiac insult. In vivo and ex vivo studies have demon-
strated that whilst levels of the EphA2 receptor protein remain constant as we age, 
elevated ROS lead to increased oxidative post-translational modifications of 
EphA2 in the ageing heart- this causes activation of Src-FK, EphA2 receptor endo-
cytosis, and thus impaired trafficking of stem cells to sites of injury in the ageing 
heart [23]. Replacement of EphA2 in aged CSCs by over-expression studies cor-
rected this pathway, restoring the young CSC phenotype, and capacity for CSC 
homeostasis and mobilisation, and is a promising molecular route to target to ame-
liorate or restore cardiac regenerative function.

2.4.5	 �p38-Mitogen Activated Kinase

The p38-Mitogen Activated Kinase (p38-MAPK) pathway is a redox-sensitive cas-
cade upregulated in the context of accumulated oxidative stress as a means to 
remove damaged cells [84]. Specifically, Nox-4-derived O2

- is known to target 
p38 in response to angiotensin II. The p38-MAPK then causes autophagy or apop-
tosis through induction of Bcl-2-associated X protein – a regulator protein directly 
triggering apoptosis through mitochondrial outer membrane permeabilization – via 
its activation of tumour suppressor p53 [2].

However prolonged activation of this pathway via mitochondrial overactivity, 
NOS uncoupling, ischaemia-reperfusion injury, or chronic disease may lead to 
adverse cardiac remodelling downstream of Nox-4. Following apoptotic cellular 
clearance, p38-MAPK induces matrix metalloproteinases MMP-2 and MMP-9 and 
thereby result in maladaptive remodelling and dilated cardiomyopathy [14, 27]. 
Experimentally, p38-MAPK inhibition has been observed to induce mitosis in 
infarcted rat cardiomyocytes in vivo, with a synergistic effect found with Fibroblast 
Growth Factor 1 inhibition [21]. Reduced pathological remodelling and fibrosis was 
also observed with p38-MAPK/FGF1 inhibition, alongside functional improvement 
as determined by echocardiographic LV fractional shortening at 1 and 14 days.

2.5	 �Future Directions & Emerging Therapies

2.5.1	 �Uncovering the “Secret-ome”

A recent study demonstrated that new proliferation of cardiomyocytes does occur in 
the adult heart, albeit at low levels- however, this cell division increases fourfold in 
peri-infarct zones, indicating that there are endogenous cardiac proliferative mecha-
nisms that can be “switched on”, given the right stimulation [66]. That stimulation 
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may come in the acellular approach of the “secretome”- defined as the growth fac-
tors and chemo-attractant molecules produced by stem cell paracrine secretion [18].

Multiple studies have demonstrated that despite almost negligible levels of per-
sistent cellular engraftment, there are disproportionately increased and persistent 
beneficial effects on cardiac function that can’t reasonably be ascribed to engrafted 
cells [70]. This has led to a growing school of thought that it is the transient response 
to injected cells and its induced paracrine effects that are as important, if not more 
so than persistent cellular engraftment. It is therefore thought that in the future, 
identification of the exact cellular “secretome” inducing these paracrine effects will 
allow us to simply inject these signalling factors to achieve beneficial cardiac regen-
erative effects, thereby avoiding limitations of immune rejection, ethical concerns, 
teratoma formation, and issues of engraftment. Such an approach is currently the 
focus of the ongoing Ventrigel trial, which is testing the effects of endoventricular 
injections of a decellularised extracellular porcine matrix [75].

2.5.2	 �Tissue Engineering Approaches

The factors of paramount importance when considering cellular approaches to stem 
cell delivery include strategies to support the survival of delivered cells- i.e. promot-
ing engraftment, giving co-supportive cells, and strategies to maximise electrome-
chanical coupling. As alluded to earlier, clinical trials involving iPSCs have been 
successful in demonstrating improved cardiac function after injection into infarcted 
hearts [47]. However, a significant problem with iPSCs is their poor capacity for 
engraftment, with a significant loss in viability detected with time following injec-
tion attributed to the hostile microenvironment of infarcted myocardium lacking the 
necessary niche to support ongoing survival [80]. One strategy being developed to 
overcome this is the use of biomaterials to form synthetic scaffolds. These scaffolds, 
which are made of naturally derived materials including alginate, synthetic poly-
mers and hydrogels, may help to recapitulate tissue structure, thereby either pro-
moting cell retention once implanted or having therapeutic effects through the 
polymer’s mechanical properties [45]. The biomaterials may also be used to fabri-
cate 3D structures that are used as scaffolds for cardiac stem cells [22]. These 3D 
“bioprinted” material constructs assist with engraftment through acting as a physi-
cal scaffold to hold cells in place, and additionally provide co-supportive cells and 
optimise the electro-mechanical coupling with endogenous ventricular cardiomyo-
cytes [50]. It has also been demonstrated that administration of these constructs are 
protected against oxidative stress by virtue of their three-dimensional structure, 
thereby improving engraftment and survival in the infarcted myocardium [24].

2.6	 �Conclusion

It is an exciting time in the world of cardiac regeneration therapy. Clinical trials 
using stem cells are all now supported by robust preclinical data, and have consis-
tently demonstrated favourable safety profiles. Whilst the efficacy of clinical trials 
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have yielded only marginally positive results, our new mechanistic insights in car-
diac regenerative medicine is promising for the future.

From its historical beginnings 20 years ago in delivery of skeletal myoblasts, 
pioneering efforts in the cellular regeneration field have led us to an understanding 
that it is not only the cell type, but also cellular delivery strategies and the resulting 
engraftment that are of paramount importance. Nevertheless, further questions must 
be answered; what is the ideal cell type?; at what stage of cardiac-commitment 
should they be administered?; what delivery devices would allow optimal engraft-
ment and functional integration to facilitate electromechanical coupling?; and how 
can we promote the endogenous self-regenerative properties of the heart with acel-
lular secretome strategies?

At the core of all of these pathways is redox signalling. Of such pathophysiologi-
cal significance in heart failure, the pre-clinical literature is strongly suggestive that 
strategies to promote cardiac regeneration, whether by cellular or molecular 
approaches, would benefit from altering redox state. It is of no doubt that as our 
understanding of reactive oxygen species builds, and we become cognisant of the 
redox balance that should be maintained in distinct subcellular compartments, so 
too will the effectiveness of antioxidant therapies to promote cardiomyocyte regen-
eration in the failing heart.
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3.1	 �Introduction

Oxidative stress is one of the main events implicated in cell survival. Mitochondria 
are the main source of reactive species (ROS), and in pathologies in which its activ-
ity is enhanced, as cancer, the occurrence of redox imbalance is related with both 
cell survival and death [1, 2]. Mitochondria are also targeted by cytotoxic chemo-
therapy during patients’ treatment, which may enhance the production of systemic 
oxidative stress.

The antineoplastic mechanism of action of most chemotherapeutic drugs is based 
on the generation of ROS [3–7]. Consequently, this process increases oxidative 
stress generation aiming to kill cancerous cells, but in contrast generates toxic medi-
ators that also affect healthy cells by acting on diverse cellular molecules, such as 
DNA, lipid, and protein [6–10].

As consequence, cancer patients may experience various levels of cardiac toxic-
ity and oxidative stress [7–11], which allow dividing cardiotoxicity into two main 
pathological events. The type I cardiotoxicity consists in irreversible and cumula-
tive cardiac damage, and has been associated with the use of anthracyclines. The 
type II is associated with cell dysfunction, is not-cumulative and reversible, mainly 
related with trastuzumab-based treatment [12, 13]. Independently of the type of 
cardiotoxicity, oxidative stress has been implicated as one of the main cellular 
events related with cardiomyocyte damage [14–17]. In this context, the following 
topics present the main drugs associated with oxidative stress generation and car-
diotoxicity development during cancer treatment.
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3.2	 �Physiopathology of Cardiac Damage in Cancer: 
Oxidative Stress at a Glance

Cancer is the second lead cause of death in industrialized countries, getting behind 
only from cardiac diseases. World Health Organization estimates that 17.7 million 
people die each year from cardiovascular diseases and 75% of deaths occur in low-
income and middle-income countries [18]. Behind cardiovascular diseases, cancer 
was responsible for the death of 8.8 million people worldwide in 2015 [19].

In the last years, scientists have progressed in the studies whether tumor per se 
could be a risk factor that contribute to the development of cardiovascular diseases. 
Thus far, the mechanisms by which cancer and tumor microenvironment may be 
related to heart damage need to be better elucidated; still, it seems that the inflam-
matory status and production of reactive oxygen and nitrogen species (ROS/RNS) 
required for tumor progress may be a key component in this relationship.

The condition in which the same patient exhibit cardiac complications and can-
cer is usual, since both diseases is prevalent. Moreover, cancer patients can develop 
cardiac disease due to tumor per se or, most frequently discussed, to its therapy [20]. 
The importance of cardiotoxic side effects of anticancer therapies have increased 
and in order to better understand the implication of anticancer therapies in cardiac 
dysfunction and the mechanisms that are implicated, first it will be discussed 
whether tumor itself lead to cardiac alterations and damage, and how inflammation 
and oxidative stress status are influencing this process.

There is a lack of clinical data regarding cardiovascular diseases in patients diag-
nosed with cancer prior anticancer therapies [21]. Furthermore, clinical data regard-
ing the involvement of oxidative stress on cancer- related cardiac dysfunction are 
scarce. To better understand the current knowledge regarding molecular mecha-
nisms involved in cardiovascular complications in patients bearing tumor, it will be 
first discussed the state of the art of experimental models.

One of the most studied effect of cancer in individuals bearing advanced tumor 
is the development of cachexia. Experimental data shows that systemic impact of 
cancer is not only related to cachexia but to cardiac wasting as well, as loss of body 
mass reflects in organs and tissues. Significant cardiac atrophy is found in animals 
after tumor implantation concomitantly with an increased levels in pro-inflammatory 
cytokines as interleukine-6 (IL-6) and tumor necrosis factor-α (TNF-α) and decrease 
in cardiac function [22]. The structural and functional alterations in heart tissue 
caused by cancer itself are represented by a decrease in overall weight of the heart 
followed by a reduced left-ventricular ejection fraction and fraction shortening. A 
loss of left-ventricular end-diastolic diameter and reduction of stroke volume, car-
diac output and fibrotic modelling are noticed in association to cachexia [23]. The 
combination of those events has a strong impact on patients’ health, as it is respon-
sible for an increase in mortality rate [23].

Beyond structural and functional impact of cancer-related cachexia on cardiac 
tissue, it also affects cardiomyocytes integrity. Studies have shown that the tumor 
growth declines contractile function in cardiomyocytes [24]. Moreover, cardiac 
insufficient performance in animal model of cancer- induced cachexia revealed an 
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increased fibrosis between the myofibers and the altered composition of contractile 
proteins. Impaired mitochondrial integrity was found in heart muscles cells from 
animals bearing cancer- induced cachexia, which was characterized by irregular 
mitochondrial shape, size and dispersion, and disrupted mitochondrial structure 
[25]. Altogether, cancer status per se is capable of decrease heart function and struc-
ture. Here, several mechanisms seem to play a role in the development cardiac dys-
function in cachectic animals bearing tumor. Among them, one of the main pathways 
responsible for degrading muscles’ proteins is the ubiquitin- proteasome via, which 
can be activated by oxidative stress. Ubiquitin- proteasome via mediates proteolysis 
contributing to cardiac muscle atrophy, which was shown in a study with cachectic 
animal inoculated with colon adenocarcinoma cells [26].

The literature shows clearly the development of cachexia as a consequence of 
advanced stages of cancer. Several factors may be involved in cancer- related 
cachexia and cardiac impairment. Pro-inflammatory cytokines such as IL-6, IL-1β 
and TNF-α are main contributors to heart failure [27]. In addition to inflammation, 
it is worth mentioning that redox regulation is also associated to cancer progression, 
where elevated levels of ROS are found in most types of tumors [28]. Therefore, 
combination of inflammatory status and oxidative stress revealed to be greater con-
tributors to the development of cachexia. Oxidative stress is responsible for muscles 
loss both directly, by causing oxidative damage, or indirectly, by signaling degrada-
tion pathways as ubiquitin- proteasome system, as mentioned above [29]. ROS pro-
duced by cancer cells or tumor microenvironment act on cardiomyocytes lowering 
antioxidant defenses and causing cellular damage. Cardiac muscles cells of cancer- 
induced cachectic mice presented an increase in DNA oxidative damage character-
ized by up to 1.5 folder upper 8-hydroxy-2-deoxyguanosine. Here, the high levels 
of xanthine oxidase enzymatic pathway together with decreased activity of NADPH 
oxidase (NOX) and decreased superoxide dismutase (SOD) enzyme activity were 
main contributors as ROS source responsible for damaging cardiomyocytes [29].

The discussion about ROS role to cellular damage depends on its subcellular 
location, times, levels and appropriate duration. Therefore, it is well known that 
ROS can either contribute to cellular homeostasis or malignant transformation and 
death [30]. In cancer-induced cachexia, increased levels of ROS are able to react to 
cellular lipids yielding several metabolites that can regulate relevant cellular path-
ways, as proliferation, cell survival, invasion and metastasis to ensure cancer to 
advanced stages [31]. ROS attack to cellular lipids containing carbon-carbon double 
bounds is known as lipid peroxidation. Cell respond to lipid peroxidation depending 
on the circumstances above to promote cell survival or programmed death. 
Malondialdehyde (MDA) and hydroxynonenal (HNE) are low molecular weight 
aldehydes generated during lipid peroxidation process frequently used as oxidative 
stress markers. Between them, MDA is the most mutagenic product of lipid peroxi-
dation, while HNE is the most cytotoxic [32]. Therefore, in cancer augmented levels 
of MDA and HNE can infer cellular damage while intermediate levels can mediate 
diverse cellular signaling pathways. It has been shown that cancer- related cachexia 
alters redox balance, as increased posttranslational modifications induced by ROS 
on proteins in cardiac muscles of cancer- induced cachectic rats, measured by 
MDA-protein adducts and HNE [33].
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Experimental data shows that left side and right side of the heart may display 
distinct response to oxidative stress regarding damages to lipids, probably due to 
their distinguish metabolic activities. Higher levels of lipid hydroperoxides mea-
sured by chemiluminescence were detected on left side of rat’s heart, while the right 
side of the heart showed a decreased lipid peroxide production after tumor implan-
tation [34]. Therefore, it is important to state that heart’s side may differ on adapta-
tion response to cardiovascular diseases and response to oxidative stress.

The excessive reactive species may also promptly react with cellular protein 
resulting on the formation of carbonyl groups that can be implicated in the develop-
ment of diseases, as cancer and cardiovascular diseases. Carbonylated protein con-
tent is commonly used as a marker of protein damage and they are increased in both 
right and left sides of heart from cancer- induced cachectic rat [34].

Taken together, available experimental data reveal the impact of ROS/ RNS in 
cardiac tissue of animals bearing tumor and how they are related to cardiomyocyte 
damage. In addition to increased ROS/RNS, an impaired antioxidant capacity 
caused by tumor itself can contribute to cardiac pathology. In heart muscles of 
cancer-induced cachectic rats it was found elevated levels of protein content of the 
antioxidant enzymes manganese-dependent superoxide dismutase (Mn-SOD) and 
catalase [33]. However, despite higher protein content of SOD, its activity is found 
to be 1.5- fold lower in heart of mice with cancer cachexia [29], which may result in 
an additional source of reactive species.

Clinical data regarding cancer- induced cardiac damage in patient prior treatment 
with anticancer therapies has been reported only in a few studies. The cardiovascu-
lar complications were evaluated in a research enrolling 555 patients diagnosed 
with cancer prior any treatment. Among them, breast cancer was prevalent within 
146 patients (26.3%) followed by myeloproliferative neoplasia within 99 patients 
(17.8%). A subclinical functional impairment of cardiovascular system was config-
ured in this study, as cancer patients displayed higher levels of circulating cardio-
vascular functional peptides, up to 100-fold upper reference limit and higher levels 
of cardiac morphological high- sensitive troponin T (hsTnT), a specific biomarker 
of cardiac injury. Furthermore, elevated cardiovascular peptides positively corre-
lated with mortality independently of baseline characteristics of cancer patients 
[35].

There is a strong connection between the production of ROS and the inflamma-
tory status. Tumor itself releases pro-inflammatory cytokines that can result into 
oxidative stress [27]. Inflammation is a hallmark of cancer and it mediates several 
processes in order to favor tumor progression and metastasis. Tumor itself release 
inflammatory cytokines which seems to be important for inducing a reactive oxygen 
species niche for favoring new mutations [31]. C- reactive protein (CRP) can predict 
cardiovascular mortality [36] and it is commonly used as a biomarker of acute 
inflammation, but it can be also associated to chronic inflammation [37].

The literature has been discussing the correlation of plasmatic CRP levels with 
future pathological cardiovascular events, as elevated levels of CRP over time may 
result in cardiovascular diseases such as atherosclerosis and chronic heart failure. 
Among the mechanisms by which CRP are associated to cardiovascular disease, it 
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can be cited the induction of pro-inflammatory cytokines [37]. In fact, a followed-
up study examining pro-inflammatory markers separately showed that CRP and the 
pro-inflammatory cytokine IL-6 were associated with all-cause and cancer-related 
mortality, with CRP also associated with cardiovascular mortality [36]. Moreover, 
IL-6 and CRP are both significantly increased in cancer patients with stage 4 disease 
compared to stage 1, 2 and 3. Besides, IL-6 and CRP correlated to circulating car-
diovascular functional peptides in cancer patients prior to cardiotoxic therapy [35].

A highly significant increase in CRP levels in breast cancer patients (6.16 ± 1.17 
IU/L) as compared to healthy controls (0.662 ± 0.189 IU/L) was evidenced in a 
study, indicating that even before chemotherapy, women bearing breast tumors are 
susceptible to cardiac complications [38]. Furthermore, augmented CRP can be 
observed in both early breast cancer stages (TNM I and II) as advanced breast can-
cer stages (TNM IIIc and IV) as compared to healthy women. Interestingly, besides 
increased CRP the data also showed that breast cancer patients disposal increased 
oxidative stress, which along with inflammation may be necessary for tumor to 
progress to advanced stages [39].

Besides CRP, creatine kinase-myocardial band (CKMB) is a well-known cardiac 
biomarker synthesized in carciomyocytes, which is widely used in the clinic routine 
due to its facility of detection, as it can be measured in biological fluid as serum and 
plasma. An increased in level of plasmatic CKMB was found in breast cancer 
patients as compared to healthy control individuals without cancer [38]. However, 
unlike CRP, augmented CKMB seems to be more evident in advanced breast cancer 
stages rather than early disease stage [39]. In fact, a study evaluating levels of serum 
creatine kinase (CK) and serum lactate dehydrogenase (LDH), biomarkers of car-
diac injury, showed a non-significant enhancement of CK and LDH when compar-
ing a group of breast cancer patients composed mainly by early stages and prior 
treatment to a healthy control group. In addition, despite the fact in this study the 
majority of breast cancer group was composed by early stages of disease, decreased 
activity of antioxidant capacity evaluated by catalase and glutathione reduced 
(GSH) in association with increased levels of nitric oxide (NO) and MDA were 
observed, indicating that those patients were under oxidative stress [40].

Altogether, the available literature indicates that biomarkers of cardiac damage 
in cancer patients prior treatment are elevated and results are more evident in cancer 
patients in advanced stages of disease. Data suggest that tumor per se features an 
inflammatory condition and oxidative stress that contributes to the increasing risk of 
developing cardiovascular diseases.

3.3	 �Chemotherapy-Induced Oxidative Stress 
and Cardiotoxicity

3.3.1	 �Doxorubicin

Therapy for cancer has progressed in recent years. However, severe treatment con-
sequences have developed a new study front relying on comorbid illness of cancer 
survivors. Chemotherapy is a fundamental therapeutic approach for cancer 
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treatment, although, many of the current chemotherapeutics have adverse side 
effects, including chronic cardiac disease and heart failure [41, 42]. Thus, under-
standing the effects of each drug on heart physiology would be important to avoid 
cardiotoxicity.

Doxorubicin (Dox) is considered one of the most effective antineoplastic drugs. 
It belongs to the family of Anthracyclines and since its approval by The Food and 
Drug Administration (FDA) in 1970s, it has been used to treat many hematological 
and solid tumors. Into the cancer cells, Dox forms complexes with DNA by interca-
lation between base pairs and inhibits DNA topoisomerase II activity, which ulti-
mately led to blockage of DNA replication. But the main mechanism by which Dox 
induces cancer cell death is based on redox metabolism. Dox undergo to redox 
cycling (i.e. reduction and oxidation cycle between two forms of a molecule) cata-
lyzed by the cytochrome P540 (CYP450) system, and the product of this reaction is 
the Dox Semiquinone radical. This radical is prone to cause oxidative damage in 
tumor cells by the release of iron from such cells [43]. Further, Dox-iron complex 
catalyzes oxygen and hydrogen peroxide into potent radicals, generating reactive 
oxygen species (ROS), which trigger important antitumoral responses in cancer 
cells [44, 45]. Thus, a balance between antitumoral and adverse effects of oxidative 
stress is necessary since the therapy should not be more harmful than the disease.

Despite Dox effectiveness, the major adverse effect observed in patients treated 
with Dox is severe cardiotoxicity (generally evidenced by ventricular dysfunction 
and clinical heart failure) provoked by increasing of oxidative stress in endomyocar-
dial [46–48].

The cardiac tissue is highly susceptible to oxidation by Dox-induced ROS due to 
its intense oxidative phosphorylation activity and because the main antioxidant 
enzymes are present at lower levels in this than in other tissues [49, 50]. Dox is also 
able to induce a positive feedback loop of pro-inflammatory factors via TNF-α and 
IL-1β/NF-κB axis, which cooperates with ROS production [51]. In addition, ROS 
produced during Dox treatment stimulate lipid peroxidation, disruption of mito-
chondrial functions and damage the membranes of myocytes, which ultimately lead 
to cumulative and irreversible cardiotoxicity [44, 49].

Dox cardiotoxicity is cumulative, dose-related, and commonly has congestive 
heart failure and left ventricular dysfunction as main cardiac adverse events. Thus, 
some factors have to be considered to prevention of heart injury. The first described 
factors associated to risk for Dox-induced cardiotoxicity were advanced age and 
previous cardiovascular disease [52], however some studies reported that children 
are more vulnerable for its long-term effects [53–55]. Doses superior than 550 mg/
m2 are described by increasing significantly the prevalence of cardiopathy [56, 57], 
however lower cumulative doses are reported by causing the same effects [58]. 
Interestingly, the schedule of administration is also a relevant factor, since continu-
ous infusion than rapid intravenous infusion could reduce the cardiotoxicity. In 
combined chemotherapy, changing the sequence of administration can also reduce 
the cardiotoxicity, besides, complete cessation of alcohol and cocaine are also cru-
cial for preservation of cardiac tissue [43].
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Recent efforts have been taken to identify alternative methods able to reduce the 
adverse effect of Dox treatment. The liposomal delivery of Dox has been well-
described as an important alternative to reduce cardiotoxicity [59, 60]. Another 
alternative are structural modifications to the Dox molecule (Epirubicin) or devel-
opment of related drugs (Mitoxantron) to reduce their toxicity [61]. In addition, 
some compounds have been identified as cardioprotective agents and could be used 
since the beginning of treatment. In this context, anticoagulant agents, such as 
Dexrazoxane and Enoxaparin that were described by reducing the oxidative stress 
through decreasing oxidized iron levels, which make them promising for cardiopro-
tection during Dox administration [53, 62–66]. Since Dox-induced cardiotoxicity is 
detected and the heart failure is instated, the standard treatment is angiotensin con-
verting enzyme inhibitors and β-blockers. For severe cases, cardiac transplantation 
may be the last option [61]. Future research is needed to develop more effective 
compounds able to suppress selectively the redox mechanism on cardiac tissue. 
Therefore, methods for early detection and treatment of cardiotoxicity are crucial to 
reduce its occurrence.

Early identification of patients with risk of cardiotoxicity should be a starting 
point for cancer treatment, however this issue is considered just after detention of 
clinical myocardial damage. The most common noninvasive methods of monitoring 
cardiotoxicity are electrocardiography, Doppler echocardiography, rest and stress 
myocardial prefusion imaging, and left ventricular systolic function with radionu-
clide ventriculography [67, 68], although some authors consider them as low-
sensitivity approaches [69]. An important advantage of these methods is that they 
can be conducted routinely together with therapeutics protocol to monitoring effi-
ciently cardiopathies such as arrythmias, ischemic events and pericardial disease 
[61, 70].

Among the reported biomarkers, troponin I and T are useful in early detection of 
Dox cardiotoxicity. However, differential levels of troponins may not be identified 
in same cases [71–74]. Thus, although endomyocardial biopsy be invasive and high-
costly, the sensitivity and specific found in this method still make it be the gold-
standard. Hence, developing molecular biomarkers is essential for evaluation of 
early stages of cardiotoxicity, which would permit early interventions on treatment 
strategy.

In the route of personalized medicine, the risk of Dox-induced cardiotoxicity has 
to be calculated individually. Thus, data from each patient (e.g. age, previous car-
diovascular disease, metabolic abnormalities, hypersensitivity to the drugs, previ-
ous radiation therapy, and genetic predisposition) and from each drug (e.g. 
cumulative dose, schedule, mechanism of delivery, route of administration, and 
combination) have to be considered before applying standardized protocols. Early 
detection and treatment of cardiotoxicity can significantly reduce the incidence of 
heart failure. In this context, Albini et al. [42] elegantly reviewed the importance of 
cardio-oncology for cancer treatment. In that manuscript, they propose a team flow-
chart to monitoring and avoiding cardiovascular complications during chemother-
apy. These conducts would improve substantially the long-term survival and the 
life-quality of Dox-treated patients.
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As Dox is widely used to treat solid and hematological tumors, the comprehen-
sion of the molecular mechanisms behind its action is fundamental to treat cancer 
patients. We currently know that the mechanism by which Dox induces myocardial 
injury is through the formation of free radicals, and that severe cardiotoxicity 
depends on the drugs’ molecular site of action, their cumulative dose, and the car-
diac condition of patients. In addition, we still have endomyocardial biopsy as the 
best way to monitor Dox-induced cardiotoxicity, even knowing that its invasive and 
high-costly nature limit its use. Thus, these findings should direct us to conduct 
strategic researches able to challenge and address these issues.

3.3.2	 �Trastuzumab

Trastuzumab (TRZ) is a monoclonal antibody (mAb) that targets against the extra-
cellular domain of human epidermal growth factor receptor 2 (HER2), that belongs 
to the epidermal growth factor family of transmembrane receptors (ErbB family). 
This family consists of four transmembrane tyrosine kinase receptors: EGFR 
(HER1), ErbB2 (HER2), ErbB3 (HER3) and ErbB4 (HER4) [75, 76]. Although the 
other HER receptors are generally induce by ligands, the extracellular domain of 
HER2 can modify its conformation, dimerize and become activated even in the 
absence of a ligand, overexpression and/or mutation may induce this mechanism 
[77]. TRZ binds to the IV extracellular domain of HER2/ErbB2, preventing activa-
tion and inhibiting its signaling pathways, consequently disrupting differentiation, 
growth and survival of tumor cells [78]. Besides, cells treated with TRZ undergo 
arrest during G1 phase and might have a downregulation of HER2 [79].

The inclusion of TRZ therapy has become an invaluable tool since its approval 
and it is currently an universal and standard regiment in adjuvant treatment for 
HER2-overexpressive breast cancer, as well as in aggressive forms of HER2 posi-
tive gastric and gastroesophageal cancers [78, 80, 81]. However, TRZ is associated 
with an increased risk of cardiotoxicity, known as trastuzumab-induced cardiotoxic-
ity (TIC) [82]. The mechanism that causes cardiotoxicity might be associated with 
the neuregulin-1/ErbB2 pathway, important for fetal heart development and known 
to be associated with signaling on adult heart, essential for survival of cardiomyo-
cytes. ErbB2/ErbB4 promotes growth and cardioprotective signaling through acti-
vating phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) 
and focal adhesion kinase (FAK) survival pathways, reducing ROS production and 
inhibiting cardiomyocyte mitochondrial apoptosis [77, 83, 84]. When TRZ blocks 
HER2/ErbB2 survival pathway, it reduces tumor cell growth and survival but also 
severely harms cardiomyocytes by blocking cytoprotective mechanisms and 
enhancing cellular oxidative stress, inducing proapoptotic proteins such as Bcl-2 
associated X protein (BAX) [83]. TIC appears to be dose/duration-independent and 
it is not associated with structural changes in cardiomyocytes, therefore, interrupt-
ing treatment reverse the symptoms in most cases [78, 85].

Some studies found that TRZ suppresses antioxidants enzymes and increases 
oxidative stress response by overproduction of ROS and higher expression of 
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TGF-β1 and IL-6, besides, erythrocyte death due to HER2 inhibition might be 
involved in this toxic environment that contribute to cardiac dysfunction [75, 86]. 
The patients under TRZ treatment are at risk for, symptomatic or not, left ventricu-
lar dysfunction, more specifically to left ventricular ejection fraction (LVEF) con-
gestive heart failure (CHF) [75, 79, 82, 87]. However, cardiotoxicity is more 
common to occur in patients that already have risk for cardiac events, such as obe-
sity, family history for cardiovascular disease, history of smoking and/or patients 
with clinical records for heart dysfunctions [85]. Prospective use of anthracyclines, 
another chemotherapy-drug and known for its expected and irreversible cardiotox-
icity, i.e Doxurubicin (DOX), may lead to a higher risk of cardiac toxicity if TRZ 
treatment is added in the chemotherapeutic scheme [88]. The leading mechanism 
which DOX+TRZ mediates cardiac damage is increase of oxidative stress, and stud-
ies have proved that TRZ alone is not capable to cause cardiotoxicity, while DOX 
alone and combination therapy of DOX+TRZ lead to heart dysfunction, especially 
in LVEF [89].

Inhibition of HER2/ErbB2 by TRZ affects cells redox status and might trigger a 
pro-oxidant environment in the heart, corroborating to increasing of cell death by 
oxidative stress excessive damage, even though the systemic redox status is recov-
ered [90]. It is suggested that myeloperoxidase, an enzyme secreted by leukocytes, 
which is pro-oxidant, is involved in the mechanism of ErbB2 inhibition by TRZ and 
could be a potential biomarker for oxidative stress and cardiotoxicity in breast can-
cer patients treated with this chemotherapy [91]. There is a new perspective that 
ErbB2 is not essential to maintain normal function of cardiomyocytes, but that it 
have a major role when these cells are under stress, independently of the stimulus, 
and so they might be important for protection against oxidative stress induced by 
chemotherapy-drugs as DOX and TRZ [92, 93].

Therefore, use of antioxidants have gained attention. Goyal and colaborators 
have found that DOX+TRZ therapy increased pro-apoptotic markers Bax and cas-
pase 3, and treatment with N-Acetyl Cysteine Amide (NACA), an analog of 
N-Acetyl Cysteine (NAC), demonstrated that NACA is capable of decrease Bax and 
caspase 2 in mices treated with DOX+TRZ, offering a protective function [89]. A 
study in vivo with probucol, another antioxidant, attenuated cardiotoxicity induced 
by DOX+TRZ, while other found the same results but with melatonin (capable of 
scavenge oxygen-centered radicals and ROS [94]), mercaptoethylguanidine (a per-
oxynitrate scavenger) and 1400W (an iNOS inhibitor) [95].

3.3.3	 �Paclitaxel

Paclitaxel (PTX) is a taxane anticancer drug widely employed against solid tumors 
[96, 97]. Taxanes inhibits tumor proliferation through different pathways. 
Stabilization of microtubule [98], polymers by direct binding and effects propa-
gated by redox-mediated reactions have been reported to be responsible for their 
anti-cancer activity [99].
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PTX induces toxic effects on cancer cells in vitro through oxidative mechanisms, 
that is, the generation of oxidative stress by membrane-associated NADPH oxidase, 
giving rise to extracellular H2O2 [100, 101]. Moreover the evaluation of the total 
antioxidant capacity is interesting in PTX treatment because the depletion of intra-
cellular antioxidants reduces the tumor resistance to (PTX) [102].

Patients under PTX treatment significantly increased plasma hydroperoxide lev-
els when compared to breast cancer patients without chemotherapy [103]. Apart 
from, patients who undergo PTX treatment develop anemia immediately after che-
motherapy infusion, suggesting oxidative stress as a probable causative mechanism 
[104]. Once PTX display an oxidative mechanism, it may be involved in the RBC 
hemolytic injury pathway [104, 105]

The mechanism whereby PTX affects mitochondria is not clear. Guigni et  al. 
[106] hypothesize that chemotherapeutics such PTX may have cytotoxic/myotoxic 
effects through their ability to provoke mitochondrial dysfunction (reduced mito-
chondrial content and size, and increased expression and oxidation of peroxire-
doxin) and oxidative stress. Another potential explanation for mitochondrial loss is 
the effect of PTX on microtubules, once microtubules serve as tracks to support 
kinesin-dependent mitochondrial movement and communication. Therefore, tax-
anes such as PTX may have detrimental effects duo to negative correlations of tubu-
lin and detyrosinated tubulin to mitochondrial content and morphology.

Furthermore, Huang and collaborators [107] found evidences that indicates aug-
mented expression of miR-4673 decreased cell viability and increased PTX-induced 
apoptosis. MiRNAs function as regulatory molecules in many physiological and 
pathological processes. In order to avoid the instauration of side effects due to oxi-
dative stress, some authors suggests that PTX dosage must be limited [108].

In conclusion, undergoing PTX chemotherapy induce pro-oxidant status and 
consequently increased risk for several adverse effects.

3.3.4	 �5-Fluorouracil

5-Fluorouracil (5-FU) is in the antimetabolite and pyrimidine analog commonly 
used in the treatment of a variety of cancers, including those of the ovary, breast, 
gastrointestinal tract and head and neck [109, 110]. The 5-FU administered intrave-
nously has a short half-life, however its active metabolites concentrate in cardiac 
and cancer cells, resulting in a prolonged exposure to the drug [111, 112]. A well-
known first antitumor effect of 5-FU is blockage of DNA synthesis and cell prolif-
eration through binding onto DNA and RNA [113]. Notwithstanding, potentiation 
of apoptosis is a secondary antitumor role of 5-FU.

5-FU induces apoptosis through enhanced generation of ROS [103]. Consequently, 
5-FU induce oxidative stress in cardiomyocytes and endothelial cells [114]. Besides 
that, Xiao et al. [115] study suggested that 5-FU weakened the activity of antioxi-
dant enzymes and the intracellular ROS content increased significantly.

Several reports about antineoplastic drugs report chemotherapy are accompanied 
by an oxidative balance perturbation [104, 116, 117]. Additionally, Rtibi et al. [118] 

T. B. Scandolara et al.



49

found that the 5-FU and capecitabine provoked drastic oxidative stress status in 
intestinal mucosa. These anticancer drugs caused depletion of the antioxidant 
enzymes activities such as superoxide dismutase (SOD), catalase (CAT) and gluta-
thione peroxidase (GPx).

Furthermore, Bomfin et  al. [119] suggests 5-FU causes oxidative stress and 
inflammation, mainly observed in the submandibular gland, which leads to periduc-
tal edema and cell death, resulting in alterations in the salivary flow rate and com-
position. Moreover, this study show that 5-FU modifies the saliva composition, 
decreasing lysozyme and SOD and increasing CAT. Differently of Campos et al. 
[119], which demonstrated that 5-FU injections caused a significant increase in 
CAT and peroxidase activities.

Still, Afrin et al. [120] demonstrated that the combination of 5-FU and Manuka 
honey (MH) enhanced the antiproliferative effects by inducing toxicity, up-
regulating ROS and apoptotic markers. 5-FU combined with MH induced down-
regulation of the transcription factor (NF-κB and Nrf2) and antioxidant enzyme 
activity (SOD, CAT, glutathione peroxidase and glutathione reductase), leading to 
more cell death by oxidative stress.

3.3.5	 �Etoposide

Etoposide (ETO) is a topoisomerase II inhibitor, commonly used alone or in combi-
nation with other anticancer agents to treat lung, ovarian, testicular, and various 
other cancers [121]. A topoactive drug, ETO inhibits the topoisomerase II–DNA 
cleavable complex, resulting in DNA damage, including double-stranded DNA 
breaks (DSBs), causing chromosomal aberration or apoptosis [122, 123].

In previous studies, it has been demonstrated that ETO increases the level of 
ROS in resting neutrophils [124]. Additionally, Shin et al. [125] demonstrated that 
ETO-induced cytotoxicity is executed through ROS generation. Moreover, Yadav 
et al. (2015) observed that both cellular and mitochondrial ROS were elevated on 
ETO treatments [126].

The reason for the strong cytotoxicity of ETO in hematopoietic precursors is the 
high activity of not only topoisomerase II, but also myeloperoxidase (MPO) [127]. 
MPO metabolizes ETO to highly toxic phenoxyl radicals. These radicals lead to a 
decrease in glutathione (GSH) and enhancement of oxidative stress [128]. Hence, 
Mahbub et al. [129] have demonstrated that polyphenols can synergistically enhance 
the action of the topoisomerase II inhibitors: doxorubicin and ETO in leukemia 
cells, for example.

ETO-induced ROS production may modulate mitochondrial function causing 
loss of mitochondrial membrane integrity and leakage of pro-apoptotic proteins 
cytochrome c, second mitochondria-derived activator of caspases, and AIF from 
mitochondria [130]. These pro-apoptotic proteins may initiate different apoptotic 
signaling causing demise of cancer cells. Furthermore, ETO induced a significant 
down-regulation of mRNA expression of the OGG1 repair gene and marked bio-
chemical alterations characteristic of oxidative DNA stress, including enhanced 
lipid peroxidation and reduction in reduced glutathione [131].
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3.3.6	 �Cyclophosphamide

Cyclophosphamide (CP) is an effective anti-cancer alkylating agent, while it also 
possesses a wide spectrum of cytotoxicity to normal cells [132]. CP metabolites 
such as phosphoramide mustard and acrolein can interact with DNA and induce the 
formation of DNA adducts that cause oxidative DNA damage [133, 134], protein, 
and lipid peroxidation [135, 136]. Regarding acrolein, one of CY metabolites, it 
initiates oxidative stress directly as well as be generated through lipid peroxidation, 
and thus contributes to a vicious circle [137]. The normal antioxidant system can be 
destroyed by active metabolites of CP, resulting in the accumulation of ROS [138]. 
Likewise, CP induces oxidative stress and cell death [139, 140].

Furthermore, studies have shown that CP mediates ROS generation [141] through 
multiple pathways including the activation of an intracellular signaling pathway 
important in regulating the cell cycle (e.g., PI3K/Akt/mTOR pathway), the NADPH 
complex (NADPH/NADP+), and the mitochondrial electron respiratory chain 
[142–144].

A decline in cellular level of glutathione has been considered to be indicative of 
oxidative stress mediated cellular damage produced by CP metabolites [145, 146]. 
Besides, Roy et al. [147] have also observed significant inhibition of superoxide 
dismutase, catalase and glutathione peroxidase activities in tumor bearing mice 
which might be due to the increase in the level of peroxides and reduction in the 
level of reduced glutathione [148].

3.4	 �Conclusions

Until now, virtually all chemotherapeutic drugs are capable to generate oxidative 
stress. Therefore, cancer patients will experience varying degrees of toxicity, and 
the cardiac is one of the most clinically relevant. Studies are helping to put together 
the players of oxidative-stress mediated toxicity, and will allow to developing strate-
gies to minimize the undesirable results of chemotherapy without affect its antineo-
plastic effects.

References

	 1.	Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219
	 2.	Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. 

Nat Rev Cancer 2:647–656
	 3.	Castaldo SA, Freitas JR, Conchinha NV, Madureira PA (2016) The tumorigenic roles of the 

cellular REDOX regulatory systems. Oxid Med Cell Longev:8413032
	 4.	Okon IS, Zou M-H (2015) Mitochondrial ROS and cancer drug resistance: implications for 

therapy. Pharmacol Res 100:170–174
	 5.	Kasapovic J, Pejic S, Todorovic A, Stojiljkovic V, Pajovic SB (2008) Antioxidant status and 

lipid peroxidation in the blood of breast cancer patients of different ages. Cell Biochem Funct 
26:723–730

T. B. Scandolara et al.



51

	 6.	Deavall DG, Martin EA, Horner JM, Roberts R (2012) Drug-induced oxidative stress and 
toxicity. J Toxicol 2012

	 7.	Gutteridge JMC, Halliwell B (2018) Mini-review: oxidative stress, redox stress or redox suc-
cess? Biochem Biophys Res Commun 502:183–186. Academic Press

	 8.	Varrichi G, Ameri P, Cadeddu C et al (2018) Antineoplastic drug-induced cardiotoxicity: a 
redox perspective. Front Physiol 9:167

	 9.	Min K, Kwon O-S, Smuder AJ, Wiggs MP, Sollanek KJ, Christou DD et al (2015) Increased 
mitochondrial emission of reactive oxygen species and calpain activation are required for 
doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol 593:2017–2036

	 10.	Albini A, Pennesi G, Donatelli F et al (2010) Cardiotoxicity of anticancer drugs: the need for 
cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst 102(1):14–25

	 11.	Schimmel KJ, Richel DJ, van den Brink RB, Guchelaar HJ (2004) Cardiotoxicity of cyto-
toxic drugs. Cancer Treat Rev 30(2):181–191

	 12.	Florescu M, Cinteza M, Vinereanu D (2013) Chemotherapy-induced cardiotoxicity. Maedica 
(Buchar) 8(1):59–67

	 13.	Mihalcea DJ, Florescu M, Vinereanu D (2017) Mechanisms and genetic susceptibility of 
chemotherapy-induced cardiotoxicity in patients with breast cancer. Am J Ther 24(1):e3–e11

	 14.	Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strat-
egy. Nat Rev Drug Discov 12:931–947. Nature Publishing Group

	 15.	Victorino VJ, Mencalha AL, Panis C (2015) Post-translational modifications disclose a dual 
role for redox stress in cardiovascular pathophysiology. Life Sci 129:42–47

	 16.	Angsutararux P, Luanpitpong S, Issaragrisil S (2015) Chemotherapy-induced cardiotoxicity: 
overview of the roles of oxidative stress. Oxid Med Cell Longev 2015:795602

	 17.	Rochette L, Guenancia C, Gudjoncik A, Hachet O, Zeller M, Cottin Y, Vergely C (2015) 
Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. 
Trends Pharmacol Sci 36(6):326–348

	 18.	WHO WHO.  Cardiovascular Diseases [Internet]. (cited 2018, August 5). Available from: 
http://www.who.int/cardiovascular_diseases/en/

	 19.	WHO WHO. Cancer [Internet]. (cited 2018, August 5]. Available from: http://www.who.int/
cancer/en/

	 20.	Yusuf SW, Razeghi P, Yeh ETH (2008) The diagnosis and management of cardiovascular 
disease in cancer patients. Curr Probl Cardiol 33:163–196

	 21.	Murphy KT (2016) The pathogenesis and treatment of cardiac atrophy in cancer cachexia. 
Am J Physiol – Hear Circ Physiol [Internet] 310:H466–H477. Available from: http://ajpheart.
physiology.org/lookup/doi/10.1152/ajpheart.00720.2015

	 22.	Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S et al (2011) NF-κB inhibition 
protects against tumor-induced cardiac atrophy in vivo. Am J Pathol 178:1059–1068

	 23.	Springer J, Tschirner A, Haghikia A, Von Haehling S, Lal H, Grzesiak A et  al (2014) 
Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart 
J 35:932–941

	 24.	Xu H, Crawford D, Hutchinson KR, Youtz DJ, Lucchesi PA, Velten M et al (2011) Myocardial 
dysfunction in an animal model of cancer cachexia. Life Sci 88:406–410

	 25.	Tian M, Nishijima Y, Asp ML, Stout MB, Reiser PJ, Belury MA (2010) Cardiac alterations in 
cancer-induced cachexia in mice. Int J Oncol 37:347–353

	 26.	Tian M, Asp ML, Nishijima Y, Belury MA (2011) Evidence for cardiac atrophic remodeling 
in cancer-induced cachexia in mice. Int J Oncol 39:1321–1326

	 27.	Belloum Y, Rannou-Bekono F, Favier FB (2017) Cancer-induced cardiac cachexia: 
pathogenesis and impact of physical activity (Review). Oncol Rep 37:2543–2552

	 28.	Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T et al (2017) European 
contribution to the study of ROS: a summary of the findings and prospects for the future from 
the COST action BM1203 (EU-ROS). Redox Biol 13:94–162

	 29.	Hinch ECA, Sullivan-Gunn MJ, Vaughan VC, McGlynn MA, Lewandowski PA (2013) 
Disruption of pro-oxidant and antioxidant systems with elevated expression of the ubiqui-

3  Oxidative Stress-Driven Cardiotoicity of Cancer Drugs

http://www.who.int/cardiovascular_diseases/en/
http://www.who.int/cancer/en/
http://www.who.int/cancer/en/
http://ajpheart.physiology.org/lookup/doi/10.1152/ajpheart.00720.2015
http://ajpheart.physiology.org/lookup/doi/10.1152/ajpheart.00720.2015


52

tin proteosome system in the cachectic heart muscle of nude mice. J Cachexia Sarcopenia 
Muscle 4:287–293

	 30.	Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide 
to reactive oxygen species. Nat Rev Immunol 13:349–361

	 31.	Mencalha A, Victorino VJ, Cecchini R, Panis C (2014) Mapping oxidative changes in breast 
cancer: understanding the basic to reach the clinics. Anticancer Res 34:1127–1140

	 32.	Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and 
signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 
2014

	 33.	Marin-Corral J, Fontes CC, Pascual-Guardia S, Sanchez F, Olivan M, Argilés JM et  al 
(2010) Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. 
Antioxid Redox Signal 12:365–380

	 34.	Borges FH, Marinello PC, Cecchini AL, Blegniski FP, Guarnier FA, Cecchini R (2014) 
Oxidative and proteolytic profiles of the right and left heart in a model of cancer-induced 
cardiac cachexia. Pathophysiology 21:257–265

	 35.	Pavo N, Raderer M, Hülsmann M, Neuhold S, Adlbrecht C, Strunk G et  al (2015) 
Cardiovascular biomarkers in patients with cancer and their association with all-cause mor-
tality. Heart 101:1874–1880

	 36.	Singh-Manoux A, Shipley MJ, Bell JA, Canonico M, Elbaz A, Kivimaki M (2017) Association 
between inflammatory biomarkers and all-cause, cardiovascular and cancer-related mortality. 
CMAJ 189:E384–E390

	 37.	Luan Y, Yao Y (2018) The clinical significance and potential role of c-reactive protein in 
chronic inflammatory and neurodegenerative diseases. Front Immunol 9:1–8

	 38.	Panis C, Binato R, Correa S, Victorino VJ, Dias-Alves V, Herrera ACSA et al (2017) Short 
infusion of paclitaxel imbalances plasmatic lipid metabolism and correlates with cardiac 
markers of acute damage in patients with breast cancer. Cancer Chemother Pharmacol 
80:469–478. Springer, Berlin/Heidelberg

	 39.	Panis C, Victorino VJ, Herrera ACSA, Freitas LF, De Rossi T, Campos FC et  al (2012) 
Differential oxidative status and immune characterization of the early and advanced stages of 
human breast cancer. Breast Cancer Res Treat 133:881–888

	 40.	Amin KA, Mohamed BM, El-Wakil MAM, Ibrahem SO (2012) Impact of breast cancer and 
combination chemotherapy on oxidative stress, hepatic and cardiac markers. J Breast Cancer 
15:306–312

	 41.	Schultz PN, Beck ML, Stava C, Vassilopoulou-Sellin R (2003) Health profiles in 5836 long-
term cancer survivors. Int J Cancer 104:488–495

	 42.	Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM (2010) 
Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological 
prevention. J Natl Cancer Inst 102:14–25

	 43.	Zhu H, Sarkar S, Scott L, Danelisen I, Trush MA, Jia Z et  al (2016) Doxorubicin redox 
biology: redox cycling, topoisomerase inhibition, and oxidative stress. React Oxyg Species 
(Apex) 1:189–198

	 44.	Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecu-
lar advances and pharmacologic developments in antitumor activity and cardiotoxicity. 
Pharmacol Rev 56:185–229

	 45.	Pilco-Ferreto N, Calaf GM (2016) Influence of doxorubicin on apoptosis and oxidative stress 
in breast cancer cell lines. Int J Oncol 49:753–762

	 46.	Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J  Med 
339:900–905

	 47.	Bahadır A, Kurucu N, Kadıoğlu M, Yenilmez E (2014) The role of nitric oxide in doxorubicin-
induced cardiotoxicity: experimental study. Turkish J Hematol 31:68–74

	 48.	Paulides M, Kremers A, Stohr W, Bielack S, Jurgens H, Treuner J et al (2009) Prospective 
longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: a report 
of the late effects surveillance system (LESS). Pediatr Blood Cancer 46:489–495

T. B. Scandolara et al.



53

	 49.	Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to 
cardiac myocytes. Toxicol Lett 121:151–157

	 50.	Sayed-Ahmed MM, Khattab MM, Gad MZ, Osman AMM (2001) Increased plasma endo-
thelin-1 and cardiac nitric oxide during doxorubicin-induced cardiomyopathy. Pharmacol 
Toxicol 89:140–144

	 51.	Guo RM, Xu WM, Lin JC, Mo LQ, Hua XX, Xi Chen P et al (2013) Activation of the p38 
MAPK/NF-κB pathway contributes to doxorubicin-induced inflammation and cytotoxicity 
in H9c2 cardiac cells. Mol Med Rep 8:603–608

	 52.	Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M et  al 
(1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 
91:710–717

	 53.	Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR et al (2004) The 
effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lym-
phoblastic leukemia. N Engl J Med 351:145–153

	 54.	Lipshultz SE, Alvarez JA, Scully RE (2008) Anthracycline associated cardiotoxicity in survi-
vors of childhood cancer. Heart 94:525–533

	 55.	Trachtenberg BH, Landy DC, Franco VI, Henkel JM, Pearson EJ, Miller TL et  al (2011) 
Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol 
32:342–353

	 56.	Myers CE (1988) Role of iron in anthracycline action. Organ Dir Toxicities Anticancer Drugs 
Dev Oncol:17–30

	 57.	Jones LW, Haykowsky MJ, Swartz JJ, Douglas PS, Mackey JR (2007) Early breast cancer 
therapy and cardiovascular injury. J Am Coll Cardiol 50:1435–1441

	 58.	Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with 
doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

	 59.	Muggia FM (1997) Clinical efficacy and prospects for use of pegylated liposomal doxoru-
bicin in the treatment of ovarian and breast cancers. Drugs 54:22–29

	 60.	 Iarussi D, Indolfi P, Casale F, Martino V, Di Tullio MT, Calabrò R (2005) Anthracycline-
induced cardiotoxicity in children with cancer: strategies for prevention and management. 
Pediatr Drugs 7:67–76

	 61.	Wu AH (2008) Cardiotoxic drugs: clinical monitoring and decision making. Heart 
94:1503–1509

	 62.	Seifert CF, Nesser ME, Thompson DF (1994) Dexrazoxane in the prevention of doxorubicin-
induced cardiotoxicity. Ann Pharmacother 28:1063–1072

	 63.	Swain BSM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D et  al (1997) 
Cardioprotection with dexrazoxane for doxorubicin- containing therapy in advanced breast 
cancer. J Clin Oncol 15:1318–1332

	 64.	Manduteanu I, Dragomir E, Voinea M, Capraru M, Simionescu M (2007) Enoxaparin reduces 
H2O2-induced activation of human endothelial cells by a mechanism involving cell adhesion 
molecules and nuclear transcription factors. Pharmacology 79:154–162

	 65.	Young E (2008) The anti-inflammatory effects of heparin and related compounds. Thromb 
Res 122:743–752

	 66.	Vejpongsa P, Yeh ETH (2014) Prevention of anthracycline-induced cardiotoxicity: challenges 
and opportunities. J Am Coll Cardiol 64:938–945

	 67.	Haq MM, Legha SS, Choksi J, Hortobagyi GN, Benjamin RS, Ewer M et  al (1985) 
Doxorubicin-induced congestive heart failure in adults. Cancer 56:1361–1365

	 68.	Marchandise B, Schroeder E, Bosly A, Doyen C, Weynants P, Kremer R et al (1989) Early 
detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of 
left ventricular filling dynamics. Am Heart J 118:92–98

	 69.	Dolci A, Dominici R, Cardinale D, Sandri MT, Panteghini M (2008) Biochemical markers 
for prediction of chemotherapy-induced cardiotoxicity systematic review of the literature and 
recommendations for use. Am J Clin Pathol 130:688–695

3  Oxidative Stress-Driven Cardiotoicity of Cancer Drugs



54

	 70.	Yeh ETH, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C et  al (2004) 
Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. 
Circulation 109:3122–3131

	 71.	Lipschultz SE, Rifai N, Sallan SE, Lipsitz SR, Dalton V, Sacks DB et al (1997) Predictive 
value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 
96:2641–2648

	 72.	Bryant J, Picot J, Baxter L, Levitt G, Sullivan I, Clegg A (2007) Use of cardiac markers to 
assess the toxic effects of anthracyclines given to children with cancer: a systematic review. 
Eur J Cancer 43:1959–1966

	 73.	Reichlin T, Reichlin T, Hochholzer W, Hochholzer W, Bassetti S, Bassetti S et al (2009) Early 
Diagnosis of Myocardial Infarction with Sensitive Cardiac Troponin Assays. N Engl J Med 
361:858–867

	 74.	O’Brien PJ, Smith DEC, Knechtel TJ, MArchak MA, Pruimboom-Brees I, Brees DJ et al 
(2006) Cardiac troponin T is a sensitive, specific biomarker of cardiac injury in laboratory 
animals. Lab Anim Sci 40:153–171

	 75.	Dirican A, Levent F, Alacacioglu A, Kucukzeybek Y, Varol U, Kocabas U et al (2014) Acute 
cardiotoxic effects of adjuvant trastuzumab treatment and its relation to oxidative stress. 
Angiology 65:944–949

	 76.	Rochette L, Guenancia C, Gudjoncik A, Hachet O, Zeller M, Cottin Y et  al (2015) 
Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. 
Trends Pharmacol Sci 36:326–348

	 77.	Hudis CA (2007) Trastuzumab — mechanism of action and use in clinical practice. N Engl 
J Med:39–51

	 78.	Onitilo AA, Engel JM, Stankowski RV (2014) Cardiovascular toxicity associated with adju-
vant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug 
Saf 5:154–166

	 79.	Gemmete JJ, Mukherji SK (2011) Trastuzumab (Herceptin). AJNR Am J  Neuroradiol 
32:1373–1374

	 80.	Bonci A, Lupica CR, Morales M (2015) Trastuzumab interruption and treatment-induced 
carciotoxicity in early HER2-positive breast cancer. Breast Cancer Res Treat 149:489–495

	 81.	Dokmanovic M, Wu WJ (2015) Monitoring trastuzumab resistance and cardiotoxicity: a tale 
of personalized medicine. 1st ed. Adv Clin Chem

	 82.	Ayres LR, de Almeida Campos MS, de Oliveira Gozzo T, Martinez EZ, Ungari AQ, de 
Andrade JM et al (2015) Trastuzumab induced cardiotoxicity in HER2 positive breast cancer 
patients attended in a tertiary hospital. Int J Clin Pharm 37:365–372

	 83.	Varga ZV, Ferdinandy P, Liaudet L, Pacher P (2015) Drug-induced mitochondrial dysfunc-
tion and cardiotoxicity. Am J Physiol – Hear Circ Physiol 309:H1453–H1467

	 84.	Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E (2018) Chemotherapeutic 
drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid 
Med Cell Longev 2018:15

	 85.	Sandoo A, Kitas GD, Carmichael AR (2015) Breast cancer therapy and cardiovascular risk: 
focus on trastuzumab. Vasc Health Risk Manag 11:223–228

	 86.	Kabel AM, Elkhoely AA (2017) Targeting proinflammatory cytokines, oxidative stress, TGF-
β1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. 
Biomed Pharmacother 93:17–26

	 87.	Leung HW, Chan AL (2015) Trastuzumab-induced cardiotoxicity in elderly women with 
HER-2-positive breast cancer: a meta-analysis of real-world data. Expert Opin Drug Saf 
14:1661–1671

	 88.	Ürün Y, Utkan G, Yalcin B, Akbulut H, Onur H, Oztuna DG et al (2015) The role of cardiac 
biomarkers as predictors of trastuzumab cardiotoxicity in patients with breast cancer. Exp 
Oncol 37:53–57

	 89.	Goyal V, Bews H, Cheung D, Premecz S, Mandal S, Shaikh B et al (2016) The cardioprotec-
tive role of N-acetyl cysteine amide in the prevention of doxorubicin and trastuzumab medi-
ated cardiac dysfunction. Can J Cardiol

T. B. Scandolara et al.



55

	 90.	Lemos LGT, Victorino VJ, Herrera ACSA, Aranome AMF, Cecchini AL, Simão ANC et al 
(2015) Trastuzumab-based chemotherapy modulates systemic redox homeostasis in women 
with HER2-positive breast cancer. Int Immunopharmacol 27:8–14

	 91.	Putt M, Hahn VS, Januzzi JL, Sawaya H, Sebag IA, Plana JC et  al (2015) Longitudinal 
changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients 
treated with doxorubicin, taxanes, and trastuzumab. Clin Chem 61:1164–1172

	 92.	Moilanen T, Jokimäki A, Tenhunen O, Koivunen JP (2018) Trastuzumab-induced cardio-
toxicity and its risk factors in real-world setting of breast cancer patients. J Cancer Res Clin 
Oncol

	 93.	Riccio G, Antonucci S, Coppola C, D’avino C, Piscopo G, Fiore D et al (2018) Ranolazine 
attenuates trastuzumab-induced heart dysfunction by modulating ROS production. Front 
Physiol 9:38

	 94.	Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an 
antioxidant: under promises but over delivers. J Pineal Res 61:253–278

	 95.	Ozturk M, Ozler M, Kurt YG, Ozturk B, Uysal B, Ersoz N et al (2011) Efficacy of melatonin, 
mercaptoethylguanidine and 1400W in doxorubicin- and trastuzumab-induced cardiotoxic-
ity. J Pineal Res 50:89–96

	 96.	Victorino VJ, Panis C, Campos FC, Cayres RC, Colado-Simao AN, Oliveira SR et al (2013) 
Decreased oxidant profile and increased antioxidant capacity in naturally postmenopausal 
women. Age 35:1411–1421

	 97.	Scripture CD, Figg WD, Sparreboom A (2005) Paclitaxel chemotherapy: from empiricism to 
a mechanism-based formulation strategy. Ther Clin Risk Manag 1:107–114

	 98.	Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 
4:253–265

	 99.	Victorino VJ, Pizzatti L, Michelletti P, Panis C (2014) Oxidative stress, redox signaling 
and cancer chemoresistance: putting together the pieces of the puzzle. Curr Med Chem 
21:3211–3226

	100.	Hadzic T, Aykin-Burns N, Zhu Y, Coleman MC, Leick K, Jacobson GM et al (2010) Paclitaxel 
combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer 
cell killing via H2O2-mediated oxidative stress. Free Radic Biol Med 48:1024–1033

	101.	Alexandre J, Hu Y, Lu W, Pelicano H, Huang P (2007) Novel action of paclitaxel against can-
cer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67:3512–3517

	102.	Ramanathan B, Jan KY, Chen CH, Hour TC, Yu HJ, Pu YS (2005) Resistance to paclitaxel is 
proportional to cellular total antioxidant capacity. Cancer Res 65:8455–8460

	103.	Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL (2014) A systematic review of the patho-
physiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol 15:47

	104.	Panis C, Herrera AC, Victorino VJ, Campos FC, Freitas LF, De Rossi T et al (2012) Oxidative 
stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or 
doxorubicin chemotherapy. Breast Cancer Res Treat 133:89–97

	105.	Jezierska-Drutel A, Rosenzweig SA, Neumann CA (2013) Role of oxidative stress and 
the microenvironment in breast cancer development and progression. Adv Cancer Res 
119:107–125

	106.	Guigni BA, Callahan DM, Tourville TW, Miller MS, Fiske B, Voigt T et al (2018) Skeletal 
muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxi-
dant stress. Am J Physiol Cell Physiol

	107.	Huang HL, Shi YP, He HJ, Wang YH, Chen T, Yang LW et al (2017) MiR-4673 modulates 
paclitaxel-induced oxidative stress and loss of mitochondrial membrane potential by target-
ing 8-oxoguanine-DNA glycosylase-1. Cell Physiol Biochem 42:889–900

	108.	Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa 
MC (2010) New advances in molecular mechanisms and the prevention of adriamycin toxic-
ity by antioxidant nutrients. Food Chem Toxicol 48:1425–1438

	109.	Goncalves A, Pierga JY, Ferrero JM, Mouret-Reynier MA, Bachelot T, Delva R et al (2015) 
UNICANCER-PEGASE 07 study: a randomized phase III trial evaluating postopera-

3  Oxidative Stress-Driven Cardiotoicity of Cancer Drugs



56

tive docetaxel-5FU regimen after neoadjuvant dose-intense chemotherapy for treatment of 
inflammatory breast cancer. Ann Oncol 26:1692–1697

	110.	Kim R, Hahn S, Shin J, Ock CY, Kim M, Keam B et al (2016) The effect of induction chemo-
therapy using docetaxel, cisplatin, and fluorouracil on survival in locally advanced head and 
neck squamous cell carcinoma: a meta-analysis. Cancer Res Treat 48:907–916

	111.	Miura K, Kinouchi M, Ishida K, Fujibuchi W, Naitoh T, Ogawa H et al (2010) 5-fu metabo-
lism in cancer and orally-administrable 5-fu drugs. Cancers (Basel) 2:1717–1730

	112.	Lestuzzi C, Tartuferi L, Corona G (2011) Capecitabine (and 5 fluorouracil) cardiotoxicity. 
Metabolic considerations. Breast J 17:564–567

	113.	Wyatt MD, Wilson 3rd DM. Participation of DNA repair in the response to 5-fluorouracil. 
Cell Mol Life Sci 2009;66:788–799.

	114.	Lamberti M, Porto S, Zappavigna S, Addeo E, Marra M, Miraglia N et al (2014) A mechanis-
tic study on the cardiotoxicity of 5-fluorouracil in vitro and clinical and occupational perspec-
tives. Toxicol Lett 227:151–156

	115.	Xiao H, Xiong L, Song X, Jin P, Chen L, Chen X et al (2017) Angelica sinensis polysaccha-
rides ameliorate stress-induced premature senescence of hematopoietic cell via protecting 
bone marrow stromal cells from oxidative injuries caused by 5-fluorouracil. Int J Mol Sci 18

	116.	Hess JA, Khasawneh MK (2015) Cancer metabolism and oxidative stress: insights into car-
cinogenesis and chemotherapy via the non-dihydrofolate reductase effects of methotrexate. 
BBA Clin 3:152–161

	117.	Sener MT, Sener E, Tok A, Polat B, Cinar I, Polat H et  al (2012) Biochemical and his-
tologic study of lethal cisplatin nephrotoxicity prevention by mirtazapine. Pharmacol Rep 
64:594–602

	118.	Rtibi K, Selmi S, Grami D, Amri M, Sebai H, Marzouki L (2018) Contribution of oxida-
tive stress in acute intestinal mucositis induced by 5 fluorouracil (5-FU) and its pro-drug 
capecitabine in rats. Toxicol Mech Methods 28:262–267

	119.	Bomfin LE, Braga CM, Oliveira TA, Martins CS, Foschetti DA, Santos AAQA et al (2017) 
5-Fluorouracil induces inflammation and oxidative stress in the major salivary glands affect-
ing salivary flow and saliva composition. Biochem Pharmacol 145:34–45

	120.	Afrin S, Giampieri F, Forbes-Hernandez TY, Gasparrini M, Amici A, Cianciosi D et al (2018) 
Manuka honey synergistically enhances the chemopreventive effect of 5-fluorouracil on 
human colon cancer cells by inducing oxidative stress and apoptosis, altering metabolic phe-
notypes and suppressing metastasis ability. Free Radic Biol Med 126:41–54

	121.	Bywater MJ, Pearson RB, McArthur GA, Hannan RD (2013) Dysregulation of the basal 
RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 13:299–314

	122.	Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning 
by anticancer and antibacterial drugs. Chem Biol 17:421–433

	123.	Saleh EM (2015) Inhibition of topoisomerase IIalpha sensitizes FaDu cells to ionizing radia-
tion by diminishing DNA repair. Tumour Biol 36:8985–8992

	124.	Kapiszewska M, Cierniak A, Elas M, Lankoff A (2007) Lifespan of etoposide-treated human 
neutrophils is affected by antioxidant ability of quercetin. Toxicol Vitr 21:1020–1030

	125.	Shin HJ, Kwon HK, Lee JH, Anwar MA, Choi S (2016) Etoposide induced cytotoxicity 
mediated by ROS and ERK in human kidney proximal tubule cells. Sci Rep 6:34064

	126.	Yadav N, Kumar S, Marlowe T, Chaudhary AK, Kumar R, Wang J et al (2015) Oxidative 
phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer 
agents. Cell Death Dis 6:e1969

	127.	Haim N, Nemec J, Roman J, Sinha BK (1987) Peroxidase-catalyzed metabolism of etopo-
side (VP-16-213) and covalent binding of reactive intermediates to cellular macromolecules. 
Cancer Res 47:5835–5840

	128.	Kagan VE, Yalowich JC, Borisenko GG, Tyurina YY, Tyurin VA, Thampatty P et al (1999) 
Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leu-
kemia: free radical/antioxidant approach. Mol Pharmacol 56:494–506

	129.	Mahbub AA, Le Maitre CL, Haywood-Small SL, Cross NA, Jordan-Mahy N (2015) 
Glutathione is key to the synergistic enhancement of doxorubicin and etoposide by polyphe-
nols in leukaemia cell lines. Cell Death Dis 6:e2028

T. B. Scandolara et al.



57

	130.	Yadav N, Chandra D (2014) Mitochondrial and postmitochondrial survival signaling in can-
cer. Mitochondrion 16:18–25

	131.	Attia SM, Ahmad SF, Harisa GI, Mansour AM, El Sayed el SM, Bakheet SA (2013) Wogonin 
attenuates etoposide-induced oxidative DNA damage and apoptosis via suppression of oxida-
tive DNA stress and modulation of OGG1 expression. Food Chem Toxicol 59:724–730

	132.	Kim DJ, Kim EJ, Lee TY, Won JN, Sung MH, Poo H (2013) Combination of poly-gamma-
glutamate and cyclophosphamide enhanced antitumor efficacy against tumor growth and 
metastasis in a murine melanoma model. J Microbiol Biotechnol 23:1339–1346

	133.	Sekeroglu V, Aydin B, Sekeroglu ZA (2011) Viscum album L. extract and quercetin reduce 
cyclophosphamide-induced cardiotoxicity, urotoxicity and genotoxicity in mice. Asian Pac 
J Cancer Prev 12:2925–2931

	134.	Wang LF, Gong X, Le GW, Shi YH (2008) Dietary nucleotides protect thymocyte DNA from 
damage induced by cyclophosphamide in mice. J Anim Physiol Anim Nutr 92:211–218

	135.	Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, 
malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

	136.	Rezvanfar M, Sadrkhanlou R, Ahmadi A, Shojaei-Sadee H, Rezvanfar M, Mohammadirad A 
et al (2008) Protection of cyclophosphamide-induced toxicity in reproductive tract histology, 
sperm characteristics, and DNA damage by an herbal source; evidence for role of free-radical 
toxic stress. Hum Exp Toxicol 27:901–910

	137.	Shokrzadeh M, Ahmadi A, Naghshvar F, Chabra A, Jafarinejhad M (2014) Prophylactic 
efficacy of melatonin on cyclophosphamide-induced liver toxicity in mice. Biomed Res Int 
2014:470425

	138.	Sengul E, Gelen V, Gedikli S, Ozkanlar S, Gur C, Celebi F et al (2017) The protective effect 
of quercetin on cyclophosphamide-Induced lung toxicity in rats. Biomed Pharmacother 
92:303–307

	139.	Rehman MU, Tahir M, Ali F, Qamar W, Lateef A, Khan R et al (2012) Cyclophosphamide-
induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino 
mice: the protective effect of Ellagic acid. Mol Cell Biochem 365:119–127

	140.	Korkmaz A, Topal T, Oter S (2007) Pathophysiological aspects of cyclophosphamide and 
ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species 
as well as PARP activation. Cell Biol Toxicol 23:303–312

	141.	Chakraborty P, Roy SS, Basu A, Bhattacharya S (2016) Sensitization of cancer cells to cyclo-
phosphamide therapy by an organoselenium compound through ROS-mediated apoptosis. 
Biomed Pharmacother 84:1992–1999

	142.	Chen XY, Xia HX, Guan HY, Li B, Zhang W (2016) Follicle loss and apoptosis in 
cyclophosphamide-treated mice: what’s the matter? Int J Mol Sci 17

	143.	Silva A, Girio A, Cebola I, Santos CI, Antunes F, Barata JT (2011) Intracellular reactive oxy-
gen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell 
acute lymphoblastic leukemia cells. Leukemia 25:960–967

	144.	Park KR, Nam D, Yun HM, Lee SG, Jang HJ, Sethi G et al (2011) beta-Caryophyllene oxide 
inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 
pathways and ROS-mediated MAPKs activation. Cancer Lett 312:178–188

	145.	Jonas CR, Puckett AB, Jones DP, Griffith DP, Szeszycki EE, Bergman GF et al (2000) Plasma 
antioxidant status after high-dose chemotherapy: a randomized trial of parenteral nutrition in 
bone marrow transplantation patients. Am J Clin Nutr 72:181–189

	146.	Patel JM, Block ER (1985) Cyclophosphamide-induced depression of the antioxidant defense 
mechanisms of the lung. Exp Lung Res 8:153–165

	147.	Roy SS, Chakraborty P, Biswas J, Bhattacharya S (2014) 2-[5-Selenocyanato-pentyl]-6-
amino-benzo[de]isoquinoline-1,3-dione inhibits angiogenesis, induces p53 dependent mito-
chondrial apoptosis and enhances therapeutic efficacy of cyclophosphamide. Biochimie 
105:137–148

	148.	Adams Jr. JD, Klaidman LK. Acrolein-induced oxygen radical formation. Free Radic Biol 
Med 1993;15:187–193.

3  Oxidative Stress-Driven Cardiotoicity of Cancer Drugs



59© Springer Nature Singapore Pte Ltd. 2019
S. Chakraborti et al. (eds.), Oxidative Stress in Heart Diseases, 
https://doi.org/10.1007/978-981-13-8273-4_4

V. Dhawan (*) · C. Bakshi 
Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical 
Education and Research, Chandigarh, India 

R. A. Rather 
Department of Biotechnology, Wachemo University, Hossana, Ethiopia

4Molecular Targets and Novel 
Therapeutics to Target Oxidative Stress 
in Cardiovascular Diseases

Veena Dhawan, Chetan Bakshi, and Riyaz Ahmad Rather

4.1	 �Introduction

Globally non-communicable diseases (NCDs) are by far the leading cause of death 
and disability [1, 2]. World Health Organization (WHO) states that cardiovascular 
diseases (CVDs) account for 17.7 million deaths globally, among NCDs [3]. CVD 
burden is significantly increasing worldwide due to an ageing population and spread 
of the Western diet and lifestyle.

CVDs are a group of pathologies that affect the cardiovascular system such as, 
atherosclerosis, heart failure (HF), myocardial infarction (MI) etc. They are referred 
to any disease affecting the blood vessels or heart, vascular diseases of the brain and 
kidney, and peripheral arterial disease. Although, significant understanding of bio-
molecular events prevailing the initiation and progression of CVDs has been made, 
much remains unknown. Moreover, it is now evident that cardiovascular function is 
affected by oxidative stress [4] in a way that it also provides ample sites for redox 
regulation, which includes synthesis and function of prostanoids [5], regulation of 
endothelial nitric oxide synthase (eNOS) activity and function [6], vascularization 
[7], control of thiol/disulfide state in aging-associated cardiovascular complications 
[8]. At present, it is known that autophagy is implicated in the development and 
propagation of various CVDs, such as cardiac hypertrophy, atrial fibrillation, ath-
erosclerosis and HF [9–12]. Interestingly, the regulatory mechanisms of autophagy 
are primarily activated upon either reactive oxygen species (ROS) overproduction, 
or NO deficiency, or nutrient deprivation [13, 14].
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Oxidative stress can be defined as a state of imbalance between production of 
reactive oxygen and nitrogen species (RONS) and antioxidant defenses. In addition, 
it creates a state where oxidation process surpasses the antioxidant levels in the 
body. Alterations in the redox status of tissue, leads to formation of lipid peroxides, 
free radicals, and other harmful reactive oxygen species such as singlet oxygen and 
hypochlorite causing adverse effects to the cell, by damaging DNA, proteins and 
lipids, as well as induce the depletion of redox cofactors [e.g., tetrahydrobiopterin 
(BH4)] and low molecular-weight antioxidants [15]. Not only oxidative stress is 
cytotoxic, it also plays an important role in the modulation of intermediates that 
regulate essential functions of the cell membrane, which are crucial for survival. 
Furthermore, the oxidative stress can modulate intracellular redox status, thereby 
activating protein kinases, such as a series of receptor and non-receptor tyrosine 
kinases, protein kinase C (PKC), and the MAP kinase (MAPK) cascade resulting in 
varied cellular responses.

RONS are known to be produced by several endogenous and exogenous sources, 
and antioxidant defenses aid in neutralizing their toxic effects. At low concentra-
tion, antioxidants ameliorates the oxidation of macromolecules eg. lipids, DNA and 
proteins [16]. Superoxide dismutase (SOD), glutathione peroxidase, catalase, thio-
redoxin, and peroxiredoxin are enzymatic antioxidants [17], whereas non-enzymatic 
antioxidants include vitamin E, vitamin C, and glutathione [18]. In addition, uric 
acid and bilirubin are also known as antioxidants that are able to protect against 
CVDs [16]. Moreover, two important fat-soluble carotenoids, β-carotene and lyco-
pene, can scavenge free radical to reduce fatty acid oxidation [19].

An active lifestyle along with moderate exercise not only prevents oxidative 
stress, but also provides protection against the onslaught of CVDs, type II diabetes, 
and metabolic syndrome [20]. Oxidative stress biomarkers may thus serve as a suit-
able diagnostic or therapeutic tool to explore novel therapies with antioxidant prop-
erties. Besides the endogenous antioxidant systems, resveratrol and other natural 
compounds, along with moderate exercise, can act as exogenous antioxidants posi-
tively affecting the damage incurred due to oxidative stress. However, future studies 
are warranted to test the efficacy of natural compounds and other novel interven-
tions, both in young age and adulthood.

4.2	 �Oxidative Stress and CVDs

Oxidative stress ensues due to imbalance in the pro-oxidant/anti-oxidant status, 
causing accumulation of pro-oxidant species, thereby promoting oxidative damage 
to several biomolecules [21]. Oxidative stress not only induces cytotoxic effects but 
also influences many biological processes including inflammation and apoptosis. 
During these responses, nuclear factor-ΚB (NF-ΚB) and activator protein-1 (AP-1) 
genes (transcription factors) act as sensors of oxidative stress through regulation of 
their own oxidation and reduction. Thus oxidation and reduction cycling-induced 
chemical modification of transcription factors is called reduction-oxidation (redox) 
regulation.
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Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are referred 
to as reactive non-radical and radical by-products of nitrogen and oxygen, respec-
tively [22, 23]. Reactive oxygen and nitrogen species are produced by all aerobic 
cells and play a crucial role in age-related disease processes including CVDs [24]. 
Additionally, RONS generation derives energy from organic molecules generated in 
various physiological processes such as immune defense, and signaling [25]. 
Several endogenous and exogenous sources generate RONS and antioxidant 
defenses aid in neutralizing their toxic effects. Endogenously RONS is produced by 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, myeloperoxidase 
(MPO), lipoxygenase, and angiotensin II [26]. NADPH oxidase (Nox) is the pre-
dominant source of the superoxide anion (O2

−) radical, during cellular respiration. 
SOD, an enzymatic antioxidant, dismutates most of the O2

− into hydrogen peroxide 
(H2O2) [25]. Whereas, exogenous sources of RONS include alcohol, tobacco, heavy 
or transition metals, drugs (eg, gentamycin, cyclosporine and tacrolimus), cooking 
(eg, smoked meat, waste oil, and fat), air and water pollution, industrial solvents and 
radiation, that are metabolized into free radicals inside the body [27].

The adverse effects of oxidative stress to the cell are exerted by damaging mac-
romolecules such as DNA, proteins, and lipids. Induction of DNA damage due to 
augmented oxidative stress occurs both directly by several mechanisms, including 
nucleotide base modification, single strand breaks, double strand breaks, and indi-
rectly by inhibiting DNA-formamidopyrimidine (FAPY) glycosylase [28] respec-
tively. Several mutagenic lesions such as 5-hydroxycytosine, cytosine glycol, 
glycol, 2-hydroxy adenine, 8-oxoadenine, and thymine, are the consequences of 
oxidative modification of DNA. However, the most mutagenic outcomes of oxida-
tive stress induced DNA damage are 8-oxo-7,8-dihydro-guanine (8-oxoGua) and 
8-oxo-7,8-dihydro-2′deoxyguanosine (8-oxodG) lesions, of which, 8-oxoGua is the 
most commonly recurring modification resulting in G-to-T transversion events [29]. 
Oxidative stress can also impair the process of translation and protein synthesis, 
thus alters cellular proteostasis [29]. Furthermore, protein folding can be impeded 
by oxidative stress, causing loss of protein function due to fragmentation [30]. 
Although, specialized cellular machinery recognizes and degrades these oxidized 
proteins; however, when excessive protein oxidation occurs, it leads to building up 
of toxic products causing cellular dysfunction [30]. Advanced glycation end prod-
ucts (AGEs) are generated in a process called glycoxidation, which occurs as a 
result of reaction between the arginine and lysine amino groups with the carbonyl 
groups of carbohydrates. Major AGEs generated are glucosepane, pentosidine, 
N∈-carboxymethyl-lysine, and hydroimidazolone [31]. The accumulation of AGEs 
is known to be pro-inflammatory and is associated with CVDs, diabetes and its 
complications, renal disease and thus may contribute to obesity [32–34]. 
Additionally, oxidation of lipids by ROS leads to the generation of aldehydes and 
hydroperoxides of lipids, which further contribute to cellular toxicity [35]. For 
instance, membrane permeability and fluidity are altered once plasma and organelle 
membrane lipids are oxidized [32]. Lipid peroxidation by hydroxyl and peroxyl 
radicals provide important targets eg. poly-unsaturated fatty acids (PUFAs), particu-
larly linoleic and arachidonic acids. Oxidation of PUFAs leads to production of 
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various reactive aldehydes, such as malondialdehyde (MDA), trans-4-hydroxy-2-
nonenal (4-HNE), and isoprostanes (F2-IsoPs) [36].

The accumulation of above mentioned oxidized macromolecules intracellularly 
is implicated in the culmination of various NCDs, including cardiovascular diseases 
[26]. Moreover, several studies have documented that tolerance of the heart to oxi-
dative stress declines with increasing age due to attenuated levels of enzymatic anti-
oxidants (ie, SOD and glutathione peroxidase), hence influences the development of 
CVDs [37]. Inflammation is thought to play a pivotal role in both the initiation and 
development of several CVDs including atherosclerosis [38]. A high level of RONS 
due to continuous production attenuates endogenous antioxidant capacities in 
chronic inflammatory conditions. It has been observed that patients with chronic 
inflammation often represent elevated levels of oxidative stress biomarkers [39] and 
low blood levels of antioxidants [40]. This is generally due to an augmented demand 
generated under conditions of overwhelming RONS production by activated 
immune effector cells such as macrophages.

Numerous sources of RONS have been identified in the cardiomyocytes, such as 
the mitochondria [41], Nox (Nox2 and Nox4) [42], xanthine oxidase, uncoupled 
NO synthase (NOS), and monoamine oxidase-A [43]. In the myocardium, activa-
tion of Nox2 leads to augmented superoxide production resulting in disease pro-
gression [44], whereas, the Nox4 isoform is responsible for either a beneficial [45], 
or detrimental effect [46], depending on the model studied [47]. Mitochondria not 
only act as an amplifier to augment the burden of oxidative stress, but also play a 
crucial part in oxidative damage of the cardiovascular system by providing redox 
triggers. Mitochondrial RONS interacts with several other sources of oxidative 
stress, such as Nox, xanthine oxidase and an uncoupled NOS. Several investigations 
have implicated the role of p66Shc in ROS generation within mitochondria and its 
contribution in CVDs [48, 49]. Various studies have demonstrated that p66Shc is an 
essential regulator of the intracellular redox balance and levels of oxidative stress. 
Moreover, various investigations have elucidated crucial roles of PKC family mem-
bers in programming aspects of HF pathogenesis.

4.3	 �Biomarkers of Oxidative Stress in CVDs

As defined by WHO, a biomarker is any substance, structure, or process that can 
either have an influence or predict the incidence of disease or its outcome [50]. A 
clinically useful biomarker should possess the specificity for a certain disease (bear 
a diagnostic or prognostic value), and should correlate well with the disease activity 
[36]. Oxidative stress biomarkers may serve as a guide in choosing the most effi-
cient drugs/dose regimen for patients by providing crucial information about the 
effectiveness of a treatment. In addition, from a pathophysiological point of view if 
it is predominantly relevant, a biomarker may serve as a suitable therapeutic modal-
ity to identify novel treatments with antioxidant properties, [36].
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4.4	 �Biomarkers of RONS-Induced Modifications in CVDs

	1.	 AGEs levels serve as an independent risk factor for predicting CV mortality 
[51]. It has been observed that serum levels of AGEs show positive correlation 
with lipid profiles and atherosclerotic features in an age-dependent manner, sug-
gesting that AGEs could serve as useful biomarkers in the context of atheroscle-
rotic disease [52].

	2.	 Oxidized-LDL (ox-LDL) levels are known to be associated with arterial stiff-
ness and atherogenesis in the elderly [53]. Both the protein and the lipid portion 
of LDL undergo oxidative modifications resulting in the accumulation of choles-
terol [54].

	3.	 MPO is an enzyme released in inflammatory conditions by leukocytes and cata-
lyzes the formation of several RONS. MPO levels can serve as independent pre-
dictors of endothelial dysfunction and CVD mortality. MPO levels are considered 
to be a major player in the development and destabilization of atherosclerotic 
plaque, due to its involvement in formation of ox-LDL [55]. Additionally, MPO 
leads to endothelial dysfunction by directly catalyzing the consumption of NO 
[56].

In addition to the above mentioned markers, phosphorylated vasodilator-
stimulated phosphoprotein (P-VASP) and asymmetric dimethylarginine (ADMA) 
represent as markers of oxidative stress post-RONS-induced damage [36].

	4.	 ADMA is an L-arginine analogue, which can uncouple nitric oxide synthase 
(NOS) isoenzymes by competing with L-arginine, resulting in generation of 
superoxide molecule instead of NO, thus exaggerating the burden of oxidative 
stress [57–59]. Hence, cellular ADMA levels per se can lead to the reduction of 
NO and ROS overproduction. Furthermore, a growing body of evidence from 
various studies suggests that ADMA levels influence the NO-ROS equilibrium in 
the developmental programming of CVD as well as cardiovascular outcome 
[59–63]. In particular, in a community-based study, “Invecchiare in Chianti 
Study” (InCHIANTI; aging in the Chianti area), higher ADMA levels were 
reported to independently predict all-cause and CV mortality in the randomly 
selected samples of 1155 elderly, in the age range of 65–102 years [64].

	5.	 P-VASP is predominantly phosphorylated by cyclic guanosine monophosphate 
(cGMP)-dependent protein kinases. It is considered as the best-established bio-
marker for physiological cGMP signaling, and low P-VASP levels indicate path-
ological signaling [36]. In the “GENERATIONS” trial, P-VASP levels in human 
blood samples, were used to predict the efficacy of (or detect non-responders to) 
antiplatelet therapy [65, 66].
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4.5	 �Oxidative Stress, Nutrient Signaling and Autophagy 
Cross-Talk in CVDs

A number of nutrient sensing signaling pathways including cyclic adenosine mono-
phosphate (cAMP)-activated protein kinase (AMPK), mammalian target of rapamy-
cin (mTOR), silent information regulator transcript (SIRT), peroxisome 
proliferator-activated receptors (PPARs) and PPAR coactivator-1α (PGC-1α), exist 
in the cardiovascular system. Among them, PGC-1α not only acts as a centre point 
for a nutrient-sensing cluster, it can also stimulate other nuclear receptors, such as 
estrogen-receptor related receptor (ERR) and nuclear respiratory factor (NRF) for 
regulating energy metabolism, in addition to PPARs [67]. Further, due to activation 
of AMPK by augmented NAD+/NADH ratio, SIRT1 activation by increased mito-
chondrial AMP/adenosine triphosphate (ATP) ratio, or NO, enhanced activity of 
PGC-1α can promote mitochondria biogenesis [68, 69]. Interestingly, PGC-1α not 
only regulates mitochondrial biogenesis by interacting with nutrient sensing sig-
nals, but via the autophagy-lysosome machinery, it also leads to the degradation of 
mitochondria

A cellular catabolic process, autophagy results in the degradation of crucial 
organelles such as mitochondria, via their transportation to lysosomes [13]. PGC-1α 
can promote autophagy through regulation of transcription factor EB (TFEB). 
Furthermore, mTOR inhibits autophagy whereas AMPK by acting as the negative 
regulator of mTOR can promote autophagy [14]. Both mTOR and AMPK by acting 
antagonistically regulate unc-51-like kinase 1/2 (ULK1/2) activity via phosphoryla-
tion. AMPK can promote autophagy through SIRT1 activation which in turn deacet-
ylates and activates several autophagy-related (Atg) proteins, such as Atg5, Atg7, 
and Atg8 in addition to activating ULK1/2 [70]. Importantly, ROS overproduction, 
NO deficiency, or nutrient deprivation primarily activate these regulatory pathways 
of autophagy [13, 14]. Since, in most mammalian cells, mitochondria are a major 
source of ROS, it is suggestive that close interrelationship exists among autophagy, 
mitochondrial ROS, NO production, and cellular apoptosis versus survival [71].

A number of studies implicate autophagy in the development and propagation of 
several cardiovascular disorders, such as HF, ischemia/reperfusion (I/R), atrial 
fibrillation, cardiac hypertrophy and atherosclerosis [9, 12, 72, 73]. For instance, 
Valentim et al. (2006) reported that inhibition of autophagy with 3-MA, augments 
viability of cells in I/R exposed cultured neonatal cardiomyocytes [74]. Likewise, in 
a mouse model of I/R, Beclin 1 knockdown enhanced cell death and also impaired 
autophagosome formation [75]. In addition, autophagy activation also promotes the 
initiation and progression of atherosclerotic plaques by promoting survival and de-
differentiation of vascular smooth muscle cells (VSMCs) [76–78]. Furthermore, 
autophagic activity when in excess, can incite plaque rupture, thrombosis and pro-
mote acute clinical events [79]. As mentioned earlier, mitochondria are the major 
source of intracellular ROS [80]. Meanwhile, only autophagy can remove the dam-
aged mitochondria; therefore, any condition related to heart that influences the 
removal of dysfunctional mitochondria signifies an important potential link between 
oxidative stress and CVDs. A study by Oka et al. (2012), demonstrated that DNA 
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from impaired mitochondria, that escapes from lysosome-mediated degradation by 
autophagy leads to HF via a Toll-like receptor (TLR) 9-associated inflammatory 
response, suggesting existence of a mechanism involving potential crosstalk 
between ROS, autophagy and inflammation in CVDs [81]. Besides, in another study 
it was observed that the exposure to lipopolysaccharide (LPS) induced mitochon-
drial DNA damage, autophagy, ROS, LOX-1 expression and the NLRP3 inflamma-
some in human THP-1 macrophages. Ding et al. [82] reported that ROS inhibitors 
as well as autophagy inducers downregulate the expression of NLRP3 inflamma-
some, while, autophagy inhibition augments the expression of the NLPR3 inflam-
masome [82]. Recently, Hu and Zhang (2017) showed that high fat diet attenuates 
the ROS levels, cell death and intracellular abnormalities in Ca2+ signaling, whereas, 
it activates autophagy in a NF-ΚB/JNK-dependent fashion and improves cardiac 
function in TLR4-deficient mice as compared with wild type animals [83].

4.6	 �Oxidative Stress in CVDs and Therapeutics

A passable knowledge along with advanced technology has changed our concepts 
of the mechanisms on the role of oxidative stress in chronic diseases in the past so 
many years. Although, RONS and the ensuing oxidative stress have been studied in 
the milieu of damage to biologically vital targets like DNA, lipids, or proteins, many 
antioxidant-based clinical trials have failed to generate a positive outcome in the 
context of human disease, particularly atherosclerosis and CVDs. As a consequence, 
there has been an ever-increasing appreciation of how oxidative damage misbal-
ances the target biomarkers and signaling molecules of vascular disease, involved in 
the pathophysiology of oxidative damage. Multifactorial etiology of CVDs makes it 
difficult to understand whether RONS intervention is apparent in all stages of the 
disease development, but therapeutic interventions have proved that naïve radicals 
greatly influence the CVD development. We are only now beginning to appreciate 
how these concepts facilitate the disease process.

The current regime of drugs used for vascular protection includes angiotensin-
converting enzyme (ACE) inhibitors and statins. The latter drug, an accepted cho-
lesterol inhibitor, does not directly act as an antioxidant, but indirectly hunt ROS by 
inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase 
pathway [84, 85]. The effectiveness of statins in plummeting the frequency of car-
diac clinical events and mortality is likely augmented by their impending antioxi-
dant characteristics and their potential to increase endothelial NOS (eNOS) 
expression [86]. Statins though known for their lipid-lowering effects, also have the 
competence to improve the bioactivity of nitric oxide and stability of atherosclerotic 
plaques. Statins are important and play a pivotal role during chronic statin therapy 
for the coronary heart disease owing to their pleotropic effects. Apart from statins, 
an array of antioxidant vitamins like E, A and C, lycopene, quercetin, and β-carotene 
have been tested and validated for their preventive and therapeutic benefits in vari-
ous CVD complications like I/R heart injury, ventricular remodelling, atherosclero-
sis, HF and MI [87]. Although, the association of oxidative stress in CVD origin has 
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been noticeably expounded, the focal aspect that remains is the decoding of the 
specific mechanisms involved in CVD pathogenesis. Even though, several studies 
have been carried out to elucidate the role of oxidative stress-related mechanisms 
involved in CVDs, nevertheless additional work is still warranted to look for the 
promising targets in oxidative stress- related CVDs. The past strategies to suppress 
the oxidative tissue damage were formed on a drug-target basis wherein, free radi-
cals were scavenged via chemical reactions. These drug entities have circumlocu-
tory antioxidant effects, at the same time, potentiating endogenous cellular NO 
production. As mentioned earlier, statins apart from their lipid-lowering potential 
are competent in plummeting Nox-related ROS production. Additionally, they are 
shown to induce and activate the NOS [88]. However, the current strategies are 
solely technical and molecular-based, wherein a responsible gene is silenced or 
mutilated by molecular methods. Additionally, both statins and blockers of the 
angiotensin system decrease mitochondrial oxidative stress. Together, there is a 
general agreement that the useful impact of therapy with statin inhibitors is at least 
in part arbitrated by properties that are self-regulating and not dependent on the 
haemodynamic or cholesterol-lowering effects of these drugs.

The drug target-based strategies are receptive immediately eg, use of carvedilol 
(β-adrenergic blocker) antagonists of the AT1 receptor, ACE inhibitors and other 
antihypertensive agents has been advocated [89]. Use of conventional and newer 
antihypertensive drugs like allopurinol and oxypurinol, have been reported to reduce 
the incidence of stroke, MI, and other fatal CVDs [90]. PPAR homologue has also 
been found to reduce ROS production and decrease p22phox expression [91]. A 
ubiquinol-based compound MitoQ complexed with Triphenylphosphonium (TPP) 
has been used as mitochondria-targeted therapeutic antioxidant to limit the patho-
logic source of ROS production, thereby preventing oxidative DNA damage while 
reducing atherosclerotic plaques in ATM gene mice models [92]. Use of gp91phox 
(Nox2) homologue, inhibitors of vascular Nox via pharmacological or gene target 
methods also holds the promise to improve the endothelial function limiting hyper-
tension. Genetic disruption of p47phox (involved in the formation of Nox) has been 
shown to inhibit the formation of atherosclerotic lesions in mice [93]. Tissue/organ-
specific nano-formulated particle carrier for delivery of antioxidants can also serve 
as novel therapeutic modality as referred by Jain et al. (2015) [94]. Role of vitamins 
as antioxidants have been a prime choice in the present treatment regime, however, 
the patients at risk need to be screened for oxidative stress markers at an early stage. 
This is needed to obviate or lessen the further tissue damage created by free radicals 
in later stages of CVD. In patients with manifested CVD, they can be diagnosed by 
the dysregulated oxidant, antioxidant enzyme expression, and function and treated 
using pharmacological modulators or gene target therapeutics with novel 
strategies.
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4.7	 �Oxidative Biomarkers and Antioxidant Therapy

The underlying phenomena of modulation of various redox enzymes leading to oxi-
dative stress have elucidated various biomarkers for CVD. These include compo-
nents of ox-LDL, oxidative phospholipids, and apoB containing lipoproteins. 
Lipoprotein-associated phospholipase A2 (Lp-PLA2) levels are modestly associ-
ated with high risk for CAD [95]. Since, MPO modified proteins and metallopro-
teinases are associated with collagen degradation, atherosclerotic lesions and 
non-fatal MI, serum MPO levels can serve as a suitable biomarker. Other markers 
of lipid peroxidation include F2α-isoprostanes, malondialdehyde, dienes, hydroper-
oxides, oxysterols and 7β-hydroxycholesterol. Although, thiobarbituric acid reac-
tive substances (TBARS) are commonly used in the conventional assay, other 
spectrophotometric techniques like GC-MS, HPLC, and RIA are also used. F2α-
isoprostanes have been used as gold standard for lipid peroxidation, a predictive 
marker of CAD using GC-MS technique. Likewise, 7β-hydroxycholesterol has a 
strong positive association with CVDs as shown by immunoassays [96]. Oxidative 
damage to proteins creates Amyloid precursor protein-mediated free radicals 
(AOPP) which are considered as critical biomarker endpoints of CVD. These AOPP 
have vast penetration power in tissue intima, hence are detected via ELISA immu-
nofluorescence assay. Some studies have reported the formation of protein carbon-
yls which causes vascular tissue damage, however, it needs validation through 
extensive studies and subsequent evidence. The other important oxidation product 
is hydroxyeicosatetraenoic acid, rated an important marker in recent studies for 
CVD that can be detected in body fluids via spectrophotometric techniques [96]. 
Gene expression analysis of few components of Nox (gp91phox, p22phox, p47phox, 
p67phox and rac) in endothelial cells, has revealed an association with the ROS 
production, hence they represent a potential candidate as novel biomarkers for the 
oxidative stress-related vascular diseases. Use of fluorescent probes like dihydro-
chlorofluorescein diacetate (DCFH-DA), 4-amino-5-methylamino-2′, 7′-difluoro-
fluorescein diacetate (DAF-FM DA) and 4,5-diaminofluorescein diacetate (DAF-2 
DA) in flow cytometry have been used to detect ROS/RNS as indices of oxidative 
stress [97]. Aggregation of platelets with leukocytes generates activated platelets, 
thus reducing the general platelet count in Platelet-rich plasma-platelet concentrate. 
These aggregated platelets are the indices of mitochondrial mitophagy, a hallmark 
of redox imbalance-induced CVD [98]. Recently, a molecular marker of oxidative 
stress and CVD in monocytes and macrophages has been developed in the form of 
reversible protein-S-glutathionylation that can be measured by western blotting or 
ELISA tests using monoclonal anti-glutathione antibodies [99].
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4.8	 �Trials on Antioxidant Vitamins

The role of Vitamin A, C, and E, carotenoids, lycopene and phytoconstituents as 
scavengers of free radical has been comprehensively studied as therapeutic modula-
tors to attenuate CVD.  Seven significant trials, which include Heart Outcomes 
Prevention Evaluation (HOPE) study (2545 subjects); α-tocopherol, β-carotene 
Cancer Prevention Study (ATBC; 27 271 males); Cambridge Heart Antioxidant 
Study (CHAOS; 2002 patients); Gruppo Italiano per lo Studiodella Sopravvivenza 
nell’Infarto Miocardico (GISSI)-Prevenzione trial (3658 patients); Medical 
Research Council/British Heart Foundation (MRC/BHF) Heart Protection Study 
(20536 adults); Primary Prevention Project (PPP; 4495 patients); and the Antioxidant 
Supplementation in Atherosclerosis Prevention (ASAP) Study (520 subjects), have 
been conducted, that positively reported that regular Vitamin E supplementation 
with a delayed release formulation of Vitamin C hampered the development of 
carotid atherosclerosis. Among these studies, the HOPE and HPS trials have not 
shown the significant benefits during atherosclerosis and plaque rupture due to the 
differences in their pattern of free radical scavenging [100]. Vitamins used as anti-
oxidants by Lane et al. (2008), Stephen et al. (1996), Ashor et al. (2014) in their 
studies have found that vitamins alleviate arterial stiffness in adults, with lower 
incidences of peripheral arterial diseases and noticeable decline in non-fatal MI rate 
in the vascular disease patients [101–103]. The phytoconstituents of tomato juice 
along with lycopene can attenuate or reverse the oxidative stress-related parameters 
in CVD patients as reported by Gitenay et al. (2007) [104]. The synergistic effect of 
phytoconstituents also improved post-ischemic ventricular function, reduction in 
the size of myocardial infarct and cardiomyocyte apoptosis. The type, dosage of 
vitamin supplements and the duration also gain importance while contributing for 
their antioxidant effects irrespective of the traditional risk factors. In addition, the 
inability of vitamins to scavenge H2O2 or HOCl in hypertensive vascular damage, 
inhibit ROS production, inaccessibility to ROS radicals produced in intracellular 
compartments and organelles are the considerable factors to analyze the compre-
hensive effectiveness of antioxidant vitamin therapy in CVD.

Since, it is well-known that oxidative stress has a vital role in the pathophysiol-
ogy of several CVDs, many studies were carried out to elucidate the therapeutic 
benefits of antioxidant therapy in various CVDs. However, apart from antioxidants, 
there are several candidates that may serve as potential candidate with therapeutic 
benefits against oxidative stress in CVDs.

4.9	 �Extremely Low-Frequency Pulsed Electromagnetic Field 
Exposure

For almost five decades, electric and electromagnetic fields (EMFs) in various 
forms have been employed to stimulate bone healing upon fractures as well as for 
the management of osteoporosis [105]. Recently, Ehnert et al. (2017) characterized 
the influence of ten defined (10 to 90.6 Hz) extremely low-frequency pulsed 
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electromagnetic fields (ELF-PEMFs) on differentiation of human osteoblasts 
through ERK1/2-engagement, by producing harmless amounts of ROS, mainly •O2

− 
and H2O2 [106]. Similarly to p38 and JNK, an oxidative stress stimulus which is 
frequently generated by the mitochondrial respiratory chain directly affects ERK1/2 
[107, 108]. Interestingly, in the above study it was observed that a single exposure 
to ELF-PEMF, triggered antioxidative defense mechanisms by increasing the 
mRNA and protein expression of CAT, SOD2, GSR and GPX3 as well as at enzyme 
activity levels. Furthermore, Raggi and colleagues (2008) showed that routine expo-
sure of 27 min/day for 10 days to ELF-EMF, reduced the blood levels of oxidative 
stress biomarkers in healthy volunteers [109]. At present, a number of theories are 
trying to investigate the effect of EMFs, which include variations in ion flux and 
membrane potential, activity of voltage-sensitive enzymes, re-organization of the 
cytoskeleton, regulation of gene expression via EMF-responsive sequences, as well 
as alterations in the oxidative state of the cells [110–112]. Thus, ELF-PEMF therapy 
might prove to be an interesting adjunct to classical antioxidant therapy under oxi-
dative stress conditions in CVDs.

4.10	 �γ-Glutamylcysteine Supplementation

Reduced glutathione (GSH) also referred to as the “master antioxidant”, is a tripep-
tide (γ-L-glutamyl-L-cysteinyl glycine) that is produced in the cytoplasm of every 
cell at concentrations upto 10 mM [113]. Beside acting as a reducing agent and a 
reservoir of cysteine, it is implicated in several physiological processes including 
proliferation, apoptosis, thiol disulphide exchange and xenobiotic metabolism 
[114]. The intracellular homeostasis or concentration of GSH, is regulated by an 
active balance of synthesis, depletion, transport as well as oxidative stress status in 
some tissues [114, 115]. The de novo synthesis of cytosolic GSH takes place by two 
consecutive reactions catalyzed by ATP-dependent enzyme. In the first reaction, 
γ-glutamylcysteine (γ-GC) is produced from L-cysteine and L-glutamic acid 
through creation of an unusual γ-peptide bond by glutamate cysteine ligase (GCL). 
In the second reaction, GSH is generated as a result of addition of glycine to γ-GC 
by glutathione synthetase (GS) [116, 117]. Hence, an increase in susceptibility to 
oxidative stress results in manifestation of GSH deficiency, which is supposed to be 
a vital player in the initiation and progression of several chronic diseases [118]. In 
a recent human pilot study by Zarka and Bridge (2017), it has been shown that cel-
lular GSH levels can transiently increase above homeostasis in human lymphocytes 
by oral supplementation of γ-GC [119]. Their finding that γ-GC can augment GSH 
levels in healthy human subjects suggests, that drugs or supplements capable of 
elevating levels of GSH could have therapeutic potential in treatment of numerous 
age-related chronic disorders including CVDs [120–122].
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4.11	 �HSP72 Augmentation

During the occlusion of coronary arteries, myocytes due to ischemia undergo 
hypoxia and reperfusion results in further injury due to oxidative stress. The isch-
emic as well as oxidative stress leads to an irrevocable myocardial damage. 
Although, I/R injury can be curbed by pharmacological interventions, none of them 
have shown any significant efficiency in reduction of I/R injury in multicentre clini-
cal trials [123–126]. A family of chaperone proteins known as heat-shock proteins 
(HSPs) ensure that the newly synthesized critical intracellular proteins are folded 
accurately and stabilized as well as also ensures the corrective refolding of proteins 
damaged due to oxidative and other cellular stresses. Both in vivo and in vitro stud-
ies have reported that the endogenously produced HSP72 demonstrates cardiopro-
tective effects [127–131]. However, due to delayed induction and production of 
endogenous HSPs, the efficiency of approaches to augment the endogenous levels 
of HSP72 is reduced, such as in acute MI, where early intervention is necessary. A 
study by Tanimoto et al. (2017) in a rabbit model of I/R injury, demonstrated the 
cardioprotective effects of a single intravenous dose of HSP72 attached to a single-
chain variable fragment (Fv) of monoclonal antibody 3E10 (3E10Fv) [132]. The Fv 
enables the rapid entry of HSP72 into cells with intact plasma membranes. It was 
observed that at the time of reperfusion, administration of single-dose of Fv-HSP72 
fusion protein reduced one-half of myocardial apoptosis as well as improved the 
function of left ventricle in rabbits after myocardial I/R injury [132]. This study 
suggests that targeted biological agents (such as antibody) that assist in rapid trans-
port of the therapeutic agent (such as HSP72) into cardiomyocytes might serve as a 
potential adjunct to I/R therapy in amelioration of ischemia and oxidative stress in 
CVDs.

4.12	 �Targeting Mitochondria to Curb ROS Generation

The activity of mitochondrial electron transport chain complexes is regulated via 
oxidants and electrophiles in an intricate manner. For instance, nitric oxide or its 
derivatives [133–135] and glutathione [136, 137] alter the activity of complex I 
(NADH ubiquinone oxidoreductase). Additionally, other complexes such as, com-
plex II (succinate dehydrogenase) and complex V (ATP synthase), have been shown 
to be altered by RONS [138, 139]. Similarly, RONS can also modulate the catalytic 
activity of several proteins of mitochondrial matrix including NADP+-isocitrate 
dehydrogenase [140], α-ketoglutarate dehydrogenase [141] and aconitase [142], 
along with the inter membrane space proteins such as creatine kinase [143] and 
cytochrome c [144]. In response to a greater demand in energy or stress, a limited 
amount of ROS is generated by mitochondria that act as signaling molecules to trig-
ger an endogenous stress response inducing antioxidant enzymes such as catalase or 
superoxide dismutase, as well as other defence pathways against stress leading to 
detoxification of ROS [145]. On the contrary, intracellular damage is also endured 
due to high ROS levels [146].
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Several approaches seem to have potential in apprehending the damage induced 
due to excessive mitochondrial oxidative stress. Firstly, mitochondria-targeted spe-
cific antioxidants such as MitoQ containing the covalently attached TPP cation to 
antioxidant ubiquinol, can reduce oxidative stress. MitoQ is a prospective therapeu-
tic candidate for mitochondrial oxidative stress, due to its ability to decrease cardiac 
I/R injury [147]. An additional approach to eradicate detrimental ROS production is 
the elimination of impaired mitochondria. Recently, studies have primarily targeted 
the inhibition of Drp1 (dynamin-related protein 1), which is intricated in mitochon-
drial fission. Specifically, inhibiting mitochondrial fission by the inhibitor mdivi-1 
protects the heart against I/R injury by reducing myocardial infarct size in mice 
undergoing I/R [148]. Another mechanism to eliminate dysfunctional or impaired 
mitochondria is upregulation of mitophagy by various molecular mechanisms, to 
prevent pathological ROS generation [149, 150]. Lastly, the proteasome machinery 
and the unfolded protein response represent other mechanisms that may have poten-
tial to maintain functional mitochondria.

4.13	 �Endoplasmic Reticulum Stress and the UPR Pathways 
in the Oxidative Stress-Induced Endothelial 
Dysfunction

The imbalance between ROS generation and antioxidants in endothelial cells can 
induce endothelial dysfunction (ED). ED is the initial pathogenic event of many 
CVDs as well as various metabolic diseases [151]. In addition to earlier mentioned 
sources of ROS, substantial evidence recognizes endoplasmic reticulum stress (ER 
stress) as another source of ROS [152]. Under normal conditions, the ER has lim-
ited antioxidant activity and is engaged in the tight regulation of folding and traf-
ficking of secretory proteins [153]. A number of pathophysiological conditions 
could disrupt the ER proteostasis by inducing the accumulation of misfolded or 
unfolded proteins within the ER [154, 155]. This condition leads to ER stress result-
ing in the activation of unfolded protein response (UPR) pathways [156]. The UPR 
pathways aim to re-establish ER proteostasis through diverse consequences such as 
reducing ER protein load, potentiating the ER quality control, activating the 
ER-associated protein degradation machinery (ERAD), and, finally, activating 
autophagy [157]. Since, protein folding is coupled to ROS production, the increase 
in folding load during ER stress intensely promotes ROS generation and leads to 
exacerbated oxidative stress [158, 159]. The ER stress activates the UPR pathways 
by way of three transmembrane transducers: the activating transcription factor 6 
(ATF6), the inositol-requiring kinase 1 (IRE1), and the pancreatic ER kinase 
(PERK) [160]. Since then, the correlations of ER stress and UPR to ED have been 
established in numerous studies in both animal and cellular models [161–163].

Two possible approaches can be utilized to neutralize oxidative stress-induced 
UPR. One is to directly manipulate the activity of specific UPR mediators. While 
other strategy entails the stimulation of auxiliary pathways potentiating the adaptive 
response against ER stress to relieve unfolding. A promising therapeutic approach 
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to reduce ER stress is characterized by the augmentation of the folding capacity of 
ER chaperones or by means of chemical chaperones. Two such chemical chaper-
ones are Sodium phenylbutyrate (PBA) and Tauroursodeoxycholate (TUDCA) that 
have been used for the treatment of primary biliary cirrhosis and urea-cycle disor-
ders respectively, and are approved by the Food and Drug Administration (FDA) 
[164–167]. Interestingly, TUDCA and PBA have also shown cardioprotection 
effects and therapeutic application in certain CVDs such as I/R and atherosclerosis 
[168–170]. Another promising strategy to counteract ER stress-induced ED is the 
modulation of Bip/GRP78, PDI or Ero1 activity. In particular, a screening study 
carried out by Kudo et al. (2008), identified the compound BIX (Bip inducer X) as 
inducer of Bip/GRP78 expression via the ATF6 [171]. Moreover, intracerebral 
administration of BIX in ischemic mice reduced the infarction area suggesting its 
possible use also in an ischemic heart [171]. An additional possible approach is the 
modulation of Ero1 activity. In this regard, Blais et al. (2010) identified EN460 as a 
small Ero1α inhibitor, reporting that EN460 interacted specifically with the active 
form of Ero1α and prevented its reoxidation [172].

Alternative therapeutic strategy for mitigating ER stress is the modulation of 
individual UPR pathways such as PERK/eukaryotic initiation factor 2α (eIF2α) and 
IRE1/XBP1. With regard to the modulators of the PERK/eIF2α axis, salubrinal pre-
vents the dephosphorylation of eIF2α through the inhibition of GADD34 and CReP 
(enzymes that direct the activity of the eIF2α protein phosphatase PP1) displayed 
significant protection from ER stress in several conditions [173–175] including MI 
[176, 177] and ox-LDL-mediated ED [178]. However, it has been observed that 
salubrinal could potentiate lipid-induced ER stress with cytotoxic outcome [179, 
180] suggesting that salubrinal administration in CVDs needs further corroboration 
in clinical conditions. Additionally, or as another approach, to the inflection of 
PERK/eIF2α signaling, the inhibition of the IRE1/XBP1 pathway can also be 
adapted to impair UPR in ER stress-dependent diseases. IRE1/XBP1 signaling can 
be hindered by inhibiting either IRE1 kinase activity or IRE1 RNAse activity.

4.14	 �Imaging Free Radicals in CVDs by Immuno-Spin 
Trapping

At present, the methodology used to elucidate oxidative stress depend upon the 
detection of either the steady-state intermediates or end products of oxidative stress 
or quantification of alterations of an exogenous probing molecule, such as dihydro-
ethidium (DHE), lucigenin, [(3-boronophenyl) methyl] triphenyl-phosphonium, 
monobromide (mitoB) [181, 182], mitochondria-targeted hydroethidine (MitoSOX), 
10-acetyl-3,7-dihydroxyphenoxazine (AmplexRed) or various electron paramag-
netic resonance (EPR) spin traps and probes [183–186]. Currently, majority of the 
techniques employed to identify biological free radicals in cells and tissues are not 
appropriate, either due to sensitivity limitations eg electron spin resonance (ESR), 
or manifest as artifacts that make the validity of the results uncertain (fluorescent 
probe-based analysis).
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However, all of these difficulties were negated with the advancement of the 
immuno-spin trapping (IST) technique. The principal of IST method is based on the 
formation of DNA -and protein-5, 5-dimethyl-1-pyrroline N-oxide (DMPO) nitrox-
ide radical adducts, owing to the reaction between DNA base-and amino acid-
derived radicals with the spin trap DMPO, respectively. Due to their limited stability, 
these adduct decay to yield a very stable macromolecule-DMPO-nitrone product. 
The identification of this stable product can be achieved using anti-DMPO nitrone 
antibodies by nuclear magnetic resonance (NMR), mass spectrometry, or immuno-
chemistry. Interestingly, all classes of macromolecule-derived free radicals gener-
ated in biological systems form DMPO-nitrone products, except for peroxyl radicals 
[187]. Moreover, the generation of macromolecular DMPO-nitrone adducts is not 
subjected to artifacts, which are recurrently detected with other techniques, since it 
is based on the specific reaction between free radical and spin trap DMPO.

Recently, Proniewski et al. (2018) quantified the oxidative modifications in car-
diomyocytes and coronary endothelium in the heart of a murine model of HF 
(Tgαq∗44 mice) showing that IST signifies a unique technique for quantifying oxi-
dative modifications [188]. The authors demonstrated that at the transition phase of 
HF in Tgαq∗44 mice, an increase in superoxide production leads to oxidative altera-
tions both in cardiomyocytes and coronary endothelium, despite the compensatory 
activation of antioxidants [188]. Thus, IST can be considered as an effective, sensi-
tive (a million times more than ESR), and easy technique to identify even low levels 
of free radicals generated, both in vivo and in vitro.

4.15	 �Conclusion

It is evident that oxidative stress is implicated in numerous age-related diseases 
including CVDs, neurodegenerative disorders, metabolic and inflammatory dis-
eases. Recent studies have shown that the ER stress could be a new player in the 
promotion of the pro- or anti-oxidative pathways in CVDs by modulation of UPR 
pathways. Although, the UPR pathway restore ER proteostatis by promoting an 
adaptive response, the continuous activation of UPR leads to augmented oxidative 
stress and cell death. Nevertheless, it will be fascinating to study the clinical and 
biological effects of new therapeutic interventions in in vivo and in vitro models of 
ER stress-dependent ED and CVDs, considering their therapeutic potential. 
Additionally, interplay between inflammation, autophagy and oxidative stress, is 
implicated in CVDs, however their contribution to the disease progression may 
vary. Therefore, the preference of NAC or vitamins E/C to curb oxidative stress, and 
rapamycin or trehalose for inflection of autophagy may be considered as a choice of 
treatment, however the efficacy of such regimens warrant case by case evaluation. 
Along with moderate aerobic exercise, antioxidant therapy such as resveratrol and 
other phytochemicals may prevent against the adverse effects of oxidative stress. 
Considering the efficacy of the treatment, different types of RONS biomarkers iden-
tified in CVDs may provide important information about the most effective drugs/
dose treatment regimens for patients. The efficacy of above mentioned novel 
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molecules has been tested in models of various diseases, however, not much data is 
available from CVD models. Hence, further investigations are required in order to 
define the optimal targets for a particular clinical condition, to design novel drugs, 
and to prevent probable side effects as a result of oxidative stress-induced 
perturbations.
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5.1	 �Introduction

Cardiovascular disease (CVD) is a generalized term used to describe debilitating 
conditions of heart, blood and vasculature of the body including events like coro-
nary artery disease, cerebrovascular disease, congestive heart failure, valvular heart 
disease, congenital heart disease, venous thromboembolism etc. [1]. Cardiovascular 
diseases are one of the leading causes of death in both developed and developing 
countries and accounts for approximately one third of deaths occurring all over the 
world [2]. In developing countries CVD occurs at an early age as compared to 
developed countries [3]. Both nutrition and environmental factors are linked to gen-
eration of reactive oxygen species (ROS) & reactive nitrogen species (RNS) [4] 
which are pivotal in the pathogenesis of cardiovascular diseases. Oxidative stress 
has been identified as one of the major factors for poor cardiovascular health [5] and 
altered ROS levels have been reportedly associated with atherosclerosis, stroke, 
congestive heart failure and other forms of cardiac diseases [6–8]. A balance 
between cellular levels of ROS and dietary intake of antioxidants is important for 
the maintenance of cardiovascular homeostasis [9].

A number of phytonutrients, vitamins and minerals, polyphenols, anthocyanins, 
flavonoids, saturated and unsaturated fat have shown beneficial implications in 
reducing cardiovascular risk [10]. Phytochemicals are known to have anti-
inflammatory properties like inhibiting oxidation of LDL, vascular smooth muscle 
cell (VSMC) proliferation and platelet aggregation [11] Polyphenols show cardio 
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protective activity by altering signaling pathways promoting anti-inflammatory 
mediators and limiting endothelial dysfunction [12]. Interestingly, they also alter 
DNA methylation status of key genes and regulate the expression of histone acety-
lases which are implicated in cardiac diseases [13, 14]. Apart from the traditional 
antioxidants, a few nonmetal trace elements like Selenium has shown to be a more 
potent antioxidant than vitamin E, C and β carotene, but is more toxic [15].

With this diverse range of antioxidants, it is important to understand the underly-
ing molecular pathways affected by them. This is all the more important since sev-
eral randomized intervention trials did not show beneficial effect of antioxidants 
[16]. For instance, low vitamin levels are associated with increased levels of homo-
cysteine, a thiol amino acid implicated as an independent risk factor for 
CVD. However, supplementation of B vitamins had no beneficial outcomes in terms 
of reduction of CVD risk [17]. This could be due to the differences in absorption 
and transport, sample cohort selection, dose of antioxidants [18] which is likely to 
vary among individuals. The controversy regarding antioxidant supplementation 
thus warrants further- replication in large scale population trials.

Over the years, a number of drugs have been repurposed as antioxidants like 
NAC (N-acetyl-cysteine) and allopurinol and are used as therapeutic agents for 
CVDs [19]. NAC has been identified as an anti-thrombotic agent used in Type 2 
diabetic patients [20]. On the other hand, allopurinol generally known as xanthine 
oxidase inhibitor is shown to improve left ventricular function and cardiac contrac-
tility [21]. Recent reports also claim that antioxidants confer better activities by 
modulating Th1/Th2 profile and it is observed that antioxidant trials sometimes fail 
because they are not supplemented taking into account their immune-oxidative 
properties [22]. Antioxidants, thus, employ several mechanisms to scavenge free 
radical stress inside the cell generated via cross talk of several signaling pathways. 
In this chapter, we broadly put forth the biochemical, pharmacokinetic and immune 
modulatory properties of dietary antioxidants and their downstream targets of action 
which have the potential to mitigate oxidative stress under abrogated cardiovascular 
conditions.

5.2	 �Dietary Antioxidants as Scavengers of Oxidative Stress: 
A Preventive Therapy

Mounting evidences suggest that oxidative stress characterized by accumulating 
levels of reactive oxygen species and reactive nitrogen species collectively called 
RONS is involved in the progression of cardio metabolic diseases [23, 24]. They are 
scavenged via antioxidants either enzymatically or non-enzymatically to mitigate 
oxidative stress in biological systems [25]. The enzymatic group of antioxidants 
present in the diet include catalase, superoxide dismutase and enzymes of glutathi-
one thioredoxin system i.e. glutathione reductase, glutathione peroxidase and gluta-
thione S transferase, which are involved in breakdown of hydrogen peroxide and 
hydroperoxides [26]. Superoxide dismutase utilize copper/zinc in the cytosol and 
manganese in mitochondria as cofactors for catalyzing the breakdown of 
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superoxide anions into oxygen and hydrogen peroxide [27]. The non-enzymatic 
group on the other hand, comprises antioxidants which act on oxidative agents 
directly and can be acquired from dietary sources including vitamins (vitamin A, E, 
C), carotenoids, flavonoids, polyphenols, proline and many more [28]. The inter-
play of these antioxidants aid in survival against environmental stresses. In this 
section, we discuss the bioavailability, mechanism of action and therapeutic benefits 
of the natural antioxidants. The efficacy of the antioxidants can vary depending on 
several important factors both intrinsic (activation energy, rate constants, volatility, 
heat susceptibility, solubility, oxidation reduction potential) and extrinsic (radical 
chain reaction inhibitors, metal chelators, enzyme cofactors) properties [29].

5.2.1	 �Vitamins and Minerals

Vitamins and minerals owing to their antioxidant properties, play a major role in 
prevention of CVDs [30]. Antioxidant vitamins include vitamin C, vitamin E, folic 
acid, B group vitamins (B6 and B12), vitamin D, and coenzyme Q10. Vitamins are 
excellent free radical quenchers with the only difference stemming from their vary-
ing solubility in lipids and water. Vitamin C is water soluble and mostly abundant in 
body fluids [31] whereas vitamin A & E owing to their lipid soluble nature are 
mostly found in cell membranes and lipoproteins [32, 33]. Folic acid (Vitamin B9) 
also acts as a powerful anti-oxidant [34]. They are involved in lowering down the 
risk of several diseases like cancer, cardiovascular disease, diabetes and neurologi-
cal diseases [35–38].

5.2.1.1	 �Vitamin C
Vitamin C (commonly known as ascorbic acid) is a hydrophilic molecule and is 
known to scavenge free radicals in aqueous environment within the cell [39]. It has 
a unique structure with two adjacent hydroxyl groups and a carbonyl, which makes 
it an excellent hydrogen or electron donor [40]. It therefore, acts as a co-factor of 
enzymatic reactions and as an anti-oxidant too. On oxidation, ascorbate is converted 
into ascorbate free radical (AFR), which does not undergo further oxidation but 
instead reduced back to ascorbate via NADH-dependent and independent mecha-
nisms [41]. This increased oxidative condition leads to AFR accumulation, which 
results in reaction of two AFR molecules to produce one molecule of ascorbate and 
one molecule of dehydroascorbate (DHA). DHA can then be reduced back to ascor-
bate, or hydrolyzed to gulonic acid [42].

There is an inverse relationship between vitamin C and coronary artery disease 
and it has been reported that the concentration of ascorbate levels were lower in the 
aorta of atherosclerotic patients in comparison to healthy controls. Vitamin C inhib-
its LDL oxidation and it has been speculated that low vitamin C levels in the aorta 
could predispose the person to LDL oxidation leading to atherosclerosis [43]. The 
experimental models of atherosclerosis in guinea pigs, rabbits and rats are not well 
established. But since these animals cannot synthesize vitamin C and need supple-
mentation to fulfill the requirements, it has been widely used to study ascorbic acid 
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deficiency. Guinea pigs were fed with low vitamin C containing diet to induce vas-
cular dysfunction. Low vitamin C diet along with high fat diet in guinea pigs is 
shown to be associated with increased severity of atherosclerosis [44, 45] and on 
supplementation resorption of lesion has been observed [46]. It has also been shown 
that with increased intake of vitamin C cholesterol deposition gradually decreased 
in scorbutic guinea pig model [47]. Various studies have also shown the develop-
ment of aortic tissue abnormalities such as endothelial cell proliferation and intimal 
fibrotic plaque formation in chronic hypovitaminosis model of vitamin C [48]. On 
the other hand, anti- atherogenic effects of vitamin C supplementation using rabbit 
have been described using hypercholesterolemic animal models [49, 50]. The sup-
plementation of vitamin C in rabbits is shown to reduce the lipid and cholesterol 
accumulation, intimal thickening, and lipid-laden foam cells and also led to lower 
severity of atherosclerosis in cholesterol fed diet [51]. Thus, low levels of vitamin C 
leads to vascular dysfunction in guinea pig based atherosclerotic models and sup-
plementation of vitamin C inhibit cholesterol-induced atherosclerosis in rabbit 
models. In addition to these two-model systems, effect of vitamin C supplementa-
tion on rats and nonhuman primate has also been reported. In rats it is shown that 
vitamin C supplementation reduced cholesterol and phospholipid deposition [52]. 
The nonhuman primate done in monkeys suggested hypercholesterolemic effect of 
vitamin C deficiency [53]. The relationship between vitamin C status and total 
serum cholesterol level is complex. Low vitamin C levels seem to be associated to 
several cardiovascular risk factors, including high serum cholesterol, low HDL, 
hypertension, smoking, etc. [54–59]. However, it is not well understood whether 
these are instrumental in the development of atherosclerosis or is merely secondary 
markers for these risk factors. The epidemiological data on descriptive, dietary 
intake, blood based, case-control, prospective cohort studies suggest the possible 
benefit of vitamin C but the available data are controversial [60]. Various in vivo and 
in vitro studies have been carried out to investigate the possible modulation of cho-
lesterol absorption, biosynthesis, catabolism, and excretion due to vitamin C. It has 
been shown that the hypercholesterolemic effect of chronic vitamin C deficiency is 
probably due to decreased catabolism of dietary cholesterol [61, 62]. Further, it is 
reported that the biosynthesis of cholesterol due to vitamin C deficiency is at best 
partially impaired due to inhibition of HMG-COA reductase, a rate limiting enzyme 
in cholesterol biosynthesis [63–67]. Vitamin C deficiency impairs the cholesterol 
catabolism to bile acid via cholesterol 7a-hydroxylase [68–75]. Interestingly, vita-
min C does not have direct effect on cholesterol-7α-hydroxylase instead it decrease 
the microsomal cytochrome P-450 fraction specifically involved in cholesterol 
7α-hydroxylation [69, 72, 76]. The high cholesterol levels in vitamin C deficiency 
could also be due to lipoprotein metabolism. Vitamin C deficiency has been shown 
to cause low plasma HDL cholesterol, low HDL to total cholesterol ratio [77–79], 
increased serum LDL levels mediated by decreased catabolic rate of LDL [79, 80] 
affect LDL receptor synthesis [81] and decrease activity of lipoprotein lipases with 
resultant hypertriglyceridemia [45, 82, 83].
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5.2.1.2	 �Vitamin E
Vitamin E includes a group of lipophilic molecules mainly four tocopherols and 
four tocotrienols [84]. These molecules are lyophilic in nature due to the presence 
of long saturated and unsaturated phytyl chain in tocopherols and tocotrienols 
respectively [85, 86]. However, the antioxidant property of Vitamin E is contributed 
by the presence of a chromanol ring. Naturally occurring vitamin E s are α, β, γ, and 
δ defined by the position of methyl or proton groups attached to chromanol ring. 
α-tocopherol is the most abundant and biologically active form of vitamin E in 
plasma [87]. Due to its lipophilic nature it is mostly found in plasma membrane 
(mainly in Golgi membrane and lysosome) [88] and lipoproteins [89]. Vitamin E is 
known to exhibit various biological functions that are mediated by its both non-
antioxidant (by modulating various signaling pathways) [90, 91], and anti-oxidant 
nature (by acting as free radical scavenger) [84]. Activities of various proteins 
involved in signal transduction such as protein kinase C and B, protein tyrosine 
kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, pro-
tein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinases are 
modulated by vitamin E [92, 93]. These proteins play a crucial role in smooth mus-
cle cell proliferation [94, 95]. Vitamin E has an inhibitory effect on protein kinase C 
(PKC) mediated by the activation of phospho-serine/threonine phosphatase 2A 
(PP2A) which dephosphorylate PKC [92, 96]. The inhibition of PKC prevents 
smooth muscle cell proliferation [94, 95]. Vitamin E reduces oxidized LDL medi-
ated apoptosis and potentially lower atherogenic effects via reduction of mitogen 
activated protein kinase (MAPK) [97]. It is also known to inhibit Protein Kinase B 
(PKB) and activate protein tyrosine phosphatase, both prevent cell proliferation and 
help in cell survival [93].

Another major role played by vitamin E is the enhancement of endothelial func-
tion by increasing the production of the prostanoids PGI1 and PGE2 in human aor-
tic endothelial cells by increasing the release of arachidonic acid. [98]. The increased 
release of AA is due to increased phospholipase A(2) accompanied by the decrease 
in cyclo-oxygenase (COX) 1 and 2 activity.[98]. Vitamin E also increases nitric 
oxide dependent relaxation by increasing the phosphorylation of endothelial nitric 
oxide synthase (eNOS) at serine 1177, leading to increased nitric oxide (NO) levels 
[99] thus, preventing atherosclerosis by improving the endothelial dysfunction. 
Vitamin E also decreases vascular cell adhesion molecule-1 (VCAM-1) expression 
in hypercholesterolemic patients [100].

Vitamin E is also known for the regulation of inflammatory processes which is 
mediated via regulating expression of cell surface and cell adhesion proteins and 
inflammatory chemokines [91, 101–106]. Supplementation of vitamin E in humans 
has shown to decrease the levels of these cell adhesion molecules [100, 105, 107]. 
The pro-inflammatory cytokines, which are inhibited by Vitamin E includes TNF-α 
(tumor necrosis factor-α) [108] and IL-1β (interleukin-1 β) [90, 106]. Further, vita-
min E plays a role in decreasing the expression of CD36 on the surface of macro-
phages thus reducing the uptake of oxidized LDL [109, 110]. Vitamin E also 
regulates the respiratory burst in macrophages by inhibiting the inducible NOS 
(iNOS) and NADPH oxidase [111, 112].
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The most widely discussed role of vitamin E is its antioxidant functions to pre-
vent the lipid peroxidation [113] and protecting polyunsaturated fatty acids present 
in the membrane. Vitamin E scavenges the lipid peroxyl radicals, further preventing 
the free radical generation and hence termination of the oxidative chain reaction 
[84]. Vitamin E oxidized in the process is reverted back by the action of Vitamin C 
and ubiquinols, preventing the accumulation of vitamin E radicals and peroxidation 
of lipids [114, 115]. Alpha tocopherol initiates the antioxidant cycle by transferring 
the H transfer to lipid peroxyl radicals. Due to the presence of polar phenol group 
of vitamin E, it does not diffuse in micelle but remain at the interface, which helps 
this molecule to be present at the interface of water membranes. This particular 
arrangement helps in reaction of vitamin E free radical with water-soluble antioxi-
dants, which regenerate vitamin E [116, 117]

5.2.1.3	 �Vitamin A
Vitamin A consists of unsaturated lipophilic molecules that include retinol, retinal, 
retinoic acid and provitamins A carotenoids (mostly β-carotene) [118]. Retinol 
(alcoholic form) is the dietary form of the vitamin A [119]. Vitamin A is essentially 
obtained from the dietary sources such as liver, milk, leafy and root vegetables. All 
forms of vitamin A have a beta-ionone ring attached to a retinyl group. Vitamin A 
majorly exists as an ester (retinyl palmitate) in tissues, which is converted to an 
aldehyde (retinal), or as an acid (retinoic acid) form. Retinol can also be converted 
to retinal by oxidation, which can be in turn further oxidized to retinoic acid [119, 
120]. Retinol and retinyl esters act as a precursor for the biologically active iso-
forms of retinoid, which includes all-trans (predominant forms), 11-cis, 13-cis, 
9,13-di-cis, 9-cis, and 11,13-di-cis forms [120, 121]. Trans forms of retinoic acid 
influence the biological activities by activating certain members of the steroid hor-
mone nuclear receptor family particularly RAR and RXR. The RARs and RXRs has 
subtypes α, β, and γ which binds to different forms of retinoids to regulate steroid 
hormone controlled mechanisms such as metabolism, inflammation, immune func-
tion, and development of sexual characteristics.

Vitamin A and its active metabolites also have both anti-oxidative and anti-
proliferation properties such as prevention of angiogenesis, cellular growth and oxi-
dative balance and thus are believed to be relevant for the atherosclerotic process 
and hence cardiovascular risk [121–124]. Several studies have highlighted the effect 
of trans retinoic acid on intimal hyperplasia following vascular injury using animal 
models [122]. All-trans retinoic acid have also been shown to inhibit proliferation, 
increase smooth muscle cell migration and decrease its differentiation at the site of 
vascular injury, reduce the carotid hyperplasia, endothelial cell mediated vasodila-
tion, increased endothelial cell survival and reducing foam cell formation via RARα 
[119, 122, 125]. It is shown that since nuclear receptors RARs and RXRs are drug-
gable targets, local stimulation of nuclear receptors in the vessel wall looks promis-
ing for potential treatment of atherosclerosis [126]. Retinoic acid also plays a role 
in inflammation by interfering innate and adaptive immune function by down-
regulating B-cell and enhancing T-cell proliferation along with modulation of pro-
inflammatory cytokines and C reactive proteins [120, 127, 128]. Retinoic acid 
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through RAR receptors inhibit B cell apoptosis whereas via RXR receptors improves 
dendritic cell maturation and antigen-presentation in the presence of tumor necrosis 
factor (TNF) [120]. Retinoic acid also induces IL-1β expression and inhibits IL-1 
receptor antagonist expression in activated monocytes. On the other hand in macro-
phages, it inhibits endotoxin, IFN-γ, IL-12, and TNF production [120, 128]. 
Retinoids also regulate the endothelial cell adhesion molecule (VCAM1) expres-
sion by suppressing TNF-stimulation that is an early stage inflammatory response in 
atherosclerosis [129]. CRP is an inflammatory biomarker produced at the site of 
vascular lesion is associated with CVD [130]. CRP production is mainly regulated 
by IL-6, whereas the IL-6 production is regulated by a transcription factor NF-IL6. 
Retinoic acid is known to antagonize NF-IL6 thus reducing CRP [120]. Vitamin A’s 
also have antioxidative properties. It can bind to single oxygen species and free radi-
cals forbidding their reaction with polyunsaturated fatty acids and thus reducing 
lipid peroxidation [119]. Vitamin A also subdues the activity of lipid peroxidation 
enzymes and prevents protein glycosylation in cell membranes [119, 123]. Vitamin 
A and CVD have been studied in various cohort studies and case control studies 
showing inverse relation of plasma retinol levels with CVD risk [131].

5.2.1.4	 �Vitamin D
Vitamin D (with biological active form 1α,25-dihydroxyvitamin D) is also a fat-
soluble vitamin which functions primarily as a steroid hormone. The dietary forms 
of Vitamin D are vitamin D3 (also known as cholecalciferol) and vitamin D2 (ergo-
calciferol) obtained from animal and plant products respectively [132]. Vitamin D3 
is mainly produced in skin on exposure to ultraviolet light [133]. The two step 
hydroxylation reactions by cytochrome P450 enzymes (CYP2R1 and CYP27B1) of 
vitamin D3 and D2 in liver and kidney produces biologically active form 1α,25-
dihydroxyvitamin D [1,25(OH)2 D] [132]. The 25-hydroxyvitamin D [25(OH)D] is 
first produced which is the circulating biomarker of vitamin D status [134, 135]). 
Subsequent hydroxylation leads to formation of active form, 1α, 25-dihydroxyvitamin 
D [1,25(OH)2 D] or calcitriol [132, 136]. Vitamin D concentrations in arterial wall 
can be different from circulation as VSMCs, endothelial cells, macrophages, and 
dendritic cells can produce calcitriol via CYP27B1 activity [137, 138]. Calcitriol 
mediates its function by binding to Vitamin D Receptors (VDRs). VDRs belong to 
a nuclear receptor superfamily and genes with vitamin response elements in their 
promoter region response to VDRs. These genes are involved in controlling of vari-
ous processes in CVD, such as stating from cell proliferation and differentiation, 
oxidative stress, matrix homeostasis, and cell adhesion etc. [139] VDRs have been 
found in all the major cardiovascular cell types, including VSMC, endothelial cells, 
cardiomyocytes, most immune cells, and platelets [140–143]. VDR binds calcitriol 
with high affinity and heterodimerizes with retinoid X receptor [144].

The hormonal derivative of vitamin D, calcitriol, not only influence calcium and 
phosphorus homeostasis but also influence various cardiovascular outcomes such as 
inhibition of VSMCs proliferation, preventing vascular calcification, down-
regulation of proinflammatory cytokines and up-regulation of anti-inflammatory 
cytokines, controls parathyroid hormone secretion and regulate renin-angiotensin 
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system negatively [145, 146]. Vitamin D through endocrine, paracrine, and auto-
crine regulate inflammatory processes [147]. Proinflammatory cytokines such as 
interleukin-1 (IL-1), IL-2, IL-6, IL-23, tumour necrosis factor-α, and interferon-γ 
are downregulated, and anti-inflammatory ones such as IL-4 and IL-10 are upregu-
lated [148–150].

5.2.2	 �Minerals

Minerals play a very crucial role in maintaining cellular metabolism and proper 
functioning of cardiovascular system. While a number of metals like zinc, iron, 
copper, magnesium has shown associations with cardiovascular outcome, trace 
minerals like selenium has shown contentious effects in population trials. Zinc and 
selenium supplementation have shown to reduce lipid peroxidation, angiogenic 
and inflammatory markers in rat model [151]. Selenium, in combination with tau-
rine, has also shown protective effect in rats against myocardial infarction where it 
curtails the expression of proinflammatory and proapoptotic factors and also 
restore contractility functions [152]. Selenium is known to regulate cardiomyocyte 
apoptosis through regulation of STAT3 transcription factor and mitochondrial 
energetics [153]. Selenoproteins also block contributing pathways of atherosclero-
sis majorly endothelial dysfunction, migration of monocytes, foam cell formation, 
vascular calcification and apoptosis [154]. Insufficiency of minerals like potassium 
and magnesium has been associated with predisposition of hypertension, a risk 
factor of myocardial infarction and stroke [155]. Meta-analysis also suggests a 
reciprocal relationship between dietary magnesium intake and risk of hypertension 
[156]. It is speculated that upon magnesium administration, N type calcium chan-
nels are inhibited which in turn, also inhibits the release of noradrenaline in spon-
taneously hypertensive rats [157]. Further, magnesium deficiency has been linked 
to insulin resistance in vitro [158, 159]. Furthermore, several studies have identi-
fied iron overload (also termed as hyperferritinemia) to be associated with inflam-
mation and metabolic syndrome [160]. It is hypothesized that iron accumulation 
inside the arterial wall macrophages lead to the generation of ROS [161], and acti-
vation of NF-kβ with concomitant increase in TNF-α levels [162]. Interestingly, 
another study suggests that gender specific differences of cardiovascular risk could 
be explained by the reduced bioavailability of redox active Fe during menstrual 
period in women [163]. Elevated levels of copper have been shown to be a caus-
ative factor for ROS generation and subsequent oxidation of lipids, proteins, DNA 
& homocysteine [164]. In contrast, copper deficiency has been found to be mediate 
atherogenic processes, mechanisms of which have been attributed to increased pro-
tein glycation, alteration in levels of copper dependent antioxidant enzymes, dete-
rioration of protein structure and functions maintaining structural integrity of heart 
and blood vessels [165].
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5.2.3	 �Carotenes and Carotenoids

Carotenoids are fat soluble pigments synthesized by plants responsible for impart-
ing protection to the plants from photo-oxidative damage and also impart color to 
fruits and vegetables [166]. They scavenge singlet molecular oxygen and peroxyl 
radicals [167]. β-carotenes are the most common form of carotenoids and have 
shown promising results in intervention trials. Other forms of carotenoids include 
lycopene, lutein, zeaxanthin which are not converted to pro vitamin A in humans 
[168]. On the contrary, β carotene is the major source of pro vitamin A in the diet 
which is found to be effective at reducing the rate of lipid peroxidation and hence 
could potentially reduce atherosclerotic risk [169]. Further, it improves immune 
function by protecting phagocytes from auto oxidative damage, enhancing T and B 
lymphocytes proliferative action, enhancing effector T cell function and macro-
phage and NK cell tumoricidal capacity [170]. A number of different biological 
reasons have been attributed to the atheroprotective effects of dietary carotenoids 
which involve lowering of serum cholesterol by inhibiting cholesterol biosynthetic 
enzyme, (3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase), increase in 
serum high density cholesterol (HDL), reduction of acyl-CoA-cholesterol acyl 
transferase (ACAT) activity which have been identified to be mediated via lycopene 
administration in animal models [171]. Interestingly, although carotene has been 
shown to be beneficial, consumption above dietary recommended doses has been 
shown to be detrimental and could lead to chronic diseases like cancer and cardio-
vascular disease [172]. Carotenoids are known to regulate oxidative stress via Nrf-2 
pathway, thereby facilitating its translocation into the nucleus, and activating phase 
II enzymes and glutathione-S-transferases. In addition, they inhibit the production 
of proinflammatory cytokines (IL-8 or PGE-2) by interfering with NF-kβ pathway 
[173]. Alpha tocopherol and astaxanthin, (group of carotenoids synthesized by 
microalgae and phytoplanktons) showed improved plaque stability by decreasing 
macrophage infiltration and decreased apoptosis [174].

5.2.4	 �Polyphenols

Polyphenols are the most abundant form of antioxidant present in the diet with both 
pro and antioxidant properties and having contrasting physiological effects [175]. 
They are mostly present in two predominant forms, derivatives of benzoic acid and 
cinnamic acid [176]. The various kinds of polyphenols differ in their bioavailability 
which integrates different genetic and environmental variables [177]. Their mecha-
nism of action go beyond controlling oxidative stress and involve inducing apopto-
sis and preventing tumor growth [178]. Polyphenols regulate the levels of oxidative 
stress biomarkers closely associated with cardiovascular diseases and are known to 
reduce the production of ROS and facilitate the production of nitric oxide (NO) in 
the aorta [179]. They are known to act as chelator of metal ions like Fe2+ and prevent 
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the lipid oxidation caused by highly reactive hydroxyl radicals [180]. Polyphenols 
have been shown to reverse at least partially the damaging effects caused by high 
glucose and free fatty acids that tend to decrease eNOS phosphorylation and bio-
availability of NO and increase endothelin-1 synthesis all of which are contributors 
of ROS production and endothelial dysfunction [181]. In a rat model fed with high 
cholesterol diet, reduced lipid levels were observed upon administration of polyphe-
nols [182]. Dietary intervention with polyphenols in different animal model based 
studies has highlighted its anti-obesity and hypolipidemic properties [183]. In a 
myocardial ischemic injury model, polyphenols have shown athero protective ben-
efits by inhibiting H2O2-induced oxidative stress through Akt/GSK-3β/caveolae 
pathway and also by preventing the activation of redox sensitive transcription fac-
tors NF-kβ/STAT-1 and subsequent PI-3K/Akt signaling pathway [184]. Also, poly-
phenols are also known to reduce cytosolic Ca2+ overload and improve myocardial 
contractility [185]

5.2.5	 �Flavonoids

Flavonoids are a group of natural phytochemicals belonging to the family of pheno-
lic acids having antioxidant, antimicrobial, anti-allergenic and anti-inflammatory 
properties [186]. Flavonoid intake is associated with reduced LDL oxidation and 
endothelial injury thus reducing the risk of atherosclerosis [187]. It helps prevent 
blood clotting, lower blood cholesterol and improve insulin sensitivity [188, 189]. 
Quercetin, a flavonoid, is known to inhibit xanthine oxidase activity thereby reduc-
ing oxidative injury observed in ischemia-reperfusion [190]. Quercetin possesses 
iron chelating and iron stabilizing properties which again makes them useful as 
antioxidants [190]. In addition to free radical scavenging and metal ion chelating 
properties, flavonoids are known to act on several players of protein and lipid sig-
naling pathways like phosphatidylinositol 3 kinase (PI3K), protein kinase B (Akt/
PKB), tyrosine kinase, protein kinase C (PKC), and MAP kinase (MAPK) [191]. 
These exhibit their modulatory effects by altering phosphorylation status of their 
target genes and altering gene expression [192]. Flavonoids are known to bind to the 
ATP binding site for a number of proteins like mitochondrial ATPase, topoisomer-
ases, calcium plasma membrane ATPase and protein kinase A and C [192]. They 
also prevent the activation of oxidative stress induced apoptosis by preventing the 
activation of JNK and activators of STAT pathway in endothelial cells [193]. 
Alternatively, they might regulate cytochrome c release during apoptosis by modu-
lating mitochondria transition pore [192]. Flavonoids circumvent inflammation by 
modulating several pathways such as inhibition of arachidonic acid metabolism 
[194], reducing complement and platelet activation [195] and also by reducing the 
release of myeloperoxidases by neutrophils [196].
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5.2.6	 �Anthocyanins

Anthocyanins are an important class of plant secondary metabolites known to pro-
tect plants against biotic and abiotic stress [197]. They are important for their car-
dioprotective activity as well as their protective effects against insulin resistance 
[198, 199]. Anthocyanin are broadly involved in three important processes of energy 
metabolism. They are substrates for complex I electron transfer system, mild uncou-
plers of oxidative phosphorylation and reduce cytochrome c release from mitochon-
dria [199]. They are known to decrease of the activity of NADPH oxidase, reducing 
the production of superoxides [200]. The mRNA levels of several antioxidant 
enzymes like catalase, glutathione peroxidase, superoxide dismutase [201], heme 
oxygenase 1 [202], are also increased by anthocyanins. They have further been 
shown to inhibit palmitic acid induced ROS production in HUVEC cell line and also 
decreased p53 levels [179]. Anthocyanins have been shown to possess anti-
inflammatory properties in ulcerative colitis patients where a 6 week long treatment 
with anthocyanin-rich bilberry extract lead to the reduction in the levels of TNF-α 
and MCP-1 [203]. Additionally, they are known to inhibit the expression of adhe-
sion molecules (ICAM) involved in the recruitment of [204]. In an independent 
study conducted on hyperlipidemic ApoE knockout mice, anthocyanin extract has 
shown to improve lipid profile, inhibit vascular inflammation and monocyte migra-
tion by inhibiting expression of vascular cell adhesion molecule 1 (VCAM-1) [205]. 
Besides, anthocyanins inhibit the function of adipogenic transcription factors like 
peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding 
proteins (C-EBPs), sterol regulatory element-binding protein-1c (SREBP-1c) and 
also reduce the expression of fatty acid binding protein, fatty acid synthase and 
leptin in 3T3-L1 pre adipocyte cell line, and is thus associated with reduced fat 
accumulation in adipocytes [206].

The cardioprotective abilities of these conventional antioxidants like vitamins 
and minerals, polyphenols, flavonoids and anthocyanin are attributed to their 
immune regulatory properties as well. However, there are a growing number of 
unconventional dietary antioxidants which mitigate the effects of excess ROS gen-
eration under different vascular abnormalities. According to a recent report, a pecan 
rich diet (containing mono and poly unsaturated fat, phenols, flavonoids, proantho-
cyanidins and essential minerals) was observed to reduce the risk of cardiometa-
bolic diseases in a randomized controlled trial in healthy, middle aged and older 
adults [207]. This pecan rich diet also improved insulin sensitivity, inflammation 
and oxidative stress status [207]. Apart from this, a Mediterranean diet (rich in 
α-linolenic acid, ω 3 fatty acids, phytosterols, & folic acid) reportedly have the 
potential to reduce cardiovascular disease related mortalities [208]. This has also 
been identified as one of the major preventive therapy for hypertension and throm-
bosis [209]. As part of a flagship study in “PREDIMED” trial a modified form of 
Mediterranean diet comprising of extra virgin olive oil and almonds was found to 
reduce the levels of oxidized LDL and blood pressure [210]. A study based on 
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“PREDIMED” cohort showed that dietary intervention with Mediterranean diet is 
able to downregulate the expression of atherosclerotic and thrombotic genes playing 
important role in vascular foam cell formation, ventricular remodeling and inflam-
mation [211]. They have shown inhibitory effects on inflammation related genes 
like cyclooxygenase 2 (COX-2), low density lipoprotein receptor related protein 
1(LRP-1), monocyte chemo attractant protein (MCP-1) and thrombotic genes like 
tissue factor pathway inhibitor (TFPI) [212]. A number of preclinical and clinical 
studies have reported the antihypertensive, antithrombotic effects of the antioxidant 
dietary flaxseed oil (enriched in ω-3 fatty acid, α-linolenic acid and the antioxidant 
lignan secoisolariciresinol diglucoside) which exert beneficial effects in supplemen-
tation trials [213]. In streptozotocin-nicotinamide (STZ-NIC) induced diabetic rats, 
flaxseed oil is shown to upregulate the expression of antioxidant enzymes like cata-
lase (CAT), SOD and GPx, and on the other hand downregulate the expression of 
heme oxygenase 1 and pro inflammatory genes (TNF-α, IL-6, MCP-1, IFN-γ, 
NF-κB) [214] (Fig. 5.1).

5.3	 �Molecular Mechanisms Employed by Antioxidants 
to Mitigate Oxidative Stress in Cardiovascular Diseases

Oxidative stress and inflammation are major pathological features of cardiovascular 
diseases [215]. In this section, the advantages of antioxidant supplementation for 
the prevention of different forms of CVD have been discussed.

Fig. 5.1  The interplay of several signaling pathways contributing towards atherosclerosis and 
various antioxidants mitigating the levels of ROS through modulation of different signaling 
pathways
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5.3.1	 �Atherosclerosis

Dietary antioxidants inhibit LDL oxidation, cellular lipid peroxidation and control 
inflammation to mitigate the progression of atherosclerosis and associated vascular 
complications. Hyperlipidemic conditions, lead to redox imbalance and generation 
of excess reactive oxygen species leading to endothelial cell injury and atheroma 
formation [216]. Serum levels of homocysteine, cysteine, malondialdehyde have 
been identified as markers of oxidative stress which is presumably attenuated via 
exogenous antioxidant supplementation [217]. In the “FLAVIOLA HEALTH 
STUDY” it has been shown that cocoa flavonol supplementation for a month led to 
marked improvement in Framingham risk score and predicted a significant lowering 
of cardiovascular disease risk. In the trial conducted in healthy men and women 
which was also followed up and reported an improvement in endothelial function 
[218]. Sardine proteins and by products are known for their anti atherogenic, hypo-
lipidemic, antioxidant properties in high fat diet induced hypercholesterolemic rat 
models [219]. They directly impact reverse cholesterol pathway by upregulating 
LCAT (lecithin cholesterol acyltransferase) activity. Moreover, they indirectly pre-
vent lipoproteins from oxidation by increasing paraoxonase-1 (PON-1) activity 
[220]. Vitamin E has shown protective effects in LDLR knock out mice, by decreas-
ing levels of MCP-1 and increasing levels of NO [221]. Isoflavones have been 
shown to reduce atherosclerosis progression by inhibiting estrogen induced tyrosine 
kinase activity, cytokine expression, smooth muscle cell proliferation and platelet 
aggregation without altering levels of plasma lipoproteins [222]. However, human 
trials have produced contradictory outcomes. Puerarin, a group of isoflavones have 
shown to exert atheroprotective effects via reducing the expression of monocyte 
adhesion molecules like VCAM-1, ICAM-1, MCP-1 & IL-8. Additionally, this anti-
oxidant has also shown to activate ERK/KLF2 signaling axis which in turn regulates 
the expression of eNOS & thrombomodulin [223]. Citrus flavonoid supplementa-
tion has been shown to reverse phenotype associated with adiposity by up regulating 
Cpt-1α & Pgc-1α in the liver and increasing hepatic fatty acid oxidation in in LDLR 
KO mice fed with high cholesterol diet. They are also known to lower plasma lipids, 
activate insulin signaling [189]. Anti-atherogenic & hypolipidemic properties of 
quercetin flavonoid has been attributed to increased expression of scavenger recep-
tor class B type 1 (SR-B1) and increased levels of LXRα and PPAR-γ. It signifi-
cantly increased the expression of ABCA1/ABCG1 and SREBP-1c promoting 
cholesterol efflux. [224]. Similarly, another flavonoid apigenin, has been shown to 
increase the efflux of cholesterol from macrophages via upregulating the expression 
of ATP binding cassette transporter ABCA1 which results in lowered total choles-
terol, cholesteryl ester and triglycerides in macrophages and also reduced levels of 
pro inflammatory cytokine expression [225]. In contrast, a study using a cocktail of 
dietary antioxidants (including vitamin C, vitamin E & β-carotene) in combination 
with genistein did not show regression of atherosclerotic plaque in old ApoE defi-
cient mice fed with high chow diet [226].
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5.3.2	 �Heart Failure

Several epidemiological studies have emphasized on the importance of nutritional 
modification to curtail the severity of heart failure patients. An inverse relationship 
has been noted between blood antioxidant status of β carotene and heart failure 
incidence in a population based study performed in Finland [227]. Similarly, pro-
spective cohort studies also highlight that long chain plasma mono unsaturated fatty 
acids (MUFA) are positively related to HF incidence [228] whereas plasma polyun-
saturated fatty acids (PUFA) are inversely associated with heart failure severity 
[229]. Although plenty of association studies have been reported about antioxidants 
in mitigating the risk of heart failure conditions but very limited studies have stud-
ied the potential mechanisms related to this. A recent review suggests that plant 
based diet (enriched in antioxidants, micronutrients and dietary fiber) improves 
myocardial contractility and cardiac function by increasing NO bioavailability, gut 
microbiome alteration and decreasing homocysteine levels [230]. Long term dietary 
supplementation with resveratrol, a well-known polyphenol (belonging to stilbene 
group) exhibit	  substantial improvement in parameters like left ventricular ejec-
tion fraction, LV end-systolic and end-diastolic volumes in cases of chronic heart 
failure [231]. Moreover, resveratrol has been proven to protect against cardiac 
hypertrophy and ventricular remodeling by inhibiting the activation of p38-MAPK/
ERK signaling molecules, COX-2, iNOS activity, thereby reducing the production 
of ROS and reducing apoptosis [232]. Interestingly, it has been demonstrated that 
dietary ingestion of nitrate, which is a source of nitric oxide, improves muscle con-
tractility problem in heart failure patients [233]. Baicalin, a flavone glycoside has 
been shown to inhibit cardiac fibrosis and extracellular collagen accumulation by 
activating AMP activated protein kinase (AMPK) signaling pathway which then 
inhibits mTOR pathway and mitigates cardiac hypertrophy and progression to heart 
failure [234]. A Quercetin derivative, has shown protective effects from cardiomyo-
cyte injury by inhibiting expression of NADPH oxidase 4 (NOX4) and attenuating 
ROS production which also impacts cardiomyocyte apoptosis via inhibiting of 
MAPK signaling and p53 phosphorylation [235]. A recent study suggests that the 
flavonoid, isorhamnetin leads to attenuation of cardiac hypertrophy by blocking the 
activation of phosphatidylinositol-3-kinase (PI3K-Akt) pathway [236]. Sesamin, a 
well-known antioxidant rich in flavonoids, is known to restore cardiac hypertrophic 
phenotype via regulation of Sirtuin3/ROS pathway in a rat model that had under-
gone transverse aortic constriction (TAC) surgery [237] and shows anti-inflammatory 
actions via inhibition of MEK-ERK1/2 but does not act upon non canonical TGF-β 
signaling [237]. It has further been noted that sesamin improves cardiac function in 
a doxorubicin induced cardiotoxicity model via activation of Sirtuin-1 [238]. 
However, antioxidants rich in vitamins (vitamin E and vitamin C) and minerals fail 
to show cardioprotective benefits in coronary artery disease and heart failure patients 
which warrant further investigation about time and dosage of administration of 
these supplements [239].
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5.3.3	 �Hypertensive Heart Disease

Hypertension is a chronic clinical condition which is associated with several cardiac 
diseases such as peripheral arterial diseases, myocardial infarction, heart failure, 
and stroke [240]. Oxidative stress plays a key role in progression of hypertension 
[240]. Endothelial nitric oxide synthase (eNOS) in general promotes the production 
of NO [241], but under vascular complications, eNOS becomes dysfunctional and 
produce superoxides rather than NO [241] Superoxide ions generated by ROS com-
bines with NO and forms peroxynitrite (synthesized by eNOS). On the other hand, 
the peroxynitrite produces superoxides by destabilizing eNOS [242]. 
Tetrahydrobiopterin deficiency or its oxidation promotes uncoupling of eNOS and 
ROS production. In vascular endothelium, xanthine oxidase is one of the major 
sources of ROS which is mainly involved in the catalysis of last two steps of purine 
nucleotide biosynthesis. Angiotensin II, an activator of NADPH oxidase, also con-
tributes to ROS production [243]. The pericarp extract of a tropical fruit “Garcinia 
mangostana Linn” (rich in polyphenols) is commonly used for therapeutic purposes 
and has been shown to protect against Nω-Nitro-l-arginine methyl ester (L-NAME) 
induced hypertension and cardiovascular remodeling. Though the underlying mech-
anism is not well understood but this GME extract potentially suppress p47phox 
NADPH oxidase subunit and concomitant iNOS expression resulting in increased 
bioavailability of NO [244]. In an experimental spontaneously hypertensive (SHR) 
wistar rat model, pomegranate extract (abundant in polyphenols) was able to restore 
morphological alterations induced in coronary arteries of female wistar rats by pre-
venting coronary angiotensin converting enzyme (ACE) activity [245].

5.3.4	 �Cardiac Arrhythmia and Ventricular Remodeling

Cardiac arrhythmia is a clinical condition in which there is a disruption of normal 
heart rate or rhythm causing sudden cardiac death. The pathological processes under-
lying cardiac arrhythmia is still poorly understood. It promotes cardiac fibrosis and 
impaired gap junction function which results in reduced monocyte coupling. The 
mechanism behind ROS induced cardiac arrhythmia is not clearly understood, but 
abnormal splicing of cardiac sodium channels and activation of protein kinase C 
(PKC), c-Src tyrosine kinase, Ca2+/CaM dependent kinase II [246] are thought to be 
responsible for ROS production. Inhibition of PKC can prevent cardiac sodium cur-
rent reduction caused due to excess generation of mitochondrial ROS [247]. ROS can 
activate Ca2+/CaM dependent kinase II and in pro oxidant conditions, if CaMKII is 
activated then two methionine residues are oxidized and sustained activation of 
CaMKII results in independent binding of Ca2+/CaM [248]. Other probable mecha-
nism through which CaMKII exerts arrhythmic effects are phosphorylation of RyR 
[249], shifting voltage dependence of Na+ channel. [250]. Allopurinol, a popular 
dietary antioxidant has been found to be associated with lowered risk of ventricular 
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arrhythmia and associated atrial fibrillation in a retrospective cohort study conducted 
in the US on elderly subjects [251]. It is speculated that due to its ability to inhibit the 
enzyme xanthine oxidase, it can mitigate oxidative stress and hence reduce the events 
of left ventricular dysfunction [251]. Interestingly, reports claim that vitamin C sup-
plementation improves endothelial function by decreasing the levels of the enzyme 
creatinine kinase and also helps to control blood pressure [252, 253] Recent meta-
analysis identifies the suitability of vitamin C to be used for the treatment of atrial 
fibrillation in several antioxidant trials performed worldwide [254]. Apart from that, 
Epigallocatechin-3-gallate (EGCG), a particular group of polyphenols have shown 
anti arrhythmogenic effects in animal models of ischemia-reperfusion injury by 
directly modulating LA electrophysiological characteristics and calcium homeosta-
sis. It is presumed that the ameliorative action exerted by this specific antioxidant is 
majorly by inhibition of a cGMP dependent protein kinase [255].

In summary, antioxidants employ various pathways to adapt to the oxidative 
stress generated by reactive oxygen and reactive nitrogen species in cases of CVDs 
(Table 5.1 and Fig. 5.2).

Table 5.1  Sources and biological functions of different forms of antioxidants

Type of the 
antioxidant Dietary source

RDA 
(Recommended 
daily 
allowance)

Biochemical 
properties Functions

Vitamin E Olive, sunflower 
oil, Soybean, corn 
oil, wheat germ, 
almonds, hazelnuts 
etc.

15 mg/day Fat soluble, 
include 
tocopherols and 
tocotrienols, 
peroxyl radical 
scavenger, alpha 
tocopherols 
constitute 80% of 
this vitamin 
group

Down regulates 
HMG-coA 
reductase, 
inactivation of 
protein kinase C, 
inhibition of 
platelet 
aggregation, 
protects lipids 
and prevents 
oxidation of 
PUFAs. (Sect. 
5.2.1.2)

Vitamin C Citrus fruits, 
brussels, sprouts, 
broccoli, raw bell 
peppers, 
strawberries etc.

60 -70 mg/day Lipid soluble, 
maximum 
stability between 
pH 4-6,

Maintenance of 
collagen, 
synthesis of 
muscle carnitine, 
conversion of 
dopamine to 
norepinephrine. 
(Sect. 5.2.1.1)

Vitamin A Cod liver oil, 
Turkey, chicken 
liver, capsicum, 
milk, bell pepper, 
spirulina, egg, 
apricot, tomatoes 
etc.

600-800 ug/day Fat soluble, Integrity of 
epithelial cells, 
reproduction, 
growth, immune 
system 
development 
(Sect. 5.2.1.3)

(continued)
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Table 5.1  (continued)

Type of the 
antioxidant Dietary source

RDA 
(Recommended 
daily 
allowance)

Biochemical 
properties Functions

Αlpha 
carotene

Yellow orange 
vegetables(carrots, 
pumpkin, sweet 
potatoes, winter 
squash), dark green 
vegetables 
(broccoli, spinach, 
parsley, avocado, 
green beans, green 
peas) etc.

15-16 mg/day Pro vitamins, fat 
soluble

Ensure proper 
cell division by 
maintaining cell 
to cell 
communication, 
inhibitor of 
certain growth 
factors (N-myc) 
(Sect. 5.2.3)

Beta carotene Crude palm oil, 
pumpkins, papayas, 
orange root 
vegetables, carrots, 
sweet potatoes, 
mangoes, 
cantaloupe etc.

2-7 mg/day Distributed 
throughout the 
body, some form 
of it gets 
absorbed and 
circulates with 
lipoproteins

Facilitate 
communication 
between 
neighboring cells 
through forming 
pores within cell 
membranes and 
exchange of 
small molecules, 
possess anti 
carcinogenic 
properties (Sect. 
5.2.3)

Flavonoids Fruits, vegetables, 
nuts, nuts, seeds, 
spices, cranberries, 
apples, parsley, 
cocoa

150-200 mg/
day

Secondary 
metabolites 
synthesized 
through 
phenylpropanoid 
pathway, water 
soluble & 
accumulate in 
cell vacuole, 
usually found in 
the form of 
glycosides and 
acyl glycosides

Involved in 
nodulation 
process in plants, 
protects plants 
against 
pathogens and 
herbivores, UV 
photoprotection 
(Sect. 5.2.5)

Polyphenols Fruits and 
vegetables, green 
tea, black tea, red 
wine, coffee, 
chocolate, olives, 
soya, cereals, 
leguminous plants, 
grape seeds

1g/day May acts as 
mutagens, pro 
oxidants, 
inhibitors of 
tyrosine kinase, 
Vary on their site 
of absorption 
inside human 
body

Inhibition of 
LDL oxidation, 
induce apoptosis 
and prevent 
tumor growth 
(Sect. 5.2.4)

(continued)
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Type of the 
antioxidant Dietary source

RDA 
(Recommended 
daily 
allowance)

Biochemical 
properties Functions

Carotenoids Carrots, corn, 
canaries, egg yolk, 
buttercups, 
bananas, alder, 
cottonwood, maple, 
alder, black cherry

6-10 mg/day Fat soluble 
pigments present 
in plants and 
microorganisms, 
categorized in 
different classes 
based upon the 
structure and 
presence of 
conjugated 
double bond

Inhibition of 
oxidation of fats, 
supplementation 
improves 
immune function, 
cognitive 
function. (Sect. 
5.2.3)

Anthocyanins Blueberry, 
raspberry, black 
rice, black soybean, 
eggplant, Blood 
orange

12.5 mg/day Water soluble 
phenolic 
flavonoid 
pigments derived 
from 
phenylalanine, 
common in 
nature as 
glycosides 
aglucons 
anthocyanidins

Anti-thrombotic, 
anti-
inflammatory 
properties, 
inhibits platelet 
aggregation 
(Sect. 5.2.6)

Fig. 5.2  Various antioxidants used in different forms of CVD
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5.4	 �Population Trials and Experimental Model-Based 
Studies Emphasizing the Role of Dietary Antioxidants: 
Effect of Supplementation in Clinical Trials

There are many epidemiological studies, which suggest the role of antioxidants in 
the prevention of the risk of coronary artery diseases. These evidences from the 
basic research and epidemiological data provide clue for the protective role of anti-
oxidants. Many potential cohort studies have shown inverse associations between 
dietary antioxidants and risk of heart diseases. But the results of many such clinical 
trials have been unpromising and unsuccessful to provide substantial evidences 
towards the protective effect of the antioxidants in cardiovascular disease. Thus, to 
ascertain whether the supplementation of antioxidant is beneficial or harmful is 
challenging. List of a few dietary antioxidants, their outcomes in different clinical 
trials conducted on various cardiovascular diseases is tabulated in Table 5.2.

5.5	 �Conclusions and Future Perspective

Precisely with the turn of the century, mortality rates due to acute cardiovascular 
events have grown enormously and antioxidant supplementation has been adopted 
as a strategy for prevention of cardiovascular diseases. A handful of dietary antioxi-
dants have been identified to possess anti-inflammatory, anti-thrombotic, vasodila-
tory, anti-apoptotic properties which make them potential therapeutic candidates for 
the treatment of CVDs. Currently there are no accurate and reliable methods to 
determine the total antioxidant capacity (TAC) of any form of diet and identifying 
biomarkers reflective of antioxidant status of an individual becomes a challenging 
task. Systematic analysis of a number of clinical studies point towards the fact that 
Dietary total antioxidant capacity (DTAC) of any diet are highly correlated with 
several CVD risk factors like plasma triglyceride (TG), high density lipoproteins 
(HDL-C), low density lipoproteins (LDL-C) and more. But these observational tri-
als need further replication in large cohorts to be considered for food fortification. 
Several trials on antioxidants did not really show cardioprotective effect since it is 
extremely difficult to identify an ideal cocktail of antioxidant which can mitigate the 
oxidative stress occurring in case of complex diseases. Interestingly, number of epi-
genetic changes happen at chromatin and micro RNA levels that are regulated by 
the repertoire of antioxidants present in our diet which ultimately manifest into 
pathophysiology of cardiac abnormalities. A few dietary antioxidants, their site of 
action and their downstream signaling mediators which are instrumental in main-
taining the intracellular oxidative balance has been provided in Table 5.3. It how-
ever becomes important to understand the mechanistic role of dietary antioxidants 
in quenching the oxidative stress while deciphering the genetic and epigenetic 
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changes that follow post supplementation. Well-designed human population studies 
are needed to assess the cardioprotective benefits of dietary antioxidants.
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6Reactive Oxygen Species and Their 
Epigenetic Consequences in Heart 
Diseases
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6.1	 �Introduction: Reactive Oxygen Species

Highly reactive molecules with an unpaired electron are known as free radicals. By 
virtue of their unpaired electrons, these molecules are very unstable and survive for 
a very small fraction of a second (approximately 10−9 to 10−12 seconds), colliding 
with other molecules and either donating or accepting an electron within this time 
frame. Depending on the molecular structure and stability of the other molecule, 
they either create another free radical or are quenched by it. Thus, a chain of events 
occurs whereby the unpaired electron is transmitted from one molecule to another 
till it gets paired [1].

In biological systems, the most damaging free radicals are the oxygen radicals – 
also termed as the reactive oxygen species [ROS]. Amongst these, the most com-
monly occurring ones are the following:

	(a)	 Superoxide depicted as O2
−

	(b)	 Hydroxyl depicted as ·OH
	(c)	 Perhydroxyl depicted as ·O2H

Of these, a and c are less reactive than b, but because they have a longer half-life, 
they are able to not only react longer with target molecules, but also they may react 
with molecules far from their site of production.

The most common example of molecular alteration by a free radical is the forma-
tion of lipid peroxides by peroxidation of 1,4-diene structure of polyunsaturated 
fatty acids in the cell membrane and plasma lipids. The ensuing biological damage 
due to lipid peroxides leads to atherosclerosis. Similarly, other molecules (e.g. bases 
of the DNA) and structures (e.g. vascular endothelium) can also be subject to dam-
age with alternate pathological outcomes.
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6.2	 �Where Do These Free Radicals Come From?

They are derived from our body contents under varying circumstances as detailed 
below:

•	 Routinely, we are exposed to ultraviolet rays and X-rays from the atmosphere 
and also while undergoing some investigative procedures. These rays can lyse 
water resulting in the formation of hydroxyl radicals. Metal ions (Cu+, Co2+, Ni2+ 
and Fe3+) can react with oxygen and hydrogen peroxide to generate hydroxyl 
radicals.

•	 Nitric oxide is often known as the endothelium derived relaxation factor and is 
important in cell signalling. In itself, it is also a free radical and also serves as a 
source of hydroxyl radicals from peroxynitrite which is the product of interac-
tion between nitric oxide and superoxide.

•	 Macrophages are the main defenders of the respiratory paths so that any injury 
here leads to their activation. This leads to an increased utilization of glucose by 
the pentose phosphate pathway yielding more NADPH. This is then oxidised in 
a process termed ‘respiratory burst’ with the release of superoxide. Primarily, 
this cytotoxic agent is meant to combat micro-organisms, but it can also damage 
the normal host cell [1, 2].

•	 When an infection (even a mild one) occurs, free-radicals are produced to com-
bat the pathogens but they also increase damage to the lipids considerably as 
evidenced by increase in the circulating lipid peroxides.

•	 The process of intramitochondrial oxidation of reduced flavin coenzymes 
involves the microsomal electron transport system wherein the flavin semiqui-
none radicals form transient oxygen radicals as intermediates. Though these are 
only transient intermediates and not the final products in the reaction, their 
unpredictable nature allows some of them to leak. This accounts for the daily 
production of about 1.5 mol of reactive oxygen species in the human body.

6.3	 �Antioxidant Systems

Though the ROS are harmful to many molecules and structures in our body, it would 
be pertinent to mention here that in physiological amounts, reactive oxygen species 
have a very important role as signalling molecules in the regulation of homeostasis 
in several physiological processes [3, 4].

Following the corollary of physics – Newton’s third law of motion which states 
that every action has an equal and opposite reaction, our body functions in such a 
way that it has a countering mechanism for every type of insult. Thus, the body has 
an inbuilt antioxidant system to combat the excess of free radicals. These are in the 
form of enzymes (viz superoxide dismutase, catalase, glutathione peroxidase), vita-
mins (viz. A, C, E) and other molecules (e.g. albumin, thiols, uric acid).

S. Bhargava



143

Certain micronutrients like zinc, selenium, copper, iron and manganese can also 
contribute to the antioxidant system by virtue of being co-factors for these enzymes. 
In addition, the metal ions which are reactive in themselves, are normally bound to 
their carrier proteins rendering them inactive – thus minimizing the spontaneous 
production of free radicals [1].

It is pertinent to note here that some of the antioxidants also behave as 
pro-oxidants

In the healthy state, the constant dynamic relationship between the free radicals 
and the antioxidants remains in equilibrium as shown in Fig. 6.1. When this equilib-
rium is disrupted, it results in pathology.

The mechanisms of action of ROS are varied. These include direct oxidative 
injury to endothelium of blood vessels/target tissue, lipids, proteins, and DNA. The 
interaction of ROS with DNA is a part of signal transduction and, when physiologi-
cal, is termed as epigenetics. Any imbalance in the dynamic equilibrium between 
the ROS and the antioxidant system, will be reflected in this process as a deviation 
from the normal gene expression and will lead to several pathological situations.

Fig. 6.1  Reactive oxygen species and the antioxidant system in the healthy state
In the healthy state, free radicals (whether endogenous or exogenous) and antioxidant system 
of the human body are in dynamic equilibrium with each other allowing for the required 
functions of the latter without pathological consequences
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6.4	 �Why Is the Heart More Susceptible to Oxidative 
Damage?

To cater to the constant requirement of energy by the tirelessly contracting and 
relaxing cardiac muscles, it is known that the cardiomyocyte harbors a high density 
of mitochondria which are the powerhouse of cells as oxidative phosphorylation 
occurs therein. The mitochondria and the NOXs (NADPH oxidases) are also cellu-
lar sources of ROS. There are seven such enzymes (NOX 1-5 and DUOX ½) of 
which NOXs 1, 2, 4 and 5 are expressed in the cardiomyocyte. In addition, there are 
several other significant sources of ROS in the cardiac tissue – nitric oxide synthase 
(NOS), xanthine oxidoreductases, cyclo- and lipo-oxygenases, members of the 
cytochrome P450 system and some peroxisomal oxidases. Consequently, enzymes 
of the antioxidant systems, like superoxide dismutase (SOD) and catalase, are also 
highly expressed in cardiac tissue. With so many players in the maintenance of 
physiological ROS levels in the myocardium, the smallest imbalance between oxi-
dants and antioxidants will be immediately reflected in the functioning of the car-
diomyocytes, making the heart the first target of such an imbalance [3, 4].

In this chapter we propose to outline the epigenetic mechanisms of ROS interac-
tion with tissues and their role in cardiac disease.

6.5	 �Epigenetics – What Are These Mechanisms, Which Ones 
Are Implicated in Mediation of ROS Dependent Cardiac 
Damage and What Is Their Mode of Pathology

The gene and the DNA code for the expression of structural and functional mole-
cules required for the making and functioning of the human body. But when and 
how does the gene express itself? It is protected from opening and expressing by 
their organisation into nucleosomes and chromatin as described in Fig. 6.2. So then, 
how do they express? The mechanisms involved in allowing for their expression or 
repression are collectively termed as ‘epigenetics’. The term as the word suggests, 
describes the modulation of DNA without changing the genetic code it holds – i.e. 
working around the gene. Not only is the DNA sequence inherited, but so is this 
epigenetic programming. However, these are subject to modification by many reac-
tions which occur under normal circumstances and get modified in pathological 
circumstances.

The three broad mechanisms of epigenetics are (a) DNA methylation/demethyl-
ation, (b) post-translational histone modification, and (c) RNA-mediated gene 
silencing. These processes are intricately interwoven into transcription of genes in 
the form of initiating, propagating and silencing reactions. When we talk about 
DNA methylation and histone modification, it would be pertinent here to under-
stand the spatial and functional relationship of these structures [5].

Each nucleus of each cell in our body contains 6 feet of DNA! So how is this 
organized within a 6μm organelle of the cell? Obviously, it would have to be folded 
upon itself in a manner that would maintain the structure of the folds. Thus, the 
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double-stranded double helical DNA is spooled several times over a congregation of 
proteins- the histone proteins (Fig. 6.2). Several of these are longitudinally aligned 
to form chromosomes. Each such organized spool appears as a clump on the chro-
mosome (like beads on a string) and are termed nucleosomes. The chromosomes are 
laterally aligned to each other. This allows for the 6-foot long DNA strands to be 
accommodated in the 6μm nucleus of the cell – in less than 1/50000 of its length! 
Truly, nature is amazing and organized! [6]

For the DNA to undergo replication and for expression of genes, the histone 
protein complex has to be dissociated so that the DNA is released and may replicate. 
Under normal circumstances, this involves the epigenetic modification of this 
histone-DNA complex. It is evident, therefore, that epigenetic modifications are 
required for gene expression. Thus, any molecule/ion (e.g. free radicals or ROS) 
that alters these mechanisms will result in an altered gene expression.

Going back to the types of epigenetic mechanisms, lets talk about DNA meth-
ylation first as this was the first epigenetic mechanism discovered. Methylation of 
the DNA and its associated histones is the key to epigenetic modifications which 
direct the functioning of the genome by modifying the chromatin structure. The 
methylation of DNA typically occurs at the 5-cytosine-phosphate-guanine-3′ site 
(CpG) to form 5-methyl cytosine (5mC). It is processed by the DNA methyl trans-
ferases 1, 3A and 3B (DNMT1/3A/3B), all of which use S-adenosyl methionine 
(SAM) as the methyl donor. Once SAM donates its methyl group, it becomes 
S-adenosyl homocysteine (SAH) which is a potent feedback inhibitor of these 
SAM-dependent DNMTs. For these methylations to continue, SAM needs to be 
regenerated. This happens in 3 steps  – first the SAH is hydrolysed to yield 

Fig. 6.2  Schematic representation of a nucleosome
Typically, 8 histone proteins co-ordinate to form one spool for DNA strands to wind around. 
And to stabilize the spool there is a ninth histone protein. Histones are designated as H1, H2, 
H3 and H4 with H2 having 2 types – H2A and H2B. A pair of each of these positively charged 
H2A, H2B, H3 and H4 together form the core of histones around which the negatively 
charged DNA winds. H1 associates with this globule to stabilise it. Thus, each nucleosome has 
9 histone proteins – 8 in the core and the ninth at the periphery, as depicted in this figure
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adenosine and homocysteine; then the homocysteine is methylated in a folate and 
B12 dependent reaction to yield methionine; finally methionine is converted to SAM 
in an ATP-dependent reaction. In addition to these methyl transferases, there are 
others which enable methylation at varied sites of the DNA/RNA, i.e. the peptidyl 
side chains of glutamate/glutamine/histidine or the N-termini or C-termini. Gene 
repression is most commonly associated with the presence of 5mC in gene regula-
tory regions. Methylations at other sites are mostly associated with gene expression 
[7].

As important as the methylation of the CpG sites of our genome is for stability 
of genome inheritance and expression, the countering reaction – i.e. DNA demeth-
ylation – is equally imperative for normal functioning. It starts with the oxidation of 
5mC to 5-hydroxymethylcytosine (5hmC) which is a spontaneous process mediated 
by a group of oxygenases called the ten eleven transferase (TET) proteins. These 
also further catalyse the 5hmC to 5-formylcytosine and then 5-carboxylcytosine 
(5fc and 5cc). Thymine DNA glycosylase (TDG) may then excise the bases from 
these molecules and subject them to base excise repair (BER) resulting in DNA 
demethylation [8, 9] (Fig. 6.3).

Thus, like most processes in the body, the DNA methylation-demethylation is 
also a dynamic process dependent on the activity of the DNMTs and the TETs. This 
would avoid DNA hypermethylation and consequent gene silencing. It is evident, 
therefore, that interference in the dynamics of DNMT/TET would alter gene expres-
sion/repression [10].

Histone modifications are post-translational and can occur in several ways, most 
common among them being acetylation/deacetylation, methylation/demethylation 
and ubiquitinylation/sumoylation. Methylation usually occurs on the lysine and 
arginine residues on H3 and H4. Lysine methylations are dependent on a group of 
enzymes called histone lysine methyl trnasferases (HKMTs). Each of the enzymes 
in this group are specific to the site of the lysine on the histone protein, mostly tar-
geting the lysines in the N-terminal tails. They exhibit the SET domain which is the 
enzyme activity site and contains the aromatic determinant (Y or F) which deter-
mines whether it is a monomethylating or trimethylating enzyme. The arginine 
methyl transferases form a family of protein methyl transferases referred to as 
PRMTs. The histone demethylases mostly target lysine.

Histone acetylation/deacetylation too occurs on the lysine residues on the 
N-terminal tail, leading to an alteration in the binding of the histone protein to the 
DNA strand and thereby altering the expression thereof. Acetylation is directed by 
the enzymes histone acetyl transferases (HATs) and involves mainly H3 and H4. 
The histone deacetylases (HDACs) direct the deacetylation of all 4 core histones – 
H2A, H2B, H3 and H4. Typically, deacetylation restores the positive charge on the 
lysine and, therefore, stabilises the chromatin thereby enhancing gene repression. 
Conversely, acetylation destabilises the chromatin and favours transcription [11].

Histones also undergo ubiquitylation and sumoylation. Whereas the methylation/
demethylation and the acetylation/deacetylation reactions result in small alterations 
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in the amino acid side chains, ubiquitylation involves the covalent attachment of the 
76-amino acid ubiquitin to the histone protein, mostly H2A, H2B and H3. The end-
result is variable – some leading to gene silencing and others to transcription initia-
tion. Sumoylation is a similar covalent histone modification that occurs on all core 
histone proteins. Both these are mediated by 3 enzymes E1, E2 and E3 which are 
the activating, conjugating and ligating enzymes, respectively [12].

The numerous histone modifications account for a controlled genetic expression. 
The “Histone Code Hypothesis” suggests that epigenetic modification of histones is 
at the helm of the structure and transcription of chromatin. This is further accentu-
ated by the ‘cross-talk’ amongst themselves, many of the enzymes being present in 
multiple distinct complexes. In addition, the controlled genetic expression-
repression is further fine-tuned by the interaction between DNA methylations and 
histone modifications. Further, there are transcription factors associated with 

Fig. 6.3  Schematic representation of DNA Methylation/Demethylation Reactions
Methylation of DNA by DNMTs opens it, allowing transcription, which is followed by 
demethylation by TETs, base excision by thymine DNA glycosylase and then base excision 
repair, making the DNA available for another cycle. The methyl groups for methylation by 
DNMTs are obtained from SAM which is then regenerated through homocysteine in the 
remethylation cycle. Its demethylated form – SAH – subjects DNMTs to feedback inhibition. 
THF-tetrahydrofolate; MTHF-methyl tetrahydrofolate; MS-methionine synthase; SAM-S adenosyl 
methionine; SAH-S adenosyl homocysteine; ATP-adenosine triphosphate; ADP-adenine diphos-
phate; CH3-methyl group; CpG-cytosine-p-guanine; DNMTs-DNA methyl transferases; TETs-ten-
eleven transferases; 5mc-5 methyl cytosine; 5hmc-5 hydroxymethyl cytosine; 5fc-5 formyl cytosine; 
5cc-5 carboxycytosine
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regulation of gene expression which are themselves subject to alterations due to 
epigenetic modification of their genes [13].

6.6	 �How Do ROS Impact DNA Methylations/Demethylations 
and Histone Modifications?

ROS have opposing effects on the normal epigenetic mechanisms. The presence of 
·OH promotes oxidation of 5mC to 5-hydroxymethyl cytosine (5hmC) thus interfer-
ing with the regulation of gene expression. Whether gene expression is enhanced or 
repressed depends on the site of methylation/demethylation/hypermethylation. 
Also, these ROS are known to decrease the activity of DNMTs by decreasing the 
production of SAM, and promote the expression of TETs. Regeneration of SAM is 
dependent on the methylation of homocysteine to methionine with methylene tetra-
hydrofolate (MTHF) as the methyl donor. In the presence of increased ROS, folate 
is diverted to the folate shuttle for endothelial nitric oxide synthesis, making it 
unavailable as a methyl donor with consequent reduced SAM regeneration and 
hypomethylation.

All histone methylases are SAM-dependent and consequently subject to the 
same fate as DNA methylases and TETs under oxidative stress.

On the other hand, demethylases of histone are ferrous (Fe2+) and αketoglutarate 
(αkg) dependent dioxygenases. In presence of oxidative stress, the regeneration of 
ferric (Fe3+) from Fe2+ is inhibited, impairing the functioning of these enzymes by 
decreasing TETs (through the decreased action of hypoxia inducible factor [HIF] 
prolyl oxidases) and increasing the expression of DNMTs (Fig. 6.4).

Yet again, ·O2H also cause single-strand and double-strand DNA breaks render-
ing them available for epigenetic modification. Another mechanism involved is the 
oxidation of the guanosine residues to form 8-oxo-2′-deoxyguanosine (8-oxodG). 
When the formation of 8-oxodG is limited (i.e. oxidative stress is minimal), the 
DNA glycosylase can remove these residues, the gap being filled by base excision 
repair (BER). However, when the oxidative stress persists with the excessive forma-
tion of 8-oxodG, hypomethylation of the adjacent cytosines occurs [10, 11, 14, 15].

In addition to the above-mentioned effects of ROS of methylation of DNA and 
histones, the latter are modulated by several other mechanisms leading to either 
open chromatin or closed chromatin further resulting in overexpression or repres-
sion of gene transcriptions, respectively.

6.7	 �Congenital Heart Disease

Chromatin regulation, exemplified above, is the key to the expression/repression 
modulation of all genes including those related to cardiac development in utero as 
well as during functioning/malfunctioning in postnatal life.

The heart has several types of tissues and systems – (a) the myocardium made up 
of myocytes which are inherently contractile even without nervous stimulation, (b) 
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the conduction system, (c) the valvular system, (d) the endocardium made of endo-
thelial cells which line the myocardium (including the valves) from the inside and 
provide a continuum with the blood vessels, and (e) the pericardium, a thin fluid-
containing double layered sac engulfing the heart, protecting it while allowing for 
the normal expansion and contraction of diastole and systole. It follows therefore 
that for each component of each type of cell there are coding genes (over 11,000) 
which are each individually, precisely and co-operatively regulated, resulting in the 
development of an organ that is physiologically and hemodynamically efficient to 
pump blood for 70–90 years (with the increase in longevity)! And, considering that 
on each gene there are multiple sites which are subject to epigenetic modification, 
imagine the myriad of pathological possibilities that can result from the smallest 
impact on these regulations, starting from the embryological stage to adulthood to 
ageing!

During development (and disease), the epigenetic modification of DNAs and 
histones is highly dynamic, though the exact mechanisms through which TETs and 
5mc act are still elusive. Gilsbach et al as well as Greco et al conducted, separately, 
very comprehensive experiments to demonstrate the intricacies of these epigenetic 

Fig. 6.4  Epigenetic mechanisms of ROS
The major epigenetic effects of reactive oxygen species is altered gene expression through 
either hypermethylation or hypomethylation. The mechanisms for these are several: (a) by 
increased formation of 5-hydroxymethyl cytosine, (b) by decreased generation of ferric from 
ferrous leading to increased expression of DNMTs and decreased activity of TETs, (c) breaks 
in single as well as double stranded DNA allowing for increased methylation, and (d) 
decreased regeneration of SAM leading to decreased DNMT activity and increased expres-
sion of TETs
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methylations and hydroxymethylations on the development of cardiomyocytes and 
their component proteins at different stages – in the embryo, during normal adult 
life and in the presence of disease. They elucidated that epigenetic modifications in 
the gene body or the proximal and distal regulatory regions, resulted in different 
outcomes in terms of gene expression [10, 14].

The cardiomyocytes develop from progenitors early in the embryo and have lim-
ited cell division in postnatal life. Normally, in the early embryo – first 6–8 weeks – 
there is an increased expression of the cardiomyocyte and morphology related 
genes – the remodelling proteins, e.g. myosin light chain (MYL1), α and β heavy 
myosin chain genes (βMHC) also known as Myh6 and Myh7, cardiomyocyte-
specific sarcoplasmic reticulum gene (SERCA2). The miRNA which are co-
expressed with these genes are miRNAs 208a (with Myh6), 208b (with Myh7) and 
499 (with Myh7b). The cardiomyocytes, at this stage, actively replicate and form 
the basic structure of the heart. Thereafter, cardiomyocytes do not replicate – the 
growth in the heart is due to the increased size of each cardiomyocyte rather than an 
increase in the number of cells. Thus, the adult heart has as many cardiomyocytes 
as the fetal heart. This happens due to permanent suppression of the mitotic process 
of the cardiomyocyte just before birth through the formation of the terminally dif-
ferentiated binucleated cardiomyocytes which comprise about 70% of the postnatal 
heart. In the latter part of cardiac development, the myocardial trabeculations 
develop in the cardiac jelly of the embryo. One of the major players in all stages of 
cardiac development is the Brahma-related gene 1 (BRG1) which acts in a time- and 
tissue-specific manner. It regulates cardiac gene expression, tissue growth and dif-
ferentiation through promotion of cardiomyocyte proliferation by maintaining 
Bmp10 and suppressing p57, the former being a key factor for myocardial prolifera-
tion while the latter is a cyclin-dependent kinase inhibitor that prevents cellular 
proliferation. In addition, BRG1 also regulates the trabeculation by modulating the 
expression of Adamts 1, a secreted matrix metalloproteinase (MMP) which uses 
versican (a component of cardiac jelly required for development) as substrate 
[16–19].

To some extent in embryonic life and more so in postnatal life, the cardiomyo-
cyte dramatically increases in size to meet the physiological requirements of the fast 
growing organism. However, it also responds similarly to injury or pathology. For 
example, if there is a chronic ventricular overload, the cardiomyocyte grows beyond 
its normal size to compensate for the extra work it has to do, initially compensating 
for the pathology but later leading to cardiomyopathy.

Whereas in the early stages of development, the expression of genes coding for 
the myocardial development (especially myosin and actin filaments) predominate, 
in the later stages, expression of the proteins involved in the electrical connectivity 
responsible for the cardiac contractile functions and energy generation (especially 
those for fatty acid metabolism) predominate [20].

Broadly speaking, the genes that are preferentially expressed in the different 
stages of cardiac development are listed below:
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	A.	 Early cardiac development MYL1 (myosin light chain 1), Myh3 (myosin heavy 
chain 3), Myh6, Myh7, MYBPC1 (myosin binding protein C), SLN (sarcolipin) 
and ACTG2 (actin gamma) – which code for sarcoplasmic reticulum, actin and 
essential myosin contractile proteins.

	B.	 Late cardiac development FABP4 (fatty acid binding protein 4), FABP2, NRAP 
(nebulin-related anchoring protein), APOA2 (apolipoprotein A2) and ACE2 
(angiotensin converting enzyme 2) – which encode cardiac fatty acid metabo-
lism and structural remodelling.

It would follow, therefore, that epigenetic effects of oxidative stress during early 
stages of cardiac development could result in structural defects of the heart, e.g. 
atrial and ventricular septal defects, foramen ovale, anomalies of the bicuspid and 
tricuspid valves, developmental absence of right or left heart, coarctation of aorta, 
cardiac dilatation, etc. Similarly, epigenetic modulations due to oxidative stress dur-
ing latter weeks of cardiac development could lead to defects in the conduction 
system (arrhythmias), contractility of the heart and its energy-generating metabo-
lism. Either of these types of congenital epigenetic consequences of oxidative stress 
could also lay the foundation for several types of cardiac diseases that appear in 
later life, including coronary artery anomalies which may lead to coronary insuffi-
ciency, or valvular defects which lead to improper blood flow and oxygenation of 
cardiac as well as peripheral tissues, or conduction defects which lead to arrhyth-
mias or heart failure.

6.8	 �Other Cardiac Diseases

Cardiac pathology can be of three major types: (a) alterations in the normal electri-
cal pathways of the heart that allow for normal synchronous contraction and relax-
ation of the different compartments of the heart – this would lead to arrhythmias and 
fibrillations, (b) inability to maintain a normal stroke volume which could be a 
result of altered physiology of the myocardium as well as due to alterations in the 
electrical pathways, and (c) decrease or absence of coronary arterial blood flow 
resulting in ischemia of the myocardium [16].

6.8.1	 �Arrythmias

The normal electrical conduction in the cardiomyocytes depends on the structure 
and function of the atria and ventricles, so that changes in structural as well as func-
tional remodeling can lead to arrhythmias. Typicallly, the Ca2+ and K+ ion channels 
of the cardiomyocyte as well as the intercellular channels modulate the flow of ions 
across the cell membrane and maintain normal individual and composite electrical 
function of the cardiomyocytes. Each channel is a complex of proteins and hence its 
function is governed by appropriate expression of each of these proteins. The 
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sequence of events during the generation and propagation of an electrical pulse in 
the heart starts with the L-Type Ca2+ channel (LTCC) mediated Ca2+ influx into the 
cardiomyocyte. This induces release of Ca2+ from the sarcoplasmic reticulum (SR) 
via the ryanodine receptor 2 (RyR2). An SR- Ca2+-adenosine triphosphate 
(SERCA2a) maintains homeostasis by enabling re-uptake of Ca2+ into the SR. This 
SERCA2a is under the inhibitory control of an SR associated protein, phospholam-
ban (PLB). The initial event of increased influx of Ca2+ into the cytosol corresponds 
to systole whereas the homeostatic event of reabsorption of Ca2+ into the SR corre-
sponds to diastole. Another channel involved in the latter process is the Na+- Ca2+ 
exchanger (NCX). SR Ca2+ storage is depleted by Ca2+/calmodulin kinase II 
(CaMKII)-dependent phosphorylation of RyR2, leading to increased cytosolic Ca2+ 
in the cardiomyocyte, and hence it plays a role in arrhythmias. Hence, it is evident 
that expression of each of these proteins or complex of proteins regulates the events 
of cardiac electrical activity [21].

Several studies have demonstrated that ROS inhibit LTTC current and SERCA2 
activity, and increase activity of NCX and RYR, thus implicating ROS in epigenetic 
and direct remodelling of cardiac electrical activity. Hudasek et  al showed an 
increased expression of the pore-forming α-1 subunit of LTTC by ROS leading to 
changes in the ionic influx and outflux in the cardiomyocytes. In the RYR, ROS 
modulate the cysteine residues which alter its interaction with triadin, a transmem-
brane protein responsible for the RYR’s Ca2+ sensitivity [22–25].

The whole cascade of events that are initiated by oxidative stress include struc-
tural as well as electrical remodelling of the heart which culminates in arrhythmias. 
Many of these are mediated through altered expression of several miRNAs, which 
are small non-coding RNAs involved in RNA silencing and post-translational gene 
expression. For example, miRNAs 21, 29, 30, 133 affect structural genes leading to 
increased expression of TGFβ (transforming growth factor β), ERK (extracellular 
signal related kinase), p38 (a protein kinase), JNK (Janus N-terminal kinase) and 
CTGF (connective tissue growth factor), and decreased expression of DUSP8 (dual 
specificity protein phosphatase). These result in the increased activity of the MAPKs 
(mitogen associated protein kinases) due to decreased dephosphorylation (low 
DUSP8) and along with increased TGFβ, p38 and JNK, there is cardiac hypertrophy 
and increased collagen leading to fibrosis and structural remodelling. On the other 
hand, miRNAs 1, 19, 21, 26, 130, 133, 145, 328, 499 closely regulate the ion chan-
nels and their functioning through altered expression of LTTC, SERCA, NCX, 
RYR2, CaMK II – all leading to altered ionic movement across the sarcolemma of 
the cardiomyocyte and consequent electrical remodeling. All these miRNAs are 
altered under conditions of oxidative stress [21].

Here, we would, once again, like to direct the reader’s attention to the fact that 
even in physiological concentrations ROS function similarly, but through our anti-
oxidant mechanisms we are able to mitigate their effects, unless their concentration 
becomes pathological.
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6.8.2	 �Hypertrophic Cardiomyopathy (HCM)

The number of cardiomyocytes in the heart does not usually alter much after birth 
due to the permanent suppression of mitotic processes of the cardiomyocyte just 
before birth. However, as listed above, the mitosis, meiosis and differentiation of the 
cardiomyocyte is induced by genes whose expression is altered by oxidative stress. 
There is indirect evidence that ROS modulate expression of the histone demethyl-
ases, especially LSD1 (lysine-specific demethylase 1) which promotes myogenic 
proliferation and differentiation, leading to cardiac hypertrophy. At the same time, 
LSD1 activation is accompanied by a burst of H2O2 and ROS which results in 
8oxodG formation with consequent induction of the BER enzymes promoting 
repair. Thus, opposing mechanisms are induced by ROS which might lead to self-
containment of the pathology, exemplifying the double-edged sword-like nature of 
ROS [3].

For increased hemodynamic requirements during exercise and pregnancy, there 
is an increase in the size of the heart, mainly through the increased size of the car-
diomyocyte to enable it to meet the increased pumping demands. This is reversible 
and exemplifies the body’s adaptation to altered requirements. A similar phase of 
reversible adaption occurs in various chronic conditions – hypertension, diabetes, 
ageing, obesity, myocardial infarction. However, these adaptive changes become 
pathological due to the chronic nature of these conditions, so that the myocardium 
loses its plasticity and ability to adapt to further systemic demands.

As mentioned above, ROS are associated with cardiac hypertrophy through 
increased expression of histone demethylases; however, when these events are 
chronic, they become pathological and are accompanied by an inflammatory com-
ponent whereby NOX are overexpressed leading to further production of ROS – and 
a vicious pathological cycle is initiated. These ROS are also known to act through 
the altered expression of some miRNAs. Cardiospecific miRNAs 1 and 2 are over-
expressed in the hearts that already show cardiomyopathy, whereas the miRNAs 9 
and 448 are downregulated in the dystrophic heart even before cardiomyopathy is 
evident. The miRNA 448 has been shown to downregulate Ncf1 gene which codes 
for the neutrophil cytosolic factor which is itself a component protein of the NADPH 
oxidase enzyme system. Hence, a downregulation of miRNA 448 will be associated 
with an upregulation of Ncf1 and NADPH oxidase which are an integral part of 
mitochondrial functioning, leading to further ROS generation. Whereas in the leu-
cocytes, ROS production aids in cytotoxic activity against invading pathological 
microorganisms, in the cardiomyocyte they give rise to a cascade of events resulting 
in cardiac dystrophy as described above [26].
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6.8.3	 �Myocardial Infarction

A decreased blood flow to any part of the myocardium will first lead to insufficiency 
and then infarction in that area. Apart from disease states like obesity, hypertension 
and diabetes, old age is also a risk factor for myocardial infarction due to coronary 
vessel narrowing or occlusion.

Myocardial infarction has three components  – inflammation, disturbed blood 
flow and arterial remodelling, which usually occur in this sequence. Excess ROS 
formation contributes to all three components through various mechanisms includ-
ing direct injury to the vessel wall and lipid peroxidation, and hence, it is impossible 
to separate the direct effects from the epigenetic events. The epigenetic mechanisms 
of this vascular remodelling due to ROS include increased expression of MMP2, 
transforming growth factor (TGF) β, vascular cell adhesion molecule-1 (VCAM1), 
fibronectin (FN1), P-selectin (SELP) and E-selectin (SELE). VCAM1 and the 
selectins promote adhesion of the monocytes especially at the branch points of the 
vessels where they then attract adhesion of more leucocytes. There is an increased 
expression of NOX in these cells as well as the vascular endothelium, the fibroblasts 
and smooth muscle cells of the myocardium, which furthers inflammation through 
increased production of ROS, especially O2·. Damage to the vascular wall is initi-
ated by oxidation of the LDL (low density lipoprotein) particles by ROS, which are 
then engulfed by macrophages to form foam cells. These migrate into the subinti-
mal layer – the tunica media. The altered vascular endothelial cells, foam cells and 
cardiomyocytes exhibit increased expression of MMPs which lead to degradation of 
the extracellular matrix in the vessel wall resulting in rupture of the atherothrom-
botic area of the vessel wall. In addition, the increased expression of TGFβ results 
in proliferation of the injured tunica media cells leading to increased thickness of 
the vessel wall and, therefore, decreased lumen and altered flow mechanics therein. 
Thus, ROS contribute to the initiation and propagation of atherosclerosis and myo-
cardial infarction through dual pathways. Paradoxically, it has been demonstrated 
that surgical reperfusion of the blocked coronary arteries, by primary percutaneous 
coronary intervention, may be followed by further damage to the vascular endothe-
lium which may result in arrhythmias. Whether or not ROS are involved in this 
process has not yet been demonstrated [27].
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6.9	 �Therapeutic Implications

Since ROS can function pathologically directly on molecules as well as through 
epigenetic mechanisms, therapy would also have to address both aspects. Hence, it 
would involve administration of anti-oxidants as well as modification of the epigen-
etic effects.

With emerging technologies, the identification of epigenetic mechanisms and 
specific involvement of miRNAs is becoming easier. Since each player in each 
mechanism of epigenetics has a specific function, the future holds a lot of promise 
in terms of identification of diseases in the very early stages as miRNAS are found 
in the body fluids much before the disease is manifest. It would also allow for devel-
opment of disease-specific therapies by targeting these molecules and events. In 
fact, one may go a step further and indicate evolution of patient specific therapies 
through cardiomyocytes developed from the patient’s own embryonic stem cells. 
However, it would be pertinent to bear in mind that all the events and co-regulations 
mentioned above have been demonstrated in animal models and maybe in embry-
onic stem cells; very few have been demonstrated in the adult or embryonic human 
heart. Hence, more experimental evidence in humans is required which could 
become feasible due to the presence of miRNAs in the body fluids which could be 
an ethically acceptable medium for diagnosis [28].

As for administration of antioxidants is concerned, it has to be carefully moni-
tored. ROS also act physiologically to modulate gene expression and are themselves 
modulated by inherent antioxidant mechanisms. However, when they are in excess 
of their physiological concentrations, they promote pathological expression/repres-
sion of genes, and that is when antioxidant administration may benefit the patient. 
Therefore, laboratory estimation of ROS, antioxidants and maybe miRNA to assess 
the pathological/physiological level of ROS needs to be performed, at least, for 
patients likely to be under oxidative stress. Further experiments are also warranted 
to demonstrate the efficacy of any proposed management.

Though several antioxidant molecules are commercially available, their efficacy 
is sometimes limited by their pharmacodynamics, which could even differ from 
preparation to preparation and from patient to patient. Some examples are – vitamin 
C, vitamin E, CoQ10, reserveterol, β-carotene, lycopene, quercetin, etc. These have 
shown variable results in patients of coronary artery disease or those at risk for the 
same. However, to improve their delivery to the target tissue, some scientists have 
suggested a different mode of formulation, e.g. nanoparticles and liposomes [29].

6  Reactive Oxygen Species and Their Epigenetic Consequences in Heart Diseases
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6.10	 �Summary

The cardiac malformations/diseases consequent to epigenetic modulations due to 
ROS depend on the stage of development when oxidative stress occurs (for congeni-
tal cardiac diseases) and the inherent antioxidant mechanisms, i.e. the balance 
between oxidants and anti-oxidants in the affected human system. Amongst con-
genital malformations, structural defects result from oxidative stress in the early 
developmental stages, whereas and functional deficits result from oxidative stress in 
the later stages of cardiac development. In the adult heart, arrhythmias, cardiomy-
opathies, congestive heart failure and coronary insufficiency can all result from oxi-
dative stress through epigenetic mechanisms. The genes involved in each of these 
situations are detailed in Table 6.1.

Establishment of therapeutic management is yet in its infancy, but could be 
promising.
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7Metabolic Signatures of Redox-
Dependent Cardiovascular Diseases

Stephen T. Vernon, John F. O’Sullivan, 
and Gemma A. Figtree

7.1	 �Introduction

Dysregulated redox signalling plays a central role in the development and progres-
sion of cardiovascular disease (CVD). To date only a small number of biomarkers 
that reflect cellular redox status have been identified and these markers have not 
been utilised in the clinical setting. Metabolomics is an unbiased approach that 
allows the identification and quantification of small molecules within a biological 
fluid. Advances in metabolomic platform technologies as well as bioinformatic 
approaches may allow for the rapid identification and utilisation of novel biomark-
ers that accurately reflect intracellular redox status relevant to the development of 
CVD. In addition to utility in both clinical diagnosis and monitoring disease status, 
the identification of such markers may lead to greater understanding of the biologi-
cal processes and pathways involved in CVD development. Specific metabolic sig-
natures may also better reflect sub-types and stages of CVD that are currently 
considered and treated as a single entity, this may improve precision in both risk 
prediction and disease treatment.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8273-4_7&domain=pdf
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7.2	 �What Is Metabolomics?

Omics studies allow incorporation and analysis of large amounts of data that repre-
sent the entirety of a particular biological parameter within a biological fluid or 
tissue. Currently, available omics technologies allow the global study of: genetic 
mutations and polymorphisms (genomics), gene expression (transcriptomics), pro-
teins (proteomics), small molecules (metabolomics), immunophenotyping, and lip-
ids (lipidomics) in biological fluids or tissues [1]. Metabolomics is the systematic 
identification and quantification of small molecules (up to 1.5 kDa) in biological 
fluids that reflects the state of the organism at a particular point in time [2]. The 
metabolome can be determined at the cellular, tissue, organ, or whole organism 
scale depending on what sample is obtained for assessment.

Metabolites in a biological system are diverse and dynamic, reflecting the array 
of metabolic activity at a point in time that is affected by various environmental and 
genetic factors and the interaction between the two [3]. High-throughput technolo-
gies, such as ultra-performance liquid chromatography mass spectrometry 
(UPLC-MS), allow the quantification of thousands of circulating metabolites across 
multiple pathways. This approach is promising as it has the ability to capture the 
complexity of metabolic networks and is not limited to a single enzymatic reaction 
or pathway [4, 5]. Oxidative stress reflects a loss of homeostasis between ROS pro-
duction and cellular antioxidants. There are currently only a small number of circu-
lating metabolites that  have been shown to reflect intracellular redox state (see 
below). It is feasible that recent advances in metabolomic platform technology and 
bioinformatics approaches may allow the identification of more specific circulating 
metabolic markers and signature patterns that reflect specific intracellular abnor-
malities relevant to redox signalling.

7.3	 �Technology for Measuring and Analysing Metabolites

Currently available analytical platforms used to identify and quantify metabolites in 
metabolomic analysis include: nuclear magnetic resonance (NMR) spectroscopy, 
direct infusion mass spectrometry, ultra-performance liquid chromatography mass 
spectrometry (UPLC-MS), and gas chromatography mass spectrometry. These 
NMR and mass spectrometry methods rely on different fundamental physical phe-
nomena to resolve and quantify molecules. NMR and UPLC-MS are the two pre-
dominant platforms used in metabolomic studies. NMR spectroscopy is a 
quantitative, non-destructive technique. NMR allows a single sample to be analysed 
by multiple experiments/assays and thus provide detailed information on solution-
state molecular structures [4].

Unselective NMR experiments can be used to profile metabolites in order to 
establish whether several metabolites are linked to the outcomes of interest. 
Alternatively, standard NMR sequences can be used to record resonances for a 
given nuclei (commonly 1H) for further chemometric analysis. Specific NMR pulse 
sequences can also be used to select subsets of metabolites. Metabolite molecular 
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dynamics (such as ligand–protein binding) can also be assessed through the inter-
pretation of NMR spin relaxation and molecular diffusion properties. UPLC-MS 
combines physical separation obtainable by liquid chromatography with mass anal-
ysis by mass spectrometry. A pressurized aqueous liquid biofluid sample is run 
through a column filled with solid adsorbent material. Each molecule type interacts 
differently with the adsorbent material causing different flow rates for different 
metabolites, this can then be detected upon elution [4]. The measurements obtained 
utilising these techniques requires bioinformatic approaches to analyse the data. 
There are a number of software packages available to perform such analyses. New 
data science approaches utilising network analytics and machine learning tech-
niques allow for multi-omics data that incorporate multiple individual omics plat-
forms to be utilised in biomarker discovery as well as approaches to uncovering 
novel biological pathways [1].

7.4	 �Metabolic Signatures

Metabolic signatures identified through metabolomic analysis may be relatively 
simple involving a small number of metabolites or may be complex and may include 
permutations of hundreds or even thousands of metabolites. These diverse meta-
bolic signatures have a vast array of potential utility including: early disease detec-
tion and diagnosis; disease activity and treatment monitoring; and in identifying 
new biological pathways and potential treatment targets. Systems biology provides 
a platform to try to unpack the underlying relationships, interconnected networks 
and mechanisms contained within the complex signatures.

Using advanced unbiased bioinformatic approaches including the incorporation 
of network analysis and machine learning techniques there is now the potential to 
integrate metabolomic as well as proteomic, lipidomic and genomic data to unravel 
novel biological pathways and therapeutic targets [1]. Mendelian randomization 
studies, that utilise specific germline genetic variants (single nucleotide polymor-
phisms) that have been shown to be associated with a risk factor or biomarker (e.g. 
a metabolite), are able to test for causal associations and therefore predict the likely 
effectiveness of targeting specific pathways with new therapeutics [6]. Such 
approaches should also be able to help direct future candidate based research 
towards pathways with causal effects (Fig. 7.1).

7.5	 �Insights from Application of LC-MS Measures 
of Metabolites in Cellular Models

LC-MS methods have become valuable tools for the measurement of intracellular 
metabolites. Redox-related metabolites such as nicotinamide co-factors (NAD, 
NADP, NADH, and NADPH) are readily assessable using these techniques. 
Glutathione exists in both reduced (GSH) and oxidized (GSSG) states and reflect 
redox state and cellular health [7]. The above polar metabolites are favourably 
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retained using a hydrophilic column with a bonded amide phase. This stationary 
phase is also suitable for measuring related energetic compounds such as AMP, 
ADP, and ATP. Advances in metabolite extraction directly from the culture plate for 
adherent cells, or using a cell suspension for non-adherent cells, has allowed a reli-
able and robust method of stably retrieving these fragile metabolites. Central carbon 
metabolism, e.g. measurement of the entire set of TCA cycle intermediates, gives a 
reliable measure of mitochondrial respiration. Other metabolites, such as ADMA – 
the major endogenous inhibitor of NOS – are important for a comprehensive assess-
ment of the redox state. Finally, recent advances in stable extraction of cellular 
organelles such as mitochondria enhance the fidelity of redox signal in a cell.

Fig. 7.1  Unbiased approaches to identifying metabolic signatures of redox dependent heart 
disease. ROS signalling occurs at the intracellular and extracellular level. To date few circulating 
biomarkers have been identified that accurately reflect intracellular redox status. Metabolomic 
assessment of plasma utilising NMR or MS platforms can be analysed using bioinformatic tech-
niques including network analysis and machine learning to identify metabolic signatures of cardio-
vascular disease. Other biological parameters such as genetic variants (single nucleotide 
polymorphisms) can be incorporated with metabolomic data in an unbiased manner using advanced 
bioinformatic approaches to identify novel biological pathways, disease mechanisms and thera-
peutic targets. Systems biology approaches may also be applied to cell and tissue specific samples 
to identify and further characterise biological pathways
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7.6	 �Circulating Metabolic Markers Associated 
with Cardiovascular Disease

A number of metabolic markers of cardiovascular disease have been identified to 
date. One study utilizing untargeted metabolomics techniques in a general popula-
tion cohort identified four metabolites that predicted cardiovascular events indepen-
dently of traditional cardiovascular risk factors: lysophosphatidylcholine 18:1, 
lysophosphatidylcholine 18:2, monoglyceride 18:2 and sphingomyelin 28:1 [8]. 
Another study utilising a targeted metabolomic approach in patients with hypertro-
phic cardiomyopathy who were undergoing an alcohol septal ablation procedure 
that intentionally causes an area of myocardial infarction identified a four-metabolite 
signature of acute myocardial infarction, consisting of: aconitic acid, hypoxanthine, 
trimethylamine N-oxide, and threonine [9]. A recent metanalysis of studies utilising 
metabolomics to identify metabolic signatures of incident cardiovascular disease 
identified: acylcarnitine, dicarboxylacylcarnitine, trimethylamine N-oxide (TMAO), 
amino acids such as phenylalanine, glutamate, and several lipid classes, as being 
associated with cardiovascular disease [10]. Many of these metabolic markers and 
their associated pathways are now the focus of candidate based research trying 
to  elucidate the underlying biological processes and potential novel therapeutic 
targets.

7.7	 �Gut Microbiome and Cardiovascular Disease

The human microbiome consists of more than 100 trillion microorganisms belong-
ing to 300–500 different species living within each human [11]. It is now increas-
ingly recognised that gut microflora act as a ‘filter’ for one of the most frequent 
environmental exposures, food. There is marked variation in the way food is digested 
within the gastrointestinal tract as a result of the distinct microbial flora within indi-
viduals’ gastrointestinal tracts. This produces a variety of gut microbe-derived 
metabolites some of which have been demonstrated to be biologically active in the 
host. For example, TMAO has been identified using metabolomic approaches to be 
a strong predictor of coronary artery disease [12]. Circulating TMAO levels increase 
4–8 h after ingestion of phosphatidylcholine and/or L-carnitine which are found in 
abundance in red meat and animal studies have shown both a role of the microbiota 
affecting the production of and circulating levels of TMAO but also an effect on 
atherosclerosis progression [12]. Consistent with this, vegetarians have a distinct 
microbiota and produce less TMAO compared to omnivores [13]. This is consistent 
with findings that dietary exposure effects the microbiota composition and function. 
Microbial transplantation studies also confirm the involvement of gut microbe-
dependent trimethylamine (TMA)/TMAO in the development of atherosclerosis 
[14]. It is likely that the TMA/TMAO pathways are one of many microbe-dependent 
pathways involved in cardiovascular disease pathogenesis. Systems biology meth-
odologies that combine immunomic, proteomic, metabolomic and genomic data 
should allow for a more integrated understanding of the complex relationship 
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between microbes, diet/environmental factors and the host. For example, Elliott 
et al. utilised systems biology approaches to identify a metabolic reaction network 
of human adiposity/obesity. This included the identification of nine gut microbial 
co-metabolites associated with body mass index reflecting five different host-gut 
transformation microbial pathways [15].

7.8	 �Urine Metabolite Signatures

7.8.1	 �Diabetic Renal Disease

The prevalence of type two diabetes mellitus is increasing throughout the developed 
world. Diabetic renal disease, one of the most common complications of diabetes 
mellitus, is increasing in prevalence as a consequence [16], mediated through both 
vascular dysfunction, as well as direct effects on the glomerulus and nephron. 
Diabetic renal disease is an important step in deteriorating cardiovascular health of 
the individual, feeding back to contribute to myocardial fibrosis and hypertrophy 
and heart failure, as well as vascular dysfunction and atherosclerosis. The identifica-
tion of diabetic renal disease has traditionally relied on monitoring serum creatine 
and urine microalbumin levels. However, there may be other metabolic markers of 
early diabetic renal disease detectable in plasma or urine, which, may allow addi-
tional targeted strategies for prevention. Metabolomic studies utilising plasma from 
diabetes mellitus and ESRD individuals have identified accumulation of metabo-
lites secondary to alterations in branched-chain and aromatic amino acid metabo-
lism [17, 18]. As the kidney concentrates and excretes many metabolites, urine 
metabolomic assessment may allow unique metabolic signatures to be identified. It 
is likely that there are urinary metabolic signatures that are unique to various mech-
anisms of renal dysfunction including diabetic nephropathy. One study utilising 
urinary metabolomics in healthy controls and diabetics with and without diabetic 
renal disease identified 13 metabolites that are differentially expressed in diabetic 
renal disease. The 13 differential metabolites identified were: 3-hydroxy isovaler-
ate, Aconitic acid, Citric acid, 2-ethyl 3-OH propionate, Glycolic acid, Homovanillic 
acid, 3-hydroxy isobutyrate, 2-methyl acetoacetate, 3-methyl adipic acid, 3-methyl 
crotonyl glycine, 3-hydroxy propionate, Tiglylglycine, and Uracil. Twelve of the 13 
differentially expressed metabolites have been linked to mitochondrial metabolism 
with 10 exclusively produced by mitochondria, suggesting that renal mitochondrial 
activity is suppressed in diabetic renal disease [19].

7.8.2	 �Obesity

The prevalence of obesity is also increasing across the globe [20]. As previously 
mentioned, there are complex metabolite associations with adiposity involving an 
extensive set of biochemical pathways and physiological processes, including gut 
microbial–human co-metabolism. One study, once again utilising metabolomic 
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assessment of urine, identified 29 metabolites significantly associated with body 
mass index independently of potential confounders. These metabolites included: 
urinary glycoproteins and N-acetyl neuraminate (related to renal function), trimeth-
ylamine, dimethylamine, 4-cresyl sulfate, phenylacetylglutamine and 
2-hydroxyisobutyrate (gut microbial co-metabolites), succinate and citrate (tricar-
boxylic acid cycle intermediates), ketoleucine and the ketoleucine/leucine ratio 
(linked to skeletal muscle mitochondria and branched-chain amino acid metabo-
lism), ethanolamine (linked to skeletal muscle turnover), and 3-methylhistidine 
(linked to skeletal muscle turnover and meat intake) [15].

7.9	 �Central Role of Redox in Cardiovascular Disease

Dysregulated production and degradation of reactive oxygen species (ROS), includ-
ing Superoxide anion (O2

–), hydrogen peroxide (H2O2) and hydroxyl radicals (.OH), 
have been implicated in multiple cardiovascular disease processes including athero-
sclerosis, hypertension, myocardial hypertrophy, heart failure and ischaemia-
reperfusion injury [7, 21]. Reactive nitrogen species (RNS), such as nitric oxide 
(NO) and peroxynitrite (ONOO−) are also involved in redox signalling in both phys-
iological and pathological processes.

Under physiological conditions the main source of ROS production is within 
mitochondria, primarily via the electron transport chain (ETC). ROS production by 
the ETC depends upon a number of physiological and pathological factors includ-
ing: the metabolic state of the mitochondria and degree of tissue oxygenation. Other 
sources of ROS relevant to the cardiovascular system include: nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidases (Noxs), Xanthine oxidase, cytochrome 
p450 enzymes, and uncoupled NO synthases (NOS) [22].

Tightly regulated production of ROS alters intracellular molecules and provides 
signals that may alter cellular phenotype both acutely and chronically [23]. 
Physiological processes within the cardiovascular system regulated by ROS include: 
nitric oxide (NO) regulation of endothelium-dependent microvascular and epicar-
dial vasodilatation, NO inhibition of platelet aggregation and adhesion; 
S-Glutathionylation (formation of a disulphide bridge between reactive cysteine 
residue and the tripeptide glutathione) mediated redox regulation of a number of 
key cellular proteins including endothelial nitric oxide synthase (eNOS), ryanodine 
receptor, SERCA and Na+/K+ pump, resulting in changes to intracellular Na+ and 
Ca2+ handling effecting function such as myocyte contractility.

In addition to their physiological role, mitochondrial produced ROS are also 
implicated in the pathophysiology of a variety of cardiovascular and other diseases. 
Redox signalling is implicated in many pathological pathways relevant to the car-
diovascular system including: vascular smooth muscle proliferation, atherosclero-
sis, angiogenesis, cardiac hypertrophy, fibrosis, and remodelling via reversible and 
irreversible modification of proteins and DNA [23].
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7.10	 �Compartmentalisation of Redox Signalling Pathways

Redox signalling refers to the processes by which ROS and RNS induce site-specific 
and reversible modifications to proteins that influence function through steric effects 
[21]. There are two main cellular compartments where ROS signalling takes place: 
the mitochondria, and the caveolae. Redox signalling is influenced by: the site of 
ROS production, the precise ROS species, local ROS concentration, and cell/com-
partment specific antioxidants [22]. Major ROS sources in the heart and other tis-
sues include the mitochondrial electron transport chain (ETC), other mitochondrial 
and metabolic enzymes, nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidases (Noxs), and uncoupled NO synthases (NOS). The caveolae are specialized 
membrane invaginations that allow the interaction of ROS with redox-regulated 
proteins. Caveolae are ~50–100  nm in diameter and contain signature proteins 
called caveolins which act as scaffolds providing spatial as well as temporal regula-
tion for multiple signalling pathways including protein/protein and redox-protein 
interaction [24, 25]. Caveolae are found in multiple cell types within the cardiovas-
cular system including: endothelial cells, smooth muscle cells, fibroblasts and mac-
rophages [26] They are dynamic, forming and receding in response to varied stimuli 
such as ischaemia [27]. Of the >245 proteins known to localise in the caveolae, 
including ion channels, pumps, and receptors, >80% are thought to have susceptible 
cysteines that are redox modified [24, 28]. Thus, the potential impact on cellular 
function of dysregulated redox signalling in the caveolae is profound, and measure-
ments in the circulation that may reflect this compartment would have immense 
potential as biologically relevant biomarkers in cardiovascular disease. This has 
been a challenge using standard approaches, but may benefit from advances in both 
metabolomic technologies and bioinformatic analytical approaches of metabolite 
signatures.

7.11	 �Which Metabolite Profiles/Signatures Change 
Under Redox Stress?

Lipids, proteins, carbohydrates, and DNA are all susceptible to oxidative modifica-
tion under redox stress [7]. Some of these modifications have functional effects, for 
example inhibition of enzymatic activity, whilst others appear to be functionally 
silent. There are currently no good circulating biomarkers that closely represent 
sub-cellular dysregulated redox signalling in the tissue, arterial wall or myocar-
dium. Improved prognostic ability, and potentially early disease detection and risk 
stratification may be achieved through a more reflective biomarker of the dysregu-
lated signalling microdomain. Whilst there is no currently identified circulating 
redox biomarker reflecting the intricacies of sub-cellular redox dysregulation in car-
diovascular disease, there are some markers that are either directly or indirectly 
related to redox state that have been associated with cardiovascular diseases. 
Metabolomics platforms allow for the measurement of metabolites that are related 
to or result from lipid and protein oxidation. The enzymes involved in these 
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pathways may also be measured using traditional techniques including enzyme 
activity assays [29].

7.11.1	 �Lipid Oxidation

F2-isoprostanes (prostaglandin-like substances) are produced independently of 
COX enzymes by ROS induced peroxidation of arachidonic acid [30]. 
F2-isoprostanes are detectable in all biological fluids and may be identified using 
metabolomic approaches. They are elevated in disease states characterised be ele-
vated ROS [31] including: in association with cigarette smoking, hypercholesterol-
aemia and diabetes mellitus [30]. F2-isoprostanes have been shown to affect platelet 
aggregation, vasoconstriction and platelet aggregation, and levels are increased in 
atherosclerotic lesions [32, 33]. They have also been shown to be elevated in myo-
cardial reperfusion and to correlate with left ventricular dilatation and heart failure 
severity [34, 35].

Malondialdehyde (MDA) (generated via peroxidation of polyunsaturated fatty 
acids) are proposed to play a key role in atherogenesis. MDA impairs macrophage 
action by inducing lysine-lysine cross links in apolipoprotein B fractions of OxLDL 
[36]. MDA levels can be measured using metabolomic platforms including high 
performance liquid chromatography (HPLC) however they are more commonly 
assessed using a commercial ELISA assays that actually measures Thiobarbituric 
acid-reactive substances (TBARS). ELISA assays for TBARS have a strong correla-
tion with direct HPLC of MDA. Serum levels of TBARS predicts major adverse 
cardiovascular events, including cardiovascular mortality and myocardial infarc-
tion, independent of traditional cardiovascular risk factors and inflammatory mark-
ers [37].

4-hydroxynonenal (4-HNE) is also produced via lipid peroxidation and is assess-
able by metabolomic platforms. 4-HNE results from the reaction of OH− with lip-
ids. 4-HNE is highly reactive with proteins and 4-HNE produced in the vascular 
wall exerts a paracrine effect on perivascular fat resulting in activation of peroxi-
some proliferator-activated receptor-γ signalling in the perivascular fat. This in turn 
leads to adipokine and adiponectin (antioxidants) release in the perivascular fat 
which subsequently has a paracrine effect back on the vascular wall reducing 
NADPHoxidase activity, thereby improving eNOS coupling [38]. This feedback 
cascade demonstrates the complexities of redox signalling and redox regulation 
within and between tissues.

7.11.2	 �Protein Oxidation

Free circulating 3-nitrotyroseine (3-NO-Tyr) is a predictor of cardiovascular risk 
independent of traditional risk factors. Statin therapy has also been demonstrated to 
alter circulating 3-NO-Tyr levels [39]. Carbonyl compounds formed by oxidation of 
a few amino acid side chains via the addition of aldehydes may be used as markers 
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of severe protein oxidation/damage. Carbonyl compounds accumulate during: 
aging, ischemia/reperfusion [40], diabetes, and obesity [41]. S-glutathionylation, 
the formation of a mixed disulphide bond between glutathione and the cysteine resi-
due on proteins is both stable and reversible. S-glutathionylation of various proteins 
has an array of functional effects including regulation of eNOS, and the Na+-K+ 
pump, as well as non-functional effects. However, access to these key proteins, and 
measurement of their modification in the circulation in a manner that reflects their 
maladaptive redox modifications in situ, is challenging [7]. One promising approach 
involves measuring S-glutathionylation of the Na+-K+ pump in circulating erythro-
cytes that has been demonstrated to mirror S-glutathionylation of the Na+-K+ pump 
in myocardial cells in patients with heart failure [7], although this still relies on 
more candidate approaches than achieved with broad metabolomic platforms.

7.11.3	 �Myeloperoxidase

Myeloperoxidase (MPO) is an abundant heme enzyme located within an array of 
inflammatory cells including activated neutrophils, macrophages and monocytes. 
MPO contributes to the production of a variety of ROS by catalysing the conversion 
hydrogen peroxide (H2O2) to hydroxyl radicals (.OH), (ONOO−), hypochlorous acid 
(HOCL) and nitric dioxide (NO2). MPO. MPO levels are an independent predictor 
of cardiovascular events in patients presenting to the Emergency Department with 
chest pain [42]. MPO levels also predict the development of coronary artery disease 
in “healthy” individuals [43] and increases in MPO levels have been associated with 
accelerated atheroma progression in diabetes mellitus patients [44]. MPO is an 
enzyme and is therefore not directly assessable using metabolomic techniques how-
ever given it’s known role in the production of ROS and association with cardiovas-
cular disease it is likely that MPO levels contribute to metabolic signatures of CVD 
and this relationship is a focus of ongoing research.

7.12	 �Therapeutic Relevance of Redox Signalling 
in Cardiovascular Disease

Multiple clinical trials testing the utility of anti-oxidant intake have failed to dem-
onstrate a reduction in cardiovascular events or death [45]. This may reflect an 
inability of dietary anti-oxidants to effectively and efficiently target specific redox 
pathways involved in cardiovascular disease. Many of the evidence-based cardio-
vascular drugs in clinical practice, including: statins, beta-blockers, and ACE inhib-
itors, are known to effect redox-dependent signalling pathways which may 
contribute to their demonstrated utility in preventing cardiovascular events and mor-
tality [24, 46]. A greater understanding of redox signalling pathways and markers 
that reflect this may allow novel treatments designed to specifically target redox 
dysregulation in cardiovascular disease. In addition, specific metabolic signatures 
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identified through metabolomic assessment may be transferrable to the clinical set-
ting and be incorporated in personalised medicine approaches.

7.13	 �Conclusion

Advances in metabolomics technologies, and bioinformatics capabilities will assist 
in identification and precise measurement of both candidate and unsuspected 
metabolites in the circulation that reflect dysregulated redox signalling and may be 
of relevance to clinical practice and our efforts to improve cardiovascular health.
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8.1	 �Introduction

Spices are common ingredients of our food, being used to render our food more 
appealing by imparting typical flavour, colour and pungency. Spices are also under-
stood to offer many medicinal properties [1] and a few spices are hence particularly 
employed in the indigenous systems of medicine and folk remedies. The chemical 
constituents of spices responsible for their typical quality attributes such as pun-
gency, aroma, flavor, etc. – termed as spice active principles – are coincidentally 
responsible for the health beneficial physiological effects also (Bioactive com-
pounds) in many instances [1]. The health beneficial effects of dietary spices include 
digestive stimulant action, lipid-lowering (particularly cholesterol-lowering) effects, 
cardio protective property, gallstone preventive influence, anti-inflammatory poten-
tial, and cancer preventive effects.

The role of high concentrations of cholesterol in circulating blood on the pro-
gression of atherosclerosis and coronary heart diseases is well understood. In this 
context, while many dietary spices have been evaluated for a cholesterol lowering 
effect in different experimental situations involving animal models and clinical tri-
als, garlic, onion, fenugreek seeds, turmeric and red pepper are found to be signifi-
cantly effective as hypocholesterolemic spices under conditions of 
hypercholesterolemia/hyperlipidemia [2]. Garlic, fenugreek seeds, and onion are 
found effective in hyperlipidemic patients. The hypolipidemic efficacy of turmeric 
(and curcumin), red pepper (and capsaicin) and of onion and garlic has been exhaus-
tively reviewed by several authors. While the above spices exert their cardio protec-
tive effect primarily through hypocholesterolemic potential, the anti-thrombotic 
influence, antioxidant effect particularly in cardiac tissue and suppression of low-
density lipoprotein (LDL) oxidation, anti-obesity/thermogenic influence, and 
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anti-hypertensive influence exerted by specific spices also contribute to their cardio 
protective attribute [3]. A substantial body of evidence suggests that oxidative stress 
in myocardium contribute to cardiovascular disease. More than the cholesterol car-
ried by it, the oxidative modification of LDL under conditions of oxidative stress is 
thought to play a significant role in the development of atherosclerotic process. The 
antioxidant property of a few specific spices is of particular interest in the context of 
the impact of oxidative modification of LDL in the development of atherosclerosis. 
Garlic, onion, curcumin of turmeric, cuminaldehyde of cumin, eugenol of cloves, 
and zingerone of ginger are understood to inhibit platelet aggregation (Fig. 8.1).

8.2	 �Moderation of Hypercholesterolemia/Hyperlipidemia 
by Dietary Spices

8.2.1	 �Garlic (Allium sativum)

Garlic with its characteristic flavour when used in foods, is also valued for its diverse 
medicinal properties including favourable physiological influences on CVD and 
cancer [4–6]. Dietary garlic has been unequivocally associated with a benereduction 
in blood cholesterol (particularly LDL-associated cholesterol) and also triglyceride 
levels [7]. More than 30 clinical studies have established that daily consumption of 
one clove of garlic (equivalent to 600–900 mg of dehydrated garlic powder) will 
have a consistent 10–12% cholesterol-lowering effect [8]. These clinical studies 
with garlic powder and its extracts include randomized, placebo-controlled, and 
double-blind trials, have demonstrated that garlic powder or its preparations also 
produce significant reduction in blood pressure in addition to lowering total 

Blood cholesterol lowering Prevents oxidation of LDL
Garlic, Onion, Fenugreek seeds, Capsaicin, Curcumin,

Red pepper/Capsaicin, Fenugreek seeds, Garlic
Turmeric/Curcumin, Ginger

CARDIO PROTECTIVE SPICES

Antithrombotic Hypotensive
Garlic, Onion, Curcumin, Garlic

Zingerone, Eugenol

Fig. 8.1  Anti-atherogenic and Cardio protective effect of spices
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cholesterol and triglycerides. The beneficial effect of garlic orally fed for 6 months 
on blood lipids has been demonstrated in patients with coronary heart disease [9]. 
The essential oil of garlic is shown to have distinct hypolipidemic effect in patients 
with coronary heart disease. In moderately hypercholesterolemic subjects, dietary 
supplementation with aged garlic extract is reported to exert a greater effect on 
blood lipid profile and blood pressure as compared to fresh garlic [10]. Simultaneous 
consumption of garlic with fish oil had a higher benefit on serum LDL-cholesterol 
and triglyceride concentrations as well as on the ratios of total cholesterol to HDL-
cholesterol and LDL-cholesterol to HDL cholesterol [11] (Fig. 8.2).

Animal studies employing rats and dogs have also indicated that garlic or its 
ingredients suppress cholesterol synthesis in the liver, lower serum cholesterol by 
particularly reducing LDL-associated cholesterol, and lower serum triglycerides 
[12–15]. Aqueous garlic extracts diminish hepatic cholesterol biosynthesis through 
inhibiting the activity of hydroxymethyl glutaryl-CoA reductase [16]. The hydro-
philic organosulfur compounds of garlic are also shown to have inhibitory effects on 
triglyceride and fatty acid synthesis in cultured rat hepatocytes [17]. These com-
pounds impair triglyceride biosynthesis partly due to decreased de novo fatty acid 
synthesis by inhibiting the activity of fatty acid synthetase.

Garlic also exhibits anti-thrombotic and blood pressure lowering properties, both 
of which also contribute to cardiovascular protection independent of its hypocholes-
terolemic property. The anti-atherosclerotic property of garlic is mainly attributed to 
the sulfur compound allicin produced upon crushing of the garlic. Garlic extracts 
and components – ajoene (4,5,9-trithiododeca-1,6,11-triene-9-oxide), 

Fig. 8.2  Blood cholesterol lowering spices
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2-vinyl-4H-1,3-dithio and diallyl trisulfide have shown potent antithrombotic effect 
by inhibiting human platelet aggregation [18, 19]. Aged garlic extract has been 
endowed with anti-clotting, as well as reductions in blood pressure. The anti-platelet 
aggregation, the anti-platelet adhesion and the anti-proliferation properties of aged 
garlic extracts are believed to contribute to the cardiovascular protection more than 
their hypolipidemic influence [20].

Garlic is shown to reduce blood clotting by inhibiting platelet aggregation better 
than aspirin [21], thus preventive to heart attacks. It facilitates the regression of fatty 
plaque deposits in blood vessels and reverses arterial blockages caused by athero-
sclerosis. Dietary supplementation with allicin (9 mg.kg−1) reduced the atheroscle-
rotic plaque by >50% in apolipoprotein E-deficient and LDL receptor knockout 
mice [22]. Allicin was also shown to beneficially affect atherosclerosis by lipopro-
tein modification and inhibition of LDL uptake and degradation by macrophages. 
Water-soluble protein of garlic (16% of diet) and garlic oil (100 mg.kg−1.day−1) are 
reported to have significantly lowered hyperlipidemia in rats [23], primarily due to 
a decrease in hepatic cholesterogenesis. Garlic protein has also been observed to be 
a hypolipidemic agent in alcohol-induced hyperlipidemia in rats, by facilitating 
increased cholesterol degradation to bile acids and neutral sterols and mobilization 
of triacylglycerols [24].

Several studies have elucidated the mechanism(s) of cholesterol-lowering effect 
of garlic. The hypolipidemic effect of garlic is ruled out to be mediated through the 
thyroid as indicated by a study on cholesterol and garlic oil-fed Sprague Dawley rats 
[25]. Based on a study involving rats maintained on high sucrose and alcohol diets 
[26], the mechanism of hypolipidemic effect of garlic oil involves diallyl disulfide 
inactivating enzymes and substrates containing thiol groups, increased catabolism 
of triacylglycerols due to upregulated activity of lipase, and a reduction in triacylg-
lycerol biosynthesis due to limited availability of NADPH. Primary rat hepatocyte 
cells pretreated with garlic extracts showed decreased incorporation of [14C]-acetate 
into cholesterol and fatty acids [17]. This suggested that the hypocholesterolemic 
effect of garlic is mediated through decreased hepatic cholesterogenesis, whereas 
the triacylglycerol-lowering effect is due to an inhibition of fatty acid synthesis. 
Studies on the effect of garlic on the expression of the microsomal triglyceride 
transfer protein (MTTP) gene evaluated in vitro in cell lines and in vivo in rats [27] 
have suggested that garlic may exert a lipid-lowering effect partly through reducing 
intestinal MTTP gene expression, leading to a suppression of the assembly and 
secretion of chylomicrons from intestine.

8.2.2	 �Onion (Allium cepa)

The hypocholesterolemic potential of onion has been extensively studied in experi-
mental animal models as well as in clinical trials [4, 5]. High cholesterol/ high fat/ 
high sucrose-fed rats and rabbits have been used in animal models, while hyperlip-
idemic human subjects have been tested for the efficacy of onion. Decreased con-
centration of cholesterol in blood and liver has been evidenced as a result of intake 
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of onion or its essential oil in several studies involving high sucrose-/high fat-/
ethanol-fed rats. Similarly, reduction in blood cholesterol concentration has been 
observed in rabbits maintained on high cholesterol diet upon feeding onion or its 
essential oil. Onion has been evidenced to reduce blood cholesterol in a number of 
human trials involving normal subjects as well as in hyperlipidemic patients. Onion 
juice reversed the elevated serum cholesterol levels and of plasma fibrinogen and 
also decreased fibrinolytic activity in rabbits fed a high-cholesterol diet for 6 months 
[28, 29]. Onion juice (equivalent of 25 g of onion.kg−1.day−1) prevented the increase 
in serum cholesterol in high-cholesterol diet-fed rabbits.

The influence of onion in reversing the deleterious effect of a high-cholesterol 
diet in the erythrocytes of rabbit has been reported [30, 31]. Dietary onion com-
pletely suppressed the shape change and aggregation of erythrocytes. Dietary onion 
not only showed hypocholesterolemic effect; whole onion and its various fractions 
exerted hypocholesterolemic effect in erythrocyte membranes in rats, and this was 
accompanied by changes in the erythrocyte membrane enzymes [32]. The lipid-
lowering potential of S-methyl cysteine sulfoxide (SMCS) isolated from onion 
(200 mg.kg−1 for 45 days) has been documented in Sprague-Dawley rats maintained 
on a 1% cholesterol diet [33]. The study indicated that SMCS reduced endogenous 
lipogenesis and increased the catabolism of lipids. Administration of aqueous onion 
extract significantly reduced serum, liver, and aorta triglycerides in sucrose-fed rab-
bits [34]. These effects of onion have been attributed to the inherent sulfur com-
pounds, which oxidize free thiol compounds as well as those bound in proteins. The 
hypolipidemic effect of dietary onion has also been demonstrated in streptozotocin 
diabetic rats [35]. These authors have also reported amelioration of diabetic renal 
lesions by dietary onion attributable to the hypocholesterolemic and antioxidant 
influences [36].

8.2.3	 �Fenugreek Seeds (Trigonella foenum-graecum)

Fenugreek seeds are commonly used as a spice for seasoning. Both fenugreek seeds 
and leaves have been exhaustively studied for their influence on body cholesterol 
levels in several human trials and in different experimental animal models [37]. 
Fenugreek seeds are shown to exhibit hypocholesterolemic property in hyperlipid-
emic rats induced with either a high fat diet [38] or a high cholesterol diet [39, 40]. 
Defatted fenugreek seed was found to be effective in diabetic hypercholesterolemia 
in dogs [41] as well as in humans [40]. Varying levels of fenugreek seeds have been 
tested by researchers and a 50% dietary level produced as much as 42% decrease in 
serum cholesterol in normal and 58% decrease in hydrogenated fat-fed rats [38]. 
The efficacy of fenugreek seeds fed at 15%, 30%, and 60% dietary levels has 
revealed a significant prevention of the rise in serum cholesterol levels in high 
cholesterol-fed rats [39]. Serum LDL-associated cholesterol was particularly 
reduced along with hepatic cholesterol; and this was accompanied with an increase 
in the fecal excretion of bile acids and neutral sterols. Thus, fenugreek seeds bring 
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about the hypocholesterolemic effect via depletion of cholesterol stores in the liver 
through stimulating the conversion of hepatic cholesterol to bile salts, and facilitat-
ing the increased excretion of fecal bile acids and neutral sterols.

The hypocholesterolemic property of fenugreek seeds is exhibited exclusively by 
the fiber and saponin components. The efficacy of the defatted fraction (fiber) of 
fenugreek seeds has been reported in diabetic hypercholesterolemia in dogs [41]. 
While the fiber component is predominantly responsible for the hypocholesterol-
emic/ hypolipidemic action, a fenugreek subfraction rich in steroid saponins and 
diosgenin has been observed to exhibit hypocholesterolemic effect in diabetic dogs. 
Fenugreek seeds and leaves (given for 3 weeks) produced a significant reduction in 
serum cholesterol level in diabetic subjects in addition to a beneficial effect on 
blood glucose and serum insulin responses. The hypocholesterolemic and hypotri-
glyceridemic effect of fenugreek seeds has been demonstrated in both insulin-
dependent and noninsulin-dependent diabetic subjects as well as in diabetic rats 
[42–44]. Dietary fenugreek seeds not only improved insulin sensitivity in rats main-
tained on a high-fat/high-sucrose (HFS) diet, but also distinctly reduced triglycer-
ide, cholesterol, and phospholipid levels in the liver [45].

Beneficial influence of fenugreek leaves (10 g.1500 g−1) on serum cholesterol has 
been evidenced in rabbits, as revealed by an increase in HDL-associated cholesterol 
[46]. Dietary supplementation of fenugreek leaves showed a lipid-lowering effect in 
diabetes-induced hyperlipidemia in streptozotocin-administered rats [47]. 
Consumption of the sprouted fenugreek seeds (18 g.day−1 for 1 month) resulted in a 
significant reduction in total and LDL-associated cholesterol in human subjects [48].

8.2.4	 �Red Pepper (Capsicum annuum)/Capsaicin

Red pepper is valued for its characteristic pungency attributable to its bioactive 
compound capsaicin. The diverse health beneficial physiological influences of red 
pepper and capsaicin have been recently reviewed [49]. The modulatory influence 
of red pepper or its pungent principle capsaicin on lipid metabolism is very well 
documented by investigators. Dietary red pepper (included up to 5%) or capsaicin 
(included up to 0.015%) has been consistently shown to lower serum and liver cho-
lesterol in high fat-fed rats. The hypolipidemic influence of dietary capsaicin (0.15, 
1.5, and 15 mg% in the diet for 1 week) has also been established in sucrose-induced 
hypertriglyceridemic rats [50]. The hypocholesterolemic efficacy of red pepper 
(5%) or capsaicin (15 mg%) has also been documented in animals fed atherogenic 
high (1%) cholesterol diet [51]. Hepatic cholesterol was lower in red pepper or cap-
saicin fed rats, which was accompanied by an enhanced fecal excretion of free cho-
lesterol and of bile acids. The antihypercholesterolemic influence of capsaicin also 
resulted in reversing the changes in membrane lipid profile in the erythrocytes [52].

In rabbits maintained on a 0.5% cholesterol diet, capsaicin lowered the plasma 
cholesterol, triglycerides, and total cholesterol/HDL-cholesterol ratio compared to 
cholesterol fed controls [53]. Turkeys maintained on a capsaicin containing feed 
(2–3  mg.kg−1 for 9  days) along with 0.5% cholesterol displayed significantly 
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lowered serum cholesterol [54]. The beneficial effect of capsicum oleoresin (75 mg.
kg−1.day−1) has been reported in hypercholesterolemic gerbils [55]. Capsaicin oleo-
resin not only reduced serum cholesterol and triglyceride levels, but also prevented 
the accumulation of cholesterol and triglycerides in the liver tissue and aorta. This 
was accompanied by a higher fecal excretion of cholesterol and triglycerides. 
Capsaicinoids were found to be beneficial in reducing plasma cholesterol and 
decreasing aortic plaque in high-cholesterol fed situation in hamsters [56]. Dietary 
capsaicinoids increased the fecal excretion of total acidic sterols possibly mediated 
by up-regulation of cholesterol-7α-hydroxylase and decreasing cholesterol absorp-
tion. Decreased cholesterol absorption as well as increased fecal excretion of cho-
lesterol and bile acids are the possible mechanisms of this cholesterol lowering 
action of capsaicin. A decrease in plasma LDL-cholesterol is facilitated by an 
upregulated expression of LDL receptors in the liver [57]. Dietary capsaicin is 
understood to stimulate the conversion of cholesterol to bile acids through upregu-
lating the activity of cholesterol-7α-hydroxylase in the liver [58].

8.2.5	 �Turmeric (Curcuma longa)/Curcumin

Turmeric (Curcuma longa) is a popular spice used in foods contributing an attrac-
tive yellow colour. Turmeric is also valued for its numerous medicinal properties in 
the indigenous system of medicine and folk remedies in India. The hypocholester-
olemic action of turmeric (0.004% in the diet) is reported in experimental animals 
with a significant reduction in both serum and liver cholesterol [59, 60]. This effect 
has been observed in conditions of both adequate protein and low-protein diets 
which also contained 10% hydrogenated fat, and also in hypercholesterolemia-
induced rats by feeding cholesterol-enriched diet.

The anti-hypercholesterolemic efficacy of dietary curcumin has been evidenced 
in rats maintained on an atherogenic high-cholesterol diet. Curcumin (0.1–0.5%) 
present in the hypercholesterolemic diet lowered serum and liver cholesterol con-
centrations and also appeared to normalize the serum α- and β-lipoprotein levels 
furing cholesterol feeding [61]. These effects were observed concomitant with an 
increased fecal excretion of bile acids and cholesterol. Dietary curcumin also coun-
tered the cholesterol enrichment in membranes of erythrocytes [52]. These benefi-
cial effects of dietary curcumin were also seen in rats rendered hypertriglyceridemic 
by feeding high sucrose [50]. The hypocholesterolemic property of curcumin in 
high-cholesterol diet fed rats is believed to be resulting from a suppressing effect on 
cholesterol absorption, stimulated degradation cholesterol to bile acids and the sub-
sequent elimination [62]. Curcumin in the diet (0.5% w/w) decreased serum LDL-
associated cholesterol and increased serum HDL-associated cholesterol, thus 
reducing the atherogenic indices. Curcumin (0.05% in diet) exhibited a hypolipid-
emic effect in high-fat diet fed hamsters by increasing the activity of plasma para-
oxonase enzyme, ratio of HDL-cholesterol to total cholesterol and ratio of apo A-I 
to apo B, and activity of hepatic fatty acid oxidation machinary with simultaneous 
inhibition of fatty acid and cholesterol biosynthesis in the liver [63].
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Hypocholesterolemic and hypotriglyceridemic action of dietary curcumin (0.5%) 
has also been demonstrated in diabetic situation in streptozotocin administered rats 
[64]. Tetrahydrocurcumin (THC) (80 mg.kg−1 for 45 days), one of the active metab-
olites of curcumin significantly increased plasma insulin titres and reduced blood 
glucose in streptozotocin-nicotinamide-induced diabetic rats [65]. The hypoglyce-
mic and hypolipidemic effects of THC were even higher than that of curcumin. The 
oxidation of low-density lipoprotein is understood to play an important role in the 
development of atherosclerosis, more than the cholesterol associated with it. 
Ethanol-aqueous extract of turmeric decreased the susceptibility of LDL to oxida-
tive modification in atherosclerotic rabbits [66], suggesting that turmeric could be 
useful in the management of CVD.

8.2.6	 �Ginger (Zingiber officinale)

Ginger rhizomes impart characteristic pungency and piquant flavour and hence are 
extensively consumed in foods, beverages, carbonated drinks, liquors and as a pre-
serve in sugar syrup [67]. Several reports claim the potential of ginger in suppress-
ing body’s cholesterol and lipid accumulation. The lipid-lowering property of ginger 
contributes to an effective weight management and hence in lowering the risk of 
CVD. Dietary 0.5% ginger oleoresin is reported to reduce serum and liver choles-
terol levels in rats maintained on high (1%) cholesterol diet for 20 days, and this was 
accompanied by a higher excretion of fecal cholesterol [68]. Beneficial hypocholes-
terolemic effect has also been reported in rats fed 10% ginger along with a high 1% 
cholesterol diet for 24 days [69]. The hypocholesterolemic effect of ginger oleo-
resin is inferred to be mediated through an interference with cholesterol 
absorption.

The anti-hypercholesterolemic influence of aqueous ginger extract (100, 200, 
and 400 mg.kg−1) has been observed in terms of a decrease in serum total choles-
terol, LDL-cholesterol, and triglycerides in hypercholesterolemic rats [70]. Orally 
administered alcoholic extract of ginger (200 mg.kg−1 for 20 days) lowered serum 
cholesterol and triglycerides while HDL-cholesterol was particularly increased in 
streptozotocin-induced diabetic rats, thus evidencing the potential of ginger in 
moderating diabetic dyslipidemia [71]. Ginger is understood to inhibit HMG-
CoA reductase and activate LDL-receptors in diabetic rats [72]. Aqueous ginger 
extract (500 mg.kg−1 orally administered for 4 weeks) lowered serum cholesterol, 
platelet thromboxane-B2 and prostaglandin-E2 production in rats [26], thus sug-
gesting the antithrombotic and anti-inflammatory property of ginger. 6-Gingerol, 
the key phytochemical of ginger is believed to target cholesterol homeostasis and 
fatty acid oxidation with hypocholesterolemic and anti-obesogenic consequences. 
Gingerol is also understood to prevent High Fat Diet-induced hyperlipidemia in 
rats by modulating the expression of appropriate enzymes involved in cholesterol 
homeostasis [73].

High blood cholesterol levels being a risk factor for the etiology of CVD, the 
cholesterol lowering property of ginger rhizomes suggests its cardio protective 

K. Srinivasan



181

potential. The hypotensive property, vasodilator and cardio-suppressant and stimu-
lant effects of ginger rhizome extract have been reported in isolated endothelium-
intact rat aorta [74]. The cardio protective potential of ginger extract has also been 
shown in myocardial infarction induced with isoproterenol in Wistar rats [75]. 
Pretreatment with ginger extract (400 mg.kg−1 for 4 weeks) significantly decreased 
cardiac markers of infarction such as troponin protein, and activities of creatine 
kinase-MB, lactate dehydrogenase, aspartate and alanine aminotransferases.

8.2.7	 �Other Spices Evaluated for Influence on Lipid Homeostasis

The anti-hypertensive potential of an aqueous extract of cumin (Cuminum cymi-
num) seed (200 mg.kg−1.day−1) and its role in arterial endothelial nitric oxide syn-
thase expression, inflammation, and oxidative stress has been reported in renal 
hypertensive rats [76]. Cumin reduced the systolic blood pressure in hypertensive 
rats, and improved plasma nitric oxide. This was accompanied by the up-regulation 
of the expression of iNOS, Bcl-2, TRX1, and TRXR1; and down-regulation of the 
expression of Bax, TNF-α, and IL-6. Cumin seeds thus augment endothelial func-
tions and ameliorate inflammatory and oxidative stress in hypertensive rats. 
Paraoxanase-1 plays a protective role against the oxidative modification of plasma 
lipoproteins and hydrolyzes lipid peroxides in atherosclerotic lesions. Cumin extract 
is reported to significantly decrease the level of oxidized LDL while upregulating 
the activity of paraoxonase in serum [77].

Daily administration of ether extract mango ginger (Curcuma amada) corre-
sponding to 100 g of this rhizome spice for 21 days produced a significant reduction 
in serum cholesterol in hypercholesterolemic rabbits [78]. The hypotriglyceridemic 
property of mango ginger has also been reported in induced hypertriglyceridemic 
rats [79]. The anti-hypercholesterolemic influence of dietary 10% mango ginger 
along with a high 1% cholesterol containing diet for 5 weeks decreased serum total 
and LDL-cholesterols and increased the HDL-cholesterol, and also lowered hepatic 
cholesterol in experimental rats [80], which was accompanied by an increased out-
put of bile acids.

Hypocholesterolemic efficacy of asafetida has been demonstrated in rats fed asa-
fetida powder (1.5%) along with high (1%) cholesterol diet [81]. Liver cholesterol 
level was also significantly lowered by dietary asafetida. Intestinal absorption of 
dietary cholesterol in rats maintained on 2% dietary asafetida along with a high-
cholesterol diet is reported to be significantly lower; this was accompanied with a 
higher fecal excretion of cholesterol and bile acids [82].

8.3	 �Potentiation of Hypolipidemic Influence by Spices

Dietary garlic has been shown to potentiate the hypolipidemic influence of tender 
cluster beans (Cyamopsis tetragonoloba) in high cholesterol-fed rats [83]. The anti-
hypercholesterolemic effect of dietary cluster beans was accompanied by a 
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significant decrease in the concentrations of cholesterol and triglycerides in the 
liver. This lipid-lowering effect in serum and the hepatic tissue was higher in the 
case of rats provided a dietary intervention with a combination of cluster beans and 
garlic. This higher beneficial influence was envisaged because of the difference in 
the mechanisms exerted by garlic and the soluble fibre-rich cluster beans. Similarly, 
the beneficial effects of dietary soluble fiber-rich tender cluster beans in weight 
control and adverse changes in body lipid profile were potentiated by capsaicin of 
red chilli co-administered to high-fat fed rats [84].

8.4	 �Synergistic Hypolipidemic and Antioxidant Effects 
of Dietary Fibre-Rich Fenugreek (Trigonella foenum-
graecum) Seeds and Garlic in Conditions 
of Hypercholesterolemia and Hyperlipidemia

Translational studies on experimental animals as well as clinical investigations indi-
cate that hypercholesterolemia, especially of LDL-associated cholesterol, lowered 
HDL-associated cholesterol, hypertension, thrombotic tendency and oxidative 
stress in the myocardial tissue are the major risk factors for CVD [85]. Plant foods 
which provide abundant amounts of dietary fiber and antioxidant phytochemicals 
are advocated for the prevention of CVD. While the hypocholesterolemic potential 
of fenugreek seeds are well understood in recent decades, the mechanism of action 
of Allium spices – garlic or onion in exerting the hypocholesterolemic and antioxi-
dant action is different from that of the former and is mediated through their sulphur 
compounds [2]. Hence, there is a possibility of an additive effect when these spices 
(fenugreek seeds and Allium spice) are consumed in combination.

Among the dietary interventions made with 10% fenugreek seed or 2% garlic or 
their combination along with a high-cholesterol diet in Wistar rats, the hypocholes-
terolemic effect particularly of LDL-cholesterol produced was more by the combi-
nation of the two spices [86]. The reversal of the elevated cholesterol: phospholipid 
ratio and atherogenicity index by these dietary interventions was also higher in the 
case of fenugreek+garlic. The elevated cholesterol content in the heart tissue was 
also beneficially modulated by dietary fenugreek and garlic, with a higher benefit 
from the combination. High cholesterol diet induced increase in lipid peroxides was 
countered by these two dietary spices individually and in combination, which was 
accompanied by restoration of the antioxidant molecule vitamin E in the myocardial 
tissue, the effect being highest with fenugreek  +  garlic, as compared to the two 
individual spices [86]. This study indicated that fenugreek seeds and garlic will 
exert higher cardio protective influence under hypercholesterolemic situation when 
consumed together.

The hypolipidemic and antioxidant influences of dietary (10%) fenugreek seeds 
and dietary (2%) garlic, individually and in combination for 8 weeks have also been 
evaluated in high-fat diet (HFD) fed Wistar rats [87]. These dietary interventions 
produced a significant reversal of increased concentration of triglycerides and LDL-
cholesterol in serum caused by HFD. HFD-induced increase in atherogenicity index 
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and the increase in triglycerides and cholesterol: phospholipid ratio in the heart tis-
sue were reversed by dietary fenugreek+garlic. In addition, the elevated lipid perox-
ides in circulation and cardiac tissue of HFD-fed rats was countered by dietary 
fenugreek+garlic [87]. Dietary fenugreek+garlic increased the activities of antioxi-
dant enzymes in blood and heart, and so also of antioxidant molecules in HFD-fed 
situation. Thus, these two spices may have a higher cardio protective influence 
when consumed together.

LDL oxidation being a key factor in the arteriosclerotic process, the potential of 
dietary fenugreek seeds and garlic to impede LDL oxidation has been examined in 
high-cholesterol diet fed rats [88]. Iron-induced oxidation of LDL in vivo in ferrous 
sulfate administered animals was considerably lowered by dietary pretreatment 
with fenugreek seeds and garlic included along with a high-cholesterol diet. Copper-
induced oxidation of isolated LDL in vitro was also significantly lesser in fenugreek 
or fenugreek+garlic fed rats. These spices significantly lowered lipid peroxides gen-
erated in plasma and heart in ferrous iron (II)-administered rats. Thus, these two 
dietary spices are protective to LDL oxidation under normal situation as well as in 
hypercholesterolemic situation; the protective effect of the combination of fenu-
greek and garlic being greater than that of these individual spices. The protective 
effect of dietary fenugreek and garlic on LDL oxidation is also suggestive of their 
cardio protective potential.

8.5	 �Cardio Protective Effect of Fenugreek Seeds and Garlic 
in Experimental Myocardial Infarction 
Through Hypolipidemic Influence and Alleviation 
of Oxidative Stress

Garlic bulbs and garlic oil have been shown to exert cardio protective influence in 
experimentally induced myocardial infarction in rats [89, 90]. Garlic oil produced a 
marked reversal of all the metabolic changes observed during myocardial infarction 
induced by isoproterenol [89]. Oxidative stress in the myocardium as a result of 
increased production of free radicals and decreased levels of antioxidants damages 
the myocardial cells leading to CVD [91]. Garlic oil exerted its effects by modulat-
ing lipid peroxidation and enhancing antioxidant enzyme systems. Significant coun-
tering of the increased serum free-iron content, decreased plasma iron-binding 
capacity, and ceruloplasmin, increased lipid peroxides, associated with decreased 
activities of antioxidant enzymes in the heart with isoproterenol-induced myocar-
dial necrosis was evident in garlic oil treatment. The protective role of garlic oil on 
isoproterenol-induced myocardial infarction has been further evaluated in rats [90]. 
Oral treatment of garlic oil for 60 days (75 mg.kg−1) significantly countered the 
depletion of endogenous antioxidants and increase in marker enzymes (Aspartate 
and alanine aminotransferases, LDH and CPK) in the serum. The study demon-
strated that the cardio protective effects of garlic oil in isoproterenol-induced oxida-
tive damage are mediated through inhibition of lipid peroxidation and augmentation 
of the endogenous antioxidant machinery.
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The cardio protective influence of dietary fenugreek seeds and garlic has been 
evaluated both individually and as a combination in rats with isoproterenol-induced 
myocardial infarction [92]. Dietary interventions with 10% fenugreek seeds or 2% 
freeze-dried garlic powder, or their combination ameliorated the disturbed activities 
of cardiac marker enzymes in serum and heart and pathological changes in the myo-
cardial tissue. This beneficial effect was found to be higher with the combination of 
fenugreek seeds and garlic invariably conforming to an additive effect.

Since oxidant stress plays a major role in the etiology of myocardial complica-
tions, another animal study with experimentally induced myocardial infarction in 
Wistar rats has examined the beneficial effect of dietary fenugreek seeds and garlic 
on the oxidative stress in blood and heart tissue under this condition [93]. Increased 
concentration of circulatory troponin, disturbed activities of ATPases in the cardiac 
tissue, increased serum iron, decreased ceruloplasmin, elevated lipid peroxides, 
depleted antioxidant molecules, and altered activities of antioxidant enzymes in the 
heart in isoproterenol-induced myocardial infarction were countered by dietary 
fenugreek seeds, garlic, and fenugreek+garlic. The cardio protective effect was gen-
erally higher in the case of dietary intervention with the combination of fenugreek 
seeds and garlic.

8.6	 �Amelioration of Cardiac Damage by Dietary Fenugreek 
Seeds and Onion in Streptozotocin-Induced Diabetic 
Rats

Dietary intervention with fenugreek seeds are shown to considerably decrease lipid 
peroxidation and counter the alteration in circulatory antioxidant molecules in 
streptozotocin-induced diabetic rats [94] and to the restore tissue antioxidant mol-
ecules in diabetic condition [95]. Hyperglycemia is a metabolic abnormality that 
increases the cardiovascular complication in diabetic patients by increased oxida-
tive stress. It has been recently shown that dietary fenugreek seeds and onion sig-
nificantly alleviate the oxidative stress and lipid abnormalities in the cardiac tissue 
of streptozotocin-induced diabetic rats [96]. Dietary interventions with fenugreek or 
onion considerably lowered oxidative stress, the combination producing a higher 
effect. In addition to hypocholesterolemic effect, dietary fenugreek, onion, or 
fenugreek+onion countered the elevated cholesterol and triglycerides in the heart 
tissue under diabetic condition, the beneficial effect being higher with the combina-
tion of the two spices, invariably amounting to an additive effect. The cardio protec-
tive effect thus observed was also corroborated by the apparent restoration of 
histopathological abnormalities in the heart tissue.

The mechanism of cardio protective influence of dietary fenugreek seeds and 
onion in hyperglycemia-mediated cardiac damage has been further investigated in 
streptozotocin-induced diabetic rats [97]. The observed cardio protective effect of 
these two spices was mediated through their potential to block the renin-angiotensin 
system (RAS), which is presumably a consequence of reduced activation of 
Angiotensin-converting enzyme (ACE) and Angiotensin Type 1 receptor (AT1) in 
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the heart tissue. Fenugreek+onion produced an additive effect on the protein and 
mRNA expressions of ACE and AT1. Dietary fenugreek seeds, onion, and their com-
bination were found to ameliorate the upregulated expression of type IV collagen, 
fibronectin, Bax, 4-hydroxynonenal, iNOS and metabolites of nitric oxide. There 
was also a restoration of the disturbed ratio of polyunsaturated fatty acids to satu-
rated fatty acids and activities of cardiac marker enzymes in blood and in the cardio-
vascular system. This cardio protective effect was higher with the combination of 
fenugreek and onion, being additive (iNOS expression) or even synergistic (cardiac 
Bax and type IV collagen expression and circulatory marker enzymes. Thus, the 
combination of fenugreek seeds and onion offer a higher beneficial influence in 
ameliorating the risk of cardiac damage accompanying diabetes mellitus.
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9Oxidative Stress and Modulation 
of Cardiac Kv1.5 Channel

Rajabrata Bhuyan and Sajal Chakraborti

9.1	 �Introduction

Oxidative stress and its mechanisms play major role in human physiology including 
ageing and many pathogenesis such as cancer, heart diseases, atherosclerosis and 
other chronic diseases. The oxidative stress can be defined as condition when the 
oxidant metabolites or oxygen radicals exert toxic effects due to their increased 
production or altered cellular metabolisms [1–3]. Among the major heart problems, 
the sudden cardiac death (SCD) and the cardiac arrhythmias are always considered 
as severe health issue caused due to stress. The reactive oxygen species (ROS) is 
known to be associated with the development and progression of myocardial dys-
function and subsequent cardiovascular tissue injury [4–7]. However, the molecular 
targets of these ROS have always remained obscure. In last decades, the importance 
of in cardiac dysfunction under varieties of pathophysiological conditions have been 
explored in depth. The above studies showed that the significance of cell redox 
state is necessarily required for balancing the level of ROS and nitric oxide (NO) in 
cell [2, 8–16]. Furthermore, understanding the reduction-oxidation imbalance that 
mechanistically contribute to several cardiac disorders such as hypertension, athero-
sclerosis, ischemic heart disease, cardiomyopathies, cardiac hypertrophy and con-
gestive heart failure have to be broaden in future.
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9.2	 �Role of Ion channels in cardiac stress

The balancing of ROS and nitric oxide (NO) level has considerable impact on ion 
channel function in cardiac cells [17]. Ion channels are the multimeric molecular 
machines, located in plasma membrane that have multiple roles such as ion conduc-
tion, membrane potential regulation, cell communication and signalling [18–21]. In 
cardiac tissue, numbers of ion channels including Na+, K+, Ca2+ and TRPV channels 
are expressed maintaining and regulating the regular physiology of heart [22–24]. 
Amongst them, most of these channels are already declared as targets and off-targets 
for various therapeutic interventions [25–28]. ROS are known to induce posttrans-
lational modification in ion channels through nitrosylation, and/or nitration at some 
specific amino acids that can directly/indirectly modulate the channel function by 
affecting many signaling pathways. However, the modulation of these ion channels 
due to the oxidative stress rapidly emerging, which enables the discovery of novel 
regulatory and pathological circuits for the treatment of several diseases. Interestingly 
more reports are available on ion channels involving in cardiac oxidative stress-
related diseases [29–33].

Membrane potential in cardiac cells is maintained by the above said ion channels 
with large conductance of Na+, K+, Ca2+ ions. The intracellular Ca2+ level plays 
important role in balancing the system and any changes in its level can cause 
mechanical mechanical dysfunction of the ion channels [17, 34, 35]. During the 
state of depolarization, the sequential calcium influx by the voltage-gated Ca2+ 
channels is responsible to generate the essential electromechanical coupling for 
regular contraction of cardiac muscle [36]. Subsequently, the K+ channels (mostly 
the voltage-gated) repolarise back the cell resting potential state by the outward cur-
rent flow before a new excitation can occur. The most prominent voltage-gated K+ 
channel (Kv) that play the role during early and plateau phase repolarization are the 
ultra rapid delayed rectifier channel (IKur) [37–40]. Attentions have been drawn in 
recent years to these ion channels participating in maintaining the membrane poten-
tial duration in heart as targets of oxidative stress for modulating their gating prop-
erties. Moreover, their over-expression and malfunctioning have been implicated in 
numerous health issues such as restricted blood flow, cell injury, long QT syndrome 
and heart failure including atrial fibrillation (AF) [41–43].

9.3	 �Kv1.5 in Heart

Kv1.5 is the fifth member of Shaker-type voltage gated potassium channel family, 
encoded by KCNA5 gene in human. It’s known to express in a wide range of tissues 
including heart, aorta, pancreatic b-cells, skeletal muscle, and brain [44–47]. In 
human heart cells, membrane repolarization is initiated by Kv1.5 and followed by 
other Kv channels. The Kv1.5 channels mainly participate in repolarizing the ultra-
rapid delayed-rectifier current, and any alternation of their function can lead to 
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cardiac arrhythmia such as atrial flutter and AF along with sudden cardiac death [37, 
38, 48]. In contrast to other IKur channels, Kv1.5 has been detected in human atrial 
cells, but not in ventricles [36, 40]. By this reason, the Kv1.5 is regarded as a prom-
ising drug target for antiarrhythmic treatment. Usually, the prolongation of action 
potential duration by blocking the Kv1.5 channel can restore the normal cardiac 
rhythm, which is considered as the basic therapeutic strategy of AF [49]. Studies 
revealed that sulfenic acid modification at a conserved cysteine residue of Kv1.5 
(C581) under prolonged oxidative stress can induce arrhythmia [50]. There are also 
several reports on mutations on Kv1.5 that can alter channel function leading to 
AF. In this chapter, we will discuss about some mutations and modulation of Kv1.5 
channel function.

9.4	 �Structure of Kv1.5

The Kv1.5 channel shares more than 70% of identity with the other members of 
Shaker-type ion channels [51–53]. It contains an extended N-terminal region located 
to be intracellular, which is a bit larger in comparison to other popular members of 
this family (Fig. 9.1a). Like any other member of Shaker-related family, the Kv1.5 
is comprised of homotetrameric segments arranged in a square like conformation. 
Each monomer contains six transmembrane helices (known as S1–S6), cytoplasmic 
unit and extracellular loops necessary for channel methylation. The first four helices 
(S1–S4) that sense the membrane potential difference are known as voltage sensing 
domains (VSDs), and the last two transmembrane segments (S5 & S6) forms the ion 
conduction pore. These segments are arranged in such a way that the VSDs remain 
at the periphery of the channel surrounded by the pore at centre (Fig. 9.1b, c, d, e). 
The S4 helix contains positively charged amino acids i. e. five arginines and one 
lysine in its every third position, known as gating charge residues [54, 55].

During membrane polarization, the S4 helix senses the voltage and all the gat-
ing charge residues start to move up in the positive potential along with a large 
conformational change in VSDs. These structural changes create a driving force 
that is transferred to the pore for channel activation via S4-S5 linker [56–60]. This 
S4-S5 linker is a α-helix formed by amphipathic amino acids remains parallel to 
the membrane [61]. Unlike most of the other members of Kv1 family, the Kv1.5 
contains two amino acids alterations in this linker; a glutamine is replaced by a 
lysine at position 425, and at 428 a glutamine takes the place of lysine. Due to 
these alterations, interaction between S4-S5 linker and S6 helix is lost and less 
driving force is required for channel activation. Again, the Lys425 of Kv1.5 forms 
a firm salt-bridge interaction with Glu433 of S5, holding the pore forming helices. 
The above interaction sustains the previous concept of channel open state confor-
mation, which suggests that the S4–S5 linker in activated condition must be 
extended to the N-terminal regions of S5. These features are believed to make the 
Kv1.5 a distinguished ion channel of IKur category, where very slow or almost no 
inactivation takes place [53].
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Fig. 9.1  Sequence alignment of Kv1 channel family (a); Topological architecture of Kv1 chan-
nels (b); Monomeric conformation of Kv1.5 (c); Tetramer aerial view (d); Side view (e)
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9.5	 �Mutations in Kv1.5

Several mutations are reported in Kv1.5, associated with AF or heart failure. Among 
them, the E375X is the stress-provoked most crucial one resulting loss of channel 
activity [62]. From the rest, E33V and P91L are identified in patients with cardiac 
attack [63]. Christophersen et  al. have studied six genetic variations in KCNA5 
among AF patients and pointed three mutations Y155C, D469E and P488S, that 
induce channel malfunction [64]. Another study reported three novel mutations 
T527  M, A576V and E610K, that had pivotal role in familial AF for consistent 
Kv1.5 loss-of-function [65]. Here, we performed a comparative analysis of these 
point mutations that are associated with AF or heart failure.

There are several programs and web servers available to study the effects or 
functional changes of a protein after the mutation occurs. PolyPhen-2 (http://genet-
ics.bwh.harvard.edu/pph2/) is one of the leading server that characterize the func-
tional changes in mutated region using a structure-homology-based method. It takes 
the protein ∗.fasta sequence as input and calculates position - specific independent 
counts (PSIC) scores for the variant sites on the basis of sequence substitution site 
and profile analysis of homologous sequences. Based on the PSIC score difference, 
it predicts whether a mutation is “BENIGN” or “POSSIBLY DAMAGING” or 
“PROBABLY DAMAGING” using threshold of Naive Bayes probabilistic score 
[66]. Similarly, the PROVEAN (Protein Variation Effect Analyzer) server (http://
provean.jcvi.org) is known for predicting the functional effects of mutation from 
protein sequence by filtering sequence variants. Mutation are regarded as “deleteri-
ous” that gives the PROVEAN score equal or below the threshold of −2.5, and the 
above are considered as “neutral” [67]. On the basis of structural features, the DUET 
server uses two distinct algorithms (mCSM and SDM) to predict the protein func-
tional effects on the basis of change in protein stability (∆∆G) [68]. The mCSM 
applies a graph based prediction model of signatures to represent the protein 3D 
model [69]; whereas, the SDM uses a statistical potential energy function [70]. For 
DUET server, the 3D model of Kv1.5 from our previous study was taken [53].

The mutational analysis by PolyPhen-2 and PROVEAN server predicted the 
E33V, P91L and A576V mutations to be neutral or to induce no such functional 
alterations in protein functions; whereas, the E610K mutation was predicted to be 
“PROBABLY DAMAGING” by PolyPhen-2 server only. We tested the most crucial 
E375X with four different amino acids with different properties. Here, the predic-
tion servers noted them all as damaging or destabilizing the protein conformation 
(Table 9.1). From the rests, the D469E and T527 M were found with comparatively 
less damaging by their scores. However, the SDM server predicted them to posi-
tively increase the protein stability. The P488S was suggested to induce reduced 
stability by all the sequence and structure based methods (Table 9.1).
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9.6	 �Modulation of cardiac Kv1.5 channel

Among the other heart problems, the AF is regarded as the most severe type of 
cardiac arrhythmias, which is caused by irregular excitation of heart pacemaker 
cells, and coupled with sudden heart failure, stroke and ageing related disorders 
[41–43]. The “atrial stabilization” or prolongation of action potential duration is a 
probable solution of AF [49]. In this regard, the modulation of Kv1.5 channel by 
small compounds has been one of the prime interest for researchers in developing 
antiarrhythmic drugs.

During recent years, several attempts have been made to develop the selective 
Kv1.5 blockers that have the potential in AF treatment [36, 39, 40, 71–73]. Initially, 
two research groups started working for the selective blockade of Kv1.5 by using 
mathematical models of action potentials in human atrial cells [74–76]. They sug-
gested that the reduction of IKur and selective inhibition of IKur can be effective in 
producing prolonged or stable action potential in healthy individuals. These above 
studies apparently resulted in finding several antiarrhythmic drugs (Table 9.2).

Among these, the Benzocaine [77], Bupivacaine [78], Candesartan [79], 
Eprosartan [79], Irbesartan [80][, Losartan [81], Clotrimazole [82], Loratadine [83], 
Rupatadine [84], Terfenadine [85], Papaverine [86] and Erythromycin [87] are 

Table 9.1  Mutation analysis of Kv1.5 channel detected in AF patients

Mutations

By sequence properties By structure properties

PolyPhen-2 with PSIC 
score

PROVEAN with 
score

mCSM (∆∆G in 
Kcal/mol)

SDM (∆∆G in 
Kcal/mol)

E33V 0.019 (BENIGN) −0.401 
(Neutral)

– –

P91L 0.00 (BENIGN) 0.841 (Neutral) – –
E375D 0.096 (BENIGN) −1.739 

(Neutral)
−1.39 
(Destabilizing)

−1.37 (Reduced 
stability)

E375K 0.635 (POSSIBLY 
DAMAGING)

−3.113 
(Deleterious)

−0.095 
(Destabilizing)

−0.86 (Reduced 
stability)

E375R 0.486 (POSSIBLY 
DAMAGING)

−4.054 
(Deleterious)

−0.003 
(Destabilizing)

−0.56 (Reduced 
stability)

E375A 0.766 (POSSIBLY 
DAMAGING)

−4.309 
(Deleterious)

−0.735 
(Destabilizing)

−0.02 (Reduced 
stability)

E375I 0.486 (POSSIBLY 
DAMAGING)

−5.412 
(Deleterious)

−0.064 
(Destabilizing)

−0.57 (Reduced 
stability)

D469E 0.842(POSSIBLY 
DAMAGING)

−3.176 
(Deleterious)

−0.748 
(Destabilizing)

1.25 (Increased 
stability)

P488S 1.000 (PROBABLY 
DAMAGING)

−7.230 
(Deleterious)

−2.116 
(Destabilizing)

−0.4 (Reduced 
stability)

T527M 0.954 (POSSIBLY 
DAMAGING)

−4.964 
(Deleterious)

−0.251 
(Destabilizing)

0 (Increased 
stability)

A576V (BENIGN) 0.01 0.542 (Neutral) – –
E610K 0.982 (PROBABLY 

DAMAGING)
−1.034 
(Neutral)

– –
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known as class III drugs that inhibit multiple cardiac K+ along with the other IKur. 
Apart from these known drugs, there are many antiarrhythmic agents available that 
show stronger inhibition on IKur channel modulation, but induces several adverse 
effects like long QT syndrome [88, 89]. Furthermore to develop safe and more 
selective antiarrhythmics leads, the derivatives of anthranilic acid amides [90, 91], 
biphenyls & bisaryls [92, 93], indanes [94], pyridazinones & phosphine oxides [95], 
and tetrahydroindolone semicarbazones [96] have been considered. Bhuyan and 
Seal have also proposed some drug-like compounds for Kv1.5 modulation through 
the computational studies [53]. On the basis of Quantitative Structure Activity 
Relationship (QSAR) and Pharmacophore based survey, the above structural classes 
of compounds commonly possess three hydrophobic moieties in a triangular 
arrangement, which is necessary to occlude the Kv1.5 channel pore [97]. In absence 
of crystal structure, computational docking and electrophysiology on mutants have 
been performed to identify the ligand binding residues of Kv1.5. The above studies 
revealed that the Kv1.5 blockers are possibly interact at the channel pore by many 
hydrophobic residues (T479, T480, I502, V505, I508, A509, and L510, V512, P513, 
and V516), close to the PVP region of S6 helix and the selectivity filter [53, 78, 
98–101]. Recent molecular modeling, virtual screening, and dynamics study on 
Kv1.5 modulation illustrated that the residues T479, T480 commonly participate in 
electrostatic interaction, whereas the others contribute impressive Van der walls or 
non-polar interaction. Overall, the whole hydrophobic patch is responsible for 
Kv1.5 inhibition [53].

Table 9.2  List of known antiarrhythmic drugs against Kv1.5

Drug Kv1.5 (IC50, μM)
Amiodarone 22.9
Bepridil 6.6
Clofilium 0.14
Diltiazem 29.2
Dronedarone 1.0
Flecainide 101
SSR149744C 2.7
Propafenone 4.4
Verapamil 3.2
Benzocaine 901
Bupivacaine 7.4
Candesartan 0.1
Eprosartan 1
Irbesartan 0.1
Losartan 1
Clotrimazole 1.99
Loratadine 0.8
Rupatadine 2.4
Terfenadine 1.1
Papaverine 43.4
Erythromycin 26
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9.7	 �Conclusion

Ion channels and transporters are well known to be associated with oxidative stress 
in human health and disease. These proteins are required for basic cellular physiol-
ogy and many of them are already declared as important drug targets in several 
pathologies. AF is one of such cardiac arrhythmia that is rapidly growing to be an 
expanding epidemic issue world-wide. More studies on ion channels in heart associ-
ated with oxidative stress should be helpful in detecting and developing new thera-
peutic strategies for many cardiac diseases.

References

	 1.	McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein 
(hemocuprein). J Biol Chem 244:6049–6055. https://doi.org/10.1016/0003-2697(69)90079-7

	 2.	Ceconi C, Boraso A, Cargnoni A, Ferrari R (2003) Oxidative stress in cardiovascular disease: 
myth or fact? Arch Biochem Biophys 420:217–221

	 3.	Chandrasekaran A, Idelchik M del PS, Melendez JA (2017) Redox control of senescence and 
age-related disease. Redox Biol 11:91–102

	 4.	Kukreja RC, Hess ML (1992) The oxygen free radical system: From equations through 
membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res 
26:641–655. https://doi.org/10.1093/cvr/26.7.641

	 5.	Singal PK, Khaper N, Palace V, Kumar D (1998) The role of oxidative stress in the genesis of 
heart disease. Cardiovasc Res 40:426–432. https://doi.org/10.1016/S0008-6363(98)00244-2

	 6.	Kukreja RC, Hess ML (1994) Free Radicals, Cardiovascular Dysfunction and Protective 
Strategies. R. G. Landes Co., Austin

	 7.	Tomaselli GF, Barth AS (2010) Sudden cardio arrest: Oxidative stress irritates the heart. Nat 
Med 16:648–649

	 8.	Stuehr DJ, Kwon NS, Nathan CF (1990) FAD and GSH participate in macrophage 
synthesis of nitric oxide. Biochem Biophys Res Commun 168:558–565. https://doi.
org/10.1016/0006-291X(90)92357-6

	 9.	Marletta MA (1989) Nitric oxide: biosynthesis and biological significance. Trends Biochem 
Sci 14:488–492

	 10.	Ferrari R, Guardigli G, Mele D et al (2004) Oxidative stress during myocardial ischaemia and 
heart failure. Curr Pharm Des 10:1699–1711. https://doi.org/10.2174/1381612043384718

	 11.	Nishiyama Y, Ikeda H, Haramaki N et al (1998) Oxidative stress is related to exercise intol-
erance in patients with heart failure. Am Heart J  135:115–120. https://doi.org/10.1016/
S0002-8703(98)70351-5

	 12.	Keith M, Geranmayegan A, Sole MJ et al (1998) Increased oxidative stress in patients with 
congestive heart failure. J Am Coll Cardiol 31:1352–1356

	 13.	Mallat Z, Philip I, Lebret M et  al (1998) Elevated levels of 8-iso-prostaglandin F(2α) in 
pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in 
ventricular dilatation and progression to heart failure. Circulation 97:1536–1539. https://doi.
org/10.1161/01.CIR.97.16.1536

	 14.	Tappel AL (1980) Vitamin E and selenium protection from in vivo lipid peroxidation∗. Ann 
N Y Acad Sci 355:18–31. https://doi.org/10.1111/j.1749-6632.1980.tb21324.x

	 15.	Weitz ZW, Birnbaum AJ, Skosey JL et  al (1991) High breath pentane concen-
trations during acute myocardial infarction. Lancet 337:933–935. https://doi.
org/10.1016/0140-6736(91)91569-G

R. Bhuyan and S. Chakraborti

https://doi.org/10.1016/0003-2697(69)90079-7
https://doi.org/10.1093/cvr/26.7.641
https://doi.org/10.1016/S0008-6363(98)00244-2
https://doi.org/10.1016/0006-291X(90)92357-6
https://doi.org/10.1016/0006-291X(90)92357-6
https://doi.org/10.2174/1381612043384718
https://doi.org/10.1016/S0002-8703(98)70351-5
https://doi.org/10.1016/S0002-8703(98)70351-5
https://doi.org/10.1161/01.CIR.97.16.1536
https://doi.org/10.1161/01.CIR.97.16.1536
https://doi.org/10.1111/j.1749-6632.1980.tb21324.x
https://doi.org/10.1016/0140-6736(91)91569-G
https://doi.org/10.1016/0140-6736(91)91569-G


199

	 16.	Sobotka PA, Brottman MD, Weitz Z et  al (1993) Elevated breath pentane in heart fail-
ure reduced by free radical scavenger. Free Radic Biol Med 14:643–647. https://doi.
org/10.1016/0891-5849(93)90145-K

	 17.	Choudhary G, Dudley SC (2002) Heart failure, oxidative stress, and ion channel modulation. 
Congest Heart Fail 8:148–155. https://doi.org/10.1111/j.1527-5299.2002.00716.x

	 18.	Hille B (2001) Ion channels of excitable membranes. Sinauer Associates. Sunderland, MA 
1375

	 19.	Hille B (1992) Ionic channels of excitable membranes, Ed 2.  Sinauer Association Inc., 
Sunderland, Massachusetts

	 20.	Purves D, Augustine GJ, Fitzpatrick D et al (2004) Neuroscience, Ed 3. Sinauer Associates. 
Inc., USA

	 21.	Hille B, Catterall WA (2012) Electrical excitability and ion channels. In: Basic neurochemis-
try, pp 63–80

	 22.	Roden DM, Balser JR, George AL Jr, Anderson ME (2002) Cardiac ion channels. Annu Rev 
Physiol 64:431–475. https://doi.org/10.1161/circep.108.789081

	 23.	Grant AO (2009) Cardiac ion channels. Circ Arrhythm Electrophysiol 2:185–194
	 24.	Priest BT, McDermott JS (2015) Cardiac ion channels. Channels (Austin) 9:352–359. https://

doi.org/10.1080/19336950.2015.1076597
	 25.	Ackerman MJ, Clapham DE (1997) Ion channels–basic science and clinical disease. N Engl 

J Med 336:1575–1586. https://doi.org/10.1056/NEJM199705293362207
	 26.	Belardinelli L, Antzelevitch C, Fraser H (2004) Inhibition of late (sustained/persistent) 

sodium current: a potential drug target to reduce intracellular sodium-dependent calcium 
overload and its detrimental effects on cardiomyocyte function. Eur Hear J Suppl 6:I3–I7. 
https://doi.org/10.1016/S1520-765X(04)80002-6

	 27.	Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mecha-
nism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol 
24:387–423. https://doi.org/10.1146/annurev.pa.24.040184.002131

	 28.	Carmeliet E, Mubagwa K (1998) Antiarrhythmic drugs and cardiac ion channels: mechanisms 
of action. Prog Biophys Mol Biol 70:1–72. https://doi.org/10.1016/S0079-6107(98)00002-9. 
[pii]

	 29.	Annunziato L, Pannaccione A, Cataldi M et al (2002) Modulation of ion channels by reac-
tive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 
23:819–834. https://doi.org/10.1016/S0197-4580(02)00069-6

	 30.	Liu Y, Gutterman DD (2002) Oxidative stress and potassium channel function. Clin Exp 
Pharmacol Physiol 29:305–311

	 31.	Takahashi K, Kakimoto Y, Toda K, Naruse K (2013) Mechanobiology in cardiac physiology 
and diseases. J Cell Mol Med 17:225–232

	 32.	Fedele F, Mancone M, Chilian WM et al (2013) Role of genetic polymorphisms of ion chan-
nels in the pathophysiology of coronary microvascular dysfunction and ischemic heart dis-
ease. Basic Res Cardiol 108:387. https://doi.org/10.1007/s00395-013-0387-4

	 33.	Ramírez A, Vázquez-Sánchez AY, Carrión-Robalino N, Camacho J (2016) Ion channels and 
oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxidative 
Med Cell Longev 2016:1–17. https://doi.org/10.1155/2016/3928714

	 34.	Rourke BO, D a K, Tomaselli GF et al (1999) Mechanisms of altered excitation-contraction 
coupling in experimental studies. Heart 84:562–570. https://doi.org/10.1161/01.RES.84.5.562

	 35.	Pogwizd SM, Qi M, Yuan W et al (1999) Upregulation of Na+/Ca2+ exchanger expression 
and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019. 
https://doi.org/10.1161/01.RES.85.11.1009

	 36.	Amos GJ, Wettwer E, Metzger F et al (1996) Differences between outward currents of human 
atrial and subepicardial ventricular myocytes. J Physiol 491:31–50. https://doi.org/10.1113/
jphysiol.1996.sp021194

9  Oxidative Stress and Modulation of Cardiac Kv1.5 Channel

https://doi.org/10.1016/0891-5849(93)90145-K
https://doi.org/10.1016/0891-5849(93)90145-K
https://doi.org/10.1111/j.1527-5299.2002.00716.x
https://doi.org/10.1161/circep.108.789081
https://doi.org/10.1080/19336950.2015.1076597
https://doi.org/10.1080/19336950.2015.1076597
https://doi.org/10.1056/NEJM199705293362207
https://doi.org/10.1016/S1520-765X(04)80002-6
https://doi.org/10.1146/annurev.pa.24.040184.002131
https://doi.org/10.1016/S0079-6107(98)00002-9
https://doi.org/10.1016/S0197-4580(02)00069-6
https://doi.org/10.1007/s00395-013-0387-4
https://doi.org/10.1155/2016/3928714
https://doi.org/10.1161/01.RES.84.5.562
https://doi.org/10.1161/01.RES.85.11.1009
https://doi.org/10.1113/jphysiol.1996.sp021194
https://doi.org/10.1113/jphysiol.1996.sp021194


200

	 37.	Fedida D, Wible B, Wang Z et  al (1993) Identity of a novel delayed rectifier current 
from human heart with a cloned K+ channel current. Circ Res 73:210–216. https://doi.
org/10.1161/01.RES.73.1.210

	 38.	Feng J, Wible B, Li G-R et al (1997) Antisense oligodeoxynucleotides directed against Kv1.5 
mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human 
atrial myocytes. Circ Res 80:572–579. https://doi.org/10.1161/01.RES.80.4.572

	 39.	Wang Z, Fermini B, Nattel S (1993) Sustained depolarization-induced outward current in 
human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 
cloned channel currents. Circ Res 73:1061–1076. https://doi.org/10.1161/01.RES.73.6.1061

	 40.	Li GR, Feng J, Yue L et al (1996) Evidence for two components of delayed rectifier K+ cur-
rent in human ventricular myocytes. Circ Res 78:689–696

	 41.	Alpert JS, Petersen P, Godtfredsen J  (1988) Atrial fibrillation: natural history, compli-
cations, and management. Annu Rev Med 39:41–52. https://doi.org/10.1146/annurev.
me.39.020188.000353

	 42.	Chugh SS, Blackshear JL, Shen WK et al (2001) Epidemiology and natural history of atrial 
fibrillation: clinical implications. J  Am Coll Cardiol 37:371–378. https://doi.org/10.1016/
S0735-1097(00)01107-4

	 43.	Peters NS, Schilling RJ, Kanagaratnam P, Markides V (2002) Atrial fibrillation: strategies to 
control, combat, and cure. Lancet 359:593–603

	 44.	MacDonald PE, Wheeler MB (2003) Voltage-dependent K + channels in pancreatic beta cells: 
role, regulation and potential as therapeutic targets. Diabetologia 46:1046–1062. https://doi.
org/10.1007/s00125-003-1159-8

	 45.	Roberds SL, Tamkun MM (1991) Cloning and tissue-specific expression of five voltage-
gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci 88:1798–1802

	 46.	Roe MW, Worley JF, Mittal AA et al (1996) Expression and function of pancreatic beta-cell 
delayed rectifier K+ channels. Role in stimulus-secretion coupling. J Biol Chem 271:32241–
32246. https://doi.org/10.1074/jbc.271.50.32241

	 47.	Su J, Yu H, Lenka N et al (2001) The expression and regulation of depolarization-activated 
K+ channels in the insulin-secreting cell line INS-1. Pflugers Arch Eur J Physiol 442:49–56. 
https://doi.org/10.1007/s004240000508

	 48.	Snyders DJ, Tamkun MM, Bennett PB (1993) A rapidly activating and slowly inactivating 
potassium channel cloned from human heart. Functional analysis after stable mammalian cell 
culture expression. J Gen Physiol 101:513–543. https://doi.org/10.1085/jgp.101.4.513

	 49.	Gerlach U, Brendel J, Lang H-J et al (2001) Synthesis and activity of novel and selective IKs-
channel blockers. J Med Chem 44:3831–3837. https://doi.org/10.1021/JM0109255

	 50.	Svoboda LK, Reddie KG, Zhang L et al (2012) Redox-sensitive sulfenic acid modification 
regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5. 
Circ Res 111:842–853. https://doi.org/10.1161/CIRCRESAHA.111.263525

	 51.	Bhuyan R, Seal A (2015) Conformational dynamics of shaker-type Kv1.1 ion channel in 
open, closed, and two mutated states. J Membr Biol 248:241–255. https://doi.org/10.1007/
s00232-014-9764-7

	 52.	Bhuyan R, Seal A (2015) Molecular dynamics of Kv1.3 ion channel and structural basis of 
its inhibition by scorpion toxin-OSK1 derivatives. Biophys Chem 203–204:1–11. https://doi.
org/10.1016/j.bpc.2015.04.004

	 53.	Bhuyan R, Seal A (2017) Dynamics and modulation studies of human voltage gated Kv1.5 
channel. J Biomol Struct Dyn 35:380–398. https://doi.org/10.1080/07391102.2016.1144528

	 54.	Ashcroft FM (2000) Ion channels and disease. Academic, London
	 55.	Durell SR, Hao Y, Guy HR (1998) Structural models of the transmembrane region of voltage-

gated and other K+channels in open, closed, and inactivated conformations. J Struct Biol 
121:263–284. https://doi.org/10.1006/jsbi.1998.3962

	 56.	Bezanilla F, Perozo E, Stefani E (1994) Gating of shaker K+ channels: II. The components 
of gating currents and a model of channel activation. Biophys J 66:1011–1021. https://doi.
org/10.1016/S0006-3495(94)80882-3

R. Bhuyan and S. Chakraborti

https://doi.org/10.1161/01.RES.73.1.210
https://doi.org/10.1161/01.RES.73.1.210
https://doi.org/10.1161/01.RES.80.4.572
https://doi.org/10.1161/01.RES.73.6.1061
https://doi.org/10.1146/annurev.me.39.020188.000353
https://doi.org/10.1146/annurev.me.39.020188.000353
https://doi.org/10.1016/S0735-1097(00)01107-4
https://doi.org/10.1016/S0735-1097(00)01107-4
https://doi.org/10.1007/s00125-003-1159-8
https://doi.org/10.1007/s00125-003-1159-8
https://doi.org/10.1074/jbc.271.50.32241
https://doi.org/10.1007/s004240000508
https://doi.org/10.1085/jgp.101.4.513
https://doi.org/10.1021/JM0109255
https://doi.org/10.1161/CIRCRESAHA.111.263525
https://doi.org/10.1007/s00232-014-9764-7
https://doi.org/10.1007/s00232-014-9764-7
https://doi.org/10.1016/j.bpc.2015.04.004
https://doi.org/10.1016/j.bpc.2015.04.004
https://doi.org/10.1080/07391102.2016.1144528
https://doi.org/10.1006/jsbi.1998.3962
https://doi.org/10.1016/S0006-3495(94)80882-3
https://doi.org/10.1016/S0006-3495(94)80882-3


201

	 57.	Zagotta WN, Hoshi T, Aldrich RW (1994) Shaker potassium channel gating. III: evalua-
tion of kinetic models for activation. J Gen Physiol 103:321–362. https://doi.org/10.1085/
jgp.103.2.321

	 58.	Smith-Maxwell CJ, Ledwell JL, Aldrich RW (1998) Role of the S4  in cooperativity of 
voltage-dependent potassium channel activation. J  Gen Physiol 111:399–420. https://doi.
org/10.1085/jgp.111.3.399

	 59.	Jensen MO, Borhani DW, Lindorff-Larsen K et al (2010) Principles of conduction and hydro-
phobic gating in K+ channels. Proc Natl Acad Sci 107:5833–5838. https://doi.org/10.1073/
pnas.0911691107

	 60.	Jensen M, Jogini V, Borhani DW et  al (2012) Mechanism of voltage gating in potassium 
channels. Science 336:229–233. https://doi.org/10.1126/science.1216533

	 61.	Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-
dependent K+channel in a lipid membrane-like environment. Nature 450:376–382. https://
doi.org/10.1038/nature06265

	 62.	Olson TM, Alekseev AE, Liu XK et al (2006) Kv1.5 channelopathy due to KCNA5 loss-of-
function mutation causes human atrial fibrillation. Hum Mol Genet 15:2185–2191. https://
doi.org/10.1093/hmg/ddl143

	 63.	Nielsen NH, Winkel BG, Kanters JK et  al (2007) Mutations in the Kv1.5 channel gene 
KCNA5 in cardiac arrest patients. Biochem Biophys Res Commun 354:776–782. https://doi.
org/10.1016/j.bbrc.2007.01.048

	 64.	Christophersen IE, Olesen MS, Liang B et al (2013) Genetic variation in KCNA5: impact on 
the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur Heart 
J 34:1517–1525. https://doi.org/10.1093/eurheartj/ehs442

	 65.	Yang Y, Li J, Lin X et al (2009) Novel KCNA5 loss-of-function mutations responsible for 
atrial fibrillation. J Hum Genet 54:277–283. https://doi.org/10.1038/jhg.2009.26

	 66.	Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human mis-
sense mutations using PolyPhen-2. Curr Protoc Hum Genet 76:7.20.1–7.20.41. https://doi.
org/10.1002/0471142905.hg0720s76

	 67.	Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of 
amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/
bioinformatics/btv195

	 68.	Pires DEV, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of muta-
tions on protein stability using an integrated computational approach. Nucleic Acids Res 
42:W314–W319. https://doi.org/10.1093/nar/gku411

	 69.	Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in 
proteins using graph-based signatures. Bioinformatics 30:335–342. https://doi.org/10.1093/
bioinformatics/btt691

	 70.	Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL (2017) SDM: a server for pre-
dicting effects of mutations on protein stability. Nucleic Acids Res 45:W229–W235. https://
doi.org/10.1093/nar/gkx439

	 71.	Feng J, Xu D, Wang Z, Nattel S (1998) Ultrarapid delayed rectifier current inactivation in 
human atrial myocytes: properties and consequences. Am J Phys 275:H1717–H1725

	 72.	Nattel S, Yue L, Wang Z (1999) Cardiac ultrarapid delayed rectifiers: a novel potassium cur-
rent family of functional similarity and molecular diversity. Cell Physiol Biochem 9:217–
226. https://doi.org/10.1159/000016318

	 73.	Schaffer P, Pelzmann B, Bernhart E et al (1998) Estimation of outward currents in isolated 
human atrial myocytes using inactivation time course analysis. Pflugers Arch Eur J Physiol 
436:457–468. https://doi.org/10.1007/s004240050657

	 74.	Nygren A, Leon LJ, Giles WR (2001) Simulations of the human atrial action potential. Philos 
Trans R Soc A Math Phys Eng Sci 359:1111–1125

	 75.	Nygren A, Fiset C, Firek L et al (1998) Mathematical model of an adult human atrial cell: 
the role of K+ currents in repolarization. Circ Res 82:63–81. https://doi.org/10.1161/01.
RES.82.1.63

9  Oxidative Stress and Modulation of Cardiac Kv1.5 Channel

https://doi.org/10.1085/jgp.103.2.321
https://doi.org/10.1085/jgp.103.2.321
https://doi.org/10.1085/jgp.111.3.399
https://doi.org/10.1085/jgp.111.3.399
https://doi.org/10.1073/pnas.0911691107
https://doi.org/10.1073/pnas.0911691107
https://doi.org/10.1126/science.1216533
https://doi.org/10.1038/nature06265
https://doi.org/10.1038/nature06265
https://doi.org/10.1093/hmg/ddl143
https://doi.org/10.1093/hmg/ddl143
https://doi.org/10.1016/j.bbrc.2007.01.048
https://doi.org/10.1016/j.bbrc.2007.01.048
https://doi.org/10.1093/eurheartj/ehs442
https://doi.org/10.1038/jhg.2009.26
https://doi.org/10.1002/0471142905.hg0720s76
https://doi.org/10.1002/0471142905.hg0720s76
https://doi.org/10.1093/bioinformatics/btv195
https://doi.org/10.1093/bioinformatics/btv195
https://doi.org/10.1093/nar/gku411
https://doi.org/10.1093/bioinformatics/btt691
https://doi.org/10.1093/bioinformatics/btt691
https://doi.org/10.1093/nar/gkx439
https://doi.org/10.1093/nar/gkx439
https://doi.org/10.1159/000016318
https://doi.org/10.1007/s004240050657
https://doi.org/10.1161/01.RES.82.1.63
https://doi.org/10.1161/01.RES.82.1.63


202

	 76.	Courtemanche M, Ramirez RJ, Nattel S (1999) Ionic targets for drug therapy and atrial 
fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc 
Res 42:477–489. https://doi.org/10.1016/S0008-6363(99)00034-6

	 77.	Delpón E, Caballero R, Valenzuela C et  al (1999) Benzocaine enhances and inhibits the 
K+current through a human cardiac cloned channel (Kv1.5). Cardiovasc Res 42:510–520. 
https://doi.org/10.1016/S0008-6363(99)00043-7

	 78.	Franqueza L, Longobardo M, Vicente J et al (1997) Molecular determinants of stereoselective 
bupivacaine block of hKv1.5 channels. Circ Res 81:1053–1064. https://doi.org/10.1161/01.
RES.81.6.1053

	 79.	Caballero R, Delpón E, Valenzuela C et al (2001) Direct effects of candesartan and eprosar-
tan on human cloned potassium channels involved in cardiac repolarization. Mol Pharmacol 
59:825–836. https://doi.org/10.1124/mol.59.4.825

	 80.	Moreno I, Caballero R, González T et al (2003) Effects of irbesartan on cloned potassium 
channels involved in human cardiac repolarization. J  Pharmacol Exp Ther 304:862–873. 
https://doi.org/10.1124/jpet.102.042325

	 81.	Caballero R, Delpón E, Valenzuela C et al (2000) Losartan and its metabolite E3174 modify 
cardiac delayed rectifier K+currents. Circulation 101:1199–1205. https://doi.org/10.1161/01.
CIR.101.10.1199

	 82.	 Iftinca M, Waldron GJ, Triggle CR, Cole WC (2001) State-dependent block of rabbit vascu-
lar smooth muscle delayed rectifier and Kv1.5 channels by inhibitors of cytochrome P450-
dependent enzymes. J Pharmacol Exp Ther 298:718–728

	 83.	Lacerda AE, Roy ML, Lewis EW, Rampe D (1997) Interactions of the nonsedating anti-
histamine loratadine with a Kv1.5-type potassium channel cloned from human heart. Mol 
Pharmacol 52:314–322

	 84.	Caballero R, Valenzuela C, Longobardo M et al (1999) Effects of rupatadine, a new dual 
antagonist of histamine and platelet-activating factor receptors, on human cardiac Kv1.5 
channels. Br J Pharmacol 128:1071–1081. https://doi.org/10.1038/sj.bjp.0702890

	 85.	Delpón E, Valenzuela C, Tamargo J (1999) Blockade of cardiac potassium and other channels 
by antihistamines. Drug Saf 21(Suppl 1):11–8–7

	 86.	Choe H, Lee Y-K, Lee Y-T et al (2003) Papaverine blocks hKv1.5 channel current and human 
atrial ultrarapid delayed rectifier K+ currents. J Pharmacol Exp Ther 304:706–712. https://doi.
org/10.1124/jpet.102.042770

	 87.	Rampe D, Murawsky MK (1997) Blockade of the human cardiac K+ channel Kv1.5 by the 
antibiotic erythromycin. Naunyn Schmiedeberg’s Arch Pharmacol 355:743–750. https://doi.
org/10.1007/PL00005008

	 88.	Camm AJ, Savelieva I (2004) Advances in antiarrhythmic drug treatment of atrial fibrillation: 
where do we stand now? Heart Rhythm 1:244–246

	 89.	Choudhury A, Lip GY (2004) Antiarrhythmic drugs in atrial fibrillation: an overview of new 
agents, their mechanisms of action and potential clinical utility. Expert Opin Investig Drugs 
13:841–855. https://doi.org/10.1517/13543784.13.7.841

	 90.	Decher N, Pirard B, Bundis F et  al (2004) Molecular basis for Kv1.5 channel block. 
Conservation of drug binding sites among voltage-gated K+channels. J Biol Chem 279:394–
400. https://doi.org/10.1074/jbc.M307411200

	 91.	Peukert S, Brendel J, Pirard B et al (2004) Pharmacophore-based search, synthesis, and bio-
logical evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg Med 
Chem Lett 14:2823–2827. https://doi.org/10.1016/j.bmcl.2004.03.057

	 92.	Bachmann A, Gutcher I, Kopp K et  al (2001) Characterization of a novel Kv1.5 chan-
nel blocker in Xenopus oocytes, CHO cells, human and rat cardiomyocytes. Naunyn 
Schmiedeberg’s Arch Pharmacol 364:472–478. https://doi.org/10.1007/s002100100474

	 93.	Decher N, Kumar P, Gonzalez T et al (2006) Binding site of a novel Kv1.5 blocker: a “foot 
in the door” against atrial fibrillation. Mol Pharmacol 70:1204–1211. https://doi.org/10.1124/
mol.106.026203

R. Bhuyan and S. Chakraborti

https://doi.org/10.1016/S0008-6363(99)00034-6
https://doi.org/10.1016/S0008-6363(99)00043-7
https://doi.org/10.1161/01.RES.81.6.1053
https://doi.org/10.1161/01.RES.81.6.1053
https://doi.org/10.1124/mol.59.4.825
https://doi.org/10.1124/jpet.102.042325
https://doi.org/10.1161/01.CIR.101.10.1199
https://doi.org/10.1161/01.CIR.101.10.1199
https://doi.org/10.1038/sj.bjp.0702890
https://doi.org/10.1124/jpet.102.042770
https://doi.org/10.1124/jpet.102.042770
https://doi.org/10.1007/PL00005008
https://doi.org/10.1007/PL00005008
https://doi.org/10.1517/13543784.13.7.841
https://doi.org/10.1074/jbc.M307411200
https://doi.org/10.1016/j.bmcl.2004.03.057
https://doi.org/10.1007/s002100100474
https://doi.org/10.1124/mol.106.026203
https://doi.org/10.1124/mol.106.026203


203

	 94.	Peukert S, Brendel J, Pirard B et  al (2003) Identification, synthesis, and activity of novel 
blockers of the voltage-gated potassium channel Kv1.5. J Med Chem 46:486–498. https://doi.
org/10.1021/jm0210461

	 95.	Brendel J, Peukert S (2003) Blockers of the Kv1.5 channel for the treatment of atrial 
arrhythmias. Curr Med Chem Cardiovasc Hematol Agents 1:273–287. https://doi.
org/10.2174/1568016033477441

	 96.	Wu S, Fluxe A, Janusz JM et al (2006) Discovery and synthesis of tetrahydroindolone derived 
semicarbazones as selective Kv1.5 blockers. Bioorg Med Chem Lett 16:5859–5863. https://
doi.org/10.1016/j.bmcl.2006.08.057

	 97.	Li Y, Starrett JE, Meanwell NA et  al (1997) The discovery of novel openers of Ca2+-
dependent large-conductance potassium channels: pharmacophore search and physiologi-
cal evaluation of flavonoids. Bioorg Med Chem Lett 7:759–762. https://doi.org/10.1016/
S0960-894X(97)00076-0

	 98.	Caballero R, Moreno I, González T et al (2002) Putative binding sites for benzocaine on a 
human cardiac cloned channel (Kv1.5). Cardiovasc Res 56:104–117. https://doi.org/10.1016/
S0008-6363(02)00509-6

	 99.	Snyders J, Knoth KM, Roberds SL, Tamkun MM (1992) Time-, voltage-, and state-dependent 
block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol 41:322–330

	100.	Snyders DJ, Ycola SW (1995) Determinants of antiarrhythmic drug action: electrostatic and 
hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res 77:575–
583. https://doi.org/10.1161/01.RES.77.3.575

	101.	Yeola SW, Rich TC, Uebele VN et al (1996) Molecular analysis of a binding site for quinidine 
in a human cardiac delayed rectifier K+ channel. Circ Res 78:1105–1114

9  Oxidative Stress and Modulation of Cardiac Kv1.5 Channel

https://doi.org/10.1021/jm0210461
https://doi.org/10.1021/jm0210461
https://doi.org/10.2174/1568016033477441
https://doi.org/10.2174/1568016033477441
https://doi.org/10.1016/j.bmcl.2006.08.057
https://doi.org/10.1016/j.bmcl.2006.08.057
https://doi.org/10.1016/S0960-894X(97)00076-0
https://doi.org/10.1016/S0960-894X(97)00076-0
https://doi.org/10.1016/S0008-6363(02)00509-6
https://doi.org/10.1016/S0008-6363(02)00509-6
https://doi.org/10.1161/01.RES.77.3.575


Part II

Atherosclerosis and Ischemic Heart Disease



207© Springer Nature Singapore Pte Ltd. 2019
S. Chakraborti et al. (eds.), Oxidative Stress in Heart Diseases, 
https://doi.org/10.1007/978-981-13-8273-4_10

P. Bozaykut (*) 
Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, 
Istanbul, Turkey

10Aging and Cardiovascular Diseases: 
The Role of Cellular Senescence

Perinur Bozaykut

Abbreviations

AAA	 Abdominal aortic aneurysm
CVD	 Cardiovascular disease
DDR	 DNA damage response
DNA	 Deoxyribonucleic acid
EC	 Endothelial cells
ER	 Endoplasmic reticulum
ETC	 Electron transport chain
HFpEF	 Heart failure with a preserved ejection fraction
IL	 Interleukin
Keap1	 Kelch-like ECH associated protein 1
LV	 Left ventricular
MCP	 Monocyte chemoattractant protein 1
mTOR	 Mammalian target of rapamycin
NAD	 Nicotinamide adenine dinucleotide
NFκB	 Nuclear factor kappa B
NO	 Nitric oxide
NOS	 Nitric oxide synthase
NOX	 NADPH oxidases
Nrf2	 Nuclear factor erythroid 2–related factor 2:
oxLDL	 Oxidized low-density lipoproteins:
PGC-1α	 PPAR-γ coactivator 1 alpha
ROS	 Reactive oxygen species
SAHF	 Senescence-associated heterochromatin foci
SAMP8	 Senescence accelerated mice prone 8
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SASP	 Senescence-associated secretory phenotype:
SA-β-gal	 Senescence-associated beta-galactosidase
SIPS	 Stress-induced premature senescence
SIRT	 Sirtuin
SMC	 Smooth muscle cells
SOD	 Superoxide dismutase
TGFβ	 Transforming growth factor β
TNFα	 Tumor necrosis factor
VSMC	 Vascular smooth muscle cell

10.1	 �Introduction

As life-expectancy increases, healthy aging is becoming an important problem [1]. 
Chronological age is the significant risk factor for the cardiovascular diseases 
(CVDs) and CVDs remain to be the major health problem in the elderly people [2]. 
CVDs such as heart failure, diabetes, and atherosclerosis are also termed as age-
associated diseases [3]. The vascular system deteriorates within aging process 
shows the powerful link between age and vascular disorders [4]. Aging is also asso-
ciated with oxidative stress, endoplasmic reticulum (ER) stress, inflammation, 
apoptosis and mitochondrial dysfunction, all of which are associated with CVD 
pathogenesis [5]. Among these aging etiologies, low-grade chronic inflammation 
and elevated oxidative stress are suggested to be most significant mechanisms to 
contribute disease pathology [6].

Aging process includes several complex mechanisms that are interconnected. 
Among these mechanisms, cellular senescence recently gains interest having a piv-
otal role in the progression of cardiovascular pathology [7, 8]. Over a half century 
ago, cellular senescence was originally described by Hayflick et al. in human lung 
fibroblasts [9]. They showed the limited replication capacity of human primary 
fibroblast cells which then, enter to permanent cell cycle arrest. In accordance with 
cell cycle arrest, alterations of gene expression changes lead to secretion of pro-
inflammatory proteins which is called as the senescence-associated secretory phe-
notype (SASP) [10]. SASP is especially essential in CVDs for leading to chronic 
inflammation and therefore, tissue remodeling [4]. Increasing evidence also have 
demonstrated that cellular senescence is an essential step in the development of 
vascular aging [11]. It has been shown that the vasculature and the myocardium 
undergo changes with aging and cellular senescence termed as “vascular senes-
cence”. Vascular senescence leads to cardiac morbidity and mortality that eventu-
ally promote atherosclerosis [12], systolic cardiac dysfunction [13] and systemic 
metabolic dysfunction [14].

With aging, large arteries go into progressive alterations in the mechanical prop-
erties such as endothelial dysfunction [15]. Vascular endothelial cells (ECs) are 
identified as an essential part of the vascular wall and therefore, are important for 
the maintenance of cardiovascular homeostasis [16]. Impairments in endothelial 
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function significantly contribute to arterial inflammation, lesion formation, deterio-
ration in vasodilation, and loss of compliance. Endothelial dysfunction is 
also accepted as the biomarker for future cardiac pathology since it is an early event 
in the development of atherosclerotic plaque [17]. Well-known clinical risk factors 
for CVDs, such as high blood pressure and oxidative stress lead to endothelial dys-
function [18]. Therefore, identification of mechanisms that underlies EC senescence 
and vascular aging may develop next-generation therapy strategies for cardiovascu-
lar diseases. Aging process is associated with changes in the vasculature at the cel-
lular and molecular levels and microvascular changes may be seen through the onset 
of vascular remodeling. Specifically, increased oxidative stress and low-grade 
chronic inflammation are possible underlying mechanisms that may trigger physi-
ological and early vascular aging [19, 20].

This review addresses the cellular senescence in aging-related diseases exploring 
in-depth role of oxidative stress with the focus on vascular system. It is reviewed the 
mechanisms underlying vascular senescence and the context of senescent cells in 
the vessels and usefulness of clearance of these senescent cells as next generation 
therapies for cardiovascular diseases. It is discussed the importance of fully under-
standing of aging mechanisms could emerge new strategies against vascular 
pathologies.

10.2	 �Cellular Senescence

Cellular senescence is described as an irreversible process in which cells enter per-
manent cell cycle arrest and typically, followed by a severe damage [9, 10]. Cellular 
senescence of cells is suggested to play a protective role in cancer process since cell 
cycle arrest occurs as a response to DNA damage could avoid tumor progression 
[21]. Therefore, in cancer process, cellular senescence functions as a vital safeguard 
against hyperproliferative states of the cells. On the other hand, it is known that cel-
lular senescence can be also detected in other cases than cancer, like aging and 
aging-associated disorders. Therefore, whether the senescence would be beneficial 
or detrimental, depends on the status and the age of the organism.

As described by Hayflick and Moorehead, cultured cells have a finite lifespan [9] 
and it was also shown that critical loss of telomeres causes cellular senescence when 
somatic cells undergo many cell divisions [22]. The discovery of senescence during 
serial passaging of human diploid fibroblasts started the speculation that senescence 
is a natural process during aging. In addition to fibroblast cells, cellular senescence 
has been observed in various cell types including epithelial cells, endothelial cells, 
lymphocytes and chondrocytes and more on [23]. The cells enter a state of cell cycle 
arrest following serial passaging of cells, termed as “replicative senescence” or 
“Hayflick limit”, has been characterized by the telomere shortening [4]. Many stud-
ies have also reported the increase of senescent cells with age and aging pathologies 
and have also shown the relationship of senescence to other biological processes 
including cardiovascular pathologies [24].
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However, the cellular senescence could be induced by other non-telomeric sig-
nals which include various types of stressors, mainly, oxidative stress [25]. When 
there is more stress than the physiological stress range, a different type of cellular 
senescence can also occur which is referred as “stress-induced premature senes-
cence” (SIPS). SIPS also includes the other candidate drivers of senescence includ-
ing oncogene signaling such as Ras, disrupted chromatin, DNA damage, intense 
mitogenic signals, oncogene activation, metabolic stress, and stress owing to cell 
culture conditions [26]. It is worth noting that telomere damage occurs at SISP as 
well, however, only to some extent [27].

Cellular senescence is also defined by another phenomenon which is termed as 
SASP [28]. This phenomenon is characterized by the secretion of many biologically 
active proteins that affect both the senescent cell itself and adjacent cells. The SASP 
includes proinflammatory cytokines that are particularly crucial in driving aging 
and the pathogenesis of age-associated diseases. The SASP develops consequence 
of extensive chromatin remodeling during senescence and which in turn suppresses 
the nuclear lamina protein, lamin B1 transcription [29]. Inhibition of lamin B1 leads 
to increase in inflammatory cytokines and chemokines, alterations in the production 
of growth factors, proteases secretion, and as a result, leads to reactive oxygen spe-
cies (ROS) generation [29]. Activation of inflammation by chronic SASP causes 
disruption in normal tissue structure and function [28], and further leads to death of 
cells around them, tissue remodeling, and attraction of immune elements. Innate 
immunity activation leads to the removal of component cells which is increases dur-
ing aging, potentially contributing to senescent cell accumulation in old age [30]. 
The fact that activation of inflammation by SASP underlies many age-associated 
pathologies and even may drive cancer.

Recent studies reported the effect of cellular senescence by its growth arrest phe-
notype and SASP factors as an important contributor in the pathology of age-associated 
disorders. In addition, it is also claimed that age-associated disease development by 
positive feedback mechanisms is maintained mainly by SASP factors. The overview 
of oxidative stress related mechanisms and its effect on the cardiovascular diseases by 
the cellular senescence induction will be discussed in the following sections [31].

10.2.1	 �Signaling Pathways of Cellular Senescence

Deterioration of various organ functions during cellular senescence is accompanied 
by several molecular mechanisms [7]. Although the molecular mechanism of the 
cellular senescence is not fully clarified yet, recent studies underlined several sig-
naling pathways. Lessons from what happens during senescence show the important 
role of p53 pathway [32]. The p53 protein which is known to protect the genome by 
the inhibition of tumorigenesis, also have pivotal roles in apoptosis, cell cycle con-
trol and DNA repair [33]. Additionally, it is well known that p53 is effective through 
many other biological processes including, autophagy, antioxidant defenses and 
angiogenesis [34, 35]. However, studies have shown that in aging process, p53 path-
way leads to increase in the levels of ROS and some other stresses as well, such as 
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DNA damage and oncogenic stress [32] and therefore, is one of the well-studied 
mechanism related to cellular senescence. As previously discussed, during replica-
tive senescence incomplete replication of telomeres leads to shortening of telomeres 
as a result of cell cycle arrest. Accordingly, when telomere shortening is extensive, 
chromosomal stability and DNA replication is disturbed leading to DNA damage. 
At this point, DNA damage induces cellular senescence via p53/p16 signaling path-
way is suggested to play the main roles during replicative senescence [34].

However, stress induced SIPS is triggered independent of cell cycle arrest and 
telomere shortening which critically erodes telomeres. Signals from various stresses 
including oxidative stress, UV, oncogenic stress, metabolic stress (Fig. 10.1) results 
in DNA damage leading to senescence is also regulated by the p53 or p16 pathways. 
Among stress factors, especially ROS is known to have crucial role for the induction 
of senescence in vascular cells since ROS can induce senescence either dependent 
or independent of telomere shortening by driving DNA lesions [36]. Other less 

AGING

Oxidative stress
Telomere shortening

Oncogenic stress
Inflammation

Cellular Senescence

ROS
DNA damage 

response
p53/p21

p16
SA-β-gal

Vascular Remodelling

Fig. 10.1  Consequences of aging on the vascular system. Chronological aging induces cellular 
senescence via the increase of stresses such as oxidative stress, oncogenic stress, elevated 
telomere attrition and inflammation. Cellular senescence is associated with an increase of ROS, 
p53/p21, p16 and SA-β-gal that results in pathological changes in the vascular system
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characterized stressors for vascular cells is the components of SASP itself which 
function via transforming growth factor β (TGFβ) signaling. As mentioned before, 
SASP takes crucial role during the pathology of the disorders since it affects nearby 
cells in the vessels [31]. The decision to activate p53 or p16 pathway depends either 
on the cell type or the stress type. p16 pathway is mainly activated almost in all cells 
during senescence progress [37]. On the other hand, when there is DNA damage 
and telomere dysfunction, p53 pathway is the preferred pathway. However, general 
cellular stresses such as mitogenic stress lead to activation of p16 signaling pathway 
[38, 39]. This type of senescence is typically linked to vascular aging since vessel 
wall-resident cells such as ECs, smooth muscle cells (SMCs), fibroblasts might not 
replicate as much as replicative senescence. On the other hand, in some cases such 
as when endothelial cell repopulation is occurred following angioplasty, both repli-
cative and nonreplicative senescence can be observed [40, 41].

The role of p53 signaling in cardiovascular/heart diseases has been shown with 
several studies. Increased level of p53 protein in old vessels, failing hearts and in the 
visceral fat of obese patients has been reported. The role of cellular stress triggered 
by p53 pathway has also been elicited in the pathology of aging and age-associated 
diseases such as atherosclerosis, diabetes, obesity and heart failure [13, 14, 35, 42]. 
On the other hand, some other studies have shown its beneficial effect during aging. 
A study with Trp53/Cdkn2a transgenic mice showed resistance to carcinogenesis 
with an increased lifespan [43]. Additionally, “Super p53” mice was also shown to 
be resistant to carcinogenesis and displayed normal glucose tolerance on a standard 
diet [44, 45]. In addition, another study showed deletion of p53 or p21 increased 
cellular senescence in the progeroid mice [46]. Depending on these studies, p53/p21 
signaling pathway plays a crucial role in the cellular senescence process, however, 
the response depends on the cell or stress type.

10.2.2	 �Biological Markers of Cellular Senescence

Although, there is no direct biological marker reflecting cellular senescence, identi-
fication of cellular senescence can be accomplished by using combination of several 
markers. Of them, senescence-associated beta-galactosidase (SA-β-gal) activity is 
the most widely used biological marker that is used for the detection cellular senes-
cence [47]. SA-β-gal activity is mainly detected by immunohistochemical method 
in cell culture and less preferably in tissue sections. In senescent cells, lysosomal 
beta-galactosidase activity can be detected only in pH 6 as a result of marked expan-
sion of the lysosomal compartment [47]. Other common used markers depend on 
the signaling status of the cell such as increased levels of p53, p16Ink4a, p21, p38 
mitogen-activated protein kinase. In some cases, epigenetic markers such as high 
mobility group A proteins or heterochromatin markers have been used as biological 
markers of cellular senescence [48]. Senescence-associated heterochromatin foci 
(SAHF) are heterochromatin markers which have DNA domains stained by 4′,6′- 
diamidino-2-phenylindole (DAPI) and have enriched histone methylations 
(H3K9me). Additionally, the modified histone, γH2AX contributes to DNA repair 
and stabilization and can be used as a proof of DNA damage linked by 
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telomere-induced foci [24, 48]. In addition, the presence of senescence can be sup-
ported by the appearance of the cells which display flat morphology and vacuolated 
cells with enlarged nucleoli, by the microscopy. The senescent cells also exhibit 
stable growth arrest although they are metabolically active [37].

SASP factors including interleukin-6 (IL-6), growth factors, proteases and other 
pro-inflammatory factors can be detected as well in the presence of cellular senes-
cence [49]. SASP factors can be easily detected form the media of cell culture by 
using ELISA method or expression analysis of the factors by RNA and protein 
expressions of the tissues. The levels of ROS are yet, another biological marker of 
senescent cells. The detection of these markers could be performed in days to weeks 
depending on the development process of cellular senescence [36].

10.3	 �Oxidative Stress and Cellular Senescence

The effect of ROS which is explained by the “Free radical theory of ageing” has 
been speculated for a long time as one of the main contributor of aging pathology in 
mammals. Many studies on various species have reported the effects of oxidative 
stress suggesting ROS has a central role on age-associated diseases and possibly on 
lifespan. Elevated oxidative stress levels, which is higher than normal cellular lev-
els, damage macromolecules and promote cellular senescence. Extensive ROS pro-
duction results in the oxidative modification of biomolecules including proteins, 
DNA and lipids which in turn leads to cellular and vascular dysfunction [50]. The 
consequences of ROS includes other mechanisms such as apoptosis or autophagy, 
however, the fate of oxidative stress depends on the duration and level of the oxida-
tive stress [51].

Oxidative stress caused by factors such as exposure to oxygen, hydrogen perox-
ide or tert-butylhydroperoxide can induce SIPS in cells [52, 53]. Other stressors 
such as oncogenes (H-RasV12) can also result in oxidative stress induction [54] and 
lead to oncogene induced SIPS by DNA damage response (DDR) [55]. The cellular 
senescence induced by oxidative stress has two main pathways as mitochondrial 
and non-mitochondrial pathways. These two pathways are likely to merge at some 
point by several molecular factors such as p53, pRB, p16 and p21 [56, 57]. p53/p21 
pathway has been suggested to act as the main molecular player when the stress is 
related to DDR [55], however, p16 pathway also has been shown to be activated 
during DDR damage (Fig. 10.1). Several studies also showed that cellular senes-
cence that is induced by ROS also involves a positive feedback pathway that results 
in the amplification of senescence factors. In this case, when senescence is induced 
by ROS, SASP factors would lead to even more increased oxidative stress and, 
thus, to increased senescence [58], and in turn, generated ROS would lead to more 
mitochondrial mutations and ROS that finally would result in ultimate senescent 
phenotype [56, 57].

Although some mechanisms have been proposed to link oxidative stress and 
senescence, the exact mechanisms haven’t fully cleared yet. A study conducted with 
a senescent mice model [59], reported that the nuclear factor erythroid 2–related 
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factor 2 (Nrf2) pathway could be the responsible molecular factor in the generation 
of oxidative stress in senescent animals. Nrf2 is a transcription factor which binds 
to cytosolic Kelch-like ECH associated protein 1 (Keap1) in its inactive form in 
normal cell conditions and activated under oxidative stress conditions. Activated 
Nrf2 translocates into the nucleus where it binds antioxidant response element and 
induces the gene expression of antioxidant and phase II enzymes. Studies  have 
shown that the effect of Nrf2 signaling on the inhibition of oxidative stress in 
adverse cardiac remodeling via its antioxidant role and Nrf2 silencing has also 
shown to lead to the activation of proinflammatory genes such as IL-1β and tumor 
necrosis factor (TNFα). Therefore, any impairment in Nrf2 signaling is suggested to 
lead to an increase in the cardiac disease severity by the activation of inflammation 
factors (Fig. 10.2) [60].

10.4	 �The Mitochondrial Pathway of Oxidative Stress 
and Cellular Senescence

Mitochondria has the central role on the production of ROS by the escape of elec-
trons through electron transport chain (ETC), therefore, mitochondrial dysfunction 
has been associated to senescence and related disease pathologies [61]. ROS pro-
duced by mitochondria results in the mutations of mitochondrial DNA leading to 
mitochondrial function defects. As a result, especially in aging process, 

Aged vessels

NOX

Elevated ROS Decreased NO

Decreased antioxidant capacity

Activation of Nrf2

Cellular senescence
NFκB

SASP:Proinflammatory
factors IL-6, IL-1β, TNF-α 

Heart failure
Atherosclerosis
Diabetes
Hypertension

Fig. 10.2  Development of cardiovascular diseases by the effect of oxidative stress. Aged vessels 
are characterized by elevated reactive oxygen species (ROS) levels and decreased nitric oxide 
(NO) levels modulated by nitric oxide synthase NADPH oxidases (NOX). Decreased antioxidant 
capacity induces cellular senescence that promotes senescence-associated secretory phenotype 
(SASP) factors that lead to pathogenesis of heart failure, atherosclerosis, diabetes and 
hypertension
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mitochondrial dysfunction results in biological function decline and leads to age-
associated heart disorders [62].

Recent findings reported the fact that oxidative stress can result in DDR by vari-
ous mechanisms such as telomeric and non-telomeric mechanisms. Oxidative stress 
can also induce ROS production by the positive feedback mechanism [63] and the 
molecular players that is known to responsible for the positive feedback mechanism 
includes p53-dependent signaling pathway such as p21, GADD45A, p38 and TGFβ 
[57]. On the other, as it is previously discussed, oxidative stress can be generated 
also by non-mitochondrial mechanisms which leads to cellular senescence in col-
laboration with the mitochondrial ROS. Recently, it was reported that the presence 
of mitochondrial ROS is required for the cellular senescence generation which is 
shown by typical markers of senescence such as SA-β-gal and SASP factors [51]. In 
addition, uncoupling of mitochondria suggested to lead to proteasomal degradation 
and autophagy however, no common markers of senescent phenotype were detected 
[51]. The study also suggested mTOR could be the responsible pathway to drive 
DDR for the induction of cellular senescence. Recent findings also suggested the 
role of mitochondria on senescent phenotype not only by ROS production but also 
other factors including mitochondrial dynamics, altered redox state and metabolism 
and impaired ETC [64]. It is also worth noting that mitochondrial dysfunction has a 
regulative role on SASP as well which induces growth arrest as the senescent phe-
notype [57].

It has been reported that a proper model to study age-associated cardiovascular 
diseases is the accelerated senescent model of mice named as “senescence acceler-
ated mice prone 8” (SAMP8). A study of SAMP8 showed increased mitochondrial 
dysfunction and cardiac ROS in the mitochondria [61]. Various studies have also 
reported impairment of mitochondria is related to apoptosis [65] and it was shown 
that hearts of SAMP8 mice is affected by apoptosis significantly by caspase3 path-
way during aging process [66]. The reports of senescent mice model also confirm 
that aging-associated diseases and typically cardiac remodeling are related ROS, 
mitochondrial dysfunction, and apoptosis.

Sirtuins (SIRTs) which are also known as Nicotinamide adenine dinucleotide 
(NAD+)-dependent histone/protein deacetylases are controlled by NAD+ physio-
logical levels in the cell. It has been reported that NAD+ and SIRT activity is 
decreased by aging, and this decrease is responsible for mitochondrial dysfunction. 
Reduced NAD+ levels result in ROS production either via PGC-1α (PPAR-γ coacti-
vator 1 alpha) dependent and independent pathways [67]. On the other hand, AMPK 
increases SIRT1 activity via affecting NAD+/NADH ratio [68]. Another study 
reported elevated NAD+ levels inhibit senescent phenotype in muscle, neural and 
other adult stem cells [69]. Overall, these reports demonstrate the importance of 
NAD+ and SIRTs as molecular players in mitochondrial dysfunction and oxidative 
stress production for healthspan. All information above suggest that mitochondrial 
ROS is crucial in process of cellular senescence and related aging pathologies.
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10.5	 �Oxidative Stress, Senescence and Cardiovascular 
Pathologies

Previous sections explain common processes of ROS and oxidative stress levels, 
their mechanisms and responses against various conditions that result in dysfunc-
tion of the cellular and tissue physiology. Many studies have suggested the role of 
cellular senescence in the development of age-associated pathologies [21, 46] that 
has been linked with oxidative stress, mitochondrial dysfunction and telomere 
shortening [70] all of which are considered as the markers of aging [71]. Changes in 
the level of ROS has been suggested to be important in the association of oxidative 
stress with aging and aging-associated heart and cardiovascular diseases [72]. In the 
following sections, the effects of oxidative stress and cellular senescence on aging-
associated pathologies including heart failure, atherosclerosis, hypertension and 
diabetes will be described (Fig. 10.2).

Processes of oxidative stress are identified in ageing vessels [73, 74] including 
elevated vascular ROS levels and decreased nitric oxide levels leading to the forma-
tion of injurious peroxynitrite in aorta of aged rodents [50]. Oxidative stress typi-
cally promotes several molecular events of vascular aging such as vascular 
dysfunction, fibrosis and calcification, altered calcium homeostasis, activation of 
redox-sensitive or pro-inflammatory factors, and activation of cellular senescence 
and autophagy in ECs and VSMCs. Increased ROS levels could be reversed by 
superoxide dismutase (SOD) mimetics, such as tempol, leading to decrease in endo-
thelial impairment in old rodents suggest the essential role of oxidative stress in 
age-associated endothelial dysfunction [75]. The alterations in cellular anti-oxidant 
systems by aging such as the decrease of SOD as an antioxidant enzyme, also take 
crucial role. Nrf2, which is previously described as the master transcription factor 
regulating anti-oxidant genes, is also downregulated by the reduced anti-oxidant 
capacity leading to extensive dysfunction of the cells [76]. Finally, these processes 
are followed by low-grade chronic inflammation via NFκB molecular pathway in 
aged vessels (Fig. 10.2) [63].

Telomere shortening and dysfunction which have crucial role during replicative 
senescence also related with CVDs [77]. Particularly, telomere dysfunction of 
senescent cells has been associated with chronic ROS production. Relatively, it is 
suggested that the senescence phenotype SASP leads to degenerative and prolifera-
tive activities in the cells and their component cells which is also important in the 
pathology of cardiovascular disorders [78]. It has been shown that senescent human 
umbilical venous endothelial cells (HUVECs) contributed to endothelial dysfunc-
tion that resulted in atherosclerosis development [79]. Senescence of HUVECs is 
further proposed to elevate the expression of pro-inflammatory cytokines that could 
lead to a progressive development in the pathogenesis of CVDs. It has been also 
demonstrated that pro-inflammatory molecules including TNF-α and IL-6 levels are 
elevated during aging process [79].

p66Shc, which is an adaptor protein, has been suggested to control oxidative 
stress and be involved in CVD pathogenesis [80]. It was shown in fibroblast cells 
that p66Shc controls various cellular fates including apoptosis and senescence [81]. 
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On the other hand, several studies have shown that p66Shc silencing decreased the 
levels of ROS under stress conditions. In addition, knockout mice model of p66Shc 
was shown to extend lifespan. Elevated levels of oxidative stress and decreased NO 
were shown to lead to vessel impairment [82] and elevated expression of p66Shc 
was shown in coronary artery disease patients [83]. Another study in knockdown 
mice model of p66Shc showed that myocardial injury was decreased, and resistance 
to endothelial dysfunction was increased due to low oxidative stress [49]. Therefore, 
it is suggested that the regulators of cellular senescence such as p66Shc are essential 
to develop therapeutic interventions for CVDs.

EC senescence which can be induced by several factors has important role on 
cellular homeostasis and relatively, on vascular aging and diseases. Although the 
exact mechanism of EC senescence is not known, it is suggested that ROS levels are 
crucial for the generation of senescent ECs and vascular aging [84]. It is well known 
that senescence-induced vascular aging is crucial in disorders such as atherosclero-
sis, diabetes, and hypertension [3]. p53 which is the target of SIRT1 is also regu-
lated by oxidative stress levels and, therefore, antiaging mechanisms are controlled 
by ROS at some level [85]. Particularly, the p53-p21-Rb molecular pathway is sug-
gested to have an important role for the generation of senescent cells in various 
cellular stimuli. When activated, p53 protein induces the expression of p21 that 
leads to cell cycle arrest and activation of cell cycle repressor retinoblastoma (Rb) 
[86]. A very recent study also explained the relation of EC senescence and vascular 
aging with excess ROS levels and decreased SIRT1 levels by the activation of p53-
p21-Rb pathway [87]. Another recent study on SAMP8 as a vascular aging model 
showed the increased levels of ROS and inflammation in perivascular adipose tissue 
which resulted in the vascular dysfunction [88]. These studies suggested that asso-
ciation of increased oxidative stress levels and senescence have big impact on the 
vascular aging and dysfunction through the senescence of vascular cells and, there-
fore, on the development of CVDs.

10.6	 �Heart Failure

Among age-associated diseases, heart failure has a high prevalence in old people 
[89] and, therefore, well-established therapies for severe heart failure is urgent. 
Age-associated heart failure is also observed without known risk factors, such as 
hypertension, obesity, diabetes, or atherosclerotic pathologies [3, 90]. %50 of heart 
failure patients develop the disease without systolic dysfunction and this type is 
named as “heart failure with a preserved ejection fraction” (HFpEF). HFpEF is the 
common type of heart failure in aging populations and a major clinical problem 
since its mechanism is still not fully known. HFpEF pathology is suggested to be 
related with cardiac endothelial cell remodeling [91] and endothelial inflammation 
[92]. In addition, several studies have suggested the pathological influence of senes-
cent phenotype in the development of heart failure. A recent study showed the 
important role of EC senescence in SAMP8 model (46) and another recent study 
showed the increase of oxidative stress biomarkers in the hearts of senescent mice 
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model [93]. Therefore, the physiological aging and correlatively cellular senescence 
process are suggested to elevate the risk of heart failure.

EC senescence has been proposed to have  a critical role in the failing heart 
although the mechanism has not been fully explained yet. It was shown that p53 
level in cardiac aging is elevated in mouse model of left ventricular (LV) pressure 
overload. In addition, LV pressure overload leads to capillary rarefaction, tissue 
hypoxia, and cardiac dysfunction [35]. Another recent study by LV pressure over-
load model also showed the inflammation and remodeling in vascular ECs induced 
via p53 molecular pathway [13]. Increased p53 expression induces  inflammation 
and exacerbates the intercellular adhesion molecule (ICAM)−1 expression leading 
to cardiac dysfunction in endothelial cells. It has been suggested that sympathetic 
nervous system is activated in heart failure [94] and the sympathetic nervous sys-
tem/ROS axis leads to elevated p53 expression in LV pressure overload [13]. 
Additionally, it has been suggested that accumulation of p53 in ECs lead to deterio-
ration of cardiac function, resulting in angiogenesis and failing heart [95]. These 
studies suggested that senescent ECs could potentially become therapeutic target 
for cardiac dysfunction of failing heart.

In addition to elevated p53 and p21 expression, telomere shortening as another 
characteristic of cellular senescence plays a critical role in heart pathologies [96]. 
Correlatively, decreased levels of telomerase activity was reported in ECs of people 
with coronary heart disease [97] and in circulating leukocytes of chronic heart fail-
ure [98]. It is also suggested that telomere shortening is related to cardiovascular 
diseases independent of known vascular risk factors [99, 100].

As half of the HFpEF patients are diagnosed with a preserved ejection fraction, 
the rest develops the disease with other well-known risk factors such as obesity, 
hypertension, diabetes, and aging. Coronary microvascular inflammation is another 
most established risk factor for the development of HFpEF [91], and a recent study 
showed that senescent ECs have an influence on HFpEF.  A study performed by 
SAMP8 showed that when accelerated senescent mice fed with high-fat diet, car-
diac cellular senescence and inflammation are significantly elevated along with 
HFpEF physiological alterations [101]. It is not surprising that cardiac cellular 
senescence leads to vascular dysfunction and inflammation and accordingly, to the 
pathology of HFpEF. Thus, inhibition of senescent EC generation is suggested as a 
possible therapeutic intervention for the treatment of HFpEF.

10.7	 �Structural Changes of Arteries with Aging 
and Atherosclerosis

Although aging is still not considered as a pathological condition, aging-related 
arterial remodeling is suggested to be one of the pathological determinant of cardio-
vascular disease. During cardiovascular pathology, the arterial walls are damaged 
by the increased oxidative stress levels that leads to the generation of oxidized low-
density lipoproteins (oxLDL). The initial and pivotal step of atherosclerosis prog-
ress is the infiltration of oxLDL to the subendothelial space of the arterial wall 
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[102]. Meanwhile, monocytes are attracted, which in turn, transform into lipid-
loaded foam cell macrophages. More monocytes are attracted with the help of pro-
inflammatory factors that leads to the accumulation of more inflammatory cells and 
results in the formation of lesions and plaques. The plaque stability is determined by 
the content of the plaques and aged arteries have thicker intima/media by two- to 
three-fold than young arteries [2, 3].

Aging modifies SMCs structure to a more synthetic phenotype that contributes to 
the development of atherosclerosis. Both intima and media of the artery get thick-
ened through aging is accompanied by increased collagen and decreased elastin 
generation which lead to impairment in the integrity of the arteries [103, 104]. In 
addition, calcification is yet another phenotype of aging arteries and, there-
fore, plaques become more severe by aging. A study of aged rabbits showed that 
high fat diet resulted in more developed plaques when compared to the young rab-
bits [105]. All these characteristics of vascular dysfunction by old age increase the 
risk for atherosclerosis and recently, cellular senescence has been proposed to have 
the pivotal role in the pathology.

Growing evidence have showed the presence of senescent cells in the vessel 
content and vascular senescence is linked by disorders such as atherosclerosis, inti-
mal hyperplasia, hypertensive arteries, aneurysms and diabetic arteries [4]. Although 
the mechanisms of cellular senescence in the vascular dysfunction and development 
of atherogenesis are not fully understood, it is known that oxidative stress is one of 
the major contributor. A study suggested that increased oxidative stress levels are 
caused by the elevated TNF-α levels which also modulates the inflammation pro-
cess by NFκB activation. NFκB is a redox sensitive transcription factor which regu-
lates many inflammation processes in the arteries and the main controller of SASP 
[106, 107]. Moreover, in a recent study that compared the young and elderly people, 
NFκB expression was found to be significantly increased in elderly people [108]. In 
addition, a protein named as Klotho inhibits cellular senescence and prolongs lifes-
pan of mice and its suppression results in the development of the atherogenesis 
[109, 110].

It is a well known fact that cellular senescence increases over time in the pres-
ence or absence of atherosclerotic process [79, 111]. Particularly, advanced plaques 
show senescent cell phenotype SASP and the presence of common senescence 
markers such as SA-β-Gal, p16Ink4a, p53, and p21 expression [112]. Several stud-
ies have also suggested the emergence of cellular senescence mechanisms in the 
pathology of atherosclerosis among other cellular fates [113]. Both ECs and SMCs 
were reported in patients with abdominal aortic aneurysm (AAA) [111]. In addition, 
both ECs and SMCs were also reported to be induced by well-known stressors such 
ROS and angiotensin II [77, 114]. The presence of cellular senescence in ECs has 
been shown in atherosclerotic human coronary arteries [115] and thoracic aorta 
[116] by the SA-β-gal activity. Senescent ECs are associated to be induced by aortic 
flow impairment in the atherosclerotic mouse model and the molecular pathway 
responsible for senescence is suggested to be p53 signaling [117]. Typically, ECs 
are suggested to take a critical role for several vascular functions such as angiogen-
esis and coagulation and ECs show loss of function by aging process. Most 
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importantly, decreased nitric oxide synthase (NOS) activity results in reduced nitric 
oxide (NO) generation leading to deterioration in vasodilation and cardiovascular 
pathology. Additionally, the impairments in ECs function result in oxidative stress 
and inflammation phenotypes and, therefore, it is suggested that cellular senescence 
contributes these properties [105]. During replicative senescence, progressive gen-
eration of senescent ECs is typically important since it initiates SASP phenotype 
resulting in tissue remodeling and elevates pro-inflammatory cytokines [28]. 
Senescence of ECs are, therefore, essential to have causal role in chronic inflamma-
tion and tissue remodeling. It was also demonstrated that aging-related loss of func-
tion in ECs is linked to telomere shortening [115]. In aortic aneurysm samples, 
elevated oxidative stress and telomere attrition were also shown in ECs as well 
[111]. Since replicative senescence is proven to be a common characteristic of 
aging, increased ROS levels and decreased NO in ECs cells contribute to the occur-
rence of vascular senescence [105].

In atherosclerosis patients, cellular senescence of VSMCs was also shown in 
atherosclerotic lesions of patients with coronary artery disease, AAA, and periph-
eral artery disease [115]. Another study demonstrated the SA-β Gal activity, p16, 
and p21 expression and IL-6 as SASP phenotype in SMCs of carotid artery plaques 
[118]. Additionally, angiotensin II treatment resulted in senescent vascular SMC 
generation in ApoE −/− mice suggests the relation of well-known stressors with 
senescence [119]. As articulated above, the switch of SMCs to a more synthetic 
form is partly explained by the impairment of TGF-β pathway. In stress conditions, 
SMCs was shown to have increased inducible NOS, ICAM-1 and angiotensinogen 
in aging process [105, 120]. Smooth muscle 22α protein is suggested to be marker 
for senescent SMCs and a recent study demonstrated that it contributes to senescent 
cell generation by the inhibition of p53 degradation [121]. Moreover, it was previ-
ously demonstrated that VSMCs from the aneurysms display oxidative DNA dam-
age [111]. As expected, senescence of VSMCs has common senescent phenotype 
such as increased of pro-inflammatory cytokines, growth factors, and matrix metal-
loproteases all of which contribute to the vascular dysfunction.

Some of atherosclerotic plaques are also characterized by telomere shortening 
which is a hallmark of senescent phenotype [12]. VSMCs that are shown to be 
senescent by elevated p16 and p21 and SA-β-gal activity are reported to have telo-
mere shortening in the atherosclerotic plaques. Shorter telomeres are suggested to 
be result of oxidative stress induced by DNA damage and leading senescence in 
VSMCs [122]. Since cellular senescence functions to initiate atherosclerosis pro-
cess, it is not surprising that the decreased levels of telomeric repeat-binding factor-
2 (Trf2) in VSMCs contributes to the plaque development in ApoE −/− mice. 
However, increased plaque growth by the knockout of senescence associated genes 
such as p53, p21, or p19Arf suggests the anti-atherosclerotic role of senescence 
[105, 123]. Relatively, it was demonstrated that decreased p16Ink4a and p14Arf 
expressions in human and mouse studies elevated the atherosclerosis development 
[86]. On the other hand, a very recent study of Childs et al. showed the deleterious 
effect of senescent cells in the progression of atherosclerosis by using both trans-
genic and pharmacological models [124]. In the study, the clearance of senescent 
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cells in Ldlr−/− mice demonstrated the pivotal role of senescence during athero-
genesis. It was suggested that even early stages of the plaques contain senescent 
cells and accumulate in the subendothelial space. Accumulation of senescent mac-
rophages in the early atheroma leads to elevated inflammation factors and, there-
fore, contributes to the development of the atherogenesis. On the other hand, 
clearance of senescent foam cell macrophages was shown to reduce plaque forma-
tion. It was also suggested that in the severe plaques, senescent phenotype results in 
the plaque instability not only by inflammation factors and chemokines but also 
contributes to the plaque development by the increased expression of matrix metal-
loproteases and clearance of the senescent cells resulted in the regression of plaque 
growth and remodeling [124].

In addition to ECs and SMCs, immune cells show senescence phenotypic prop-
erties as well. A report conducted in old people who have the higher risk of heart 
diseases were shown to be characterized by the telomere attrition [125]. Another 
study showed elevated oxidative stress and inflammation factors in the monocytes 
of atherosclerotic patients [126]. A recent study also established the important role 
of cellular senescence for the pathogenesis of atherosclerosis in the macrophages by 
the deletion of senescent cells [124]. Additionally, it was previously shown that 
senescent macrophages are driven by p16 signaling pathway and cellular senes-
cence has the central role in the occurrence of senescent phenotypes in the macro-
phages [127]. Collectively, studies have suggested the central role of cellular 
senescence in the atherosclerosis and therefore, senolytic agents as promising inter-
ventions for combating the disease.

10.8	 �Hypertension

Another well-known risk factor for cardiovascular diseases is hypertension, there-
fore, the association of vascular senescence and hypertension have gained interest 
in the recent years. The reports have suggested that typically increased blood pres-
sure over time has the most significant effect on the development of hypertension 
within aging [128]. Other characteristics of hypertension such as vascular dysfunc-
tion, inflammation, extracellular matrix deposition are also common features of 
aging as well [129]. The presence of premature vascular aging was also shown in 
the young hypertensive individuals and it is suggested that hypertension fastens the 
vascular aging process similar to accelerated aging syndrome, progeria [130]. 
Therefore, it is proposed that understanding of the relationship of vascular deterio-
ration with hypertension during aging is crucial.

The presence of senescent cells were demonstrated in vessels of the patients with 
hypertension. The study suggested the role of p53/p21 signaling in the telomere 
attrition by the uncapping of telomeres [131]. There is also growing evidence of 
animal studies that support the role of cellular senescence in hypertension. In a 
transgenic mouse model of aging produced by the defect of nucleotide excision 
repair genes, senescent ECs and VSMCs formation were shown to be increased 
along with elevated hypertension and vascular dysfunction [132]. Another report 
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showed that hypertension resulted in the inhibition of cell cycle and activation of 
aortic p16 signaling both  in the transgenic rat model and in humans [133]. 
Furthermore, the inhibition of NOS resulted in higher p16 levels in the arteries and 
in the development of hypertension suggesting the relation of cellular senescence 
with hypertension [134]. NO which acts as vasodilator contributes to modulation of 
blood pressure and accordingly has anti-hypertensive features. Several studies have 
shown that NO donor decreases the levels of senescent ECs and activates telomer-
ase activity in aging process [135]. In normal conditions, endothelium releases NO 
that modulates vasodilation, however, in case of aging related hypertension, other 
molecules such as endothelin-1, angiotensin II and superoxide anions are secreted 
as well. These substances are known to lead to defects in the vasodilation exacerbat-
ing vascular remodeling through aging [136].

The common role of oxidative stress and inflammation has been explained in 
various cardiovascular pathology. Several inflammation factors including C-reactive 
protein, IL-6, TNF-α, and IL-1β are shown to be increased in hypertension patients 
[137]. On the other hand, since ROS affects vascular physiology, it is proposed to 
have essential effects on hypertension during aging by promoting cellular senes-
cence of vascular cells [73, 74]. Clinical reports have revealed that vascular O2

− 
generation supports hypertension development by the increased blood pressure 
[138]. In addition, other human studies have suggested the increased oxidative dam-
age in plasma and urine samples [139] and increased levels of O2

− and H2O2 in 
VSMCs in hypertension [140]. Various studies have demonstrated the role of ROS 
generated by NADPH oxidases (NOX) in vascular dysfunction through aging pro-
cess (Fig. 10.2). Particularly, NOX1 and NOX2 were found to be elevated in old and 
hypertensive rat vessels and vascular dysfunction was reversed by NOX inhibition 
[141]. Therefore, among other oxidases that also generate ROS, NOXs are sug-
gested to play key role for the hypertension related cardiovascular pathology [142]. 
These findings suggest that cellular senescence is driven by various factors takes a 
critical role in the development of hypertension and vascular remodeling.

10.9	 �Diabetes

Similar to other cardiovascular diseases, chronic inflammation is also related to 
obesity and suggested as a critical contributor to insulin resistance [143]. Clinical 
studies have demonstrated elevated SASP factors including IL-6, IL-8 and MCP-1 in 
obese patients [144, 145] and IL-6, IL-1 as the major markers of diabetes [146]. 
Another study demonstrated elevated SASP factors both in blood and in the vessels 
of diabetic patients [147]. The SASP factor MCP-1 is suggested to lead to macro-
phage infiltration related insulin resistance and responsible mechanism of this pro-
cess is proposed to be autophagy [148].

A recent study also demonstrated that cellular senescence induced by p53 molec-
ular pathway drives inflammation in diabetes [149]. In addition, animal studies have 
shown the presence of senescent vascular cells in the diabetes models and it is 
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speculated that accumulated senescent cells in obesity could be the key drivers of 
diabetes [150]. In diabetic rat and mice, the presence of cellular senescence was also 
demonstrated in the aorta, suggesting that hyperglycemia may lead to senescent EC 
accumulation [151]. The mechanisms responsible for the vascular senescence are 
suggested to be increased oxidative stress, decreased NO levels and SIRT1 
activation.

Dysfunction of adipose tissue is also proposed as a crucial contributor to cellular 
senescence linked diabetes. Accumulated senescent preadipose cells were con-
firmed both in young and old obese patients suggests the key role of senescence in 
adipogenic function [152]. SASP which is another senescent phenotype also results 
in the impairment of adipogenesis process and, therefore, results in insulin response 
[153]. It was also demonstrated that senescent cells lead to lipodystrophy in acceler-
ated aging mouse model, however, consequences of senescent cell removal in dia-
betes have not been fully explained yet. In addition, adipose dysfunction could lead 
to fat deposition in various tissues such as liver and heart resulting in the pathogen-
esis of other diseases including atherosclerosis [154].

Senescent pancreatic β-cells are also suggested to play critical role in the devel-
opment of type 2 diabetes. It was shown that high fat diet resulted in cellular senes-
cence that induced β-cell function loss in mice [155]. Another study  of mice 
demonstrated the association of type 2 diabetes with cell cycle inhibition which is a 
common phenotype of cellular senescence [156]. Furthermore, deletion of 
p53-dependent apoptosis in mice led to senescent cell accumulation and dysfunc-
tional β-cells formation resulting in accelerated development of diabetes [157]. 
Although more evidence is required to clarify the contribution of cellular senes-
cence on diabetes, several studied already provided information about the increased 
senescent cells in damaged tissues in diabetes process [155, 158]. It is suggested 
that accumulated senescent cells during diabetes represent a critical risk factor for 
the inflammatory state and, therefore, for cardiovascular diseases.

10.10	 �Future Directions for Therapy of Cardiovascular 
Diseases

Emerging data have identified the critical role of vascular senescence during aging 
for the development of cardiovascular diseases. Particularly, studies that have indi-
cated the clearance of senescent cells extends both healthspan and lifespan suggests 
senolytic agents as a promising candidate for the therapy of age-associated cardio-
vascular pathology. The recent study by Childs et al. is breakthrough in the senolytic 
research for the treatment of atherosclerosis. In the study, the presence of senescent 
cells was shown to be detrimental at all stages of atherosclerosis and selective 
removal of these cells reversed the plaque formation. Furthermore, various studies 
have also supported the effect of selective clearance of senescent cells in the vascu-
lar homeostasis suggesting that senolytic agents hold a therapeutic paradigm [4].
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The term senolytic is first described by Zhu et al. for the compounds that selec-
tively kill senescent cells [159]. It was proposed that accumulation of senescent 
cells could be resulted from resistance to apoptosis [160] therefore, researchers 
have focused on the compounds that selectively target apoptosis of senescent cells. 
Some of the well-known pharmacological agents are already repurposed for senes-
cent clearance. Of them, dasatinib is an approved drug for use in patients with 
chronic myelogenous leukemia that inhibits tyrosine kinase signaling [161]. The 
effect of dasantinib was shown in the clearance of senescent cell in preadipocytes 
cell culture. In addition, quercetin which is a bioflavonoid antioxidant was reported 
to kill senescent ECs in a selective way [162]. Morever, combination therapy of 
dasantinib and quercetin was also effective in the clearance of senescent cells in tis-
sues of mice and increased healthspan via reduced cardiac damage in aged mice 
[159]. Inhibitor of anti-apoptotic proteins (ABT263) was identified as another 
potential senolytics which cleared senescent hematopoietic stem cells and reversed 
aging phenotype in mice [163]. However, the molecular pathways underlying the 
apoptosis of senescent cells has not been cleared yet and further studies are needed 
to determine the side effects of the therapy.

SASP is the senescent phenotype which transforms cells into a pro-inflammatory 
status and many reports have identified the damage of SASP to the tissues in aging-
associated diseases. Since SASP secretes inflammatory molecules and contributes 
to the disease pathogenesis, it is suggested to be potential therapeutic target for the 
treatment of selective cellular senescence. SASP leads to an increase in the meta-
bolic activity of SMCs and inhibitor of glycolysis was reported to clear senescent 
SMCs. However, the specificity of that treatment and its translation to humans is 
questioned to be safe and nontoxic [4, 164].

Another potential approach against cellular senescence related cardiovascular 
diseases would be targeting oxidative stress. Antiaging therapy against inhibition of 
cellular senescence such as sirtuins was previously studied and it was shown that 
increase in SIRT1 expression reduced the cellular senescence in SMCs and ECS 
resulting in lifespan extension [165, 166]. Another antioxidant that was suggested 
as a potential approach is NAD fueling that regulates metabolic pathways as well 
[167]. NAD therapy was suggested to lead to SMC translocation in addition to 
reducing accumulation of senescent SMC and ECs. Especially, migration of SMC 
in straight-line manner was indicated to be beneficial to suppress vascular damage 
[168]. Finally, it was stated that statins are also effective in the suppression of cel-
lular senescence and DDR pathways in atherosclerosis [169].

Regarding the critical role of oxidative stress and inflammation in the senescence 
related cardiovascular diseases, it is important to clarify the underlying mecha-
nisms. As mentioned in the text previously, the transgenic model SAMP8 has the 
accelerated senescence phenotype. Aged SAMP8 mice display elevated oxidative 
stress and ER stress, inflammation, vascular dysfunction features, therefore, it is 
suggested to be convenient model to investigate the vascular homeostasis in aging. 
Recently, exciting data have been obtained from the SAMP8 studies, though, more 
work is required to determine potential therapies for age-associated cardiovascular 
diseases [5, 60, 170].
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10.11	 �Conclusion

Suggested pathological role of vascular senescence linked to oxidative stress in car-
diovascular disorders such as heart failure, diabetes and atherosclerosis is explained 
throughout this chapter. Particularly, senescence of ECs and VSMCs cells have been 
shown to be important in the disease pathology however, immune cell senescence 
and pancreatic β-cells senescence received considerable attention as well. Recently, 
various studies have also focused on the selective clearance of senescent cells to 
reverse aging associated cardiac damage and the findings are promising and excit-
ing. Especially, removal of cardiac senescent cells could be an emerging approach 
since vascular cells are pivotal in the maintenance of vascular homeostasis [105].

Oxidative stress has been suggested to be critical in the aging associated patholo-
gies for a long time, however, recently, its potential effect on cellular senescence to 
contribute disease development has gained more interest. Various stresses including 
ROS generation and DDR were shown to have ultimate role on the cellular homeo-
stasis leading to detrimental effects on the cardiac tissues. Therefore, antioxidant 
molecules such as quercetin have been repurposed to reverse the damage of cellular 
senescence in the recent years. In addition to antioxidants, various pharmacological 
agents have been recently studied as senolytic agents, though more evidence is 
required for the side effects of the senolytics before translation into the clinical stud-
ies [171]. On the other hand, approaches to suppress cellular senescence, rather than 
clearing senescent cells, are suggested to be another potential therapy. There has 
been no clinical trial for the therapy of senescent cell clearance in cardiovascular 
diseases, however, cell culture and animal studies have indicated its pivotal poten-
tial to hold a next generation therapy for vascular pathology.
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11Influence of Genetic Factor on Oxidative 
Stress Mediated Heart Damage

Branislav Rovcanin

11.1	 �Introduction

Oxidative stress develops as a result of the imbalance between enhanced production 
of free radicals (prooxidants) and decreased efficiency of antioxidative mechanisms. 
The initiation and progression of heart diseases are greatly dependent upon oxida-
tive stress, since the cardiovascular system represents one of the targets for prooxi-
dative injury. Coronary blood vessels and cardiomyocytes can be significantly 
damaged in oxidative stress conditions, leading to the further aggravation and dis-
ease onset [1]. The tissue damage caused by oxidative stress can result as a direct 
effect of reactive oxygen species (ROS) on biomolecules and may also achieve deli-
cate effects on the modulation of cellular metabolic, signaling, transport and sur-
vival processes [2, 3]. The susceptibility to oxidative stress mediated heart damage 
is greatly determined by genetic factors which often represent functional gene poly-
morphisms of enzymes that control the extent of redox metabolism.

We are on the edge of comprehending the welfares of Precision Medicine in 
cancer treatment through the application of genetic data to guide the selection of 
specific therapy [4]. Modern genotyping technology is continuously providing an 
insight into underlying genetic mechanisms of cardiovascular diseases. The ability 
of clinical trials that evaluate the genetic risk factors for cardiovascular diseases 
show a proof-of-principle for the novel treatment benefits and they are currently 
above the use of genetics in the prevention of cardiovascular diseases [5]. Clinically 
severe cardiovascular phenotypes usually develop as a result of a single gene disor-
der and their inheritance pattern is monogenic (Mendelian forms of hypertension) 
while the majority of diseases includes the polygenic contribution. The develop-
ment of common heart diseases represents the multifactorial model and it encom-
passes an interaction between various genetic and environmental factors. It has been 
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demonstrated that there is a considerable inter individual variability in the relative 
contribution of genetic and environmental factors for disease development and 
symptom expression [6]. Using the studies which rely on animal models and its 
translation to human pathological entities enabled the identification of candidate 
genes responsible for susceptibility to various heart diseases. A large-scale genome-
wide association studies (GWAS) are used in identification of genes accountable for 
increased heart disease risk and they are placed into quality control criteria for 
genotyping and phenotyping [7]. Enhancements in genome sciences provided the 
development of DNA microarray methodology which owns the high-throughput 
power in evaluation of gene sequence and their expression. By cDNA microarray 
chips it is possible to evaluate the simultaneous expression of a vast number of 
genes and to acquire the information which genes are down-regulated or up-
regulated in various physiological and pathological conditions. This technology is 
especially useful in examination of global events in genomic expression during the 
heart disease onset and progression both in vivo and in vitro [8]. Moreover, epigen-
etic mechanisms which include regulation by microRNAs and chemical modifica-
tions of DNA and histones modulate the gene expression without a presence of 
DNA mutation. These mechanisms and DNA re-arrangements, such as copy-number 
variants are also recognized as contributing factors to the genetic basis of oxidative 
stress mediated heart damage [9].

The aim of this paper was to present the most important knowledge about the 
genetics of oxidative stress that influences the predisposition and the extent of car-
diac damage in different pathological entities. Next to the genetics of the most com-
mon heart disease, the heritable basis of oxidative stress in atrial fibrillation and 
congestive heart failure were also presented (Fig. 11.1).

11.2	 �Gene Polymorphisms Associated with Common Heart 
Diseases

Some gene is said to be polymorphic if it has more than one allele in certain popula-
tion. These polymorphisms can have a major impact on the function of certain pro-
tein in terms of their structure or activity, or they can be without any visible or 
measurable phenotype effect. In the following text, the most important polymor-
phisms of redox metabolism genes are shown according to the weight of their 
pathogenicity and clinical effects.

11.2.1	 �Glutathione Redox Cycle

It is well known that glutathione redox cycle represents the vital component of the 
cellular antioxidative protection system against oxidative injury. Glutathione per-
oxidases (GPx) 1–6 represent the cellular enzymatic defense against hydrogen per-
oxide free radicals, and its sufficient activity is critical for the preservation of redox 
homeostasis [10]. The GPx-1 codes the isoform, which is the most abundant GPx 
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enzyme in the cardiovascular system. Multiple studies have shown that the C198T 
polymorphism of the GPx-1 gene which causes lowered enzyme activity increases 
the risk of coronary disease and increased thickness of aorta and carotid arteries 
[11–14]. However, there are contradictory results which refer to the C198T poly-
morphism stated in the study of Souiden et al. who did not show any association 
between this polymorphism and coronary heart disease [15]. Glutathione 
S-transferases (GST) are a family of cytosol and mitochondrial enzymes that cata-
lyze the conjugation of xenobiotics and oxidative compounds with reduced glutathi-
one and therefore prevent cellular injury [16, 17]. The greater susceptibility to 
oxidative damage is imminent in case of deleterious polymorphisms that lower the 
expression or activity of GST enzyme family [18, 19]. Many polymorphisms of the 
GST genes were discovered and evaluated in the context of various heart diseases 
[20]. The GSTP1 gene located in 11q13.3 has seven exons, and two polymorphisms 
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were well related to the development of coronary artery disease: GSTP1∗B poly-
morphism (rs1695) in exon 5 and GSTP1∗C (rs1138272) in exon 6 of GSTP1 gene. 
GSTP1∗B polymorphism represents A-G transition at the position 313 in exon 5 
and it causes the Ile>Val substitution, while the GSTP1∗C polymorphism is also a 
transition C-T at position 341 in exon 6 and the effect is Ala>Val substitution [21]. 
The common feature for these two polymorphisms is that they cause significantly 
depleted activity of GSTP1 enzyme, which was associated with elevated risk for 
development of coronary artery disease [16]. There are numerous reports that con-
firm the relevance of GSTP1∗B polymorphism as a risk factor for susceptibility to 
extended oxidative damage in the pathophysiology of coronary artery disease and 
myocardial infarction in different ethnic groups [22–25]. Bhat and Gandhi per-
formed a genetic association study and showed that GSTP1∗B and GSTP1∗C con-
tribute to the five-fold and 5.8 fold elevated risk of coronary artery disease 
development, respectively [26]. GSTM genes were also evaluated as risk factors for 
susceptibility to heart diseases. The relevance of GSTM polymorphisms was postu-
lated according to the role of GSTM in detoxification of prooxidants and reduction 
of oxidative stress detrimental effects. Several studies have associated GSTM poly-
morphisms with cardiovascular diseases [27, 28].

11.2.2	 �Glutamate-Cysteine Ligase

Glutamate-cysteine ligase (GCL) is an important enzyme which catalyzes the syn-
thesis of glutathione and it is composed of GCLC catalytic and GCLM modifier 
subunit [29, 30]. Nakamura et al. showed in their research the association between 
myocardial infarction and -588T allele of the C-588T polymorphism (rs41303970) 
of the GCLM gene, which down-regulates the compensatory increased expression 
of GCLM gene in oxidative stress conditions and decreasing glutathione synthesis 
[31].

11.2.3	 �Glutamate Ammonia Ligase

The glutamate ammonia ligase (GLUL) is an important enzyme which catalyzes 
synthesis of glutamine, important for many metabolic reactions, including glutathi-
one synthesis. The rs10911021 SNP of GLUL gene, which represents a C>T transi-
tion down-regulates the gene expression and it was shown to be associated with 
coronary heart disease among patients with type 2 diabetes mellitus [32]. Shahid 
et al. reported that this polymorphism is associated not only with an increased risk 
of coronary events, but with circulatory levels of lipid peroxides, reduced and oxi-
dized glutathione [33].
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11.2.4	 �Superoxide Dismutase

Superoxide dismutase (SOD) is a first line of defense against superoxide anions, 
and it catalyzes the reaction of superoxide dismutation into peroxide anion. Humans 
have three SOD isoforms: cytosol Cu2+/Zn2+-SOD1, mitochondrial Mn2+-SOD2 and 
extracellular Cu2+/Zn2+-SOD3 [34]. Polymorphisms of SOD genes were associated 
with the initiation and progression of various cardiovascular diseases.

Variations in SOD1 activity are considered to be associated with the extent of 
cardiac mortality of the general human population. Research of Otaki et al. revealed 
that rs1041740 polymorphism of SOD1 gene is associated with greater familial risk 
of cardiac diseases [35]. Souiden et al. also evaluated SOD1 gene and found that 
another polymorphism Ala16Val of SOD1 gene is connected with increased risk of 
stenosis in patients with coronary heart disease [15].

The SOD2 is critically important in adequate protection from oxidative stress 
generated in the respiratory chain functioning [36]. The Ala16Val substitution 
(rs4880) polymorphism causes decreased transport of SOD2 into the mitochondrial 
matrix and lessened neutralization of intracellular superoxide anion [37, 38]. Jones 
et al. demonstrated the connection between rs4880 polymorphism of SOD2 gene, 
which represents a C>T transition with increased risk of coronary heart disease in 
diabetic patients [39].

The extracellular SOD3 isoform acts as an extracellular scavenger of superoxide 
radicals and it is present in plasma, lymph and synovial fluid [40]. It is one of the 
key enzymes that protect the cardiovascular system from oxidative stress deleteri-
ous effects [41]. The rs2284659 polymorphism of SOD3 gene is located in the pro-
motor region and it regulates the degree of gene expression. Mohammedi et  al. 
conducted a study on diabetic patients and concluded that rs2284659 polymorphism 
greatly influences the plasma redox profile and it lowers protein oxidation products, 
providing better outcomes of cardiovascular disease [42].

11.2.5	 �Catalase

Catalase (CAT) is a ubiquitous peroxisomal enzyme that catalyzes breakdown of 
hydrogen peroxide into water, and it acts in greater amounts of hydrogen peroxide 
along with the GPx against oxidative injury [43]. The CAT polymorphisms which 
have lower expression of the CAT gene in common were investigated as risk factors 
for cardiac disease. The -262C/T polymorphism of the CAT gene promotor causes 
lower expression of CAT protein and contributes to the development of many patho-
logical conditions, including ischemic heart disease [44]. This polymorphism can 
also be responsible for in-stent restenosis following invasive coronary revascular-
ization [45]. The -844C/T is another promotor polymorphism of CAT gene, which 
was evaluated in the context of cardiovascular risk. This polymorphism was proven 
to be an independent predictor of postoperative occurrence of myocardial infarction 
among patients who previously underwent heart surgery [46].
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11.2.6	 �NADPH Oxidase

NADPH oxidase represents a multiple subunit enzyme complex which is one of the 
principal sources of superoxide anion in the vasculature. The critical subunit for 
oxidase activity is p22phox, and its polymorphism rs4673 was evaluated in cardio-
vascular diseases [47]. This polymorphism represents C>T transition at position 
242 of the CYBA gene that encodes p22phox protein and it causes altered NADPH 
oxidase activity. Guzik et al. demonstrated that the 242C allele is associated with 
significantly augmented NADPH activity, which increases prooxidants synthesis 
and contributed to the elevated risk of coronary atherosclerosis [48].

11.2.7	 �Myeloperoxidase

Myeloperoxidase (MPO) is a lysosomal enzyme which is abundantly present in 
neutrophil granulocytes and monocytes and it synthesizes hypochlorite anion which 
acts as a powerful oxidant compound [49]. The rs2333227 polymorphism repre-
sents G>A transition at position −463 of MPO gene and it modulates the binding of 
SP1 transcription factor. The GG homozygous genotype is associated with up-
regulated expression of MPO gene and elevated serum activity [50–52]. Farre and 
Casado correlated the MPO serum activity with the progression of heart failure [53]. 
Among patients with acute coronary syndromes or ischemic chest pain the increased 
levels of MPO in circulation were found and they are considered as independent 
prognostic factors for clinical outcome [54, 55]. Katakami et  al. revealed the 
increased risk of coronary hearts disease in type 2 diabetes patients with MPO 
rs2333227 polymorphism, along with the polymorphisms of other redox related 
genes [56].

11.2.8	 �Nitric Oxide Synthase

Nitric oxide synthase catalyzes the reaction of nitric oxide synthesis from L-arginine, 
with its endothelial isoform eNOS (NOS3) which reduces circulatory oxidative 
stress by scavenging superoxide and preventing lipid peroxidation. The significant 
polymorphism involved in cardiovascular pathology is 894G/T (rs1799983) in exon 
7 of NOS3 gene, which boosts intracellular cleavage by proteases and lowers eNOS 
enzyme activity [57]. This polymorphism is associated with increased cardiopulmo-
nary risk, especially in smokers and patients with renal diseases [58–60].

11.2.9	 �Angiotensin 1-Receptor

One of the most well characterized polymorphisms of the AT1R gene is A1166C 
transversion and it causes the enhanced response to the binding of angiotensin II, 
particularly in homozygous carriers. This polymorphism was previously linked with 
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elevated vasoconstrictor activity which is responsible for the development of arte-
rial hypertension [61]. Beside these recognized effects of A1166C polymorphisms, 
Cameron et al. showed in their study that A1166CC polymorphism is an indepen-
dent predictor of increased MPO activity and greater concentration of protein car-
bonylation products which are formed in oxidative stress conditions [62].

11.3	 �Genetics of Oxidative Stress in Atrial Fibrillation

The redox metabolism in atrial fibrillation (AF) was in a scope of numerous research 
studies, including the genetic aspect of the oxidative stress impact. Mihm et  al. 
showed that the activity of the myofibrillar creatine kinase is important for the con-
trol of myocyte contractility and that it is significantly sensitive to oxidative stress 
[63]. If this enzyme is damaged by free radicals and if there is an energy deficit 
inside myocytes, such conditions lead to the impairment of myocyte’s contractile 
function and contribute to the development of AF.

In the study of Carnes et al. it was revealed that atrial tissue in heart with AF has 
augmented oxidative stress witnessed by the elevated amount of 3-nitrotyrosine, 
which is correctable with ascorbate administration [64]. Using the high-throughput 
cDNA microarray approach in tissue model, Kim et  al. demonstrated with high 
sensitivity and fidelity the important findings, which represent the pattern of altered 
gene expression in AF, providing the expression hallmark that can be used for future 
conception of therapeutic strategies [65]. The authors showed the up-regulation of 
eight pro-oxidative genes which encode following proteins: cytochrome P 450 oxi-
dase, flavin-containing monooxygenase 1, monoamine oxidase B, NADPH oxidase, 
tyrosine 3-monooxygenase, tyrosinase-related protein 1, ubiquitin-specific protease 
8 and xanthine oxidase. Additionally, they revealed the down-regulation of six 
genes that encode antioxidative defense components: CAT, glutaredoxin, GPx 1, 
glutathione reductase, heme oxigenase 2 and SOD. Despite the current knowledge, 
the role of oxidative stress underlying mechanisms in pathogenesis of AF is still 
ill-defined.

11.4	 �Genetics of Oxidative Stress in Congestive Heart Failure

There is a substantial interest in the scientific community for the importance of the 
pathogenic role of oxidative stress in congestive heart failure (CHF). Several 
researches have brought oxidative stress in relation to the CHF initiation and pro-
gression [2, 53, 66]. Membrane associated NADPH oxidases are expressed in the 
membranes of cardiomyocytes, smooth muscle cells and vascular endothelial cells 
and they appear to be quantitatively most important source of prooxidants in myo-
cardium of CHF patients [67, 68]. Angiotensin II has the ability to activate NADPH 
oxidases which then produce the superoxide and peroxide anions by activation of 
angiotensin type-1 receptor (AT1R) in vascular cells [69, 70]. The mechanism of 
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NADPH oxidase activation by renin-angiotensin cascade was also demonstrated in 
studies with experimental animals [71, 72].

Previous researches demonstrate that prooxidant molecules influence the impor-
tant processes of cardiac remodeling, endothelial homeostasis, NO signaling path-
ways and cellular proliferation in CHF [2, 53, 66, 73]. Cohn et al. suggested that the 
process of cardiac remodeling is a determinant of CHF evolution and that it directly 
influences the survival of such patients [74].

Left ventricular cardiac remodeling is mediated by matrix metalloproteinases 
(MMPs), which are excessively activated in the presence of increased amounts of 
prooxidants [75, 76]. Their activity was found to directly correlate with concentra-
tions of 8-isoprostane which is a free-radical peroxide of arachidonic acid, repre-
senting a biomarker of oxidative damage [77]. The investigation of Askari et  al. 
revealed that inactivation of plasminogen activator 1 by enhanced oxidative envi-
ronment leads to the dilatation of the left cardiac ventricle [78].

CHF represents genetically heterogeneous disease, which is still inadequately 
characterized in terms of inheritance patterns. The study of Katakami et al. demon-
strated that multiple oxidative stress-related gene polymorphisms are associated 
with heart failure among patients with insulin independent diabetes mellitus [56]. 
These authors elucidated that the accumulation of prooxidant alleles mutually con-
tributes to the cumulative risk for CHD independent of common risk factors, and 
that it is critical to evaluate collectively all polymorphisms together in order to esti-
mate the individual’s risk for disease development.

Kim et al. in their comprehensive study used a candidate SNP analysis for esti-
mation of oxidative stress and injury repair genes on the survival of children with 
CHF [79]. They showed the association between SNPs of vascular endothelial 
growth factor A (VEGFA) rs833069 and superoxide dismutase 2 (SOD2) rs2758331 
with long-term survival of affected children. The genetic risk is elevated and cumu-
lative when major deleterious alleles are mutually present. On the other hand the 
protective effect and prolonged survival is observed when minor alleles of VEGFA 
and SOD2 are present. These findings of Kim et al. are in agreement with previous 
basic studies that assign VEGFA as a factor of increased cardiovascular permeabil-
ity, cardiomyocytes damage and decreased survival following acute myocardial 
infarction [80–82].

The extent of SOD2 expression is critically important for adequate protective 
effect against free radicals generated in oxidative stress. The rs2758331 polymor-
phism represents an intronic variant which is responsible for approximately 33% of 
increased or decreased expression of SOD2 gene, and it directly influences the long-
term survival in CHF patients [79, 83]. In their recent study, Kim et al. once more 
demonstrated that homozygotic children for both VEGFA and SOD2 risk alleles 
have 16-fold increased death risk following heart surgery, exposing the important 
effect of genetic variants as modifiers of possible transplantation outcome in CHF 
patients [84].
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11.5	 �Changes in Regulation of Gene Expression

The cytotoxic effect of oxidative stress is capable to induce cell death by apoptosis 
or necrosis, and on the other side, its moderate levels influence on signal transduc-
tion pathways that control cell growth and posttranslational modifications [85]. In 
the center of these effect lays an impact on regulation of gene expression through 
redox-sensitive transcription-regulation network. This modulation is obtained by 
alterations of transactivation and DNA binding of various transcription factors [86].

The oxidative stress controls many biological processes, through coupling of 
extracellular and intracellular signalization into alterations of critical gene tran-
scription and posttranslational modifications. These changes come as a result of 
influence on calcium-dependent signaling as well as on protein kinase and protein 
phosphatase pathways. The consequences of such processes involve adaptation of 
cellular function to oxidative environment by mobilization of target genes that 
enable metabolic changes, repair and survival [87].

In the coronary artery disease the response to oxidative stress leads to the 
enhanced expression of vascular inflammatory genes repertoire, such as E-selectin, 
MCP-1 (monocyte chemoattractant protein 1) and VCAM-1 (vascular cell adhesion 
molecule 1) by means of redox-sensitive signalization and nuclear transcription fac-
tors [88]. De Marchi et al. showed that p66Shc protein and protein kinase C (PKC) 
behave like regulators of intracellular redox homeostasis and extent of oxidative 
stress [89]. They elucidated the process of redox sensitive signaling cascade depen-
dent upon the adaptor protein p66Shc and PKC which regulate the cytochrome c 
transport from mitochondria to cytosol, NADPH activity and availability of antioxi-
dative enzymes. This biological mechanism is amplified in obesity by excess glu-
cose levels and it causes the positive feedback loop of oxidative stress progression 
and damage of cardiovascular tissues [90]. These findings lead to the assumption 
that the use of antioxidative therapeutics could be used for prevention of oxidative 
heart damage in obese individuals.

Earlier studies have provided enough evidence for influence of hydrogen-
peroxide on different intracellular events. Dhalla et al. demonstrated that hydrogen-
peroxide causes the augmented calcium internalization with activation of different 
chemical reactions during the acute ischemic heart disease [91]. This excess in 
intracellular calcium concentration following the prooxidant damage of the cell’s 
organelles is another important pathophysiological aspect of oxidative stress in car-
diovascular system [92]. Moreover, the hydrogen-peroxide mediated the vascular 
smooth muscle relaxation via activation of guanylate cyclase and cGMP synthesis 
[93]. The impact of hydrogen-peroxide on tyrosine phosphorylation mimics the 
stimulating growth effect of insulin which phosphorylates many proteins in target 
cells [94]. The MAPKs (mitogen activated protein kinases), phosphorylation of 
tyrosine and chemotaxis are stimulated by hydrogen-peroxide which acquires these 
effects by means of PDGF (platelet-derived growth factor) [95]. Torti et al. showed 
that if cardiomyocytes are exposed to increased hydrogen-peroxide amount, then 
the expression of alpha-actin, creatine kinase M isoform, myosin light chain 2 and 
troponin I gene is reduced as evidenced from the depleted levels of corresponding 
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mRNAs [96]. On the other side, a rapid stimulating effect of hydrogen-peroxide on 
c-fos and c-jun protooncogenes expression was observed in neonatal cardiomyo-
cytes [97]. Temsah et  al. demonstrated in their research the inhibitory effect of 
hydrogen-peroxide on ryanodine receptor on the sarcoplasmic reticulum membrane, 
calcium-pump ATPase, phospholamban and calsequestrin mRNAs in heart model 
perfused with xanthine oxidase and hydrogen-peroxide [98].

Beside the fact that oxidative stress influences the rate of transcription of a spe-
cific set of genes, the antioxidants can also achieve substantial effects on gene 
expression. That was proved in a study of Ferran et al. when they showed that an 
antioxidant pyrrolidinedithiocarbamate can down-regulate the expression of pro-
thrombotic molecules and tumor necrosis factor (TNF) in vascular endothelial cells 
[99].

The marked progress in the enlightening of the effects of oxidative stress on gene 
expression in cardiovascular system was made, and the current knowledge serves as 
a standpoint for future framework in the evaluation of atherogenic effect of certain 
genes and formulation of novel therapeutic strategies that target redox-sensitive 
mechanisms.

11.6	 �Gene Therapy of Cardiac Oxidative Stress

Advances in a novel approach to gene therapy have been involved in an effort to 
target oxidative stress in myocardial damage, which can occur after ischemic-
reperfusion injury, causing the irreversible cardiac tissue damage. The conception 
of gene therapy that aims to reduce oxidative induced cardiac damage is based on 
the introduction and expression of genes that would act against the negative conse-
quences of prooxidants [100].

Redox based gene therapy can be performed by two approaches: introduction of 
prooxidant-depletive genes or genes that modulate the redox-sensitive signaling 
pathways. Viral vectors are used as a desirable gene delivery mean, because they 
can transfer target genes into specific cells, including cardiomyocytes. In heart gene 
therapy the adenovirus is the most suitable viral vector that can transfer DNA 
sequences into terminally differentiated cells up to the 36 kb in size. One of the most 
important benefits of adenoviral vectors is the site specific insertion into the host 
genome [101]. Beside the significant advantages of adenoviral vectors, short-term 
expression (not more than 1 month), inflammation and cytotoxicity are considered 
as most important disadvantages [100].

The literature is rich in different studies in which antioxidant genes were intro-
duced in cardiomyocytes in order to reduce the oxidative stress and corresponding 
heart damage. In the study of Woo et al. authors introduced SOD and CAT by ade-
noviral vector into heart muscle cells, using the adenoviral vector [102]. They 
reported highly competent gene transduction by adenovirus and significant protec-
tive effects and reduced contractile dysfunction following ischemic-reperfusion 
injury, owned to the enhanced antioxidative enzyme activity. Yoshida et al. reported 
that SOD1 nullizygous mice had greater infarct size, attenuated ventricular recovery 
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and higher creatine kinase amount than the wild-type mice [103]. The postischemic 
myocardial damage was achieved by SOD1 overexpression in transgenic mouse 
myocardium, leading to the reduction in infarct size and elevated availability of high 
energy cellular phosphates [104]. SOD2 which is normally present in mitochondria 
was another subject of antioxidant boosting gene therapy model. The overexpres-
sion of SOD2 in the heart by adenoviral vector resulted in the reduction of myocar-
dial infarction size in the left ventricle [105]. These results were additionally 
confirmed in the study of Chen et al. who found that SOD2 overexpression in mouse 
myocardium leads to the greater resistance to ischemic-reperfusion injury, based on 
the lowed lactate dehydrogenase activity and the size of infarct [106]. Li et al. over-
expressed SOD3 enzyme in rabbit cardiomyocytes and noticed the cardioprotection 
against myocardial stunning [107]. In the same study, it was also demonstrated that 
augmented SOD3 was an effective antioxidant, without a need to simultaneously 
transduce CAT gene. In their later study, Li et al. demonstrated in the rabbit model 
that the SOD3 transduction with adenoviral vector reduces myocardial infarction 
size by 25%by preventing superoxide transfer from one cell to another [108].

The same experimental design with adenoviral gene transduction was used for 
overexpression of CAT in experimental model of cardiac ischemic injury. Zhu et al. 
in their research administered the adenoviral vectors carrying CAT into a rabbit’s 
coronary artery, therefore causing the elevated enzyme activity [109]. The increased 
amount of hydrogen-peroxide generated during the ischemic-reperfusion injury was 
removed and the adequate myocardial contractility was well-preserved, indicating 
the usefulness of CAT in the antioxidant therapy by gene transfer in conditions 
where GPx activity is decreased by ischemic environment.

Human heme oxygenase 1 (hHO-1) was introduced into the myocardium by 
adenoviral vector in order to test the long term cardioprotection from against 
ischemic-reperfusion injury [110]. The research showed the reduction of myocar-
dial ischemic injury and the decrease in infarct size, while the inflammation and 
necrosis were also present in lower quantity, exposing the protective role of hHO-1 
and its therapeutic and potentially preventive role of ischemic heart damage.

Weiss et al. created the GPx overexpression model by adenoviral transfer and 
showed the protection of vascular endothelial cells from homocysteine induced dys-
function [111]. The stabilization of endothelial homeostasis in ischemic cardiac 
damage was demonstrated in the case of the CAT overexpression in endothelial 
cells by adenoviral vectors [112, 113].

Beside adenoviral vectors, there were attempts to introduce genes in myocardial 
cells of interest using the retroviruses for transduction process. In comparison with 
adenoviral vectors, studies that refer to the use of retroviral vectors are limited due 
to the fact that retroviruses can induce insertion mutagenesis and that the maximum 
length of the inserted ssRNA sequence is 9 kb [100]. Retroviral vectors are not suit-
able for transfection of terminally differentiated cells; however Yang et al. managed 
to transduce hHO-1 into endothelial cells and to record increased resistance to heme 
and hydrogen-peroxide cytotoxicity [114]. Sakoda et al. evaluated the transfection 
with lentivirus and proved that it could be efficient in therapeutic gene introduction 
into heart muscle cells [115].
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Currently there is stagnation in widespread use of cardiac gene therapy that mod-
ulates redox metabolism and reduces cardiac oxidative damage, although there are 
plenty of evidence that beneficial therapeutic and prognostic effects can be achieved. 
The transfer of antioxidant genes can also be potentially used during the invasive 
interventions such as balloon angioplasty and stenting, so that endothelial damage 
could be repaired or prevented. Beforehand the routine administration of gene ther-
apy in cardiac ischemic damage is widely applied in clinical practice it is necessary 
to refine the vector quality in terms of their tropism, dosing and persistence of trans-
gene effect [116–118].

11.7	 �Conclusion and Future Perspectives

The oxidative stress genetics has been extensively studied in the past decades, and 
it revealed the significant weight of heritable factors on the extent of cardiac injury 
in different pathological states. Using this knowledge, it is possible to lay a solid 
foundation for future personalized therapy approach based on pharmacogenomics 
and gene therapy. Moreover, these data are already used as a starting point for ana-
lyzing cardiac damage proteomics profile by high-throughput technologies. Beside 
the treatment strategies, it would be a crucial victory to apply previously stated facts 
in the preventive measures which represent the goal of the twenty-first century 
medicine.
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PARP	 poly (ADP-ribose) polymerase
O2

−	 Superoxide anion
XO	 Xanthine oxidase
NADPH	 Nicotinamide Adenine Dinucleotide Phosphate
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NOS	 Oxidase Synthase
MPO	 Myeloperoxidase
nNOS	 neuronal NOS
eNOS	 endothelial NOS
iNOS	 inducible NOS
NO	 Nitric Oxide
ONOO−	 peroxynitrite
BH4	 tetrahydrobiopterin
H2O2	 hydrogen peroxide
ETC	 Electron Transport Chain
XDH	 Xanthine dehydrogenase
IL-1	 Interleukine 1
IL-6	 Interleukine 6
TNF-α	 Tumor Necrosis Factor alpha
PMNs	 Polymorphonuclear Lukocytes
HIF-1α	 Hypoxia-inducible factor 1-alpha
MIM	 Mitochondrial Inner Membrane
MnSOD	 Manganese Superoxide Dismutase
H2O2	 Hydrogen peroxide
MAPKs	 Mitogen-activated Protein Kinases
RAF-MEK	 Rapidly Accelerated Fibrosarcoma- Mitogen-activated protein kinase 

kinase pathway
PI3K	 PI-3 kinase
HMGB1	 High-mobility box 1
TLRs	 Toll-Like Receptors
NFκB	 Nuclear factor kappa-light-chain-enhancer of activated B cells
PKA	 Protein Kinase A
Akt/PKB	 Protein kinase B
Bcl-2	 B-cell lymphoma 2
MMPs	 Matrix metalloproteinases
BK	 Big Potassium channels
mitoKATP	 Mitochondrial ATP-sensitive K+ channel

12.1	 �Introduction

Given the heart’s high energy demand and function, along with its vital physiologi-
cal role to the body, a prolonged and non-managed ischemia is detrimental with 
high risk of morbidity and mortality [1, 2]. Half a century ago, myocardial reperfu-
sion following coronary blood flow obstruction emerged as a promising therapy to 
rescue the heart from ischemic damage. However, challenging reports emerged 
since 1970s contradicting the beneficial role of reperfusion on myocardial tissue 
recovery following ischemia, and highlighting the myocardial ischemia-reperfusion 
injury (I/RI) concept [3]. Multiple studies, thereafter, exposed the underlying 
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mechanisms behind those findings. Hearse et al [4] were among the first group to 
report that sudden resumption of metabolic activity to energy-(and oxygen-) starved 
tissue resulted in a reoxygenation-dependent injury response independent of the 
hypoxic stress, commonly called “reperfusion injury”. I/RI development is multi-
factorial involving alterations in both mitochondrial and cellular homeostasis, 
including a shortage in ATP production, alterations in ion gradient homeostasis, 
excessive inflammation, Ca2+ handling dysregulation, and excessive ROS produc-
tion. In fact, myocardial ROS surge following reperfusion was for long proposed to 
be the mediator of I/RI [5, 6]. Consistently, a large number of studies have inten-
sively addressed the role of excessive ROS formation during I/R [7]. Of note, ROS 
is a well-known potent mediator of metabolic disruption, inflammation, necrosis, 
and cell death in multiple diseases including myocardial injuries [8]. In this chapter 
we emphasize the importance of ROS-mediated reperfusion injury, and highlight 
the promising mito-targeted antioxidant therapy. We also examine the paradoxal 
evidence supporting the beneficial effects of ROS bursts in pre- and postcondition-
ing mechanisms.

12.2	 �From Permanent Occlusion to Reperfusion: The Bad, 
the Good, and the Ugly

12.2.1	 �The Bad: Myocardial Infarction

Coronary blood flow obstruction, commonly termed MI, is characterized by an 
inadequate blood flow and subsequent nutrient and oxygen deprivation to the 
affected area. The severity of MI is strongly dependent on the size of the area at risk, 
the duration of ischemia, and the presence or absence of comorbidities [9]. The 
onset of MI itself is characterized by multiple life-threatening pathologies, includ-
ing ventricular fibrillation, atrio-ventricular block [10] and cardiogenic shock [11]. 
Following hospitalization and stabilization of potentially existing arrhythmias, non-
reperfused MI patients undergo adverse remodeling of the myocardium with very 
poor prognosis and high risk of heart failure development and death. Based on the 
American Heart Association statistical report, an approximate number of 720,000 
Americans are hospitalized either for a first time MI or coronary heart disease 
(CHD) events with a projection of a median survival of 8.4, 5.6, 7, and 5.5 years for 
≥45 year old white males, white females, black males, and black females respec-
tively. Additionally, sudden cardiac death accounts for 13.5% of death certificates 
with a relatively high lifetime risk for cardiac arrest survivors [12].

12.2.2	 �The Good: Reperfusion

Given the well-established positive correlation between the duration of ischemia 
and the extent of myocardial damage, coronary blood flow restoration was an inevi-
table solution. In the last two decades, researchers have conducted a multitude of 
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studies and reported that the salvage of ischemic cells from inevitable death is only 
possible by revascularization. Thus, multiple interventions such as percutaneous 
coronary intervention (PCI), coronary artery bypass grafting (CABG), and pharma-
cological (thrombolysis) approaches to remove the occluding clot were developed 
and adopted [13]. Reperfusion has proven to limit the ischemic injury and subse-
quently the infarct size area. The importance of reperfusion therapy in MI patients 
was surveyed over the past 20 years and reported a continuous decline of 6-month 
mortality, along with a further 22% reduction in standardized mortality, from 2010 
to 2015 following reperfusion therapy [14] .

12.2.3	 �The Ugly: Reperfusion Injury

Despite the perpetual improvement of multiple procedures to ensure a rapid, com-
plete, effective, and permanent reopening of the acutely occluded coronary artery, 
numerous studies revealed that myocardium salvage following blood flow restora-
tion is highly predisposed to another form of injury, known as reperfusion injury 
[11]. Aside from the reperfusion impact on cardiac remodeling, multiple pathologi-
cal conditions are known to occur at the onset of blood flow restoration, including 
arrhythmias, myocardial stunning, and potential microvascular occlusion that could 
be life-threatening [15].

12.3	 �Mechanisms of Cellular Cardiac Injury Following I/R

12.3.1	 �At the Onset of Ischemia

Following coronary artery clotting, cessation of cellular oxygen supply halts mito-
chondrial membrane polarization, reducing therefore adenosine triphosphate (ATP) 
formation and increasing mitochondrial ROS production [16]. Subsequently, 
reduced ATP-dependent Na+/K+ pump activity, leads to Na+ accumulation in the 
myocyte and lowered mitochondrial resting membrane potential. Na+ overload 
within the cell is counter-regulated by the reverse activity of Na+/Ca2+-exchanger 
(NCX) that pumps Na+ out in exchange for Ca2+, resulting eventually in intracellular 
and intra-mitochondrial Ca2+ overload. Concurrently with Ca2+ and Na+ overload, 
the absence of oxygen supply switches cellular metabolism to anaerobic glycolysis 
promoting lactate accumulation and cellular acidosis [17]. In summary, ischemia-
induced accumulation of intracellular sodium, ROS, and calcium ions, favors, if 
sustained, the opening of the mitochondrial permeability transition pore (mPTP) 
[18]. This, together with ATP shortage, determines a loss of contractility, structural 
disorganization, and apoptotic, necroptotic, and necrotic cell death [19, 20]. 
However, the acidic conditions during ischemia prevent opening of the mPTP and 
subsequent cardiomyocyte death (Fig. 12.1a).
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12.3.2	 �At the Onset of Reperfusion

Reperfusion is intended to restore ATP production and reactivate the Na+/K+ ATPase 
to slowly re-establish the sodium gradient, leading to normal cation fluxes and even-
tually extruding the excess cytosolic and mitochondrial Ca2+. However a massive 
mitochondrial ROS burst follows reoxygenation during reperfusion, which is fur-
ther fueled by inflammation, increasing the risk of mPTP opening and cell death 
[18]. Additionally, persistent high intracellular Ca2+ levels observed during the early 
phase of reperfusion, increase the risk of a damaging myocardial hypercontracture 
that was otherwise inhibited during acidic ischemia (Fig. 12.1b). Besides, in the 
setting of ischemic–reperfusion injury, ROS burst is also responsible of the activa-
tion of protein kinase C delta (PKC-δ) stimulating its translocation to the mitochon-
dria where it results in cytochrome c release, caspase 3 activation, and a decrease in 
the activity of pro-survival Akt, as well as poly (ADP-ribose) polymerase (PARP) 
cleavage in the nucleus. Pharmacological inhibition of PKC-δ is exploited in many 
therapeutic strategies like preconditioning [21]. In summary, reperfusion-induced 
cellular damage is largely dependent on ROS burst, Ca2+ overload, and mPTP open-
ing [20].

12.4	 �Myocardial ROS in I/R: Types and Sources

Compelling evidence pointing to the causal interconnection between oxidative 
stress and I/RI is well established [22]. Oxidative stress is a consequence of the 
imbalance between ROS production and antioxidant capacity, either because of 
heightened ROS release and/or an ineffective antioxidant system [23]. Under isch-
emic conditions, mitochondrial complexes I and III are primarily responsible of the 
conversion of molecular oxygen to unstable/reactive superoxide (O2

−) [24]. 
Cardiomyocytes, containing the highest number of mitochondria, consume a higher 
level of oxygen than any other cell and subsequently become major ROS producers 
[25]. As a result, heightened cellular ROS levels ultimately alter cellular homeosta-
sis primarily by damaging proteins, lipids, and nucleic acids [26, 27]. In addition to 
local ROS production, immune cell infiltration into the myocardium following I/RI 
contributes substantially to increase ROS levels [28]. Upon reperfusion of the isch-
emic myocardium, inflammatory reaction is noticeably accelerated. Although 
inflammation is crucial for myocardial tissue healing, the re-establishment of blood 
flow to ischemic tissue accelerates and prolongs inflammatory response detrimen-
tally. Among multiple immune cell infiltrations, neutrophils are considered the ear-
liest and the most potent releaser of ROS, followed by macrophages [29]. 
Interestingly, clinical anti-neutrophil therapies did not succeed in slowing or pre-
venting adverse myocardial remodeling post-MI [30]. These findings imply that 
local free radical outburst following reperfusion is potentially the main source of 
ROS-mediated injury during I/R.  Xanthine oxidase (OX), nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidases, mitochondrial electron transport dam-
age and uncoupling, uncoupled nitric oxidase synthase (NOS), and 
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Fig. 12.1  Schematization of the key components of acute myocardial ischemia reperfusion 
injury: (a) Loss of oxygen supply in ischemia leads to a loss of ATP production and a switch to 
anaerobic respiration, resulting in a drop in intracellular pH, accompanied with an increased intra-
cellular and mitochondrial-derived ROS. The ATP consuming Na+-K+-pump ceases to function, 
leading to Na+ accumulation in the myocyte and the resting membrane potential is lowered. With 
the development of acidosis, the NHX further increases intracellular Na+ exacerbating Ca2+overload 
by forcing the NCX to manage, in a reverse mode the extrusion of Na+ and the influx of Ca2+ into 
the cell. The sarcolemmal L type voltage-gated Ca2+ (L-CC) are activated allowing more Ca2+entry 
as the resting membrane potential is low. Ca2+pump SERCA2 is now taken up the excess of 
Ca2+into the SR that releases it subsequently via RYR, leading to contraction and contracture. The 
acidic conditions during ischemia however prevent the opening of the mPTP and cardiomyocyte 
hypercontracture. (b) During reperfusion ATP production increases leading to the Na+-K+-pump 
reactivation, a slow restoration of both sodium gradient and NCX normal activity extruding the 
excess of cytosolic Ca2+. An excessive production of ROS accompanies reoxygenation, electron 
transport chain activation, and immune cells infiltration. ROS burst mediates myocardial reperfu-
sion injury by inducing the opening of the mPTP, causing outer mitochondrial membrane permea-
bilization, apoptosis, necrosis, acting as a neutrophil and cytokines chemoattractant, mediating 
dysfunction of the SR and causing myofibril hypercontacture. Restoration of physiological pH  
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myeloperoxidase (MPO) are the major producers of ROS in reperfused ischemic 
myocardium [31] and will be discussed in this chapter.

12.4.1	 �Nitric Oxide Synthases (NOS)

One of the most studied sources of physiological and pathophysiological ROS are 
the three well-recognized isoforms of NOS enzymes known as neuronal NOS 
(nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) that normally pro-
duce NO during the oxidation of L-arginine to L-citrulline [32]. While eNOS and 
nNOS are known to be constitutively expressed in the myocardium, iNOS, although 
primarily induced in immune cells, is expressed in cardiomyocytes under ischemic 
conditions [33, 34]. Constitutive myocardial nitric oxide (NO) generation under 
physiological conditions is essential for physiologic cell signaling [35]. Blood flow 
and oxygen restoration following reperfusion significantly increase NOS activity 
and subsequent NO production [36]. Although NO has been reported to be protec-
tive against I/R-induced injury in different organs of experimental animals [37] and 
humans [38], the beneficial effects of NO activity are negated by increased O2

−-
mediated peroxynitrite (ONOO−) generation following reperfusion (Table 12.1).

	 NO O ONOO+ =- -
2 	

Contrarily to NO, ONOO− is very detrimental to proteins and lipids. ONOO– can 
negatively and irreversibly alter the structure and function of NOS by damaging its 
heme domain and oxidizing the tetrahydrobiopterin (BH4) cofactor [32, 39, 40] 
ultimately leading to NOS uncoupling an important source of I/R-induced ROS 
generation [32]. NOS function during I/R depends as well on its structural form; 
two cellular forms of constitutive NOS exist, the monomer and the homodimer 
forms. The monomer form is responsible of O2

− generation in small amounts; the 
shift towards excessive O2

− production depends on the homodimer/monomer ratio, 
intracellular L-arginine supply, and on BH4 oxidation [1].

A decrease in the local BH4/NOS ratio makes the balance, of a stoichiometric 
relationship between BH4 and eNOS, fall towards increased O2

− instead of NO [41, 
42]. Uncoupled NOS, furthermore, produces more O2

− that acts as a positive feed-
back loop leading to further BH4 to BH2 oxidation and the propagation of NOS 
uncoupling. Besides the described loop, XO [43] and/or NADPH oxidase [44] play 
an important role in the I/R-induced reduction in BH4 levels by promoting O2

− gen-
eration.Also, an essential factor required for the synthesis of NO by eNOS is 

Fig. 12.1 (continued) following reperfusion along with Ca2+ overload accentuates mPTP opening 
leading to an increased infract size, cellular dysfunction, and cell death. Ca2+ calcium, Na+ sodium, 
K+ potassium, H+ hydrogen, O2 oxygen, SR sarcoplasmic reticulum, SERCA sarco/endoplasmic 
reticulum Ca2+-ATPase, ATP adenosine triphosphate, OxPHos oxidative phosphorylation, ROS 
reactive oxygen species, mPTP mitochondrial permeability transition pore, NCX 3Na+/1Ca2+-

exchanger, NHX Na+-H+-exchanger, PMNs polymorphonuclear lukocytes, (+) stimulation, (−) 
inhibition, ↑ increase, ↓ decrease
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Table 12.1  Potential sources of reactive oxygen species in the cardiac tissue exposed to ischemia 
and reperfusion

Evidence of ROS involvement in I/RI References

↓Superoxide dismutase activity [5]
↓Endogenous cellular antioxidant systems
↓Cellular glutathione-to-glutathione disulfide ratio
↑ Lipid peroxidation,
↑O2

− production at reperfusion
Oxygen-derived radicals act like mediators of reperfusion injury in isolated heart 
models in the presence or absence of superoxide

[116–118]

Oxygen-derived free radicals are directly implicated in I/RI [119–121]
O2

− was identified as the parent radical that serves as a precursor to the formation 
of both OH- and the carbon-centered radical
Free-radical are highly generated in an intact dog model of I/R
O2

− is the parent radical at reperfusion
Oxygen, nitrogen, and carbon-centered free radicals are generated during I/R in 
an isolated rabbit and rat heart models

[122–124]

Exogenous administered ROS at the same levels as those observed during 
reperfusion induced similar calcium overloading, functional depression, and 
metabolic changes
Major sources and outcomes of ROS generation in I/RI
Xanthine oxidase The time-course of ROS production elicited 

by I/R in isolated rat hearts is closely 
correlated with the kinetics of XO substrate 
accumulation.

[125, 126]

Increased tissue xanthine and hypoxanthine 
levels determine the severity of the I/RI
Pharmacologic blockade of xanthine 
oxidase (XO) substrate formation:
(−) XO-dependent ROS production
(−) Contractile dysfunction that 
accompanies reperfusion
Exogenous administration of 
hypoxanthine and xanthine :
(−) The protective effects of blockade of 
xanthine oxidase substrate formation
Inhibition of XO:
↑ Levels of XOR antigen in vascular 
endothelium of myocardial ischemic tissues

NADPH oxidase ↑ROS generation [127–131]
↑Tissue injury following reperfusion
Blunted reperfusion-induced neutrophil 
accumulation:
↓ Tissue injury and/or ROS production
The application of a simulated I/R on 
purified cardiomyocytes in culture:
(+) Tissue injury-related responses that are 
dependent on Nox activity
NOX inhibition:

(continued)
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Table 12.1  (continued)

Evidence of ROS involvement in I/RI References

↓ ROS production
↓ Myocardial infarct size
↓Cell death
↑Protective effect in isolated buffer (cell 
free) perfused hearts exposed to I/R
Mutant mice deficient in either Nox-1 or 
Nox-2/ Nox-1, Nox-2 and Nox-1/Nox-2 
double knockout mice :
↑Protective effect in buffer-perfused 
Langendorff preparations with I/R hearts 
models
Myocytes release of Nox isoforms:
↑ROS generation during I/R

Mitochondria I/RI: [125, 132, 
133]↑Mitochondrial H2O2 generation

↓Cytochrome c release from the MIM
↑Reduction state of cytochrome c
Ischemic damage to complex I and III:
↑Capacity to generate O2

- at reperfusion
Both associated and/or separated complex I 
and III isolated from mitochondria obtained 
from reperfused hearts can generate O2

-

Nitric oxide synthase I/R: [127–131]
↑Uncoupled NOS
↑Myocardial ONOO- generation by NOS
↓Endothelium-dependent vasodilation in 
porcine coronary arteries
In vitro and in vivo models of I/R:
BH4 supplementation replenish NOS 
activity in isolated rat hearts
↑↑ uncoupled NOS-derived O2

- production
↑ I/R-induced cardiac inflammation and 
tissue damage
After reperfusion of ischemic heart:
↑ Arginase activity
↑ O2

- generation increases
↓Arginine levels and NO production 
decrease
I/R+ treatment with a combination of 
arginine and BH4:
↓Infarct size

I/RI ischemia reperfusion injury, I/R ischemia reperfusion, O2
− superoxide, ROS reactive oxygen 

species, XO xantine oxidase, XOR xantine oxidase receptor, Nox NADPH oxidase, H2O2 hydrogen 
peroxide, MIM mitochondrial inner membrane, NOS nitric oxide synthase, ONOO− Peroxynitrite, 
BH4 tetrahydrobiopterin, NO nitric oxide, (+) stimulation, (−) inhibition, ↑ increase, ↓ decrease
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arginine, the nitrogen donor, and substrate for arginase I and II [45]. Increased argi-
nase activity leads as well to increased production of O2

− by NOS, a mechanism 
called “arginine steal”. Finally, it was very early reported that myocardial eNOS 
actively produces NO during ischemia and reperfusion; however, parallel observa-
tions have shown that the enzyme is affected during ischemia. In fact, a prolonged 
ischemia is accompanied by intracellular acidosis that reversibly or irreversibly 
inhibits eNOS activity independently of the duration of acidosis [46] (Table 12.1).

12.4.2	 �Monoamine Oxidase and p66shc

During I/R, mitochondria are responsible of the generation of hydrogen peroxide 
(H2O2) through serotonin oxidization via monoamine oxidase [47]. Serotonin accu-
mulation, as well as increased monoamine oxidase activity, is noted during ischemia 
and substantially increased following reperfusion [48]. Moreover, mitochondria are 
also capable of H2O2 production using a novel pathway that involves the 66-kDa 
isoform of the growth factor adaptor protein, p66shc. Ischemic conditions are 
responsible of translocation of p66shc from the cytosol to the mitochondrial inter-
membrane space, allowing it to use reducing equivalents from the electron transport 
chain (ETC) via the oxidation of cytochrome c to make H2O2. This reaction acts in 
a vicious cycle to provide p66shc with increased substrate in the intermembrane 
space during ischemia [49].

12.4.3	 �Cellular Xanthine Dehydrogenase vs. Xanthine oxidase

During normoxic physiological conditions, xanthine dehydrogenase (XDH) cata-
lyzes the oxidation of hypoxanthine to xanthine and then to uric acid by coupling 
the reaction with NAD+ reduction to yield NADH.

	 hypoxanthine NAD xanthine NADH
XDH

+ ® ++ 	

	 xanthine NAD uricacid NADH
XDH

+ ® ++ 	

However, ischemic context enhances the conversion of XDH to XO by the modifi-
cation of a sulfhydryl group or by proteolytic cleavage. XO is a molybdo-
flavoenzyme complex that controls, in addition to uric acid production, ROS 
generation through catalyzing the oxidation of hypoxanthine to xanthine.

	 hypoxanthine O xanthine O
XO

+ ® + -
2 2 	

	 xanthine O uricacid O
XO

+ ® + -
2 2 	
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XO-derived ROS contribute to multiple pathologic conditions including I/RI 
(Table 12.1). The accumulation of XO following ischemia will increase O2

− forma-
tion. Besides, the oxygen burst at the onset of reperfusion drastically increases O2

− 
formation [50] .

12.4.4	 �Cellular Xanthine Dehydrogenase

Nevertheless, other mechanisms can explain the enhanced superoxide release, inde-
pendently of XDH to XO conversion. In fact, XDH has an NADH oxidase activity 
in the presence of acidic conditions (pH 6.5) wherein NADH is oxidized rather than 
xanthine [33]. XDH is capable of generating superoxide at 4-times the rate of 
XO. Besides, XDH is the dominant isoform in the early reperfusion period and is 
most likely a more important source of superoxide than the XO isoform at the onset 
of the reperfusion.

 

Post-transcriptional regulation of XDH expression is reported during I/R, 
wherein the hypoxic and inflammatory environments are stimuli associated with 
increased XDH transcription [51]. On the other hand, XO activity is also regulated 
at the post-translational level. These modifications have been attributed to O2 ten-
sion that results in phosphorylation of the enzyme by p38 kinase [52]. In addition, 
along with hypoxic environment, the inflammatory context (mast cell degranulation 
and macrophage activation), which accompanies I/R, participates via multiple cyto-
kines such as IL-1, IFN-γ, IL-6 and TNF-α to increase XDH/XO mRNA. Another 
feature of the XO capacity to produce ROS under ischemic conditions is its capacity 
to act as a nitrate/nitrite reductase (Table 12.1). This enzymatic reaction catalyzes 
the production of NO by one electron reduction of nitrite, and is optimal under 
anoxic/hypoxic and acidic conditions [53]. The generated NO, an important sub-
strate for peroxynitrite generation, enhances the oxidative burst in the presence of 
an ischemia/inflammation loop in the ischemic heart [54] (Table 12.1). Finally, XO 
participates in leucocyte recruitment upon I/R, followed by neutrophil recruitment 
and XO-derived ROS secretion [55].

12  Oxidative Stress in Cardiac Remodeling Post-Ischemia/Reperfusion: Friend or Foe?



264

12.4.5	 �Nicotinamide Adenine Dinucleotide Phosphate (NADPH) 
Oxidase

The Noxs are a family of 7 isoforms expressed in multiple types of cells, including 
vascular endothelial cells, smooth muscle cells, fibroblasts, cardiomyocytes, and 
polymorphonuclear leukocytes (PMNs). Nox isoforms are known as Nox-1 to 
Nox-5 and dual oxidases (Duox)-1 and -2 [56, 57]. Nox/Duox are considered the 
major source of ROS in multiple pathological conditions including cardiac remod-
eling post-MI [58–60] (Table 12.1). The contribution of Nox enzymes to reperfu-
sion injury is documented by multiple studies reporting both an increased expression 
and/or activity of Nox in ischemic tissue and attenuation of I/R induced injury fol-
lowing Nox inhibition [61, 62]. A large amount of data reported the involvement of 
multiple factors in the activation of Noxs in I/RI. For example, studies confirmed 
that hypoxia inhibitory factor-1α (HIF-1α) activation, evoked by the hypoxic state 
that accompanies ischemia, promote production and activation of Noxs [63]. Among 
all Nox isoforms, Nox2 is one of the most widely expressed in cardiac cells and, 
therefore, a prominent ROS producer in myocardial I/R (Table 12.1). The activation 
of XO and the resulting increase in ROS and intracellular Ca2+ levels have been 
reported to be indispensable for Nox2 activation under ischemic conditions. The 
stimulation of PKC by XO-generated ROS also contributes to ischemic-evoked 
Nox2 activation. Furthermore, the inhibition of XO halts ischemic-induced upregu-
lation of HIF-1α proving that Nox2 activation by XO is essential for HIF-1α activa-
tion under ischemic conditions [64]. Of note, both the activation of the complement 
system and increased generation of angiotensin II are also associated with an 
increase in Nox activity in cardiac post-ischemic tissue [61, 65].

12.4.6	 �Mitochondrial ETC ROS Production

Mitochondria constitute 33% of the total cardiac myocyte cell volume, highlighting 
their fundamental role in cardiac function and the high energy demand of the myo-
cardium. The mitochondrial ETC complex is comprised of a series of multi-subunit 
complexes (complexes I–IV) located in the inner mitochondrial membrane (IMM) 
and coupled to mobile carriers such as coenzyme Q and cytochrome c. The com-
plexes and cytochrome c contain redox groups (Fe-S clusters and/or heme) that 
allow for the transfer of electrons along the components of the ETC, generating a 
proton electrochemical gradient, ultimately promoting ATP production via ATPase 
[25, 66]. Mitochondria are considered a normal source of ROS that play a crucial 
role as cell signaling intermediates in order to maintain cellular homeostasis. Under 
normal physiological conditions, ETC reduces oxygen to water using more than 
97% of the entire electron flux through mitochondria. The remaining 2–3% of elec-
trons consistently leak from ETC to form O2

−. In addition to its important role in 
signaling, physiological production of O2

− plays a critical role in multiple crucial 
cell functions such as metabolism, proliferation, and apoptosis [67].
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Following ischemia, the decrease in mitochondrial respiration as well as ATP 
production, along with complex I/III alterations, increases NADH:NAD+ ratio and 
reduces flavin mononucleotide prosthetic group within the NADH dehydrogenase 
component of complex I. These changes increase the leakage of electrons that form 
O2

− via univalent reduction of O2 and subsequent ROS production beyond physio-
logical levels [24, 25, 68, 69]. Although reduced cytochrome c controls mitochon-
drial ROS levels by scavenging O2

−, persistent ischemia increases the oxidized state 
of cytochrome c contributing further to mitochondrial damage and the accumulation 
of O2

− (Table 12.1).
Upon reperfusion, oxygen burst into an already stunned mitochondria drastically 

increase ROS production to a much higher extent than during ischemia. Additional 
sites within complex I may contribute to ROS generation. Mitochondrial increase in 
superoxide production is normally accompanied by an increase in H2O2 formation 
through MnSOD activity within the mitochondrial matrix [70]. Superoxide dis-
mutase enzymes contain either copper, manganese, or nickel metal centers that are 
reduced or oxidized to convert cellular O2

− into H2O2 (Table 12.1) [71, 72]. H2O2 
interaction with NO also increases formation of ONOO−. Of note, ROS is able to 
freely spread within the mitochondrial network mainly through the mPTP and inner 
membrane ion channels, centralizing therefore cellular damage [25, 73].

12.5	 �ROS Mediated Adverse Effects in I/R

ROS production during the ischemic, reperfusion, and remodeling phases contrib-
ute to cardiac injury post-MI. The extent of injury, however, varies based on the size 
of the affected myocardium, the magnitude of ROS reactions, and the severity of 
cardiomyocyte damage. Uncontrolled sustained ROS burst causes modification and 
denaturation of a multitude of structural and functional molecules leading to irre-
versible tissue damage. The effect of each ROS, however, depends on its type. OH- 
for instance acts instantly right after generation. O2

− and NO− radicals on the other 
hand, are of much lesser reactivity, more specific, and can mediate radical reactions 
on sites that are distant form their site of production. In the absence of appropriate 
ROS scavengers, sustained ROS production triggers oxidative vicious cycles that 
could permanently damage the cells. Of the well-known ROS-mediated cellular 
damage, lipid peroxidation, protein denaturation, mitochondrial, and DNA damage 
constitute the basis behind those effects.

12.5.1	 �DNA Oxidation

OH-mediated hydrogen extraction interferes with cellular DNA, causing purine 
and/or pyrimidine direct modification and/or fragmentation producing a plethora of 
DNA lethal lesions [74]. These lesions can induce mutagenesis, crosslinks between 
DNA strands and proteins, stand breaks, which affect thereafter DNA replication 
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and transcription [75] and ultimately promote a pro-apoptotic and pro-necrotic 
effect (Table 12.2).

12.5.2	 �Lipid Peroxidation

Lipid peroxidation is a typical 3 phase oxidative reaction that occurs abundantly 
during I/R. The alkenes, unsaturated fatty acids and major component of biological 
membrane’s phospholipid bilayers, are very susceptible to hydrogen extraction by 
ROS.  The generated carbon-centered and peroxyl radicals constitute the initial 
phase of ROS attack followed by an amplification phase also known as the propaga-
tion phase [76]. Lipid peroxidation continues with additional similar abstractions 
until two radical species combine in a termination phase. Reactive aldehydes such 
as malondialdehyde (MDA), 4-hydroxynonenal, and isoprostane are major end 
products of this classical oxidation cascade and are known to increase during I/R 
[77]. Lipid peroxidation byproducts are bioactive and well-involved in the adverse 
remodeling of I/R. 15-F2t-isoprostane, for example, is reported to induce a dose-
dependent vasoconstriction in coronary arteries, promoting therefore cardiac dys-
function following I/R [78] (Table 12.2).

12.5.3	 �Protein Oxidation

ROS-mediated activation of necrotic and pro-apoptotic proteins determines the 
severity and the extent of infarct size [79]. For instance, ROS can modify cellular 
proteins via oxidation and nitration, impairing subsequent myocardial contraction 
and promoting myocardial stunning following I/R [80]. Similarly to what is 
observed with lipids, hydrogen extraction by OH- is a key player in the initiation 
phase of the oxidative attack on proteins by affecting amino-acid functional groups 
[81]. Denaturation of proteins by ROS oxidation reactions is due to the cleavage of 
peptide bonds, functional group cross-linking, and by hydrophobicity alterations of 
amino acids on protein surfaces [81] (Table 12.2).

Proteins with signaling roles, such as kinases and phosphatases, can also be oxi-
dized by ONOO−, affecting therefore their signaling capacities and impact [82]. By 
regulating mitogen-activated protein kinases (MAPKs), ROS contribute to cellular 
responses to mitogens, inflammatory cytokines, and (un)physiological stimuli [83]. 
Activation of p38 can have either pro- or anti-apoptotic effects, and is exaggerated 
during I/R. Also, p38 has been reported to play a role in regulating mitochondrial 
ROS levels and intracellular signaling pathways, as well as controlling mitochon-
drial events associated with development of I/R-associated damage (Table 12.2). 
Other signaling pathways that have also been shown to be involved in this regulation 
include: the RAF-MEK pathway that, in contrast, prevents mitochondrial accumu-
lation of ROS/Ca2+ and cell death [83], and the PI-3 kinase (PI3K)/protein kinase C 
(PKC/AKT) pathway that has a protective role against cellular I/R-induced cell 
death.
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Table 12.2  ROS targets following I/RI

Oxidized target Effects References
Lipids ↑Lipid peroxidation. [77, 134]

↑Alkene hydrogen abstraction
↑Generation of carbon-centered and peroxyl radicals
↑Peroxyl and lipid isoforms generation
↑Production of MDA ,4-hydroxynonenal, and 
isoprostane
↑Cardiolipin depletion

Proteins ↑ Physical and chemical modification of myocardial 
proteins

[79–81, 99, 
135–140]

↑Non-enzymatic modification of cellular proteins
↑ Amino acid oxidation and nitration
↑ Formation of nitrotyrosine residues on proteins
↑ Products of tyrosine oxidation: myocardial 
3-nitrotyrosine and dityrosine
↑ Particular risk of tyrosine nitration in mitochondrial 
proteins
↑ OH- hydrogen abstraction in functional groups and 
backbone α-carbons of all amino acids
↑ Cleavage of peptide bonds and cross-linking of 
functional groups
↑Alteration of the hydrophobicity of amino acids on 
protein surfaces
↑Cellular and mitochondrial sulfhydryl groups
↑Tyrosine kinases and protein tyrosine phosphatases 
oxidation
↑↑Mitochondrial tyrosine and cysteine residues 
nitration and oxidation
↑↑Reactive aldehydes-mediated electrophilic attack 
towards nucleophilic amino acids
↑4-hydroxynonenal provoked modification and 
inhibition of the cytochrome oxidase
↑ Oxidative activation of necrotic and pro-apoptotic 
protein
↑ MMP-9 cleavage and activation

DNA ↑ OH--mediated hydrogen abstraction [74, 75, 78, 
141–143]↑ Purine or pyrimidine direct modification and/or 

fragmentation
↑DNA lesions
↑DNA bases modification
(+) Inter and intra-strand crosslinks
↑ DNA–protein crosslinks
(+) strand break formation
↑Adducts with MDA, and ROS-mediated lipid-
peroxidation products
↓DNA replication and transcription

(continued)
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ROS are implicated as well in inflammatory signaling, not only by fueling the 
pro-inflammatory response in a self-perpetuating manner, but also by regulating the 
process of high-mobility box 1 (HMGB1) protein release that occurs especially in 
response to cellular damage. HMGB1 is an agonist for Toll-like Receptors (TLRs). 
Accordingly, TLR4-mediated NFκB activation is recruited for oxidative stress-
activated intracellular signaling pathways [84].

Two additional developmental pathways also figure among the most important 
pathways in this context: the Wnt/s-catenin signaling that is activated by ROS [84] 
and NOTCH signaling that suppresses ROS production [85]. Nevertheless, this sort 
of crosslink between intracellular signaling and regulation of mitochondrial ROS 
production has been demonstrated for p53 [86], protein kinase A (PKA) [87], rap-
idly accelerated fibrosarcoma (RAF) kinase, protein kinase B (Akt/PKB), and 
B-cell lymphoma 2 (Bcl-2) [83]. The tyrosine kinase pathway plays a role via 
p66shc, which acts as a redox enzyme that generates mitochondrial ROS through 
oxidation of cytochrome c [49]. In addition, oxidative stress leads to alterations in 
the activation state of different PKCs. This activation provides a protective role in 
the context of preconditioning by activating the specific PKC-ɛ isoform [88]. 
However, activation of PKCδ isoform increases, in a positive-loop manner, ROS 
generation. Activation of PKCδ by ROS regulates the expression and function of 
apoptosis-related proteins, and represents a target for caspases leading to cellular 
death [88].

Activation of enzymes including MMPs and caplains is also pronounced follow-
ing increased ROS production and pH restoration, and is capable subsequently of 
degrading crucial functional proteins, such as myosin light chain [89], α-actinin 
[90], and cardiac troponin [91, 92] (Table 12.2). During ischemia, oxidative stress is 

Table 12.2  (continued)

Oxidized target Effects References
Mitochondria 
homeostasis

↑Perturbation of the mitochondrial energy production [93, 96, 99, 
144]↑Overexuberant liberation of mitochondrial ROS

↑Mitochondrial DNA rearrangement and fragmentation
↓Mitochondrial enzymes activities
↑The susceptibility of mitochondrial DNA to oxidative 
modification in circulating leukocytes
↑Oxidative inactivation of mitochondrial aconitase
↑Mitochondrial production of hydroxyl radicals
↓Mitochondrial structure and function
↑Mitochondrial Ca2+ levels
↑mPTP opening
↑Perforation and lysis
↑Mitochondrial depolarization and cell death

MDA malondialdehyde, OH− hydroxyl radical, MMP-9 matrix metalloproteinase 9, DNA deoxyri-
bonucleic acid, ROS reactive oxygen species, Ca2+ calcium, mPTP mitochondrial permeability 
transition pore, (+) stimulation, (−) inhibition, ↑ increase, ↓ decrease
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also broadly responsible for Na+/H+ exchanger (NHX) activation, a mechanism that 
attempts to restore intracellular pH by increasing cellular Na+ levels. The Na+/Ca2+ 
exchanger (NCX) is thus activated, leading to intracellular accumulation of Ca2+ 
and a state of mitochondrial Ca2+ overload and depolarization. This phenomenon is 
exacerbated upon reperfusion with mitochondrial calcium uniporter (CaU) exagger-
ated opening. ROS-mediated alterations of anion exchanger function leads to pH 
recovery. Excessive ROS, however, favor opening of the mPTP (Fig. 12.1b) [93], 
leading to mitochondrial matrix swelling and loss of MOM. This result is fatal due 
to the pro-apoptotic molecules that are released from the mitochondrial intermem-
brane space (IMS). Additionally, another type of Ca2+ permeable cationic channel is 
affected by increased ROS production during I/R. The transient receptor potential 
melastatin 2 (TRPM2) is in fact a ROS sensor [94]. Oxidative stress-mediated acti-
vation of TRPM2 results in mitochondrial Na+ and Ca2+ overload, which leads to a 
disrupted mitochondrial membrane, cytochrome c release, PARP-1 cleavage via 
induction of caspase-8 activation, and finally apoptotic cell death [95].

It is worthwhile to point out that radical reactions are of a semi-random nature, 
so they do not necessarily yield irreversible cell damage. For example, the magni-
tude of the oxidative attack on membranes, proteins, or DNA may not be enough to 
have an adverse effect on their functions. Besides, if the damaged protein is not of 
critical functional relevance, normal cell processes, such as phospholipid and pro-
tein turnover, can remove the altered biomolecule and the cell will survive. 
Understanding the contribution of ROS to the development of I/RI may identify 
additional targets for therapeutic interference. That being said, the understanding of 
aberrant signaling in this particular pathological condition holds the promise for 
novel therapeutic approaches that specifically target the regulation of mitochondrial 
function (Table 12.3).

12.6	 �General and Mitochondria Targeted Antioxidants 
Reduce I /R Injury

Mitochondrial Ca2+ overload and overexuberant mitochondrial ROS burst, consti-
tute the hallmark of I/R-mediated cardiac cell injury [96, 97]. A massive burst of 
ROS following reperfusion localizes in mitochondrial regions that progress to 
swelling and eventually stimulates opening of the mPTP [98, 99]. mPTP opening is 

Table 12.3  Summary of selected clinical trials using general ROS scavengers therapeutics for MI

Antioxidant Effect Outcome References

β-carotene Harmful ↑ CAD risk [145]
Edaravone Effective ↓ Infarct size and reperfusion arrhythmia [145]
L-carnitine Effective ↓ Level of cardiac MI markers [146]
Vitamin E Effective ↓ CVD risk [145]

Harmful ↑ Increased HF risk

CAD coronary artery disease, MI myocardial infarction, CVD cardiovascular disease, HF heart 
failure, ↑ increase, ↓ decrease
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directly linked to mitochondrial DNA rearrangement and fragmentation, a complete 
disrupted mitochondrial structure and function (Table 12.2), followed by mitochon-
drial perforation and lysis [18]. Mitochondria-targeted antioxidant therapy has the 
ability to salvage I/R-assaulted cardiomyocytes more so than general antioxidants 
(Table 12.4) at different levels including: (1) preventing excessive detrimental cel-
lular ROS production that is largely and mainly produced by mitochondria with I/R, 
(2) promoting low and beneficial ROS signaling through protein kinase Cε and its 
downstream substrates, and (3) preventing harmful ROS signaling through protein 
kinase Cδ and its downstream effectors. Examples of protective therapies targeting 
mitochondrial ROS are detailed in Table 12.4.

12.7	 �The Paradoxal Cardioprotective Effects of ROS

Pre- and postconditioning are manipulations during which short periods or bouts 
of ischemia are applied by occluding and opening the coronary artery, prior or 
subsequent to, permanent occlusion [100]. Pharmacological and interventional 
ischemia pre- and postconditioning has gained immense attention due to its pro-
tective effects on cardiac remodeling prior to or following reperfusion [101, 102]. 
This protection is, however, impeded with application of antioxidants. In fact, 
unlike excessive and sustained ROS burst that is now proven to be detrimental, 
low levels of ROS are protective (Table 12.4). A growing body of recent evidence 
has established that generation of ROS at low levels can serve as a signal mediat-
ing physiologic responses. The protective role of preconditioning on the myocar-
dium was first described in 1986 by Murry et al., as a slower ATP depletion rate 
and smaller infarct size in the heart treated with brief episodes of I/R before pro-
longed occlusion, followed by reperfusion [101, 102]. Mitochondrial pathways 
play an important role in promoting the activation of cell survival programs fol-
lowing preconditioning via ROS signaling-dependent mechanisms [103]. A good 
example of cardioprotective roles of reliable amounts of ROS is the metabolic 
vasodilator effect of H2O2, produced by myocardial mitochondria. H2O2 serves as 
a mediator that couples oxygen consumption to coronary blood flow by acting as 
an activator of redox- and 4-aminopyridine-sensitive voltage-dependent potas-
sium (Kv) channels in smooth muscle cells [100]. In addition, H2O2 that derives 
from complexes I and III in the endothelial mitochondria’s electron transport 
chain is capable of triggering calcium activated potassium (BKCa) channels in 
order to enhance acetylcholine- and flow-induced coronary vasodilation [104, 
105]. More recently, several methods of preconditioning have been developed 
including ischemic preconditioning (IPC), exercise preconditioning, and pharma-
cological preconditioning [106–108]. The opening of mitochondrial ATP-sensitive 
K+ (mitoKATP) channel is one of the most important mechanisms activated by 
preconditioning stimuli (Table 12.4). This activation allows potassium to flow into 
mitochondria leading to depolarization and matrix alkalization. Subsequently, an 
increase in ROS production activates downstream survival signaling events 
through PKC, preventing mPTP opening [106, 109]. Additionally, the generation 
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of mild matrix swelling improves ATP synthesis and fatty acid oxidation, condi-
tioning the cells to any potential ischemic injury [109].

Ischemic postconditioning on the other hand was first introduced by Zhao et al. 
in 2003. This term refers to brief periods of ischemia alternating with brief periods 
of reflow applied at the onset of reperfusion following sustained ischemia. The tim-
ing of post-conditioning interference is crucial given that reperfusion injuries occurs 
only within several minutes following blood reflow [110]. The basics of precondi-
tioning- and postconditioning-mediated protection are very similar [110, 111]. In 
fact, similar to preconditioning, the mitoKATP/ROS/PKC axis pathway constitutes 
the basis of postconditioning protective therapy [110]. However, the degree of pro-
tection largely depends on the timing of axes activation following reperfusion [112]. 
Of note, both pre- and postconditioning share an important effect that underlines 
their cardioprotective efficacy. In fact, the associated prolongation of cellular acido-
sis that takes place initially during early reperfusion after ischemia favors inhibition 
of mPTP opening for a few minutes following reperfusion. Pre- and postcondition-
ing released ROS take advantage of delayed protective pH normalization to induce 
activation of cell survival programs. Therefore, following pH normalization, an 
arsenal of downstream effectors that prevent mPTP opening is boosted, to preserve 
mitochondrial and cellular integrity [113].

Several other signaling pathways are implicated in the infarct-sparing effect of 
pre- or postconditioning [114]. The Reperfusion Injury Salvage Kinases (RISK) 
pathway involves the activation of two signaling pathways consisting of pro-survival 
kinases ERK1/2 and Akt that converge on mitochondria to decrease mPTP opening 
[115]. The Survivor Activating Factor Enhancement (SAFE) pathway involves the 
induction of JAK-STAT3 signaling. The relative contribution of the RISK and SAFE 
pathways to cardiac protection varies with the experimental ischemic protocol, as 
well as species. Some studies have linked SAFE signaling to the initiation of the 
RISK pathway, although the mechanism is not defined [115]. Both the RISK and 
SAFE pathways are activated by ROS.

12.8	 �Conclusion and Future Direction

Reperfusion of the coronary circulation is necessary to prevent irreversible loss of 
the myocardium. Yet reperfusion causes further harm to the heart via the generation 
of ROS, which invariably leads to heart failure and shortened lifespan. These ROS 
target phospholipids of the cell membrane, various structural, transport, and signal-
ing proteins, and DNA, which may then act synergistically to further ROS genera-
tion and damage the heart. MMPs, caspases, and calpains are activated as well, 
further exacerbating structural damage. Much progress has been made in identify-
ing the sources of ROS, which include NOXs, MAO, uncoupled NOSs, p66shc, 
xanthine dehydrogenase/oxidase, and mitochondria. Paradoxically, lower levels of 
ROS may activate a number of signaling mechanisms that tamp down excessive 
ROS generation by mitochondria as initially revealed in preconditioning experi-
ments. The targets of this manipulation include both direct effects on mitochondria, 
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as well as the upregulation of protective proteins at later time points. For practical 
reasons, direct preconditioning strategies have little if any translational potential. 
However, complementary approaches, such as exercise-induced preconditioning 
and ischemic postconditioning, offer clinical promise. Pharmacological manipula-
tions that specifically target mitochondrial complexes that generate ROS during 
reperfusion are gaining interest as therapies. Although much progress has been real-
ized in the last decade in understanding the source and implications of ROS as foe 
in I/R-mediated injury to the heart, the upcoming decade should result in the practi-
cal application of therapeutic strategies that are based on the revelation of mecha-
nisms defined by the protective actions of ROS in the myocardium.
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13Redox Aspects of Myocardial Ischemia/
Reperfusion Injury and Cardioprotection

Pasquale Pagliaro, Saveria Femminò, and Claudia Penna

13.1	 �Introduction

It is well known that many cardiovascular diseases (CVDs) are prevalently due to 
inflammatory processes. Free radical production and inflammatory processes are 
entangled in a vicious circle: the more radicals lead to more inflammation, and 
inflammation leads to more radicals. These are all well accepted concepts. It is also 
well accepted that during exercise bursts of free radicals, including reactive oxygen 
species (ROS), nitric oxide and other reactive nitrogen species (RNS), are produced 
by the cells of the cardiovascular system. If these concepts are true then a question 
arises: why in some cases ROS/RNS are deleterious triggering and exacerbating 
pathological events, whereas in other circumstances they are beneficial and prevents 
all CVD? In this chapter we will see if it is possible to answer to this question. 
Actually, as we will see, low levels/doses of stressors (e.g., exercise, chemicals/
drugs, thermic stimuli, hypoxia, intermittent fasting, toxins and radiation) are 
known to stimulate a wide range of adaptive responses that may affect the success 
of subsequent therapeutic interventions for a vast spectrum of disorders. Stressors 
that trigger adaptive responses also prevent damage in tissues exposed afterward to 
injurious levels of stressors, including severe psychological stress. Therefore, we 
can anticipate that ROS/RNS play important role in adaptive mechanisms and they 
may be both pro- and anti-inflammatory molecules, depending on the context. It is 
not only a matter of quantity or quality of the reactive species but several factors 
may influence the outcome, including, for instance, the compartmentalization, the 
contextual presence of antioxidants and/or activated protective signaling pathways.

Definition of Free Radicals and Reactive Species  First of all, let’s define biologi-
cally relevant free radicals and reactive species. Free radicals are atoms or mole-
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cules with an odd (unpaired) number of electrons. They are highly reactive and can 
be formed when oxygen interacts with certain atoms or group of atoms. Reactive 
species are chemically reactive molecules acting as oxidizing agents and/or they can 
be easily converted into radicals. In the biological systems, they often contain 
oxygen or nitrogen molecules. Therefore, reactive species is a collective term that 
includes not only the oxygen radicals but also some non-radical derivatives 
(Table  13.1). Thus, all oxygen radicals are reactive species, but not all reactive 
species are free radicals.

The Role of Reactive Species and Free Radicals in Biological System  The role of 
reactive species and free radicals in several physiological and pathophysiological 
conditions is becoming clearer. There are no doubts that these species have a 
prominent role in almost all cardiopathological disorders. Oxygen and nitrogen 
centered reactive species and radicals, such as superoxide anion, hydrogen peroxide 
and nitric oxide are known to be important physiological signaling molecules. In 
particular, these species act on membranes and receptors and can modulate vital 
intracellular signaling pathways and gene expression. On the other hand, in some 

Table 13.1  Some biologically relevant reactive species (formed by and/or acting on living beings)

Reactive Oxygen Species (ROS) Reactive Nitrogen Species (RNS)
Free radicals Free radicals
Alkoxyl, RO· Nitrogen dioxide, NO2

·

Carbon dioxide radical, CO2
·− Nitric oxide, NO·

Carbonate, CO3
·− Nitrate radical, NO3

·

Hydroperoxyl, HO2
· (protonated 

superoxide)
Hydroxyl, OH·

Peroxyl, RO2
·

Singlet O2
1Σg +

Superoxide, O2
·−

Non-radicals Non-radicals
Hydrogen peroxide, H2O2 Alkyl peroxynitrates, RO2ONO
Hypobromous acid, HOBr Alkyl peroxynitrites, ROONO
Hypochlorous acid, HOCl Dinitrogen tetroxide, N2O4

Organic peroxides, ROOH− Dinitrogen trioxide, N2O3

Ozone, O3 Nitronium cation, NO2
+

Peroxomonocarbonate, HOOCO2 Nitrosyl cation, NO+

Singlet oxygen (O2
1Δg) Nitrous acid, HNO2

Nytroxyl, HNO
Nitroxyl anion, NO−

Nitryl chloride, NO2Cl
Peroxyacetyl nitrate, CH3C(O)OONO2

Peroxynitrate, O2NOO−

Peroxynitrite, ONOO−

Peroxynitrous acid, ONOOH
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circumstances, such as activation of immune cells, ischemia/reperfusion injury 
(IRI) or drug metabolism, ROS/RNS are associated with cytotoxicity, which in 
cardiovascular system leads to cardiovascular degenerative disorders. Accordingly, 
several evidences strength the notion that oxidative signaling plays a pivotal role in 
cardiovascular physiology. On the other hand, oxidative stress, plays a fundamental 
role in some cardiovascular pathophysiology.

13.2	 �Oxidative- or Redox-Signaling Versus Oxidative- or 
Redox-Stress

The term “redox” refers to oxo-reduction reactions and would be preferable. 
Nevertheless, from now on we use the terms “oxidative signaling” or “redox signal-
ing” with a positive connotation, that is when ROS trigger or mediate cardioprotec-
tive actions. Whereas, we use the terms “oxidative stress” or “redox stress” to 
highlight the potential negative effect of ROS. We can use also the terms nitrosative 
stress or signaling when the major players are RNS. Historically, ROS/RNS and free 
radicals were considered exclusively a cause cellular damage, lacking any physiolog-
ical function. Indeed, ROS/RNS accumulation and oxidative/nitrosative damage 
have been linked to multiple pathologies, including neuro- cardio-degenerative dis-
eases, cancer, and diabetes, as well as a cause of acceleration of aging. Thus, ROS/
RNS were originally envisioned as a sign of an imperfect system. However, very few, 
if any, biological systems possess such glaring imperfection. It is likely that the oxi-
dative metabolism is not as ugly as an evil. Nowadays there are no doubt that ROS 
and RNS are critical for healthy cell function. We should consider that mitochondria 
are the principal source of oxidants in cardiomyocytes and that some cells, especially 
those of the cardiovascular system, have a high concentration of mitochondria. In 
particular, cardiomyocytes have the highest mitochondrial density in mammalian 
cells (35–40% of the volume of cardiomyocytes is occupied by mitochondria). 
Therefore, the ROS/RNS produced because of the normal function of mitochondria 
should be considered in their primary role of signaling molecules.

In this chapter, we will report the evidence in this field for our strong advances in 
our knowledge thanks to the work of researchers, physiologists and clinicians. 
Pointing out that if all free radicals are not all bad, nor antioxidants are all good, we 
must keep in mind that ROS/RNS:

•	 are formed as a by-product of the normal metabolism of oxygen and nitrogen;
•	 are critical for healthy cell function;
•	 are reactive molecules derived from the most widely diffuse vasodilator, nitric 

oxide;
•	 have important roles in physiological homeostasis as major players of cell 

signaling;
•	 levels can increase dramatically in some circumstances, such as during 

exercise;

13  Redox Aspects of Myocardial Ischemia/Reperfusion Injury and Cardioprotection



292

•	 may have beneficial effects in various protective and adaptive physiological 
conditions;

•	 may have damaging effects in various heart and vascular disorders (coronary 
heart disease, cardiac arrhythmias, ventricular hypertrophy, and heart failure).

Since ROS/RNS mediated effects are among endogenous mechanisms of either 
injury or protection, we will mainly analyze the role of endogenous and exogenous 
antioxidants and their putative role in IRI and in cardioprotection (pre- and 
postconditioning).

13.2.1	 �Reactive Oxygen/Nitrogen Species

The chemical reactions between substances are transformations of matter in which 
the energy stored in the chemical bonds of the starting substances are transferred to 
the new chemical bonds settled in the final products. Usually, in such transfers elec-
trons pass from one energy level to another. In many other reactions the electrons 
also pass from one atom or molecule to another atom or molecule. The latter are 
reactions of oxidation-reduction (or redox reactions) (Fig. 13.1).

Oxidation occurs when an electron is subtracted from a molecule or an atom.
Reduction occurs when an electron is accepted by an atom or molecule.

Indeed, oxidation and reduction always take place simultaneously: the electron 
subtracted by a molecule or an atom is transferred to another atom or molecule 

Fig. 13.1  In this reaction 
the oxidation of an electron 
donor and the reduction of 
an acceptor occur

Electron
Donor

Oxidized
Donor

Reduction

Oxidation

Electron
Acceptor

Reduced
Acceptor
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were is accepted. Therefore, while substances from which electrons are subtracted 
are defined oxidized, substances that accept the electron are said reduced. Actually, 
in oxidation-reduction of complex organic molecules there is often a displacement 
of hydrogen atoms, that is, the electrons traveling together with protons. In nature 
there are chemical agents called reactive species that tend to subtract electrons from 
another substance. Therefore, reactive species are subtractors of electrons. Here 
we will consider reactive species containing oxygen and nitrogen, whose presence 
in biological materials was discovered about 60 years ago [1].

13.2.2	 �Reactive Oxygen Species (ROS)

Examples of ROS comprise molecular oxygen, oxygen ions and peroxides. In bio-
logical systems ROS are formed as a byproduct of the normal metabolism of oxy-
gen. ROS may be free radicals or non-radicals acting as oxidizing agents. 
Non-radicals, such as peroxide, for example, may be easily converted to free radi-
cals acquiring unpaired valence electrons and high reactivity. In fact, free radicals 
are very reactive atoms, molecules, or ions that may easily bonds to other atoms or 
molecules (covalent bond).

Here we consider the biochemistry of the most represented ROS in biological 
system. They are the free radicals, superoxide (O2

−) and hydroxyl (OH·), and the 
non-radical, hydrogen peroxide (H2O2). The other ROS will be briefly described 
when encountered during the various reactions considered in this Chapter. Since in 
biological systems, H2O2 and OH· can derive from O2

− conversion, we analyze first 
how O2

− can be formed and then we will see how it can be converted in the other two 
species, which can be obtained also through other processes.

Superoxide is produced by several processes and reaction in the biological sys-
tem, including the basic and stimulated production by mitochondria during the nor-
mal processes of cell respiration. Although it is biologically quite toxic, it is logical 
to hypothesize that a substance produced during the “normal” life may not be solely 
deleterious. Indeed, as we will see it may play a pivotal role in cell signaling and 
survival processes. Actually, also its toxicity turns to be useful because it is exploited 
by the immune system to kill pathogenic microorganisms and its deficiency may be 
harmful in this respect.

Superoxide  In biological systems O2
− can be obtained by the reduction of O2, via 

processes mediated by enzymes such as NAD(P)H oxidases and xanthine oxidase 
(XO). It can also derive from redox-reactive compounds such as the semi-ubiquinone 
compound of the electron transport chain. It is the one-electron reduction of 
molecular oxygen (dioxygen, O2) that leads to the formation of superoxide anion 
(O2

−). Actually, O2 is considered a diradical containing two unpaired electrons, the 
addition of a second electron fills one of its two molecular orbitals, leaving a charged 
ionic species with a single unpaired electron and a negative charge of minus one 
(−1) (Fig. 13.2). Both O2 and O2

− are paramagnetic radicals and for this reason they 
are attracted by magnets. Indeed, a widely used technique for studying paramagnetic 
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species, such as free radicals, is the electron paramagnetic resonance (EPR) 
spectroscopy, which is also called electron spin resonance spectroscopy (ESR).

The magnetic properties of radicals are also considered below.

13.3	 �Mitochondria Are Important Sources of O2
− Especially 

in the Heart

A man of average size consumes about 400,000 ml of O2 per day at rest. The con-
sumption of oxygen can increase from 5 to 10 times while increasing physical activ-
ity. Less than 10% of this O2 will be used in non-mitochondrial processes, while the 
rest will be used for mitochondrial respiration. In particular, the heart depends on a 
continuous oxidative metabolism to meet the continuous demand for ATP and to 
maintain a redox equilibrium optimal for the contractile function. In fact, the most of 
cardiac metabolism is aerobic. If we keep in mind that mitochondria make up 40% 
of the cell mass of cardiomyocytes, we understand how these organelles are central 
to cardiac cell life, and their energy and redox functions critical not only for the 
health, but also in diseased and aged heart. Mitochondria can produce O2

− in the 
respiratory chain, in particular at complex I and III, as a byproduct of oxidative phos-
phorylation and by the action of some other enzymes, such as p66shc and MAO; in 
hypoxic conditions ROS may also derive from complex III [2–4].

13.3.1	 �ROS Production in Complex I

The flux of O2
− is in relation with (a) the concentration of potential electron donors, 

(b) the concentration of O2 and (c) the velocity of the reaction between the two 
which follows second-order rate constants. The production of O2

− by mitochondria 
in vivo and in vitro are different. Thereupon, it is not possible to extrapolate O2

− 
production by mitochondria in vivo from O2

·− generation rates measured in isolated 
mitochondria. Nevertheless, the production in vitro makes easier to understand the 
modes of operation by mitochondria, which produce O2

− mainly in complex I in two 
conditions: (1) The first mode is when the mitochondrion has a high proton-motive 
force (Δp) and a reduced coenzyme Q (CoQ) pool and consequently is not producing 
ATP; the site of this O2

− production is uncertain, but may be associated with the 
CoQ-binding site(s) Therefore, complex I produces large amounts of O2

·− during the 
so-called reverse electron transport (RET). Succinate-driven RET may lead to O2

·− 
generation from complex I after an ischemic event, i.e. at reperfusion. (2) The 

Fig. 13.2  Lewis 
configuration of 
superoxide
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second mode is when in the mitochondrial matrix there is a high NADH/NAD+ 
ratio; in this case there is abundant O2

− generation from the FMN in response to a 
reduced NADH pool. On the contrary, when mitochondria are actively producing 
ATP and have a lower Δp and NADH/NAD+ ratio, the O2

− generation is low and 
may change in function of ATP production. Therefore, the production of O2

− within 
the mitochondrial depends on the CoQH2/CoQ and NADH/NAD+ ratios, the O2 
concentration, and the Δp, which are all extremely variable and not easy to measure 
in vivo.

13.3.2	 �ROS Production in Complex III

Usually the role of Complex III is to funnel electrons from the CoQ pool to cyto-
chrome c. It is suggested that at complex III there is an oxygen sensing which is 
responsible of the paradox of increased ROS during hypoxia. In fact, mitochondrial 
complex III is considered responsible for cellular oxygen sensing and, therefore, for 
hypoxia-induced ROS production. The electron donor for superoxide production by 
complex III of heart mitochondria is considered ubisemiquinone. Complex III 
releases superoxide to both sides of the IMM (inner mitochondrial membrane).

MAO, which is localized to the outer mitochondrial membrane, catalyzes the 
production of H2O2 during catecholamine metabolism. Also the mitochondrial 
enzymes aconitase and dihydroorotate can generate superoxide, but their role in 
ischemia/reperfusion is not clear.

Superoxide is also produced by several enzymes outside the mitochondria, 
including NAD(P)H oxidases, nitric oxide synthase (NOS) and XO, by the univalent 
reduction of the so called triplet-state molecular oxygen (3O2).

13.4	 �The “NADPH oxidases”

NADPH oxidases is a family of enzymes that is present in several cells and tissues, 
such as neutrophil, and cells of the cardiovascular system and they have different 
and specific features in each tissue. For instance, the NADPH oxidases present in 
vascular cells and neutrophil have a similar structure, but the vascular enzymes 
produce O2

− in lesser amounts over longer periods of time [5]. In many cell types 
these enzymes are the principal producer of ROS. For instance, in the cardiovascular 
system, Nox1 has been found in vascular smooth muscle, and Nox2 was identified 
in cardiomyocytes, endothelial cells and fibroblasts. Actually, endothelial cells and 
cardiomyocytes co-express Nox2 and Nox4. NADPH oxidases are each formed of 
two parts: (1) a catalytic core, the cytochrome b558, comprised of gp91phox and 
p22phox, which is membrane-bound and (2) cytosolic regulatory subunits that 
affect catalytic activity by translocating to and binding the catalytic core. The 
regulatory subunits comprise the Rac 1/2 GTPase and the proteins p40phox (Ncf4), 
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p41nox (Noxo1), p47phox (Noxo2), p51nox (Noxa1) and p67phox (Noxa2) 
(Fig. 13.3).

Seven different NOX genes (NOX1 to 5 and DUOX1 and 2) have been described 
[6]. From Nox1 to Nox4 a p22phox is present, but they have different mechanisms 
of activation: In the cytosol Nox1 is mainly activated by the subunits Noxa1, Noxo1, 
and Rac1 or 2, which translocate on cell membrane; Nox2 is mainly activated by 
Noxa2, but may be also activated by Noxa1, which is co-localized with Nox2 in 
several cell types, including vascular cells. Nox3 is mainly activated by Noxo1 but 
other cytosolic subunits may be involved. Nox4, Nox5, as well as DUOX1 and 2 
activities seems not regulated by cytosolic subunits. Actually, DUOX1 and 2 has an 
N-terminus containing an extracellular peroxidase-homology domain (PHD) [7] 
and similarly to Nox5, are mainly regulated by calcium. Importantly, Nox4 and 
DUOX1 and 2 produce H2O2 instead of O2

− [8]. It has been suggested that the 
precise subcellular localization of the various Nox proteins may affect ROS 
produced by the NADPH oxidase. For instance, the NADPH oxidases formed with 
Nox1 or Nox4  in vascular smooth muscle are located to caveolae and focal 
adhesions, respectively [9]. In cardiac cells, while Nox2 is located in plasma 
membrane and its activity is influenced by several factors, including stretch [10, 
11]. Nox4 is in intracellular compartments and is constitutively active [12]. The 
ROS levels produced by Noxs may vary greatly, and may be involved in physiological 
and pathological processes. In particular, in cardiomyocytes, the steady-state level 
of ROS produced by Nox2 depends on the amplitude and frequency of cell stretch. 
Therefore, inotropic changes that depend on the pre-load and heart rate is regulated 
by a dynamic redox balance that setups cellular Ca2+ signaling.

XO produces different amounts of hydrogen peroxide and superoxide during re-
oxidation of the enzyme. The role of XO is debated in cardiovascular field. 
Nevertheless, XO is an enzyme bounding Flavin, which reacts directly with oxygen. 
Superoxide is not the main product of oxidation by XO but rather the first steps in 
the over-all reaction result directly in the formation of H2O2.

Nox

O2

NADPH NADP+

O2-

p22
Rac P67 p47

p40

Fig. 13.3  The multisubunit NADPH oxidases are composed of the membrane-bound catalytic 
subunits NOX (gp91phox in the prototypical phagocyte oxidase) and p22phox, as well as the 
regulatory subunits p67phox, p47phox, p40phox, and Rac. Enzymatic activity produces superoxide 
as a byproduct. Several gp91 isoforms have been isolated and characterized as the NOX family of 
proteins
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13.5	 �Superoxide Dismutase as an Example of ROS Scavenger

Intriguingly, aerobic organisms contain not only many enzymes that can produce 
superoxide, but also various scavengers of ROS. Here we consider only the vari-
ous isoforms of the enzyme superoxide dismutase (SOD) that can remove super-
oxide. Indeed, SOD is a superoxide-scavenging that catalyzes the neutralization 
of superoxide very rapidly. The enzymes producing superoxide and the various 
isoforms of SOD are strategically distributed within the cells and in the various 
organelles. Also other proteins and molecules that can be either oxidized or 
reduced have SOD-like activity and/or can scavenge O2

−, as for example hemo-
globin, mioglobin, glutathione and nitroxides. This complex system to produce 
and remove superoxide makes possible the presence of very low steady-state 
concentration of O2

– (~10−11 M) within the living cells, which can increase or 
decrease at the occurrence (i.e. in physiological conditions) or during pathologic 
conditions.

The low steady-state concentration is also due to its instability; which is mainly 
due to its reaction with the cluster [Fe–S] and to its spontaneous SOD-induced O2

·− 
dismutation to H2O2. The instability of O2

− and its negative charge which obstacle 
its diffusion through membranes render this oxygen radical a poor signaling factor. 
Nevertheless, O2

·− can cross the membrane through the anion channels. For this 
reasons, it has been proposed as probable candidate of cardioprotection triggering 
in the ischemic conditioning (namely pre- and post-conditioning) conditions (see 
below and see paragraph on cardioprotection).

The SODs. As above mentioned there are different isoforms of SOD. They are 
enzymes whose active site requires metals. The different metals used by the enzyme 
allow do distinguish the major families of SOD, depending on the protein fold and 
the metal cofactor: the Cu/Zn-SOD (binding both copper and zinc), Fe/Mn-SOD 
(binding either manganese or iron), and the Ni-SOD, which binds nickel and is 
contained almost exclusively by prokaryotes. While, the cytosol of the majority of 
eukaryotic cells contains a Cu/Zn-SOD (SOD 1), mitochondrial matrix contains a 
Cu/Mn-SOD (SOD 2) isoform. Human mitochondria also contain a Cu/Zn-SOD in 
the intermembrane space. The importance of O2

·−/SOD system in mammalians can 
be inferred by the observation that mice deprived of mitochondrial SOD (Cu/
Mn-SOD) die around 21 days after birth due to cardiomyopathy, neurodegeneration, 
and lactic acidosis [13]. Yet, mice lacking cytosolic SOD (Cu/Zn-SOD) do not die 
immediately after birth, but are afflicted by multiple pathologies, such as cataracts, 
liver cancer, hemolytic anemia, muscle atrophy, thymic involution, and a very rapid 
drop in female fertility; all together these conditions lead to reduced lifespan [13]. 
As said, O2

− can be converted by SODs into H2O2, which is a non-radical species 
with many signaling functions. Superoxide can also be converted non-enzymatically 
into H2O2 and singlet oxygen. In the presence of reduced transition metals (e.g., 
cuprous or ferrous ions), H2O2 can be transformed into the highly reactive ·OH. Yet, 
hydrogen peroxide may be transformed into H2O by the enzymes glutathione 
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peroxidase and/or catalase. Interestingly by the glutathione peroxidase reaction, 
GSH is oxidized to GSSG, which can be transformed back to GSH by glutathione 
reductase in process that transforms NADPH in to NADP+.

13.6	 �Reactive nitrogen species (RNS)

Reactive nitrogen species (RNS) are reactive molecules derived from nitric oxide 
(NO). Actually NO is a radical and it should be indicated as ·NO (we will use both 
NO or ·NO (see below). It is usually produced in biological system by the oxidation 
of one of the terminal guanido-nitrogen atoms of L-arginine [14]. This process is 
catalyzed by the enzyme nitric oxide synthases (NOSs). Other examples of RNS 
include peroxynitrite (ONOO−), nitrogen dioxide (NO2), nitrosonium cation (NO+), 
nitroxyl anion (NO−) and dinitrogen trioxide (N2O3) as well as other types of 
chemically reactive transitional molecules (Table 13.1). Actually, depending on the 
subcellular and compartmentalized environment, NO can be transformed into 
various RNS, but some of the biological effects may be due to the transitional 
formation of S-nitroso-cysteine or S-nitroso-glutathione [15–17]. The systematic 
name for “nitric oxide” is “nitrogen monoxide”, in the biological literature, the use 
of the common name “nitric oxide (NO)” prevails and will be used herein. After the 
discovery of endogenous nitric oxide generation in mammalian cells in the 1980s, 
the chemical biology and physiological role of this molecule have been very 
important research topics for several decades and continues to be so today.

NO Is a Paramagnetic Molecule  NO targets radicals and paramagnetic species 
(e.g. superoxide and dioxygen), transition metals, in metalloenzymes (in particular 
soluble GC, hemoglobin, and cytochromes), and nuclephiles (e.g. thiols in protein). 
The reactions can be classified as nitration, nitrosation and nitrosylation. Since 
nitrosation and nitrosylation of thiols lead to the formation of S-nitrosothiols 
(RSNOs) and since the exact reaction is unknown this particular reaction is referred 
to as S-nitros(yl)ation, where the S- suffix is a clear indication of the reaction with 
a thiol Nitric oxide is very often depicted as ·NO (with the so-called Lewis dot) 
showing that it has one unpaired electron (Fig. 13.4).

Therefore, reactive species such as nitric oxide should be represented as ·R, in 
this case as ·NO, to indicate the presence of a single unpaired electron. However, for 
simplicity in this Chapter this convention is not always adopted and we will use 
“NO” with or without the dot. Indeed, in a biological system the important thing is 
not that NO may be considered a radical, but that NO is a paramagnetic molecule, 
i.e. it is attracted to magnets, whereas most organic molecules repel a magnetic field 
and thus are called diamagnetic (these molecules have all their electrons paired in 

N + NO O
Fig. 13.4  The Lewis dot 
depiction of nitric oxide
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either bonds or in non-bonding orbitals). Paramagnetic and diamagnetic do not react 
each other or react very slowly in biological conditions. Therefore, NO diffuse eas-
ily in the biological medium until running across other paramagnetic species. Thus, 
for its paramagnetic properties NO is an ideal molecule to act as messenger within 
and between cells. NO as a paramagnetic molecule is stable. It has a very low ten-
dency to be reduced or oxidized or even to dimerize in a biological system [18]. 
Although NO is a free radical, it is very unreactive. This characteristic is critical for 
NO to function as a signaling molecule. Indeed, NO scarcely reacts with diamag-
netic species, and most organic molecules are diamagnetic. Therefore, we can say 
that NO is a paracrine messenger because of the neutral charge of molecules. In 
biological systems, NO primarily reacts with other paramagnetic molecules as well 
as with transition metals.

13.6.1	 �Nitric Oxide Generation

NO is generated by both enzymatic (NOS-dependent and NOS-independent) and 
non-enzymatic reactions.

13.6.1.1	 �NOS-Dependent Enzymatic Reactions
Three cytoplasmic nitric oxide synthase (NOS) isoforms have been identified: two 
constitutive, neuronal (nNOS, NOS I), endothelial (eNOS, NOS III) and one 
inducible isoform (iNOS, NOS II).

The three NOS isoforms are coded by three distinct genes located at chomo-
somes 12, 17 and 7. Aminoacid sequence of the three iso-enzymes show less than 
59% identification in humans. Nevertheless, aminoacid sequence of each isoform 
between species has been preserved better (more than 90% for the two cNOSs and 
more than 80% for iNOS). The principal isoform expressed in the normal vasculature 
is eNOS. However, the other two isoforms of NOS are also expressed in the majority 
of the tissues, and expression of all three isoforms is reported to be increased in 
several chronic diseases. In particular, contrarily to its name, iNOS is expressed 
constitutively in gut and airway epithelium and vascular smooth muscle as well. 
Moreover, iNOS is transiently expressed in the heart during immune responses in 
stress conditions and in pathophysiological conditions of the myocardium such as 
septicemia, heart failure, and during aging. Intriguingly, iNOS in ischemia/
reperfusion scenario has been described as protective or deleterious (see Paragraph 
on cardioprotection). In addition, nNOS, which is mainly expressed in nonadrenergic-
noncholinergic nerve endings has been documented to play a role in regulating 
systemic vascular tone and cardiac contractility as well as basal bronchial epithelium 
NO production. Thus all three isoforms of NOS could potentially contribute to 
modulation of vascular tone both in pulmonary and systemic circulation. However, 
each NOS may have specific spatially and temporarily specific role. As will be seen 
in the following paragraphs dealing with NOS isoforms and subcellular NOS 
compartmentalization, NO produced by a specific NOS isoform may act as a 
diffusible messenger within and outside the cells, but generally the main effects are 
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confined in a specific region where NO can target different protein components 
affecting their function.

Generally, NOS activity is regulated by compartmentalization, availability of 
substrates and cofactors, endogenous inhibitors, transcriptional, posttranscriptional, 
and posttranslational modulations.

There is also growing evidence supporting the existence of a mitochondrial NOS 
(mtNOS). It has been suggested that mtNOS is one of the cytoplasmic NOS 
isoforms, which should be transported to the mitochondria after it has been 
synthesized in the cytosol. In particular, in the heart nNOS is considered the primary 
candidate for the cytoplasmic NOS isoform targeted into mitochondria. However, 
some authors do not support the existence of mtNOS.  In brief, it seems that 
mitochondria do have a NOS, but in a very low amount and the exact nature is not 
clear [19–21]. Nevertheless, as we will see NO of whatever origin has important 
effect on mitochondrial function. All isoforms use L-arginine and molecular oxygen 
as substrates. Moreover, all isoforms need NADPH, tetrahydrobiopterin (BH4), 
FAD, and FMN as cofactors. The end products are citrulline and NO. It has been 
proposed a two-step mechanism for the production of NO by NOS. In the first step, 
L-arginine is converted to NG-hydroxy-L-arginine (L-HOArg) by a reaction 
requiring one molecule of O2 and NADPH in the presence of BH4. In the second 
step, L-HOArg is further oxidized to NO and citrulline.

Under normal conditions, only constitutive NOSs can be detected in heart and 
coronary vessels using immunohistochemical methods. However vascular smooth 
muscle, endothelial cells and cardiomyocytes express iNOS upon induction with 
cytokines and ischemia/reperfusion stimuli in a dose/response fashion [22, 23]. In 
general, the iNOS enzyme produces much greater amounts of NO (in the micromolar 
range) than either nNOS or eNOS (in the pico-nanomolar range).

As said NOS activity is determined largely by its site of production. In several 
cell types eNOS is localized primarily into cell membrane caveolae. In particu-
lar, in cardiomyocytes it is localized into caveolae of the sarcolemma and t 
tubules, where its function is regulated by interaction with scaffolding protein 
caveolin-3 and is linked to multiple cell surface receptors, β-adrenergic [24], and 
bradykinin receptors [25], depressing contractility and downregulating 
β-adrenergic stimulation. On the other hand, nNOS has been founded in the sar-
coplasmic reticulum (SR) where it co-immunoprecipitates with both ryanodine 
receptors 2 (RyR2) and xanthine oxidoreductase (XOR) nNOS modulates vari-
ous components of excitation–contraction coupling (ECC), including Ca2+ influx 
through the L-type Ca2+ channel (LTCC), Ca2+ release from the SR via RyR2, and 
Ca2+ reuptake into the SR via the SR Ca2+ ATPase (SERCA2a). Also an inhibitory 
effect of nNOS on XOR production of O2

− has been described. Superoxide can 
then irreversibly increase the open probability of the RyR2 channel and decrease 
myofilament Ca2+ sensitivity. Therefore, the inhibition of XOR may avoid the 
O2

− induced reduction in myofilament Ca2+ sensitivity, thus contributing to an 
increase in cell shortening and force of contraction without a necessary change 
in systolic Ca2+. Therefore, in contrast to eNOS, nNOS has primarily positive 
inotropic effects in the heart [26].
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During pathologic conditions such as ischemic cardiomyopathy or heart failure, 
the localization of nNOS in subcellular compartments changes. It is translocated 
from the SR to the sarcolemma and the tight regulation of NOS, which is usually 
time- and substrate-dependent, is lost. Moreover, gender differences are observed in 
the role of NOS [27]. The expression of cytosolic iNOS in cardiomyocytes seems to 
be, in part, responsible for the attenuation of the myocardial inotropic response to 
β-adrenergic stimulation [28, 29].

13.6.1.2	 �Uncoupled NOSs
In the absence of the substrate L-arginine and the cofactors 6R)-5,6,7,8-tetrahydro-L 
biopterin (BH4), NOSs produce superoxide an it is said that it is uncoupled from NO 
production [30]. The NOS cofactor BH4, is oxidized by ROS produced by NOXs, 
thus leading to NOS uncoupling [31]. These phenomena, together to the scavenging 
effects of O2

−, lead to a vicious cycle which sustain reduced NO levels and impaired 
endothelium-dependent vasorelaxation. These mechanisms have been also demon-
strated in vivo in experiments performed on mice overexpressing NOX1. In these 
mice subjected to Angitensin II induced hypertension, endothelium-dependent 
relaxation was downregulated as available NO was markedly reduced [32].

13.6.1.3	 �NOS-Independent Enzymatic and No-Enzymatic NO 
Production

The production of NO by NOS-independent enzymatic and non-enzymatic reduc-
tion of nitrite/nitrate from endogenous and dietary origins is of primary impor-
tance during ischemia, a condition characterized by acidotic pH and limited 
oxygen-dependent NOS activity. Indeed, in a biological system nitrite can be 
reduced to NO under the acidotic conditions, such as those present in the ischemic 
tissues. It has been suggested that nitrite, via a mechanism of direct reduction, 
may represent an alternative source of NO in the ischemic heart, where a limited 
oxygen-dependent NOS activity has been described [33]. It has also been sug-
gested that nitrite is reduced to NO crossing the capillary territory under normal 
physiologic conditions [34].

NOS-Independent, Non-enzymatic Production
Nitrite has been proposed as a major physiological source of biologically active 
NO.  Also nitrate, which is in much higher concentrations than nitrite, can be 
transformed to NO, but it needs a two-step reduction to NO, through nitrite. 
Therefore, nitrite represent the largest directly-accessible storage pool for NO. AS 
said low pH and low O2 tension markedly enhance nitrite reduction, releasing 
amounts of NO that far exceed those produced by eNOS/nNOS under ischemic 
conditions; i.e. when the activity of these enzymes is reduced. Actually, the reaction 
is a nitrite disproportionation, which increases when H+ are abundantly available, 
favoring the release of free NO.  Nevertheless, in ischemic cells, this process 
accounts for only 15–20% circa of the total NO produced from nitrite [35]; the 
remainder is derived from NOS-independent enzymatic production [36].
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NOS-Independent Enzymatic Production
A number of intracellular proteins display nitrite reductase activity, especially in 
acidotic and ischemic conditions; these include Cytochrome P450 (a ubiquitous 
family of enzymes), Hem-associated globins (Haemoglobin, myoglobin, 
neuroglobin and cytoglobin), Mitochondrial proteins (components of the oxidative 
chain: complex III, Cytochrome C and complex IV), Molybdenum metalloenzymes 
(xanthine oxidoreductase, aldehyde oxidase, sulfite oxidase and bacterial nitrate/
nitrite reductases), Carbonic anhydrase (sixteen isoforms have been described), as 
well as the NOS enzymes. Actually, in anoxia, when the NOSs activity is considered 
defective, eNOS can use nitrite as a substrate for restoring NO generation [37, 38].

The nitrite reductase activity of the aforementioned mammalian proteins is a 
well-characterized chemical reaction in many patho-physiological conditions [for 
reviews see 17, 39–41].

13.6.2	 �Peroxynitrite (ONOO−)

Among RNS peroxynitrite (ONOO–) anion is the mainly studied oxidant. Therefore, 
here we will consider principally this RNS. It is a short-lived reactive species that is 
usually produced by the reaction of •NO and O2

•− radicals at diffusion-controlled 
rates. The microdomains where peroxynitrite is produced are likely associated with 
the sources of superoxide (e.g. the mitochondrial respiratory chain or the plasma 
membrane NAD(P)H oxidases). In fact, though •NO is a highly diffusible radical, 
superoxide as anions hardly diffuse across biomembranes. Therefore, ONOO− is 
formed and reacts close to the enzymes producing O2

•− whose activity can be 
influenced by diffusing •NO; thus affecting the final amount of ONOO− formation. 
Among peroxynitrite effects are included the activation of matrix metalloproteinases, 
the DNA oxidative damage and activation of poly(ADP-ribose) polymerase (PARP), 
as well as the lipid peroxidation, to name only a few [42]. These effects may explain 
the numerous detrimental effects of peroxynitrite in myocardial ischemia/
reperfusion and in other heart diseases. However, it must be noted that ONOO– does 
not only trigger direct cytotoxic effects, but it also favors several indirect effects and 
modulates several protective signaling pathways [43, 44]. Such effects may depend 
either on a nitrative or an oxidative type of chemistry elicited by peroxynitrite [45]. 
While the main biological reactions of NO include oxidation leading to formation 
of nitrite and nitrate, ONOO- is a reactive oxidant, nitrating and nitrosating agent. 
Actually, peroxynitrite does not have an impaired electron, thus it is not a radical 
species. Yet, it may generate nitrate in a complex reaction which include potent 
oxidants, such as NO2/HO.. In biological systems, reacting with CO2 peroxynitrite 
may give rise to other potent oxidants (NO2/CO3

.−) and other intermediates, which 
may lead to nitrate formation. Moreover, peroxynitrite is not a direct nitrosating 
agent, but in excess of NO, peroxynitrite and derivative oxidants can be converted 
to several nitrosating agents, including N2O3. The balance between oxidative and 
nitrosative reactions may explain the different outcome observed with peroxynitrite, 
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which is often harmful, but in some circumstances may be beneficial (see Paragraph 
on cardioprotection).

13.7	 �ROS/RNS in Biological System

As we have seen in the previous chapters, ROS and RNS are produced by several 
cellular redox processes. These reactive species may play a dual role in biological 
system as they may be either toxic or beneficial compounds. The subtle balance 
between their two diametrically opposed effects is unquestionably a crucial aspect 
of life and death. Although ROS/RNS have been involved in numerous pathological 
conditions, they also play a vital role in several physiological mechanisms and in 
killing the infecting pathogens [45–47]. However, inappropriate generation of 
ROS/RNS by interacting with biomolecules, including proteins, lipids, enzymes, 
and DNA, causes damage of cell membranes, misfolding in proteins, oxidative 
damage of DNA [48, 49]. It is usually said that, at low levels, ROS/RNS may exert 
beneficial effects but at high concentrations may produce dangerous oxidative stress 
[50, 51]. Although this may be often true, it is not always true. For this reason, we 
prefer to use the terms “appropriate” and “inappropriate” ROS/RNS production 
for beneficial and detrimental effects, respectively. For example, during exercise an 
appreciable amount of ROS, such as H2O2, O2

−, NO and ubisemiquinone, are 
produced, but these are not deleterious and activate signal transduction pathways to 
induce adaptive homeostasis, including mitochondrial biogenesis [52]. As mentioned 
and as we will see, also the nature of ROS is not predictive of beneficial or deleterious 
effects. Therefore, we recommend to use the terms “appropriate” and 
“inappropriate” ROS/RNS production.

13.7.1	 �Deleterious or Beneficial Effects of ROS/RNS

ROS may be protective or may be dangerous. In cardiomyocytes ROS play many 
physiological influences, including the regulation of mechanical function. Indeed, 
ROS produced by Noxs and by other sources, including mitochondria, are able to 
modulate the activity of different protein kinases, which phosphorylate many 
molecular targets involved in Ca2+ signaling and in pro-survival pathways (see 
Paragraph on cardioprotection). For instance, targets of ROS leading to modulation 
of intracellular Ca2+ concentrations and consequently cardiomyocyte contractility 
includes membrane channels such as L-TypeCa2+ and voltage-dependent Na+ 
channels as well as ATPases, such as plasma membrane Ca2+ ATPase, and sarco/
endoplasmic reticulum Ca2+-ATPase [53, 54]. On the other hand, ROS may 
contribute to the pathogenesis of several diseases (strong evidence are reported for 
radiation intoxication and hyperoxic injury). Also to the process of aging through 
oxidative damage determines injury on cells. While the action of O2

− in determining 
certain pathological conditions is strong, the role of O2

− in aging is considered 
unproven yet. Perhaps, while mice and rats overexpressing CuZnSOD or MnSOD 
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are more resistant to heart attacks and strokes, in other models and organisms (fruit 
fly Drosophila, yeast and mice), lifespan is shortened and some features of aging 
cataracts, muscle atrophy, macular degeneration, thymic involution) are accelerated 
by genetically knocking out CuZnSOD.  However, increasing the levels of 
CuZnSOD, does not seem (except maybe in Drosophila), to steadily increase the 
lifespan [55]. Indeed, the most widely accepted opinion is that the oxidative damage 
(derived among other factors, by O2

−) is only one of several factors that limit the 
lifespan.

As said deleterious or beneficial effects of ROS/RNS is not only an issue of 
quantity, but also of quality and compartmentalization. In fact, also the definition of 
“damaging radical” for some reactive species, such as hydroxyl radical and 
peroxynitrite is not correct, though rooted in the mind of many people. For instance, 
if you search on Google “damaging hydroxyl radical” you found about 7.500 results. 
However, if you search “beneficial hydroxyl radical” you found almost nothing. Yet, 
it has been clearly demonstrated that hydroxyl radical formation is a fundamental 
step of cardioprotection [56]. Moreover, if you search “damaging peroxynitrite” or 
“beneficial peroxynitrite” you found about thousands of results for the former and 
no one for the latter. However, it is well established that peroxynitrite may play a 
trigger role in cardioprotection [57, 58]. On the other hand, nitric oxide, which is 
very often considered beneficial, and in fact it is very often beneficial, sometime 
may be detrimental, as for example in septic shock, hemorrhage and negative 
cardiac contractility [59, 60]. Therefore, the “bad guys” are not always bad and the 
“good guys” are not always good.

13.7.1.1	 �Appropriate ROS/RNS Production
The example of “appropriate” ROS/RNS production can be a plethora. For instance, 
considerable evidence supports the view that redox signaling involving both ROS 
and RNS is an important contributor to the regulation of coronary physiology and 
adaptive responses to exercise [53, 61, 62]. For instance, coronary metabolic dilation 
is mediated by redox-dependent signaling. Indeed, besides the well-known 
vasodilator effect of NO, another active factor of cardiac metabolic dilation is 
hydrogen peroxide, which induces dilation by the oxidation of intracellular thiols 
and is involved in the activation on the p38 MAP kinase [63, 64].

13.7.1.2	 �Inappropriate ROS/RNS Production
Either high or low levels of ROS/RNS may result in pathological stress to cells and 
tissues. Usually, small amount of ROS/RNS in the presence of deficient antioxidant 
defenses damage the cells. Even the exaggerated presence of anti-oxidants may 
induce a reductive stress. These oxi-reductive stress can have multiple deleterious 
effects. For instance, considerable evidence supports the view that oxidative damage 
involving both ROS and RNS is an important contributor to the development of ath-
erosclerosis and/or diabetes [62, 65, 66]. In the context of myocardial ischemia/
reperfusion ROS and RNS are emerging as major players in determining either exac-
erbation of damages or in triggering cardioprotection [49, 67–69]. The following 
paragraphs will consider these important aspects of ROS/RNS pathophysiology.

P. Pagliaro et al.



305

13.8	 �Myocardial Ischemia/Reperfusion Injury and ROS/RNS

Severe hypoxia, acidosis, energy depletion, and ion homeostasis are all typical alter-
ations of ischemic tissue, which lead to cardiac dysfunction and, ultimately, to cell 
death. Ischemia-reperfusion (I/R) injury occurs when the blood supply to an organ 
is first reduced and subsequently restored. Of course, the duration of ischemia deter-
mines cardiac injury that follows ischemia and reperfusion. The reperfusion may be 
timing because the sooner it is performed, the greater the amount of saved cardiac 
tissue. Indeed, a prompt reperfusion has been shown to dramatically reduce the 
infarct size. However, during the first minutes of reperfusion a large part of the dam-
age takes place: an amplification of ischemic injury or additional damage occur at 
this stage [70–75]. Intracellular, oxidative/nitrosative stress by ROS/RNS, together 
to Ca2+ overload, inadequate re-synthesis of ATP, and loss of membrane phospholip-
ids have been proposed as contributing to reperfusion injury [76, 77]. Therefore, it 
is now clear that both ischemia and reperfusion determine the organ damage. As a 
matter of fact, myocardial reperfusion injury includes arrhythmias, inflammatory 
responses, microvascular damage, and no reflow phenomenon, as well as transient 
mechanical dysfunction of the heart or myocardial stunning (a transient post-isch-
emic contractile dysfunction).

It is now clear that, in reperfusion, cell death can occur by apoptosis, autophagy, 
pyroptosis and necrosis [the reader is redirected to extensive review on this topic 
[e.g., 72, 78–80]. Nevertheless, in contrast to necrosis, pyroptosis and apoptosis, 
which are negative phenomena and inevitably lead to cell death, autophagy is not 
always a negative phenomenon, but under certain conditions, autophagy can be 
considered a protective mechanism against I/R injury [79, 80]. The vulnerability to 
I/R injury is likely to be greatly influenced by the autophagic control of protein and 
organelle quality, such as mitochondria. During reperfusion a burst of ROS/RNS 
production occurs [72]. Nevertheless, the sources of these ROS/RNS are a matter of 
controversy. It has been proposed that during ischemia there is a production of ROS/
RNS the primes cardiomyocytes for cell death during reperfusion; thus, it is likely 
that ROS/RNS production during ischemia is a determinant of cardiomyocyte death 
during the subsequent reperfusion, which is mainly due to reperfusion ROS/RNS 
burst [72]. The combined effects of ROS/RNS, elevated calcium level and low pH 
seem mandatory for the opening of the mitochondrial permeability transition pore 
(mPTP), which plays a critical role in reperfusion damage [72, 81–85]. Post-
ischemic reperfusion may result in inappropriate ROS/RNS formation, educed 
availability of NO, Ca2+ overload, and low pH. As said, these modifications together 
may favor prolonged opening of mPTP, and other processes contributing to cell 
death, myocardial infarction, stunning, and arrhythmias. It is clear that the prolonged 
mPTP opening mediates myocardial I/R damage. Indeed, inhibiting mPTP opening 
at reperfusion protects against cardiac I/R damage. However, short term mPTP 
opening as proposed as protective mechanism [for Reviews see 67, 86, 87].

Although inappropriate levels of ROS and RNS induce structural modifications 
of lipids, proteins, and genes that impact on cell function and death, ROS/RNS can 
activate signaling pathways that contribute to ischemic PreC and PostC.  These 
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signaling pathways may protect the heart by inhibiting mPTP opening at reperfusion. 
The production of ROS during I/R occurs surely in the mitochondrial respiratory 
chain and by NOX family enzymes and they play a role in I/R injury. Other sources 
of ROS during I/R include xanthine oxidase (XO) and uncoupled NOS. Although 
all enzymatic sources are likely to play a certain role in reperfusion injury, priority 
and emphasis may be given to specific ROS/RNS sources that are predominant in 
certain tissues. For instance, in the gastrointestinal tract xanthine oxidase may be 
the predominant source of ROS. However, in the metabolically active organs, such 
as heart and brain, mitochondria can be the main producers of ROS. Nevertheless, 
multiple ROS sources contribute for sure to reperfusion injury in most tissues. 
Evidence exist that ROS produced by one enzymatic source activate and enhance 
ROS production by a second source. A classic example of this is the so-called ROS-
induced ROS release (RIRR) occurring in mitochondria. When mPTP activation 
occurs by various sources of ROS, intra- and intermitochondrial redox-environment 
changes leading to RIRR, which is a regenerative cycle of mitochondrial ROS 
formation and release. This ROS storm contributes to cell damage and death [88]. 
Besides cell death, serious and often lethal consequence of the acute myocardial 
infarction (AMI) is the resulting contractile dysfunction, namely myocardial 
stunning. As mentioned in this chapter, ROS/RNS are strong regulators of cardiac 
function and may have strong deleterious effects on contractility. The imbalanced 
and high steady state levels of ROS/RNS are involved in the genesis and progression 
of myocardial stunning [for Reviews see 89–93].

13.9	 �Cardioprotection and ROS/RNS

As said ROS/RNS balance leads to appropriate or inappropriate redox status in 
cardioprotection by preconditioning and in I/R injury, respectively. This redox 
balance has been extensively reviewed [17, 49, 94, 95]. Indeed, different 
cardioprotective strategies, such as pharmacologic and ischemic preconditioning, 
have been shown to limit mitochondrial dysfunction as demonstrated by a better 
NADH balance and reduced ROS formation and a reduced mitochondrial Ca2+ 
overload, during ischemia and at reperfusion [96, 97]. Important strategies for 
reducing the IR injuries are studied, the names of these procedure are Pre- and post-
conditioning protocols. These treatments may reduce significantly the contractile 
dysfunction, reduce infarct size and affect all form of cell death, arrhythmias and 
endothelial dysfunction. In this scenario of cardioprotection ROS and RNS are two 
important cardioprotective signaling molecules, which are essential in pre- and 
post-conditioning processes. The first report on the ischemic preconditioning (PreC) 
concluded with this phrases “...the multiple anginal episodes that often precede 
myocardial infarction in man may delay cell death after coronary occlusion, and 
thereby allow for greater salvage of myocardium through reperfusion therapy” [98]. 
In this few words are closed the characteristic of PreC.

Nowadays we speak of “ischemic conditioning”, which includes several endog-
enous cardioprotective strategies that share several features. Conditioning protocols 
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can be applied either directly to the heart (ischemic preconditioning or postcondi-
tioning) or to another parts of the body, for example a limb, that is remote ischemic 
preconditioning, applied before the ischemic event of the heart, remote ischemic 
preconditioning, applied during the ischemic event or remote ischemic postcondi-
tioning, which are brief intermittent ischemia applied to the limb, after the ischemic 
event of the heart. Also pharmacological preconditioning, perconditioning or post-
conditioning have been described [99]. The Postconditioning (PostC) against AMI 
was introduced by Vinten johansen group’s, and it is characterized by brief cycles of 
I/R immediately after the global ischemia [100]. In particular, PostC may be per-
formed with one or more brief occlusions of a few seconds (from 5 to 60 s), starting 
very early in reperfusion, i.e. a few seconds after the end of the infarcting ischemia 
[100, 101].

In particular, both PreC and PostC attenuate endothelial cell dysfunction by 
increasing eNOS activity and NO· bioavailability in neighboring cells [87, 94, 102–
104]. Both pre- or post-conditioning phenomena can be triggered by pharmacological 
interventions, including exogenous NO-donors, that is pharmacological PreC or 
pharmacological PostC [105–107]. After that PreC and PostC phenomena have 
been described, reperfusion injury has been appreciated as a reality. This is important 
because protection from reperfusion injury is feasible, especially with PostC, which 
is under the control of the operators. Protective signaling cascades are recruited by 
both pre- and postconditioning, namely the so-called RISK, SAFE and cGMP/PKG 
pathways; these may cooperate in inducing protection [for review 104, 108–113]. 
The cardioprotective signaling pathways are thought to converge on mitochondria 
(Fig. 13.5).
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Fig. 13.5  The main 
pathways converging on 
mitochondria for 
cardioprotection
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The mitochondria are surely central in cardioprotection. Several mitochondrial 
proteins have been identified as targets of post-transitional modifications in both 
pre- and pos-tconditioning. Among these modifications phosphorylation, and 
nitrosylation are the most studied. In the aforementioned protective pathways, 
phosphorylative/dephosphorylative and nitrosative processes are largely represented. 
As mentioned, a pivotal effector of cardioprotection is the inhibition of mPTP 
opening, which is considered the final target [68, 103, 104] Indeed, as said, the pore 
is regulated by many factors including ROS/RNS, pH, calcium and potential of 
mitochondrial membrane, which can be influenced by S-nitrosylation (SNO) of pro-
teins. Besides the decrease of calcium overload by increased reuptake by SNO of 
SERCA2, also the S-nitrosylation of F1F0-ATPase limits, indirectly, the opening of 
mPTP, which in turn reduces the breakdown of glycolytic ATP and the fastening of 
the fall in the potential of mitochondrial membrane. In addition, S-nitrosylation of 
CyPD (cyclophilline D) [115] and/or of VDAC (voltage dependent anion channel) 
[68, 69], two putative components of mPTP rich in thiol groups, may occur in car-
diopriotection (see below for novel models of mPTP).

13.9.1	 �Ischemic Preconditioning

Ischemic preconditioning is the protective maneuvers which consists in brief peri-
ods (a few minutes) of intermittent ischemia and reperfusion performed before the 
infarcting ischemia. These maneuvers may trigger two periods of cardioprotection: 
one that start a few minute after the preconditioning maneuvers and that elapse two-
three hours (early preconditioning also known as first window of protection), and a 
second period of protection, called SWOP (second window of protection) that starts 
12–24 h after the preconditioning maneuvers and elapse 48–72 h (the second win-
dow of protection is also known as late preconditioning) [116–119]. Here we con-
sider the first window of protection, which is obtained immediately before the 
infarcting ischemia and exerts the most potent cardioprotection against infarct size. 
Recently it has been suggested that early preconditioning protection is also operative 
during reperfusion (i.e., in the post-ischemic phase) and limits a large part of the 
damage not only due to ischemia, but also to reperfusion [78, 120–122] (see also 
below). Interestingly, PreC can be completely blocked by free radical scavengers, 
such as mercaptopropionyl glycine (MPG) and/or N-acetyl-cysteine (NAC) given 
during preconditioning maneuvers [87, 123, 124]. These results confirmed that 
redox signaling is involved in triggering cardioprotection by PreC, that is a clear 
example of the so-called oxidative paradox (reactive species with a beneficial role). 
Although, excessive RNS formation during I/R may contribute to reperfusion injury 
via nitrative stress by peroxynitrite, also RNS are important elements in the 
triggering signal of I-PreC during triggering maneuvers. In fact, it has been reported 
that I-PreC induces •NO production by activation of differential type of NOS; 
however controversial papers report that inhibition of NOS abolishes the 
cardioprotection [125–130]. Even donors of HNO (one electron reduction product 
of •NO) could induce a preconditioning like effect, which was reversed by NAC 
[131]. The “classical” protection induced by •NO in I-PreC, is dependent in part by 
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activation of guanylyl cyclase (GC)/cyclic guanosine monophosphate (cGMP)/
protein kinase G (PKG), which in turn leads to the opening of the mitoKATP channel 
[95]. Sun et  al., reported that the I-PreC-induced cardioprotection is due to a 
S-nitrosylation signaling by •NO, rather than to an initial activation of the sGC/
cGMP/PKG signaling pathway. In fact, the administration of the sGC inhibitor, 
ODQ, did not eliminate completely the cardioprotection triggered by I-PreC. Hearts 
treated with ODQ resulted cardioprotected with a higher S-nitrosylation level of 
proteins. Therefore, it has been suggested that •NO mediated cardioprotection is 
regulated mainly by protein S-nitrosylation, at least in some models of 
cardioprotection [132]. The easy of reversibility and the confirmation of regulated 
S-nitrosylating and denitrosylating enzymatic and non-enzymatic reactions support 
the hypothesis that S-nitrosylation regulates the cellular and mitochondrial function 
through redox-sensible mechanisms [17]. A great part of pre-conditioning protection 
is due to the limitation of reperfusion injury with a limitation of ROS/RNS stress. 
This is mainly due to the prevention of mPTP opening in the early phase of 
reperfusion [112]. In our opinion, the prevention of mPTP opening avoids ROS-
induced ROS release and redox stress, while oxidative/nitrosative signaling may 
occur and protect the heart via the subsequent intervention of the protective role of 
the RISK (Reperfusion Injury Salvage Kinase), the SAFE (Survivor Activating 
Factor Enhancement) and the cGMP/PKG pathways [68, 133], which include 
phosphorylation of many target proteins. In brief, enzymes that have been shown to 
take part in these pathways include NOSs, phosphotidylinositol-3-phosphate kinase, 
PKC, kinase B (PKB or Akt), and extracellular signal-regulated protein kinases. 
These are a series of kinases that has been termed RISK pathway. SAFE pathway 
comprise Janus kinase and signal transducer and activator of transcription 3 (JAK-
STAT3) and maybe STAT5. Once the heart has been preconditioned, many 
components of these two pathways are re-activated at reperfusion, leading together 
to other factors to the prevention of the mPTP formation. Some mitochondria in the 
cells continue to be functional and do not release pro-apoptotic factors, preventing 
cell death. However, we do not know how the heart “remembers” that it has been 
preconditioned. Similar mechanisms have been observed with regard to I-PostC, 
mainly implicating the RISK and SAFE pathways and the prevention of mPTP 
formation. Pharmacological therapy can thus mimic conditioning by targeting the 
cells at one of these points at the level of the receptors, the signal transduction 
pathways, or the mitochondria. Here, we focus on the tens of recent studies reporting 
S-nitrosylation of critical proteins as a pivotal mechanism of cardioprotection by 
preconditioning [68, 134, 135]. Recently Kohr et  al. [136] using two different 
methods to measure protein oxidation have shown that preconditioning leads to 
S-nitrosylation of several proteins and that a large majority of these proteins are 
protected from further oxidation [136]. S-nitrosylation of proteins involved in 
calcium handling, such as Ca2+ channels, phospholamban and SERCA2 have been 
described [137]. Moreover, multiple S-nitrosylated proteins have been shown by 
proteomic studies in the presence of PreC [138]. In particular, many of these proteins 
have been found within mitochondria, including proteins responsible of 
mitochondrial metabolism (e.g. αKGDH, glycogen phosphorylase, aconitase, 
glycogen phosphorylase). Other important mitochondrial components that are 
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subjected to S-nitrosylation during the PreC, are the respiratory complexes, 
including the complex I, which is inhibited when nitrosylated [139] or when it is 
subjected to nitrosation by ONOO- [140, 141]. A mitochondria-selective 
S-nitrosating agent, MitoSNO, resulted cardioprotective by a mechanism that 
involves S-nitrosation of complex I and the subsequent slow reactivation of 
mitochondria at reperfusion, thereby decreasing ROS production [142]. These 
experiments identify the rapid complex I reactivation as a pivotal pathological 
aspect of I/R injury and suggest that preventing this reactivation by modification of 
a cysteine switch is a cardioprotective mechanism and a possible therapeutic 
strategy. Of note, due to a shielding effect against oxidative/nitrosative stress, if a 
protein is nitrosylated it is unlike that it can be nitrosated. It may be argued that a 
rapid reactivation of complex I and the massive ROS production may contribute to 
the I/R injury, whereas a slow reactivation an a reduced ROS production may be 
involved in triggering protection. Nevertheless, recent data suggest that ROS derived 
from mitochondrial p66shc do not contribute to the I/R injury nor they are involved 
in the cardioprotection byPrecC [143]. Another effect that can be observed in 
conditioning protection is the inhibition of the so-called F0-F1-ATPase. This can 
occur by many mechanisms, including the S-nitrosylation, with consequent 
reduction of ATP consumption of the F0-F1-ATPase working in reserve mode. This 
typically occurs in I/R of the myocardium [144]. The inhibition of F0-F1-ATPase 
saves ATP levels and reduces the mitochondrial potential, thereby reducing the 
driving force for Ca2+ uptake into the mitochondria, thus increasing tolerance to I/R 
challenging [145]. As said above, an important effector of cardioprotection is the 
inhibition of mPTP opening [68, 103, 114]. In fact, this pore is regulated by ROS, 
Ca2+ and potential of mitochondrial membrane, which are also regulated by 
S-nitrosylation of critical proteins. Not only the decrease of Ca2+ loading by 
increased reuptake by nitrosylated SERCA2, but also the S-nitrosylation of F0-F1-
ATPase reduces indirectly the opening of mPTP, which reduces the breakdown of 
glycolytic ATP and the acceleration of the fall in the mitochondrial membrane 
potential. Moreover, CyPD (cyclophilline D) and VDAC (voltage dependent anion 
channel), which were considered two components of mPTP, are rich in thiol groups, 
and their S-nitrosylation of may occur in cardioprotection [68, 115]. All together, 
these data support the view that S-nitrosylation of mitochondrial proteins and 
proteins involved in calcium handling serves as an important mechanism of 
preconditioning cardioprotection involving mPTP.

13.9.1.1	 �The Novel Model of mPTP
Actually, the molecular nature of the mPTP is not clear and continues to be the 
subject of debate in the specialized/current literature [146–152]. It has been 
proposed that the pore forms when the dimeric enzyme FoF1-ATP synthase switches 
from the energy-conserving to the energy-dissipating mode It seems that the pore 
forms at the interface between the two monomers of the FoF1-ATP synthase [146–
149]. It has been also proposed that the subunit c of the Fo ATP synthase, which 
forms the proton-translocating ‘c ring’, represent a critical component of the pore 
[146]. It seems that the channel is created by the c ring itself after that the subunit 
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F1 has been extruded by a Ca2+-dependent mechanism [147]. Intriguingly, it has 
been observed that two important component of the peripheral stalk of the ATP 
synthase, namely the oligomycin sensitivity conferral protein (OSCP) and the 
b-subunit, do not contribute to the mPTP formation. Indeed, cells lacking the 
membrane domain of b-subunit or the entire OSCP display a functional mPTP 
[151]. Also the c-subunit seems not implicated in the pore formation [152]. 
Therefore, it seems that none of the membrane subunits of the FoF1-ATP synthase 
that are involved directly in transmembrane proton translocation are involved in 
forming the mPTP.

13.9.2	 �Postconditioning

Postconditioning defined as brief (a few seconds) intermittent cycles of ischemia 
alternating with reperfusion applied immediately after the infarcting ischemic event, 
has been shown to reduce ischemia/reperfusion damage, in some cases equivalent to 
that observed with preconditioning. However, cardioprotective modalities of signal 
transduction also include redox signaling by ROS, S-nitrosylation by NO. and 
derivative, S-sulfhydration by hydrogen sulfide, and O-linked glycosylation with 
beta-N-acetylglucosamine [153]. All these modalities can interact and regulate an 
entire pathway, thus influencing each other. For instance, enzymes can be nitrosylated 
and/or phosphorylated in specific and different site(s) with consequent increase or 
decrease of their specific activity. For example, extracellular signal-regulated kinase 
(ERK) may be S-nitrosylated, thus inhibiting its phosphorylation and activation 
[154]. Another protein that may undergo NO-mediated S-nitrosylation and 
phosphorylation is the regulator protein phospholamban, which is involved in the 
control of cardiac contractility [137, 155]. Both pre and post-conditioning may be 
triggered by endogenous and exogenous NO· [99]. The relative importance of 
cGMP/PKG pathway and non-classical processes, such as nitrosylation are under 
intense investigation. Cardioprotection by ischemic postconditioning (I-PostC) is 
obtained by short periods of reperfusion intervalled by short periods of ischemia (a 
few seconds) at be beginning of a reperfusion which follow an infarcting ischemia. 
Because I-PostC has the advantage that it can be applied after the ischemic insult 
has occurred, this is therapeutically a more favorable approach than is preconditioning. 
It requires a complex signaling cascade to be triggered, which includes the opening 
of mitoKATP and the activation/inhibition of several enzymes of cardioprotective 
pathways. With regard to signaling pathways, also for PostC, as for PreC, the 
greatest attention as focused on the role of the RISK-, the SAFE- and the cGMP/
PKG-dependent pathways. Intriguingly, however, I-PostC can be completely 
blocked by free radical large spectrum scavengers, such as NAC or MPG given 
during I-PostC maneuvers. However, PostC protection is not abolished if the 
scavenger is given in reperfusion after the PostC maneuvers have been completed 
[156, 157]. Even more intricate is the relationship when more selective antioxidant 
enzymes, such as SOD and catalase, are considered. Indeed, the activity of these 
enzymes is strongly influenced by pH [49] (see also below) and it is well known that 
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pH changes during ischemia and during reperfusion. Actually, the gradual 
normalization of intracellular pH in the initial phase of reperfusion plays a role of 
paramount importance in conditioning strategies. Both in pre- and post-conditioning, 
acidosis favors redox signaling and the activation of a complex cascade of signal 
molecules and prevents the opening of mPTP in early post-ischemic phase. A phase 
in which redox signaling plays a critical role in triggering cardioprotection [68, 87, 
158, 159]. In particular, acidosis favors the transient formation of S-nitrosylated 
protein in postconditioned hearts [159].

13.9.3	 �Nitric Oxide, Nitration and Nitrosylation May Play a Finely 
Interconnected Role

It is well known that postconditioning attenuates endothelial cell dysfunction by 
increasing eNOS activity and •NO bioavailability in neighboring cells [100]. This 
can be responsible of improved vasodilatation in postconditioned hearts. Moreover, 
both pre- or post-conditioning protection can be triggered by pharmacological 
interventions, including the infusion of exogenous •NO-donors, that is 
pharmacological PreC or pharmacological PostC [95, 133, 160–162]. In an editorial 
by R.  Schulz and P.  Ferdinandy [163], which was written as a comment to an 
interesting article of Sun et al., [132], the authors wonder whether or not “nitric 
oxide signaling differ in pre- and post-conditioning” and in particular they wonder 
whether “S-nitrosylation is involved in postconditioning’s protection”. Above we 
have seen that S-nitrosylation is involved in ischemic and pharmacological 
preconditioning. Below, we will see that S-nitrosylation is also involved in ischemic 
and pharmacological postconditioning. Several studies that used •NO-donors in 
reperfusion to induce pharmacological PostC revealed an important role of 
S-nitrosylation of proteins in the mechanisms of protection [139]. We were among 
the first to show that also I-PostC is mediated by S-nitrosylation of proteins [159]. 
A finding confirmed by Tong et al., [164], which have shown that several proteins 
are S-nitrosylated with I-PostC. Due to the abundance of nitrosylated proteins, it is 
likely that also denitrosylation processes are down-regulated. Indeed, we have 
shown that PostC, discretely change the activity of antioxidant enzymes in early 
reperfusion, slightly decreasing SOD and increasing catalase activity [159]. Since 
SOD may be a de-nitrosylating enzyme [141], these effects may favor S-nitrosylation 
thus reducing injury due to oxidative-stress. In fact, it has been proposed that the 
increase in S-nitrosylation could shield critical cysteine residue(s) from further 
oxidative damage upon reperfusion [49, 164]. Importantly, pro-survival enzyme 
activation may depend on redox-sensible reactions. For instance, PKC activation 
can occur via S-nitrosylative processes [27] and the activation of PKC plays a 
central role in sustaining the cardioprotection by postconditioning [156, 157]. The 
S-nitrosylation of the mitochondrial F0-F1-ATPase described for PreC has also 
been found in PostC [164]. This is line with interesting findings reported in a recent 
study, in which Cys294 of the mitochondrial F0-F1-ATPase was found to form a 
disulfide bond with another cysteine residue in heart failure, whereas the protective 
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cardiac resynchronization therapy led to S-nitrosylation of Cys294 and prevented 
disulfide formation [165]. It has been find that about 50% of those proteins that were 
S-nitrosylated by PreC were also S-nitrosylated in PostC [132, 135], suggesting that 
there might be a common set of proteins targeted by •NO/S-nitrosylation signaling 
with both PreC and PostC. However, the S-nitrosylation process is not a random 
reaction, but depends on a number of conditions. In fact, the instantaneous redox 
state and ultrastructural accessibility of cysteine residue(s) under low-oxygen 
tension, such as hypoxia, ischemia and postconditioning intermittent ischemia/
reperfusion may determine whether a particular thiol in a given protein is subjected 
to S-nitrosylation [166, 167] During the first minutes of reperfusion usually a typical 
large burst of ROS occurs in not protected (naïf) hearts. The ROS/RNS burst results 
in the irreversible oxidation/nitration of a number of important proteins. These 
proteins are damaged and need to be degraded and re-synthesized to regain normal 
cell function, otherwise irreversible tissue injury occurs. The shielding effect of 
S-nitrosylation could be necessary to trigger protection in early reperfusion and to 
allow sufficient time for the activation of protective signaling. Since S-nitrosylation 
is a transient readily reversed protein modification, it must be timing. This could be 
of extreme importance during I-PostC maneuvers. In fact, the ROS/RNS burst is 
attenuated (not abolished) by I-PostC maneuvers and S-nitrosylation occurring 
during PostC may shield modified cysteines from more irreversible states of 
oxidation till the burst of ROS/RNS vanishes. This point of view is in line with the 
experimental evidence that a delay in performing PostC maneuvers results in a loss 
of protection [101, 133, 168]. Actually, it has been find that protein nitration may be 
deleterious in PostC scenario [107, 169]. However, other authors have observed a 
beneficial effect for this reaction induced by peroxynitrite [170]. We have proposed 
that tyrosine nitration may be a transient initial effect of I-PostC, which is suddenly 
followed by the prevalence of protein S-nitrosylation, possibly via the so-called 
secondary reaction described above [17]. We have shown in rat hearts that after 
7-min of reperfusion I-PostC induces a reduction of the levels of 3-nitrotyrosine 
formation and a subsequent increase in S-nitrosylation of proteins, which persist for 
at least the 120 min of reperfusion [17]. In fact, a low level of 3-nitrotyrosine in 
PostC have often been observed [17, 168, 169], but a prevalent formation of 
s-nitrosylated proteins have been described [17, 164]. Very recently, we and other 
authors have shown that protein S-nitrosylation occurs mainly in mitochondria after 
I-PostC [68, 164]. We have also shown that pharmacological PostC induced by 
Diazoxide (a drug supposed to promote ROS-signaling through actions on mitoKATP 
channels and connexin [103, 171–173] may induce a strong S-nitrosylation of mito-
chondrial proteins. In another study, the addition of a mitochondria-targeted 
•NO-donor at the start of reperfusion (i.e., pharmacological PostC) has also been 
found to be cardioprotective [142]. The •NO-donor used in this study was the 
so-called MitoSNO, which comprises the •NO-donor SNAP (S-nitroso-N-
acetylpenicillamine) conjugated to a triphenylphosphonium (TPP) moiety. The 
lipophilic TPP allows MitoSNO to pass rapidly through membranes driven by the 
membrane potential and therefore to accumulate several-hundred-fold within the 
mitochondria, where it generates •NO and S-nitrosylates thiol proteins [142]. The 
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nitrosylation of proteins by MitoSNO and other donors has been confirmed by other 
authors both in basal conditions and in the context of postconditioning 
cardioprotection [49, 142, 173]. It is important to emphasize that phosphorylative 
pathways may be activate in parallel or in sequence to the nitrosylative processes. 
For instance, it has been recently reported that the most abundant isoforms of PKG 
(PKGI) within cardiomyocyte is involved in cardioprotection against I/R injury. 
However, after cardiomyocyte-specific ablation of the PKGI gene in the mouse 
heart, it was still possible to protect the hearts with several interventions, including 
I-PostC or pharmacological PostC with the •NO-donor MitoSNO, via S-nitrosylation 
of mitochondrial proteins [174]. Therefore, the authors concluded that PostC may 
afford protection either by-passing PKGI or by acting independently or downstream 
of it. The authors also suggested differences between cGMP/PKGI pathway in 
myocytes and other cardiac cell types during I-PostC’s protection in this in vivo 
study. In fact, they cannot rule out that the exogenous and endogenous •NO may act 
to protect the heart from I/R injury in a manner that depends on PKG in other 
cardiac cell types [174]. In fact, PKG pathway has been involved in PostC protection 
in different models by several authors [158, 159, 169, 174].

13.9.4	 �Redox Regulation of Transcription in Cardioprotection

The transcription factors hypoxia-inducible factor-1 (HIF-1) and nuclear factor ery-
throid related factor-2 (Nrf2) are subject to redox regulation and these effects are at 
the base of adaptive responses triggered by ROS signaling or, alternatively, deleteri-
ous effects triggered by redox stress. An appropriate ROS production activate the 
Nrf2 and HIF-1 pathways which render the organ more resistant to subsequent I/R 
challenging.

In unstressed cells, Nrf2 is bound to its cytosolic repressor, Kelch-like ECH-
associated protein-1 (Keap1), and is largely ubiquitinated and redirect to protea-
somal degradation. In the presence of ROS, PKC is activated and can phosphorylate 
Nrf2 at the Ser40 residue. ROS also oxidize cysteine residues in Keap1, preventing 
its interaction with Nrf2. Phosphorylate Nrf2 can then easily dissociate from Keap1 
and can migrate to the nucleus. In the nucleus, upon binding to antioxidant response 
elements (AREs) on the genome, Nrf2 transcribes several genes involved in 
antioxidant defense, mitochondrial biogenesis, and energy regulation. Indeed, 
several compounds may protect the heart against I/R injury by activating the Nrf2/
ARE pathway [175–179]. Moreover, I/R induces de novo Nrf2 protein translation 
and Nrf2 knockout mice display increased infarct size following I/R and a reduced 
degree of cardiac protection by I-PreC [180]. It has been also reported that Nrf2 
nuclear accumulation occurs together an increased expression of mitochondrial-
uncoupling-protein-3 in isolated murine hearts subjected to ex vivo I/R challenging 
[181]. In the presence of ROS signaling also the activation of HIF-1 occurs. 
Therefore, the inducible subunit of HIF-1, HIF-1α is formed. The latter is regulated 
by prolyl hydroxylases (PHDs) and may translocate to the nucleus. Under normal 
oxygen levels, PHDs hydroxylate HIF-1α, allowing von Hippel Lindau to 
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ubiquitinate HIF-1α and to target it for subsequent proteasomal degradation. 
However, in the presence of ROS, PHDs are inactivated and HIF-1α can translocate 
to the nucleus. In the nucleus, the constitutively expressed HIF-1β subunit binds to 
HIF-1α to form the active HIF-1, which binds to hypoxia response elements (HREs) 
and transcribes several genes for angiogenesis, energy metabolism, and red blood 
cell production. Whether ROS of mitochondrial origin are necessary for HIF-1 acti-
vation and cardioprotection is controversial. However, HIF activation using phar-
macological PHD inhibitors such as DMOG results in a level of cardioprotection 
similar to that obtained with IPC [182]. Likewise, silencing of PHD1 attenuates 
ex vivo myocardial IR injury [183].

13.10	 �Conclusions

Oxidative stress is a sign-symbol of the pathophysiology of myocardial I/R injury. 
In fact, massive ROS generation occurs when oxygen delivery is restored after an 
ischemic event. While high ROS levels can be deleterious and can kill the cardiac 
cells, low levels of oxidants can be cardioprotective in therapeutic conditioning 
approaches. Nevertheless, we have discussed that this is not always the case and it 
is advisable to talk about appropriate and inappropriate ROS production.

Although ROS play an important role in I/R injury, antioxidant therapy fails to 
prevent I/R related disorders, also because ROS may be necessary for some 
physiological functions. Thus, the development of the drug that selectively attenuates 
the pathological oxidative stress without altering the ROS signaling in physiological 
conditions, seems to be an approach still far to be achieved. Perhaps a multiple 
approach that can limit inflammation on the one hand and production of ROS on the 
other could be a therapeutic strategy to improve resistance to ischemia and to make 
the organ more resistant to I/R challenging. Indeed, inflammation and overproduction 
of ROS are often present in cardiovascular diseases. Moreover, in the presence of 
inflammation even a modest ROS production can be deleterious. Therefore, 
compounds that inhibit inflammation on the one hand and activate the protective 
signaling on the other are promising clinical instruments that may open the window 
of the hope to defeat I/R injury one day.
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MI	 myocardial infarction
MPTP	 mitochondrial permeability transition pore
MRI	 magnetic resonance imaging
MVO2	 myocardial oxygen consumption
•NO	 nitric oxide
NOO-	 NO-derived peroxynitrite
NOS	 nitric oxide synthase
NOX	 NADPH oxidase
NSTEMI	 non-ST segment elevation MI
O2	 oxygen
OFRs	 oxygen free radicals
OXS	 oxidative stress
•OH	 hydroxyl radical
PCI	 percutaneous coronary intervention
PDH	 pyruvate dehydrogenase
PKG	 phosphokinase G
PPARs	 peroxisome proliferator-activated receptors
PPCI	 primary PCI
PTP	 permeability transition pore
O2•−	 superoxide anion radical
RCT	 randomized clinical trial
RIP3	 receptor-interacting protein 3
ROS	 reactive oxygen species
SERCA	 sarcoendoplasmic reticulum (SR) calcium transport ATPase
SOD	 superoxide dismutase
SR	 sarcoplasmic reticulum
STEMI	 ST-segment elevation MI
TAG	 triacyl glycerol
TNF	 tumor necrosis factor.

14.1	 �Introduction

Myocardial ischemia, ischemia-reperfusion (I/R) and myocardial infarction (MI) 
are major causes of morbidity and mortality due to ischemic heart disease in devel-
oped and developing countries of the world. Whereas timely restoration of myocar-
dial blood flow saves muscle and has indeed been life-saving, efforts to prevent I/R 
injury and reperfusion damage have been frustrating for nearly four decades despite 
recognition that reactive oxygen species (ROS) and the associated oxidative stress 
(OXS) were the major culprits. A workshop held at the National Institutes of Health, 
Bethesda, Maryland, U.S.A in the early 1980s underscored the roles of oxygen free 
radicals (OFRs), also known as ROS, and OXS in the pathophysiology of cardiovas-
cular diseases including myocardial ischemia, I/R and MI. That workshop inspired 
many investigators, and research over the subsequent 4 decades has generated a 
wealth of knowledge on the pathobiology, physiology, biochemistry and 
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pharmacology of ROS and OXS that has improved our understanding of their roles 
in the pathophysiology of those conditions. However, several pharmacological 
interventions that were developed and tested for preventing and limiting the harmful 
effects of ROS and OXS during myocardial ischemia, IR and MI in the clinical 
arena did not prove to be effective for many reasons [1–3]; the search for new 
approaches that can be translated to the bedside therefore goes on. Ongoing transla-
tional research is focused on providing a broader understanding of the biology of 
OXS, identifying the key players in ROS regulation and dysregulation, and unravel-
ling pathways and targets for intervention. Such data may allow future development 
of novel pharmacological treatments and strategies for the limitation and prevention 
of ROS-induced damage during myocardial ischemia, I/R and MI. If these efforts 
succeed, the clinical and socioeconomic impact will likely be tremendous.

This chapter focuses on some pertinent areas for future drug development tar-
geted at reducing ROS-induced damage during myocardial ischemia, I/R and MI in 
patients, with the ultimate goals of validation in carefully designed randomized 
clinical trials (RCTs) and application in the real world.

14.2	 �Oxygen Supply and Demand in the Pathophysiology 
of Ischemia and Infarction

14.2.1	 �A Few Pertinent Pearls from the Basic Sciences

Studies of the biology, physiology and biochemistry of OFRs and OXS have under-
pinned four points that are highly pertinent in the context of the pathophysiology of 
myocardial ischemia, I/R and MI. First, preservation of the “milieu intérieur” or 
“homeostasis”, proposed by Claude Bernard and Walter Bradford Cannon, respec-
tively, is critical for normal physiological and metabolic processes, and a failure of 
endogenous homeostatic mechanisms results in dysfunction and disease. Second, 
oxygen (O2) is vital for aerobic respiration, in which O2 acts as the final acceptor of 
electrons in the electron transport chain (ETC) leading to the generation of energy 
in the form of adenosine triphosphate (ATP); importantly, O2-driven aerobic respira-
tion produces more ATP per mole of glucose than anaerobic respiration (theoreti-
cally 38 versus 2 ATPs; effectively 30–32 versus 2 ATPs). However, O2 is also 
highly reactive and, as such, can generate OFRs that can be toxic to tissues and 
cause damage when the capacity of endogenous protective antioxidants and enzymes 
is exceeded and homeostasis fails. Third, metabolism through the Krebs cycle (also 
called tricarboxylic acid cycle or citric acid cycle) is vitally important for cells to 
convert substrates such as carbohydrate (sugars), fat and protein into intermediates 
of glycolysis or respiration and thereby generate the energy needed to support life. 
Briefly, at the cellular level, catabolic pathways in the cytosol convert the substrates 
into metabolites that converge on the Krebs cycle in the mitochondrion through 
acetyl-CoA (Fig. 14.1). While metabolism of fatty acid yields more ATP per carbon 
than carbohydrates (total yield 39 versus 30 ATP per 6 carbons from fat and sugar, 
respectively), it is important to note that these processes are dependent on O2 supply 
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for aerobic respiration through the Krebs cycle and ETC in the mitochondrion 
(Fig.  14.1). Fourth, the myocardium depends on high energy supply as ATP in 
order to maintain normal contractile function and cardiac output to ensure organ 
perfusion continuously during a lifetime, and the mitochondrion is the “power-
house” for the continued energy supply.

14.2.2  �The Myocardial Oxygen Supply and Demand Equation

The function of the heart is to pump blood containing O2 and nutrients continuously 
to all organs throughout life to sustain life. In humans and other mammals, the heart 
has two pumps (right and left); the right pump directs deoxygenated blood to the 
lungs for re-oxygenation while the left pump sends the oxygenated blood to all tis-
sues to maintain tissue perfusion, oxygenation and nutrition (Fig. 14.2a). The heart 
muscle itself needs a continuous supply of blood, nutrients, O2 and energy in the 
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form of ATP (Fig. 14.2a). Just to maintain the cyclic contraction and relaxation dur-
ing the normal 70–80 beats per minute, the myocardium of the normal resting 
human heart consumes about 8–15 mL of O2 per 100 g/min, and that is supplied by 
a coronary blood flow of about 70–90 mL/min [4]. Several studies have shown that 
myocardial tension or wall stress, contractility, and frequency of contraction or 
heart rate account for most of the myocardial oxygen consumption (MVO2) [4]. 
When myocardial O2 demand increases, as during physical activity or sympathetic 
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Fig. 14.2  Simplified schematic depicting: (a) Oxygenation of blood through the lungs and deliv-
ery of oxygenated blood by the heart pumps, respectively. (b) Balance of determinants of myocar-
dial oxygen supply and demand and consequences of imbalance. (Adapted from Selwyn [4] and 
Braunwald [23])
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stimulation, it needs to be balanced by an increase in myocardial blood flow and an 
increase in oxidative metabolism so as to generate more ATP to balance the O2 
demand and thereby restore homeostasis (Fig. 14.2b). The heart’s own O2 and blood 
supply comes through its own two large epicardial coronary arteries (right and left) 
that arborize into intramural arterioles and a collateral microcirculation. Briefly, the 
right coronary artery supplies the right ventricular myocardium while the main left 
coronary artery divides further into two large arteries, the left anterior descending 
(LAD) and left circumflex (LC) branches, to supply the anterior and posterior parts 
of the left ventricular myocardium (Fig. 14.2a). It should be noted that myocardial 
blood flow is also under autoregulatory control by multiple factors such as myo-
genic, neurogenic, and chemical mediators including nitric oxide (NO), serotonin, 
adenosine diphosphate (ADP), epinephrine and vasopressin; furthermore, patients 
with coronary atherosclerosis and comorbidities such as hypertension and left ven-
tricular hypertrophy have a blunting of autoregulation of myocardial blood flow [4].

The balance between myocardial O2 supply and demand in the heart is critical for 
survival, and failure to maintain this balance, or homeostasis, results in a cascade of 
myocardial jeopardy, injury, cell death and heart failure (Fig. 14.2b). Clinical stud-
ies have established that myocardial ischemia is usually due to restriction of blood 
flow caused by critical stenoses of epicardial coronary arteries leading to an imbal-
ance between myocardial O2 supply and demand [4]. In contrast, an MI is usually 
the result of occlusion of one of the major epicardial coronary arteries. At first, it 
was felt that MI resulted from sudden coronary occlusion by a thrombus [5] but 
subsequent studies have shown that the occlusion involved atherosclerotic plaque 
rupture followed by thrombus formation [6–8]; thus, in acute coronary syndromes, 
including unstable angina, non-ST-segment-elevation MI (or NSTEMI, previously 
called non-transmural or subendocardial MI) and ST-segment-elevation MI (or 
STEMI, previously called Q-wave or transmural MI), thrombus formation is a more 
gradual process [6–8]. Other studies showed that most STEMI patients have an 
occlusive thrombus [6, 9] whereas most NSTEMI patients have a non-occlusive 
thrombus [7, 9]; the latter finding suggested that in NSTEMI, whatever coronary 
flow is preserved leads to only partial imbalance between supply and demand so 
that necrosis is only confined to the subendocardial layer [9]. Together, these find-
ings revolutionized the approach to therapy and further endorsed the idea of achiev-
ing early reperfusion by opening of the infarct-related artery (IRA) with percutaneous 
coronary intervention (PCI) using a catheter and by applying early anti-platelet, 
anti-thrombotic and adjunctive therapies to salvage all possible jeopardized isch-
emic myocardium.

14.2.3  �Switch from Aerobic to Anaerobic Metabolism 
During Myocardial Ischemia

Although anaerobic respiration in the cytosol is less efficient than aerobic respira-
tion in the mitochondrion in terms of the net ATP yield per molecule of glucose, it 
is still a very effective source of ATP in human skeletal muscles during short bouts 
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of strenuous exercise [10, 11]. As summarized by Hargreaves [11], skeletal muscle 
uses intra- and extramuscular substrates such as creatine phosphate (CP), glycogen, 
glucose, lactate and free fatty acids during normal contraction; and during pro-
longed submaximal exercise, most of the ATP comes from oxidative metabolism of 
muscle glycogen, blood glucose and free fatty acids. However, during spurts of 
high-intensity exercise, most of the energy comes from degradation of CP and 
breakdown of glycogen to lactate, and the rest from oxidative metabolism; lactic 
acid build-up causes fatigue and an O2 debt that needs to be repaid during recovery 
and hyperventilation.

In contrast, the heart is aerobic and cannot work under O2 debt. While it weighs 
only about 1 % of the body weight in the adult, it consumes nearly 10 % of the total 
O2 consumption. When it is subjected to ischemia and anoxia, it shuts down aerobic 
metabolism and switches to anaerobic metabolism; however, anaerobic metabolism 
cannot supply the ATP it needs to maintain viability as the severity of the insult 
increases. Evidence from preclinical studies suggests that the early contractile dys-
function is mainly due to metabolic dysfunction (Fig. 14.3) rather than changes in 
cytosolic calcium [12, 13], and the fall in pH plays a critical role [14]. During severe 
myocardial ischemia, anaerobic metabolism alone cannot meet the ATP demand for 
continued viability [15, 16]; with severely reduced blood flow and O2 supply, failure 
to clear metabolic products leads to a build-up of NADH, lactate, H+, CO2, long-
chain fatty-acyl-CoA (FACoA) and long-chain fatty-acyl-carnitine (FAcarn) that 
blunt or block ATP production and contribute to reduced myocardial function [13, 
17]. At the same time, coronary venous blood shows end-products of degradation of 
purine nucleotides such as inosine and hypoxanthine, besides lactate and lysophos-
phoglycerides. Although disputed, evidence suggests that the acyl esters FACoA 
and FAcarn act as detergents that cause mitochondrial and plasma membrane dys-
function during prolonged ischemia (Fig. 14.3) [17–20]. Nearly 95% of CoA pres-
ent in heart cells seems to be localized in the matrix of the mitochondrion [13]. 
Lysophosphoglyceride formation during ischemia has been implicated in malignant 
dysrhythmias [21]. During severe ischemia, the release of enzymes such as tropo-
nins, creatine kinases and lactic dehydrogenases into venous blood is indicative of 
and proportional to the degree of myocardial damage and is used in diagnosis [1, 2].

14.2.4  �Fatty Acid Metabolism During Myocardial Ischemia

The importance of fatty acid metabolism during myocardial ischemia has been 
reviewed [22]. Of note, most of those studies used the ‘global ischemia’ models of 
the working rat heart and human hearts during open heart surgery with cardioplegia. 
Normally, the adult heart gets >95% of its ATP from mitochondrial oxidative phos-
phorylation and the remaining 5% from glycolysis and formation of guanosine tri-
phosphate (GTP) in the Krebs cycle; the myocardial ATP pool is limited (about 
5 μmol/g wet wt) and undergoes complete turnover nearly every 10 s [12, 22]. About 
50–70% of the acetyl CoA comes from fatty acid β-oxidation and the remaining 
30–50% from oxidation of pyruvate derived from glycolysis and oxidation of 
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lactate [12, 22]. As mentioned before, during severe ischemia, the ability to meet the 
high demand for energy and ATP to maintain normal metabolism, contractility and 
ionic hemostasis is outstripped; this is despite mitochondrial oxidative phosphoryla-
tion, glycolysis and formation of ATP and GTP in the Krebs cycle, and β-oxidation 
of fatty acids (Fig. 14.3); in contrast, with mild to moderate ischemia, O2 depriva-
tion leads to reduced ATP output from oxidative phosphorylation and catabolism of 
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fatty acid and pyruvate, unchanged carbohydrate oxidation, swift conversion of 
pyruvate to lactate and NADH to NAD+, and continued fatty acid β-oxidation [22]. 
The regulation of fatty acid β-oxidation in the heart is under complex multifactorial 
control [22, 23]; a source of free fatty acids is from labile stores of triacylglycerol 
(TAG). Most of the fatty acid for β-oxidation is derived from chylomicron-TAG 
with a little from very-low-density lipoprotein (VLDL)-TAG, rather than albumin-
bound fatty acids [22, 23]. Reduced fatty acid β-oxidation during severe ischemia 
can contribute to lipotoxicity [13, 22]. Whereas FACoA accumulates mainly in the 
mitochondrial matrix, FAcarn accumulates in both the mitochondrial matrix and 
cytosol [13, 22]. Of interest, AMP-activated protein kinase (AMPK) appears to act 
as a fuel sensor that modulates fatty acid β-oxidation in response to energy demands. 
In situations where fatty acid β-oxidation increases, this is met by shuttling more of 
the NADH and FADH2 reducing power to the ETC and ROS formation such as 
superoxide [22]. A downside to increasing fatty acid usage is a blunting of ATP 
transfer from the mitochondrial matrix to the cytosol where it is hydrolysed, thereby 
decreasing contractile power. Various therapies that target fatty acid metabolism 
have been proposed, including a glucose-insulin-potassium (GIK) cocktail, peroxi-
some proliferator-activated receptors (PPARs), nicotinic acid, β-adrenergic block-
ade, sarcolemmal fatty acid uptake inhibitors, mitochondrial fatty acid uptake 
inhibitors (such as etomoxir, perhexiline and malonyl CoA decarboxylase inhibi-
tors), mitochondrial fatty acid β-oxidation inhibitors (such as trimetazidine and 
ranolazine), and dichloroacetate (inhibitor of pyruvate dehydrogenase kinase, 
thereby stimulating mitochondrial pyruvate dehydrogenase). Of these, ranolazine 
has been proposed as an anti-anginal agent for chronic stable angina.

14.2.5  �Salvage of Jeopardized Myocardium and the Open Artery 
Hypothesis

In order to formulate therapeutic strategies for interrupting the progression of myo-
cardial ischemia, I/R and MI to heart failure in patients, it was essential to under-
stand the determinants of myocardial O2 consumption (MVO2) [24]. Seminal 
clinical and preclinical studies of determinants of MVO2 in Eugene Braunwald’s 
group during the late 1960s and early 1970s revolutionized contemporary thinking 
with concepts of salvage of the jeopardized myocardium by pharmacotherapy and 
early reperfusion [24–28]. In patients with STEMI, they showed that carotid sinus 
stimulation to increase coronary blood flow reduced ischemic injury [25]. In studies 
with coronary artery occlusion in the anesthetized dog model, they established that 
the extent of acute myocardial ischemic injury correlated with subsequent necrosis 
measured 24 h later [26]. Additionally, they showed that reperfusion of the ischemic 
zone to increase O2 supply even as late as 3 h could salvage jeopardized myocar-
dium [27]. Also in the dog model, they showed that by manipulating the determi-
nants of MVO2, they could increase or decrease the extent of ischemic injury 
assessed by electrocardiographic ST-segment elevations by various metabolic and 
pharmacologic interventions [28, 29].
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During the same era, cardiovascular surgeons began restoring myocardial blood 
flow and O2 supply in the territory of the critically stenotic coronary artery by per-
forming coronary artery bypass grafting (CABG) in patients with stable angina and 
this procedure was subsequently shown to abolish the ischemic response to atrial 
pacing stress that increased MVO2 [30].

In the latter half of the 1970s, intravenous β-adrenergic blockade to improve the 
balance between O2 supply and demand in patients with acute STEMI was shown to 
decrease ischemic injury (assessed by the sum of ST-segment elevations or ƩST by 
precordial mapping) and myocardial work (assessed by the rate-pressure product, 
an index of myocardial work and O2 demand) without signs of heart failure [31]. 
That study [31] suggested that β-adrenergic blockade might be a promising strategy 
for limiting infarct size in patients with evolving acute STEMI.

14.2.6  �Myocardial Salvage in the Territory Infarct-Related Artery 
or the “Region at Risk”

In order to test the myocardial salvage concept and assess various potential infarct-
limiting pharmacologic agents, more robust studies were needed for the objective 
assessment of infarct size relative to the “region at risk” in the territory of the 
infarct-related artery (IRA), rather than just as a percent of the whole left ventricle. 
This idea was tested in subsequent studies using a conscious canine model; these 
studies demonstrated that the “region at risk”, defined by the post-mortem coronary 
arteriography technique developed by Fulton [32] and applied by Schaper [33], as 
well as the collateral blood flow within the “region at risk” after a coronary artery 
occlusion, assessed by the radio-active microsphere technique, and the subsequent 
grossly visible infarct size could be accurately mapped [34, 35]. These studies dem-
onstrated a gradient in collateral blood flow across the “region at risk”, from the 
borders to the centre, that correlated with the amount of subsequent myocardial 
necrosis [34, 35], thereby allowing several interventions to be tested [36–41]. Of 
note, the OFR scavenger, superoxide dismutase (SOD), was shown to reduce reper-
fusion injury and infarct size [41]. Subsequently, the degree of mechanical dysfunc-
tion as left ventricular dysynergy across the area of necrosis within the region at risk 
was quantified by two-dimensional echocardiography (2D-Echo) in the conscious 
dog model [42], thus providing a means of assessing infarct size by non-invasive 
2D-Echo imaging at the bedside in subsequent studies of patients with STEMI and 
preclinical studies in the conscious dog model using various interventions [43–56]. 
Magnetic resonance imaging (MRI) is now widely used to assess myocardial infarct 
size and scar size relative to the region at risk in patients with MI in vivo [57].

14.2.7  �Reperfusion and Reperfusion Injury

Also during the 1970s, other studies in the canine model demonstrated that coronary 
occlusion was followed by a “march to necrosis” over time, with transmural 
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extension as a “wavefront” from endocardium to epicardium, that could be aborted 
by early reperfusion and thereby salvage ischemic myocardium [58], whereas late 
reperfusion resulted in reperfusion injury associated with further myocardial dam-
age, arrhythmias and intramyocardial hemorrhage [59]. As reviewed by Jennings 
and Reimer [59], now well-known characteristics of irreversible injury in cardio-
myocytes include “severely depressed ATP levels to <10% of control”, shutdown of 
anaerobic glycolysis with increasing levels of metabolites, marked increase in 
osmolar load, mitochondrial swelling with accumulation of amorphous matrix den-
sities, and sarcolemmal disruption. They again underscored the “wavefront” con-
cept, that in the anesthetized dog model of regional myocardial ischemia, severely 
ischemic cardiomyocytes were mostly dead by 60 min whereas moderate to mildly 
ischemic cardiomyocytes in the mid and epicardial myocardium “survived for as 
long as 6 hours” [59]. They noted that recovery after reperfusion was variable; 
whereas aerobic metabolism is restored within minutes, adenine nucleotides remain 
depressed even after 4 days, stunning disappears after 1–2 days, and the precondi-
tioning effect is mostly gone after 2  h [59]. Jennings had previously made the 
important observations that cell death developed within 20 min of ischemia, and 
infarcts were still developing between 60 and 120 min after occlusion in the dog 
model [18]. Using an anesthetized dog model of 40 min of coronary occlusion and 
3  days of reperfusion, they found a similar relation between infarct size post-
reperfusion and the region at risk defined by in vitro latex injection of the coronary 
bed [60]. Of note, reperfused infarcts display altered morphology with distinct 
patchiness [41], suggesting islands of surviving myocardium.

The concept of the stunned myocardium with “prolonged, postischemic isch-
emic ventricular dysfunction” was reviewed by Braunwald and Kloner [61] before 
the contribution of OXS and OFRs became apparent. They underscored two impor-
tant points: first, that brief episodes of non-lethal ischemia produced prolonged 
myocardial stunning associated with defects in function, metabolism and structure 
that persisted for days but eventually cleared; second, that repeated episodes of 
stunning caused chronic postischemic ventricular dysfunction which, if prolonged, 
could lead to ischemic cardiomyopathy [61].

14.2.8  �Clinical Experience with Reperfusion

Taken together, the aforementioned and other early studies laid the foundation for 
modern reperfusion therapy. From a historical perspective, several concurrent land-
mark clinical studies between the late 1970s and early 1980s demonstrated that 
timing was of utmost importance for myocardial salvage which is only optimal after 
very early reperfusion [1, 2]. Driven by the dream of salvaging as much of the isch-
emic myocardium in the jeopardized zone as possible, cardiologists marched for-
ward into the era of thrombolytic therapy early after the onset of acute MI to limit 
infarct size, salvage ventricular function and improve survival [62–66]. No cardiac 
surgeon would attempt CABG during that time frame. Fortunately in the mid to late 
1970s, Andreas Gruentzig pioneered the use of percutaneous transluminal coronary 
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angioplasty (PTCA) or percutaneous coronary intervention (PCI), which was first 
applied for patients with coronary stenosis as an alternative to CABG [67, 68]. 
Since unlike CABG, PTCA could be applied to more acute settings, this followed 
soon after, first for unstable angina [69] and then for acute MI [70–73]. These bold 
early steps burgeoned into the present generation of invasive and interventional car-
diologists whose principal goal is to achieve as prompt and complete recanalization 
of the IRA as possible [1, 2].

When Marcus de Wood first demonstrated coronary thrombosis in acute MI in 
the 1980s [6, 7], the finding gave an added boost to the mission of applying very 
early thrombolytic therapy to open the IRA. Indeed, that led to the salvage of mil-
lions of lives worldwide [1, 2]. The subsequent finding that restenosis of arteries 
opened by PTCA can occur by 6 months later [74] led to the performance of repeat 
PCIs and use of stents and various generations of drug-eluting stents (DES) and 
adjunctive therapies to maintain patency [1, 2, 7 5]. Still guided by the idea that “an 
open artery is by far better than an occluded one” and the well-known dictum “time 
is muscle,” every effort continues to be made to ensure earlier and earlier reperfu-
sion, often by combined timely PCI, coronary artery stenting, thrombolytic therapy, 
and even thrombus aspiration where applicable, in order to optimize myocardial 
salvage and limit reperfusion damage in acute MI [1, 2].

Primary PCI (PPCI) is now considered the preferred therapy in STEMI patients 
for whom lytics are contraindicated and those who are at high risk [76]. Moreover, 
Simari et al [76] found that, with regard to the ability to salvage jeopardized myo-
cardium, PPCI without prior lytic therapy was equally effective as lytics whereas 
“immediate adjunctive PTCA” after lytics was associated with increased risk; how-
ever, “rescue PTCA” after failed lytics was beneficial whereas “deferred PTCA” 
several weeks after MI in order to prevent recurrence of ischemia showed neither 
mortality nor re-infarction benefit [76].

Besides the choice of the ideal PCI approach, the issue of time delays still looms 
over us and needs to be addressed worldwide but that can be problematic [77–82]. 
Despite attempts to abbreviate the door-to-balloon (DTB) time by reducing patient 
transfer time, various other factors and obstacles are involved and have to be 
addressed (but this is beyond the scope of this chapter). Suffice it to underscore 2 
points: first, that De Luca et al found that every 30-min delay in delivery of PPCI 
increases mortality by 7.5% [83]; and second, that Cannon et  al found from an 
analysis of 4 registers that, in the real world, a DTB time of more than 90 min was 
associated with the worse prognosis [84].

The advent of the balloon catheter provided Hugenholtz and associates the 
opportunity to study physiologic responses to episodes of ischemia in patients 
undergoing PTCA for coronary stenosis. They made 2 pertinent observations; first, 
they found that 40–60 s of coronary occlusion did not produce persistent dysfunc-
tion of ventricular mechanics, myocardial blood flow or lactate metabolism [85]; 
second, they documented that recovery of diastolic function was delayed after flow 
and systolic function had recovered [86]. These findings, and others up until two 
decades ago, led Heusch to comment in a most compelling and provocative article 
that although “stunning has emerged as an important paradigm of I/R injury” “its 
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clinical importance appears minimal” [87]. However, Heusch also noted that with 
balloon inflation or occlusion of 4–7 min or more, PTCA does produce stunning 
that resolves after 24 h [88].

Clearly, even at the most physically accessible centres with readily available 
PPCI, most patients arrive more than 30 min after the onset of STEMI. The sobering 
fact remains that, despite impressive improvement in mortality and morbidity after 
STEMI and acute coronary syndromes over the last four decades as a result of 
timely reperfusion and adjunctive therapies and adherance to published manage-
ment guidelines [1, 2, 75], there is still a 7% mortality and 22% morbidity, respec-
tively, at 1 year after prompt reperfusion and PPCI in patients with STEMI [1, 3, 
89]. There is therefore a need to target reperfusion injury in patients with STEMI 
aggressively [90] despite the “trials and tribulations” [3].

14.2.9  �Some Known Mechanisms and Potential Targets 
of Reperfusion Injury

The question that remains is, what else to target?
Extensive research has shed light on several molecular and cellular mechanisms 

and mediators of I/R injury that could potentially be targeted by interventions to 
attenuate the injury [91–93] and some of these are depicted in Fig.  14.4. Taken 
together, the evidence suggests that remodeling of cellular, subcellular, metabolic 
and molecular processes during ischemia prime the myocardium for further damage 
during reperfusion. The main changes that set the stage for I/R injury are summa-
rized in Fig. 14.3.

Briefly, the key metabolic, structural and functional changes during ischemia 
include: (i) aerobic metabolism shutdown with a switch to anaerobic metabolism 
and glycolysis, and downstream consequences; (ii) depletion of high-energy phos-
phate stores such as ATP and CP; (iii) H+ overload with reduced intracellular pH, 
cation redistribution, increased lactate, and osmotic overload; (iv) structural remod-
eling with cell swelling and disruption of cell, mitochondria, sarcolemma and sar-
coplasmic reticulum (SR); (v) decreased mitochondrial pyruvate dehydrogenase 
(PDH) that persists 30 min post-reperfusion [93–95]; (vi) contractile failure with 
functional recovery if reperfusion is achieved within 30 min.

Based on the aforementioned reviews [3, 61–64, 91–93], some known key pro-
cesses that can be targeted during and after reperfusion to reduce or limit I/R dam-
age include (Fig. 14.4): (i) free radical overload with OFRs and oxidants and the 
resulting OXS; (ii) pro-inflammatory cytokine overload with interleukin (IL)-6 and 
tumor necrosis factor (TNF)-α and increased inflammation; (iii) metabolic remodel-
ing with H+ ion, Ca2+ ion and osmotic overload; (iv) structural damage to organelles 
and membranes including the mitochondria and its membranes, the plasmalemma, 
SR and nuclear membrane; (v) persistent ventricular dysfunction, stunning and no-
reflow; and (vi) cell death with necrosis and apoptosis (Fig. 14.5).
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14.2.10  �Reactive Oxygen Species Overload

The known contributors to ROS or OFR overload during I/R include increased 
superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), hypo-
chlorite (HOCl) and NO-derived peroxynitrite (NOO−) [96–98]. Oxygen molecules 
are reduced to the ROS superoxide (O2•−). With post-ischemic reperfusion, ROS 

Reperfusion after  ≥ 15 min of ischemia Potential Pharmacological Interventions 
• Intracellular remodeling

- oxidative stress  (↑ ROS) - antioxidants (SOD+catalase, glutathione peroxidase); N-
acetyl cysteine; mercapto-propionyl-glycine

- ↑ inflammation (↑ ROS) - inhibitors of inflammation (TGFβ, IL-10)
- Ca2+ overload - Ca2+ channel inhibitors, exchangers
- platelet activation - antiplatelet agents
- leucocyte aggregation - inhibitors of neutrophil aggregation & activation
- endothelial dysfunction - vasodilators, adenosine, K-ATP channel opener, NO
- H+ overload - Na+/H+ exchange or antiporter  inhibitor (cariporide)

•Metabolic remodeling
- depletion of high energy stores - adenosine, insulin
- ↑ proteolytic activity (calpain) - protease inhibitors; calpain inhibitors
- ↑ arrhythmias - anti-arrhythmic agents

•Remodeling of gene expression - mRNAs; gene therapy (prophylactic); gene transfer (Ec-SOD)
- miRNAs (miRNA-126, 133, 144) 

•Remodeling of translation mechanisms - several potential targets

•Remodeling of cardiac function
- ventricular dysfunction

- Myofibril desensitization to Ca2+

- post-ischemic conditioning; NO modulation; K-ATP  channel 
opener; NO/cGMP pathway (ANP, GIK); Exenatide;  liraglutide; 
NO; NO-donor  & nitrite
- inotropes

- stunning - remote ischemic conditioning; SOD+catalase; ARBs; ACE-Is

- apoptosis & necrosis - Na+/K+ exchange inhibitor, cariporide
- CaMKII inhibition for RIP3-mediated programmed cell 
necrosis

- no reflow - ARBs; SOD+catalase; adenosine+lidocaine; endothelin A 
antagonists; glyceryl trinitrate; verapamil; papaverine, 
nicorandil; NO donor (nitroprusside); glycoprotein IIb/IIIa 
receptor antagonist (abciximab); eptifibatide; micro-embolism 
device

•Remodeling of mitochondrial function
- PDH inhibition
- Mitochondrial depolarization

- PDH stimulation, pyruvate; accelerate recovery of aerobic 
metabolism (adenosine, insulin) for cardioplegia (insulin 
induces ↑ PDH,  ↓ Lactate, ↑ ATP)

- opening of MPTP - MTP-131 (Bendavia), Cyclosporin-A, TRO40303, PKCδ
- MPTP inhibitors

• Multiple targets Hypothermia, metopolol, adenosine

Fig. 14.4  Schematic of mechanisms of myocardial ischemia-reperfusion injury and stunning, and 
potential targets for limitation. (Adapted from: Bolli and Marban [91]; Reffelmann and Kloner 
[92]; Man, Tymchak and Jugdutt [75]; Ducas, Bartekova and Dhalla [93]; and Hausenloy et al [3]). 
Abbreviations as defined in the text
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may be produced by both enzymatic and non-enzymatic systems, and in both car-
diomyocytes and infiltrating inflammatory cells. The main sources of ROS include 
enzymes in mitochondrial ETC, plasma membrane, peroxisomes, endoplasmic 
reticulum and nuclear membrane, and other enzymes such as xanthine oxidase, 
myeloperoxidase, P450 enzymes, some of which are found in macrophages and 
neutrophils of the inflammatory reaction, and soluble heme-proteins (Fig.  14.6) 
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Fig. 14.5  Key processes that can be targeted during ischemia and reperfusion. Ca2+ calcium ion, 
IRA infarct-related artery, MPTP mitochondrial permeability transition pore, OFR oxygen free 
radical, PCI percutaneous coronary intervention, NSTEMI non-ST segment elevation MI, STEMI 
ST-segment elevation MI
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[98]. The ROS produced by cardiomyocytes and infiltrating inflammatory cells lead 
to cellular damage through disruption of membranes and proteins as well as activa-
tion of various cell death pathways that trigger apoptosis [99, 100] (Fig. 14.7). In 
addition, reperfusion itself stimulates neutrophil activation and accumulation of 
ROS; lipid peroxidation in membranes also contributes ROS. While nitric oxide 
itself is not reactive, nitric oxide synthases (NOS) generate reactive •NO whereas 
NADPH oxidases (NOX) generate reactive superoxide which interacts to yield 
highly reactive peroxynitrite [98]. Peroxynitrite leads to the formation of hydroxyl, 
nitrite and carbonate radicals which mediate cell damage and tyrosine nitration 
which serves as a biomarker of OXS [98]. Redox-active transition metals, such as 
Fe3+ and Cu2+, potentiate the oxidant activities and enhance ROS production 
(Fig.  14.6) [98]. ROS overload, in turn, exerts several harmful effects: (i) it 
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Fig. 14.6  Schematic of main sources of oxidants, superoxide and peroxynitrite. Adapted from 
Bartesaghi and Radi [98]. Peroxynitrite (ONOO−) is cytotoxic and enhances cell damage during 
reperfusion following ischemia and can cause protein tyrosine nitration which can serve as a bio-
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stimulates platelets to release platelet activating factor, thereby attracting more neu-
trophils that aggravate I/R damage; (ii) it attenuates nitric oxide function and 
enhances endothelial dysfunction through peroxynitrite formation, thereby aggra-
vating I/R damage; and (iii) it induces blunting of endothelium-dependent vasodila-
tion and enhances endothelin-1-induced vasoconstriction, and thereby contributes 
to decreased reflow.
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Fig. 14.7  Role of mitochondria in oxidative stress and ischemic myocardial damage. ATP ade-
nosine triphosphate
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Clearly, ROS overload is the result of a failure of endogenous homeostatic mech-
anisms; the scavenging ability of endogenous anti-oxidants such as SOD, glutathi-
one peroxidases, catalase, and peroxiredoxins is overwhelmed (Fig.  14.6). SOD 
catalyzes dismutation of superoxide to form H2O2 and inhibits the formation of 
peroxynitrite [98], while catalase, glutathione peroxidases and peroxiredoxins get 
rid of H2O2, peroxynitrite and lipid peroxides [98]. However, despite extensive evi-
dence suggesting that administration of exogenous anti-oxidants including SOD, 
xanthine oxidase inhibitors (such as allopurinol), N-acetyl cysteine, vitamin E and 
vitamin C produces favorable results in experimental animal studies, overall clinical 
experience has been disappointing [1, 2]. Inflammation is known to activate plate-
lets which aggregate into white heads that acquire red tails (made up of fibrin and 
trapped red cells) that provide the matrix for thrombi that plug the vessels. Other 
changes associated with intracellular remodeling include increased proteolytic 
enzyme activity and remodeling of gene expression and translation mechanisms 
[93]. Of note, ROS is thought to peak in the first 2–10 min after reperfusion [92]; 
however, since the inflammatory reactions extend far beyond 10 min of reperfusion, 
they can be expected to contribute to the ROS pool well beyond the post-reperfusion 
phase into the subsequent healing phase and have important pathophysiological and 
therapeutic implications [56, 99–101].

14.2.11  �Persistent Ventricular Dysfunction, Myocardial Stunning 
and No-reflow

Remodeling of cardiac function includes the development of hypercontracture, 
apoptosis and necrosis, endothelial dysfunction, stunning, and associated arrhyth-
mias [93]. Whereas the common belief is that reperfusion can cause stunning with 
prolonged but eventually reversible contractile dysfunction without necrosis, the 
“no-reflow” refers to failure of complete restoration of flow in the reperfused zone 
and is associated with cell death. Several investigators have pointed out the exis-
tence of a flaw in the notion that restoration of flow in the epicardial IRA implies 
100% reperfusion of the jeopardized myocardium [56, 92, 101–103]. It is now 
apparent that “no-reflow” is due to a combination of endothelial cell dysfunction 
and vascular damage with apoptosis and necrosis [56, 92, 100–103].

Kloner and colleagues found that anatomic no-reflow occurs after 90  min of 
ischemia and is associated with ultrastructural evidence of endothelial damage in 
the microvasculature of the endocardium [101]. Other pertinent findings included 
capillary plugging with platelet clumps and fibrin thrombi, and irreversible cardio-
myocyte damage with reperfusion after 60 min of ischemia [101]. Becker and col-
leagues demonstrated, in an anesthetized dog model of coronary occlusion for 
90 min followed by reperfusion at repeated intervals between zero and 180 min, that 
necrosis, determined by electron microscopy, occurs during reperfusion, and the 
duration of reperfusion was an independent predictor of irreversible injury [103]. In 
an earlier study, they found that, in the anesthetized dog model of 90 min of coro-
nary occlusion followed by reperfusion for 2 min and 3.5 h, it is myocardium with 
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very low flow during ischemia (measured by the microsphere technique) that shows 
no-reflow (measured by fluorescent thioflavin-S uptake); they also noted that flow 
declines progressively in previously well reperfused areas, areas with delayed 
impairment of flow show “intracapillary erythrocyte stasis” and “intravascular neu-
trophil accumulation”, and areas with early no-reflow show contraction band necro-
sis [102].

In a dog model of reperfused STEMI, Jugdutt’s group [56] showed that reperfu-
sion at 90 min after LAD coronary occlusion was associated with increased pro-
inflammatory markers such as inducible-nitric-oxide-synthase (iNOS), cytokines 
interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and anti-inflammatory mark-
ers such as transforming-growth-factor (TGF)-β1 and IL-10; in addition, they found 
evidence of increased cardiomyocyte damage (ischemic injury, infarct size, apopto-
sis, blood flow impairment, and no-reflow), adverse left ventricular (LV) remodel-
ing with LV dilation and dysfunction as well as adverse extracellular matrix (ECM) 
remodeling with increased expression of matrix metalloproteinase (MMP) -9 and 
MMP-2, matrix proteases such as secretory-leucocyte-protease-inhibitor (SLPI), 
secreted-protein-acidic-and-rich-in-cysteine (SPARC), as well as osteopontin 
(OPN) and ADAM-10 and -17. In the same study, they showed that aging results in 
age-dependent increases in markers of myocardial and vascular damage, as well as 
markers of adverse structural and matrix remodeling after STEMI [56]. In addition, 
they showed that early therapy initiated at the onset of reperfusion with the angio-
tensin II type 1 receptor blocker (ARB) candesartan attenuated all these changes 
[56]. While these findings await confirmation in properly designed RCTs, the ben-
eficial effect of an ARB on recovery of ventricular function after IR was also dem-
onstrated in several studies using diverse experimental models [104–111]. The 
importance of timing of pharmacotherapy to match biology for optimal benefit was 
emphasized before [112].

14.2.12  �Strategies to Quench ROS and Reduce OXS by Exogenous 
ROS Endogenous Scavengers

The idea that the endogenous SOD pathway is overwhelmed during reperfusion led 
Becker’s group to test therapy with exogenous SOD to boost scavenging ability and 
quench ROS. While a study with recombinant human SOD given at the time of 
reperfusion in the dog model of 90 min of LC coronary occlusion showed benefit 
[41], a subsequent RCT with therapy before PTCA in STEMI patients did not [113]. 
Kloner and associates also tested SOD combined with catalase, another anti-oxidant 
in the endogenous enzyme system for ROS homeostasis, and found that treatment 
given at the time of reperfusion after 120 min of LAD coronary occlusion in the dog 
model did not reduce infarct size (by triphenyltetrazolium staining) or improve sub-
epicardial contractile function (by sonomicrometry) but did attenuate endocardial 
microvascular injury and “low reflow” and improve regional blood flow [92, 114]. 
Interestingly, Bolli et  al also showed that SOD plus catalase, given over 15 min 
before and continued for 30  min after reflow, did block ROS production in the 
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stunned zone and improve functional recovery in the dog model [115]. Additionally, 
they found that significant amounts of ROS, measured by electron paramagnetic 
resonance and a spin trap in the venous effluent from the stunned zone (via a cath-
eter positioned in the anterior interventricular vein), persisted for several hours after 
reflow although the peak was over the first 20 min [115].

The collective findings of benefit with the therapies to quench ROS and alleviate 
OXS await confirmation in a properly designed RCT. The past studies illustrate that 
myocardial stunning with no-reflow and necrosis after reperfusion are very real [56, 
92, 99–103, 112–115], and not so “rare” as suggested before [116] and are in need 
of therapy [2, 3, 89, 117]; indeed, the dire consequences may be grave and have a 
negative impact on mortality [2, 3, 89, 117] as well as morbidity and quality of life 
in a significant number of patients.

14.2.13  �Quenching ROS and Attenuating OXS in Patients 
with STEMI

Eight pertinent points, in translating experimental data to the bedside, need to be 
taken into account. First, humans with MI tend to be middle-aged, older adults, or 
elderly, and aging may blunt the response to therapy as found with an ARB after 
reperfused STEMI in dogs [56] and with post-ischemic conditioning in mice [118, 
119]. Second, age equivalence should be taken into account when assessing thera-
pies in animal models, [112]; for example, a 6-week old mouse or rat would be 
equivalent to a young human child and not even a young adult [112]. Third, ROS 
production also occurs during healing phases of acute and chronic inflammation and 
need to be taken into account [118, 120–123]. Fourth, the rate of reperfusion in 
animal models is usually more abrupt than in humans undergoing PCI and/or throm-
bolysis [118]. Fifth, besides SOD and catalase, other endogenous protective mecha-
nisms against ROS exist during I/R such as adenosine [92], opening of ATP-sensitive 
potassium (K-ATP) channels [116], and release of nitric oxide [124]. Sixth, ROS 
overload and injury after reperfusion of STEMI in humans may be enhanced by 
comorbidities such as hyperlipidemia, hypertension and diabetes that aggravate 
endothelial dysfunction [2, 3, 116]. Seventh, targeting I/R injury and OXS in 
humans is complicated by the multiple factors, players, mechanisms, mediators, 
signaling pathways, background drugs, pathologies, approaches, and timings 
involved [1–3] (Fig. 14.3, 14.4, 14.5, 14.6, and 14.7). Eighth, despite successful 
PPCI after STEMI and achieving TIMI grade 3 flow in epicardial IRAs, reperfusion 
at the tissue level is often incomplete in as many as 9–15 % of patients due to a 
combination of microvascular damage and distal embolization of bits of thrombi 
and debris from atherosclerotic plaques [125, 126]. Of note, while the latest guide-
lines do not recommend routine aspiration thrombectomy or devices such as filter 
wires and umbrella PPCI [2], they recognize their usefulness in some cases so long 
as steps are taken to prevent systemic emboli [125].
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14.2.14  �Metabolic Remodeling of Cation Movements

Metabolic remodeling of cation movement and Ca2+ overload during I/R deserve 
further comment. It is known that in normal cardiomyocytes, depolarization is asso-
ciated with a rapid sequence of activation of sodium channels, increase in intracel-
lular sodium, release of calcium from SR, actin-myosin coupling and binding to 
troponin, sarcomere shortening, and generation of force and contraction. During 
subsequent repolarization, sodium/potassium (Na+/K+) ATPase and sodium/calcium 
(Na+/Ca2+) exchangers restore intracellular homeostasis. Ducas et  al summarized 
the ionic movements during I/R [93]. The switches to anaerobic metabolism during 
ischemia and back to aerobic metabolism during reperfusion set forth the tandem 
development of cytosolic H+ ion or proton overload and acidosis, Ca2+ ion overload, 
and lactate and osmotic overload that trigger a march to cell injury, damage to 
organelles (mitochondria, SR and sarcolemma), contractile dysfunction and death 
[93]. The critical role of membrane transporters in the regulation of pH has been 
reviewed by Karmazyn and associates [127, 128]. H+ ion overload triggers the 
sequential activation of the sodium/hydrogen (Na+/H+) ion exchanger, exchange of 
H+ ions for Na+ ions with a build-up of intracellular Na+ ions, activation of the sar-
colemmal Na+/Ca2+ ion exchanger, exchange of Na+ for Ca2+ ions, development of 
intracellular Ca2+ overload, stimulation of Ca2+ ATPase, depletion of ATP, and 
adverse structural remodeling of transmembrane pumps and exchangers [93, 127, 
128]. The depletion of high energy phosphates during ischemia attenuates the activ-
ity of Na+/K+ ATPase and its ability to clear excess Na+ ions during ischemia [93]. 
Structural remodeling of the transmembrane pumps and exchangers modify the 
amino-acid and sulfhydryl terminals of proteins, and thereby dampen their ability to 
shift cations [93]. Damage to the sarcolemmal pumps with reflow facilitates the 
massive shift of Ca2+ from the SR. Evidence suggests that Na+/K+ exchange medi-
ates IR injury and its inhibitors are beneficial [127].

14.2.15  �Mitochondrial Pyruvate Dehydrogenase and Contractile 
Dysfunction

Studies to address the persistent contractile failure often seen during reflow after 
cardioplegic arrest pointed to mitochondrial PDH as a potential therapeutic target. 
The collective evidence suggests that the activity of mitochondrial PDH, a critical 
enzyme that converts pyruvate arising from glycolysis (anaerobic metabolism) to 
form acetyl-CoA for the Krebs cycle through oxidative decarboxylation, is reduced 
during flow-induced ischemia as well as reperfusion causing contractile dysfunction 
that can be salvaged by either stimulating PDH or infusing pyruvate. The reason for 
the high lactate and reduced ATP, frequently associated with low-output failure dur-
ing reflow after corrective surgery in children with cyanotic heart disease, was 
traced to impaired aerobic metabolism due to transcriptional downregulation of 
mitochondrial enzymes such as PDH, as well as cytochrome-c oxidase, succinate 
cytochrome-c reductase, succinate dehydrogenase, and citrate synthase [95]. 
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Subsequently, the high lactate, associated with contractile dysfunction and low car-
diac output during reperfusion after cardioplegic arrest in patients undergoing 
CABG, was explained by a delayed switch-back from anaerobic to aerobic metabo-
lism and persistent generation of lactate from glycolysis [94].

In the isolated rat heart model, Churchill et al studied the likely mechanism for 
ischemia-induced PDH inhibition and its partial recovery during reperfusion, and 
showed that reperfusion-induced translocation of δPKC to the mitochondria leads 
to phosphorylation and activation of PDH kinase-2 that results in phosphorylation-
dependent PDH inhibition [129]. Interestingly, in the transgenic mice model with 
chronic inhibition of PDH induced by overexpression of PDH kinase-4, an inhibitor 
of PDH, together with an insulin-resistance profile, Chambers et  al found that 
chronic activation of PDH kinase-4 triggered “transcriptional and post-transcriptional 
mechanisms that re-program the heart for chronic high rates of fatty acid oxidation” 
without adverse functional or metabolic sequelae [130]. Taken together, the findings 
suggest that newer approaches may be found for treating contractile dysfunction 
during I/R besides pharmacologic stimulation of PDH.

It is interesting to note that the piperazine compound ranolazine, which is 
approved as an anti-anginal agent, was originally considered for its inhibition of 
fatty acid oxidation, shift to more energy efficient glucose oxidation with improved 
ATP/O2, and attenuation of the build-up of H+ ions, lactate and fatty acyl intermedi-
ates [131]; it was later shown to inhibit β1 and β2 adrenoceptors, inhibit late Na+ 
channels, and lower total inward Na+ flux and the subsequent Ca2+ overload; it was 
also shown to reduce the late inward Ca2+ current, inward Na+/Ca2+ exchange cur-
rent, and the outward repolarizing rectifier K+ current [132]. These latter effects 
expanded the application of ranolazine from chronic stable angina to suppression of 
arrhythmias in patients with ischemic heart disease [132]. The clinical trials with 
ranolazine [132, 133] illustrate the problems of testing efficacy of new pharmaco-
logical agents on top of recommended background therapies (Tables 14.1 and 14.2).

14.2.16  �Reperfusion and Mitochondrial Damage

Damage to mitochondria during reperfusion makes them dysfunctional and the 
main contributors to the damage are protons, Ca2+ ions, and osmotic and ROS over-
load which depend on the severity and duration of prior ischemia. A critical event is 
the prompt opening of the mitochondrial permeability transition pore (MPTP) of the 
inner membrane and other membrane channels within minutes of reperfusion; this 
results in free traffic of proteins across the outer membrane, increased osmotic 
stress on the outer membrane, eventual membrane rupture and release of mitochon-
drial proteins and ROS [93]. The damaged mitochondria also leak cytochrome C, 
proteases and caspases, and trigger cell death pathways. Mitochondrial Ca2+ over-
load leads to uncoupling of oxidative phosphorylation and reduced ATP production 
(switch from synthesis to hydrolysis), which in turn accentuates altered ion gradi-
ents and degradation of cellular enzymes [93, 134, 135]. Opening of the MPTP 
upon reperfusion has been linked to several events, some of which are connected to 
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Table 14.1  Pharmacologic 
agents during acute STEMI 
and reperfusion

Thrombolytics
Antiplatelet agents
 � P2Y12 inhibitor 

(prasugrel, ticagrelor), 
clopidogrel

 � aspirin
 � GPIIb/IIIa inhibitors
 � cangrelor
Anticoagulants
 � unfractionated heparin
 � bivalirudin
 � enoxaparin
 � fondaparinux
Fibrinolytics
 � fibrin-specific agent 

(tenecteplase, alteplase, 
reteplase)

 � antiplatelet agents 
(aspirin, clopidogrel, 
P2Y12 inhibitor)

 � anticoagulants 
(enoxaparin, 
unfractionated heparin)

Table 14.2  Maintenance 
after STEMI [1, 2]

Antithrombotic agents
 � aspirin
 � antiplatelet agents
 � proton pump inhibitors
 � oral anticoagulants
Beta-blockers
Lipid lowering agents
 � statins
 � ezetimide
 � PCSK9 inhibitors
Nitrates
Calcium antagonists
Angiotensin-converting 
enzyme (ACE) inhibitors 
& angiotensin II receptor 
blockers (ARBs)
Mineralocorticoid/
aldosterone receptor 
antagonists (MRAs)
 � eplerenone
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altered Ca2+ and H+ homeostasis, including: (i) hypercontracture resulting from high 
and oscillating Ca2+ as ATP supply increases [3, 136]; (ii) dysregulated activation of 
calpain as the pH is normalized; calpain is a member of the non-lysosomal neutral 
cysteine protease family that is regulated by the endogenous inhibitor calpastatin [3, 
137]; (iii) increased Ca2+ overload due to activation of the calcium-dependent 
enzymes calcineurin and Ca2+/calmodulin kinase II (CaMKII) [3, 137]; calcineurin 
activation is thought to be due to increased cytosolic Ca2+ mediated by dephos-
phorylation of phospholamban and inhibition of Ca2+-ATPase (SERCA) activity 
and Ca2+ uptake in SR; and CaMKII activation is thought to hasten recovery of pH 
by phosphorylation of the Na+/H+ exchanger, modulation of Ca2+ entry into the cell 
and reactivation of processes suppressed by high H+ [3, 137]. CaMKII activation 
and MPTP opening may also be involved in receptor-interacting protein 3 (RIP3)-
mediated programmed cell necrosis and apoptosis (necroptosis) after I/R [3, 138]. 
ROS overload is another important cause of MPTP opening, and quenching of mito-
chondrial ROS by inhibition of succinate dehydrogenase with malonate has been 
suggested to prevent MPTP opening and limit infarct size [3, 139]. Since ROS 
induces endothelial NOS uncoupling at the onset of reperfusion, it has been sug-
gested that the NO-dependent activation of the cGMP/phosphokinase G (PKG) 
pathway that is involved in postconditioning-induced cardioprotection is due to 
attenuation of superoxide production at the onset of reperfusion, thereby reducing 
oxidation of tetrahydrobiopterin (BH4) which is a cofactor in NOS coupling, and 
limiting NOS uncoupling [140]. Inhibition of mitochondrial ROS-triggered activa-
tion of NADPH-oxidase has been shown to attenuate mitochondrial derived super-
oxide production [141], suggesting that mitochondria might be a focus for 
anti-oxidant treatment [142].

14.2.17  �Central Role of Mitochondria in Oxidative Stress

It is known that the myocardium depends on a continuous supply of high energy 
ATP in order to maintain normal contractile function and cardiac output to ensure 
organ perfusion during a lifetime. The ATP is supplied by oxidative phosphorylation 
of substrates and the ETC in the myocardial mitochondrion. The principal substrate 
for ATP generation is through mitochondrial β-oxidation of fatty acid, followed by 
oxidation of glucose, lactate, amino acid and ketones, as well as glycolysis [97, 
143]. Besides being the powerhouse for energy production, the mitochondrion also 
plays a central role in the production of ROS in tissues throughout the body includ-
ing the myocardium [96, 97, 144] (Fig.  14.7). In addition, the mitochondrion 
orchestrates the homeostasis of redox and calcium and thereby regulates suscepti-
bility to myocardial injury and programmed cell death or apoptosis. In order to 
ensure these functions in myocardium, the population of mitochondria in myocar-
dium is abundant, making up about 25% of the volume of cardiomyocytes [20, 145].
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14.2.18  �The Myocardial Mitochondrion and Homeostasis 
of Reactive Oxygen Species

Under normal conditions, the production of ROS is tightly regulated in all tissues. 
In fact, low levels of ROS modulate normal mitochondrial and cellular signaling 
and function, and maintain redox homeostasis [97]. An imbalance in ROS produc-
tion and removal via degradation or consumption results in increasing levels of ROS 
and OXS.  As mentioned before, the production of ROS in tissues involves both 
enzymatic and non-enzymatic systems, and the removal of ROS typically involves 
endogenous antioxidants, ROS scavengers and other removal systems (Fig. 14.4). 
However, as mentioned before, ROS removal mechanisms may be overwhelmed 
during various pathologies, and increasing levels of ROS can be very damaging to 
all tissues, including the myocardium, especially during injury [97]. During myo-
cardial ischemia, IR, MI and reperfused MI, high ROS levels are very damaging, 
can exacerbate myocardial injury and contribute to further myocardial damage, dys-
function, adverse cardiac remodeling and heart failure in tandem sequence, setting 
up a vicious cycle (Fig. 14.7). Unchecked, this cycle leads to increased mortality 
and morbidity after MI.

Of interest, evidence suggests that mitochondria are programmed for different 
functions in different cells and tissues [146] so that different phenotypes exist. 
Which specific substrate is used for myocardial mitochondrial metabolism depends 
on the specific underlying pathology; here we focus on myocardial ischemia, IR and 
MI, but other conditions including myocardial hypertrophy, heart failure and dia-
betic cardiomyopathy differ in substrate use [20, 147, 148].

Mitochondrial oxidative metabolism involves oxidative phosphorylation with 
oxidation of the substrate, reduction of NAD and FAD, donation of electrons down 
the ETC and complexes I to IV, utilization of oxygen and generation of ATP [97, 
149]. Both genetic and acquired mechanisms such as myocardial ischemia and MI 
can disrupt mitochondrial oxidative phosphorylation. This disruption of mitochon-
drial oxidative phosphorylation and ETC not only impairs ATP generation, but is 
also associated with impairment of intracellular homeostasis of calcium and ROS, 
which triggers a vicious cycle of decreased contractile function and increased ROS 
generation, decreased cardiac output and alteration in redox balance, and increased 
myocardial damage and heart failure [97].

Although the SR is the main organelle that regulates Ca2+, the shift of cytosolic 
Ca2+ into mitochondria normally serves to activate the various enzymes needed for 
oxidative phosphorylation to generate ATP for contraction; however, during Ca2+ 
overload as with I/R, the mitochondria act as a sink for Ca2+ which leads to mito-
chondrial ROS production and activation of cell death [97]. Evidence exists of 
cross-talk between mitochondria and the nucleus [149], the SR and other 
organelles.

Further discussion of other aspects of ROS biology is beyond the scope of this 
chapter but is reviewed elsewhere. Some of the therapies that were used for I/R in 
patients [150] are listed in Table 14.3.
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14.3	 �2018 Update on Therapies for Quenching ROS 
and Limiting Reperfusion Damage

The question that remains is, what else and how to target? Hausenloy and colleagues 
have provided a summary of the therapies that have shown or might show benefit 
[3]. As previously underscored, the multiplicity of factors, players, mechanisms, 
mediators, signaling pathways, background drugs and pathologies involved, and the 
approaches and timings employed [1–3] add to the complexity of the problems of 
what and when to target. A clear understanding of the underlying mechanisms and 
their interplay is imperative in designing RCTs. For example, concerning the central 
issue of cardiomyocyte cell death alone, besides well-known mechanisms of apop-
tosis and necrosis [99, 100], such as Ca2+ overload, osmotic overload, proton over-
load, metabolic remodeling, OXS, inflammation, and mitochondrial dysfunction 
(Figs. 14.4 and 14.5), additional mechanisms that contribute to I/R injury and infarct 
size [3] include: (i) no-reflow due to microvascular injury and dysfunction; (ii) 
attraction of inflammatory cells into the injured zone due to increased permeability 
of endothelium; (iii) platelet activation and adhesion to reperfused endothelium due 
to P-selectin-ligand interactions, GPIIb/IIIa binding to fibrinogen, or fibronectin 
receptor and platelet-leucocyte conjugate formation [151]; (iv) enhanced inflamma-
tion and I/R damage due to inflammasome activation in cardiac fibroblasts [152]; 
(v) duration of ischemia which modulates mitochondrial permeability transition 

Table 14.3  Summary of therapies targeting reperfusion injury in patients with acute myocardial 
infarction

Ischemic conditioning
 � Post conditioning several positive MI studies
 � Remote conditioning several positive MI studies
NO/cGMP pathway
 � Atrionatriuretic peptide (ANP) one positive MI study
 � Glucose-insulin-potassium (GIK) inconsistent results
 � Exenatide positive MI studies
 � Nitric oxide/nitrite inconsistent results
Mitochondria and MPTP
 � MTP-131 (Bendavia) neutral study
 � Cyclosporine A inconsistent/neutral study
 � TRO40303 (mitochondrial targeting drug) neutral MI study
 � PKC-δ inhibition neutral MI study
Multiple targets
 � Hypothermia neutral MI study
 � Metoprolol positive MI study
 � Adenosine inconsistent MI study

MI myocardial infarction
Adapted from Hausenloy [3]
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(calcein) and I/R-induced cardiomyocyte death [153]; and (vi) duration of ischemia 
and timing of reperfusion, which when made late, after 2 h, does not limit infarct 
size despite benefits on overall ventricular remodeling [154, 155].

Several interventions were attempted but produced variable results (Table 14.3). 
First, anti-inflammatory therapy given at the time of reperfusion was neutral [156, 
157]. Second, preconditioning was extensively reviewed [90, 158, 159] and studied 
in patients [3, 150]; ischemic post-conditioning (I-Post) applied after reopening the 
IRA was shown to reduce infarct size assessed by enzyme release, nuclear imaging 
and MRI in patients with STEMI [160, 161]. Third, remote ischemic conditioning 
(RIC) using transient arm or leg ischemia was shown to reduce infarct size in 
patients with CABG [162], and in STEMI in patients reperfused by PPCI or throm-
bolysis [163]; long-term outcomes are under study. Fourth, since NO/cyclic guano-
sine monophosphate (cGMP) signaling is blunted in reperfused MI, therapies 
targeting NO/cGMP signaling pathway were studied; particulate guanylate cyclase 
with natriuretic peptide (NP) was shown to reduce infarct size [164] whereas GIK 
produced mixed results [165]. Fifth, since anti-diabetic glucagon-like peptide-1 
(GLP-1) reduces MI size in experimental studies, it was studied in STEMI patients; 
the GLP-1 analog exenatide reduced I/R injury and MI size including after PPCI 
[166–168] while the analog liraglutide only improved systolic function in STEMI 
patients [169]. Sixth, NO and nitrite showed no benefit in STEMI and PPCI patients 
[170, 171] but reduced MI size in patients with a fully occluded IRA in one study 
[172]. Seventh, Cyclosporin A (CsA) which inhibits MPTP opening was successful 
in some animals [173–177] but failed when given before PPCI in STEMI patients 
[89, 178–180] or during aortic valve surgery [181].

Eighth, the mitochondrial targeting peptide MTP-131 or Bendavia, which 
reduces ROS production by targeting cardiolipin in the inner mitochondrial mem-
brane, was shown to reduce MI size after I/R in animal models [182, 183] but failed 
to reduce MI size in STEMI patients when given before PPCI [184, 185]. Ninth, 
angiotensin II is known to stimulate ROS production and release of NO, activate 
NADPH oxidase, and generate superoxide and peroxynitrite, in addition to produc-
ing several other harmful cardiovascular effects. After I/R, angiotensin II type 1 
receptor blockers (ARBs) have been shown to exert several beneficial effects in 
experimental animal models of I/R [56, 104–111], including attenuation of OXS in 
heart failure [109], inhibition of apoptosis [56, 110], reduction of infarct size and 
no-reflow [56], reversal of post-transcriptional modification of δ-subunit of ATP 
synthase [106], alteration of metabolic, functional and structural proteins [104], 
improvement of matrix protease balance [105], improvement of pro- and anti-
inflammatory cytokine balance [56], and upregulation of beneficial angiotensin II 
type 2 receptors [107, 108]. Tenth, the β-adrenergic blocker metoprolol given before 
I/R has been shown to reduce MI size in experimental animals [186], and limit MI 
size when given in the ambulance before PPCI in patients with STEMI [187, 188]; 
the results of another study using MRI for MI size are pending [189]. Eleventh, the 
mitochondrial targeting drug, TRO40303, which targets inhibition of MPTP open-
ing and reduces ROS through binding to the translocator protein TSPO in the outer 
mitochondrial membrane, was shown to limit MI size in small animal studies [190] 
but failed to do so in a large animal model [191] and in STEMI patients [192]. 
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Twelfth, protein kinase C-δ inhibition, a known mediator of ischemic precondition-
ing, was promising in one study of intracoronary delcasertib given before PPCI in 
STEMI patients [193] but a subsequent study of intravenous delcasertib failed to 
reduce MI size after STEMI [194]. Thirteenth, adenosine, which is known for its 
cardioprotective effects, has produced inconsistent results with respect to reduction 
of MI size during STEMI [3, 195], although a recent metanalysis revealed benefit in 
heart failure after reperfused STEMI [196]. Fourteenth, with regard to effects of 
other targets on MI size in reperfused STEMI, hypothermia has produced neutral 
results [3]. Fifteenth, FXO6, a naturally occurring peptide derived from human 
fibrin, was found to limit MI size in animal models of I/R injury and was recently 
shown to reduce the necrotic zone evaluated by MRI when given at the onset of 
reperfusion in STEMI patients [156]. Sixteenth, another interesting recent target is 
use of the catalytic antioxidant Mangafodipir as a cardioprotective adjunct during 
PPCI in STEMI patients; the initial results showed a trend towards benefit [197].

14.4	 �Future Directions

The collective evidence indicates that targeting OXS during myocardial ischemia, 
I/R and MI in humans is complicated by the multiple factors, players, mechanisms, 
mediators, signaling pathways, background drugs, pathologies and co-morbidities, 
approaches, and timings involved. Over the last four decades, extensive research has 
generated a wealth of data and identified a host of novel mechanisms, pathways and 
molecules that can potentially be targeted. The assimilation of the new knowledge 
is essential for successful translation of data from small to large animals and finally 
to humans; however, this process has been slow and a common scenario has been 
frustration in translating the many successes found in animals to the bedside in the 
real world. Certainly, there have been some successes, but the need for new targets, 
novel pharmacological agents, improved strategies, and better designed RCTs 
remains and may require collaboration at a global level in order to minimize the 
residual mortality and morbidity associated with OXS after reperfused MI.
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15.1	 �Introduction

Atherosclerosis affecting medium and large sized arteries is characterized by lipid 
and inflammatory cell accumulation in the vessel walls [1]. The three major hypoth-
eses that explain the pathogenesis of atherosclerosis are: (a) response to injury, (b) 
response to retention of lipids, and (c) oxidative modification of lipids [2]. Response 
to injury considers endothelial dysfunction as the main trigger causing release of 
cytokines and reactive oxygen species leading to an altered vascular homeostasis. 
Response to retention assumes that LDL permeates to the sub endothelial space, 
binds to various proteoglycans, and forms foam cells after being engulfed by mac-
rophages. Oxidative modification hypothesis considers oxidized LDL to be the key 
molecule that contributes to foam cell formation as macrophages have higher affin-
ity than native LDL. Endothelial injury leads to LDL infiltration and accumulation 
in the subendothelial space (Fig.  15.1). Pathological states cause native LDL to 
become oxidized. Oxidized-LDL through its receptors causes an increase in the cell 
adhesion molecule expression on the endothelial cells. These cell adhesion mole-
cules such as vascular cell adhesion molecule-1 (VCAM-1), P and E-selectins, 
along with chemoattractant proteins (monocyte chemoattractant proteins-1 (MCP-1), 
eotaxins and interferon (INF)-γ) promote the recruitment of monocytes and 
T-lymphoctyes into the subendothelial space. Monocytes differentiation of macro-
phages occurs in the subendothelial space and expresses various scavenger recep-
tors (SRs) such as LOX-1, SRA and CD36. Macrophages via these SRs engulf 
modified lipoproteins to form foam cells. These lipid laden macrophages are con-
sidered to be the hall mark of early atherosclerotic lesion. Further, the inflammatory 
cells such as T-lymphocytes and mast cells releases more cytokines, growth factors 
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and reactive oxygen species (ROS) after migration into the intima. These growth 
factors and ROS in turn stimulate smooth muscle migration and collagen deposition 
leading to the formation of an atheromatous plaque. Matrix metalloproteinases 
(MMPs) which are released in response to oxidative stress degrade the fibrous ath-
eromatous plaque and endothelial cell (ECs) basement membrane thereby causing a 
physical disruption of the plaque. Physical disruption of plaque may trigger throm-
bosis of the blood vessel hosting the plaque. In some cases, a healing process takes 
place leading to further smooth muscle cell and collagen accumulation and convert-
ing the fatty atherosclerotic plaque to a fibrous plaque [3].

15.2	 �Ox-LDL and LOX-1

Oxidized LDL are particles derived from “circulating LDL that have peroxides or 
their degradation products within it or associated with the particle”[4]. They are 
generated as a result of oxidative stress. They play an important role in generating 
chemoattractant proteins and thereby causing leukocyte recruitment into the suben-
dothelial space. Lectin like oxidized LDL receptor-1 (LOX-1) is a 50 kDa trans-
membrane glycoprotein that was found to be involved in binding, internalization 
and degradation of ox-LDL [5]. It has a N-terminal cytoplasmic domain, a single 
transmembrane domain, a neck domain which is extracellular followed by c-type 
lectin like domain [6]. A variety of cells that play a key role in atherosclerosis such 
as endothelial cells, macrophages, platelets, fibroblast and smooth muscle cells have 

Fig. 15.1  Role of Ox-LDL and LOX-1 in atherogenesis and thrombosis. Reprinted by permission 
from Rightslink Perimissions Springer Nature Customer Service Center GmbH: Springer Nature, 
Current Atherosclerosis Reports, Oxidative stress in Atherosclerosis, Kattoor, A.J.; Pothineni, 
N.V.K.; Palagiri, D.; Mehta, J.L, 2017
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been found to harbor LOX-1 [7]. Ox-LDL binds to LOX-1 and causes a rapid inter-
nalization complex and activates downstream signaling leading to varied effects in 
different cell types to promote atherosclerosis (Fig. 15.2). LOX-1 receptors are clus-
tered on the plasma membrane and are located in its lipid rafts. Changes in plasma 
membrane due to cholesterol depletion can alter the distribution of LOX-1 to a more 
diffuse one, preventing interaction of the LOX-1 and Ox-LDL in the cell surface [8].

15.3	 �Ligands and Inducers of LOX-1

Inflammatory cytokines are inducers of LOX-1 expression. TNF-α, IL-1, CRP, 
INF-γ and lipopolysaccharides and free radicals are able to induce LOX-1 expres-
sion in vitro. Hypertension related stimuli such as angiotensin II, endothelin-I, aldo-
sterone and shear stress, hyperglycemic stimuli such as hyperglycemia and advanced 
glycated end-products, and modified lipoproteins such as ox-LDL, glycoxidized 
LDL and lysophophatidylcholine have been shown to induce LOX-1 in vitro [9]. In 
keeping with these concepts developed in vitro, vascular tissues from animals and 
humans with hypertension, diabetes and hyperlipidemia have high expression of 
LOX-1. Heart failure, psychological stress, HIV infection and ischemia-reperfusion 
also can induce LOX-1[10].

15.4	 �Ox-LDL – LOX-1 Interaction in Atherosclerosis

15.4.1	 �Endothelial Cells

Ox-LDL enhances expression of E-selectin, P-selectin and vascular cell adhesion 
molecules (VCAM-1) and intercellular cell adhesion molecules (ICAM-1) through 
LOX-1 on ECs. Mitogen-activated protein kinase pathway activated by Ox-LDL- 
LOX-1 interaction generates monocyte chemoattractant protein (MCP-1) expres-
sion and increases monocyte adhesion. These molecules leads to leukocyte 
recruitment and differentiation of monocytes to macrophages in the subendothelial 
space. Antisense oligodeoxynucleotides to the human LOX-1 gene was shown to 
suppress ox-LDL mediated upregulation of MCP-1 and monocyte adhesion on 
human coronary artery ECs [11]. This suggests that ox-LDL acts through LOX-1 on 
ECs to mediate the expression of chemoattractant proteins and thereby facilitate 
leukocyte recruitment.

Ox-LDL-LOX-1 interaction leads to activation of both intrinsic and extrinsic 
apoptotic pathways in ECs. Ox-LDL activates caspase-3 and caspase-9 and inhibits 
antiapoptotic proteins such as B- cell lymphoma 2 (Bcl-2) and cellular inhibitor of 
apoptosis protein 1 (c-IAP-1) [12]. On the other hand, Fas ligand mediated apopto-
sis is enhanced due to the upregulation of Fas on ECs by ox-LDL [13].

Angiotensin converting enzyme (ACE) and endothelin-1 generation on ECs are 
upregulated by Ox-LDL and they in turn increase LOX-1 expression leading to ox-
LDL uptake by ECs [14–16].

15  Oxidant Stress in Atherosclerosis: Oxidatively Modified LDL and LOX-1
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Fig. 15.2  Effects of ox-LDL-LOX-1 interaction in endothelial cells, vascular smooth muscle cells 
and macrophages. Reprinted by permission from Eureka Science: Bentham Science Publishers 
Ltd., Current Medicinal Chemistry; Role of Ox-LDL and LOX-1 in Atherogenesis, Kattoor, A.J.; 
Kanuri, S.H.; Mehta, J.L, 2018
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Ox-LDL through LOX-1 contributes to suppression of nitric oxide (NO) genera-
tion and increase in ROS generation in ECs. Endothelial nitric oxide synthase 
(eNOS) is displaced from its caveolar membrane location by ox-LDL and leads to 
its dysfunction. Moreover, ox-LDL causes arginase II activation which leads to 
downregulation of eNOS as it competes for their common substrate L-arginine [17]. 
Increased ROS generation by ox-LDL in ECs causes inactivation of preformed 
NO. In addition, NADPH oxidase expression is also increased by Ox-LDL contrib-
uting to ROS generation [18].

5′ flanking region of the LOX-1 gene has a NF-κB binding site. Ox-LDL though 
LOX-1 activates NF-κB and increases the expression of LOX-1. This leads to acti-
vation of a vicious cycle of increased ox-LDL mediated pro-inflammatory signal-
ing. Activation of NF-κB also increases adhesion molecules and TNF-α expression 
in ECs [5].

Synthesis of matrix metalloproteinases such as MMP-1, MMP-3 and MMP-9 is 
increased by ox-LDL through LOX-1. This creates an imbalance between the metal-
loproteinases and its tissue inhibitor leading to increased degradation of the fibrotic 
cap of atherosclerotic plaque predisposing to its rupture.

Thus, ox-LDL via LOX-1 induces expression of cell adhesion molecules, con-
tributes to endothelial dysfunction by NO depletion, promotes EC apoptosis, and 
predisposes to plaque rupture by creating an imbalance in metalloproteinases and 
collagen synthesis.

It is of note that LOX-1 is expressed on ECs in several-fold larger number than 
any other SR [19]. Thus LOX-1 is the primary receptor for ox-LDL binding and its 
uptake and downstream signaling.

15.4.2	 �Effects on Macrophages

Macrophages are important cells in the atherosclerotic vasculature. Macrophages 
transform into foam cells. Plaque formation in the early stages of atherosclerosis 
development represents accumulation of a large number of form cells. Macrophages 
express a host of SRs, including LOX-1, SR-A and CD36. LOX-1 accounts for 
about 40% of ox-LDL uptake in macrophages in a proinflammatory environment. In 
normal circumstances, it accounts for only 5–10% of ox-LDL uptake. Ox-LDL 
causes a rise in ROS and decreases activity of superoxide dismutase in macro-
phages. siRNA targeting LOX-1 was shown to impair NADPH oxidase system and 
MAPK activation in in-vitro studies. High glucose levels, ox-LDL and proinflam-
matory cytokines also upregulate ox-LDL and leads to lipid accumulation and foam 
cell formation [20].

In addition, LOX-1 modulates calcium depended proteases  – calpains which 
influence cell migration. Thus ox-LDL through LOX-1 increases macrophage 
attachment there by contributing to atherosclerosis [21].

15  Oxidant Stress in Atherosclerosis: Oxidatively Modified LDL and LOX-1
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15.4.3	 �Effects on Vascular Smooth Muscle Cells

Vascular smooth muscle cell (VSMC) proliferation and migration are key features 
of atherosclerosis. SMCs can also transform into foam cells. VSMCs contain a large 
number of LOX-1 receptors, perhaps LOX-1 density is more on SMCs than on ECs 
in an inflammatory state. Pro-inflammatory cytokines such as TNF-α, IL-1 and 
IFN-γ significantly increase the expression of LOX-1 on VSMCs [22]. Recent stud-
ies on inhibition of LOX-1 gene by microRNA let-7g suggest that ox-LDL mediated 
VSMC proliferation and migration were decreased by LOX-1 gene inhibition. Also, 
LOX-1 suppress miR-141 expression thereby contributing to VSMC proliferation 
[23]. Ox-LDL also induces growth factors such as insulin-like growth factor (IGF-
1), platelet derived growth factor (PDGF) and epidermal growth factor (EGF) [24]. 
These growth factors also promote VSMC proliferation.

Apoptosis of smooth muscle cells is increased in inflammatory states due to 
enhanced expression of pro-apoptotic proteins like bcl-2-associated X protein (bax) 
and suppression of antiapoptotic bcl-2 by ox-LDL. This leads to an instability in the 
VSMC layer and predisposition of atherosclerotic plaque to rupture [25]. In addi-
tion, LOX-1 also causes ox-LDL uptake and lipid accumulation in smooth muscle 
progenitor cells leading to formation of foam cells [26].

15.4.4	 �Effects on Platelets

Platelets are important constituents of the clot that leads to acute myocardial isch-
emia. Platelets also thought to contribute to atherogenesis by release of PDGF and 
other growth factors and vasoconstrictors [27]. LOX-1 is expressed on the surface 
of platelets in an activation dependent manner [28]. Anti-LOX-1 antibody has been 
showed to inhibit ADP-induced platelet aggregation. LOX-1 contributes to throm-
bus formation by acting on ADP-induced activation of fibrinogen receptors such as 
alpha(IIb)beta(3) and alpha(2)beta(1) integrins [29]. Endothelin-1 is induced in ECs 
by LOX-1 and CD40 interaction with activated platelets, and leads to endothelial 
dysfunction [30]. Recent studies show that generation of CD147 which is an MMP 
inducer is stimulated by ox-LDL–LOX-1 interaction contributing to plaque instabil-
ity [31].

15.5	 �Diagnostic Value of LOX-1

The extracellular domain of LOX-1, thought to be cleaved by ADAM10 metallopro-
teinase, is called the soluble LOX-1 (sLOX-1). It is being evaluated as a potential 
biomarker for cardiovascular disease. sLOX-1 levels have been associated with dia-
betes mellitus type 2, hypertension and smoking [32–34]. Since there are more 
readily available methods to diagnose these diseases, sLOX-1’s utility in this regard 
is limited. Civelek et al., proposed using sLOX-1 as a predictor for metabolic syn-
drome; however, a diagnostic cut off is still under research [35].
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Hayashida et al, proposed using sLOX-1 as a marker for plaque instability [36]. 
This was due to earlier peak levels for sLOX-1 compared to troponin T in a cohort 
of 521 patients with acute coronary syndrome. Coronary sinus blood samples had a 
higher level of sLOX-1 compared to aortic blood samples in patients with acute 
coronary syndrome and exertional angina suggesting the origin of sLOX-1 to coro-
nary circulation [37]. Patients with percutaneous coronary intervention related peri-
procedural myocardial infarction (PCI-RPMI) which is predisposed by plaque 
vulnerability, was also found to be have a higher sLOX-1 level compared to those 
with stable angina [38]. Hence, sLOX-1 levels can potentially be used as a predictor 
of PCI-RPMI.

In a recent cross sectional study, Liu et al explored the feasibility of using LOX-1 
as a predictor for in-stent restenosis (ISR) in patients undergoing percutaneous cor-
onary intervention (PCI) [39]. Level of sLOX-1 during early post-PCI period 
(1–7 days) were compared between patients who developed ISR (41 patients), non-
significant lesions (51 patients) and control group (96 patient without coronary 
artery disease). A significantly higher level of sLOX-1 was present in patients in the 
ISR group compared to the both non-significant lesion group (p = 0.005) and con-
trol group (p < 0.001) suggesting that sLOX-1 may be used as a predictor for ISR 
post-PCI.

Further large scale studies are needed before diagnostic and prognostic applica-
tions of LOX-1 can be put to clinical practice.

15.6	 �Therapeutic Implications of LOX-1

Many naturally occurring compounds have been found to modulate LOX-1 and 
thereby affecting atherogenesis. Gingko biloba extract, curcumin, and bergamot 
peet have been shown to decrease LOX-1 expression. Resveratrol, berberine, and 
tanshionone II-A have been shown to influence atherosclerosis by inhibition of ROS 
generation by ox-LDL [40–43]. Medications such as aspirin, and statins have also 
been found to reduce ox-LDL mediated expression of LOX-1 and adhesion mole-
cules [44, 45].

Structure based drug design, RNA interference techinques and monoclonal anti-
bodies are currently being studied for its effects in modulating LOX-1. Ox-LDL–
LOX-1 interaction was found to be inhibited by the modified phospholipid molecule 
PLAzPC by binding to ox-LDL binding site of LOX-1 [46]. Through structure 
based drug design techniques, Thakkar et al were able to screen 5 molecules that 
could potentially inhibit LOX-1 from a database of 18 million molecular structures. 
Two of those molecules were found to inhibit the downstream signaling, LOX-1 
mRNA expression and ox-LDL update by 80% in ECs [47].

Non-coding RNAs that control gene expression by post transcription effects are 
known as microRNAs (miRNAs). Let-7g miRNA which binds to the 3′ UTR region 
of LOX-1 mRNA has been able to block LOX-1 expression and ox-LDL uptake in 
human aortic SMCs [48]. In a recent study, miR-98 was studied for its effects on 
LOX-1 expression and foam cell formation in mouse peritoneal macrophages. 
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Enhancement of miR-98 decreased LOX-1 expression, lipid accumulation and foam 
cell formation, whereas inhibition of miR-98 had opposite effects. This suggest that 
miR-98 can be potentially used in modulation of LOX-1 effects in atherosclerosis 
[49].Use of siRNA has been studied in vitro to regulate LOX-1 expression. Amati 
et al used antisense olr-l (gene encoding LOX-1) to downregulate LOX- mRNA and 
LOX-1 protein in the aorta of mice using this technique [50].

Multiple trials in mice and cell based models have shown efficacy of LOX-1 
antibodies to inhibit ox-LDL-mediated effects. The highly conserved C-type lectin 
domain of LOX-1  in mammalian species makes it difficult for human use [51]. 
Chimeric chicken-human antibodies that decrease ox-LDL uptake have been devel-
oped after immunizing chicken with recombinant human LOX-1 [52]. Though mul-
tiple large molecules have been developed and are currently being studied with 
regard to inhibition of LOX-1. Further research is needed before these large and 
small molecules targeting LOX-1 can be used clinically.

15.7	 �Conclusion

Ox-LDL through its receptor LOX-1 acts on endothelial cells, macrophages, 
VSMCs and platelets, and influences multiple signaling pathways that contribute to 
atherosclerosis. Many of the currently used drugs modulate atherosclerosis by their 
action on LOX-1 receptor. New molecules that modulate LOX-1 are currently under 
investigation. sLOX-1 is a potential biomarker in acute coronary injury and further 
studies needs to be done before it can be put to clinical use.
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and Cardiovascular Risk Factors 
in Ischemic Heart Disease

Monika Bartekova, Kristina Ferenczyova, 
Marek Jelemensky, and Naranjan S Dhalla

16.1	 �Introduction

Ischemic heart disease (IHD), the most common type of cardiovascular disease 
(CVD), is a major cause of mortality and disability worldwide. Pathophysiology of 
IHD is characterized by reduced blood flow in coronary arteries due to narrowing 
lumen, leading to an insufficient supply of oxygen and substrates to the affected 
area of the heart. The reduction of the arterial lumen in IHD is mostly caused by the 
formation of atherosclerotic plaque and development of thrombosis or spasm in the 
coronary arteries, which results in no-flow ischemia. In clinical situations, the blood 
supply to the ischemic heart is usually restored by reperfusion upon angioplasty, 
coronary by-pass surgery or thrombolytic therapy. In addition, the opening of col-
lateral vessels may occur as an endogenous adaptive mechanism in response to 
ischemia and this may maintain the proper oxygen and nutrition delivery to the 
ischemic area of the heart. However, if the blood supply to the ischemic heart is not 
restored by reperfusion or opening of collaterals at the proper time, it may lead to 
irreversible changes (ischemia-reperfusion, I/R injury) at the subcellular level 
including malfunction of different intra- as well as extracellular proteins, lipid per-
oxidation associated with altered membrane permeability, abnormal gene expres-
sion, defects in subcellular organelles (such as mitochondria, sarcolemma, 
sarcoplasmic reticulum or myofibrils), and changes in cardiac performance. Thus, 
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reperfusion may even worsen the ischemic injury, accelerate the development of 
tissue necrosis and induce further deterioration of cardiac function [1, 2].

Oxidative stress is considered to be the main mechanism involved in the develop-
ment of CVD including I/R injury to the heart [3]. During ischemia there occurs an 
imbalance between the production of pro-oxidant substances and the capacity of 
endogenous antioxidants leading to impaired redox homeostasis in cardiac cells [4]. 
Abundant formation of the reactive oxygen species (ROS), as a major factor associ-
ated with oxidative stress, leads to lipid peroxidation, oxidation of thiol groups and 
modification of phospholipids as well as proteins during ischemia [5]. Consequently, 
the oxidative stress associated with ischemic insult to the heart leads to altered 
membrane permeability in cardiac cells and dysfunction of various intra- as well as 
extracellular proteins.

Cardiovascular risk factors including atherosclerosis, hypertension and thrombo-
sis are known to contribute to the occurrence of ischemic events in the heart, and 
oxidative stress is believed to play an important role in the genesis of these risk fac-
tors. Experimental evidence has indicated a causal role for oxidative stress in the 
development of hypertension. In fact increased formation of ROS has been shown 
to promote endothelial dysfunction leading to vascular damage as the major mecha-
nism involved in the pathophysiology of hypertension [6–8]. It has been also docu-
mented that increased production of ROS in the vascular wall, primarily by 
ROS-producing enzymes such as NADPH oxidase, xanthine oxidase or uncoupled 
endothelial nitric oxide synthase (eNOS), plays a crucial role in the development of 
atherosclerosis [9–11]. Furthermore, thrombosis as a contributory factor to the gen-
esis of atherosclerosis is also proposed to be associated with oxidative stress and 
altered redox state in platelets and/or vasculature [10, 12]. Thus, oxidative stress 
seems to be the major player in the development of cellular damage associated with 
I/R injury in the heart because it contributes to the genesis of cardiovascular risk 
factors for the occurrence of IHD as well as participates directly in pathological 
mechanisms leading to ischemia-induced damage to cardiac cells. The present 
chapter deals with the current knowledge on the role of oxidative stress and endog-
enous ROS production in the pathophysiology of cardiac I/R injury. In addition, it 
is intended to discuss the role of pro-oxidants and the involvement of some of major 
cardiovascular risk factors for the occurrence and severity of IHD.

16.2	 �Formation of ROS in the Cell

In general, ROS include oxyradicals such as the superoxide anion (O2
−) and the 

hydroxyl radical (OH) as well as oxidants such as hydrogen peroxide (H2O2), and 
hypochlorous acid (HClO). In addition, reactive forms of nitrogen species (RNS), 
namely nitric oxide (NO−), peroxynitrite (ONOO−), S-nitrosothiols and dinitrozyl 
complexes, represent other type of free radicals acting in the body. Under physio-
logical conditions, ROS are produced in the cell at low rate, and play an important 
role in signaling and defense mechanisms. The life-time of ROS is relatively short, 
and their rate of production is regulated by multiple antioxidant systems to 

M. Bartekova et al.



377

minimize their damaging effects. ROS are, however, highly reactive and can interact 
with cell components including lipids, proteins and DNA leading to their oxidation 
and serious irreversible damages. ROS are produced in the cell by several mecha-
nisms in both physiological and pathological conditions; these include ROS-
producing enzymes such as mitochondrial cytochromes, xanthine oxidoreductase 
and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [13]. In addi-
tion, ROS may also be produced by uncoupled nitric oxide synthase (NOS). It is 
pointed out that NOS primarily catalyzes the production of nitric oxide (NO); how-
ever, when it becomes functionally uncoupled due to reduced levels of co-factor, 
tetrahydrobiopterin (BH4), it switches to produce deleterious rather than protective 
NO, thus acting as a secondary source of ROS in the cell [14, 15]. Finally, ROS are 
produced in a sequential chain reaction where the generation of one free radical 
leads to the formation of other radicals [11]. Thus, in pathological conditions, the 
imbalance between pro-oxidants and anti-oxidant mechanisms results in oxidative 
stress that could lead the development of various diseases.

NADPH oxidase (NOX) is a membrane-bound complex located primarily in the 
plasma membrane. This enzyme catalyzes the production of a superoxide radical by 
transferring electron from NADPH to oxygen and is believed to be a primary source 
of superoxide anions and H2O2 in the vessel wall. In cardiomyocytes, ROS produc-
tion can be stimulated by norepinephrine via α1-adrenergic receptors while in the 
vascular smooth muscle cells and endothelial cells, NOX-induced production of 
ROS can be enhanced by vasoconstrictors such as angiotensin II and endothelin-1 
through angiotensin- and endothelin- receptors, respectively [11, 16]. Xanthine oxi-
doreductase (XOR) is also a major producer of ROS in the cell which appears in two 
forms, xanthine oxidase (XO) and xanthine dehydrogenase (XDH). Both forms 
catalyze the oxidation of hypoxanthine to xanthine as well as the oxidation of xan-
thine to uric acid; however, while XO reduces only oxygen, XDH can reduce either 
oxygen or NAD+. XOR generates superoxide via NADH oxidase activity and can 
also produce NO via nitrate and nitrite reductase activities. It should be noted that 
XOR has been shown to be involved in the development of CVD including cardiac 
I/R injury [17]. Other major producers of ROS within the cell are mitochondria 
where ROS are generated as by-products of the oxidative phosphorylation during 
ATP production via an electron transport from NADH and FADH2 to oxygen. Such 
ROS may potentially contribute to the oxidative damage of the cell during I/R, par-
ticularly, when the mitochondrial aerobic respiration continues in the absence of 
oxygen and results in the occurrence of intracellular Ca2+-overload and activation of 
apoptotic cascades [18, 19].

16.3	 �Role of Oxidative Stress in Hypertension

Hypertension is a chronic disease, which is characterized by elevation of blood 
pressure, and is one of the main cardiovascular risk factors which significantly con-
tributes to the development of IHD. The pathogenesis of hypertension is multifacto-
rial in nature as it includes both genetic and non-genetic factors. More than 90% of 
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hypertensive subjects belong to the essential hypertension category, which is known 
as primary or idiopathic hypertension of unknown origin. Some patients have sec-
ondary hypertension, which is most likely a result of the persisting disease with 
well-known mechanisms, such as narrowing of the arteries, as well as chronic kid-
ney or endocrine disorders. In addition to the environmental factors, other features 
involved in the genesis of essential hypertension include: increased sympathetic 
nervous system activity due to psychosocial stress, enhanced production of vaso-
constrictors, deficiency of vasodilators such as NO, high sodium intake, inadequate 
calcium and potassium intake, increased renin secretion leading to increased forma-
tion of angiotensin II, increased vessels resistance, metabolic disorders, insulin 
resistance and obesity, increased activity of vascular growth factors, and altered 
cellular ion transport [20]. It has been documented that persistent hypertension is a 
major risk factor for different kinds of CVD including coronary artery as well as 
peripheral artery disease, stroke, aortic aneurysm or chronic kidney disease [21].

There is increasing evidence that oxidative stress associated with overproduction 
of ROS is one of the pathological mechanisms for the development of hypertension 
[6–8, 22]. This disease is tightly connected with altered function of the vasculature, 
which in turn leads to increased peripheral resistance for determining blood pres-
sure. In vascular smooth muscle and endothelial cells, the primary source of ROS is 
NADPH oxidase (NOX), which is considered to be involved in the genesis of hyper-
tension. NOX-induced production of ROS in the vascular system may be induced by 
vasoconstrictors such as angiotensin II (Ang II), endothelin-1 and norepinephrine as 
well as by aldosterone [11]. It has been reported that the activation of AT1 receptors 
by Ang II may result in the induction of ROS production via membrane NOX acti-
vation in rats [23]. Regarding the role of endothelin-1  in the oxidative stress-
mediated hypertension, it was shown that incubation of rat aortic rings with 
endothelin-1 leads to enhanced superoxide production and vasoconstriction through 
activation of NOX and uncoupled NOS [24]. Several isoforms of NOX including 
NOX1, NOX2, as well as NOX4 have been reported to be involved in the ROS pro-
duction and the development of hypertension. Smooth muscle-specific NOX1 over-
expression has been shown to potentiate the Ang II-induced hypertension and 
vascular smooth muscle hypertrophy in transgenic mice [25]. The role of NOX1 in 
Ang II-induced hypertension was confirmed in a study in NOX1-deficient mice by 
reducing the bioavailability of NO [26].

Numerous studies have reported that NOX2 isoform is also involved in Ang 
II-induced hypertension. In transgenic mice with endothelial-specific overexpres-
sion of NOX2, it was demonstrated that Ang II causes a greater increase in ROS 
production in transgenic compared to wild-type aortic smooth muscle and attenu-
ates the acetylcholine-induced vasorelaxation. Administration of Ang II was discov-
ered to increase blood pressure more in the transgenic compared to the wild-type 
mice. These results indicated that NOX2 mediated ROS production contributes to 
Ang II-induced endothelial dysfunction, vascular remodeling and hypertension 
[27]. It has also been suggested that inhibition of NOX2 abolished increased pro-
duction of mitochondrial and cytoplasmic superoxide which was stimulated by acti-
vation of mitochondrial ATP-sensitive K+ channels (mitoKATP). In addition, 
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inhibition of reverse electron transport from complex II to complex I of respiratory 
chain in the mitochondrial matrix which causes increased production of superoxide 
reduced blood pressure significantly. These results suggest that mitoKATP-mediated 
mitochondrial superoxide production stimulates cytoplasmic NOX2 and through 
this mechanism endothelial oxidative stress contributes to the development hyper-
tension [28]. It is pointed out that NOX4 isoform has been also identified to be 
involved in Ang II-induced ROS formation, most likely via mediating eNOS dys-
function; this results in decreased bioavailability of NO, which in turn contributes 
to vascular endothelial dysfunction and hypertension [29]. On the other hand, more 
recently it has been shown that silencing of NOX2, but not NOX1, NOX4, or NOX5, 
inhibits Ang II-induced superoxide production in both mitochondria and cytoplasm 
in cultured human aortic endothelial cells. Moreover, depletion of NOX2 in a mouse 
model inhibited Ang II-induced superoxide production and attenuated Ang 
II-induced hypertension suggesting NOX2 to be the dominant NOX isoform respon-
sible for ROS production in the development of hypertension [30]. Significant role 
of the NOX-derived ROS in pathogenesis of hypertension has been discussed in 
several recent comprehensive reviews [14, 31–33].

Another ROS-producing enzyme suggested to be tightly involved in the develop-
ment of hypertension is xanthine oxidase (XO). It has been shown that Ang II 
increases XO protein levels and the XO-dependent superoxide production was pre-
vented by NOX inhibition in cultured endothelial cells. Also, the endothelium-
bound XO activity was reduced by losartan and allopurinol in patients with coronary 
disease. The inhibition of XO with oxypurinol improved endothelium-dependent 
vasodilation before, but not after losartan or allopurinol therapy in these patients 
suggesting a contributory role of XO-produced superoxide in endothelial dysfunc-
tion [34]. It has been also shown that XO levels are significantly enhanced in the 
spontaneously hypertensive rats (SHR). In addition, adrenalectomy led to a reduc-
tion of XO to normotensive levels and reduced the blood pressure and free radical 
production in SHR to normotensive levels indicating the involvement of adrenal 
pathway in this XO-mediated mechanism in hypertension [35]. On the other hand, 
different studies focused on the role of renal XO activity in hypertension suggested 
that XO may play a role in end-organ damage in hypertension, but not in the devel-
opment of hypertension [36, 37].

In addition to NOX and XO, some other ROS producers have been suggested to 
be involved in the oxidative stress-mediated development of hypertension; these 
include mitochondrial respiratory chain enzyme complexes. If any damage occurs 
to the mitochondrial respiratory chain, the mitochondrial respiration become dys-
functional, and the transfer of electrons to O2 increases the mitochondrial ROS for-
mation subsequently [11, 38]. Reduced capacity of the mitochondrial respiratory 
chain has been observed in the brain stem of the spontaneously hypertensive rats 
(SHR) as well as in the Ang II-induced neurogenic hypertension [39]. It has been 
documented that mitochondrial dysfunction in hypertension results in defective cal-
cium homeostasis and impaired energy production [40, 41]. Hypertension is also 
associated with structural abnormalities of mitochondria such as decreased mito-
chondrial mass and density which may result in impaired energy production and 
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accelerated ROS formation due to instability of electron transport chain complexes 
[41, 42]. Hypertension affects mitochondrial dynamics including decreased mRNA 
expression of the fusion proteins, mitofusin-1 and -2, as well as increased mitochon-
drial fragmentation. Stimulation of oxidative stress has been documented in Dahl 
salt-sensitive rats fed with a high-salt diet, which is considered as a hypertensive 
model of heart failure [43]. Finally, it has been shown that overexpression of myo-
cardial adenine nucleotide translocase 1 and consequent accelerated mitochondrial 
ADP/ATP transport attenuates hypertension-induced heart disease, suggesting the 
improvement in mitochondrial function as a basic principle for new strategies in the 
treatment of heart disease [44].

ROS producers including those derived from uncoupled NOS have been pro-
posed to be implicated in the development of hypertension. For instance, it has been 
shown that increased superoxide release by uncoupled eNOS contributes to impaired 
pulmonary vasodilation in persistent pulmonary hypertension in newborns [45]. In 
a mouse model of hypertension, it has been documented that hypertensive hearts 
with diastolic dysfunction, but without systolic dysfunction or cardiac hypertrophy, 
showed increased oxidized biopterins, NOS-dependent superoxide production, 
reduced NO formation, and dephosphorylated phospholamban. Moreover, feeding 
hypertensive mice with tetrahydrobiopterin (BH4) was observed to improve cardiac 
BH4 stores, phosphorylated phospholamban levels, and diastolic dysfunction, sug-
gesting that uncoupled cardiac NOS mediates diastolic dysfunction in hypertension-
induced heart failure with preserved ejection fraction [46]. It has been also shown 
that supplementation with BH4, a cofactor determining for NOS function, augments 
endothelium-dependent vasodilation in both normotensive and hypertensive sub-
jects; these findings provide an indirect evidence of uncoupled NOS in the develop-
ment of hypertension [47]. It appears that there is a crosstalk between the major 
ROS producing systems such as NADPH oxidase, NOX, XO, mitochondrial respi-
ratory enzymes and eNOS, and that these respond to different ligands including Ang 
II for ROS overproduction. Thus oxidative stress associated with the development 
of hypertension is most likely the result of ROS produced by several sources. The 
main features of the crosstalk of different ROS producers have been reviewed previ-
ously [11, 33, 48, 49]. Proposed triggers for the generation of oxidative stress lead-
ing to the development of hypertension are shown in Fig. 16.1.

16.4	 �Role of Oxidative Stress in Atherosclerosis

Atherosclerosis, a chronic inflammatory disease, is characterized by accumulation 
of lipids and inflammatory cells in the walls of large and medium-sized arteries 
including coronary arteries. The atherosclerotic plaque is made up of fat, choles-
terol, calcium, and other substances found in the blood. The plaque slowly narrows 
the arterial lumen what in turn limits the flow of oxygen-rich blood to different parts 
of the body. In fact atherosclerosis is a leading cause of CVD resulting in high rate 
of mortality in the population [50, 51]. The exact cause for the genesis of atheroscle-
rosis is not known; however, it is proposed that several lifestyle-related risk factors 
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including metabolic syndrome, diabetes, smoking, obesity and unhealthy diet may 
contribute to plaque formation. In addition to these factors, oxidative stress induced 
by generation of excessive amount of ROS has been shown to be a critical and final 
common mechanism in the development of atherosclerosis. Uncontrolled produc-
tion of ROS has been implicated in creating vascular injury, which has a devastating 
effect on vascular homeostasis. Thus, together with high levels of lipoprotein par-
ticles (LDL and VLDL), hyperglycemia, insulin resistance and inflammation, oxi-
dative stress is one of the main causes of atherogenesis in the coronary artery 
system, which leads to ischemic injury to the heart.

For the genesis of atherosclerosis, abundant ROS formation is due to hypergly-
cemia which is a consequence of obesity or metabolic syndrome, leading to 
increased oxidative stress in vascular endothelial cells. Thus, high levels of ROS 
contribute to endothelial dysfunction due to increased intracellular glucose concen-
tration and in fact disturbances resulting from oxidative stress lead to less availabil-
ity of nitric oxide (NO), DNA damage and oxidation of phospholipids forming 
membranes in endothelial cells. Another mechanism by which hyperglycemia stim-
ulates oxidative stress is spontaneous oxidation of glucose to produce reactive inter-
mediates (glyoxal and methylglyoxal) while allowing the formation of ROS [52]. 
Also, the free fatty acids, the concentration of which is elevated in the metabolic 
syndrome are degraded by β-oxidation to produce acetylcoenzyme A that enters the 
Krebs cycle. Free radicals can also react with LDL particles to form oxidized lipo-
protein particles (oxLDL) that are no longer able to stimulate LDL receptors in liver 

Triggers
Ang II ; ET-1 ; NE ; Aldosterone ; Inflamma�on

Xanthine oxidase NAD(P)H oxidase Uncoupled eNOS Mitochondrial 
cytochromes

Overproduc�on of ROS

↓ bioavailability of NO

Endothelial dysfunc�on

HYPERTENSION

Fig. 16.1  Proposed role of oxidative stress in inducing alterations in vasculature leading to devel-
opment of hypertension. Ang II Angiotensin II, ET-1 endothelin 1, NE norepinephrine, ROS reac-
tive oxygen species, eNOS endothelial NO synthase, NAD(P)H oxidase nicotinamide adenine 
dinucleotide phosphate oxidase
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cells, but penetrate into the walls of the vascular endothelium. Infiltration and reten-
tion of oxLDL to the proteoglycan present in the extracellular matrix in the vascular 
wall triggers an inflammatory response. The inflammatory response is induced by 
endothelial cell activation releasing of triacyglycerols from oxLDL [53, 54].

Endothelial xanthine oxidase (XO) together with NADPH oxidase and nitric 
oxide synthase (eNOS) play a physiological role in inflammatory signaling, the 
regulation of NO production and vascular function. However, the oxidative stress 
generated by overproduction of ROS by these enzymes may induce endothelial dys-
function, leading to atherosclerosis. The NOX family proteins are unique in the 
production of ROS and it is obvious that the NOX protein family is important for 
redox-mediated signaling in various cell types [55]. In vascular smooth muscle cells 
(VSMCs), growth factors such as Ang II and platelet-derived growth factor (PDGF) 
increase H2O2 via NOX1, thereby lead to their hypertrophy, migration and prolifera-
tion [56, 57]. In addition, monocytes which were infiltrated into the vascular wall 
can produce O2

− via NOX2. They are also involved in the oxidation of LDL, thereby 
enhancing further infiltration and activation of macrophages and ROS production in 
atheromatous plaques. NOX4 expression has been documented to be increased in 
intimal lesions of coronary arteries for the occurrence of atherosclerosis in humans 
[58]. Furthermore, a variety of oxidized lipids stimulate NOX4 expression in mac-
rophages [59]. Taken together, vascular NOX proteins are intimately involved in the 
development and progression of atherosclerosis.

Xanthine oxidase (XO) generates superoxide and hydrogen peroxide by using O2 
as an electron acceptor [60]. The expression and activity of endothelial XO are 
enhanced by pro-atherosclerotic stimuli such as Ang II [34] and periodically 
repeated shear stress [61], suggesting a contribution of XO-derived superoxide to 
atherosclerosis. The activity of both types of endothelial XO [62] and plasma XO 
[63] is increased in experimental atherosclerosis, as well as in human atheroscle-
rotic plaque [64, 65]. XO inhibitors, such as allopurinol, tungsten [66] and febuxo-
stat [67] have been shown to reduce the development of atherosclerosis in ApoE-KO 
mice. Normally, mitochondrial oxidative phosphorylation generates physiological 
levels of superoxide, which is converted to hydrogen peroxide by the manganese-
dependent superoxide dismutase (MnSOD/SOD2) and subsequently by glutathione 
peroxidase 1 (GPX1) to H2O [68]. Under pathological conditions, mitochondrial 
oxidative stress can occur because of excessive ROS production or insufficient ROS 
removal and it has been shown that atherosclerosis in human is associated with 
mitochondrial oxidative stress [69]. The importance of mitochondrial redox balance 
is supported by cardiac deletion of mitochondrial SOD2, which causes perinatal 
lethality in cardiac myopathy and congestive heart failure [70]. It has been also 
reported that heterozygous SOD2+/− knockout mice on ApoE-KO background 
show increased ROS levels in the mitochondria and enhanced atherogenesis at arte-
rial branches [71].

Under physiological conditions, eNOS produces NO, which represents a key 
vasoprotective factor of the endothelium [72, 73]. However, under pathological con-
ditions associated with oxidative stress, dysfunction of eNOS has been shown to 
reduce the formation of NO. Oxidative stress contributes to endothelial dysfunction 
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primarily due to the rapid inactivation of NO by excess superoxide production; oxi-
dative stress trigger uncoupling of eNOS such that it produces superoxide at the 
expense of NO [74]. Mechanistically, deficiency of eNOS cofactor tetrahydrobiop-
terin (BH4), eNOS substrate l-arginine, or eNOS S-glutathionylation are likely to be 
the major causes for eNOS uncoupling [75]. Peroxynitrite and superoxide can oxi-
dize BH4 leading to BH4 deficiency and in fact enhanced ROS production from 
uncoupled eNOS has been shown in mouse [76] and human models of atherosclero-
sis [77]. Thus, oxidative stress evoked by excessive ROS production by all major 
ROS-producing enzymes including NOX isoforms, XO, mitochondrial oxidative 
phosphorylation respiratory chain as well as uncoupled eNOS, widely contributes 
to the atherosclerotic plaque formation. As in the case of hypertension, targeting 
oxidative stress with inhibitors of ROS-producing enzymes and antioxidant thera-
pies may help to attenuate the pathological processes associated with atherogenesis, 
which in turn may prevent the occurrence of different CVD including IHD. Proposed 
triggers for the generation of oxidative stress leading to the development of athero-
sclerosis are given in Fig. 16.2.

16.5	 �Role of Oxidative Stress in Thrombosis

Thrombosis is the formation of a blood clot inside a vessel, leading to reduced blood 
flow for the circulation. When a blood vessel (either vein or artery) is injured, the 
body forms a blood clot to prevent blood loss via activation of platelets and fibrin. 

Triggers
Ang II ; Sheer stress ; Hyperlipidemia ; Hypercholesterolemia

NAD(P)H oxidase Xanthine oxidase Mitochondria Uncoupled eNOS

ROS forma�on

Oxida�ve stress

Endothelial dysfunc�on

ATHEROSCLEROTIC 
PLAQUE FORMATION

Oxida�ve damage

Phospholipids 
oxida�on

DNA damage

Reac�on with LDL 
= oxLDL

Fig. 16.2  Proposed role of oxidative stress in inducing alterations in vasculature leading to ath-
erosclerotic plaque formation. Ang II Angiotensin II, ROS reactive oxygen species, eNOS endothe-
lial NO synthase, NAD(P)H oxidase nicotinamide adenine dinucleotide phosphate oxidase, oxLDL 
oxidized low density lipoproteins
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However, under certain conditions blood clot may appear even when the vessel is 
not injured. Thus in pathological conditions when regulatory mechanisms of hemo-
stasis are imbalanced, excessive quantities of thrombin may initiate thrombosis. 
Moreover, a piece of the clot can break free and begin to circulate as an embolus and 
lodge somewhere else as an embolism, called thromboembolism. While arterial 
thrombosis is a critical event in the development of arterial diseases associated with 
myocardial infarction and stroke, venous thrombosis leads to congestion of the 
affected part of the body [78]. It is noted that pathogenesis of thrombosis includes 
some kind of inflammatory process due to trauma, surgery or infection, which cause 
endothelial damage in the vessel wall. The main mechanism for the initiation of 
blood coagulation is via the activated tissue factor [78]; however, inflammation as 
well as other stimuli such as hypercholesterolemia can also lead to altered gene 
expression in the endothelium leading to a pro-thrombotic state [79]. In this situa-
tion, endothelial cells downregulate anti-thrombotic substances such as thrombo-
modulin, a key modulator of thrombin activity, which in turn may result in sustained 
activation of thrombin and subsequent pro-thrombotic state [80]. Thus, endothelial 
injury is almost invariably involved in the thrombus formation in arteries. As high 
rates of blood flow hinder clot formation, arterial and cardiac clots are rich in plate-
lets, which are required for clot formation in areas under high stress due to blood 
flow [79].

In addition to inflammation and trauma, oxidative stress has been implicated in 
the genesis of thrombosis. It should be emphasized that dramatic changes in redox 
status occur during normal platelet stimulation because platelet aggregation is asso-
ciated with a burst of oxygen consumption; however, conditions that provoke oxida-
tive stress may also be prothrombotic [12]. ROS derived from both platelets and 
other vascular sources have been shown to alter platelet responses. Superoxide, 
which is produced by platelets, is known to augment platelet aggregation responses 
[12, 81]. Platelet-derived ROS may come from several sources such as NADPH 
oxidase (NOX), cyclooxygenases, uncoupled eNOS, xanthine oxidase (XO) and 
mitochondrial respiration, among which NOX is considered to play the crucial role 
[82–84]. Growing number of studies provide evidence that NOX is implicated in 
altered platelet activation via superoxide production, and that platelet-associated 
NOX mediates a thrombogenic phenotype [84, 85]. Platelet NOX is a protein com-
plex consisting of cellular subunits p47phox, p67phox, and the membrane-bound pro-
teins, p22phox and gp91phox, that together with Rac1/2 (a small GTPase) form the 
active enzyme complex [86]. Recently, it has been documented that expression of 
gp91phox NOX subunit is increased in pulmonary arteries in a mouse model of pul-
monary hypertension, and that NOX-derived superoxide formation in venous 
thrombosis and endothelial dysfunction play an important role in pulmonary hyper-
tension [87]. It has also been shown that NOX-dependent superoxide release in 
platelets may be induced by collagen activation and consequently enhance the 
thrombus formation via increasing the availability of released ADP, which is essen-
tial for stable thrombus formation [88]. A key role of NOX-derived ROS in the 
oxidative stress-mediated platelet activation and thrombosis has been reviewed 
recently [84].
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NOX2 is considered a major isoform of the enzyme contributing to the thrombo-
sis and is expressed in platelets and the megakaryocyte cell-line [84]. NOX2-
generated superoxide anion is rapidly converted into the longer lasting H2O2, which 
is the major contributor for the oxidation of lipids and proteins [84]. Interestingly, 
patients with hereditary deficiency of NOX2 show almost no ROS production by 
platelets [89]. NOX2 in platelets is activated by several pathways including CD40 
ligand signaling, collagen/glycoprotein VI activation or oxidized –LDL/CD36 path-
way [84]. Consequently, the downstream signaling pathway of platelet NOX2 acti-
vation, in addition to enhanced production of ROS, includes the increase in 
thromboxane A2 levels, expression of P-selectin and release of intracellular Ca2+. It 
is pointed out that intracellular Ca2+ release modulates granular secretion as an early 
stage of cell activation, platelet whereas NOX2-derived ROS mediate the oxidation 
of sulfhydryl groups in glycoprotein Ibα and enhance its ligand-binding function 
with the von Willebrand factor on endothelial cells to promote platelet aggregation 
[84]. Finally, platelet NOX2 contributes to the formation of 8-iso-PGF2α, a reliable 
marker of oxidative stress. Elevated levels of this stable isoprostane have been 
shown to be associated with platelet activation [90]. In view of the potential involve-
ment of NOX-derived ROS in the thrombogenesis, both NOX inhibitors and super-
oxide scavengers have been reported to reduce platelet aggregation and thrombus 
formation [91, 92].

In addition to NOX-derived ROS, other sources such as mitochondrial oxidation 
may contribute to oxidative stress in platelets. It has been documented that treat-
ment of platelets with thrombin stimulates depolarization of mitochondria and 
potentiates the generation of H2O2; the thrombin-induced apoptosis may also be 
mediated by the generation of H2O2 in platelets [93]. On the other hand, it has been 
shown that mitochondria-targeted ROS scavenger, Mito-TEMPO, can ameliorate 
the hyperthermia-impaired platelet aggregation as well as hyperthermia-triggered 
platelet apoptosis. These data indicate the contributory role of mitochondrial ROS 
in platelet apoptosis which may be involved in the hyperthermia-induced thrombo-
cytopenia seen during in the combined therapy of various solid tumors. Thus, thera-
peutic approaches targeting mitochondrial ROS would have potential clinical utility 
in oxidative damage-mediated platelet-associated disorders [94]. However, the 
majority of experimental data suggest that NOX seems to be the main ROS pro-
ducer in the development of thrombosis rather than mitochondrial cytochromes. 
Finally, it should be mentioned that platelets are equipped with an effective enzy-
matic antioxidant system consisting of superoxide dismutase (SOD), glutathione 
peroxidase (GPX), catalase (CAT), glutathione transferase (GST) and glutathione 
reductase (GSSG-R), which maintain the redox balance in the cell. However, under 
pathological conditions an imbalance between the formation of ROS and efficiency 
of endogenous antioxidants may occur, and this may consequently contribute to the 
pathogenesis of thrombotic disease via enhanced platelet activation mediated by 
elevated intracellular ROS levels [84]. Proposed triggers for the generation of oxi-
dative stress leading to the development of the thrombosis are shown in Fig. 16.3.
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16.6	 �Role of Oxidative Stress in Subcellular Defects 
in Cardiac I/R Injury

In a healthy heart, the level of constantly generated ROS, mainly in mitochondria, 
is strictly controlled and maintained low by superoxide dismutase (SOD) and cata-
lase (CAT). During I/R there occurs an imbalance between the production of pro-
oxidant substances and the capacity of endogenous antioxidant leading to impaired 
redox homeostasis in cardiac cells [4]. Maintaining the balance between pro-oxidant 
and anti-oxidant levels is at risk from the onset of ischemia, but during reperfusion 
period the central role is played by a mitochondrial disorder [95]. The mitochon-
drial respiratory chain is the largest source of ROS and RNS, and therefore it is not 
surprising that during the first few seconds after the onset of reperfusion, a massive 
production of O2

−, NO− and ONOO− occurs due to the disruption of the mitochon-
drial membrane potential or the imbalance in the distribution of Ca2+ cations [96, 
97]. Generation of O2

− in the mitochondria is primarily due to the electron leakage 
from complexes I and III of the electron transport chain [98]. This leads to damage 
in the mitochondrial membrane phospholipid, cardiolipin, and consequent decrease 
in ATP production [99]. It has been documented that worsened heart function due to 
I/R is associated with decreased mitochondrial respiration and oxidative phosphory-
lation, and notably, the observed alterations of cardiac performance and mitochon-
drial function could be prevented by pretreatment with oxyradical scavenging 

NOX2 ac�va�on

Release of 
intracellular 

Binding of 
GPIbα to vWF

Platelet aggrega�on

THROMBOSIS

↑ ROS produ�on

Triggers
Inflamma�on ; Hypercholesterolemia ; Injury

Ac�vated CD40/CD40L ; oxLDL/CD36 ; ac�vated collagen/GPVI

Fig. 16.3  Proposed role of NADPH oxidase 2  in oxidative stress-induced changes in platelets 
leading to thrombus formation. ROS reactive oxygen species, NOX2 nicotinamide adenine dinucle-
otide phosphate oxidase 2, CD40(L) cluster of differentiation 40(ligand), CD36 cluster of differen-
tiation 36, oxLDL oxidized low density lipoproteins, GPVI glycoprotein VI, GPIbα glycoprotein 
Ibα, vWF von Willebrand factor
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agents or antioxidants [100]. In addition to mitochondrial damage and lipid peroxi-
dation, oxidative stress during I/R leads to structural and functional alterations of 
important cellular proteins such as membrane channels proteins, calcium handling 
proteins or sarcomeric proteins. One of the proposed mechanisms leading to protein 
alterations and degradation due to oxidative stress in I/R is the activation of endog-
enous proteinases such as matrix metalloproteinases (MMPs), cathepsins or cal-
pains [101]. Another mechanism of oxidative stress-induced impairment of 
functionality of different proteins is depressing their phosphorylation, especially in 
the case of Ca2+ handling proteins such as Ca2+ pump ATPase (SERCA) [102] and 
sarcomeric proteins essential for cardiac contraction including troponins T and I, 
tropomyosin or actin [103]. Finally, oxidative stress during I/R can result in the 
oxidation or nitrosylation of contractile proteins leading to changes in their struc-
tural conformation and/or functionality [103]. Taken together, various ROS-induced 
post-translational modifications of proteins including oxidation, phosphorylation, 
and protein cleavage significantly contribute to I/R-induced cardiac dysfunction. 
The complex view on the role of oxidative stress in the development of I/R injury, 
could be found in recent reviews where this topic has been discussed comprehen-
sively [2, 41, 97, 104].

In view of the crucial role of oxidative stress in the development of I/R injury to 
the heart, increasing the antioxidant capacity of the heart as well as administration 
of exogenous antioxidants have been suggested as therapeutic strategies for prevent-
ing the negative consequences of I/R injury. It has been found that overexpression 
of SOD or CAT protects the heart against I/R injury [105, 106]. Also, increased 
activity of SOD due to different treatments or preconditioning has been reported to 
be associated with cardioprotection against I/R [107–112]. In addition, treatment 
with various exogenous antioxidants such as polyphenols, plant mixtures, antioxi-
dant vitamins or synthetic antioxidants have been observed to evoke cardioprotec-
tive effects in I/R injury [107, 113–116]. However, despite numerous experimental 
studies documenting the positive effects of antioxidant treatments in the prevention 
of I/R injury in animal models, the effectiveness of antioxidant supplementation in 
patients with ischemic heart disease is still controversial [117]. Taking together, 
oxidative stress mediated mitochondrial dysfunction and the following sequence of 
biochemical events including lipid peroxidation and impaired ATP production, as 
well as functional alterations of different cellular proteins due to increased ROS 
production, are the cardinal features of the myocardial I/R injury. Thus, searching 
for the effective antioxidant therapies for preventing oxidative stress-induced dam-
age due to cardiac I/R injury is still challenging.

16.7	 �Conclusions

It has become evident that oxidative stress is one of the major players in the genesis 
of risk factors such as hypertension, atherosclerosis and thrombosis for the occur-
rence of IHD. Enhanced ROS production by NADPH oxidases, xanthine oxidore-
ductase or uncoupled NO synthase, as well as ROS produced by mitochondria in the 
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vasculature, mainly in vascular endothelial cells and vascular smooth muscle cells, 
and in the platelets, has been shown to be associated with these risk factors for 
IHD. Moreover, oxidative stress plays a significant role in the development of sub-
cellular defects due to I/R injury in the heart. Thus, enhanced production of ROS, 
leading to an imbalance between their production and degradation by endogenous 
antioxidant systems, represents a promising target for the prevention of risk factors 
of IHD as well as the negative consequences of I/R injury in the heart tissue. Hence, 
interventions leading to decreased activity of ROS producing enzymes or enhanced 
activity of endogenous antioxidants may lead to decreased occurrence of risk fac-
tors of IHD and prevent the heart tissue from I/R injury. Moreover, decreasing oxi-
dative stress may prevent the development of subcellular defects in the myocardium 
and improve cardiac performance in the ischemia–reperfused hearts. Treatment 
with exogenous antioxidants might be a promising strategy to reverse the redox 
imbalance as well as prevent the genesis of IHD and development of I/R injury to 
the heart.
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17.1	 �Introduction

The epidemiological and clinical studies, in general aspects, agree that Diabetes 
Mellitus with its complications, including cardiovascular disorders, is one of the 
major health disorders worldwide [1–4]. Due to statistical document, the prevalence 
of diabetes worldwide will reach about 8% among populations in 2030 [5]. The 
incidence of ischemic heart disease is higher with the higher risk of mortality rather 
than those of nondiabetics [6]. In addition, special cardiomyopathy, named diabetic 
cardiomyopathy was first defined by Rubler and his co-workers (1972) in diabetic 
patients, who had heart failure with independent of arterial disfunction [7]. All over 
the World, diabetes is becoming the most important disorders in humans, including 
children, mostly due to increases in overweightness and obesity via high carbohy-
drate and fat diets and lack of daily physical inactivity. Due to the WHO documents 
(http://www.euro.who.int/), there are about 60 million people with diabetes in the 
European Countries (about 10.3% of men and 9.6% of women aged 25 years and 
older). Worldwide documents show that there are considerable numbers of diabetes-
related human deaths and these numbers will reach to twofold until 2030 (http://
www.eatlas.idf.org/; [8]). In addition, clinical and epidemiological studies empha-
size that the type 2 diabetes incidence is increasing in Asian populations, although 
they have low body mass index with respect to increased body weight [9].

As mentioned in several books, review articles original and review articles, as 
well as public documents, the cardiac dysfunction can be developed during diabetes 
and resulted from multiple parameters including, cellular [Ca2+]i – and [Zn2+]i -dys-
regulations, dysregulations in the suborganelle levels (i.e. in Sarco(endoplasmic) 
reticulum and mitochondrial functions) as well as an uncoupling between them [10] 
besides glucotoxicity, lipotoxicity and fibrosis in the tissue levels [11–13].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8273-4_17&domain=pdf
mailto:belma.turan@medicine.ankara.edu.tr
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Hyperglycemia is recognized as the primary accountable factor in the induction 
of alterations in vital organs and tissues. The heat is an important hyperglycemia-
targeting organ. A nonenzymatic attraction of high glucose to protein, named as 
glycation, represents one possible mechanism, of which high-level blood glucose in 
serum/plasma of mammalians can lead to pathophysiological damages [14–18]. 
However, diabetologists have reported the importance of non-understood factors’ 
contributions to the development of hyperglycemia associated organ damage. 
Importantly, most of the published data emphasized the important roles and also 
contributions of a high amount of free radical production associated increased oxi-
dative stress in hyperglycemic cells [19, 20]. The data at cellular levels demonstrate 
that to hyperglycemia induces important changess in mitochondrial structure and 
function, such as alterations in xanthine oxidoreductase and nicotinamide adenine 
dinucleotide phosphate, NAD(P)H oxidase, and induction of uncoupled endothelial 
nitric oxide synthase (eNOS), which, in turn, stimulate the increases in cellular 
oxidative stress via increases in both reactive oxygen-nitrogen species (ROS/RNS). 
All these are underlying the changes in epigenetic mechanisms (such as changes in 
acetylation in both histone and nonhistone proteins and in DNA methylation level). 
Furthermore, these alterations, in later periods, contribute to the progression of 
hyperglycemia associated heart dysfunction (i.e. diabetic cardiomyopathy) 
(Fig. 17.1).

In this content, experimental studies demonstrated that the Zn2+ release during an 
excitation-contraction cycle could increase in cardiomyocytes under oxidative 

Fig. 17.1  A pathway 
underlying the 
hyperglycemia associated 
subcellular and cellular 
changes, which are 
further leading to the 
induction of special 
cardiomyopathy in 
diabetic subjects. 
Reactive oxygen species 
(ROS), reactive nitrogen 
species (RNS), NAD(P)H 
oxidases; membrane-
associated enzymes, 
catalyze the 1-electron 
reduction of oxygen using 
NADH or NADPH, 
endothelial nitric oxide 
synthase (eNOS)

B. Turan
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stress and hyperglycemia, inducing a marked increase in cytosolic [Zn2+]i [21], 
which further could trigger production of pro-oxidants promoting to oxidative dam-
age in cells and tissues [16]. However, early studies demonstrated that acute expose 
cardiomyocytes to oxidants leads to a significant increase in [Zn2+]i [22]. Moreover, 
experimental studies showed the role of both acute and chronic hyperglycemia in 
the abnormal function of the heart, with parallel induction of oxidative stress and 
high [Zn2+]i [18]. All above studies demonstrated that similar to [Ca2+]i, [Zn2+]i have 
vital roles in cardiomyocyte function in the mammalian heart [23] and serves up as 
an important secondary messenger [24]. Therefore, the present review focused on 
the already knows and present hypothesis on the relation between high [Zn2+]i and 
increased oxidative stress in heart dysfunction under acute and chronic 
hyperglycemia.

17.2	 �Induction of Oxidative Stress and Redox Dysregulation 
in Hyperglycemic Heart

The oxidative stress in cells is defined as disturbance in the balance between proper 
ROS production/use, in the ability of the cell to detoxify oxidative reagents, or and/
or impairment in the repair processes [19, 20]. In mammalian cells, ROS are pro-
duced physiologically and intracellularly via mitochondria and its production is 
important for several cellular functions. ROS involves superoxide (O2

.−) and 
hydroxyl radicals (OH.), besides oxidizing agents such as hydrogen peroxide (H2O2) 
(see review article [25]).

Under hyperglycemia, there are many different sources to increase oxidative 
stress, including mitochondrial pathways and arising from the oxidative biochemis-
try of high glucose [26–33]. The role of mitochondrial pathology is presented in 
alteration of heart function (cardiomyopathy) in diabetics, however, the experimen-
tal and clinical approaches to improve mitochondrial function are not able to solve 
these complications. Systemic hyperglycemia in humans is one of the major etio-
logical components in the diabetic cardiomyopathy because high cellular glucose 
can initiate the high amount of ROS and RNS production and/or alter the antioxi-
dant defense mechanisms. However, as mentioned in previous paragraphs, high glu-
cose can directly cause increases in ROS and RNS generation as well as insufficient 
antioxidant defense in cardiomyocytes. Consequently, resultant imbalance between 
production and detoxification of oxidants in cardiomyocytes further promote sev-
eral deleterious effects, including cellular [Ca2+]i-dyshomeostasis [14–17, 34, 35] 
and dysregulation of redox signalling [11, 12, 28, 36, 37]. Cellular redox dysregula-
tion in the heart tissue underlines the induction of many physiopathological pro-
cesses in the heart, including atherosclerosis in the vascular system, cardiac 
hypertrophy and dense fibrosis at both cellular and tissue levels [38]. Briefly, high 
ROS can induce harmful processes in both cellular and organ functions, at most, 
though some specific modifications in target molecules/proteins, which in turn 
undergo redox-sensitive alterations in their function [15, 17, 39, 40].
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In the content of ROS, there are both free radicals and non-radical species, which 
have high chemical reactivity in the cells. In physiological condition, cells have a 
well-controlled balance system against the highly production of ROS, however, 
when the existance of unbalanced with different pathological stimuli, cells/tissue/
organs get the effect of oxidative stress [31, 41–44]. This imbalance is mostly asso-
ciated with an imbalance in cellular redox control, which further leads to oxidative 
stress, [39]. Increases in oxidative stress, via high glucose, is a key factor for the 
initiation of diabetes associated organ dysfunctions, including cardiac dysfunction. 
High glucose in cardiac cells underlines several harmful processes at cytosolic, sub-
cellular, and molecular levels, which in turn damage cardiac tissue and depressed 
cardiac performance [45, 46]. Briefly, high glucose, having either direct, indirect, or 
both affects the myocardium via affecting both metabolic and nonmetabolic signal-
ing pathways, Ca2+-handling proteins, and several phosphatases in cellular levels as 
well as serious structural changes in the heart tissue. All these changes contribute to 
the heart dysfunction in diabetic humans [15, 16, 47, 48].

Since diabetic cardiomyopathy is a complex disorder with the contribution of 
several internal and external factors, its pathogenesis is not exactly very well under-
stood. As mentioned in the previous paragraph, important changes in the energy 
metabolism of the heart, characterized with reduced glucose uptake, mitochondrial 
dysfunctioning, and their consequent events, as directly or indirectly, such as [Ca2+]i-
dyshomeostasis in cardiomyocytes, lead to altered excitation-contraction coupling 
and thereby insufficient contractile activity of the heart [15, 49–51]. Among altered 
events, a reduction in sarcoplasmic reticulum (SR)-Ca2+-load via abnormal SR-pump 
activity (SERCA2a) and over photophosphorylation in SR-ryanodine receptors 
(RyR2) via activations in both protein kinase A (PKA) and protein kinase C (PKC) 
and calcium-calmodulin kinase II, CaMKII can underline the insufficient heart 
function in either streptozotocin-diabetic rats or metabolic syndrome rat together 
with high oxidative stress [15, 52–54]. In those animal models, the contractile dys-
function is also explained with a left ventricular remodeling, although the presence 
of slowing in action potential duration and reducing in SR Ca2+-release via dysfunc-
tioning of RyR2 [55]. Furthermore, some other studies demonstrated the role of 
altered redox status in depressed cardiac function in diabetic humans. In those stud-
ies, some authors considered that RyR2 has major role in the left ventricular remod-
eling development in diabetes, while at the cellular level, the slower action potential 
and reduced SERCA2a expression could only underline the changes in intracellular 
transient Ca2+-changes (at most kinetics of these changes) in diabetic rat cardiomyo-
cytes [55–57].

17.3	 �Cross-Talk Between Zinc and Oxidative Stress 
in Cardiovascular Function

In living organisms, Zn2+, being one of the important transition metal ion, is an 
important ion for animals and humans. Zn2+ is not a redox element and has basically 
two important roles, such as catalytic activity and structural component [58]. In 
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mammalian cardiomyocytes, Zn2+ plays important role for the regulation of protein 
expression, including inter-molecular interactions, phosphorylation, and oxidation 
processes [16, 59]. In addition, Zn2+ plays important role to stabilize the high level 
transcription factors, including Zn2+-fingers [60, 61]. In an early study in this field, 
a very striking example was provided for the correlation between the acute oxidant 
application and a very rapidly [Zn2+]i increase in ventricular cardiomyocytes [22], 
while increased production of oxidants (both ROS and RNS) could trigger rapidly 
important increases in [Zn2+]i [18, 21]. In these regards, early studies have reported 
how the high [Zn2+]i is associated with mitochondrial dysfunction in neurons, lead-
ing to not only reduced ATP production but also induced increase ROS production 
via activation of peroxisome proliferator-activated receptors, PARP-1 [62, 63].

More particularly, in noncontacting (resting) ventricular cardiomyocytes from 
STZ-diabetic rats, the high [Zn2+]i together with high [Ca2+]i are responsible, in part, 
responsible from the alterations of the electrical and mechanical function of the 
cells [16]. However, there are some studies emphasizing the positive role of high 
[Zn2+]i in cells. In this regard, Song et  al. [64] mentioned that somehow zinc-
compounds have an antioxidant action to protect the heart against oxidative stress. 
Contrary to them, a direct increase in [Zn2+]i together with high oxidative agents 
induces important alterations in excitation-contraction coupling activity of cardio-
myocytes from left ventricle [21, 22]. In an another study, Lin et al. [65] demon-
strated that I/R, and exposed to either ROS, RNS, or both provided important and 
deleterious increase in the oxygen radicals, resulting important increases in cyto-
solic [Zn2+]i via increases in suborganelle Zn2+-release including S(E)R and mito-
chondria Zn2+ release. The studies performed with a Zn2+-chelator (high affinity to 
bind Zn2+), N,N,N0,N0, tetrakis(2-pyridylmethyl) ethylene diamine pentaethylene 
(TPEN), demonstrated the deleterious role of high [Zn2+]i, protection myocytes 
against apoptosis via abolishing the Zn2+-release. In line with these findings, Mato 
et al. [66] further examined how [Zn2+]i-dysregulation can contribute to oligoden-
drocyte injury, via AMPA receptors, in parallel to [Zn2+]i elevation resulting from 
AMPA receptor activation via promoting Ca2+-dependent cytosolic acidification. A 
hypothetical pathway is prepared to demonstrate how hyperglycemia associated 
increased oxidative stress and cellular [Zn2+]i can correlate to cardiac dysfunction in 
diabetic mammalians (Fig. 17.2).

Clinical data in this field present some contradictions for the role of high [Zn2+]i 
on heart function. As an example, a decrease zinc level in the body determined 
mostly by serum zinc level and defined as zinc deficiency has been considered as a 
risk factor for development of high glucose associated cellular/tissue/organ dys-
functions in diabetic humans. The clinical results showed that serum Zn2+ level (but 
not Cu2+) is significantly low in diabetic patients, while supplementations with zinc 
compounds provided important beneficial effects, including preservation of heart 
function [67–69]. These benefits with zinc supplementation seem to link its func-
tioning as an antioxidant through participation in activities of superoxide dismutase 
and thioredoxin as well as its inhibition effect in lipid peroxidation [70]. Furthermore, 
in cells, intracellular free Zn2+ is a potent metallothionein inducer to scavenge the 
intracellular oxidants [71, 72]. A supporting study was performed by Wang et al. 
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[73]. They demonstrated the important cardioprotective effect of induction of car-
diac metallothionein via zinc-supplementation in diabetic cardiomyopathy. 
Moreover, in a review article by Efeovbokhan et al. [74], they discussed how high 
[Zn2+]i could serve as cardio-protectant in congestive heart failure by an antioxidant 
considering the pharmaco-physiologic potential of [Zn2+]i at the cellular level.

Fig. 17.2  A hypothetical pathway on increases and redistribution of cellular free/labile Zn2+ 
and cardiac dysfunction in diabetic subjects. Oxidative stress in cells from diabetic subject heart 
increases mainly due to hyperglycemia, hyperlipidemia and inflammation, which leads to oxida-
tion and/or phosphorylation in several proteins, kinases, and enzymes. These changes can further 
lead to changes in intracellular free/labile Zn2+ levels as well as its subcellular distribution via 
changes in the function of Zn2+–transporter families. Altogether these changes can further induce 
cardiac dysfunction via induction of apoptosis, ER stress and uncoupling between S(E)R and mito-
chondria. S(E)R Sarco(endo)plasmic reticulum, Mit mitochondria [10, 86, 88]
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17.4	 �Role of Zn2+-Transporters on Cardiomyocyte Function 
Under High Glucose

Even in early studies with mammalians showed that the cellular transport, localiza-
tion, and free level of Zn2+ are strongly controlled and regulated with severeal ways, 
including Zn2+-transporters [75–78]. Recently, to examine how the cellular Zn2+-
fluxes existing and what types of transporters playing a role for the regulation of 
cellular Zn2+-distribution, most of the studies are focused on the locations and roles 
of specific Zn2+-transporters. From these recent efforts, right now, there are the valu-
able amount of information on the physiological roles of Zn2+-transporters in cel-
lular [Zn2+]i-handling (see review articles [79–82]. Supporting these statements, 
recent growing evidence documented that any failure to function of [Zn2+]i-
homeostasis due to dysfunctioning in Zn2+-transporters results in not only induction 
but also the progression of many diseases in mammalians [10, 83–90]. However, 
there are very little documents in literature related with the roles and status of Zn2+-
transporters in the pathogenesis of cardiovascular disorders, and therefore, in this 
section, it will be summarized the already knowns in this area.

The first functional study with Zn2+-transporters was performed in HL-1 embry-
onic rat atrial cell line by Levy et al. [91]. They demonstrated that ZnT1 interacts 
with the beta-subunit of voltage-dependent L-type Ca2+-channel via leading to an 
important decline in expression of its alpha-subunit. However, in early studies, it 
has been demonstrated that ZnT1 has a role in resistance to Zn2+ associated cellular 
toxicity [92, 93]. Moreover, Mor et al. [94] studied the ZnT1 role in the same cell 
line in the expression level of T-type Ca2+-channels in the sarcolemma through Ras-
ERK signaling. Briefly, those ZnT1 related studies point out its important and broad 
regulatory roles, partially but directly related to [Zn2+]i-handling [95]. In a later 
study, the authors mentioned that ZnT1 extrudes Zn2+ from mammalian cells via a 
Zn2+/H+ exchanger in HEK 293 T cells [96].

The first detailed gene profile analysis to identify the expression levels of Zn2+-
transporters in human organs were performed by Yang et  al. [97], whereas the 
mRNA level of ZnT7 in a number of mouse tissues, including heart tissue, was 
examined by Kirschke and Huang (2003) [98]. There is no fully demonstration of 
subcellular localizations of Zn2+-transporters in cardiomyocytes yet although some 
of them have shown in different organelles in different cell types. For example, the 
ZIP7 localization was shown into ER in yeast, being responsible for the unfolded-
protein-response [99]. Huang et al. (2005) have shown the localization of ZIP7 on 
Golgi in ovary-cells [100], whereas others demonstrated ZIP7 localization on ER in 
breast cancer cells [101, 102].

Although Yang et al. (2013) demonstrated the protein expression levels not only 
in ZIP7 but also in ZnT7  in the human cardiac tissue, the functions and cellular 
localization of ZIP7 and ZnT7 are not known very well, under both physiological 
and pathophysiological conditions in the heart [97]. In this regard, Turan’s lab dem-
onstrated the ZIP7 and ZnT7 localization on S(E)R and mitochondria in cardiomyo-
cytes from left ventricle of rat heart [10, 86]. The same team also demonstrated the 
increased ZIP7-phosphorylation in hyperglycemic cardiomyocytes as well as in 
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cardiomyocytes from diabetic rat heart [103]. Following discovery of recombinant 
FRET-based sensors targeting Zn2+, it has been shown important redistribution of 
free Zn2+ in hyperglycemic cardiomyocytes, which are characterized with high cyto-
solic [Zn2+]i and lacking of the proper amount of free Zn2+ in the S(E)R. Importantly, 
less free Zn2+ in the S(E)R could underline the ER stress in cardiomyocytes, as well. 
Furthermore, Turan’s lab also demonstrated that the protein expression levels of 
ZIP7, ZIP14, and ZnT8 were markedly increased with decreased ZIP8 and ZnT7 in 
hypertrophic rat heart [88]. The relation between the cellular distribution of free 
Zn2+ and ER stress and their coupled-role in cellular dysfunction under pathological 
conditions have been demonstrated by others, as well [99, 104]. Moreover, with 
detailed examinations of subcellular localization of ZIP8, ZnT8, and ZIP14 in ven-
tricular H9c2 cell line by using confocal microscopy imaging and calculation of 
Pearson’s coefficients from images demonstrated that ZIP8, ZIP14 and ZnT8 were 
localized to both sarcolemma and S(E)R [88]. Moreover, in these heart tissue paral-
lel to the different expression levels of these transporters, the increases in the ER 
stress markers were also confirming the relation between ER stress and redistribu-
tion of subcellular free Zn2+. A supporting study on the role of Zn2+-transporters in 
cardiac function is given by Wen et al. who showed the role of ZIP8 in proper struc-
ture and function of left ventricle [89].

Under the light of already documented data, in here, the localization and roles of 
these Zn2+-transporters in mammalian cardiomyocytes are summarized on a hypo-
thetical map in Fig. 17.3. Overall, already knowns strongly suggest the important 
role of Zn2+–transporters on the cross-talk between increased [Zn2+]i and induction 
of cardiac dysfunction under different pathological conditions, in part, via induction 
of ER stress. In these regards, the differential distribution in the localizations of 
Zn2+-transporters as well as their significant role in cross-talk of S(E)R-mitochondria 
in cardiomyocytes, one can suggest their important contribution to Zn2+-distribution 
between cellular-compartments of cardiomyocytes, under hyperglycemia, hypertro-
phy, and/or heart failure. All these can propose a new strategy for prevention/ther-
apy of these pathologies via considering a discovery of new actors for a 
well-controlled cellular [Zn2+].

17.5	 �Conclusions

Diabetes, with parallel to obesity and unhealthy feeding and lifestyle in the current 
populations, is affecting over 200 million humans, and cardiovascular diseases are 
the major disorders cause the deaths in these populations [2]. Although cardiovas-
cular disorders are associated with several comorbidities, diabetes in humans and 
experimental animals, as a chronic disease, can induce insufficient ventricular func-
tion, being independent of other risk factors including atherosclerosis [16, 17, 105]. 
The exact mechanisms related with the pathogenesis of hyperglycemia associated 
events are not clear yet, however, several studies have suggested the important roles 
of defective subcellular functioning such as S(E)R [15, 21], mitochondria [10, 106] 
and extracellular matrix [14, 34], at most, due to increased oxidative stress. Recent 
studies are well established that increases in both ROS and RNS direct and/or 
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indirectly contribute to deleterious changes in cardiomyocytes and cardiac tissues, 
as well in diabetics [16, 107, 108]. More importantly, it has been shown that, if 
cardiomyocytes exposed to ROS and/or RNS, the level of [Zn2+]i in resting cells can 
increase rapidly through the high amount of Zn2+ release from intracellular stores 
[22, 86]. These events can provide a close relationship between the harmul action of 
high [Zn2+]i and increases in oxidative stress in the heart [18, 59, 109]. Zinc, in gen-
eral aspects, has more than one major biological roles in a mammalian organism, 
including immune function, oxidative stress, apoptosis, and aging. Therefore, either 
zinc-deficiency or zinc-excess can be detrimental to heart function in humans. The 
cellular level of [Zn2+]i is mainly regulated with several ways, while labile Zn2+ has 
a critical effect in homeostasis of cellular redox state. Considering some aspects of 
chronic diseases, including diabetes and aging, some similarities to ones in zinc-
deficiency status, here are several common clinical outcomes, which affect nega-
tively the immunological and oxidative stress status, and thereby cause the induction 
of fatal alterations in organ/tissue/cell of mammalians.

Collectively, the summary, given in here, reveal potentially important Zn2+-
transporters and their roles on Zn2+-influx into cytosol underlying ventricular dys-
function during myocardial morphogenesis. It can be suggested that these Zn2+ 
-transporters (such as ZIP14, ZIP8, ZnT8, ZIP7, and ZnT7) may be good candidate 

Fig. 17.3  Cellular and subcellular localization of Zn2+–transporter families, ZIPs and ZnTs 
and Zn2+–transport directions by these transporters in cardiomyocytes from the mammalian 
heart. The primary localization of Zn2+–transporters (blue boxes) and direction of Zn2+-transports 
(black arrows) is shown on the membranes of cells. Turan’s lab examined the localization and 
protein expression levels in ventricular cells such as ZIP14, ZIP8, ZnT8 along with ZIP7 and 
ZnT7. The current data obtained in have demonstrated that ZIP8, ZIP14, and ZnT8 are localized to 
both sarcolemma and S(E)R, while ZIP7 and ZnT7 are localized to S(E)R, Golgi and mitochon-
dria. Their expressions levels can change differentially in the heart under different pathological 
conditions [10, 86, 88]
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genes to monitor in patients with ventricular dysfunction as a new strategy for the 
handling of human chronic diseases.
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18.1	 �Diabetic Cardiomyopathy

Healthcare research has come a long way from initial discovery of diabetes in 
1550 BC with several breakthroughs including the isolation of insulin by Best and 
Banting in 1922. Although discovery of insulin was a major leap forward in history 
of diabetes, diabetic complications were not known for several years. Five decades 
after insulin discovery i.e. in 1972, first evidence of diabetic cardiomyopathy was 
reported by Rubler et al. [1]. They examined post-mortem findings of 27 patients 
with proven case of diabetic glomerulosclerosis and they documented that out of 27 
patients, 04 patients had cardiomegaly, left ventricular hypertrophy and congestive 
cardiac failure with no known cause and they hypothesized the cardiac disease is 
secondary to diabetic microangiopathy [1]. Since this first discovery, it has been 
more than 45 years now, and research in diabetic cardiomyopathy has advanced to 
a large extent. Several new targets and molecular mechanisms have been identified 
not only for cardiovascular diseases [2, 3] but also for diabetic cardiomyopathy [4, 
5]. The major factors contributing to diabetic cardiomyopathy are hyperglycemia 
and insulin resistance, oxidative stress, abnormal free fatty acid metabolism, 
advanced glycation end products, renin-angiotensin system etc. [6]. A brief sum-
mary of mechanisms of diabetic cardiomyopathy has been provided in Fig. 18.1 and 
the molecular signalling pathways affecting diabetic cardiomyopathy are depicted 
in Fig. 18.2.

Currently, there is no specific treatment for diabetic cardiomyopathy; however it 
involves use of anti-diabetic agents, anti-hypertensives, lipid lowering drugs, and 
management of heart failure depending upon the stage and extent of cardiomyopa-
thy. Metformin [7, 8], glucagon like peptide-1 (GLP-1) agonist [9, 10], Dipeptidyl 
peptidase 4 (DPP-4) inhibitors [11, 12] and sodium-glucose cotransporter 2 (SGLT-
2) inhibitors [13, 14] have been reported to exhibit beneficial role in 
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cardiomyopathy. Thiazolidinediones are reported to worsen the cardiovascular 
complications of diabetes [15]. Amongst various anti-hypertensive agents, spirono-
lactone [16, 17], β-blockers [18], renin inhibitors [19], angiotensin II receptor 
blockers [20–22], calcium channel blockers [23] and angiotensin converting enzyme 
(ACE) inhibitors [24–26] have been documented to exhibit cardioprotective actions 
in diabetes. Some agents like buspirone is also reported to be beneficial owing to its 
effect on serotonin [27]; statins are reported to reduce cardiovascular mortality in 
diabetics [28, 29].

18.2	 �Oxidative Stress and Diabetic Cardiomyopathy

Oxidative stress plays a major role in diabetic cardiomyopathy. During diabetes, 
hyperglycemia and insulin resistance produces increase in nicotinamide adenine 
dinucleotide and flavin adenine dinucleotide flux to the mitochondrial respiratory 

Fig. 18.1  Mechanisms leading to diabetic cardiomyopathy
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chain [30]. This leads to causes hyperpolarization of the inner mitochondrial mem-
brane alongwith inhibition of electron transport in complex II and produces exces-
sive production of reactive oxygen species (ROS). In addition to this, uncoupling of 
nitric oxide synthase along with excessive xanthine oxidase, and microsomal P-450 
enzyme activity are additional sources of ROS.  ROS increases formation of 
advanced glycation end products, enhances polyol pathway and inhibits e-nitric 
oxide synthase (e-NOS) activity leading to cardiomyopathy [31]. Increased nicotin-
amide adenine dinucleotide phosphate oxidase, which is mediated through renin 
angiotensin aldosterone system (RAAS), also increases formation of ROS and it is 
established that RAAS is implicated in diabetic cardiomyopathy [32, 33]. Targeting 
mitochondrial oxidative stress have provided some evidences pertaining to preven-
tion of diabetic cardiomyopathy. A free radical scavenger d-Arg-2′, 6′-dimethylty-
rosine-Lys-Phe-NH2 (SS31) is stated to prevent cardiac hypertrophy, diastolic 
dysfunction, cardiac hypertrophy and promotes oxidative phosphorylation [34, 35]. 
Similar effects are exerted by several other anti-oxidants viz. coenzyme Q10 [36], 
edavarone [37], vitamin E [38], resveratrol [39, 40], taxifolin [41], procyanidin B2 

Fig. 18.2  Molecular mechanisms and signaling pathways which are altered during diabetes and 
lead to cardiomyopathy. PKC Protein kinase C, MAPK Mitogen activated protein kinase, O-GlcNAc 
O-linked N-acetylglucosamine, AMPK AMP-activated protein kinase, SGLT-2 sodium–glucose 
cotransporter-2, Nrf2 nuclear factor erythroid 2–related factor 2, PPAR peroxisome proliferator-
activated receptor, NF-κB nuclear factor kappa B, CREM cyclic adenosine 5′-monophosphatere-
sponsive element modulator
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[42], luteolin [43], tempol [44], L-glutamine [45], wogonin [46], curcumin [47], 
β-casomorphin-7 [48], rutin [49, 50], α-tocopherol [51], α-lipoic acid [52], phlori-
zin [53], N-acetyl cysteine [54], apocynin [55] and genistein [56].

18.3	 �Histone Deacetylases (HDACs)

Histone deacetylases (HDACs) are group of key enzymes involved in epigenetic 
regulation of genes by removing acetyl group from lysine residue of histone pro-
teins and conversely histone acetyl transferases (HAT) are involved in acetylation of 
histone proteins. 18 types of HDACs have been identified till date which are divided 
into four classes as depicted in Fig. 18.3.

HDACs have been implicated in several disorders including cancer [57, 58], 
inflammatory bowel diseases [59], psychiatric disorders [60], Alzheimer’s disease 
[61], AIDS [62], ischemic stroke [63], kidney diseases [64] and cardiovascular dis-
eases [65] including cardiac hypertrophy [66]. Furthermore, HDACs have also been 
known to regulate several important genes which are related to diabetes [67, 68].

18.4	 �Histone Modifications in Diabetic Cardiomyopathy

Epigenetic modifications involving alterations in histone acetylation and deacety-
lation are described to be involved in diabetes and its complications [69, 70]. Such 
epigenetic modifications play a key role in diabetic cardiomyopathy by regulating 

Fig. 18.3  HDAC and their classes
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the pathophysiological and molecular signaling pathways. Evidences support the 
role of HDAC in pathophysiology of diabetic cardiomyopathy and several studies 
involving use of HDAC inhibitors have shown to exhibit protective effect which is 
discussed in the upcoming sections.

18.4.1	 �Histone Acetylation in Diabetic Cardiomyopathy

Documented evidences suggest that there is upregulation of epigenetic mechanisms 
in diabetic heart as depicted from increase in H3K9 and H3K23 acetylation along-
with H3K4 dimethylation, and phosphorylation at serine 10 in the hearts of diabetic 
rats with renal failure [71]. In spontaneously diabetic Goto-Kakizaki rat with myo-
cardial infarction, it was found that phosphorylation and acetylation of histone pro-
teins regulate Akt – FOXO3a, Sirt1 – p53 and the MAPK p38 pathways and play a 
role in cardiac remodeling [72]. Certain in vitro evidences also suggest role of 
altered histone acetylation in diabetic cardiac complications. In one study, endothe-
lial cells when subjected to high glucose concentration produced a significant 
increase in p300 levels resulting in increased histone acetylation in the promoter 
regions of genes pertaining to extracellular matrix. Additionally, when p300 was 
inhibited, there was prevention of cardiomyocyte hypertrophy, thus, suggesting a 
role of histone acetylation in regulation of gene expression [73, 74]. On similar 
lines, H9C2 rat cardiomyocyte cells when incubated with high glucose, depicted 
increase in association of p53 with HDAC1 along with decrease in association of 
acetylated histone-4 with the insulin like growth factor (IGF)-1R promoter [75].

18.4.2	 �HDAC in Diabetic Cardiomyopathy

O-linked β-N-acetylglucosamine (O-GlcNAc) is one of the cytosolic molecule 
which causes acylation of serine and threonine residues of proteins and regulates 
various cell functions including cardiac actions [76]. It has been reported that in 
diabetic hearts, there is an increase in O-GlcNAc levels which is also co-related to 
diabetic cardiomyopathy [77]. Decreased levels of HDAC1, HDAC2 along with 
increase in HDAC3 mRNA expression has been documented in the heart of diabetic 
animals [78]. Moreover, it was suggested that the diabetic heart functions were 
compromised due to decrease in physical association of O-GlcNAc with mSin3A/
HDAC1/2 and this was prevented by physical exercise [78]. On similar lines, a sig-
nificant increase in cardiac HDAC3 activity has been reported in OVE26 diabetic 
animals in which HDAC3 down-regulated expression of one MAP kinase phospha-
tase, DUSP5 by deacetylating histone H3 at the primer region of DUSP5 gene. This 
led to pro-hypertrophic effect in the diabetic animals [79]. In another report, specific 
cardiac Hdac3a knock-out mice depicted cardiac hypertrophy along with altered 
glucose metabolism due to downregulation of GLUT4 and upregulation of pyruvate 
dehydrogenase kinase 4 (PDK4) again confirming the role of HDAC3 in cardiomy-
opathy and diabetic states [80].
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Poly adenosine diphosphate ribose polymerase 1 (PARP1) is reported to induce 
oxidative stress and play a key role in diabetic cardiomyopathy [81]. Documented 
evidences have suggested that wild rats fed with high galactose exhibited increased 
p300 transcript levels along with increased levels of deacetylated lysine while 
PARP−/− mice fed a galactose enriched diet illustrated similar p300 levels as com-
pared to wild control mice [82]. Recently, Wu et  al. [83] reported that ischemic 
reperfusion injury produced a significant increase in HDAC activity with attenuated 
ratio of Ac-H3/H3 and Ac-H4/H4 in diabetic rats induced by single dose of strepto-
zotocin which was attributed to decrease in phosphorylated levels of Akt.

18.4.3	 �Sirtuins in Diabetic Cardiomyopathy

Silent Information Regulator 2 (SIR2) proteins i.e. Sirtuins belong to class III 
HDACs which are NAD+ dependent enzymes [84]. Sirtuins are reported to play 
important role in diabetic cardiomyopathy through modulation of several pathways. 
SIRT1 is evidenced to upregulate and phosphorylate ERK1/2 at Thr202/tyr204 resi-
due which causes expression of scaffold protein Homer1α and this Homer1α acts as 
Ca+2 dependent endogenous scavenger of ROS [85]. Similarly, SIRT1 overexpres-
sion produce decrease in superoxide generation and increases activity of superoxide 
dismutase enzyme in ischemic reperfusion injury in diabetic animals [86]. Moreover, 
SIRT1 is reported to down regulate pro-apoptotic substances during ischemic reper-
fusion injury and thereby inhibits apoptosis and reduce oxidative stress induced 
cardiomyopathy [87]. In diabetes, increase in glucose level increase P300 which 
activates transforming growth factor-β (TGF-β) and SIRT1 inhibits P300 and 
thereby causes reduction in the activity of TGF-β and prevents heart failure in dia-
betes [88]. Autophagy, which is an intracellular process of protein digestion is docu-
mented to be suppressed in diabetes, specifically cardiac autophagy [89]. 
Upregulation of fibroblast growth factor 21 (FGF – 21) is stated to increase autoph-
agy mediated by SIRT1, thereby prevent diabetes induced cardiac fibrosis [90].

18.4.4	 �Therapeutic Opportunity by Modulation of HDACs

Various evidences have suggested the role of HAT and HDACs in regulation of 
imperative genes which are involved in the pathophysiology diabetic cardiomyopa-
thy. Hence, it is worthwhile to explore targeting of these established cascades for as 
a therapeutic approach. In an animal model of type 1 diabetes induced by strepto-
zotocin in ICR mice, HDAC inhibitor, sodium butyrate when given in drinking 
water, produced inhibition of interstitial fibrosis and myocyte hypertrophy in the 
heart of diabetic mice and preserved ventricular function and prevented cardiac 
remodeling [91]. Sodium butyrate produced an increase in myocardial superoxide 
dismutase, glucose transporter-1 (GLUT-1) and GLUT-4 protein levels and attenu-
ated myocardial apoptosis [91]. Similarly, magnesium valproate in type 1 diabetes 
in rats induced by streptozotocin prevented diabetes induced dyslipidemia, cardiac 
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hypertrophy and fibrosis [92]. Although the authors attributed this effect to estrogen 
modulatory effects of magnesium valproate, magnesium valproate is previously 
reported to exhibit HDAC inhibitory actions [93]. Furthermore, magnesium valpro-
ate was documented to control diabetic dyslipidemia, left ventricular hypertrophy, 
left ventricular dysfunction and cardiac oxidative stress in an animal model of type 
2 diabetes mellitus induced cardiovascular complications by administering strepto-
zotocin in 2 day old pups of wistar rats [94].

Peroxisome proliferator-activated receptors (PPARs) are described to regulate 
cardiac glucose and lipid homeostasis which in turn are thought to be regulated by 
HDACs owing to their anti-inflammatory effects. MPT0E014, a pan HDAC inhibi-
tor is stated to reduce dyslipidemia and myocardial inflammation in nicotinamide 
and streptozotocin induced diabetic animals [95]. MPT0E014 increased the protein 
expression of PPARα and PPARδ while it reduced the expression of PPARγ sug-
gesting the link between PPAR and HDAC [95]. RGFP966, selective HDAC3 inhib-
itor and valproic acid, pan HDAC inhibitor are documented to prevent cardiac 
hypertrophy, cardiac fibrosis, cardiac collagen accumulation and preserved cardiac 
function in OVE 26 type 1 diabetic mice [79]. DUSP5 is a nuclear ERK1/2-specific 
phosphatase which regulates cardiac hypertetoph and RGFP966 suppressed diabe-
tes induced ERK1/2 activation in nucleus and increase DUSP5 expression [79]. In 
another study involving type 2 diabetes, MPT0E014 is shown to exhibit cardiopro-
tective effects via increased protein expression of phosphorylated 5′ adenosine 
monophosphate-activated protein kinase (AMPK) α2, GLUT-4, and insulin receptor 
substrate-1 (IRS), alongwith decrease in expression of p-mTOR-S2448 and poly 
adenosine diphosphate ribose polymerase 1 (PARP1), TNF-α and IL-6 [96].

In a recent study, trichostatin A is reported to prevent myocardial injury in type 
1 diabetic rats subjected to ischemic reperfusion injury [83]. Trichostatin A reduced 
cardiac biomarkers, infarct size, improved hemodynamics, diminished apoptosis 
and activated Akt/FoXo3 pathway. The authors also studied effect of trichostatin A 
on H9C2 cardiomyocytes subjected to high glucose concentrations and found that 
reduced overindulgence of mitochondrial membrane potential, protected the integ-
rity of mitochondrial permeability transition pore (mPTP), and decreased cell apop-
tosis and these effects were revered when Akt inhibitor was given confirming the 
role of Akt/FoXo3 pathway [83]. In another in vitro study using HUVEC cell line, 
trichostatin A is reported to prevent glucose mediated upregulation of PARP, fibro-
nectin and p300 mRNA levels [82].

Nuclear factor-like 2 (Nrf2) transcription factor mediates the induction of anti-
oxidant and cytoprotective genes and thereby controls oxidative stress and is 
reported to play a role in several diseases including diabetes [97]. Furthermore, 
histone acetyltransferase P300/CREB-binding protein (CBP) mediated acetylation 
and HDAC mediated deacetylation of lysine residures regulate the Nrf2 activity and 
its nucleo-cytoplasmic localization [98, 99]. Sulforaphane is an inhibitor of Keap1-
mediated degradation of Nrf2 and also HDAC inhibitor and in diabetic mice it is 
reported to preserve cardiac hemodynamics, control cardiac hypertrophy, reduce 
atrial natriuretic peptide, inflammation, fibrosis and oxidative stress [100].
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Certain drugs have been reported to exhibit cardioprotective actions via modula-
tion of SIRT expression. Garlic produces improvement in SIRT-3 and superoxide 
dismutase activity in STZ induced diabetic animals and thereby prevented cardiac 
oxidative stress [101]. Similarly, resveratrol in animals models of diabetes prevents 
diabetes induced changes in SIRT1 expression in type 1 diabetic heart and SIRT1, 
2,5 and SIRT-5 expression in type 2 diabetic heart [102]. Further, L-arginine exhib-
its its cardioprotective effects in diabetic hearts owing to its SIRT1 modulatory 
action [103].

18.5	 �Conclusions

Research in diabetes has come a long way after the discovery of insulin. Several 
pathways responsible for diabetic complications are known and molecular mecha-
nisms are being explored. Given the fact that diabetes is associated with environ-
mental factors modulate genetic factors, epigenetic mechanisms in diabetic 
cardiomyopathy is one of the key regulating mechanisms. Histone modification is 
one such epigenetic mechanism. However, limited research is being carried out in 
this direction to understand the role of HAT and HDAC in diabetic cardiomyopathy. 
Moreover, there is a requirement of research to determine the specific isoforms of 
HDAC which are dysregulated during diabetic cardiomypathy. Some studies have 
been carried out with respect to HDAC inhibitors in diabetic cardiomyopathy but 
again are limited. Since sirtuins are one class of HDAC which behave differently 
than other HDACs, future studies should be targeted in developing novel scaffolds 
which serve as modulators of different class of HDACs. This will help in future for 
developing effective therapies for hyperglycemia induced cardiovascular complica-
tion and improve patients’ quality of life.
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19Regulating Inflammatory Cytokines 
in the Diabetic Heart

Santosh K. Yadav, Tyler N. Kambis, and Paras K. Mishra

19.1	 �Introduction

Diabetes mellitus (DM) is a disease where patients have increased levels of blood 
glucose (fasting ≥126 mg/dL, non-fasting ≥200 mg/dL) and elevated levels (≥6.5%) 
of glycosylated hemoglobin (HbA1C) [1]. Prevalence of DM is very high (around 
425 million people) and it is rapidly increasing (estimated to be 628.6 million peo-
ple in 2045) [2] in the world. DM increases the risk of heart failure [3, 4] and mortal-
ity [5] compared to non-diabetics. Although men are more prone to DM than women 
are, the risk of DM-induced stroke and heart failure is almost similar in men and 
women [6–8]. There are two major types of DM: type-1 DM (T1DM) and type-2 
DM (T2DM). More people (95%) have T2DM than T1DM (5%) [9]. T1DM has 
very high blood glucose levels (>500 mg/DL) due to lack of insulin production by 
pancreatic beta cells. Insulin treatment to T1DM patients that lowers the blood glu-
cose levels causes high fluctuations in the glucose levels. Therefore, T1DM patients 
are challenged to adapt to this high fluctuations in the blood glucose levels. In the 
heart, cardiomyocytes require constant supply of energy in the form of ATP to main-
tain the contraction-relaxation cycle of the heart. In the T1DM heart, cardiomyo-
cytes are always in stress condition to adapt to the high glucose  fluctuations, 
especially after insulin injection. Thus, T1DM is more detrimental to the heart than 
T2DM, where the blood glucose levels are moderately high (around 250–350 mg/
dL). In T2DM, pancreatic beta cells produce insulin but insulin signaling is 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8273-4_19&domain=pdf
mailto:paraskumar.mishra@unmc.edu


428

defective that impairs cellular glucose uptake resulting in hyperglycemia. Because 
insulin is not completely used in glucose uptake, both insulin and glucose levels are 
high in T2DM. However, due to presence of insulin in T2DM, blood glucose levels 
do not increase to a very high level as ocuurs in T1DM. Therefore, blood-glucose 
reducing drugs such as metformin do not cause glucose fluctuations to a very high 
degree resulting in less adaptive stress to the  cardiomyocytes in the T2DM 
heart. Thus, T1DM is more severe than T2DM for developing diabetic cardiomy-
opathy (DMCM). If T2DM remains untreated, it may lead to T1DM because con-
stant hyperglycemia triggers pancreatic beta cells to work incessantly  without 
rest leading to their death and subsequent devlopment of T1DM phenotype. Turning 
of T2DM into T1DM phenotype is a severe condition, where less insulin is pro-
duced and the available insulin is unable to transport glucose efficiently into the 
cell. Thus, these patients need treatment with both insulin injection  (to maintain 
insulin level) and metformin (to improve glucose transport to the cell). 
Cardiomyocytes of these double DM (T1DM and T2DM) patients are deprived of 
glucose (due to less insulin production) and in adaptive stress (due to high glucose 
fluctuation when treated with insulin), which make them more prone to DMCM. Tight 
glycemic control in the DM patients were unable to decrease the risk of heart failure 
in clinical trials [10]. Therefore, novel therapeutic approaches are warranted to miti-
gate DM-induced heart failure. Thus, it is important to investigate the causes of 
cardiac remodeling and heart failure in the  DM heart. One of the hallmarks of 
the  DM heart is increased inflammation [11]. Thus, investigating the causes of 
increased inflammation and its signaling that mediates myocardial cell death, car-
diac remodeling and heart failure is important for developing a novel therapeutic 
strategy for DMCM and DM-induced heart failure (Fig. 19.1).

19.2	 �Diabetic Cardiomyopathy

Diabetic cardiomyopathy (DMCM) is a DM-induced cardiac muscle disorder. It 
was discovered in 1972, when the postmortem of patients with proved record of 
diabetic glomerulosclerosis were examined for the evidence of primary myocardial 
disease. Four DM patients who were not suffering from hypertension, significant 
obstruction of coronary arteries or valvular disease demonstrated cardiomegaly and 
congestive heart failure [12]. It was concluded that the main cause of the heart fail-
ure in these patients was DM. Thus, DM is an independent cause of cardiomyopathy 
leading to heart failure. DM increases the risk of heart failure when compared to the 
age and gender-matched non-diabetic patients [4]. In the age group below 54 years, 
it is found that the risk of heart failure for DM patients is ~nine fold higher com-
pared to the non-DM patients [3]. DMCM is a complex disease with unknown etiol-
ogy and it may be caused by several factors, including inflammation [13].
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19.3	 �Role of Inflammation and Their Regulators in Diabetic 
Cardiomyopathy

Inflammation plays a crucial role in cardiovascular disease including ischemic heart 
disease [14] and hypertension-induced heart failure [15]. It promotes adverse car-
diac remodeling [16, 17]. Increased inflammation destroys pancreatic β-cells lead-
ing to T1DM phenotype [18–21]. In the DM hearts, pro-inflammatory cytokines 
and chemokines including TNFα, IL-6, IL-1β, IL-18 MCP-1, adiponectin, and 
inflammatory mediators such as HMGBs (members of high mobility group pro-
teins), AGEs (advanced glycation end products), and lipoprotein- associated phos-
pholipase A2 are upregulated [22–30]. Activation of various inflammatory cytokines 
upregulates their cell surface receptors such as TLR2 (toll like receptor- 2), TLR4 
and RAGEs (receptor for advanced glycation end products), and promotes NFkB 
signaling [31–33]. DM also induces different types of cell adhesion molecules such 
as vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion mole-
cule-1 (ICAM-1) and upregulates C-reactive protein, which further promotes 
inflammation [34–37]. Excessive inflammation in the DM heart could be due to 
increased damage-associated molecular pattern (DAMPs) released after myocardial 
cell death [38, 39]. DAMPs and activation of NFkB signaling promote pathological 

Healthy heart
Diabetic heart

Inflammatory cytokines
(TNFα, IL-1β)

Inflammatory mediators
(AGEs, HMGBs)

Inflammatory surface markers
(TLR2, TLR4, RAGEs)
Adhesion molecules
(ICAM-1, VCAM-1)
Pyroptosis 
(DAMPs,NLRP3, caspase-1)
Pro-inflammatory miRNA

Insulin deficiency (T1DM)
Insulin resistance (T2DM)

1. Anti-inflammatory miRNA
2. Combination therapy of
a) Anti-inflammatory miRNA 

+ anti-diabetic drug
b) Cardioprotective miRNA

+ anti-diabetic drug

Fig. 19.1  Schematic showing the inflammatory changes in the diabetic heart and the potential 
therapeutic strategies to ameliorate diabetic heart failure. Due to insulin deficiency (T1DM) or 
resistance (T2DM), the heart undergoes pathological remodeling leading to diastolic dysfunction. 
The heart geometry changes to round shape and it increases its size (hypertrophy). The diabetic 
heart has increased inflammation that promotes inflammatory cell death  pathways, pyroptosis. 
Since glucose-lowering drugs were unable to mitigate diabetic cardiomyopathy, an alternative and 
a novel therapeutic approach would be treatment with either an anti-inflammatory miRNA, a com-
bination treatment of anti-inflammatory miRNA and anti-diabetic drug, or a combination of car-
dioprotective miRNA and anti-diabetic drug. Abbreviations: TNFα Tumor necrosis factor-α, IL-1β 
Intgerleukin-1β, AGEs Advanced glycation end products, HMGB members of high mobility group 
protein, TLR Toll-like receptor, RAGEs Receptor of AGEs, ICAM Intracellular adhesion molecule-
1, VCAM-1 Vascular adhesion molecule-1, DAMPs Death associated molecular patterns, NLRP3 
Nod-like receptor family pyrin domain containing-3
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remodeling in the DM heart [40, 41]. In streptozotocin-induced T1DM, NFkB sig-
naling induces RAS (renin-angiotensin system) to instigate cardiomyopathy. 
Notably, cardiac-specific overexpression of IkB-α, which inhibits RAS, ameliorates 
DMCM [42]. Activation  of different inflammatory signaling pathways including 
NFkB, MAPK and PI3/Akt contribute to impairment of insulin signaling 
(T2DM phenotype) and destruction of pancreatic beta cells resulting in insulin defi-
ciency, a T1DM phenotype [43–46]. These changes contribute to structural and 
functional remodeling such as myocardial hypertrophy, fibrosis, and contractile 
dysfunction leading to DMCM [47–49]. Recent studies demonstrate that cardiac 
resident and infiltrating leukocytes (lymphocytes, granulocytes, monocytes and 
macrophages) play a significant role in cardiac remodeling and dysfunction [50–
52]. In DM mice, macrophages-dependent secretion of IL-1β plays a crucial role in 
cardiac arrhythmia. Notably, inhibition of NLRP3 (nod-like receptor family pyrin 
domain containing-3)-dependent inflammasome formation and IL-1β receptor 
blockade alleviated DM-induced cardiac arrhythmias [53]. NLRP3-induced inflam-
masome formation promotes DMCM [11, 51]. Recently, we have reviewed the role 
of immune-metabolism in the diabetic heart and elaborated the role of non-coding 
RNAs in the regulation of inflammation and DMCM [54]. MicroRNAs (miRNAs) 
are a class of non-coding regulatory RNAs that has could be a promising therapeutic 
target for cardiovascular disease [55], including DMCM [56]. They also play impor-
tant roles in the regulation of inflammation and cardiac dysfunction in the diabetic 
heart [57–62]. Thus, inflammation has an important role in DM-induced cardiac 
remodeling and dysfunction (Table 19.1).

19.4	 �Potential Therapeutic Targets/Candidates 
for Inflammation-Induced Diabetic Cardiomyopathy

A number of empirical evidences support that inflammatory cytokines and related 
signaling pathways are upregulated in the DM heart [24, 49] [53, 63]. Therefore, 
inhibition of inflammation could be a promising approach to mitigate 
DMCM. Blockers of NFkB and IL-1β have been used for the treatment of T2DM 
and details are elaborated in a review article by Donath and Shoelson [21]. Insulin 
has an independent anti-inflammatory effect in newly diagnosed T2DM [64]. Drugs 
that improve insulin sensitization in T2DM or insulin level in T1DM reduces inflam-
mation and they have cardioprotective effects [64, 65]. Metformin, a commonly 
used drug for T2DM, activates AMPK and protects the heart against pathological 
cardiac remodeling [66, 67]. Metformin may also exert anti-inflammatory effects by 
inhibiting NFkB signaling [68]. However, the use of metformin is restricted for 
the diabetic patients with cardiac dysfunction because of its lactic acidosis property 
[69]. Other insulin-sensitizing agents such as thiazolidinedione (TZD), PPAR ago-
nist, pioglitazone and rosiglitazone have anti- inflammatory effects and they have 
been  used to prevent cardiac dysfunction in T2DM animals as well as human 
patients [65, 70]. We know that activation of RAAS (renin-angiotensin-aldosterone 
systems) that releases angiotensin-II (Ang-II) contributes to DMCM and  are 
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associated with increased inflammation. Thus, targeting RAAS and Ang-II by 
antagonist could be a cardioprotective approach for DMCM [71, 72]. In DM, the 
levels of free fatty acids are increased that derange the cardio-metabolic function 
leading to DMCM [54]. Statin that reduces circulating free fatty acids [73] could be 
a cardioprotective drug for DM patients. Although anti-inflammatory and insulin 
sensitizing drugs have cardioprotective effects, they often have side effects on vital 
organs including the heart [74, 75]. Thus, regulating the levels of inflammation by 
endogenous regulators such as non-coding RNAs could be an alternative approach 
to mitigate DMCM and DM-induced heart failure [58, 76–83].

19.5	 �Future Perspectives

DMCM is a major emerging heath concern in the world. With increasing numbers 
of diabetic individuals and silent progression of DM, the risk of DMCM is very 
high. Although different anti-diabetic drugs including insulin, metformin, glucagon-
like peptide (GLP-1) antagonist, RAAS inhibitor, or a combination of these drugs 
have been used to reduce the levels of blood glucose in the diabetic patients, how-
ever, none of them could cure DM and some of them have detrimental effects on the 
heart [84, 85]. Several meta-analysis of randomized control trials using 

Table 19.1  Different regulators of inflammation and their potential targets

Regulators Targets References
Drug
Fenofibrate IL-1β and IL-6 [90]
Simvastatin IL-6 and TNFα [91, 92]
Candesartan TNFα [93]
Enalapril and losartan IL-1 and IL-6 [94, 95]
Rosiglitazone and pioglitazone Indirectly IL-6 [96]
Statin IL-1 [97]
Pravastatin IL-8 [98]
microRNA (miRNA)
miR-124 Indirectly targets IL-6 and TNF-alpha [99]
miR-203 Targets TNF-alpha [100]
miR-155 Targets TNF-alpha [101]
miR-223 Indirectly targets NF-kB [102]
miR-146 Targets IL-6, IL-8, and TNF-alpha [103]
Long-noncoding RNA (lnc-RNA)
MALAT1 Targets NF-kB [104]
EPS Indirectly targets NF-kB [105]
Lethe Targets NF-kB [106]
NKILA Indirectly targets NF-kB [107]
lincRNA-p21 Indirectly targets NF-kB [108]
MIRT2 Indirectly targets NF-kB [109]
Lnc-IL7R Represses IL-6 and IL-8 [110]
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anti-diabetic drugs revealed no effects or harmful effects on the heart except SGLT-2 
(sodium-glucose cotransporter-2)  – inhibitors, which has cardioprotective effects 
[86–89]. Future studies focusing on regulation of inflammation by non-coding 
RNAs and a combination therapy using different glucose-lowering drug (s) with 
non-coding RNA would be an important strategy to ameliorate DMCM and conse-
quent heart failure.
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iNOS	 Inducible nitric oxide synthase
LDL	 Low density lipoprotein
MAPK	 Mitogen-activated protein kinase
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MOLD	 Methyl glyoxal lysine dimer
NADPH	 Nicotinamide adenine dinucleotide phosphate oxidase
NF-κB	 nuclear factor-kappa B
NO	 Nitric oxide
NOS	 Nitric oxide synthase
ONOO−	 Peroxynitrite
OS	 Oxidative stress
PARP	 Poly ADP ribose polymerase
PCO	 Protein carbonyls
PKC	 Protein kinase C
PON1	 Paraoxonase
RAGE	 Receptor for advanced glycation end products
ROS	 Reactive oxygen species
RS	 Reactive species
T2DM	 Type 2 diabetes mellitus
VCAM 1	 Vascular cell adhesion molecules

20.1	 �Introduction

Increasing incidence of cardio-vascular complications are the major health concern 
leading to morbidity and mortality in type 2 diabetes mellitus (T2DM). Cardio-
vascular complications are more severe and rapidly progressive in diabetic patients 
compare to non-diabetic [1]. Hyperglycemia is the primary casual factor leading to 
pathophysiological alteration in T2DM. Numerous hyperglycemic related mecha-
nisms such as aldose reductase-mediated polyol pathway, hexosamine pathway, 
protein kinase C (PKC) activation, poly ADP ribose polymerase (PARP) activation 
and formation of advanced glycation end products (AGEs) are hypothesized to 
account vascular complications in T2DM [2–5]. Among them, enhanced formation 
and accumulation of AGEs is one of the important pathway associated with 
hyperglycemia-mediated detrimental effects in T2DM [6, 7]. AGEs are resulting 
from non-enzymatic reaction between reducing sugars and free-amino group con-
taining molecules such as proteins, lipids and nucleic acid [8]. AGEs link the hyper-
glycemia with development of cardio-vascular complications in diabetes as serum 
level of AGEs in T2DM patients with cardio-vascular diseases (CVD) are higher 
compared to those without CVD [9–11]. Presence of AGEs has also been noticed in 
coronary arteries of diabetic patients suggesting the involvement of AGEs in devel-
opment of accelerated arterial diseases [12]. A follow-up study carried out for 
18 years demonstrated that increased levels of AGEs are associated with cardio-
vascular mortality in Finnish T2DM women [13].

Of the many factors by which AGEs may induce cardio-vascular complications; 
oxidative stress (OS) and endothelial dysfunction are considered important. The 
existence of increased OS is based on decreased antioxidant capacity and increased 
reactive oxygen species (ROS) generation. High level of ROS leads to number of 
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oxidation and peroxidation reactions at biomolecules (carbohydrates, lipids, pro-
teins and DNA) affecting their functions and properties. Involvement of OS in 
development and progression of diabetes as well as in atherosclerosis has been 
noticed in number of studies [14–16].

AGEs mediate their effects at cellular as well as at extracellular level through 
different pathways including modification of cellular and extracellular matrix pro-
teins, disrupting matrix-matrix and matrix-cell interactions contributing to their 
pro-fibrotic action [17, 18]. At cellular level they mainly show their effect by inter-
acting with their cell surface receptor namely receptor of advanced glycation end 
products (RAGE) [19]. Ligation of AGEs with its receptor elicits several intracel-
lular signaling cascades leading to increased cytosolic and mitochondrial reactive 
oxygen species generation, oxidative stress development, activation of nuclear 
factor-kappa B (NF-қB), pro-inflammatory and pro-coagulant pathways, smooth 
and fibroblast proliferation, which are the key factors linking the AGE-RAGE sys-
tem with diabetic associated cardio-vascular complications [20–23].

This chapter has focused on the role of AGEs, emerges as a crucial mediator of 
enhanced ROS and oxidative stress-mediated detrimental effects, which can link the 
hyperglycemia with onset of cardio-vascular problems in T2DM. Also, mentioning 
the anti-AGEs strategies that may be considered as an ideal candidate for future 
interventions in amelioration of diabetic associated vascular complications.

20.2	 �Hyperglycemia, Diabetes and Cardiovascular Diseases

It is estimated that cardiovascular diseases (CVD) are the main cause of morbidity 
and represent 31% of all global deaths [1]. There are number of risk factors associ-
ated with CVD and among them diabetes is one of the important factor [24]. 
Prevalence of T2DM is increasing at an alarming rate that further enhancing a fre-
quency of CVD. Cardiovascular problems basically seen in diabetes include myo-
cardial infarction, angina, peripheral artery diseases (PAD), stroke, congestive heart 
failure etc.

Diabetes mellitus (DM) is a chronic condition characterised by non-production 
of insulin or when body cannot utilize insulin effectively; resulting in a build-up of 
glucose inside the blood. Exposure of high blood glucose level for a longer time 
may affect the blood vessels, heart, eyes, kidneys, and nerves. Accumulating data 
from experimental, pathological, epidemiological and clinical studies have shown 
that persistent hyperglycemia in diabetes mellitus is the key factor affecting the 
diabetic vasculature resulting in micro- and macro-vascular complication [25, 26]. 
Numerous hyperglycemic related mechanisms are hypothesized to account vascular 
complications in T2DM, which include polyol pathway, protein kinase C (PKC) 
activation, hexosamine pathway, poly ADP ribose polymerase (PARP) activation 
and formation of advanced glycation end products (AGEs) [2–5]. Among them, 
increased formation and accumulation of AGEs is one of the important pathway 
associated with hyperglycemia-mediated detrimental effects in T2DM [6].
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20.3	 �Advanced Glycation End Products

20.3.1	 �Formation of Advanced Glycation End Products

Advanced glycation end products (AGEs) are complex group of compounds that are 
formed by different pathways namely Maillard reaction, polyol pathway, oxidation 
and peroxidation reaction of biomolecules as shown in Fig. 20.1. Given these differ-
ing pathways, diversified AGEs are formed in term of their structure and properties. 
Maillard reaction describing AGEs formation under hyperglycemic conditions is 
one of the important pathway and it was first described in 1912 as “browning reac-
tion” due to the associated yellow-brown color change in AGEs [8]. It’s mainly 
resulting from non-enzymatic reaction of reducing sugar with free amino groups 
present at proteins, lipids and DNA. Products of Maillard reaction has gained atten-
tion in recent years due the association of AGEs with certain pathological condi-
tions including diabetes mellitus, cardio-vascular diseases, retinopathy, neuropathy, 
liver cirrhosis, Alzheimer’s diseases as well as during aging process also [7, 
27–29].

Maillard reaction is different from enzymatically occur N-/O-linked glycosyl-
ation in a cell during the co- and post-translation modifications of proteins required 
for their normal functioning. Whereas, Maillard reaction is non-enzymatic in nature 
and occurs spontaneously, which disturb the structure, conformation and functions 
of affected molecules and alter their cellular properties [30, 31]. Under physiologi-
cal conditions glycation occur at a very low rate and their products are normally 

Fig. 20.1  Different pathway of AGEs formation
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excreted out from body by different mechanism but this glycation reaction become 
more rapid and intense under hyperglycemic conditions. Also, during the ageing 
process their formation is increases, mentioning that glycation has both physiologi-
cal and pathophysiological significance [32–34]. Formation of AGEs mainly occurs 
at three stages during Maillard reaction:

	1.	 During the first phase there is a covalent binding of aldehyde or ketone groups of 
reducing sugars to free amino groups of proteins, lipids and nucleic acids, in a 
non-enzymatic way forming a reversible intermediates known as Schiff base. 
The initiation of this step depends on glucose concentration and takes place 
within hours.

	2.	 In second stage of reaction, Schiff base undergoes rearrangement over a period 
of time to form ketoamine glycation product, called Amadori’s product. These 
products are more stable compounds, but the reaction is still reversible. The best 
Amadori’s product that was described and identified is HbA1c (glycated haemo-
globin) and it is a useful marker of glycemic control but they do not consider 
under the category of AGEs. Amadori’s product also undergo the process of deg-
radation over a period of time to form other highly reactive dicarbonyl interme-
diates like 3-deoxy-glucosone, glyoxal and methyl-glyoxal that can react again 
with free amino groups present at proteins or other molecules to form glycation 
products.

	3.	 During the third phase of reaction, intermediate glycation products of second 
phase undergo complex series of rearrangement to form irreversible AGEs, char-
acterised by associated yellow-brown color. These chemical rearrangements 
include dehydration, oxidation and fragmentation reactions. Process of rear-
rangement is normally slow and spontaneous, often takes month to years for 
their formation. It is also important to note that this process is enhanced under 
certain conditions such as oxidative stress, presence of metal ions and catalyst, 
which increases the post-Amadori formation of AGEs. Once they formed, results 
in a highly stable structure that is cross-linked and accumulate inside and outside 
the cell that affect the cell functioning and properties [6]. AGEs are diversified in 
their structure and some of them also have fluorescent properties.

Apart from Maillard reaction, other important pathways of AGEs formation are 
auto-oxidation of reducing sugar and peroxidation reaction of lipid molecules that 
may leads to formation of dicarbonyl derivatives [35]. Also, during glycolysis num-
bers of reactive intermediates are formed that have a potential to interact with pro-
teins and leading to fast intracellular Maillard reaction resulting in AGE formation 
[36, 37]. Important reactive intermediates of glycolysis, which are involved in AGE 
formation include dicarbonyl compounds, glyoxal (GO), methylglyoxal (MGO), 
3-deoxyglucosone (3-DG) etc. Also, some of these intermediates GO and MGO can 
be formed by auto-oxidation of glucose and peroxidation of glycolipids that react 
with arginine or lysine residues of proteins leading to AGEs formation [38, 39]. 
Degradation of nucleic acid also represents a source for AGEs formation by releas-
ing a free ribose and results in pentosidine production [40]. Pentosidine can also be 
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formed from glycoxidation of Amadori products or oxidation of arabinose [41]. 
Pentosidine is one of the important AGEs having a fluorescent property and mea-
sured inside the body using different methods. Polyol pathway is also an important 
mechanism of AGEs formation in vivo conditions. During this pathway glucose is 
converted to sorbitol with the help of enzyme aldose reductase. Next sorbitol leads 
to fructose formation in presence of sorbitol dehydrogenase. Then fructose metabo-
lites are converted to α-oxoaldehydes that interact with monoacids and results in 
AGEs formation [42].

Beside the endogenously formed AGEs by different mechanism, they can also 
originate from exogenous sources such as tobacco, smoke, and diet [43]. Exogenous 
nature of AGEs are confirmed by various clinical studies showing high level of 
AGEs in smokers and in individuals on high AGE diets and having a high inflamma-
tion and OS in them [44, 45]. Also, evidences from animal studies have shown that 
on exposure to exogenous AGEs, it leads to renal and vascular complications in 
them [46, 47].

20.3.2	 �Type of Advanced Glycation End Products

Because of different pathways of AGEs formation, they comprise a large number of 
chemical structure and properties like N-carboxyl-methyl-lysine (CML), pyrraline, 
pentosidine, cross-linked AGEs include GOLD (glyoxal-derived lysine dimer imid-
azolium salt), MOLD (methyl glyoxal derived lysine dimer-imidazolium salt), 
DOLD (3-deoxyglucosone-derived lysine dimer-imidazolium salt), etc. [48, 49]. 
Some AGEs also have fluorescence properties that can be used as a surrogate marker 
for their identification.

20.4	 �Cardio-Vascular Disease and Advanced Glycation End 
Products

Hyperglycemia-mediated formation of AGEs is increasingly evidenced for progres-
sion of cardio-vascular complications in T2DM by clinical studies showing high 
levels of serum AGEs in T2DM patients with CVD compared to those without 
CVD. High level of AGEs remain significant in T2DM patients with complications 
compared to those without complication even after adjustment of confounding fac-
tors such as duration of diabetes, sex, age by Bonferroni adjustment [9, 50, 51]. 
Clinical studies have shown that AGEs level increased from 20 to 30% in T2DM 
without complications and 40–100% with complications having a CVD or micro-
vascular complications [52–55]. Statistical analysis like logistic regression model 
have shown that higher serum AGEs level will increases the chances of develop-
ment of cardiovascular complications in T2DM. Accumulation of AGEs has also 
been identified in atherosclerotic plaque and within myocardium fibers in various 
studies. Also, gradual deposits and increase in serum level of AGEs have been 
reported with the severity of atherosclerosis in diabetic patients [56, 57]. Nin et al. 

S. Bansal et al.



443

(2011) have shown that level of serum AGEs can act as important marker or predic-
tor of CVD mortality [58]. Koyama et al. (2007) have noticed the relation of pento-
sidine with severity of heart failure in 141 patients and mentioned that pentosidine 
as independent risk factor to predict adverse clinical outcome [59].

Important physiological changes that are observed in T2DM patients with cardio-
vascular complications and high level of AGEs include arterial stiffening, myocar-
dial relaxation abnormalities, atherosclerotic plaque formation and its destabilization, 
endothelial dysfunction, neointimal proliferation, increased level of oxidised LDL 
etc. [60–62]. Significant progress has been made in revealing the mechanism lead-
ing to AGEs-mediated cardio-vascular changes in T2DM. The multiple mechanisms 
in relation to AGEs for the progression of CVD in T2DM seem to share a common 
pathway of prolonged exposure to increased ROS which promote oxidative stress 
development, vasoconstriction, inflammation, and prothrombotic gene expression 
in diabetic cardiovascular cells. Also, AGEs modification result in cross-linking of 
proteins leading to vascular and myocardial stiffness that disturb the structural 
integrity and biological functions of affected proteins and these changes are found 
to be associated with isolated systolic hypertension and diastolic heart failure [63].

AGEs induce their detrimental effects at cellular and extracellular level by differ-
ent mechanism including:

	1.	 Receptor-mediated mechanisms where AGE-RAGE interaction at cell-surface 
activates the cascade of cell-signalling that results in moderation of gene expres-
sion which affect the cell properties and its functioning.

	2.	 Formation and build-up of AGEs in extracellular matrix which leads to cross-
linking and decrease the elasticity of vessels.

	3.	 Glycation of proteins, lipids, and nucleic acid leading to deterioration of their 
structure and functions.

20.5	 �AGEs-RAGE Interaction

A number of AGEs-binding proteins or receptors have been identified that can be 
present as soluble form or at the cell surface. Important AGEs binding proteins are: 
AGE-R1 (oligosaccharyltransferase-48), AGE-R2 (80KD- phosphoprotein), AGE-
R3 (galactin-3) and receptor of advanced glycation end products (RAGE) [19, 64–
66]. Interaction of AGEs with these proteins or receptors results in both positive and 
negative impact. During their positive impact, binding of some receptors may leads 
to clearance of AGEs from the body and hence, lessen the detrimental effects of 
AGEs. However, interaction of some receptors with AGEs leads to activation of 
cell-signaling that results in moderation of gene expression, inflammation and affect 
the cellular properties. The pathological effects of AGEs are largely mediated by 
cell surface receptors; RAGE (receptor for AGEs) and it is the best characterised 
receptor for AGEs. RAGE is an approximately 45-kDa protein and member of the 
immunoglobulin superfamily present on cell-surface of endothelium, vascular 
smooth muscle cells and invading mononuclear phagocytes [62]. Presences of 
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RAGE on multiple tissues suggest its potential relevance in activation of pathway 
that affects micro- and macro-vascular system in diabetes and associated complica-
tions. RAGE is a multiligand receptor and AGEs is one of the important ligand.

Enhanced expression of RAGE is found to be associated with certain pathologi-
cal conditions including diabetes and its associated complications [19]. In diabetes, 
AGE-RAGE interaction results in activation of diverse downstream pathways 
including generation of reactive oxygen species (ROS), cytokine production, adhe-
sion molecule expression, endothelial-1, plasmin activator inhibitor 1, production of 
growth factors such as TNF-α, chemoattraction of inflammatory cells, smooth and 
fibroblast proliferation, that link its association with diabetic complications [20, 67, 
68]. During the activation of above mentioned downstream pathways, AGE-RAGE 
interaction leads to stimulation of signaling molecules including ERK1/2, p21RAS, 
MAP kinases, NF-κB, cdc42/rac, and JAK/Stat which modulate the cell properties 
that possibly promotes a pro-inflammatory and pro-coagulant gene pathways, con-
tributing to cardiovascular complication in diabetes [69, 70].

20.6	 �Effect of Non-enzymatic Glycation of Biomolecules

Non-enzymatic glycation of free amino groups present at proteins, lipids, and 
nucleic acid with reducing sugars under hyperglycemic conditions affect the normal 
functioning of molecules by deterioration of their structure, properties and 
enzymatic-activity. Proteins of cell and extracellular matrix (ECM) undergo the 
process of glycation under hyperglycemic conditions. Due to the slow turnover rate 
and longer half-life of ECM proteins they are more prone to glycation and cross-
linking. Modification of extracellular matrix proteins interferes with their normal 
functioning affecting the cell-matrix and matrix-matrix interactions, which disturb 
the signalling between matrix and cells contributing to profibrotic action and vascu-
lar complications. Formation and accumulation of glycated molecules in ECM also 
result in cross-links formation, which leads to decreased elasticity, increased stiff-
ness and narrowing of vessels associated with atherosclerosis [61, 71]. During intra-
cellular glycation of proteins not only the glucose but its glycolytic intermediates 
present inside the cell such as glucose-6-phidphate, glyceraldehyde-3-phosphate, 
dihydroxyacetone-phosphate, dicarbonyl compounds mainly glyoxal (GO), methy-
glyoxal (MGO) play an important role in non-enzymatic glycation reaction. 
Intracellular AGEs are also implicated in activating intracellular signalling path-
ways that can contribute to diabetic vascular complications [72]. Under hyperglyce-
mic conditions endothelial cell proteins such as fibroblast growth factor undergoes 
non-enzymatic glycation reaction that affect the vascular properties of cell by 
affecting mitogenic and eNOS activity [73]. Under hyperglycemic conditions mito-
chondrial proteins are also undergo the process of glycation which are associated 
with increased in superoxide formation by mitochondria [74]. In addition, process 
of glycation also affects the activity of certain anti-oxidant enzymes namely gluta-
thione reductase and glutathione peroxidase, which further enhance the oxidative 
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stress in diabetes [75]. Therefore, glycation of proteins may have deleterious effects 
by different mechanism under hyperglycemic conditions in diabetes.

Cardiovascular complications are also associated with increased incidence of 
low-density lipoprotein (LDL) oxidation. It is believed that oxidation of LDL in 
arterial wall is one of the important casual factor leads to initiation and progression 
atherosclerosis by foam cell formation. Paraoxonase (PON1) is an enzyme associ-
ated with high density lipoproteins (HDL) play an important role in preventing the 
LDL and cell membranes from their oxidation [76]. Paraoxonase also decreases the 
oxidised LDL- mediated stimulation of monocyte-chemotactic protein-1 (MCP-1) 
from endothelial cells and prevent monocyte-endothelial cell interaction during 
foam cell formation [77]. Such protection provided by PON1 is mainly related to its 
hydrolysing activity on activated phospholipids and lipid peroxide products. As, 
PON1 have a peroxidase-like and homocysteine-thiolactonase activity that may be 
responsible for its anti-atherogenic properties and its protective effect against lipo-
protein oxidation [78]. PON1 activity is found to be decreased in diabetes mellitus 
as well as in cardiovascular patients [77, 79]. It has been postulated that decreased 
serum PON1 activity associated with diabetes may playing a role in development of 
premature atherosclerosis and thereby CVD. Several factors may responsible for 
affecting the PON1 activity in diabetes. In vitro studies have shown that glycation 
of HDL and PON1 is one of the factor that can inhibit the PON1 activity under 
hyperglycemic conditions [80, 81]. AGEs are also found to be negatively associated 
with PON1 activity or anti-oxidative capacity of HDL in clinical studies [82].

Also, AGEs-mediated atherosclerotic mechanism involves the impairing of LDL 
removal by trapping them in sub-endothelium as well as by decreasing the recogni-
tion of AGEs-modified LDL through their receptor [83]. Glycation of LDL particle 
in the phospholipid component and apolipoprotein B is responsible for impairment 
of hepatic receptor-mediated uptake and its removal. It has been found that glycated 
LDL are more susceptible to cross-linking with collagen on arterial wall in compari-
son to non-glycated-LDL. Glycated-LDL is also not able to enter the cell and accu-
mulates outside, which leads to their increased retention in aortic wall and 
recognition by macrophages. As a result of this, increased localization of AGE-LDL 
in vessels occurs and results in foam cell formation through macrophage recogni-
tion and ingestion [84, 85]. Therefore, glycated-LDL has impact towards cardiovas-
cular complications by atheroma formation under hyperglycemic conditions 
compare to unmodified LDL.

20.7	 �AGEs and Reactive Species Production

Reactive oxygen species (ROS) are chemically unstable and extremely reactive free 
radicals with unpaired electrons such as superoxide anion (O2

−), hydroxyl radical 
(OH−) and lipid radicals. Although some ROS such as hydrogen peroxide (H2O2), 
peroxynitrite (ONOO−) and hypochlorous acid (HOCl) aren’t free radicals but due 
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to their oxidizing effect they also lead to oxidative stress. These reactive species 
have important biological functions at physiological level and required for cellular 
activities, strengthens synaptic plasticity, maintain the chemical balance and hor-
mone level etc. but excess generation of them may lead to impaired homeostasis and 
associated physiology. Also, ROS helps to clear the invading pathogens as well as 
generate the immune response against them [86]. In spite of having their role in dif-
ferent pathways, overproduction of reactive species leads to cell injury and many 
pathological conditions. Antioxidant defence system is present inside the body 
including certain enzymes such as superoxide dismutase (SOD), glutathione peroxi-
dase (GPX) and catalase to neutralize the excess ROS [87]. Oxidative stress genera-
tion is mainly result from disturbance of equilibrium between production of free 
radicals and anti-oxidant defence system which leads to tissue injuries. ROS are 
normally produced by xanthine oxidase (XOS), nicotinamide adenine dinucleotide 
phosphate oxidase (NADPH), lipoxygenase cytochrome p450, cyclooxygenase 
(COX), mitochondrial respiration and due to uncoupling of nitric oxide synthase in 
vascular cells [88].

Among them NADPH oxidase is one of the important enzyme for ROS produc-
tion within the vascular compartment under certain pathological conditions and 
infection. In vascular compartment neutrophils are the main producer of ROS by 
activating NADPH oxidase. Neutrophils (PMN) are the predominant leukocytes and 
their functions are altered in diabetes with respect to excess superoxide production 
[89–91]. Therefore, hyperlglycemic conditions leads to activation of neutrophils 
which leads to exaggerated inflammation and tissue damage. Possible pathway of 
neutrophils activation and their altered function in diabetes is the presence of AGE 
receptor (RAGE) on their surface [92]. AGE-RAGE interaction on neutrophil cells 
under hyperglycemic conditions may leads to activation of certain signalling path-
ways those results in excess ROS generation. In vitro studies have shown that on 
incubating PMN, monocytes, HUVEC (human unbilical vein endothelial cell), 
THP1 (human monocyte leukemia cell line) and cardiac myocyte with different 
concentration of AGEs exhibited significant increase in intracellular and extracel-
lular O2

− production [93–95]. Therefore, AGE-RAGE interaction trigger the intra-
cellular ROS generation through NADPH oxidase activation that may have 
significant impact on cellular properties.

Also, under hyperglycemic conditions increased production of ROS occur 
through mitochondrial electron transport chain which results in activation of protein 
kinase c (PKC) which further increases the O2

− generation. Protein kinase C activa-
tion leads to up-regulation of NADPH oxidase, thromboxane production and 
impaired NO release. Increased ROS production by mitochondria triggers the 
inflammatory cascades responsible for pathogenesis of cardiovascular complica-
tions in diabetes. Also, ROS-associated pathways affect the coronary circulation 
leading to myocardial hypertrophy and fibrosis. Therefore, hyperglycemia-induced 
ROS generation is associated with the development and progression of vascular 
dysfunction and unveils the pathophysiology of CVD in diabetes [74, 96].

Apart from ROS, overproduction of reactive nitrogen intermediates (RNI) such 
as peroxynitrite is also involved in generation of oxidative stress [97]. Nitric oxide 
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is a labile free radical that can react with O2
− leads to formation of potent oxidant 

peroxynitrite (ONOO−), which on decay leads to formation of another strong oxi-
dant hydroxyl radical (OH−) [98]. Increased nitrite production is mainly found to be 
associated with enhanced expression of iNOS (inducible NOS) isoform of NOS 
enzymes. Research data have shown that on incubation of different kind of cells 
such as neutrophils, glowmerular mesangial cells from SV40 transgenic mice, 
murine macrophages and C6 glioma cells with different concentration of AGEs 
leads increased production of nitrite through iNOS by AGE-RAGE interaction [95, 
99–101]. Hence, AGE-RAGE-mediated increased formation of ROS and RNI by 
activation of NADPH oxidase and iNOS can lead to oxidative damage in diabetic 
patients by different mechanism, and this may be one of the important pathway 
associated with AGE-mediated pathology. Possible signal transduction mechanism 
involved in increased production of reaction species generation through AGE-
RAGE interaction may involve induction of certain signaling molecules such as 
extracellular-signal-regulated-kinase (ERK), Phospholipase A2, phophoinositide3-
kinase activation, and p38 mitogen-activated protein kinase (MAPK) [102, 103].

20.8	 �AGEs, ROS, Oxidative Stress and CVD

Primary causal factors for cardiovascular complications in diabetes are oxidative 
stress, inflammatory disease, and endothelial dysfunction as evidenced by in vitro 
and epidemiological studies [11, 104, 105]. Diabetic patients are exposed to high 
level of oxidative stress, which is based on increased reactive species (RS) genera-
tion and decreased anti-oxidant defence mechanism of body. Increased RS genera-
tion cause a change in activity of signal transduction pathway and concentration of 
certain transcription factors such as TNFα and NF-кB, which on turn promote the 
ROS production, inflammatory adhesion molecules and cytokines [26, 106].

Enhanced generation of reactive species by AGEs can also modify the cellular 
components namely proteins, lipids and nucleic acid and generate structural changes 
in them, which may affect the cellular properties and its functions. Chronic expo-
sure of biomolecule to high level of ROS may lead to oxidation, peroxidation and 
glyoxidation reactions that result in formation of protein carbonyl (PCO), oxidation 
of thiol group, lipid peroxidation (MDA), generation of advanced oxidation protein 
products (AOPP), and 8-OHdG.  Increased level of these oxidative markers are 
observed in diabetic patients [10, 107, 108]. Oxidative injury to biomolecules has 
also been reported in presence of high AGEs concentration in tissue and body fluid 
of diabetic patients [11, 14]. Positive correlation between the AGEs and various 
oxidative stress markers revealed the contributory effect of enhanced level of AGEs 
towards increased oxidative burden with diabetic pathology.

Lipid peroxidation of cell components plays an important role in pathogenesis of 
cardiovascular complications in diabetes [109]. Among the lipid peroxidation prod-
ucts, serum MDA (melondialdehyde) level is a sensitive marker used in monitoring 
of oxidative stress status. MDA is a decay product of the peroxidation of 
polyunsaturated fatty acid such as arachidonic, eicosapentaenoic and 
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docosahexaevoic acid and its concentration is high in diabetic individuals compared 
to healthy ones [110, 111]. Melondialdehyde play an important role in modification 
of LDL leading to oxidised-LDL (ox-LDL) formation [112]. Experimental models 
and various clinical studies reported that ox-LDL play a significant role in patho-
genesis of atherosclerosis [113]. Mechanism behind the association of ox-LDL with 
CVD involves the uptake of ox-LDL by macrophage through scavenger receptor 
pathway, which results in cholesterol ester-rich foam cell formation and endothelial 
dysfunction [114, 115]. Also, the presence of ox-LDL is also noticed in atheroscle-
rotic plaques by using certain immune-histochemical staining [116].

Oxidation of proteins by RS also represents an ideal candidate in the onset of 
vascular-complication in diabetes. Some of the important biomarkers of protein oxi-
dation are PCO and AOPP. Advanced oxidation protein products are formed in pres-
ence of chlorinated oxidants such as hypochlorous acid and chloramines. AOPP are 
the dityrosine-containing cross-linked protein-structure and represent an important 
marker to measure the degree of protein oxidation [107, 117]. Elevated biomarkers 
of protein oxidation are also found to be associated with diabetes mellitus during 
correlation analysis of clinical studies and are present in high level in diabetic indi-
viduals compared to healthy individuals and more so in diabetic-vascular complica-
tions [118, 122]. Sarkar et  al. (2010) have also reported that content of protein 
carbonyl have association with insulin resistance in diabetes [108]. Oxidative modi-
fication of proteins due to addition of dityrosine and carbonyl molecules may leads 
to loss of structural, functional and catalytic properties of affected proteins. Such 
type of oxidative modification in proteins may have impact on development and 
progression of diabetic-vascular complications.

Enhanced production of ROS also affects the functional properties of DNA 
which results in oxidative injury to DNA including modification of DNA bases in 
the form of single- and double- DNA strand breaks, 8-hydroxydeoxyguanosine 
(8-OHdG) formation, generation of apurinic sites, damage to deoxyribose sugar, 
DNA-protein cross-linkage, and damage to DNA repair system [119, 120]. The 
most studied and frequently detected oxidised marker of DNA lesion is 8-OHdG, 
an oxidised nucleoside of DNA. This modified nucleoside form of DNA is consid-
ered as a novel biomarker of DNA modification under oxidative stress in vivo con-
ditions. Increased levels of 8-OHdG have been detected in tissue and body fluids 
including mononuclear cells, pancreatic islet, mitochondrial DNA and urine of 
diabetic and CVD patients [121–124]. Research evidence suggests that 8-OHdG 
lesions of DNA may leads to somatic mutations those results in smooth muscle 
proliferation and associated with pathogenesis of atherosclerotic plaque formation 
[125, 126]. Also, it is found that 8-OHdG is strongly mutagenic which may leads 
to increased frequency of spontaneous transverion mutation G.C → A.T in repair 
deficient cells [127].
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20.9	 �AGEs and Endothelial Cells Dysfunction

Impairment of endothelial functions is one of the most important factors for devel-
opment and progression of diabetic-vascular complications. Endothelial dysfunc-
tion is mainly associated with reduced anti-coagulant properties, less nitric oxide 
(NO) production, increased ROS generation, enhanced expression of adhesion mol-
ecule, chemokine and cytokine release from endothelium [128]. These conditions 
lead to inflammation, vasoconstriction, oxidative stress, myofibroblast migration, 
and proliferation inside the endothelial vessel, all of which play an important role in 
development and progression of vascular complications and results in atherosclero-
sis [104]. AGEs may be one of the important factor affecting the endothelial func-
tion in diabetes and thereby leading to CVD. Receptors of AGEs are also present on 
the endothelial cell surface and their presence on these cells suggests a potential 
relevance of AGE-RAGE interaction with endothelial dysfunction associated with 
pathogenesis of diabetic-vascular complications.

Role of AGEs in endothelial dysfunction has been observed in human diabetes, 
as serum AGEs level in T2DM patients is negatively associated with extent of 
endothelium-dependent vasodilation [129]. Nitric oxide (NO) is the most important 
endogenous vasodilator with anti-inflammatory, anti-proliferative effects [106, 
130]. Because of these properties NO is recognised as an endogenous anti-
atherogenic factor. Also, NO plays an important role by acting as a mediator or 
regulator of various biological processes associated with nervous, immune, and 
cardio-vascular systems [131]. Decreased NO bioavailability through decreased NO 
production or increased NO inactivation affect the process of vasodilation and 
induces endothelial dysfunction. In cardiovascular system, NO is involved in vascu-
lar smooth muscle cell relaxation leading to arterial vasodilation and increases the 
blood flow. Increased ROS production by AGEs is one of the reason for inactivation 
of NO as well their conversion to peroxynitrite form, that act as free radical and 
responsible for affecting the integrity of endothelial cells.

Nitric oxide production inside the endothelial is mainly carried out by endothe-
lial NO synthase (eNOS). Formation of AGEs inside the endothelial cells has been 
found to be associated with reduced expression of eNOS and increased eNOS-
mRNA degradation [130]. Also, peroxynitrite form of NO is responsible for inhibi-
tion of eNOS activity by depletion of tetrahydrobiopterin (BH4) that act as cofactor 
for eNOS [132]. Intracellular formation of AGEs in endothelial cells by non-
enzymatic glycation of certain proteins including basic fibroblast growth factor 
under hyperglycemic conditions also leads to altered vascular functions such as 
reduced mitogenic activity of endothelial cells [73]. Apart from above mentioned 
effects of AGEs on NO properties, AGEs are also responsible for enhance produc-
tion of asymmetric dimethylarginine (ADMA) that is an endogenous inhibitor of 
eNOS by AGE-RAGE interaction on endothelial cells [133]. ADMA is now consid-
ered as one of the strongest marker of cardiovascular diseases progression and 
revealed the importance of AGE–RAGE axis in decreased production or impaired 
bioavailability of NO in cardiovascular problems in diabetes. Therefore, reduced 
eNOS activity and inactivation of NO by AGEs may have an important impact in the 
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pathogenesis of diabetes associated atherosclerosis by affecting vasodilating prop-
erties of endothelial cells.

Cardiovascular complications are further characterised by adhesion of monocyte 
to endothelial cells and transmigration into the sub-endothelial space. AGE-RAGE 
interaction under hyperglycemic conditions is found to enhance this process through 
activation of pro-inflammatory molecules such as NF- κB.  Activation of NF-κB 
results in over expression of inflammatory genes and adhesion molecules such as 
VCAM-1 that facilitates the monocyte adhesion to endothelial cells [134, 135]. At 
adhesion site monocyte and oxidised lipid leads to foam cells formation which 
results in fatty streak formation in vessel wall. Subsequently, these fatty streaks are 
converted into advanced lesions that become unstable and rupture over a period of 
time which, trigger the thrombo-embolic events and result in the clinical manifesta-
tions of cardiovascular disease [136].

Increased levels of AGEs are also associated with platelet activation, aggregation 
and stimulate pro-coagulant activity by increasing the expression of tissue factor 
which is responsible for thrombus formation and main initiator of coagulation cas-
cade [137]. Available research data has also shown the involvement of AGEs in 
endothelial cell damage through up-regulation of protease-activated receptor-1and 
−2 by potentiates thrombin or factor-Xa [13, 138]. In addition of it, AGE-RAGE 
interactions also inhibit the prostacyclin production and induce the generation of 
plasminogen activator inhibitor-1 in endothelial cells [139]. These data suggest that, 
AGEs may have potential to cause platelet aggregation and fibrin stabilization, 
thereby contributing to the development and progression of vascular injury in 
diabetes.

In diabetes, there is also decreased in endothelial progenitor cell (EPC) function 
and mobilization, which could contribute to high risk for cardiovascular complica-
tions [140]. AGEs enhance apoptosis and suppress the migration and tube formation 
of late EPC by down-regulation of Akt and cyclooxygenase-2 through interaction 
with RAGE [141]. Moreover, AGEs modification of fibronectin by glycation of Arg-
Gly-Asp motif leads to impairment of vascular repair by inhibiting EPC adhesion, 
migration and spreading [141].

Ligation of AGE with its receptor elicits several intracellular signaling cascades 
leading to cytosolic and mitochondrial ROS generation and enhanced production of 
ROS can affects the functional properties of biomolecules by binding with them. 
DNA is one of major target of endogenous oxidants that leads to oxidative injury of 
DNA that may result in several type of damages such as modification of DNA bases 
in the form of 8-OHdG, single- and double-DNA strand breaks, generation of apu-
rinic sites by loss of purines, damage to deoxyribose sugar, DNA-protein cross-
linkage, and damage to DNA repair system [119, 120]. Presence of oxidative 
damage to DNA has been reported in presence of high AGEs concentration in tissue 
and body fluid of diabetic patients [124, 142]. In vitro and in vivo reports have 
shown that DNA damage also associated with pathogenesis of atherosclerosis [122, 
123, 126]. Further, DNA damage along with activation of various apoptotic trigger, 
mediated through AGE-RAGE interaction may also induces endothelial cell 
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apoptosis; that is a prominent feature of atherosclerosis, and has been implicated in 
the pathophysiology of vascular complications in diabetes [143].

20.10	 �Anti-AGEs Therapy

Since AGEs play a significant role in development and progression of diabetic asso-
ciated vascular complications, they present a promising target for therapeutic inter-
ventions. Various pathways or agents associated with inhibition of AGEs formation 
or attenuate their pathological effects are considered as an ideal candidate for phar-
maceutical intervention in the amelioration of AGE-mediated diabetic vascular 
complications. Therapies that can work against AGE-associated problems include 
the diverse pathways such as inhibition of Amadori products formation (e.g amino-
guanidine, pyridoxamine, LR-90), cross link breaker (e.g alagebrium), decreasing 
AGE-RAGE interaction (e.g anti-RAGE antibody, SiRNA against RAGE), detoxi-
fying the dicarbonyls intermediates and interrupting signalling pathways that are 
associated with AGE-mediated effects [144–149]. However, Food and Drug 
Administration doesn’t approve any agents that have significant role in AGE-
modification and its associated effects to date, although AGE-associated medica-
tions are in clinical and preclinical testing.

Also, oxidative stress play a significant role in development of vascular compli-
cations, therefore anti-oxidants are thought to have beneficial effect on AGE-
mediated MVC. Haidara et al., concluded that administration of antioxidants might 
have a cardio-protective effect in experimental setting against endothelial dysfunc-
tion and provide an ideal candidate of reducing cardiovascular complication in dia-
betes [150]. Many anti-oxidants such as N-acetylcysteine, and alpha–lipoic acid 
have found to inhibit the enhanced VCAM-1 expression by blocking the induction 
of specific DNA-binding activity for NF-κB at VACM-1 promoter of AGE-treated 
endothelial cells [151, 152]. Naturally occurring polyphenols like resveratrol (phy-
toalexin present in red wine and grape juice) which is known for its beneficial effect 
on cardiovascular disease have shown to restore the endothelial functions in T2DM 
thereby, suggesting the potential for new treatment lines to promote vascular health 
under hyperglycemic conditions [153].

20.11	 �Conclusion

Enhanced formation of AGEs under hyperglycemic conditions is an important bio-
chemical abnormality that accompanies the development of cardiovascular compli-
cations in diabetes through increased ROS generation, inflammation, glycation of 
biomolecules, enhanced oxidative stress development, cellular proliferation, and 
others that may possibly exacerbate damaging effects on cardiac function. Also, 
AGEs affect the endothelial function through alteration of its vasodilating and adhe-
sive properties by activating the RAGE-mediated intracellular signaling pathway. 
Therefore, detection of AGEs levels may be a useful marker in monitoring and 
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tailoring the treatment of diabetes and its associated complications. Agents that can 
decrease the AGEs formation or attenuate their detrimental effects may be consid-
ered as ideal candidates for pharmaceutical intervention in the amelioration of dia-
betes and its associated vascular-complications. Henceforth, anti-AGEs strategies 
acting synergistically with conventional approaches may play an important role in 
improvement and upgrading of currently available therapeutic options for vascular 
complications in diabetes.
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21.1	 �Introduction

21.1.1	 �Insulin Resistance

Insulin resistance (IR) or prediabetic state involves constellation of systemic and 
tissue specific changes such as altered glucose metabolism, dyslipidemia, sub-
acute inflammation, denovo hepatic lipogenesis, gluconeogenesis‚ tissue hypoxia 
etc. [1] It occurs due to the inability of insulin to promote glucose disposal to meta-
bolic and vascular tissues as well as the inhibition of its suppressive effects on 
hepatic glucose production [2]. Being a progressive multisystem disorder, IR 
linked with diabetes or obesity can lead to myocardial infarction (MI), peripheral 
vascular disease (Atherosclerosis) and cerebral stroke distressing millions of peo-
ple all over the globe [3]. According to Centers for Disease Control and Prevention 
(CDC) estimates, obesity prevalence has increased from 13% in 1962 to 36% in 
2010 [4]. As per recent 2017 statistics, 424.9 million people are affected by Type-
2-diabetes worldwide and if these trends continue, 628.6 million people will have 
diabetes by 2035 [5].
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21.1.2	 �IR and Oxidative/Nitosative Stress

Oxidative stress is a resultant of imbalance between the production of pro and anti-
oxidant defenses leading to potential tissue damage in various disease pathologies. 
Reactive oxygen and nitrogen species (RONS) released from phagocytes and other 
cells in the gastrointestinal and respiratory tracts at physiologically optimal concen-
trations act as primary defense mechanism against microorganisms, while higher 
levels can lead to bio-molecular damage upon the constituents of living organisms 
[6–8]. Insulin resistance linked with obesity, Type-2-diabetes and cardiovascular 
disorders is generally associated with chronic systemic oxidative stress along with 
insulin signals disruption and adipo-cytokines dysregulation [9]. The cause-effect 
relationship between hyperglycemia, hyperlipidemia and hyperinsulinemia associ-
ated with IR and oxidative stress is interlinked as increased RONS has been shown 
to induce IR in isolated cellular and tissue systems and insulin resistant tissues have 
shown more oxidative damage [9, 10].

21.1.3	 �NO/NOS Isoforms/iNOS

Nitric oxide (NO), a highly diffusible gaseous molecule, is an important reactive 
nitrogen species (RNS) with a short half-life in blood [11]. Being a potent cell-
signaling and vasodilator molecule with divergent biological effects, its production 
is tightly regulated under both physiological and pathophysiological conditions in 
almost every cell type. The discovery that endothelial derived relaxing factor is NO 
and it acts as a potential signaling molecule in various tissues led to its recognition 
as molecule of the year in 1992 and Nobel Prize in Physiology to Robert Furchgott, 
Louis Ignarro and Ferid Murad in 1998. Various findings in different pathological 
conditions reveal its pleotropic effects with deeper impact on metabolism [12].

Biological synthesis of NO is tightly regulated from transcriptional to posttrans-
lational levels in multiple tiers through endogenous oxidoreductases called nitric 
oxide synthases (NOS). Three distinct NOS isoforms identified in mammals are: 
neuronal (nNOS or NOS1), inducible (iNOS or NOS2) and endothelial (eNOS or 
NOS3) [13]. Generation of NO from NOS enzymes majorly involves the oxidation 
of substrate L-arginine to L-citrulline in the presence of NADPH and O2. Availability 
of cofactors like FAD, FMN and tetrahydrobiopterin (BH4) is crucial for the afore-
mentioned NO synthesis. The active NOS enzyme is a homodimer and homodimer-
ization depends on the availability of BH4 [14]. L-Arginine can also be metabolized 
by arginase enzyme to urea and L-ornithine, later being the synthesis precursor of 
polyamines. Intracellular levels of L-arginine and reduced biopterin thus could be a 
limiting factor for NO biosynthesis [15]. Table 21.1 describes about the cellular 
distribution of different NOS isoforms.

iNOS is a high output Ca2+ independent NOS induced by bacterial endotoxins 
(LPS), inflammatory cytokines, oxidative stress and nutrient overload [18, 19]. NO 
released through iNOS stimulation is many folds higher than that produced via acti-
vation of constitutive NOS (eNOS and nNOS) isoforms [20, 21]. It is widely known 

H. Aggarwal et al.



463

to exert biphasic responses through its variable cellular concentration gradients. At 
physiological concentrations, NO acts as anti-inflammatory, antithrombotic, anti-
oxidant etc., by reacting with hydroxyl radical, superoxide anion and hydrogen per-
oxide all of which are toxic to the cells by themselves and neutralizing them [22]. 
Whereas, higher amounts can lead to irreversible tissue destruction via peroxynitrite 
formation, lipid peroxidation, oxidative modification of critical cysteine residues of 
proteins, nitration of protein tyrosine residues and DNA damage [19].

Studies on both animals and humans have shown that eNOS activity and NO 
bioavailability is decreased in metabolic disorders such as diabetes, obesity and 
metabolic syndrome [23, 24]. This can be due to reduced expression/activity of 
constitutive NOS (eNOS & nNOS) and/or enhanced iNOS expression leading to 
impaired eNOS activity as well as interaction of available NO with reactive species 
[25]. Recently, iNOS is also known to be expressed in metabolic tissues involved in 
the pathogenesis of IR, diabetes and obesity [26]. iNOS-derived NO affects insulin 
signaling pathway, peroxisome proliferator–activated receptorγ (PPARγ) activity, 
circulating adiponectin levels etc., thereby modulating genes involved in the glu-
cose and lipids metabolism [27]. iNOS expression, on the other hand, is regulated 
by Protein kinase B (Akt), mitogen-activated protein kinase (MAPK) p42/44 and 
extracellular signal-regulated kinase (ERK1/2) in cardiovascular tissues [28]. 
Literature suggests that NO bioavailability in the vasculature is significantly 
decreased during insulin resistant states. Decreased NO levels in the endothelium 
due to generation of high levels of toxic free radicals such as superoxide (O2

−) and 
peroxynitrite (ONOO−) supports the hypothesis that IR in vascular endothelium 
contributes to the accelerated progression of cardiovascular complications such as 
atherosclerosis and MI [29]. Deficiency in the NO bioavailability, increased level of 
pro-thrombotic and pro-inflammatory markers and reactive oxygen species (ROS) 
are thus critical factors for endothelial dysfunction mediated by MAPK/ERK path-
way. We and others have hypothesized that reactive oxygen nitrogen species (RONS) 
play a central role in IR and vascular dysfunction by providing a potential unifying 
mechanism in the progression of IR, obesity and associated cardiovascular compli-
cations at both physiological and pathophysiological levels. Glucotoxicity and lipo-
toxicity generate inflammatory milieu contributing to vascular damage, thereby 
linking IR with endothelial dysfunction through different mechanisms [30, 31]. 
Further sections of this chapter discuss in detail the pathological importance of 
iNOS in IR and endothelial dysfunction with an overview depicted in Fig. 21.1.

Table 21.1  Cellular distribution of NOS/iNOS

Isoform Distribution
NOS1 Neurons (mainly), liver, heart, skeletal muscle, kidney, gastrointestinal tract, 

vascular smooth muscle cells (VSMCs) and neutrophils
NOS2 Macrophages, mast cells, neutrophils, respiratory tract, vasculature, liver, skeletal 

muscle, VSMCs, kidney, neurons, colon
NOS3 Vasculature (mainly), respiratory tract, gastrointestinal tract, liver, skeletal muscle, 

heart, adipose tissue, eosinophils, lymphocytes [16, 17]
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21.2	 �Role of iNOS in Insulin Resistance

In general, the levels of circulatory blood glucose are determined by an intricate 
balance between the rate of intestinal glucose absorption, hepatic glucose produc-
tion and metabolism by major peripheral tissues such as adipose tissue and skeletal 
muscle. Upon insulin stimulation, glucose uptake is significantly increased in adi-
pose tissue and skeletal muscle, and glucose oxidation is increased in the heart, 
while its production in the liver is inhibited. Insulin-induced cell growth and dif-
ferentiation promotes substrate storage in fat, liver and muscle, which also serves as 
a regulator in maintaining blood glucose levels [32]. Obesity and Type-2-diabetes 
are associated with nutrient excess conditions exhibited by increased circulating 
glucose and lipids [33]. Systemic IR is characterized by increased accumulation of 
lipid metabolites (FA-CoA, DAG and ceramides) due to the imbalance between the 
synthesis of fatty acids and their oxidation [34].

As described earlier, iNOS demonstrates its biphasic effects by protecting us 
from infections on one hand and causing nitrosative stress on other end. In IR 
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Fig. 21.1  Role of iNOS in insulin resistance and endothelial dysfunction
Metabolic stress causes induction of iNOS with increased production of reactive oxygen and nitro-
gen species which leads to insulin resistance and endothelial dysfunction due to eNOS uncoupling, 
induction of pro-inflammatory chemokines and cytokines and impaired immune response. This 
results in increased glucose, lipids and inflammation leading to cardiovascular complications like 
obesity, diabetes and metabolic syndrome including secondary complications like atherosclerosis, 
myocardial infarction and stroke
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involving inflammation and metabolic nutrient stress, iNOS plays an important role 
in the inactivation of insulin receptor β/IRS-1 and Akt [19, 35] and its expression is 
regulated by IKKβ-NFκB axis [36]. Different experiments involving rodents have 
demonstrated augmented iNOS expression in key peripheral metabolic tissues like 
liver, skeletal muscle, adipose tissue, pancreatic β cells and heart, along with non-
metabolic tissues such as aorta, spleen and kidneys during IR, Obesity and Diabetes 
[26, 37–41]. Adipocytes and subcutaneous adipose tissue of obese humans have 
more iNOS gene expression when compared with non-obese humans [42]. Elevated 
serum NOx levels (an indicator of systemic NO synthesis) [43] in obese adolescents 
strongly correlated with increased body adiposity [44]. Nitrosative stress due to 
iNOS induction leads to post translational protein modifications including nitrosyl-
ation, glutathionylation and nitration. Elevated RONS levels due to nitrosative stress 
was observed in plasma [45], skeletal muscle [46] and vasculature [47] in animals 
and patients with diabetes and obesity. LPS induced metabolic endotoxemia condi-
tion is associated with iNOS induction. Increased ONOO− formation causing tyro-
sine nitration of IRS-1 instead of insulin-dependent tyrosine phosphorylation is 
found to impair its function. LPS also impairs glucose uptake by the skeletal muscle 
by causing direct inflammatory insult to the myocytes as well as iNOS dependent 
cardiovascular dysfunction. Disruption of iNOS protected the mice from LPS-
induced defects in cardiac output [48]. iNOS induced IRS-1 degradation was also 
observed in C2C12 myotubes treated with NO donor (GSNO) or by ectopic iNOS 
expression [49]. iNOS induction can also result in impairment of c-Jun N-terminal 
kinase/Stress-activated protein kinases (JNK/SAPK) axis stimulated ER function, 
thereby causing prolonged ER stress which finally, leads to insulin resistance and 
obesity [50]. Excessive fat also causes iNOS-induced mitochondrial dysfunction 
leading to ER stress and decreased adiponectin synthesis in cultured adipocytes 
[51]. Absence of iNOS completely restored the HFD induced altered insulin signal-
ing in skeletal muscle. But in liver and adipose tissue, IR and ER stress can be 
caused by both iNOS-dependent and independent mechanisms. Disruption of iNOS 
was still associated with ER stress and altered insulin signaling in liver and adipose 
tissue. Insulin signaling was improved when the ER stress was blocked pharmaco-
logically; demonstrating tissue-specific regulation of insulin signaling by iNOS in 
diabetes and obesity [52]. Thus, iNOS mediated nitrosative modification of key 
insulin signaling proteins in metabolic tissues is an important mechanism for 
impaired tissue insulin signaling [53]. Figure 21.2 depicts the downstream insulin 
signaling affected due to iNOS induction during metabolic stress leading to IR and 
endothelial dysfunction.

Pathological induction of iNOS during insulin resistant states is also associated 
with enhanced levels of inflammatory mediators such as TNF-α, IL-6, IL-1β and 
IFN-γ, which are key participants in chronic low grade inflammation during obesity-
linked diabetes and cardiovascular diseases [54]. iNOS, through nitrosative stress or 
via inflammatory milieu linked to its activation in insulin targeted metabolic tissues; 
impair energy metabolism thereby participating in iNOS mediated tissue and sys-
temic IR [53]. Pro-inflammatory cytokines like TNF-α can induce serine but not 
tyrosine mediated phosphorylation of IRS-1 which affects the translocation of 
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Glut-4 to cell membrane [54, 55], leading to impaired glucose homeostasis. Hepatic 
IR and mild hyperglycemia in liver specific iNOS transgenic mice indicates a posi-
tive correlation between iNOS induced tissue IR and obesity [56]. Studies involving 
ob/ob mice treated with selective iNOS inhibitor demonstrated reversal in fasting 
hyperglycemia [39]. iNOS knockout (KO) mice on 30% fructose in drinking water 
for 8 weeks showed attenuated hepatic steatosis and tissue inflammation, signifying 
the importance of iNOS in tissue and systemic IR [57]. On the other hand, increased 
circulating lipids due to systemic IR also induced viscous inflammatory milieu 
through iNOS activation [19]. Decreased fatty acid transport for the oxidation in 
mitochondria favors the activation of serine/threonine kinases (eg c-JNK, PKCθ) 
impairing the insulin signaling pathways including IR, IRS-1/-2 and Akt [58]. In 
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Fig. 21.2  Altered insulin signaling by iNOS leading to insulin resistance and endothelial 
dysfunction
iNOS induction by metabolic stress leads to increased generation of oxidative and nitrosative stress 
and pro-inflammatory cytokines with increased lipids, hyperinsulinemia and adipo-cytokines 
imbalance. This causes decrease in tyrosine phosphorylation of IRS-1/2 with increased serine 
phosphorylation leading to decreased PI3K and Akt which ultimately decreases the eNOS phos-
phorylation and activation and production of NO by eNOS leading to altered insulin signaling and 
metabolism in major metabolic organs with decreased vasodilation in the endothelium. iNOS can 
also cause direct uncoupling of eNOS by increased production of iNOS-mediated NO with 
decreased substrate availability leading to IR and endothelial dysfunction. iNOS induction can also 
leads to activation of RAS/MAPK pathway with increased production of Endothelin-1, pro-
inflammatory cytokines and adhesion molecules leading to increased vasoconstriction of endothe-
lium and endothelial dysfunction. Red arrows refers to inhibition
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addition, sphingolipids and ceramides produced from free fatty acids inhibit the 
phosphorylation of Akt, leading to reduced glucose uptake [59]. Literature also sug-
gests that increased serum free fatty acids can attenuate the total expression of 
GLUT-4 leading to decreased glucose uptake, thereby impairing the glucose homeo-
stasis [60]. Alterations in activities of insulin signaling pathway proteins due to the 
above mentioned protein modifications lead to dysregulated metabolic homeostasis 
resulting in metabolic complications such as hyperinsulinemia, hyperglycemia, 
hyperlipidemia etc. Absence of iNOS reverted lipid induced IR complications and 
improved the hepatic glucose metabolism [19]. In contrast, dietary administration 
of iNOS specific inhibitor, L-Nω Nitroarginine to rats suggested an increased fat 
deposition as well as augmented circulatory and hepatic lipids [61]. Futhermore, 
significant reduction in skeletal muscle glucose uptake was observed in aged but not 
in young adult iNOS KO mice during HE clamp [62]. Moreover, iNOS KO mice on 
45% HFD for 18 weeks demonstrated marked protection against diet induced sys-
temic IR though they demonstrated increased body weight, elevated fat depots and 
fasting hyperglycemia [26]. Gut microbiome is a microbial organ which helps in 
maintaining the energy homeostasis and metabolism, along with insulin sensitivity 
[63]. Obesity increases the circulating endotoxins leading to inflammation and 
altered intestinal immunity along with changes in gut microbiome and gut barrier 
functions. Lipopolysaccharide (LPS) present in gram negative bacterial cell wall 
promotes inflammation and activates pathogen-associated molecular pattern 
(PAMP) responses via TLR4 [64] and induces iNOS expression and nitrosative 
modifications of insulin signaling proteins and IR [65] that is reverted by the disrup-
tion of iNOS [66]. NO derived from iNOS induction is also responsible for the 
impaired insulin release and β-cells destruction in Type-1-diabetes by causing 
hypoxic injury, apoptosis or necrosis leading to β-cells death [67] and also decreased 
insulin release in later stages of Type-2-diabetes through decreased expression of 
key insulin signaling proteins in the pancreas leading to β-cell failure [68].

Nutrient excess and hypoxic conditions can also lead to iNOS induction and 
excessive NO production by the resident macrophages in adipose tissue in response 
to inflammatory cytokines by inhibiting differentiation of preadipocytes into adipo-
cytes, promoting tissue fibrosis due to mitochondrial dysfunction and by inducing 
hypoxia-inducible factor-1α [69]. There is also an increase in gene expression of 
TNF-α and iNOS in adipose tissue macrophages with decreased expression of argi-
nase-1 and IL-10 causing polarization of M2 macrophages to M1 phenotype leading 
to increased inflammation in obesity and diabetes [70]. However, disruption of 
iNOS in myeloid cells of mice was not able to protect from HFD-induced IR and 
obesity suggesting the more important role of iNOS inhibition in tissues other than 
myeloid cells in IR [71].

As described above, previous reports on obesity/IR and metabolic syndrome 
(MS) using diet induced obesity (DIO) models have suggested the crucial role of 
iNOS during systemic IR in dyslipidemic mice models. To understand further the 
importance of iNOS in IR and obesity, studies were also performed on iNOS KO 
mice using different diets [low fat diet (LFD) to high fat diet (HFD)], assay proto-
cols, etc. The results suggested the biphasic role of iNOS in IR and insulin 

21  Role of iNOS in Insulin Resistance and Endothelial Dysfunction



468

signaling as revealed from both protective and detrimental effects, which could be 
due to the variations in the different protocols used for assessments along with dif-
ferences in dietary fat content [26, 27, 71]. Further, afore mentioned studies on KO 
mice have not assessed different parameters for systemic and tissue IR in major 
metabolic tissues after feeding different diets with diverse regimens. Moreover, 
parameters of energy homeostasis as well as expression of genes responsible for 
glucose and lipid homeostasis were also not assessed [26, 71]. As the previous 
studies performed do not provide complete understanding of role of iNOS in IR, 
different experiments were conducted using iNOS KO mice in our lab [30]. The 
results concluded that though iNOS participates in IR and obesity (unpublished) 
when fed with high fat diets for longer time points (45% HFD for 20 weeks), it is 
protective against IR at basal conditions (chow and 10% LFD). After 5 weeks of 
10% LFD feeding, iNOS KO mice demonstrated altered body glucose and lipid 
homeostasis as absence of iNOS caused systemic IR (Fig. 21.3). This resulted from 
tissue specific IR observed in liver and adipose tissue sparing the skeletal muscle. 
iNOS KO demonstrated hyperinsulinemia, altered glucose tolerance, increased 
body fat, hepatic gluconeogenesis, hepatic lipids, changes in expression of glucose 
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Fig. 21.3  Tissue specific role of iNOS in insulin resistance and endothelial dysfunction
(a) iNOS KO mice fed with 10% LFD for 5 weeks leads to altered glucose and lipid homeostasis 
in liver and adipose tissue with decreased RONS levels on one hand; whereas skeletal muscle 
remained insulin sensitive with normal RONS levels on the other hand. iNOS KO mice displayed 
systemic insulin resistance and portrays the important role of iNOS in maintaining the normal 
energy homeostasis of the body with tissue specific response. (b) Mice fed with 45% HFD for 
10 weeks (both WT and iNOS KO) displayed increase in pro-inflammatory cytokines like TNF-α 
and IL-1β. The metabolic insult causes increase in iNOS expression in WT mice which leads to 
decrease in phosphorylation of eNOS along with decreased NO production and vasorelaxation. In 
absence of iNOS, phosphorylation of eNOS is increased leading to increased NO production and 
relaxation in the vasculature, thereby protecting the iNOS KO mice from endothelial dysfunction
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transporters and its functioning, and altered insulin signaling in liver and adipose 
tissue but not in muscle (Fig. 21.3). Tissue specific changes in iNOS KO is a con-
sequence of decreased NO bioavailability from attenuated expression of eNOS and 
nNOS in absence of iNOS [30].

21.3	 �Endothelium Functionality and iNOS

The wall of a blood vessel is composed of 3 layers namely (i) internal layer of endo-
thelial cells (ii) medial layer of vascular smooth muscle cells (VSMCs), and (iii) 
outer layer called tunica externa/adventia. The blood in the vessel is separated from 
the surrounding tissues by a monolayer of endothelial cells covering the internal 
surface of all the vessels in the body, including conduit and resistance vessels, pre-
capillary arterioles and capillaries [72]. Larger conduit vessels such as aorta and 
carotid/coronary/brachial/femoral arteries, requires a healthy endothelium with 
smooth, quiescent surface to prevent the activation of clotting factors and pro-
inflammatory cytokines and chemokines, accumulation of lipid particles and to 
inhibit the adhesion of immune cells like platelets and monocytes. Endothelial cells 
regulate different processes such as maintenance of systemic blood flow and blood 
pressure in the resistance vessels, transportation and distribution of nutrients like 
glucose and fats and hormones like insulin, and removal of waste products of 
metabolism in the pre-capillary arterioles. Vascular smooth muscle forms the mid-
dle layer and is responsible for the aortic constriction and relaxation [73]. Outer 
layer i.e. tunica externa/adventia consists of connective elements (fibroblasts, col-
lagen fibers), perivascular adipose tissue, and nerve endings, all of which are 
responsible for the immune cell functions and inflammatory cell trafficking between 
the blood vessels and tissues [74]. In addition to the classical insulin dependent 
metabolic tissues such as liver, skeletal muscle and adipose tissue, it has recently 
emerged that IR can also manifest in endothelium, where insulin stimulates the 
release of NO [75] resulting in vascular smooth muscle relaxation [76]. Endothelium 
was initially considered to be an inert lining but has now received a lot of attention 
and is recognized as an organ regulating multitude of processes critical to vascular 
function [77]. NO activates the cGMP pathway in the VSMCs mediating the vaso-
dilation [78].

Endothelial dysfunction is manifested as a systemic pathological event charac-
terized by an imbalance between the vasodilating and the vasoconstricting factors, 
pro-inflammatory and anti-inflammatory mediators, growth promotion and growth 
inhibition, and coagulation and fibrinolysis, otherwise, whose equilibrium is tightly 
regulated in healthy endothelium [79]. NO inhibits adherence and aggregation of 
platelets and leucocytes to the endothelium surface, suppresses vasoconstriction 
and inhibits the proliferation of VSMCs. Endothelial dysfunction is basically an 
outcome of reduced NO bioavailability and is an important indicator for vascular 
health [29].

Endothelial dysfunction plays a major role in the pathogenesis of IR and its ini-
tiation is an important predictor of IR linked diseases such as obesity, diabetes and 
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cardiovascular complications (Fig. 21.1). Loss of insulin signaling in the endothe-
lium causes vascular IR, which results in reduced vasodilation, leading to altered 
macro and microcirculation of multiple vascular beds projecting diabetes as a vas-
cular disease also along with metabolic disease with decreasing microvascular per-
fusion and nutritive capillary recruitment (Fig. 21.2) [80]. Reduction in capillary 
network and microcirculatory blood flow to metabolically active organs lead to 
impaired insulin-stimulated glucose and lipid homeostasis with decreased surface 
area for nutrient exchange. Along with disturbed vascular tone, IR/diabetes has been 
characterized by increased oxidative stress, lipid deposition, inflammation and 
platelet hyperactivity [81]. In HFD model of obesity, mice fed with 45% HFD for 
10 weeks demonstrated a significant decrease in acetylcholine (ACh) induced vaso-
dilation causing endothelial dysfunction (Fig. 21.3) along with elevated body weight 
and fat, augmented circulatory and hepatic lipids, and hyperinsulinemia. Gene 
expression analysis revealed that HFD fed aorta with impaired endothelial function 
also showed augmented expression of iNOS, p47phox and NOX4 (unpublished results 
from our lab) [82]. In subsequent experiments, mice lacking global iNOS (iNOS 
KO); demonstrated dyslipidemia induced IR though there was significant improve-
ment in HFD induced endothelial dysfunction (unpublished results from our lab) 
(Fig. 21.3). Vascular damage due to oxidative stress triggers an inflammatory reac-
tion, which stimulates the release of chemoattractants and cytokines that further 
aggravates IR and endothelial dysfunction [83]. In fact, IR and endothelial dysfunc-
tion are characterized by increase in markers of inflammation. Another study dem-
onstrated that HFD fed iNOS KO mice were protected against the development of 
insulin resistance and endothelial dysfunction but remained hypertensive with 
increased vascular ROS [38]. Repeated positive feedback loops aggravating IR 
increase the susceptibility of patients with metabolic disorders to cardiovascular 
complications such as atherosclerosis, myocardial infarction (MI) and stroke. Under 
pathogenic conditions like inflammation and excess caloric intake with physical 
inactivity, NO bioavailability is decreased with impaired endothelial functionality 
which leads to induction of IR and dyslipidemia. The enhancement of vascular dam-
age by augmented lipid flux through activation of metabolite sensitive pathways in 
metabolic organs demystified the correlation between IR and macrovascular com-
pilcations [84].

Initially, iNOS induction compensates for the loss of functional eNOS by pro-
ducing NO [85, 86] but excess NO and ROS leads to increased tissue dysfunction 
leading to plaque formation during atherosclerosis [87–91]. FoxO transcription fac-
tors (encoded by FoxO1, FoxO3a and FoxO4), the downstream messengers of Akt, 
impair insulin signaling by acting as negative regulators of Akt mediated NO release 
via inhibition of eNOS expression. Disruption of all three isoforms of FoxO in the 
endothelium increased the NO bioavailability with favorable effects and protection 
against development of vascular dysfunction and atherosclerosis [92]. Vasoprotective 
PI3K-Akt pathway activates eNOS under physiological conditions [93], but during 
insulin resistant states, the balance is skewed towards MAPK/ERK pathway which 
mediates inflammation, vasoconstriction and VSMCs proliferation [94]. Activation 
of MAPK/ERK pathway also produces endothelin-1 (ET-1), which is a potent 
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vasoconstrictor contributing to hypertension and endothelial dysfunction [95] with 
enhanced release of inflammatory markers (e.g., PAI-1, ICAM-1, VCAM-1, and 
E-selectin) promoting atherosclerosis [96].

Hyperglycemia leads to the conversion of glucose into sorbitol which increases 
the accumulation of ROS [97], leading to endothelial dysfunction due to impaired 
vasorelaxation and altered insulin sensitivity [98]. It also leads to O-Glc-N-acylation 
of IRS-1, impairing the activation of PI3-K and reduces glucose uptake, as well as 
O-Glc-N-acylation of eNOS at the Akt phosphorylation residues, leading to its inac-
tivation [99]. Increased oxidative stress activates IKK𝛽-NF-κB axis with iNOS 
induction and increased pro-inflammatory markers, IL-1𝛽, PAI-1, TGF𝛽; and TNF-
ǖFC; [100]. Peroxynitrite formation due to increased ROS enhances endothelial 
dysfunction by directly uncoupling and inactivating the eNOS. Uridine diphosphate 
N-acetyl glucosamine in overloaded glycolytic pathway caused by hyperglycemia 
also reduces eNOS phoshorylation at Ser1177, impairing vascular function [101]. 
The overall effects of these mechanisms are increased oxidative stress, apoptosis 
and vascular permeability [102]. FFA stimulates DAG-PKC and adversely affects 
Akt function due to IRS 1/2 inactivation [103] and enhanced NADPH oxidase 
induced ROS production [104] promoting release of pro-inflammatory cytokines 
such as PAI-1, IL-6, CCL-2, VEGF, TGF-1β, MCP-1, IL-1β and CRP, inhibiting 
NO production by decreasing eNOS expression. ROS also activates NF-κB, which 
increases ET-1 expression and adhesion molecules ICAM-1 and VCAM-1, thus 
enhancing the cardiovascular risk even in healthy subjects [105]. Expression of 
adhesion molecules on endothelial cells promote their contact with monocytes, and 
differentiate them into macrophages which after loading with lipoproteins turn into 
foam cells, mobilizing immune cells to build atherosclerotic plaque with impaired 
insulin signaling [106].

Augmented iNOS expression in cardiovascular tissues during diabetes, impart 
endothelium damage in the large blood vessels leading to stroke, myocardial isch-
emia (MI), heart failure and dilated ischemic cardiomyopathy [107–110]. iNOS 
uncoupling leads to the production of ROS which can induce myofibrillar oxidation 
contributing to contractile dysfunction [109]. Similarly, iNOS induction and uncou-
pling is linked to the development of left ventricular dilation, hypertrophy and con-
gestive heart failure (CHF). Acute MI following plaque rupture in a coronary vessel 
is due to the formation of a thrombus and acute reduction in blood supply. On the 
other hand, vascular injury is exacerbated when blood supply is re-established. 
Increased TNF-α expression in myocardial ischemia-reperfusion (I/R) causes 
induction of superoxide producing systems; xanthine oxidase (XO) and NADPH 
Oxidase (NOX) with enhanced production of O2

− which leads to coronary endothe-
lial dysfunction [111]. Absence of NO causes endothelial dysfunction leading to 
decreased tissue perfusion, myocardial ischemia and vascular remodeling. Whereas, 
higher levels of NO as observed in failing myocardium, leads to loss of myocytes 
and decreased contractility suggesting the complex role of NO in CHF [112].

Disruption of iNOS, delays the contractile dysfunction with improved 
β-adrenergic responses associated with hypertrophy, decreased myocardial apopto-
sis and improved survival [113]. On the contrary, some studies have demonstrated 
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that iNOS disruption had no effect on severe CHF after MI and I/R injury [114], as 
well as elevated BP [38]. Mice lacking iNOS showed no signs of improvement in 
early left ventricular remodeling after myocardial infarction (MI), whereas, signifi-
cant improvement was observed during late remodeling of myocardium [115]. 
Dilated cardiomyopathy with increased iNOS derived NO exerts negative inotropic 
effect on the myocardium with altered systemic hemodynamics and endothelium 
dependent-impaired coronary vessel relaxation leading to heart failure [116, 117]. 
Cardiomyocyte-specific overexpression of iNOS increased the occurrence of malig-
nant arrhythmia associated with atrioventricular block, ventricular tachycardia and 
sudden cardiac death [118]. Interestingly, iNOS offers cardioprotection during late 
phase of ischemic preconditioning (PC) [119, 120]. It also offers protection from 
occurrence of abdominal aortic aneurysms in females [121]. iNOS along with eNOS 
and Akt protects the myocardium from high fructose induced IR [120]. These 
diverse effects of iNOS-derived NO suggest the Ying-Yang effect of NO/iNOS in 
cardiovascular diseases.

In diabetes, vascular endothelium of brain becomes thicker with increased per-
meability and loss of vascular tone [122] impairing the cerebral circulation, thus, 
increasing the risk of ischemic stroke and cognitive function disruption [123, 124]. 
In stroke, disrupted cerebral blood flow causes vascular thrombosis and oxygen 
deficiency leading to ischemia as well as behavioral and functional defects which 
were reverted by intravenous nitrite infusion [125, 126]. Excessive NO released due 
to iNOS activation during infections increases the blood brain barrier (BBB) perme-
ability resulting in cytotoxicity in brain [127, 128]. Resident macrophages from the 
ischemic endothelium and brain parenchyma cause tissue injury and cerebral isch-
emia due to reduced blood flow, release of inflammatory mediators and activation of 
leukocytes [129]. Reperfusion of the occluded vessel generates ROS either by 
reperfusion with oxygenated blood or production within brain and immune cells 
which further stimulates ischemic cells to secrete inflammatory cytokines, chemo-
kines and adhesion molecules. Various cytotoxic agents like matrix metalloprotein-
ases (MMPs), NO and ROS are activated further causing more cellular and 
extracellular matrix damage with the disruption of BBB [130]. This further potenti-
ate brain tissue injury and blood along with its components enter the brain [131] 
leading to decreased tissue perfusion and post-ischemic inflammation [132]. iNOS 
expression is increased in the brain in the astrocytes, microglia and leukocytes in 
transient global ischemia [133] along with increased iNOS mRNA, iNOS activity 
and NO production [134]. NADPH oxidase, cyclooxygenase (COX), xanthine oxi-
dase and xanthine dehydrogenase are the major enzymes responsible for superoxide 
generation whereas monoamine oxidase (MAO) and myeloperoxidase (MPO) are 
responsible for the generation of hypochlorous acid and H2O2. Superoxide genera-
tion can causes direct injury or reacts with NO to generate peroxynitrite in the isch-
emic brain [135]. Disruption of iNOS genetically or pharmacologically leads to 
reduced infarct size [136, 137].

Decreased T-cell responsiveness and prolonged peripheral lymphopenia has 
been observed in stroke patients [138]. Mice with ischemic brain injury due to mid-
dle cerebral artery occlusion demonstrated decreased blood supply and changes in 
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splenic B, T and natural killer (NK) cells. Also, there was increased apoptosis of 
splenocytes, atrophy of spleen and expansion of regulatory T cell (Treg) correlating 
with decreased lymphocyte counts [139]. The adaptive immune response to the 
ischemic brain injury depends on the extent of injury and can be skewed towards 
damaging [T helper cell (Th)1/Th17] or protective (Th2) phenotypes [140]. Also, 
IL-17-secreting γδT cells contribute to ischemic injury and they do not undergo 
classical antigen-dependent T-cell activation [141]. Tregs can have a protective 
effect in ischemic injury to the brain by secreting IL-10 and downregulating post-
ischemic inflammation and uniquely expressing nuclear receptor PPAR-γ [142]; 
whereas, effector T lymphocytes can contribute to focal ischemic injury [143]. 
However, during reperfusion phase of ischemic brain injury, the presence of intra-
vascular Treg can cause vascular endothelial dysfunction and thrombosis and might 
contribute to ischemic brain injury [144].

There is an important two way relationship between the insulin resistance and 
endothelial dysfunction due to diverse physiological, cellular and molecular mecha-
nisms interacting with each other in metabolic and vascular tissues. Parallel physi-
ological and pathophysiological insulin signaling mechanisms in the vascular and 
metabolic tissues and cross-talk among them, different pathways leading to IR, 
inflammatory and insulin signaling crosstalk, link between blood flow and glucose 
metabolism can contribute to both insulin resistance and endothelial dysfunction 
simultaneously. Thus, instead of pharmacotherapies with single and specific agents, 
a combination of therapeutic strategies targeting multiple mechanisms is more 
likely to serve beneficial effects in metabolic and cardiovascular disorders [145].

21.4	 �Use of L-Arginine, Tetrahydrobiopterin and NO Donors 
in IR

Reduced NO availability is one of the key factors in the pathogenesis of IR and in 
associated pathologies such as obesity, diabetes and cardiovascular risk [23, 24]. 
Search for pharmacotherapies to enhance NO bioavailability is thus an important 
area of research. L-Arginine, is the substrate for NOS (nNOS, iNOS, eNOS) and 
NOS catalysis generates equimolar amount of NO and L-citrulline. NO maintains 
endothelium functionality and also cardiovascular health [146]. Administration of 
L-arginine has been shown to improve vascular dilation and preserve endothelial 
functionality [147], enhanced peripheral and liver insulin sensitivity, adipokines 
release, insulin secretion and tissue oxygenation, as well as alleviated oxidative 
stress in diabetes [148–150]. On the other hand, iNOS inhibition disrupts hepatic 
oxygenation and microcirculation, promotes clot formation and ROS generation 
[151, 152]. However, chronic iNOS inhibition reduces NO levels and improved 
liver function by increasing eNOS expression and by restoring the disrupted hemo-
dynamics [153]. The natural sources of L-arginine which are recommended to be 
included in diet are present in both animal and plant derived foods. Animal sources 
comprise of dairy products, pork, beef, poultry, gelatin and seafood like fish etc. and 
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the plant sources include grains, wheat germ and flour, oatmeal, peanuts, nuts, 
seeds, chickpeas and soybeans [154].

Tetrahydrobiopterin (BH4), a cofactor to support NO synthesis [155]; gets oxi-
dised to BH2 under oxidative stress during obesity and diabetes, leading to a decrease 
in its intracellular bioavailability and eNOS uncoupling. This leads to superoxide 
generation which forms ONOO−, adversely affecting endothelial function by oxida-
tion of membrane lipids [156, 157]. Administration of BH4 improves insulin sensi-
tivity in diabetic animals [158]. Sepiapterin administration increases BH4, total 
nitrite, angiogenesis and inhibits nitrosative stress in the infarcted heart of WT mice 
but not in iNOS deficient mice. This could be used to activate the salvage pathway 
for BH4 synthesis and increase NO availability [159]. Intestinal microflora is the 
source of BH4 suggesting that BH4 producing bacteria might be exploited to allevi-
ate cardiovascular diseases [160].

S-Nitrosothiols (RSNOs), the short lived (half-life ~1 h) unstable compounds, 
act as NO donors by releasing NO upon decomposition [161]. S-nitrosohemoglobin 
and S-nitrosoglutathione are the few forms of S-nitrosothiols [162]. Rapid inactiva-
tion of NO due to scavenging reactions involving hemoglobin, myoglobin and oth-
ers contribute to its short half-life, making the products of NO metabolism i.e. 
nitrate and nitrite as its reservoirs that can be used for vasorelaxation [163, 164]. 
Nitroglycerine and sodium nitroprusside are the classical NO donors which are 
being used for clinical management of cardiovascular disorders such as coronary 
artery disease and congestive heart failure [165]. Enhanced oxidative and nitrosa-
tive stress due to iNOS derived NO production degrading the key insulin signaling 
proteins, when treated with NO donor indicated the importance of narrow therapeu-
tic window while selecting the doses of different NO donors for pharmacological 
manipulation of cardiovascular complications [49, 56, 166, 167].

21.5	 �Conclusions & Future Perspectives

Biphasic effects of NO depend on the concentration gradient in circulation and dif-
ferent organs and tissues. It is widely accepted that constitutive NOS (eNOS and 
nNOS) maintains homeostasis by regulating diverse metabolic processes, cellular 
proliferation, apoptosis etc. While the inducible NOS i.e. iNOS, by generating 
higher amont of NO (~1000 folds more than normal) cause oxidative and nitrosative 
stress, inflammation and altered endothelium function; leading to diabetes, obesity, 
atherosclerosis, myocardial infarction and stroke. Surprisingly, recent studies have 
demonstrated that absence of iNOS also leads to IR and obesity under normal fed 
conditions, suggesting an optimal level of NO is required to prevent insulin resis-
tance and endothelial dysfunction. It is therefore important to understand the intra-
cellular/extracellular requirements of NO levels generated by three NOS isoforms 
for the regulation of diverse metabolic processes in different tissues/cell compart-
ments. As NO availability is low in diabetes and obesity, use of L-arginine, tetrahy-
drobiopterin and NO donors have been claimed to counterbalance metabolic 
derailment by enhancing the NO bioavailability. Intriguingly, use of iNOS 
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inhibitors have also been suggested for the treatment of IR, as iNOS induction is 
often found pathogenic. All the results published till date, signify importance of 
NO/NOS, however establishing an appropriate and optimal therapeutic window, is 
a challenge. Future studies should therefore be aimed to identify optimal require-
ments of NO/NOS in various tissues for the management of metabolic disorders and 
preserving endothelial function to alleviate cardiovascular risk.
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22.1	 �Introduction

Type 2 Diabetes (T2D) is a majorly prevalent disorder with approximately 415 mil-
lion people affected worldwide and this number is expected to rise to 642 million by 
the year 2040 [1, 2]. T2D represents a group of metabolic disorders characterized by 
chronic hyperglycemic condition resulting from insulin resistance or abnormal 
insulin secretion and/or insulin sensitivity.

Type 2 Diabetes in long term is a root cause for several macro and micro vascular 
complications such as cardiovascular diseases (CVDs), nephropathy, neuropathy & 
retinopathy etc. [3]. Epidemiological studies on diabetes mellitus have shown that 
confounding risk factors like age, gender, duration of diabetes and ethnic back-
ground are important factors for progressing to diabetic complications [4]. It is esti-
mated that 10%–20% of diabetics progress to macro or microvascular complications 
and nearly 65% of the diabetes associated deaths are caused by heart diseases and 
stroke [5]. Despite the morbidity and mortality associated with diabetes related 
comorbidities, CVDs remain the leading cause of death in T2D [6, 7].

Cardiovascular diseases refer to the group of disorders affecting heart or blood 
vessels including coronary heart disease (CHD), peripheral arterial disease, stroke, 
heart failure, cardiomyopathy etc. In 2017, CVDs contributed to about 45% of all 
the deaths among non-communicable diseases. T2D accounts for two to four fold 
higher risk of developing CHD, stroke and two to eight fold risk of heart failure in 
adult diabetic patients [8].

Coronary Heart Disease is one of the major cardiovascular complications of 
chronic diabetes and is a leading cause of early deaths in diabetic patients. T2D is 
an established risk factor for CHD and has a higher cardiovascular morbidity and 
mortality compared to non-diabetic subjects [9]. Adverse effects of hyperglycemia, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8273-4_22&domain=pdf


484

insulin resistance, abnormal carbohydrate metabolism, impaired fasting glucose, 
impaired glucose tolerance, endothelial dysfunction and oxidative stress, acting on 
a substrate of genetic susceptibility enhances the risk for development of cardiovas-
cular complications in type 2 diabetic individuals [10, 11].

Several reports have been published on decreased antioxidant capacity in plasma 
of diabetic patients [12–14]. Hence, depletion of cellular oxidant defence system 
and increased levels of reactive oxygen species leads to oxidative stress in T2D 
patients [15]. Diabetes induced oxidative stress has adverse effects on cardiovascu-
lar function including reduced nitric oxide bioavailability, increased inflammation, 
and modification of lipoproteins mediated by several genetic factors. Hence, oxida-
tive stress is the unifying pathophysiological mechanism underlying the develop-
ment of coronary atherosclerosis in T2D.

In this chapter, we highlight the oxidative stress pathways mediated by insulin 
and free fatty acids and genetics of oxidative stress related genes in onset and devel-
opment of CHD in type 2 diabetic individuals (Fig. 22.1).

Cardiovascular 
complications of 
Type 2Diabetes

2 to 4 fold 

2 to 8 fold 

↑ risk of 
CHD

↑ risk of 
Heart 
failure

2 to 4
fold
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Stroke

Approximately 65% of deaths in T2D patients are due to CVDs

Fig. 22.1  Risk of CVDs in Type 2 Diabetic patients
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22.2	 �Pathophysiology of Coronary Heart Disease in Type 2 
Diabetes

Several metabolic and molecular abnormalities in type 2 diabetes including insulin 
resistance, prolonged hyperglycemia, a combination of dyslipidemia, arterial hyper-
tension and genetic susceptibility activates glucose auto-oxidation, glucosamine 
pathways, formation of AGEs, and oxidative phosphorylation pathways predispos-
ing T2D individuals to pro-atherogenic effects through diverse mechanisms such as 
oxidative stress, inflammation etc.

CHD is characterized by endothelial and vascular dysfunction leading to acceler-
ated atherosclerosis, which is a key event in developing CHD. ROS are involved in 
the progression of endothelial cell dysfunction, accompanied by inactivation of 
endothelial nitric oxide synthase (eNOS) and decreased NO levels. NO also plays a 
key role in oxidative stress mainly through the production of reactive oxygen spe-
cies (ROS). Nitric oxide is a critical regulator of vascular tone in endothelial cells 
and adequate levels of NO have to be produced in order to maintain the normal 
vascular physiology. Endothelial dysfunction in diabetes mellitus induces alteration 
in the signalling pathways that lead to reduced eNOS activation in the 
endothelium.

NO produced in endothelium modulates vascular dilator tone, maintains vascular 
homeostasis and vascular integrity by inhibiting the platelet aggregation, leukocyte 
endothelium adhesion and vascular smooth muscle cell proliferation and migration. 
NO produced in cardiac smooth muscle regulates cardiac contractility. Conversely, 
diminished NO availability promotes vascular inflammation and induces the expres-
sion of proinflammatory transcription factor nuclear factor kappa B (NF-κB), and 
induce endothelial dysfunction and increases the entry of modified circulating lipo-
proteins into the vessel wall. Endothelial dysfunction also results in upregulation of 
leucocyte adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) 
and vascular adhesion molecule-1 (VCAM-1), facilitating transendothelial migra-
tion of leukocytes into the tunica intima mediated by a chemoattractant gradient.

In the intima, inflammatory mediators, like M-CSF aid in the detection and inter-
nalization of modified lipoprotein particles by macrophages and monocytes ulti-
mately forming foam cells and initiates atherosclerotic lesion formation. During 
this process, lymphocytes and resident cells of vascular wall secrete various inflam-
matory cytokines and growth factors that promote proliferation & migration of 
VSMCs into the intima and penetration through the elastic lamina and collagenous 
matrix evolving into atheromatous plaque.

Moreover, T2D enhances protein-kinase-C (PKC) activity, NF-κB production 
and free radical synthesis in VSMCs in the presence of high glucose concentrations 
[16, 17]. Hence, migration of VSMCs into nascent atherosclerotic lesions leads to 
the replication and production of extra cellular matrix, which are the major steps in 
mature lesion formation [18]. VSMCs undergo accelerated apoptosis in the athero-
sclerotic lesions and diabetic patients tend to have less number of VSMCs in the 
lesion [19]. Additionally, there is an enhanced production of cytokines in T2D 
which diminishes vascular smooth muscle synthesis of collagen and elaborates the 
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production of matrix metalloproteinases (MMPs). Enhanced levels of MMPs, 
increased synthesis and reduced break down by tissue inhibitors of MMPs (TIMPs) 
results in extracellular matrix degradation [20].

Apoptosis of VSMCs and increased production of MMPs are key determinants 
of plaque stability. They increase the tendency for plaque destabilization, distinctive 
of extensive inflammatory infiltrate, reduced VSMCs & collagen, increased neovas-
cularisation, a substantial lipid core, and a thin fibrous cap. This narrows the vessel 
lumen by more than 50% ultimately leading to atherosclerotic plaque rupture due to 
metalloproteases, cathepsins, and collagenases secreted from activated macro-
phages in the plaque [21, 22]. Plaque rupture activates clotting cascade and triggers 
thrombus formation leading to CHD.

22.3	 �Concept of Oxidative Stress

Reactive Oxygen Species acts as signal transduction molecules involving in cell 
protection while excess production of ROS generates oxidative stress. Oxidative 
stress is the state of imbalance between the production of ROS and buffering capac-
ity of antioxidants. Anti-oxidants (AOX) counteracts the damaging effects caused 
by oxidants/free radicals and neutralise their effects by providing electrons to the 
free radicals.

Reactive oxygen species (ROS) is a term which encompasses all highly reactive, 
oxygen-containing molecules, including free radicals. A free radical is an unstable 
and highly reactive chemical species/atom/molecule possessing one or more 
unpaired electrons with a negative charge and to have a balanced charge it captures 
an electron from a balanced atom, making another free radical, thus initiating a 
chain reaction.

The cascade of free radical chain reactions within the body results in damage to 
membrane lipids, nucleic acids, proteins, enzymes, and other small molecules 
which are very lethal and finally culminates to cell death. All these consequences 
lead to a wide range of diseases in humans most notably T2D, cardiovascular dis-
eases etc.

Multiple sources of ROS inducing oxidative stress in type 2 diabetics include 
several enzymatic and non-enzymatic pathways. Oxidative stress acts as a mediator 
of insulin resistance and progression to glucose intolerance in type 2 diabetes and 
subsequently contributes to micro and macrovascular complications including coro-
nary atherosclerotic disease (Fig. 22.2).

22.3.1	 �Generation of Reactive Oxygen Species

Reactive Oxygen Species are a number of reactive molecules, free radicals and ions 
generated from molecular oxygen (O2) or formed as by-products generated from 
endogenous and exogenous sources. Potential endogenous sources include lyso-
somes, mitochondria, phagocytes, endoplasmic reticulum, peroxisomes, and 
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inflammatory cell activation [23]. Exogenous sources include cigarette smoke, alco-
hol, pollutants and environmental agents such as carcinogens, various xenobiotics, 
ultrasound, microwave radiation etc. [24, 25].

The reduction of oxygen through the addition of electrons leads to the formation 
of number of ROS including superoxide (O2

−), hydrogen peroxide (H2O2), hydroxyl 
radical (•OH), hydroxyl ion (OH−), and nitric oxide (NO).

A primary ROS, superoxide (O2
−), is formed by one-electron reduction of molec-

ular oxygen while hydrogen peroxide (H2O2) is produced by direct two electron 
reduction of molecular oxygen by family of superoxide dismutase (SOD) enzymes 
or by reduction of superoxide through dismutation. Hydroxyl radical (•OH) arises 
from electron exchange between superoxide and hydrogen peroxide via the Harber–
Weiss reaction or it is also generated by the reduction of hydrogen peroxide by the 
Fenton reaction. When O2· and NO are synthesized within a few cell diameters, they 
will combine to form peroxynitrite (•ONOO) by a diffusion-limited reaction.

Under regulated conditions, O2
− and H2O2 mediate redox signalling pathways 

responsible for physiological processes including cell growth, cell differentiation, 
metabolism etc. However, excess production of ROS generates oxidative stress, 
damages DNA, protein, and lipids leading to various pathophysiological conditions 
[26] (Fig. 22.3).

22.3.2	 �Role of Anti-Oxidants

Anti-oxidants are beneficial compounds capable of stabilizing, or deactivating, free 
radicals before they attack cells. ROS production in vivo is regulated by anti-oxidant 
defense mechanisms which include both enzymatic and non-enzymatic strategies to 
counteract the effects of ROS.
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Fig. 22.2  Imbalance 
between ROS and 
anti-oxidants
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Endogenously synthesized anti-oxidants are one of the products of body’s 
metabolism which may be either enzymatic or non-enzymatic. Enzymatic antioxi-
dants include superoxide dismutase (SOD), glutathione peroxidase (GSHPx), cata-
lase (CAT), glutathione reductase (GR), Thioredoxin (Trx) and Glucose 6 Phosphate 
Dehydrogenase (G6PDH). SOD plays an important role in the first line of defence 
against ROS.  SOD enzymes are metalloproteins that convert the superoxide to 
hydrogen peroxide, which is then transformed into water by catalase in lysosomes 
or by GSHPx in the mitochondria. GSHPx eliminates H2O2 by using GR for another 
substrate, and generates water. CAT enzymes are localised to peroxisome and cata-
lyze the conversion of H2O2 to O2 and H2O. Gpx enzymes are present in cytosol, 
mitochondria and plasma membrane and catalyze the conversion of H2O2 and lipid 
peroxides to water and lipid alcohols [27]. Trx induces the formation of a disulfide 
bond by reducing the oxidized cysteine residues on proteins which is then further 
reduced by thioredoxin reductase and NADPH [28, 29].

Studies have shown that SOD, catalase and Gpx activities were reduced in dia-
betic patients due to excessive glycation [30]. It has also been found that cardiac-
specific expressions of GPx levels were reduced in diabetic patients [31]. Trx 
activity was directly suppressed to high glucose exposure invitro and leads to an 
excessive injury response in an ischemia-reperfusion injury model which suggests 
the cardioprotective role of Trx in T2D [32].

Non-enzymatic anti-oxidants play a second line of defence against ROS. These 
include α-lipoic acid, coenzyme Q10 (CoQ10), uric acid, albumin, taurine, tetrahy-
drobiopterin (BH4), and N-acetylcysteine (NAC) etc.
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Fig. 22.3  Reactions underlying derivation of ROS
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Non-endogenously synthesized anti-oxidants include dietary supplements such 
as vitamins A, C & E, carotenoids, several bioflavonoids, polyphenols, cofactors 
like folic acid, anti-oxidant trace elements & minerals (copper, zinc, manganese, 
selenium and ferrous) etc.

Vitamin C, an essential nutrient regulates intracellular glutathione recovery [33] 
and is necessary as a co-antioxidant for vitamin E function [34]. Vit C also down-
regulates NADPH oxidase, suppresses NF-κβ activation and prevents oxidation of 
tetrahydrobiopterin – a cofactor of NO synthase [34]. It also increases monocyte 
adhesion to endothelium. Vitamin E, inhibits lipid peroxidation, downregulates 
NADPH oxidase [34], reverses endothelial dysfunction [35], decreases monocyte-
endothelial cell adhesion [36] and inhibits smooth muscle proliferation etc. Few 
studies have reported decreased plasma concentrations of vitamin A [37, 38], carot-
enoids [37], vitamin C [39] & vitamin E [38, 39] in type 2 diabetic subjects com-
pared to controls (Table 22.1).

22.4	 �Factors Generating ROS in T2D and Enhancing the Risk 
of CHD

Risk factors for CHD in type 2 diabetes include hyperglycemia and non-glycemic 
factors like hyperinsulinemia, diabetic dyslipidemia, free fatty acids, endothelial 
dysfunction etc.

Table 22.1  Endogenous and non-endogenous anti-oxidants

Endogenously synthesized Non-endogenous
Non-enzymatic 
anti-oxidants Enzymatic anti-oxidants

Dietary 
Substances

Trace elements & 
minerals

Uric acid Superoxide dismutase (SOD) Vitamin A Copper
Bilirubin Glutathione peroxidise 

(GSHPx)
Vitamin C Zinc

Glutathione (GSH) Catalase (CAT) Vitamin E Selenium
Coenzyme Q10 
(CoQ10)

Glutathione reductase (GR) Carotenoids Manganese

N-Acetylcysteine 
(NAC)

Thioredoxin (Trx) Bioflavonoids Ferrous

Melatonin Glucose 6 phosphate 
dehydrogenase (G6PDH)

Polyphenols

α-Lipoic acid Folic acid
Tetrahydrobiopterin 
(BH4)
Taurine
Albumin
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22.4.1	 �Hyperglycemia

In Type 2 Diabetes, under hyperglycemic conditions, glucose in plasma forms 
advanced glycation end products (AGEs) by undergoing non-enzymatic reaction. 
AGEs bind to the receptors for advanced glycation end products (RAGE) on the 
surface of endothelial cell lining blood vessels and lead to the intracellular genera-
tion of ROS, namely superoxides by NADPH oxidase. As a consequence, superox-
ides activate NFκB, which results in the transcriptional activation of inflammatory 
genes and development of coronary atherosclerosis.

Hyperglycemia also increases the production of diacylglycerol, a lipid second 
messenger which causes membrane alteration and activation of Protein kinase-C 
(PKC) which thereby inhibits the activity of PI3/AKT, subsequent phosphorylation 
of NOS which results in decreased NO production [40]. Activation of genes relevant 
to inflammation and decreased NO production leads to pro-atherogenesis in T2D 
individuals.

Uncontrolled hyperglycemia as evidenced by HbA1c levels has an enhanced pro-
pensity to systemic atherosclerosis and severity of CAD [41]. Epidemiology of 
Diabetes Interventions and Complications [EDIC] and Multiple Risk Factor 
Intervention Trial (MR-FIT), suggested that cardiovascular complications of T2D 
are majorly due to high levels of plasma glucose [42, 43].

22.4.2	 �Hyperinsulinemia

T2D often combined with basal hyperinsulinemia leads to functional changes in 
blood vessels by impaired NO production by receptor mediated resistance resulting 
in decreased vasodilation. Structural changes due to hyperinsulinemia occur by pro-
atherogenic response mediated by mitogen activated protein kinase (MAPK) path-
ways which lead to imbalance in homeostatic regulation of vascular function, 
enhanced oxidative stress, inflammation and subsequent pre-atherosclerotic events 
in T2D individuals [44].

22.4.3	 �Free Fatty Acids

In insulin resistance state, decreased insulin function and lack of insulin inhibits 
lipolysis which leads to increased FFAs generation and lowers lipoprotein lipase 
activity [45]. Levels of FFAs are also increased due to excessive liberation from 
adipocytes and diminished uptake by skeletal muscle in T2D patients [46]. FFA 
which enter adipocytes are rapidly converted into fatty acyl-CoA and stored as tri-
glycerides. Hence, increased mitochondrial oxidation could lead to enhanced mito-
chondrial superoxide generation in type 2 diabetes subjects.

Certain saturated fatty acids such as palmitate showed the generation of ROS and 
activates NFκB, expresses monocyte chemotactic factor, serum amyloid A3 (SAA3) 
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and monocyte chemotactic protein-1 (MCP-1) which play an important role in the 
formation of atherosclerotic plaque [47].

22.4.4	 �Endothelial Dysfunction

Endothelium is a passive lining for all blood vessels and acts as an interface between 
circulating blood and VSMCs and plays a key role in the regulation of blood flow, 
arterial tone, maintenance of vessel wall permeability and vascular homeostasis etc. 
Endothelial dysfunction suggests the impairment of the capability of endothelium in 
properly maintaining the vascular homeostasis. Altered signalling pathways in 
endothelium leads to improper production of NO and its reduced bioavailability to 
maintain vascular homeostasis, increased synthesis of vasoconstrictor prostanoids 
and endothelin [48, 49]. Hence, in T2D patients, endothelial dysfunction precedes 
the development of coronary atherosclerosis and is an indicating factor for progres-
sion to CAD.

22.5	 �Oxidative Stress Mediated Pathways in Type 2 Diabetes

Under diabetic conditions several sources of ROS include glucose and insulin which 
mediates their effects through altered coagulation, insufficient vasodilation, ele-
vated free fatty acids, insulin resistance etc. by activating numerous pathways that 
link T2D with CHD are discussed as follows:

22.5.1	 �eNOS Activation and Vasodilation by PI3K/Akt Pathway

Insulin is one of the important stimuli for eNOS activation in type 2 diabetes which 
binds to its receptor on endothelial cells leading to phosphorylation of insulin recep-
tor substrate-1 [IRS-1] and subsequent phosphorylation and activation of eNOS and 
production of NO via PI3 kinase/Akt [50]. In type 2 diabetic patients, hyperglyce-
mia and increase in free fatty acids inhibit PI3K/Akt pathway. Inhibition of PI3 
kinase/Akt may reduce the expression of atherothrombic factors in addition 
decreases the production of protective molecules, including NO. In T2D, activation 
of PKCβ leads to the activation of NFκB, blocks insulin signalling and reduces the 
synthesis of NO resulting in reduced vasodilation, abnormal supply of oxygen to 
cells, increased oxidative stress and atherogenic plaque formation finally leading to 
coronary heart disease.

Few studies support that mutation in IRS-1, decreases insulin-stimulated eNOS 
phosphorylation and eNOS gene expression in cultured endothelial cells. Further, 
specific knockout studies in mice with endothelial specific insulin receptor showed 
decreased eNOS expression and impaired vasodilator function [51]. Studies on ani-
mal models of insulin resistance displayed defects in the PI3 kinase/Akt system and 
impaired NO bioavailability [52] (Fig. 22.4).
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22.5.2	 �Vasoconstriction and Expression of Pro-Atherogenic 
Molecules by MAPK-Pathway

Under normal conditions, activation of insulin receptor results in the balance of both 
processes vasodilation and vasoconstriction via PIK3K/Akt and MAPK pathways 
to regulate the intermediate metabolic requirements. In type 2 diabetes, in addition 

IRS-1

PI3K/Akt

eNOS-P

NO

IRS-1

PI3K/Akt

eNOS-P

NO

Vasodilation
Vasodilation

Oxidative stress

Hypoxia

Formation of atherogenic plaque

Coronary Heart Disease

Insulin

In Non-Diabetic In T2D

Insulin receptor
Insulin

Insulin receptor

FFA
Hyperglycemia

PKCβ
NFκB

Fig. 22.4  Insulin mediated activation of eNOS by PI3K/Akt pathway

K. Kupsal and S. R. Hanumanth



493

to vasodilation, insulin also promotes vasoconstriction and expresses pro-
atherogenic molecules in the endothelium through the production of endothelin-1 
(ET-1) and PAI-1, ICAM-1, VCAM-1 and E-selectin molecules through MAPK-
dependent pathways [53].

Binding of insulin to its receptor initiates a cascade of autophosphorylation 
events, activates IRS-1 and IRS-2 docking proteins and concurrently activates Src 
homology containing (Shc) protein. Binding of SH2 domain of Grb2 to phosphory-
lated tyrosine residues of IRS-1 or Shc activates the preassociated guanosine tri-
phosphate (GTP) exchange factor Sos. Sos inturn activates Ras (rat sarcoma), a 
small GTP binding protein which subsequently binds and activates the serine-
threonine protein kinase Raf (rapidly growing fibrosarcoma). Raf activates MAPK/
extra-cellular signal-regulated kinase (MEK) which then activates ERK1/2, also 
known as p44/42 mitogen-activated protein kinase (MAPK). Activation of MAPK 
leads to insulin-stimulated production of ET-1, decreased vasodilation, enhanced 
vasoconstriction and a series of events are followed that lead to coronary heart dis-
ease (Fig. 22.5).

22.5.3	 �NADPH Oxidase Mediated Superoxide Generation 
in Skeletal Muscle

Under diabetic conditions various factors like AGEs, high glucose, insulin, and 
angiotensin II activates NADPH oxidase. Membrane bound NADPH oxidases are 
the principal sources of ROS in diabetes and play a major role in the development 
of atheroclerosis. NADPH oxidase consists of membrane bound flavocytochrome 
b558 forming subunits such as gp91 phox (Nox2)/Nox1/Nox4 and p22 phox and the 
catalytic site of the oxidase and cytosolic components p47 phox and p67 phox. 
Membrane-bound and cytosolic subunits are called catalytic and regulatory sub-
units, respectively. In endothelial and smooth muscle cells, Nox 1 and Nox 4 are 
abundantly expressed. P22phox expression of NADPH oxidases was significantly 
increased in rat and human diabetic arteries [54, 55].

In skeletal muscles of diabetic patients, NADPH oxidases specifically decrease 
serine phosphorylation of Akt and GLUT4 translocation impairing the insulin sig-
nalling and ameliorate insulin resistance which leads to the production of superox-
ides [56]. Therefore it is suggested that increased expression of p22 phox may 
contribute to the development of oxidative stress in diabetic individuals (Fig. 22.6).

22.5.4	 �Pathway Mediated by Free Fatty Acids

Increased FFAs bind to toll-like receptors (TLRs) and degrades inhibitory complex 
IkBa by IKKb-kinase and thereby activates NF-kB. The activated NF-kB triggers 
inflammation due to upregulation of IL-6 and TNF-α. FFA binding to toll like recep-
tors also lead to phosphorylation of insulin receptor substrate-1 (IRS-1) by c-Jun 
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amino-terminal kinase (JNK) and PKC and activates downstream targets PI3-kinase 
and Akt. All these molecular events results in the down-regulation of the glucose 
transporter GLUT-4 and occurrence of insulin resistance, a major characteristic fea-
ture in type 2 diabetes and markedly increases the risk for CVDs. Thus, downregu-
lation of PI3K/Akt pathway leads to eNOS inhibition and decreased NO production 
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which initates atherosclerosis. Reduced bioavailability of NO triggers inflammatory 
pathways and increases cytokine production. TNF- α and IL-1 increase NF-kB 
activity and expression of adhesion molecules and also stimulates the expression of 
CRP which down-regulates eNOS and increases the production of adhesion mole-
cules and endothelin-1.

In adipocytes, insulin resistance increases the release of free fatty acids from 
stored triglycerides. Due to lack of insulin stimulation of malonyl CoA production 
and increased oxidation of free fatty acids in the aortic endothelial cells of type 2 
diabetic patients, generates increased superoxide production by the mitochondrial 
electron transport chain. This activates enhanced production of advanced glycation 
end products, increased PKC activation, and enhanced N-acetyl glucosamine 
(GLcNAC) activity.

Free fatty acid induced superoxide production in turn activates pro-inflammatory 
signals and also inactivates two important anti-atherogenic enzymes, prostacyclin 
synthase (PGI2) and eNOS.  Studies from non-diabetic rodent models of insulin 
resistance suggest that inactivation of prostacyclin synthase and eNOS enzymes 
prevented by inhibition of free fatty acid release from adipose tissue by the rate-
limiting enzyme, carnitinepalmitoyltransferase I, for fatty acid oxidation in mito-
chondria and by reduction of superoxide levels [57]. Excessive superoxide 
production contributes to mitochondrial damage and precedes the development of 
atherosclerosis in type 2 diabetic subjects (Fig. 22.7).
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22.6	 �Genetics of Oxidative Stress Related Genes 
and Susceptibility to CHD in T2D

Both type 2 diabetes and cardiovascular diseases constitute the paradigm of com-
mon complex genetic traits in their pathophysiology. Whether the genetic risk fac-
tors predispose type 2 diabetic individuals to cardiovascular complications remain 
uncertain. Few studies suggest that risk of CHD is influenced by genetic factors in 
diabetics compared to non-diabetics. Indeed, vulnerability to oxidative stress in 
type 2 diabetic patients include functional polymorphic variants in several oxidative 
stress related genes and anti-oxidant defence systems [58]. Few studies also suggest 
that the architecture of genetic susceptibility to CHD in oxidative stress related 
genes might be different in diabetic patients than that in general population [59]. 
Several studies have reported the association of single nucleotide polymorphisms in 
oxidative stress related genes and anti-oxidant defense systems in T2D patients with 
cardiovascular complications [60–62]. Hence, the SNPs of some of the oxidant and 
antioxidant genes is summarized for identification of genetic markers to improve 
the risk prediction of CHD in diabetic individuals.

22.6.1	 �P22phox

One of the major sources of ROS is NADPH oxidase which is a membrane-
associated complex. P22phox is one of the essential subunits required for its oxi-
dase activity. It is one of the predominant sources of superoxide production in 
vascular cells. Hyperglycemia exaggerates superoxide (O2 −) production from mito-
chondrial respiration and leads to the activation of NADPH oxidase and redox sen-
sitive signaling pathways which accelerates the process of atherogenesis in T2D 
patients.

Human P22phox, encoded by CYBA gene is located on chromosome 16q24. It 
is composed of six exons spanning 8.5 kb. The three polymorphisms namely C242T 
(rs4673), A640G (rs1049255) and −930 A/G (rs9632581) in CYBA gene are of 
considerable interest in research as they have important functional effects.

CYBA C242T polymorphism is located in exon 4 and results in a switch in 
amino acid [His/Tyr] at residue 72 located in the putative heme-binding sites [63]. 
Because the histidine residue is considered to be a candidate for the ligand of the 
heme prosthetic group of cytochrome-b, it has been suggested that this polymor-
phism is directly associated with the loss of oxidative function and a decreased 
production of ROS and oxidative stress in the vasculature [64]. Another very com-
mon functional polymorphism −930 A/G is located at the position −930 from the 
ATC codon. The functional effects of this polymorphism resulted in higher tran-
scriptional activity of CYBA gene due to potential binding site for C/EBP transcrip-
tion factor.

Third polymorphism in CYBA gene, A640G is located in the 3′ untranslated 
region [65]. It has been assumed that A640G modifies the stability of mRNA and 
translational activity of CYBA through the interaction with other regions of 
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mRNA. This polymorphism has been found to have effect on ROS generation [66, 
67]. All the three polymorphisms of CYBA have been widely investigated for 
their association with T2D and CHD and found that these may be an indicative for 
the risk of oxidative stress and subclinical coronary atherosclerosis in type 2 dia-
betes [68].

22.6.2	 �Thioredoxin Interacting Protein

Oxidative stress in T2D is linked to enhanced production of superoxides in mito-
chondria through PKC-dependent activation of membranous NADPH oxidase. The 
two major intracellular thiol reducing mechanisms are the interacting glutathione 
and thioredoxin (TRX) systems. TXNIP, an up-regulated gene of oxidative stress, is 
a binding protein of TRX, a redox protein that neutralises ROS by reducing thiols 
especially insulin disulfides and limits the damage from oxidative stress.

TXNIP acts as an oxidative stress modulator by inhibiting antioxidant activity of 
TRX and interacting with antioxidant transcription factors such as Nrf2 transcrip-
tion factor 8 and activates NLPR3 inflammasome 9. TXNIP also sensitizes cardio-
myocytes to ROS-induced apoptosis. Experimental studies suggested that 
hyperglycemia could induce overexpression of TXNIP and decreased TRX activity 
which can stimulate ROS production and might trigger hyperglycemia mediated 
oxidative stress pathways and pre-atherosclerosis in T2D patients [69].

TXNIP gene is located on chromosome 1q21.1. It is a 46-kDa ubiquitously 
expressed protein which contains 391 amino acid residues. Genetic variations in 
TXNIP might predispose individuals at inherited risk for developing T2D and 
CHD. The two SNPs rs7211 and rs7212 are widely studied in T2D and CHD. Both 
SNPs are located in the 3′ region and alters the gene expression regulating mecha-
nisms like modulating RNA stability and microRNA binding etc. Several studies 
have shown  that increased TXNIP expression was significantly associated with 
these polymorphisms in T2D and CHD patients [70, 71].

22.6.3	 �Thioredoxin Reductase 2

Thioredoxin (TRX) system is one of the major thiol-dependent antioxidant systems 
through its disulfide reductase activity regulating protein dithiol/disulfide balance. 
The mitochondrial TRX system is composed of NADPH, TRX reductase (TRXR), 
and TRX. TRXR catalyzes disulfide reduction in TRX with NADPH as a cofactor.

TRXRD2 is a key enzyme in antioxidant defence system predominantly local-
ized to mitochondria and controls the cellular redox environment tby binding to 
TXNIP and inhibits the reducing activity of TRX leading to mitochondrial dysfunc-
tion [72]. TRXRD2 plays an essential role in maintaining vascular endothelial cell 
function, increases NO bioavailability, and thereby reduces oxidative stress and pre-
vents atherosclerosis development [73, 74]. In T2D, there is an enhanced 
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mitochondrial production of cellular ROS under redox conditions which is central 
to the pathogenesis and progression of CHD [75].

Thioredoxin reductase 2 (TXNRD2) gene is localized on chromosome 22q11.21 
with 18 exons. There are few studies reported on polymorphisms of TXNRD2 in 
diabetes induced CHD. Kariz et al. has reported that T2D individuals with CC + TT 
genotypes of T50964C [rs1548357] polymorphism conferred protective role for MI 
in T2D subjects of Slovenian origin [76].

22.6.4	 �Myeloperoxidase

Myeloperoxidase (MPO) is a member of the heme peroxidase superfamily, pro-
duced primarily by neutrophils and monocytes. Growing evidences suggest that 
leukocytes are the main source of reactive oxygen and halogens that play a major 
role in the development of vascular damage and oxidative stress [77, 78]. MPO is a 
highly oxidant enzyme, catalyzes the production of hypochlorous acid, tyrosyl radi-
cal, and reactive nitrogen free radicals and is a key biomarker of vascular inflamma-
tion. These highly reactive compounds are involved in oxidative modification of 
proteins, lipids and DNA.

Hyperglycemia increases MPO activity and stimulates the production of hydro-
gen peroxide. MPO modifies LDL into atherogenic form, generates dysfunctional 
HDL, promotes formation of foam cell, rupture of plaque, and accelerates progres-
sion of atherosclerosis. MPO has been proposed to be a novel risk indicator for 
future coronary events in healthy people and a prognostic marker for CAD in 
Diabetes mellitus patients. Purushothaman et al. has demonstrated that there was an 
approximately three-fold increased MPO protein expression and was strongly asso-
ciated with high-risk plaque features in diabetic patients compared to non-diabetic 
patients [79].

MPO gene is located on chromosome 17q23-q24, and its expression is regulated 
by nutrilites [80]. Several single nucleotide polymorphisms have been identified in 
the promoter and coding regions of MPO gene but -463G/A (rs2333227) and 
-129G/A polymorphisms are widely studied. The MPO -463G/A polymorphism 
was associated with T2D and an increased risk of CAD in Asians [81].

22.6.5	 �Poly (ADP-Ribose) Polymerase-1

Poly(ADP-ribose) polymerase-1 (PARP) is the nuclear DNA repair enzyme with 
multiple regulatory functions. Increased oxidative stress activates PARP enzyme 
which depletes its substrate, NAD+, slowing the rate of glycolysis, electron trans-
port, ATP formation and also inhibits GAPDH by poly (ADP-ribosy)lation. Hyper-
activation of PARP represents tissue damage in various pathological conditions 
associated with oxidative stress. These processes result in acute endothelial dys-
function in diabetic blood vessels, which importantly contributes to the develop-
ment of coronary heart disease.
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PARP-1 belongs to PARP enzyme family and is a 116-kDa protein that consists 
of three main domains: the N-terminal DNA-binding domain containing two zinc 
fingers, the automodification domain, and the C-terminal catalytic domain. PARP-1 
through its second zinc finger domain, binds to both single and double stranded 
DNA breaks, forms homodimers and catalyzes the cleavage of nicotinamide ade-
nine dinucleotide (NAD+) into nicotinamide and ADP-ribose and uses the latter to 
synthesize branched nucleic acid-like polymers of poly(ADP-ribose) covalently 
attached to nuclear acceptor proteins. Due to its high negative charge, covalently 
attached ADP-ribose polymer affects the function of target proteins. Studies have 
shown that high glucose induced oxidative stress leads to single stranded breaks and 
PARP activation in murine and human endothelial cells [82].

PARP-1 gene is located on chromosome 1q41–42. A single nucleotide polymor-
phism Val762Ala (rs1136410), is a non-synonymous A-to-G transition at codon 762 
results in conversion of valine to alanine in the catalytic domain of PARP-1 [83]. In 
a study by Xue et  al., PARP-1 rs1136410 SNP has conferred protection against 
CAD through modulation of PARP activity in Chinese Han population [84]. Few 
studies conducted on rat and mouse models have proved that PARP activation leads 
to ET-1 upregulation, downstream effects in diabetes [85] whereas PARP inhibition 
improved endothelial dysfunction [86] and was protective against progression of 
cardiovascular complications in diabetes [87].

22.7	 �Conclusion

Prevention and management of diabetic cardiovascular complications is critical due 
to its worldwide morbidity and mortality. Understanding the etiological link 
between T2D & CHD by identification of oxidative stress related molecular and 
genetic mechanisms may unveil novel strategies and develop new therapeutics to 
reduce cardiovascular morbidity & mortality in T2D patients. These findings may 
also provide the basis in developing more sensitive, clinical and genetic markers of 
oxidative stress for prognosis and risk prediction of CHD in type 2 diabetic patients 
and also suggest the importance of antioxidant therapy to delay the onset and pro-
gression of diabetes induced CHD.
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23Role of Oxidative Stress 
in the Pathophysiology of Arterial 
Hypertension and Heart Failure

Teresa Sousa, Marta Reina-Couto, and Pedro Gomes

23.1	 �Introduction

23.1.1	 �Reactive Oxygen Species (ROS) and Oxidative Stress: 
General Considerations

Oxygen is essential for cellular respiration and energy production by aerobic organ-
isms. However, the partial reduction of oxygen by several metabolic pathways will 
inevitably result in the production of reactive oxygen species (ROS). In turn, these 
short-lived and highly reactive oxygen metabolites have the ability to attack cellular 
macromolecules, including lipids, proteins and nucleic acids, causing oxidative 
damage. Under normal conditions, intracellular ROS concentrations are maintained 
within a balanced, steady-state range, by integrated enzymatic and nonenzymatic 
antioxidant systems, which not only protect cells from the detrimental effects of 
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ROS but also allow the activation of redox signalling pathways that regulate physi-
ological functions. Disruption of redox equilibrium by persistently elevated ROS 
concentrations leads to oxidative stress and subsequent dysfunctional signalling and 
macromolecular damage [1–3]. Oxidative stress is widely recognized as an impor-
tant contributor to ageing, which is characterized by a progressive decline in bio-
logical functions and in the organism’s ability to adapt to metabolic stress over time, 
being also aetiologically involved in the pathogenesis of a wide variety of disease 
processes, namely arterial hypertension, atherosclerosis, heart failure (HF), diabetic 
neuropathy, renal diseases, neurological diseases, as well as cancer [4, 5]. In con-
trast to the well documented role of oxidative stress in cardiac diseases, less is 
known regarding the role of reductive stress in these processes. Reductive stress is 
the counterpart of oxidative stress and is defined as an aberrant increase in reducing 
equivalents, leading to decreased ROS levels. Nevertheless, it is becoming increas-
ingly clear that the biological extremes of the redox spectrum play critical roles in 
disease pathogenesis [6]. In addition to ROS, there is another class of chemically 
reactive molecules collectively designated as reactive nitrogen species (RNS), 
which include various nitric oxide (.NO)-derived compounds. RNS have been rec-
ognized as playing important functions in diverse physiological and pathological 
redox signalling processes [7, 8]. Similarly to ROS, excessive amounts of RNS have 
been implicated in cell injury and death by inducing nitrosative stress.

23.1.2	 �Main Types of ROS and RNS

ROS can be divided in two main groups: i) free radicals [e.g. superoxide anion 
(O2

·−), hydroxyl radical (HO.), peroxyl radical (ROO•)], which are unstable and 
highly reactive species due to the presence of one or more unpaired electrons; and 
ii) non-radical oxidants [e.g. singlet oxygen (1O2), hydrogen peroxide (H2O2), hypo-
chlorous acid (HOCl)], that have generally more specific reactivity and higher sta-
bility. RNS include .NO and nitrogen dioxide radicals (.NO2) and also non-radicals 
such as peroxynitrite (ONOO−), nitrous acid (HNO2), peroxynitrous acid (ONOOH) 
and alkyl peroxynitrites (ROONO) (Table 23.1). Among biological ROS and RNS, 
O2

·−, H2O2, .NO and ONOO− appear to play a prominent role in vascular, cardiac, 
renal and neuronal regulation and dysregulation, thus representing important targets 
for strategies aiming to reduce redox dysfunction in cardiovascular diseases [9, 10].

23.1.3	 �Mechanisms of ROS Generation in Cardiovascular Diseases

A key consideration for ROS/RNS chemistry and biology is the subcellular com-
partment where a particular species is generated, as discrete microenvironments can 
determine which targets will be preferentially attacked. ROS are derived from both 
endogenous and exogenous sources (Fig. 23.1). Intracellular compartments capable 
of ROS generation include mitochondria, the endoplasmic reticulum, peroxisomes, 
nuclei, the cytosol, and plasma membrane enzymatic systems. ROS can also be 
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Table 23.1  Major types of ROS and RNS in living systems and corresponding properties

Symbol
Half-
life (s) Properties

ROS – free radicals
Superoxide 
anion

O2
·− 10−6 Low reactivity in aqueous solution; signalling function

Hydroxyl HO. 10−9 Most reactive oxygen radical; reacts almost 
immediately with every molecule in living cells; 
diffuses a short distance

Peroxyl ROO• 10−2 Weak oxidant; high diffusibility

ROS – non-radical oxidants
Singlet oxygen 1O2 10−6 Powerful oxidizing agent

Hydrogen 
peroxide

H2O2 10−5 Weak oxidizing and reducing agent; diffuses across 
membranes; signalling role

Hypochlorous 
acid

HOCl n/a Strong reactive species; released by neutrophils

RNS – free radicals
Nitric oxide .NO 10−3 Can yield potent oxidants during pathological states; 

endogenous signalling molecule
RNS – non-radical oxidants
Peroxynitrite ONOO− 10−2 Highly reactive intermediate of O2

·− and .NO; 
permeates cell membranes

n/a no data available

Fig. 23.1  Major endogenous and exogenous sources leading to ROS production
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produced in response to external sources, including pollution, alcohol, tobacco 
smoke, heavy metals, UV radiation.

23.1.3.1	 �Mitochondria
Mitochondria play a key role in energy metabolism in many tissues. More than 90% 
of the oxygen consumed by aerobic organisms is utilized by the mitochondrial elec-
tron transport chain (ETC), which generates ATP in a process coupled to the reduc-
tion of cellular oxygen to water. The mitochondrial respiratory chain complexes are 
also an important source of ROS within most mammalian cells [11–13]. In fact, 
about 1–4% of the oxygen used in these reactions is converted to O2

·− and H2O2, 
which may have deleterious consequences to mitochondria if not adequately detoxi-
fied [14]. ROS formation in the mitochondria is regulated by the respiratory rate and 
by the antioxidant enzyme manganese superoxide dismutase (MnSOD) [12]. The 
mitochondrial respiratory chain appears to be a major source of oxidative stress in 
some experimental forms of arterial hypertension (e.g. mineralocorticoid hyperten-
sion, angiotensin II-induced hypertension) and the inhibition of mitochondrial ROS 
production has a significant blood pressure-lowering effect in these models [15, 16]. 
In HF there is also evidence of abnormal ROS production from mitochondrial respi-
ratory chain. Furthermore, the scavenging of mitochondrial ROS has been shown to 
prevent or reverse HF and to eliminate sudden cardiac death in an animal model of 
non-ischemic HF that displays important features of human HF (e.g. prolonged QT 
interval, high incidence of spontaneous sudden cardiac death due to ventricular 
tachycardia/fibrillation) [17–19].

23.1.3.2	 �Other Prooxidant Enzymatic Systems
Besides mitochondrial oxidases, there are other important enzymatic sources of 
ROS, such as NADPH oxidases, myeloperoxidase, .NO synthases, xanthine oxidase 
and monoamine oxidases (Fig. 23.1).

Nicotinamide Adenine Nucleotide Phosphate (NADPH) Oxidases
NADPH oxidases (NOX) are multi-subunit transmembrane enzymes complexes 
that catalyze the one-electron reduction of molecular oxygen using NADPH as an 
electron donor. In general, the product of the electron transfer reaction is O2

·−, but 
H2O2 is also rapidly formed from dismutation of NOX-derived O2

·− due to the pres-
ence of superoxide dismutase in the cells or by spontaneous reaction. NOX-derived 
ROS play a role in host defence and also in various signalling pathways [20]. The 
NOX family contains seven members (NOX1-5 and Duox1-2) with distinct tissue 
distribution and roles [20]. NOX1, NOX2 and NOX4 isoforms enzymes appear to 
be particularly relevant in the pathophysiology of hypertension, being expressed in 
major sites of blood pressure regulation [20, 21]. For example, NOX1, NOX2 and 
NOX4 can be found in the central nervous system, where they contribute to sympa-
thetic nerve activity control [21]. In the kidney, NOX2 and NOX4 appear to be the 
main isoforms regulating renal function and contributing to end-organ damage [21, 
22]. These isoforms are also important determinants of vascular tone in several vas-
cular beds, including the renal afferent arteriole, which is critical for the regulation 

T. Sousa et al.



513

of renal haemodynamics [23–25]. Endothelial function can be regulated by NOX2, 
which contributes to impaired vasodilation, or by NOX4, which improves endothe-
lial-dependent vasodilation. NOX1 and NOX4 are also involved in vascular smooth 
muscle cell growth and migration [20, 23, 24]. Of note, recent studies suggest that 
NOX5, an isoform that is found in humans but absent in rodents, is also implicated 
in the pathogenesis of cardiovascular diseases, such as hypertension and atheroscle-
rosis [26]. For example, renal proximal tubular cells from human hypertensive sub-
jects appear to express NOX5  in a greater extent than the other isoforms [27]. 
Furthermore, in mice expressing human NOX5  in podocytes, the renal function 
becomes impaired and blood pressure increases [26]. NOX5 expression was also 
shown in human carotid artery atherosclerotic plaques and to be induced in macro-
phages exposed to a proinflammatory and prooxidant environment [28].

NOX2 and NOX4, the two isoforms expressed in the heart, appear to be espe-
cially relevant in HF [29, 30]. NOX2 contributes to angiotensin II-induced cardiac 
hypertrophy, atrial fibrillation, myocyte death under stress conditions and post-
myocardial infarction remodelling. The inactivation of NOX2 was shown to attenu-
ate ventricular dilatation and contractile dysfunction in experimental models of 
myocardial infarction. NOX2 deletion also abolished angiotensin II-induced car-
diac hypertrophy but was not able to prevent the development of HF caused by 
severe pressure overload [29, 30]. The role of NOX4 in the heart is more controver-
sial, with both protective and detrimental effects reported. For example, mice lack-
ing cardiac NOX4 display either reduced or aggravated maladaptive remodelling in 
different models of pressure-overload-induced HF [29, 30]. In what concerns to 
ischemia-reperfusion injury, it appears that both NOX2 and NOX4 contribute to 
increased ROS production and damage, as evidenced by the reduced myocardial 
infarct size/area at risk and lower O2

·− production in NOX2 knockout or NOX4 
knockout mice subjected to ischemia-reperfusion injury. However, double knockout 
of NOX2 and NOX4 exacerbates ischemia-reperfusion injury, probably because 
low levels of ROS generated by these enzymes are necessary to activate adaptive 
mechanisms that protect the heart against ischemia-reperfusion injury [31].

Myeloperoxidase (MPO)
MPO, a haem-containing enzyme secreted by activated neutrophils and monocytes 
under inflammatory conditions, produces several oxidizing molecules that can 
affect lipids and proteins [32]. MPO uses H2O2 to produce other ROS/RNS, such as 
HOCl, chloramines, tyrosyl radicals and nitrogen dioxides [32]. Although MPO-
derived ROS have a major role as bactericidal agents, they can also cause tissue 
damage in the heart, vessels, kidney and brain. Vascular tone and endothelial bio-
availability of .NO appear to be significantly affected by MPO. Interestingly, the 
MPO G463A polymorphism was associated with an increased risk of hypertension 
[33]. MPO contributes to vascular and myocardial dysfunction, being significantly 
increased in acute coronary syndromes and HF [34–36]. Higher MPO values were 
reported to be associated with increasing likelihood of more advanced HF in chronic 
systolic HF patients and to predict future adverse clinical events [37].
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NO Synthases
The .NO synthases (NOS) are a family composed of three enzyme isoforms (neuro-
nal NOS, nNOS; inducible NOS, iNOS; endothelial NOS, eNOS) [38]. NOS are the 
endogenous sources of .NO in mammalian cells, in a reaction that converts L-arginine 
to L-citrulline [38]. .NO exerts a wide array of regulatory functions on the cardio-
vascular system, including regulation of vascular tone, blood pressure, cardiomyo-
cyte contractility, sympathetic outflow, smooth muscle cell proliferation, renal renin 
release and natriuresis [39–41]. However, under conditions of limited bioavailabil-
ity of the cofactor tetrahydrobiopterin (BH4) or the substrate L-arginine, NOS 
become unstable and reduces molecular oxygen to O2

·− instead of producing 
.NO. This NOS uncoupling is more often described for eNOS and is triggered by 
oxidative/nitrosative stress [42]. There is evidence that eNOS dysregulation and 
consequent endothelial dysfunction occur both in hypertension and HF [43, 44]. 
Treatment with BH4, which contributes to eNOS recoupling, prevented or attenu-
ated hypertension in spontaneously hypertensive rats [37]. It was also shown to 
reverse cardiac hypertrophy and fibrosis and to improve chamber and myocyte func-
tion in mice with heart disease induced by pressure overload [10, 45].

Xanthine Oxidase
The enzyme xanthine oxidoreductase displays two interchangeable forms, xanthine 
dehydrogenase (XDH) and xanthine oxidase (XO), that participate in the metabo-
lism of purines by catalyzing the conversion of hypoxanthine to xanthine and xan-
thine to uric acid [38, 46]. XDH uses NAD+ as the preferential electron acceptor 
while XO reduces molecular oxygen in a reaction that generates O2

·− and H2O2 [38, 
46]. The XO form predominates in oxidative stress conditions and may contribute 
to endothelial dysfunction due to its localization in the luminal surface of vascular 
endothelium [38, 46]. Although XO is capable of generating ROS, both XDH and 
XO generate uric acid which has antioxidant properties, such as the ability to scav-
enge ONOO− and HO•, to prevent oxidative inactivation of endothelium enzymes 
and to stabilize vitamin C [47, 48]. In contrast, uric acid may also exhibit prooxidant 
and proinflammatory effects. Indeed, increased uric acid levels have been associ-
ated with cardiovascular disease [49, 50]. However, it is still unclear whether these 
effects reflect direct deleterious actions of uric acid or, alternatively, oxidative dam-
age caused by XO-derived ROS.

XO appears to contribute to the pathophysiology of arterial hypertension in SHR, 
as evidenced by the significant reduction of blood pressure induced by the treatment 
with XO inhibitors [10, 51]. In humans, some studies have shown a blood pressure-
lowering effect of XO inhibition in adolescents with newly diagnosed essential 
hypertension and an improvement of cardiovascular outcomes in adults with hyper-
tension [52, 53].

In what concerns to heart diseases, XO inhibition was reported to improve left 
ventricle contractility and myocardial efficiency in an animal model of HF and to 
attenuate adverse left ventricular remodelling in experimental myocardial infarction 
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[19]. XO expression and activity was also shown to be increased in coronary arteries 
from patients with coronary artery disease, contributing to the augmented produc-
tion of O2

·− [54]. The inhibition of XO with oxypurinol also improved myocardial 
contractility in patients with ischemic cardiomyopathy [55]. However, other studies 
failed to demonstrate clinical benefits of oxypurinol treatment in unselected patients 
with moderate-to-severe HF or in high-risk HF patients with reduced left ventricular 
ejection fraction and hyperuricemia [56, 57].

Monoamine Oxidases (MAO)
MAO-A and MAO-B are flavoenzymes predominantly located at the outer mem-
brane of mitochondria, being responsible for the oxidative degradation of neu-
rotransmitters (catecholamines, serotonin) and biogenic amines in a process that 
generates H2O2, ammonia and an aldehyde intermediate. All of these products are 
potentially deleterious, especially for mitochondria. Pathological stimuli such as 
neurohormonal and/or chronic hemodynamical stress, inflammation and isch-
emia-reperfusion can increase the availability of MAO substrates, thus augment-
ing H2O2-induced mitochondrial dysfunction in cardiovascular tissues/organs and 
leading to endothelial dysfunction and HF [9, 58, 59]. In experimental models of 
hypertension (induced by angiotensin II) and inflammation (induced by lipopoly-
saccharide), the expression of both MAO isoforms increased in endothelial cells 
and MAO inhibition attenuated ROS production and restored endothelial-depen-
dent vasodilation [59]. MAO are also important sources of ROS in the heart. There 
are several important cardiac targets for MAO-derived ROS, besides mitochon-
dria. These include sphingosine kinase-1, an enzyme involved in cell survival, 
whose inhibition may contribute to cardiomyocyte apoptosis, as well as the con-
tractile proteins, actin and tropomyosin, whose oxidation correlates with ventricu-
lar dysfunction, and matrix metalloproteinases, whose activation induces 
extracellular matrix remodelling. The signalling pathways activated by MAO-
derived H2O2 depend on the availability of MAO substrates and H2O2 concentra-
tion in tissues. Lower amounts of H2O2 trigger hypertrophy, cell proliferation and 
matrix remodelling, while higher concentrations lead to mitochondrial dysfunc-
tion, apoptosis or necrosis. MAO inhibition appears to be protective in ischemia-
reperfusion injury and pressure overload-induced HF [59, 60].

23.1.4	 �Major Endogenous Antioxidant Systems

All living organisms have adapted and developed an endogenous antioxidant 
defence system, composed of enzymatic and nonenzymatic antioxidants, that is 
usually effective in neutralizing deleterious effects of ROS (Fig. 23.2). However, 
when the antioxidant systems are overwhelmed, as observed in most pathological 
conditions, oxidative stress ensues. Below we provide an overview of the major 
antioxidant systems with relevance to cardiovascular diseases.
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23.1.4.1	 �Enzymatic Antioxidants

Superoxide Dismutases
Superoxide dismutase (SOD) enzymes consist of three isoforms in mammals: the 
cytoplasmic Cu/ZnSOD (SOD1), the mitochondrial MnSOD (SOD2), and the 
extracellular Cu/ZnSOD (SOD3), all of which require catalytic metals (Cu or Mn) 
for their activity [61]. They are considered the major antioxidant defences against 
O2

·−, being responsible for its dismutation to H2O2 and molecular oxygen, which 
limits the potentially harmful effects of this radical species [61].

Catalase and Glutathione Peroxidase
H2O2 produced by the action of SODs or oxidases, such as XO, can be further 
decomposed to water and oxygen. This is achieved primarily by catalase in the per-
oxisomes and by glutathione peroxidase (GPx) enzymes in the cytosol and 

Fig. 23.2  Major enzymatic and nonenzymatic antioxidants
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mitochondria. Catalase exists as a tetramer composed of 4 identical monomers, 
each of which contains a haem group at the active site. Degradation of H2O2 is 
accomplished via the conversion between 2 conformations of catalase-ferricatalase 
and compound I. GPx are selenium-containing enzymes whose activity is depen-
dent on the amount of reduced glutathione (GSH) available [62]. Besides neutral-
izing H2O2, GPx also degrades lipid hydroperoxides to lipid alcohols. These 
reactions lead to the oxidation of GSH to oxidized glutathione (GSSG). Catalase 
and GPx are differentially required for the clearance of high-levels or low-levels of 
H2O2, respectively [63].

Other Enzymatic Defences
In addition to the antioxidant enzymatic systems mentioned above, cells also express 
other specialized enzymes with direct and/or indirect antioxidant functions. 
Glutathione reductase (GR) regenerates GSH from GSSG in the presence of 
NADPH. Glutathione-S-transferase (GST) catalyzes the conjugation of GSH with 
reactive electrophiles and detoxifies some carbonyl-, peroxide- and epoxide-con-
taining metabolites produced within the cell in oxidative stress conditions. 
Peroxiredoxins (Prx) are selenium-independent enzymes that decompose H2O2, 
organic hydroperoxides and peroxynitrite, and thioredoxin (Trx) and glutaredoxin 
(Grx) systems include various enzymes that regulate the thiol-disulphide state of 
proteins and modulate their structure and activity [10].

23.1.4.2	 �Nonenzymatic Antioxidants
Nonenzymatic antioxidants, such as GSH, ascorbic acid (vitamin C) and 
α-tocopherol (vitamin E) play a key role in protecting the cells from oxidative 
damage and are considered as the second line of defence against active radicals. 
GSH is termed the master antioxidant given its electron-donating capacity that 
renders GSH a potent antioxidant per se, besides acting as an important cofactor 
for GPx and other enzymes. Vitamins E and C are among the major dietary antioxi-
dants. Vitamin E, found in lipoproteins, cell membranes and extracellular fluids, 
terminates lipid peroxidation processes and converts O2

·− and HO• to less reactive 
forms. Vitamin C is a water-soluble antioxidant that can directly scavenge ROS 
and lipid hydroperoxides. Carotenoids, such as β-carotene, are lipid soluble anti-
oxidants that function as efficient quenchers of 1O2 but may also scavenge ROO• 
radicals. Uric acid is a highly abundant aqueous antioxidant, considered to be the 
main contributor for the antioxidant capacity in the plasma. It has the ability to 
quench HO• and ONOO− and may prevent lipid peroxidation, but may also exert 
prooxidant effects once inside the cells. Bilirubin, the end-product of haem catabo-
lism, has chainbreaking antioxidant properties. Plasma albumin, the predominant 
plasma protein, is also an antioxidant and can scavenge MPO-derived chlorinated 
reactive species and ROO• radicals [10].
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23.1.5	 �The Dual “Faces” of ROS

It has long been accepted that elevated ROS levels can cause damage to macromol-
ecules and have been implicated in a vast array of pathologies. More recently, it has 
become apparent that ROS also serve as signalling molecules to regulate biological 
and physiological processes and that dysregulated ROS signalling may contribute to 
a host of human diseases [3]. Downstream of ROS production, several signalling 
pathways are activated, including protein kinases [mitogen activated protein kinases 
(MAPKs), protein tyrosine kinases (PTKs), protein kinases B and C] and transcrip-
tion factors (NF-κB, Nrf2) [64]. Nevertheless, our understanding of the signalling 
“face” of ROS is still in its infancy, as ROS can often act upstream and/or down-
stream within a given pathway and sometimes in opposing ways (i.e. inhibitory or 
stimulatory).

23.2	 �Evidence for Redox Changes in Experimental 
and Human Hypertension

23.2.1	 �Links Between Oxidative Stress and Hypertension

Arterial hypertension, currently defined as systolic blood pressure values 
≥140 mmHg and/or diastolic blood pressure ≥90 mm Hg, is a multifactorial, com-
plex disorder, involving many organ systems and constitutes a major risk factor for 
cardiovascular disease and premature mortality throughout the world [65]. Major 
pathophysiological mechanisms implicated in the development of hypertension 
include central nervous system dysregulation and increased activity of sympathetic 
nervous system, altered renal function with increased renal sodium and water reten-
tion and increased peripheral vascular resistance (Fig. 23.3) [51, 66]. The renin-
angiotensin-aldosterone system (RAAS) also plays a central role in the regulation 
of arterial pressure by renal and extrarenal mechanisms (e.g. regulation of sodium 
homeostasis, autopotentiation of vasoconstrictor responses, vascular hypertrophy, 
regulation of sympathetic output, facilitation of sympathetic neurotransmitter 
release, promotion of oxidative stress and inflammation), being intimately involved 
in hypertension pathophysiology [67–71].

Oxidative stress has emerged as a unifying hypothesis for explaining these 
diverse mechanisms. Evidence gathered over the last two decades in both experi-
mental models and humans suggests that hypertension arises from increased pro-
duction of ROS and/or reduced antioxidant capacity in the cardiovascular, renal and 
central nervous systems [21, 42, 51].

By using animal models of genetic and drug-induced hypertension, we and oth-
ers have demonstrated increased ROS levels and prooxidant activity, altered antioxi-
dant defences and increased ROS-mediated damage, both at peripheral and central 
sites of cardiovascular regulation [72–78]. These studies have also underlined the 
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importance of the kidney in the pathogenesis of hypertension and identified the 
renal medulla as a major target for angiotensin II-induced redox dysfunction in 
hypertension [72, 73]. Similarly to what happens in animals, there is also evidence 
of redox dysfunction in human hypertensive patients, although the association is 
less consistent and results vary depending on the biological marker of oxidative 
stress being investigated. The release of O2

·− from peripheral polymorphonuclear 
leucocytes is increased in hypertensive patients in comparison with normotensive 
subjects [79]. Plasma H2O2 production is augmented in hypertensive patients and, 
among normotensive subjects, those with a family history of hypertension also 
exhibit a higher H2O2 production [80]. Increased levels of byproducts of protein, 
lipid and DNA oxidative damage, such as malondialdehyde, 8-isoprostanes, 8-oxo-
2′-deoxyguanosine, oxidized low density lipoproteins, carbonyl groups and nitroty-
rosine, have also been found in biofluids (i.e., plasma, serum and urine) and blood 
cells of hypertensive patients [81–83]. Furthermore, both enzymatic and nonenzy-
matic antioxidant defences appear to be reduced in human hypertension [81, 82, 84, 
85]. Despite the vast number of studies reporting a close association between oxida-
tive stress and hypertension, there is still an ongoing debate whether oxidative stress 
is a cause or a consequence of the disorder [86–88].

Sympathetic Nervous System
↑Sympathetic tone

Cardiac Function
↑Cardia output

Vasculature
↑peripheral vascular resistance

Renal Effects
RAAS activation

↑Sodium retention
↑Water retention

Fig. 23.3  Organs and mechanisms involved in the development and maintenance of arterial 
hypertension
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23.2.2	 �Oxidative Stress as Either a Cause or a Consequence 
of Hypertension

A large body of literature supports the hypothesis that oxidative stress is a major 
driver of arterial hypertension. In rats, the induction of oxidative stress through the 
administration of a common environmental heavy metal pollutant (lead), a glutathi-
one synthesis inhibitor (buthionine sulfoximine-BSO) or a SOD inhibitor (sodium 
diethyldithiocarbamate-DETC), as well as the intrarenal or intrathecal infusion of 
H2O2, lead to increases in blood pressure [72, 89, 90]. The genetic manipulation of 
enzymes involved in ROS production or metabolism also modifies blood pressure in 
mice [91–93]. In addition, the exposure of cells and tissues to exogenous oxidants 
recapitulates molecular events implicated in the pathogenesis of hypertension [72, 
94]. Also of importance are the facts that experimental hypertension can be pre-
vented or attenuated by the administration of some antioxidants or inhibitors of 
ROS production [95–98] and that redox dysregulation, both at systemic and tissue 
level, precedes the rise in blood pressure [99, 100]. Collectively, these observations 
in preclinical models of hypertension suggest that oxidative stress plays a causal 
role in the development of hypertension.

Nevertheless, other authors have failed to demonstrate a direct involvement of 
oxidative stress in the pathogenesis of hypertension since the administration of anti-
oxidants or inhibitors of ROS generation did not prevent or attenuate experimental 
hypertension [10]. Indeed, if oxidative stress is causally related to human hyperten-
sion, then antioxidants should be able to reduce blood pressure and oxidative dam-
age. However, the majority of clinical trials did not find any blood pressure-lowering 
effects of antioxidants. One of the largest studies observed no improvement in blood 
pressure after a 5-year treatment with a combination of vitamin C, vitamin E, and 
β-carotene versus placebo in subjects thought to be at high risk of cardiovascular 
disease [101]. Likewise, a recent study found no beneficial effects against major 
cardiovascular events, including hypertension, after more than a decade of treat-
ment with a multivitamin supplement versus placebo in a population of US male 
physicians [102]. Furthermore, a meta-analysis failed to reveal a clear benefit after 
antioxidant supplementation in cardiovascular mortality [103].

There is also evidence that lowering blood pressure per se leads to a reduction in 
oxidative stress and improvement in vascular function [10, 88]. Several antihyper-
tensive drugs with different mechanisms of action, such as angiotensin-converting 
enzyme inhibitors, angiotensin II receptor antagonists, beta-blockers and calcium 
channel blockers, have been shown to attenuate oxidative stress markers in experi-
mental and human hypertension [104, 105]. In light of these observations, some 
authors suggest that oxidative stress may be rather a consequence than a cause of 
hypertension. However, some of these antihypertensive agents have direct antioxi-
dant properties and others block the RAAS, whose downstream effects are known 
to be mediated by ROS [10].
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23.2.3	 �Pharmacological Interventions Aimed to Reduce Blood 
Pressure with Antioxidant Therapies

The rationale for reducing oxidative stress as a therapeutic strategy against hyper-
tension stems from population-based observational studies showing an inverse cor-
relation between plasma antioxidant concentrations, obtained by dietary intake, 
with blood pressure and cardiovascular risk factors [106]. However, in contrast with 
preclinical data, no significant improvement in blood pressure has been observed in 
the vast majority of studies after treatment with single or combination antioxidant 
therapy in subjects thought to be at high risk of cardiovascular disease (as discussed 
above in Sect. 23.2.2). A number of potential explanations for the failure of antioxi-
dant supplementation in the chronic suppression of cardiovascular disease in 
humans have been put forward, including errors in trial design, choice of antioxi-
dants, patient cohorts included in trials, the pathophysiological complexity of ROS/
RNS signalling in humans with comorbidities, among others [107]. In what con-
cerns the antioxidants, it is possible that the dose administered and duration of clini-
cal trials were insufficient or agents examined were ineffective and nonspecific. 
Most antioxidant therapies that have been tested were not chosen because they were 
proved to be the best antioxidants, but rather because of their easy availability. It is 
also conceivable that the antioxidants administered failed to target the source of free 
radicals, particularly if ROS are generated in intracellular organelles and compart-
ments, due to relatively poor uptake of antioxidants by target organs or the interfer-
ence with other substances that, in some cases, reduce the antihypertensive effects. 
It is critical to remember that the lack of benefits seen in clinical trials to date does 
not rule out the essential role of oxidative stress in hypertension and other cardio-
vascular disorders. Rather, these results highlight the importance of evaluating opti-
mal antioxidant therapies, the ideal cohort of patients to study, and the appropriate 
trial duration for the future improvement of antioxidant therapy.

23.3	 �Oxidative Stress in Heart Failure

23.3.1	 �The Heart, Metabolic Demand and ROS Production

The mammalian heart is the organ with the highest metabolic demand, consuming a 
large amount of cellular ATP to maintain the contraction-relaxation cycle. Under 
physiological conditions, this tremendous energy requirement is fulfilled by the 
high mitochondrial content of cardiomyocytes [19, 108–110]. Mitochondria ensure 
the production of more ATP through oxidative phosphorylation, whereby the mito-
chondrial ETC generates a proton gradient that drives ATP synthesis by ATP syn-
thase. Since this process is sustained by O2, which functions as the final electron 
acceptor in the ETC, it is not surprising that the heart needs a continuous, as well as 
adjustable, high supply of O2 to maintain its function and viability [19, 108, 109]. 
Normally, most of the O2 consumed in oxidative phosphorylation is reduced to 
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water. However, electron leakage from the ETC also occurs, thus resulting in the 
formation of a small amount of ROS, namely O2

·− and H2O2, which can be detoxi-
fied by endogenous antioxidant enzymes [19, 108–110]. There are several other 
ROS-producing enzymes in the heart, namely NOXs, XO, uncoupled NOS, MAOs 
and MPO, that are present in several cell types such as cardiomyocytes, endothelial 
cells, vascular smooth muscle cells, fibroblasts, neutrophils, monocytes and macro-
phages [9, 19, 109–111].

Although large amounts of ROS are markedly detrimental, there is evidence that 
low-to-moderate ROS concentrations in the heart are involved in physiological pro-
cesses and beneficial adaptive signalling in response to acute changes in workload 
or brief ischemic episodes [108, 110, 112]. For example, ROS contribute to cardio-
myogenesis of embryonic stem cells and proliferation of neonatal cardiac cells 
[113, 114]. It has also been reported that H2O2 derived from dismutation of O2

·− gen-
erated by myocardial ETC is involved in coronary dilation, thus linking myocardial 
oxygen consumption to coronary blood flow [115, 116]. In addition, an increase in 
mitochondrial-derived ROS appears to mediate the acute inotropic response of car-
diomyocytes to β-adrenergic receptor stimulation, being part of the homeostatic 
physiological signalling in the heart [117]. Importantly, mitochondrial and NOX-
derived ROS seem to participate in the protective adaptive responses to moderate 
hypoxia, through the redox regulation of cardiomyocyte hypoxia-inducible factor 
activation, and in myocardial ischemic preconditioning, a protective phenomenon 
triggered by transient ischemic episodes and responsible for enhanced heart resis-
tance to prolonged ischemia-reperfusion scenarios [108, 112, 118, 119].

23.3.2	 �Role of Oxidative Stress in the Pathophysiology of Heart 
Failure

HF is a complex clinical syndrome derived from structural and/or functional abnor-
malities in the heart, leading to impaired ventricular filling or ejection [9, 120]. 
Cardiac dysfunction triggers compensatory haemodynamic and neurohormonal 
responses attempting to maintain proper tissue perfusion, but these ultimately 
become maladaptive and deleterious [121]. Typical symptoms of this syndrome 
include shortness of breath, ankle swelling, fatigue, tiredness and reduced tolerance 
to exercise [120]. HF is usually a chronic, progressive and terminal illness, associ-
ated to poor quality of life for the patient due to the increase in symptoms frequency, 
severity and distress along disease course. Its prevalence in developed countries 
ranges from 1–2% in adults but can increase to values equal or higher than 10% in 
people with more than 70  years old, posing an enormous economic burden on 
healthcare systems. Of note, HF is the most frequent diagnosis responsible for hos-
pitalization among patients aged 65 years or older [122, 123]. HF aetiologies include 
those related with diseased myocardium (e.g. ischemic heart disease; toxic damage 
due to alcoholism, drugs of abuse, medications such as cytostatics, heavy metals or 
radiation; immune-mediated and inflammatory damage caused by infections or 
auto-immune conditions; metabolic derangements such as thyroid diseases and 
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pheocromocytoma; infiltration related with malignancy or other diseases such as 
amyloidosis; genetic disorders), with abnormal loading conditions (e.g. arterial 
hypertension; valve and myocardial structural defects; pericardial and endomyocar-
dial pathologies; high output states such as severe anaemia; volume overload caused 
by renal failure) or with arrhythmias [120].

Despite therapeutic advances, chronic HF often decompensates, leading to the 
rapid aggravation of symptoms and/or signs of HF and thus requiring hospitaliza-
tion [120, 124]. The term acute HF frequently refers to this state of acute decompen-
sation of chronic HF but may also represent new-onset HF (“de novo” HF) resulting, 
for example, from acute myocardial dysfunction due to ischemic, inflammatory or 
toxic insults, acute valve insufficiency or cardiac tamponade (a condition character-
ized by heart compression and dysfunction as a consequence of pericardial accumu-
lation of fluid, pus, blood, clots or gas due to blunt or penetrating trauma, accidental 
cardiac perforation following catheterization, infection, cancer and aortic aneurysm 
rupture) [120, 125].

As mentioned previously, low-to-moderate amounts of ROS contribute to physi-
ological and beneficial adaptive responses in the heart. However, when prooxidant 
and antioxidant systems are imbalanced, leading to a prevailing prooxidant status, 
macromolecular damage and harmful signalling may occur and contribute to the 
genesis and progression of HF [9, 19, 112]. In the heart, there are many processes 
or targets that can be adversely affected by ROS (Fig. 23.4), namely cardiac con-
tractility, myocardial remodelling, cardiomyocyte apoptosis, mitochondria and 

Fig. 23.4  Adverse effects of ROS in the heart. ADMA asymmetric dimethylarginine, eNOS endo-
thelial nitric oxide synthase, DNA deoxyribonucleic acid, HDL high-density lipoprotein, MMPs 
matrix metalloproteinases, oxLDL oxidized low-density lipoprotein, ROS reactive oxygen species
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endothelium [9, 19, 109, 112, 126]. ROS also contribute to ischemic cardiomyopa-
thy by promoting the formation of oxidized low-density lipoprotein (oxLDL), 
which plays a central role in the pathogenesis of atherosclerosis [9, 109]. 
Furthermore, the redox sensitive alteration of apolipoprotein A-I, the major protein 
constituent in high-density lipoproteins (HDL), inhibits the efflux of cholesterol, 
contributing to atherosclerotic lesions formation and to a prooxidant and proinflam-
matory environment [127]. The activation of matrix metalloproteinases by ROS is 
also involved in coronary atheromatous plaque instability, rupture and subsequent 
coronary artery thrombosis [9, 109]. Of note, after a significant myocardial isch-
emic insult, the restoration of oxygen supply during the reperfusion phase is respon-
sible for the generation of high amounts of ROS, which contribute to extensive 
damage and tissue necrosis in the heart [9, 109, 127].

Inflammation plays a central role in the development and progression of chronic 
HF, regardless of aetiologies [128, 129]. It is also considered an important precipi-
tator and prognostic factor in acute HF [130]. Oxidative stress and inflammation 
are closely interconnected, contributing to the pathophysiology of HF [9, 109, 
131]. Several transcription factors that regulate the expression of proinflammatory 
cytokines are activated under oxidative stress conditions [9, 109, 131]. In turn, 
proinflammatory cytokines induce the generation of ROS, thus creating a potential 
vicious cycle of oxidation and inflammation [9, 131, 132]. Moreover, the produc-
tion of large amounts of ROS is a feature of activated inflammatory cells, and 
MPO, a major effector enzyme of neutrophils that is released into the extracellular 
space during leukocyte activation, also functions as a link between oxidative stress 
and inflammation [9, 34, 36]. This enzyme uses H2O2 as a substrate to produce 
HOCl, which is a potent prooxidant and proinflammatory molecule. Importantly, 
MPO has the ability to bind and infiltrate in the vascular wall and to utilize H2O2 
derived not only from leukocyte oxidative burst but also from vascular NOX, thus 
amplifying vascular injury in conditions associated with higher than normal ROS 
production [9, 36, 133].

Our recent studies have demonstrated the interplay between oxidative stress and 
inflammatory processes in human HF. In a study involving patients with mild-to-
moderate and severe chronic HF, we observed that severe patients had increased 
values of systemic MPO activity and lower concentrations of lipoxin A4 (LXA4), a 
specialized proresolving lipid mediator (SPM) that stimulates the resolution of 
inflammation and tissue regeneration [121, 134]. Furthermore, we found an inverse 
correlation between LXA4 with proinflammatory/prooxidant markers, such as 
C-reactive protein (CRP), uric acid and MPO activity, and with markers of heart 
dysfunction and/or injury, like B-type natriuretic peptide (BNP), troponin I and 
myoglobin [134]. In addition, in another study evaluating patients with acute HF, 
cardiogenic shock (the most severe form of HF) and healthy controls, we showed 
that patients with cardiogenic shock exhibited the highest values of endocan, a 
marker of endothelial dysfunction, which was significantly associated with inflam-
matory status [135, 136]. Among the controls and patients evaluated, serum nitroty-
rosine, a marker of oxidative/nitrosative stress, was significantly and positively 
correlated with CRP and high-sensitivity-troponin I, which are markers of 
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inflammation and myocardial damage, respectively [135]. We also observed that 
resolvin E1 (RvE1), another mediator of inflammation resolution, increased in line 
with acute HF severity and was significantly associated with inflammatory/oxidant 
status and endothelial dysfunction [136].

Noteworthy, LXs and Rvs, besides possessing proresolving and anti-inflamma-
tory properties, have also been shown to exert several protective effects on redox 
status that may be particularly relevant in the context of HF.  These include the 
blockade of NOX enzymes in endothelial cells and macrophages, inhibition of ROS 
generation by leukocytes and vascular smooth muscle cells, blockade of angiotensin 
II-, thrombin- or tumor necrosis factor-α (TNF-α)-induced ROS production in endo-
thelial cells, increased SOD activity and reduced malondialdehyde (MDA) content 
in the heart, induction of haem oxygenase-1 in endothelial cells and cardiomyocytes 
and upregulation of nuclear factor erythroid-2 related factor 2 (Nrf2) in cardiomyo-
cytes [121]. Thus, strategies targeting inflammation or promoting its resolution will 
likely attenuate oxidative stress, and vice-versa, in patients with HF.

23.3.3	 �Biomarkers of Oxidative Stress in Human Heart Failure

Human HF was recently divided into 3 categories according to left ventricular ejec-
tion fraction (LVEF): reduced (HFrEF), preserved (HFpEF) or mid-range (HFmrEF) 
[120]. This definition only comprises the clinical manifestation of an underlying 
structural and/or functional cardiac abnormality resulting from a myriad of insults, 
of which the ischemic is the most prevalent in HFrEF. Thus, in clinical trials it is 
difficult to understand oxidative stress as a cause or consequence of the disease 
because HF prevails in older ages and it remains underdiagnosed and untreated 
[137, 138]. It is well established that ageing is associated with increased ROS accu-
mulation, lipid peroxidation and mitophagy as well as atherosclerosis, diabetes and 
obesity, major risk factors for ischemic heart disease and HF. Despite the associa-
tion between oxidative stress with clinical outcome in patients with coronary artery 
disease, no redox biomarker is currently in routine clinical use, in part because they 
are not specific for individual disease processes [139, 140]. The question remains 
whether plasma oxidation products reflect systemic or vascular redox state or other 
biological processes, as well as what is their value for independent stratification and 
therapeutic management, critical issues to consider them as “biomarkers”. 
Nevertheless, and surmounting the difficulties associated with the short half-life, 
limited diffusion and requirement of invasive biopsies to quantify ROS in human 
tissues, indirect indexes of oxidative stress are gaining increasing acceptance among 
established biomarkers of HF [141]. These biomarkers can be grouped into three 
main categories, namely prooxidant enzymes, products of oxidized macromolecules 
and antioxidant defences.

23.3.3.1	 �Prooxidant Enzymes
Myeloperoxidase contributes to endothelial dysfunction and mediates dysregula-
tion of vascular tone [10]. The plasma concentration of MPO is elevated in HF 
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patients compared to controls and its systemic activity is also increased in severe 
chronic HF compared to mild to moderate HF [134, 142]. Treatment with the ino-
dilator levosimendan seems to reduce the concentration of plasma MPO by 
decreasing its release from neutrophils in patients with acute decompensation of 
chronic HF [143]. MPO was selected among others as an incremental prognostic 
biomarker in a multimarker risk strategy of stratification for cardiovascular death 
or HF in patients with acute myocardial infarction [144] and it also seems to dif-
ferentiate forms of acute HF with cardiorenal syndrome [145]. These results, along 
with its predictive value for cardiovascular morbidity and mortality observed in 
other relatively large prospective studies, its therapeutic implications and the fea-
sibility of its commercial assays, make MPO one of the most promising redox 
biomarkers for clinical application [146, 147].

Although NOXs are important cardiovascular ROS sources, available data about 
the involvement of NOXs in human HF is scarce. One study has described increased 
NOX2 expression and raised NOX activity in myocardial tissue from human failing 
hearts compared with non-failing controls, but information is lacking regarding 
NOX2 association with prognosis or treatment, with the exception of a study report-
ing a downregulatory effect of mediterranean diet on soluble NOX2-derived peptide 
values in patients with atrial fibrillation [148]. Nevertheless, compelling evidence 
suggests that redox protective effects of RAAS inhibitors, which are part of HF 
pharmacological treatment, are due to the prevention of vascular and phagocytic 
NOX activation [24, 120, 137].

The .NO-generating enzyme eNOS has some limitations as a redox biomarker in 
humans, not only for its localization (in the vessel wall and cardiomyocytes) but 
also because the complex regulation of the biosynthesis of its cofactor, BH4, makes 
hard to estimate the ratio of reduced to oxidized forms (BH4/BH2) and consequently 
to calculate eNOS uncoupling, which is responsible for generating O2

·− instead of 
NO.  The administration of BH4 does not improve vascular oxidative stress in 
patients with coronary disease [149] but indirect strategies like folates [150], statins 
[9] or polyphenols [151] could do so, thus reinforcing the interest of this pathway 
for future research in HF. Of note, in high-risk diabetic patients, the cardioprotec-
tion and reduction of risk of re-infarction and all-cause mortality afforded by met-
formin, which is no longer contra-indicated in HF, seems to be related, at least in 
part, with increased .NO bioavailability [152]. Also, the superiority of ticagrelor vs. 
clopidogrel in reducing cardiovascular events can be explained by the higher .NO 
concentrations triggered by ticagrelor, compared to clopidogrel, through an adenos-
ine-mediated pathway that activates eNOS [153, 154].

23.3.3.2	 �Products of Oxidized Macromolecules
Lipid peroxidation results from ROS attack to polyunsaturated fatty acids (PUFA) 
in cell membranes. End-products of lipid peroxidation, including isoprostanes and 
MDA, affect membrane fluidity, inactivate receptors and enzymes attached to it, and 
even threaten cell viability. This lipid susceptibility to ROS has attracted consider-
able attention to the evaluation of lipid peroxides as biomarkers of oxidative stress.
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Isoprostanes are produced by ROS-induced peroxidation of arachidonic acid and 
then released by phospholipases [155]. The most stable and thus most commonly 
quantified are F2-isoprostanes, which can be assessed in tissues and biological flu-
ids. In HF, isoprostane levels in plasma, urine and pericardial fluid correlate with 
disease severity and ventricular dilatation [156, 157]. Recent works are hypothesiz-
ing that they could be used in a precocious strategy to identify populations with 
sub-clinical increased cardiovascular risk. In addition, they could also be used to 
monitor the protective effect of diets (e.g. low-sodium diet), as well as dietary ade-
quacy, in patients with HF [158, 159].

MDA, another product of lipid peroxidation, is routinely evaluated by the thio-
barbituric acid-reactive substances (TBARS) assay. There is evidence of increased 
systemic and intraplatelet production of TBARS in patients with acute or chronic 
HF [160]. Furthermore, a reduction in TBARS levels was observed in HF patients 
after treatment with a beta-blocker, short-term inotropic support and vitamin C, but 
not with the addition of an angiotensin II receptor antagonist to angiotensin convert-
ing enzyme inhibitor therapy [161, 162]. MDA appears to contribute to the forma-
tion of OxLDL [163] which have been proposed to be an useful predictor of 
mortality in patients with CHF [164]. MDA or MDA-modified LDL are being eval-
uated in device studies in advanced HF to monitor oxidative stress in patients under 
device therapy (implantable cardioverter defibrillator, continuous-flow left ventricu-
lar assist device) [165, 166].

Oxidative posttranslational modifications of cellular proteins by means of tyro-
sine nitration, protein carbonylation, and S-glutathionylation, can accurately reflect 
oxidative stress in HF patients. One of the most emblematic examples of protein 
oxidation in HF is myocardial sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 
inactivation by nitration, which may contribute to reduced contractility and progres-
sion of HF [167]. Furthermore, ceruloplasmin tyrosine nitration with consequent 
antioxidant reduced activity is associated with reduced survival in patients with HF 
[168]. Protein nitration by peroxynitrite and haem peroxidase can result in gain of 
function or inactivation of different proteins in plasma, vessel wall and myocardium 
that link nitrosative stress to cardiovascular disease and, for that reason, nitrotyro-
sine is also emerging as a good candidate for a marker of cardiovascular risk [169].

Protein carbonyls can result from oxidation of amino acid side chains, reaction 
with lipid peroxidation products and glycation/glycoxidation of Lys amino groups. 
They are very stable and represent a good mirror of protein oxidation Increased 
carbonyls were found in diaphragm biopsies from patients with end-stage HF, prob-
ably resulting from increased Nox2-derived ROS and imbalanced antioxidant 
enzymes [170]. The inodilator levosimendan prevented the increase in MDA, pro-
tein carbonyls and nitrotyrosine in hospitalized patients with worsening HF. These 
results point to a cardioprotective effect of this drug and thus its wider use in 
advanced CHF patients has been hypothesized [171]. Additionally, there is evidence 
that a polymorphism in angiotensin II type 1 receptor can predict the formation of 
carbonyls in HF patients, suggesting that angiotensin signalling contributes to oxi-
dative stress in HF [172].

23  Role of Oxidative Stress in the Pathophysiology of Arterial Hypertension…



528

8-hydroxy-2′-deoxyguanosine (8-OHdG) results from oxidative DNA damage 
and its levels can be quantified in urine. In fact, 8-OHdG was demonstrated to be 
higher with increasing HF severity and correlated with left ventricular ejection frac-
tion in patients with chronic HF [173]. It also seems to be a tool to evaluate beta-
blocker responsiveness in chronic HF patients or even to diagnose subclinical left 
ventricular diastolic dysfunction in hypertensive patients [174, 175], but more data 
is needed and/or combination with other biomarkers in a multipanel strategy.

23.3.3.3	 �Antioxidant Defences
Antioxidant enzymes (e.g. catalase, GPx, SOD) can be measured in blood samples 
but their values are hard to interpret and these studies have low reproducibility or 
therapeutic/prognostic implications [176–178] On the other hand, there has been an 
enthusiastic exploration of non-enzymatic antioxidants, such as biopyrrins (oxida-
tive metabolites of bilirubin) and albumin since urinary levels of biopyrrins have 
been shown to be associated with HF severity [179] and oxidative stress has been 
proposed as a cause for the development of hypoalbuminemia in ischemic HF [180]. 
Nevertheless, the disappointing results of studies evaluating the effects of antioxi-
dant administration in HF patients, particularly the failure of vitamins C and E to 
improve prognosis and the deleterious effects observed in HOPE and HOPE TOO 
trials, restrained the enthusiasm in this area [181–183].

23.3.3.4	 �Other Oxidative Stress Markers
Uric acid is an end-product of purine metabolism in humans derived from XO that 
catalyses its conversion from hypoxanthine. Although it is one of the most abundant 
aqueous antioxidants in plasma, it can also exert prooxidant effects [10]. Uric acid 
is frequently accepted as a biomarker of HF [141] but remains a controversial issue 
because causality in its relationship with cardiovascular disease remains uncertain. 
Although affected by renal function and diuretic use, there is enough evidence dem-
onstrating that it can work as an independent and simple, albeit nonspecific, predic-
tor of excessive oxidative stress and of adverse prognosis in HF [184].

23.4	 �Concluding Remarks

A vast body of literature accumulated over the past decades has firmly implicated 
oxidative stress in the pathogenesis and progression of cardiovascular diseases, 
including hypertension and HF, as well as associated risk factors and comorbidities. 
Key molecular events in hypertension and HF, such as oxidative modification of 
lipids and proteins, endothelial cell activation and inflammation, are facilitated by 
oxidative stress. More recently, the role of redox signalling and specific molecular 
targets have also been appreciated. Despite the significant progress in understanding 
the pathophysiology of these conditions and the promising results in pre-clinical 
animal models, clinical trials of antioxidant approaches to prevent cardiovascular 
mortality and morbidity have been, so far, disappointing. Several hypotheses have 
been put forward, including the failure to appreciate the complexity of the effects of 
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ROS or inappropriate antioxidant selection or dosage, which warrants future 
research on new compounds with improved properties. Finally, more human data is 
required to provide clinical relevance and determine the potential for clinical trans-
lation. Nevertheless, several studies indicate that oxidative stress biomarkers may 
be useful for risk stratification and to monitor the protective effects of pharmaco-
logical treatment, diets or devices in human HF.
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24Pulmonary Hypertension and the Right 
Ventricle: The Roles of Mitochondrial 
Reactive Oxygen Species in Causing 
Further Right Ventricular Mitochondrial 
Changes

Gerald J. Maarman

24.1	 �Pulmonary Hypertension

Pulmonary hypertension (PH) is defined as mean pulmonary arterial pressure 
≥ 25 mm Hg [1], and associates with diseases such as congenital heart disease and 
chronic obstructive pulmonary disease [2]. The global prevalence of PH is largely 
unknown, mostly due to the broad PH classification and the lack of national regis-
tries in countries such as those on the African continent [3, 4]. Irrespective, a recent 
report [3] suggests the prevalence of PH as approximately 1% of the global popula-
tion and up to 10% in older patients. The most commonly reported causes of PH 
includes left -sided heart and lung diseases, and 80% of these patients are resident 
in developing countries [3]. In these countries, PH also associates with HIV, rheu-
matic heart disease, schistosomiasis and congenital heart disease in younger patients 
[3]. Considering the high burden of HIV and rheumatic heart disease in countries 
like South Africa [5], it is highly likely that PH is not as rare as once believed [6, 7]. 
In addition, the lack of PH registries [8] suggests that the prevalence of PH may 
currently be underestimated. It is nonetheless the consensus that PH is a global 
health concern that requires considerable research and intervention [3].

The underlying mechanisms of PH are not well understood, but three major 
molecular pathways have been shown to contribute to the pathogenesis of PH [9]. 
These pathways include endothelin mediated proliferation, and prostacyclin and 
nitric oxide pathways of vascular modulation [9]. In brief, these pathways cause 
vasoconstriction of the pulmonary arterioles and excessive proliferation of 
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pulmonary arterial smooth muscle cells [9]. The pulmonary vasculature undergoes 
intimal thickening and concentric hypertrophy, and perivascular fibrosis of distal 
pulmonary arterioles that leads to the generation of plexogenic lesions in severe PH 
[9]. All these pulmonary vascular changes cause obliteration of the pulmonary arter-
ies with subsequent elevation of mean pulmonary artery pressure [9].

24.2	 �The Right Ventricle in PH

Due to the anatomical relationship between the pulmonary circulatory system and 
the heart, elevated pressures caused by PH directly affects the right ventricle (RV) 
[10]. Normally, the RV has an anatomical design that is reflective of the relatively 
low pressure of the pulmonary circulation [11, 12], as opposed to the high pressure 
of systemic circulation. Thus, as opposed to the ellipsoidal shape of the left ventricle 
[13], the RV is smaller in diameter, has a thin wall and crescent shape [2, 14]. RV 
output is significantly lower than left ventricular output and the timing and pattern of 
ejection differ significantly from that of the left ventricle [12]. Pressure in the pulmo-
nary artery is low during diastole and the hemodynamic effects of alterations in RV 
compliance are different for the RV compared to the left ventricle. Subsequently, the 
hydraulic impedance is lower and compliance higher [12]. Similarly to the LV [13], 
the RV is sensitive to fluctuations in ventricular wall stress secondary to increased 
pressure or volume overload [10]. As previously described [2], PH elevates pulmo-
nary vascular resistance and pulmonary vascular compliance. Consequently, the RV 
afterload becomes elevated, RV dilation occurs [2], and the RV transitions from 
adaptive (hypertrophy) to maladaptive (dilation) ventricular remodelling [13].

24.3	 �RV Remodelling Underlined by Mitochondrial ROS 
and Oxidative Stress

The aforementioned RV changes associate with a number of molecular processes 
including altered bioenergetics, neuro-hormonal changes, alterations in ion chan-
nels and contractile proteins and increased production of reactive oxygen species 
(ROS) [2]. Biological sources of ROS during PH includes the nicotinamide adenine 
dinucleotide phosphate oxidase (NOX), myeloperoxidase, xanthine oxidase, lipoxy-
genase, cyclooxygenase, uncoupled endothelial nitric oxide, cytochrome-P450 and 
cardiac mitochondria [15, 16]. Considering the abundance of mitochondria in the 
human body [17], they are considered major biological sources of ROS, especially 
during PH and RV remodelling [18, 19] (Fig. 24.1).

Mitochondria are known as the powerhouses of the heart and they employ meta-
bolic pathways to generate energy for the maintenance of cardiac processes [20]. 
Energy production occurs via the electron transfer system that comprises a series of 
complexes (one to four) [21], of which complex-1 and 3 are considered mitochon-
drial sites for ROS production [22]. Electron transfer from complex-1 to complex-3 
results in the production of the highly reactive superoxide anion on the matrix side 
of the mitochondrial membrane [23] (Fig. 24.2).
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Superoxide has three fates. First, it can cross the mitochondrial membrane into 
the cytosol where it reacts with nitrogen to form toxic peroxynitrite [23]. Second, 
superoxide can undergo conversion to hydrogen peroxide, a reaction which is cata-
lysed by manganese-dependent superoxide dismutase [23]. Third, zinc/copper- 
dependent superoxide dismutase catalyses the conversion of superoxide to hydrogen 
peroxide or hydroxyl radical [23]. The hydroxyl radical is highly active and esti-
mated to last milliseconds in the cellular space, whereas hydrogen peroxide is fur-
ther converted to water as a by-product of reactions catalysed by catalase [23] or 
glutathione peroxidase [24]. It should also be noted that xanthine oxidase could be 

Biological sources of ROS
• Mitochondrial ETS
• Nox-2 and 4
• Uncoupled eNOS
• Myelo peroxidases
• Xanthine oxidases
• Lipo-oxygenases
• Cyclo-oxygenases
• Cytochrom-P450
• Metal reac�ons
• Heme proteins

Fig. 24.1  A representation of biological sources of ROS during PH, including mitochondrial elec-
tron transfer system (ETS), nicotinamide adenine dinucleotide phosphate oxidase (NOX), uncou-
pled endothelial nitric oxide (eNOS), myeloperoxidase, xanthine oxidase, lipoxygenase, 
cyclooxygenase, cytochrome-P450, metal reactions and heme-proteins
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Fig. 24.2  This is a depiction of how the mitochondria uses multiple mechanisms to generate ROS
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present in mitochondrial spaces and thus contribute to mitochondrial ROS produc-
tion [25, 26]. Furthermore, there is crosstalk between the mitochondria and NOX-1 
to 5, and upon translocation of NOX to the mitochondrial matrix, it generates ROS 
[27]. Therefore, mitochondria can use multiple mechanisms [28] in order to gener-
ate ROS [29, 30] within the RV under pathologic conditions caused by PH 
(Fig. 24.2).

In PH, it is believed that mitochondrial ROS can also be generated in the pulmo-
nary vasculature by these aforementioned mitochondrial processes [31, 32]. In 
hypoxia-induced PH, lung expression and activity of NOX-2 and 4 is increased and 
exacerbates mitochondrial ROS production [33]. These ROS can be released into 
systemic circulation where it causes systemic oxidative stress in blood plasma. In 
line with this, our group [34] and others [35] have demonstrated that in PH, blood 
plasma display elevated oxidative stress [34]. These findings are in support of 
Iridova et  al. (2002) who demonstrated that PH associates with elevated plasma 
malonic dialdehyde, a proxy for oxidative stress [36]. Subsequent reports confirmed 
the presence of excessive oxidative stress in the plasma or systemic circulation of 
patients with PH [37].

It is also likely that in PH, (1) excess ROS are released into the systemic circula-
tion and reaches the RV. (2) Considering that the RV has its own mitochondria, ROS 
can also be produced in the RV, in response to PH-induced pressure/volume over-
load [38, 39]. Akin this, it was shown that elevated RV afterload induced by PH, 
directly stimulates ROS production in the RV [15, 16]. Moreover, multiple studies 
have shown that PH increases oxidative stress in the RV [40–42]. In particular, 
Redout et al. (2007) have demonstrated that RV samples from PH rats, displayed 
increased oxidative stress and expression of the catalytic subunit gp91 (phox) of 
NOX as well as its activator Rac1 [42]. Another group induced pressure overload in 
the RV by means of pulmonary artery banding, and were able to show that hypertro-
phied RV contains excessive ROS, and NOX-1, 2 and 4 [43]. In summary, these 
findings strongly support the argument that PH elevates RV afterload and accord-
ingly increase RV mitochondrial ROS production beyond basal levels.

Increased RV mitochondrial ROS production associates with impaired mito-
chondrial antioxidant defence. Naturally, mitochondria are equipped with copper/
zinc and manganese dependent superoxide dismutase, glutathione peroxidase and 
catalase [44]. Accumulating evidence suggests that PH correlates with reduced or 
impaired activities of these mitochondrial antioxidant enzymes [32, 36, 40]. A pre-
vious study conducted in our group also demonstrated that apart from increased 
oxidative stress, PH is associated with impaired activities of these mitochondrial 
antioxidant enzymes [34]. Therefore, an important point to raise is that PH exces-
sively increases RV mitochondrial ROS production that impairs RV mitochondrial 
antioxidant enzyme activity. This imbalance between RV mitochondrial ROS pro-
duction and adequate antioxidant defence contributes to excessive RV oxidative 
stress in PH.

RV mitochondrial ROS have also been implicated as inducers of ventricular 
fibrosis [45] that contribute to RV remodelling [46] in PH [47–50]. First, mitochon-
drial ROS production can stimulate resident RV fibroblasts and upregulate 
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transforming growth factor beta-1 mediated pro-fibrotic responses [51]. This stimu-
lates the synthesis of matrix proteins, extracellular matrix and collagen deposition 
that eventually results in RV fibrosis [51]. Second, RV-mitochondrial ROS stimu-
lates RV fibrosis through the ROS-sensitive transcription factors nuclear factor 
kappa-B and/or activator protein-1 [51]. These can increase the expression of col-
lagen, fibronectin and osteopontin, enhance metallopeptidase inhibitor-1 and 2 
activity and decrease matrix metallopeptidase-1 activity [51]. This results in less 
collagen degradation that favours collagen synthesis culminating in RV fibrosis. 
Therefore, RV mitochondrial ROS production not only augments RV fibrosis but 
also simulates remodelling of the extracellular matrix. These RV mitochondrial 
ROS therefore, contributes to pathologic RV remodelling in PH.

24.3.1	 �Effects of Mitochondrial ROS on RV Mitochondrial Gene 
Expression & Dynamics

The aforementioned changes that RV mitochondrial ROS induce, are further under-
pinned by changes in mitochondrial gene expression [52, 53]. In fact, in various 
models of PH, RV mitochondrial ROS production correlates with downregulation of 
crucial genes encoding proteins, which are important for proper RV function [54]. 
Enache et al. (2013) induced PH with monocrotaline and studied RV mitochondrial 
changes 4 weeks after the monocrotaline injection [55]. At week two, the RV did not 
display any changes in the expression of mitochondrial genes sirtuin-1, peroxisome 
proliferator-activated receptor gamma coactivator-1 alpha or citrate synthase [55]. 
However, the expression of all these genes was reduced after 4 weeks of PH. Sirtuin-1 
is known to deacetylate peroxisome proliferator-activated receptor gamma coactiva-
tor-1 alpha and regulate its activity [56]. These data [55] suggest that prolonged PH 
reduces sirtuin-1 that in turn reduces peroxisome proliferator-activated receptor 
gamma coactivator-1 alpha activity. Peroxisome proliferator-activated receptor 
gamma coactivator-1 alpha enables mitochondrial biogenesis [57]. Therefore, there 
is a link between excessive RV mitochondrial ROS production in PH and downregu-
lated RV mitochondrial gene expression [58].

Another important component to the mitochondrial changes observed in RV, is 
mitochondrial fission and fusion, processes responsible for mitochondrial dynamics 
[59, 60]. This is relevant as increased RV mitochondrial ROS production is linked 
with changes in mitochondrial dynamics [59, 61]. Alterations in mitochondrial 
shape can influence RV function, and mitochondrial fission and fusion embody 
these shape changes (described as mitochondrial dynamics) [59, 60]. Mitochondrial 
dynamics are generally controlled by mitochondrial fusion and fission proteins 
(protein optic atrophy-1, mitofusin-1 and 2), and essential for RV mitochondria 
function [59, 60]. To date, no studies have investigated the role of mitochondrial 
fission and fusion the RV in PH. However, in left ventricular hypertrophy and fail-
ure, mitochondrial protein optic atrophy-1 is decreased and mitochondria frag-
mented [62]. In other models, partial deficiency in protein optic atrophy-1 reduced 
mitochondrial number and function [63], and increased susceptibility to left 
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ventricular hypertrophy and cardiac dysfunction [64]. On the other hand, ablation of 
cardiac mitofusin-1 and mitofusin-2 fragments ventricular mitochondria and impairs 
mitochondrial respiration [65]. Mitofusin-2 is also downregulated in left ventricular 
hypertrophy and its overexpression reverses left ventricular hypertrophy [66, 67]. 
With the absence of such data for RV remodelling, future studies could investigate 
whether there is a link between RV mitochondrial ROS production and RV mito-
chondrial fission and fusion in a model of PH.

24.3.2	 �Effects of ROS on RV Mitochondrial Metabolism

We’ve now established that RV mitochondrial ROS impairs RV mitochondrial gene 
expression. However, these RV mitochondrial ROS also impairs RV mitochondrial 
energy substrate utilization by causing a metabolic shift [68, 69]. In the healthy 
heart, mitochondrial energy substrate utilization mostly comprises fatty acid oxi-
dation, and to a lesser extent glycolysis and glucose oxidation [68, 69]. However, 
with ventricular hypertrophy and eventually ventricular failure, there is a meta-
bolic shift from fatty acid oxidation toward higher glycolysis and glucose oxida-
tion rates [68, 69].

As previously reviewed [2], in PH the RV displays a metabolic shift as the car-
diomyocytes have increased glycolysis. In the monocrotaline and pulmonary artery 
banding animal models [70] of RV remodelling, RV compensated/adaptive hyper-
trophy associates with enhanced glucose oxidation, increased expression of glucose 
transporter-1 and pyruvate dehydrogenase [71]. These findings are consistent with 
the existing knowledge that ventricular remodelling correlates with a metabolic 
shift from fatty acid oxidation to glycolysis [68, 69]. These changes also coincide 
with the upregulation of glucose uptake in RV hypertrophy [72–74] as a means to 
increase glycolysis. This is required in order to maintain energy homeostasis and 
has been adequately demonstrated in PH [72, 74]. In prolonged PH, reduced RV 
mitochondrial complex-1 linked oxidative phosphorylation was observed when 
glucose-oxidation substrates were used to stimulate electron transfer through com-
plex-1 and 2 [55, 75]. In particular, the reduced oxidative phosphorylation after the 
glutamate titration, could suggest that PH causes changes to the enzyme, glutamate 
dehydrogenase [29]. Future studies could investigate the effects of PH on glutamate 
dehydrogenase activity in the RV. Succinate dehydrogenase (complex-2) is the only 
mitochondrial complex that forms part of the tri-carboxylic acid cycle [29]. 
Therefore, the unaffected succinate dehydrogenase suggests that PH does not affect 
RV complex-2 activity. These findings support the notion that in maladaptive RV 
remodelling as in PH, RV mitochondrial metabolism shifts from fatty acid oxidation 
to glucose oxidation. However, the latter is also reduced in the RV during far pro-
gressed PH. Unfortunately, these glucose mediated metabolic pathways do not pro-
duce sufficient energy to maintain ventricular function in PH, and thus contributes 
to impaired RV function in PH [14, 76]. This aforementioned evidence supports the 
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concept that RV mitochondrial ROS produced during PH can alter RV mitochon-
drial energy production pathways.

24.3.3	 �Effects of Mitochondrial ROS on RV Mitochondrial 
Respiration

Another aspect of the adverse effects RV mitochondrial ROS have is impaired RV 
mitochondrial respiration. In recent years, few studies have identified a key role for 
mitochondria in the pathogenesis of PH [77–80]. These studies demonstrated that 
PH is associated with altered RV mitochondrial respiration [77–80]. During 
PH-induced compensated RV hypertrophy, the RV displays increased RV mito-
chondrial ROS production and elevated complex-1 and 2 linked respiration [42]. 
Whereas, during the decompensated stage, the RV displays reduced mitochondrial 
complex activity [55]. This is an important observation, as increased ROS have been 
shown to cause structural damage to mitochondrial complexes [81] that impairs 
mitochondrial respiration. Accordingly, in prolonged PH, the RV has been shown to 
display reduced complex-1 linked respiration [55]. This while complex-2 linked 
respiration remained unchanged, showing only a trend towards a decrease [55]. 
These findings were corroborated by another group who later demonstrated that in 
prolonged PH, the RV displayed reduced complex-1, and unchanged complex-2 
linked respiration [75, 82]. These findings suggest that in PH, RV-mitochondrial 
complex-1 linked respiration [75] and most likely due to the impact of excessive 
RV-mitochondrial ROS.

24.4	 �Conclusions

This chapter discussed the roles and impact of RV mitochondrial ROS on RV mito-
chondrial gene expression and dynamics, RV mitochondrial respiration and RV 
structure. The potential role of mitochondria-targeted antioxidants in protecting the 
RV in PH was briefly discussed. The chapter highlighted that RV mitochondrial 
ROS cause changes in RV mitochondrial gene/protein expression, dynamics, 
metabolism and respiration. RV mitochondrial ROS also activates RV fibrosis and 
extracellular matrix changes and the evidence suggests that altogether, these pro-
cesses contribute to RV remodelling observed in PH.
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25.1	 �Introduction

Mitochondria plays a pivotal role in the cell by producing energy required for cel-
lular functions. Mitochondria are crucial for generating adenosine triphosphate 
(ATP) via oxidative phosphorylation system (OXPHOS) [1]. In addition to that, 
mitochondria is also important for several biological functions such as production 
of heat, calcium homeostasis, stress signalling and defence responses [2]. Heart 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8273-4_25&domain=pdf
mailto:skbanerjee@thsti.res.in


552

being the most energy consuming organ in the body, primarily depends on mito-
chondria for steady supply of ATP.

Heart failure is one of the leading causes of death in the industrialized countries 
[3]. A complex clinical syndrome, essentially marked by compromised cardiac 
function and chronic heart failure is often preceded by cardiac hypertrophy. Cardiac 
hypertrophy is the enlargement of the cardiomyocytes, which is initially an adaptive 
response to increased pressure or volume load in heart [4]. Prolonged haemody-
namic load, however, results in pathological cardiac hypertrophy involving reactiva-
tion of fetal gene program, myocardial fibrosis and increased heart weight indices, 
eventually leading to heart failure [5]. Though the exact reasons for this transition 
from cardiac hypertrophy to failure remain elusive, changes in signalling modules 
such as cardiac contractile machinery, calcium ion homeostasis, mitochondrial dys-
function and oxidative stress have been speculated to play critical roles in the devel-
opment and progression of heart failure [6].

Mitochondria, occupying about 30% mass of a cardiomyocyte [7], produce 
>95% ATP required by the heart [8]. The energy requirements of the heart are met 
primarily by fatty acid oxidation that takes place in the mitochondrial matrix, fol-
lowed by electron transport in the inner mitochondrial membrane that leads to gen-
eration of ATP coupled to reduction of oxygen to water. Apart from being the single 
major source of energy required for continuous contraction and relaxation, mito-
chondria are also involved in regulation of calcium handling, redox equilibrium and 
cell death [9]. About 2% of the oxygen consumed by the mitochondria gets con-
verted to reactive oxygen species (ROS) as by-products of the respiratory chain 
[10]. Dysfunctional mitochondria may not only be deficient in oxidative 
phosphorylation-induced energy production, but also generate increased levels of 
ROS.

ROS are highly reactive chemical species formed from molecular oxygen, which 
include superoxide, hydroxyl free radicals and non-radical hydrogen peroxide [11]. 
Under physiological conditions, redox equilibrium exists in the cell due to detoxifi-
cation of ROS by the cellular antioxidant response. This antioxidant system is com-
posed of enzymes such as superoxide dismutase (SOD), glutathione peroxidase 
(GSHPx) and catalase, and other non-enzymatic components. Cellular stress that 
triggers increased ROS generation exceeding the antioxidant defence results in a 
state called oxidative stress [12]. Oxidative stress observed in the cardiomyocytes of 
failing hearts may arise from several sources, including the mitochondria, NADPH 
oxidase (NOX), xanthine oxidase, and uncoupled nitric oxide synthases (NOS) [13, 
14].

Mitochondrial dysfunction and oxidative stress share a bidirectional association, 
and have been implicated in cardiac hypertrophy and failure [15, 16]. Mitochondria, 
apart from being a producer of ROS, can themselves be attacked by these reactive 
intermediates of oxygen [15]. While oxidative stress induces cellular damage and 
death directly by attacking biomolecules such as membrane phospholipids and 
nucleic acids, and indirectly by activating maladaptive signalling cascades, mito-
chondrial dysfunction is implicated in the transition from compensatory hypertro-
phy to heart failure [16, 17]. Mitochondrial dysfunction, oxidative stress and their 
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association, thus, assume importance in the biology, diagnostic approaches and 
therapy of cardiac hypertrophy and heart failure. Compared to other organs, heart is 
very sensitive to mitochondrial defects. Thus, mitochondrial diseases preferentially 
affect the heart. Similarly, impaired cardiac conditions due to defects in either 
OXPHOS or ETC are associated with mitochondrial dysfunction [18]. Any redox 
imbalance in cells leads to ROS/RNS-dependent modifications of key proteins 
which are involved in electron coupling and mitochondrial oxidative phosphoryla-
tion. This affects the function of proteins which contribute to cellular injury or death 
[18, 19]. A malicious cycle of these complex interactions could thus lead to decom-
pensation of the failing heart.

Current treatments used in cardiac hypertrophy and failure are inadequate. 
However, new evidence has suggested changes in mitochondria plays a crucial role 
in progression and severity of the disease. Here in the present book chapter, we are 
going discuss the central role of mitochondria in developing cardiac hypertrophy 
and failure and future strategy to develop novel therapy.

25.2	 �Cardiomyocytes, Heart and Cardiovascular System

Cardiovascular system, as the name suggests, is composed of heart and blood ves-
sels that form a body-spanning network for perfusion of tissues with blood. The 
cardiovascular system developed close to 600 million years ago, and evolved in 
complexity from a single chamber in primitive organisms such as Drosophila to a 
compartmentalized system in higher animals [20]. Despite the progressing struc-
tural complexity of the mammalian cardiovascular system, its primary function 
remains the same and its importance is underscored by the impact of the growing 
burden of cardiovascular diseases on not only morbidity and mortality but general 
quality of life.

Blood transports nutrients, gases, hormones and metabolites to the target tissues 
in the body through a network of arteries, veins and capillaries. Heart functions as 
the incessant pump that pushes blood through this network, by continuous contrac-
tion and relaxation. Located between the lungs slightly left to the sternum, and 
covered by a double-layered membrane called pericardium, a normal adult heart 
weighs 200–425 grams and beats about 100,000 times daily, pumping about 7571 
litres of blood [21]. The heart is composed of two atria and two ventricles; the 
atrium and ventricle on the right side pump deoxygenated blood to the pulmonary 
circulation, whereas the chambers on the left side pump oxygenated blood into the 
arteries supplying the body. The left ventricle is the largest and strongest chamber 
of the heart that – with walls that are only about half an inch in thickness – pumps 
blood through the aortic valve into the body. Contractile activity of the heart, com-
posed of systolic and diastolic phases, is regulated intrinsically at the level of elec-
trical conduction through AV node, Purkinje fibres and SA node, and extrinsically 
by the autonomic nervous system [21].

Heart, the first organ formed in developing foetus, is built up of cardiomyocytes 
supported by a matrix of fibroblasts and nourished by vascular network of 
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coronaries [22]. Cardiomyocytes are terminally differentiated contractile cells that 
constitute 80% of the volume of the myocardium despite being only 20% of the 
total number of cells. Capillaries in the myocardium are finely aligned with the 
cardiomyocytes in a one-to-one ratio [18]. Adult cardiomyocytes are binucleate 
cells containing abundant myofibrils arranged in sarcomeric contractile units and 
abundant mitochondria for energy generation. The mitochondria of cardiomyocytes 
have distinct structural features such as large numbers of tightly packed cristae 
formed from invaginations of the inner mitochondrial membrane to fulfil their high 
energy output [23]. Adjacent cardiomyocytes are connected end-to-end by the inter-
calated discs, and side-to-side by desmosomes. Contraction and relaxation of car-
diomyocytes during each cardiac cycle is under fine regulation of cyclic increases 
and decreases in intracellular Ca2+ initiated by membrane depolarization and sus-
tained by Ca2+ release and re-uptake by the sarcoplasmic reticulum. Keeping in 
view their low proliferative capacity, adult cardiomyocytes undergo hypertrophic 
growth to compensate for the increased workload in conditions of stress [24].

25.3	 �Mitochondrial Dysfunction and Oxidative Stress: 
Emphasis on the Heart

25.3.1	 �Mitochondria: Essential Organelle of Cardiomyocytes

Mitochondria are double membrane-bound, rod-shaped and semi-autonomous 
organelles. Thought to have originated from an ancient symbiotic event wherein a 
nucleated cell engulfed an aerobic prokaryote, mitochondria still retain some char-
acteristics of modern prokaryotes such as their own circular genome, a membrane 
laced with electron transport proteins, and the ability to divide by simple fission 
independent of the cell [25, 26]. While the outer mitochondrial membrane is suffi-
ciently porous to allow passage of ions and small proteins, the inner mitochondrial 
membrane exhibits restricted permeability similar to that of cell membrane. The 
inner membrane surrounds the mitochondrial matrix that is the site for citric acid 
cycle, the electrons produced from which travel through the electron transport chain 
in this membrane. The protein complexes of the ETC push protons into the inter-
membrane space to create a gradient that utilised to the synthesis of ATP, coupled 
with the reduction of oxygen to water at the end of ETC, thus the name oxidative 
phosphorylation for the process. Majority of the mitochondrial proteins, such as 
enzymes required for the citric acid cycle, the proteins involved in DNA replication 
and transcription, and ribosomal proteins, are synthesised from nuclear genes. The 
16.5 kb mitochondrial genome encodes for 13 OXPHOS subunits, 22 tRNAs and 
two rRNA subunits, transcribed from the light-strand promoter and the heavy strand 
promoter, under the control of the mitochondrial transcription factor A (TFAM) 
[26].

Mitochondria in the cardiomyocytes show distinct subcellular distribution in the 
sarcolemmal, perinuclear and intrafibrillar regions, and are relatively firmly fixed 
[7]. Mitochondrial fission, fusion, and autophagy machinery in adult 
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cardiomyocytes regulates the energy generation and structural integrity of the 
organelle, and is under strict physiological control. Altered expression of proteins 
that regulate mitochondrial dynamics, such as biogenesis, fragmentation and hyper-
plasia, has been reported in humans as well as animal models of heart failure [7, 27]. 
Since fatty acid oxidation that takes place in the mitochondrial matrix is the primary 
source of energy for an adult heart, mitochondria are the central organelles that 
regulate energy metabolism in the heart and correlate with its function and oxygen 
consumption [28]. Events involved in cardiac contraction and relaxation, such as 
release of actin from myosin and sequestration of calcium during diastole, utilize 
about 90% of the ATP produced in the heart [29]. Abnormalities such as impaired 
ETC complex activity, depleted mtDNA, and disrupted import of proteins into the 
mitochondria directly affect cardiac oxidative phosphorylation. Mutations in the 
mtDNA are associated with many inherited familial cardiomyopathies, as expres-
sion of mutant proteins in the mitochondria disturbs the energy homeostasis [30].

25.3.2	 �Mitochondrial Dysfunction and Oxidative Stress: 
Implication in Cardiac Disease Pathology

Mitochondrial dysfunction, characterized by a loss of efficiency in the electron 
transport chain and reduced synthesis of high-energy molecules such as ATP, is a 
characteristic of aging, and essentially, of all chronic diseases [31]. Mitochondrial 
abnormalities in cardiac hypertrophy and failure, apart from reduced capacity to 
generate ATP, are directly linked to cardiomyocyte damage and, therefore, link to 
disease progression. Dysfunctional mitochondria are a major source of reactive 
oxygen species (ROS) production, which can induce cellular damage. Abnormal 
mitochondria and ROS can trigger programmed cell death through the release of 
cytochrome c into the cytosolic compartment and activation of caspases [32]. 
Mitochondrial dysfunction and oxidative stress are both linked to aberrant cellular 
calcium homeostasis, vascular smooth muscle pathology, myofibrillar disruption, 
and altered cell differentiation, all implicated in the etiology of cardiac hypertrophy 
and failure [33].

ROS is a by-product of cellular metabolism of oxygen and performs an impor-
tant role in cellular signalling and homeostasis [12]. In normal physiology, ROS 
exist in a delicate balance with the cellular antioxidants, such as MnSOD and cata-
lase, to maintain redox equilibrium in the cell. Any alteration in this equilibrium that 
exhausts the antioxidant’s capacity to counter balance ROS may lead to oxidative 
stress in the cell. Oxidative stress causes cell injury and death through nucleic acid 
damage and oxidation of several biomolecules including amino acids, fatty acids 
and enzymes [11]. Mitochondria, being the major contributor of ROS, play an 
important role in this equilibrium. In cardiomyocytes, approximately 90% of the 
antioxidant activity is performed by MnSOD, located in the mitochondria [34]. 
Oxidative damage to mitochondria, compromises energy production, and progres-
sion of mitochondrial dysfunction contributes to further cardiac structural and func-
tional defects, thus driving a vicious cycle of cardiac damage and failure [35].
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25.3.3	 �Oxidative Stress-Induced Mitochondrial Dysfunction

During the normal functioning of cell, 2% of oxygen is converted to superoxide due 
to incomplete conversion to water in electron transport chain [36]. This superoxide 
is detoxified by endogenous antioxidants in the cell such as MnSOD, catalase, GSH 
etc. However, during the time of perturbed redox balance, ROS production in cells 
may be increased, which cause damage to cell as well as mitochondria. Increased 
superoxide may react with membrane phospholipids and produce highly reactive 
malonaldehyde (MDA) or 4-hydroxy-2-nonenal (HNE), which may further damage 
the cellular lipids, proteins and nucleic acids [37].

Cellular metabolic performance directly correlates with the cellular antioxidant 
response and NADPH level [38]. Increased ROS and lipid peroxidation level has 
shown to be increased in tissues and pericardial fluid of heart failure patients, which 
directly correlates with the contractile dysfunction [36]. Apart from this, protein 
carbonyls, an oxidation products of important amino acids such as cysteine and 
lysine, have been shown to be increased in myofilament oxidation and systolic fail-
ure in end stage human heart failure [18]. In the damaged mitochondria, the blocked 
electron transport chain leads to further accumulation of excess free radicals. 
Mitochondrial DNA is located very proximity to this source of ROS and may get 
damaged, introducing mutations in the mtDNA. Increased accumulation of mutated 
mtDNA in the cell, may further lead to chronic innate inflammatory response in 
cells [39].

25.3.4	 �Mitochondrial Dysfunction-Induced Oxidative Stress

Mitochondria are the adapted organelles in the cell. It has been believed that, mito-
chondria are a prokaryotic cell which was incorporated in mammalian cell long 
back and got symbiotically associated in the cell permanently. Mitochondria are the 
energy power house of the cell. It continuously burns energy sources to produce 
energy rich molecules ATP. Therefore, dysfunction of this important organelle in 
heart directly enhances ROS generation, which could be very critical to cause car-
diac hypertrophy and failure. There are many causes of mitochondrial dysfunction, 
which have been discussed below.

25.4	 �Sources of ROS in Cells

All sources of ROS in cell as depicted in Fig. 25.1 have been reported to be involved 
in cardiac hypertrophy and failure [40, 41]. Different sources of ROS activated by 
different kind of pathological conditions play important role in the generation of 
unfavourable condition and maladaptive changes during stress condition.
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25.4.1	 �Mitochondria

Maintaining a proper balance between oxidants and antioxidants in the mitochon-
dria is very crucial for healthy redox balance in cell [33]. In the mitochondria, ROS 
is generated due to incomplete reduction of O2 to water, leading to generation of 
O2− and peroxide molecules. During mitochondrial respiration, O2 may escape 
through electron transport chain to generate highly reactive oxygen species [42]. 
Mitochondrial enzyme such as, mono-amino oxidase (MAO) can also contribute to 
the generation of ROS. Elevated ROS generation in cell have been reported in many 
cardiac diseases. Recently we reported an increased ROS generation and lipid per-
oxidation in rat model of cardiac hypertrophy and diabetic cardiomyopathy [43, 
44]. This elevation in mitochondrial ROS generation can be very detrimental in 
damaged cells and play a vital role in disease progression from cardiac hypertrophy 
to failure [45]. However, mitochondria possess their own defence system to protect 
from over production of ROS. Mitochondrial antioxidants are crucial for survival, 
as genetic deletion of mitochondrial antioxidant gene TRX reductase 2 is embryoni-
cally lethal due to cardiac dysfunction [46]. In vitro, inhibition of TRX reductase 
2  in isolated mitochondria, results in increased H2O2 generation [47]. Similarly, 
genetic deletion of mitochondrial Mn-SOD leads to fatal dilated cardiomyopathy. 
On the other hand, mice overexpressing mitochondrial-targeted catalase found to be 
protected from cardiac disease as well as showed a prolonged life span [48].

Fig. 25.1  Oxidative stress 
is defined as an imbalance 
between endogenous 
antioxidants and reactive 
oxygen species (ROS)
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25.4.2	 �NADPH Oxidases (NOX)

NADPH oxidases (NOX), a family of enzymes are a major source of ROS, and 
implicated in many cardiovascular diseases. Among all sources of ROS, NOX are 
unique, as the primary function of NOX is only ROS production. NOX family is 
composed of seven members NOX1-NOX5, and DUOX1 and DUOX2. Each one 
has different core catalytic domain. Cardiomyocytes mostly express NOX1, 2, 4 and 
5, and generate low amount of ROS to regulate of redox balance, redox signalling 
pathway, cell differentiation and proliferation [49, 50]. NOX2 and NOX4 are the 
main cardiac isoforms and form a heterodimer with a 22 kD subunit termed as 
p22phox. NOX2 is an inducible sarcolemmal enzyme that can be induced by many 
cellular hypertrophic stimuli, such as sympathetic β1 receptor agonist, growth fac-
tors, mechanical forces and cytokines. On the other hand, NOX4 is intracellular 
membrane bound enzyme such as ER and is constitutively expressed [51]. Both, 
NOX2 and NOX4 are found to be upregulated in cardiac hypertrophy and failure 
[52, 53].

25.4.3	 �The Endoplasmic Reticulum (ER)

Structurally endoplasmic reticulum (ER) is composed of lumen, which is responsi-
ble for most of the biochemical protein modifications. The ER lumen has an extreme 
oxidising environment which is required for oxidation and folding of proteins. Two 
enzymes, lysyl oxidase (LOX) and prolyl oxidase (PHD), use oxygen (O2) in the 
process of oxidation of Lysine and proline, respectively. ER also plays a vital role in 
introducing disulfide bonds into nascent proteins. In the first step, enzyme ER oxi-
dase 1 (Ero1) is oxidized by molecular O2 to generate H2O2. In second step, pro-
tein disulfide isomerase (PDI) transfers the disulfides from Ero1 to nascent proteins, 
which is necessary for normal protein folding. Thus, ER stress can activate oxidases 
and generate H2O2. It is reported that, prolonged ER stress is associated with cardio 
myocyte apoptosis and heart failure [54].

25.4.4	 �Monoamine Oxidases (MAO)

Monoamine oxidase (MAO) performs the oxidative deamination of catecholamines. 
It is principally located in the mitochondria and makes it a very important source of 
ROS during pathological conditions. The reaction of oxidative deamination results 
in the generation of H2O2, which is an important source of ROS in the mitochon-
dria. It has been reported that, MAO is an important source of oxidative stress in 
mouse model of pressure overload and contributes significantly towards cardiac 
dysfunction [55, 56]. The mitochondrial location of MAO is also crucial in its 
mechanism of oxidative stress in heart.
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25.4.5	 �Uncoupled NO Synthases (NOS)

Cardiomyocytes can express both endothelial and neuronal nitric oxide synthase 
(NOS). Under certain conditions, such as inflammation and cellular stress condi-
tion, inducible nitric oxide synthase (iNOS) is over-expressed. During many patho-
logical conditions, such as hypertension, and cardiac hypertrophy, NO may get 
uncoupled and results in increased generation of ROS and oxidative stress in the 
cardiomyocytes [57].

25.4.6	 �Cytochrome P450 Oxidase

Cytochrome P450 (CYP P450) family enzymes are involved in the metabolism of 
drugs in the body. CYP P450 oxidase enzymes oxidise its substrate and could be an 
important source of oxidative stress under certain circumstances. CYP P450 oxi-
dase is known to be upregulated in heart diseases such as cardiac hypertrophy. CYP 
P450 knockout mice attenuated cardiac dysfunction when they were crossed with a 
dilated cardiomyopathy mouse model [58].

25.4.7	 �Xanthine/Xanthine Oxidase

Xanthine dehydrogenase (XDH) and xanthine oxidase (XOD) are a single gene 
protein that may exist in two different but interconvertible forms [59]. XDH acts on 
hypoxanthine or xanthine in presence of NAD, a cofactor and produce NADH, 
whereas, XOD acts on same substrate but utilizes O2 as a cofactor to produce super-
oxide anion (O2−) and uric acid. During the pathological condition of ischemia and 
hypoxia, xanthine dehydrogenase (XDH) is converted into xanthine oxidase (XOD) 
which then utilizes O2 to produce superoxide and ROS [60]. Although, XOD 
appears to be an important source of ROS in cardiac pathological conditions like 
ischemia, its role in the development of cardiac hypertrophy remains to be unleashed 
[61]. It should be taken into account that, XOD is expressed in very low amount in 
human hearts. Therefore, extent of XOD mediated ROS contribution to human car-
diac pathologies remains elusive [62].

25.5	 �Causes of Mitochondrial Dysfunction

There are different causes of mitochondrial dysfunction as mentioned below 
(Fig. 25.2).
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25.5.1	 �Nutritional and Substrate Deficiency

Nutritional or substrate deficiency in the mitochondria may arise due to defect in the 
mitochondria or in the cell itself. This will directly affect energy production and 
cellular homeostasis. Apart from lack of substrate, sometimes metabolic enzyme 
deficiency in the ETC cycle may also contribute towards mitochondrial 
dysfunction.

It has been reported that, deficiency of coenzyme Q or L carnitine may lead to 
mitochondrial dysfunction. Data has shown that, supplementation of deficient nutri-
ent can restore the mitochondrial function to normal [31].

25.5.2	 �Redox Imbalance Due to Raised Oxidative Stress

Reactive oxygen species play an important role in protection against infectious 
agents. ROS is present in the cell always in equilibrium with antioxidants. Disturbed 
redox balance due to over production of ROS may lead to toxic effects at its site of 
origin i.e. mitochondria and other organelles in cell.

Redox 
Imbalance

Mitochondrial 

Perturbed
PTMs

Mutations

Inflammation

Substrate 
Deficiency

Mitochondrial 
membrane 

defects

Fig. 25.2  Causes of mitochondrial dysfunction
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It has been shown that, increased ROS is associated with mitochondrial dysfunc-
tion in cardiac hypertrophy and failure [63, 64]. Therefore, attenuating the increased 
cellular ROS using antioxidants becomes an attractive target for the treatment of 
mitochondrial dysfunction.

25.5.3	 �Post-Translational Modification of Mitochondrial Proteins

In our laboratory, recently Pankaj et al. reported the association between acetylation 
of proteins and mitochondrial dysfunction in diabetic heart [65]. Sirtuins are the 
group of enzymes, which regulates the acetylation of proteins in cell as well as in 
the mitochondria. Mitochondrial protein acetylation regulates enzymatic activity of 
some very important proteins such as TFAM, PGC-1α and p53 [66].

Pankaj et al. has also reported the decreased activity of SIRT-3, a mitochondrial 
sirtuin in heart during diabetic cardiomyopathy. Restoring the SIRT-3 activity in 
diabetic hearts using SIRT-3 activator, resveratrol, leads to reversal of cardiomyopa-
thy [67, 68]. Now a day, SIRT-3 activator is considered as an attractive target to treat 
mitochondrial dysfunction in cardiomyopathy which can also be extended to other 
cardiac diseases.

25.5.4	 �Inflammatory Cytokines

Inflammatory cytokines, TNF alpha, interleukin 6 and interleukin 1 beta affects the 
function of mitochondria and cellular energy production. Wendy et al. reported that, 
treatment of adipocytes with these cytokines in vitro leads to mitochondrial dys-
function and increases ROS production [69].

Inflammatory cytokines are critical part of immune responses and plays an 
important role in more than one system in cell. Directly neutralizing these cytokines 
could be detrimental for the cell. Hence, the receptors, which controls the secretion 
of these cytokines becomes promising target for mitochondrial dysfunction. 
Recently we have shown that, inhibition of toll like receptor 4 (TLR4) in cardiac 
hypertrophy model in rats could be novel therapeutic approach to attenuate mito-
chondrial dysfunction and cardiac hypertrophy [43]. Other TLRs (i. e. TLR9) are 
also being explored to establish as novel target for the attenuation of mitochondrial 
dysfunction in heart failure [70].

25.5.5	 �Defective Mitochondrial Membrane

Defects in the mitochondrial membrane can lead to increased proton leak from 
mitochondria and decreased energy production efficiency. Apart from proton leak, 
defective mitochondrial membrane may also leak cytochrome C in the cytoplasm, 
which in turn may induce cellular apoptosis in cardiomyocytes.
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Replacement of defective mitochondrial membrane components with externally 
administered phospholipid can rescue mitochondria from dysfunction in this 
condition.

25.5.6	 �Mitochondrial DNA Mutations

Mitochondria contain a separate small circular DNA in its matrix. It does not have 
any specific compartment to keep its DNA safe. Hence mitochondrial DNA is 
always exposed to all metabolites and ROS that generated in mitochondria during 
oxidative phosphorylation. Due to high exposure to ROS, mitochondrial DNA is 
highly prone to mutations. Many a time, even though mutation may occur in DNA 
of few mitochondria, the phenotype doesn’t occur due to the presence of healthier 
DNA copies in rest mitochondria [71]. However, if the specific mutation is present 
in all copies of mtDNA, phenotype becomes apparent and mitochondria may 
become dysfunctional depending upon the gene effected by mutation.

There are many reports of mitochondrial mutations leading to mitochondrial 
dysfunction [70, 72]. The best available treatment in this case is symptomatic and 
mainly depends upon combination supply of nutrients.

25.6	 �Mitochondrial Dysfunction and Oxidative Stress: 
Crucial Factors in Cardiac Hypertrophy and Heart 
Failure

The myocardium is the most mitochondria-dense and oxygen-consuming tissue of 
the body. These features make heart a site vulnerable to development of mitochon-
drial dysfunction and oxidative stress. Hypertrophy in heart is considered as a com-
pensatory response to increased workload, which when unmitigated, becomes 
pathological and transcends to heart failure. This transition is associated with exten-
sive myocardial remodelling involving increased protein turnover, myocyte hyper-
trophy, fibrosis and apoptosis. Mitochondrial dysfunction is considered to be an 
important determinant of the transition from hypertrophy to failure, and this may be 
due to its role in the development of energy deficit which leads to impaired contrac-
tile activity. Energy generation in cells through mitochondrial electron transport 
chain is associated with ‘leakage’ of oxygen free radicals despite tightly linked ETC 
enzyme complexes. Generation of ROS from mitochondrial ETC is known to 
increase in failing hearts, apart from its other sources such as NADPH oxidases, 
uncoupled NOS and xanthine oxidases.

Mitochondrial respiratory dysfunction in cardiac hypertrophy and heart failure 
has been extensively reported in both rodents and humans. Du et al. (2017) showed 
that doxorubicin induced cardiac hypertrophy in rats involved mitochondrial dys-
function including mitochondrial permeability transition pore (mPTP) opening, loss 
of mitochondrial membrane potential (ΔΨm), and respiration dysfunction. However, 
Sirt3 overexpression ameliorated hypertrophy by inhibiting these respiratory chain 
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defects [73]. In another experimental study, Wust et al. (2016) showed that, right 
ventricular hypertrophy and failure in monocrotaline induced pulmonary artery 
hypertension induced in rats was accompanied by ~3.5 fold and two-fold reduction 
in Complex I and Complex II coupled respiration, respectively [74]. Mitochondrial 
remodeling was also evident in ultrastructural studies where the authors concluded 
that these impairments could mainly be attributed to dysfunctioning at Complex 
I. Apart from mitochondrial respiratory chain defects, other factors such as impaired 
calcium handling, metabolic remodeling and structural dynamics of mitochondria 
have also been cited as determinants of heart failure. In a mouse model of heart 
failure, Santulli et al. (2015) found that diastolic Ca2+ leak from sarcoplasmic reticu-
lum causes mitochondrial calcium overload and dysfunction [75]. Wai et al. (2015) 
highlighted the importance of balanced mitochondrial fission and fusion in mice 
hearts, where processing of long isoform of optic atrophy protein 1 (L-OPA1) by 
OMA1 and mitochondrial fragmentation led to dilated cardiomyopathy and heart 
failure [76]. Lately, it has also been recognised that heart failure is a state of meta-
bolic impairment of the myocardium, an independent risk factor that is also linked 
to mitochondria. In the metabolomic profiling study, Hunter et al. (2016) identified 
novel circulatory markers of dysregulated fatty acid oxidation which were differen-
tially elevated in cases of heart failures with preserved as well as reduced ejection 
fraction [77].

Oxidative stress, independent of mitochondrial dysfunction, resulting from over-
production of free radicals or exhausted endogenous antioxidants or both, is fre-
quently reported in models of cardiac dysfunction such as diabetic cardiomyopathy, 
dilated cardiomyopathy and myocardial infarction, both in experimental as well as 
clinical studies. All these conditions involve cardiac hypertrophy, ventricular 
remodeling and progression to failure, where oxidative injury plays a key role. 
Cardiac hypertrophy in streptozotocin-treated type 1 diabetic rats was found to be 
coupled with oxidative stress measured as increased lipid peroxidation and proteins 
oxidation, and activation of c-Jun Nuclear Kinase-1 [78]. We reported similar obser-
vations in a model of type 2 diabetes, where 8 week-long fructose feeding to rats 
resulted in cardiac hypertrophy and myocardial oxidative stress through increased 
NOX activity and ROS content [65]. Low superoxide dismutase (SOD) activity and 
high malondialdehyde levels have been reported in serum of rats with isoproterenol-
induced cardiac hypertrophy [79]. These findings were linked with expression of 
pro-inflammatory and fibrotic markers such as collagen 1 and 3, TNF alpha, IL6, 
IFN-γ, phospho-IκBα, NF-κB p65, JAK2 and STAT3. Increase in membrane lipid 
peroxidation and decrease in expression of antioxidant genes like NRF2, HO-1 and 
NQO-1 has been reported in abdominal aortic constriction model (AAC) of cardiac 
hypertrophy in rats [80]. These changes were seen to be associated with pressure 
overload-induced inflammation and fibrosis in rat hearts. Oxidative injury is known 
to stimulate activation of matrix metalloproteinases, a class of proteolytic enzymes 
involved in tissue remodeling which is seen to be activated in failing hearts. Apart 
from its link with structural impairments resulting from inflammation, fibrosis and 
remodeling, oxidative stress also affects cardiac function. Yokoe et  al. (2017), 
showed that oxidative stress upregulates protein von Hippel-Lindau expression to 
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induce degradation of phospholamban – a key modulator of cardiac contractility – 
in mouse hearts with dilated cardiomyopathy [81]. In adult db/db mice, improve-
ment of cardiac fractional shortening by mTOR inhibition was reported to be linked 
with attenuation of oxidative stress [82].

From all studies described above, strong link between mitochondrial dysfunction 
and oxidative stress is evident in the context of cardiac hypertrophy and heart fail-
ure. Disruption of the components of mitochondrial respiratory and metabolic reac-
tions results in oxidative stress, while oxidative stress may itself compromise 
mitochondrial structure and function. Benderdour et al. (2004) reported that cardiac 
hypertrophy in coarctated rats is associated with decreased mitochondrial isocitrate 
dehydrogenase activity, protein, and gene expression, possibly through an adduct 
formation with 4-hydroxynonenal (4-HNE) [83]. Mice with knockout of mitochon-
drial isocitrate dehydrogenase (idh2−/−), a regulator of mitochondrial redox balance, 
display cardiac hypertrophy, apoptosis, mitochondrial dysfunction and heart failure 
[84]. Caldas et  al. (2015) showed that diazoxide (a mitoKATP channel opener) 
reduced oxidative stress in isoproterenol-treated mice [85]. All these studies prove 
that, oxidative stress and mitochondrial dysfunction plays a crucial role in the 
pathogenesis of cardiac hypertrophy and failure. Inhibition of these aetiological fac-
tors could be very beneficial to attenuate cardiac hypertrophy and failure.

25.7	 �Inflammation and Apoptosis: Two Major Mechanisms 
Linked to Oxidative Stress and Mitochondrial 
Dysfunction

Mitochondrial dysfunction and oxidative stress may activate multiple pathways in 
cardiomyocyte, which all together leads the cell towards senescence. As stated 
above, mitochondrial dysfunction itself can lead to increased oxidative stress, which 
leads to a decrease in nicotinamide adenine dinucleotide (NAD) concentration in 
the cell. NAD is very important cofactor for sirtuin activity. Decreased NAD con-
centration leads to decreased sirtuin activity in the cell and mitochondria. Sirtuins, 
which regulates the acetylation of many important proteins in the cell including p53 
and tubulin, are very important for cell survival. Decreased sirtuin activity in cell, 
follows increased acetylation of p53, which then translocate to nucleus to initiate an 
apoptosis cascade through caspase pathway [86].

Mitochondrial dysfunction, may render mitochondrial membrane leaky, which 
then can lead to perturbed mitochondrial membrane potential and release of cyto-
chrome C in the cytoplasm. Cytochrome C can bind to its other partners in the 
cytoplasm and increases the active IL-1 beta concentration through the activation of 
NLRP3 –caspase 1 pathway. IL-1 beta then can lead the cell towards inflammation 
and apoptosis.

During cellular damage and mitochondrial dysfunction, mitochondrial DNA 
may be leaked into cytoplasm. Mitochondrial DNA is a potent activator of TLR 
pathway. Through the activation of TLR pathway, it increases the production of pro-
inflammatory cytokines including IL-6 and TNF alpha by activating transcription 
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factor, nuclear factor kappa B (NFkB). These inflammatory cytokines may then lead 
to apoptosis in cardiomyocyte through caspase activation.

Altogether, the ultimate fate of cell moves it towards senescence after mitochon-
drial dysfunction. Cardiomyocytes are terminally differentiated cells and hence, 
apoptosis of these cells is crucial factor in development of cardiac hypertrophy and 
its transition towards failure. It has been reported that, cardiac hypertrophy to failure 
progression is majorly dominated by inflammation and apoptosis of cardiomyo-
cytes (Fig. 25.3) [87].

25.8	 �Treatment Strategy to Attenuate Mitochondrial 
Dysfunction and Oxidative Stress in Cardiac 
Hypertrophy and Heart Failure

Mitochondrial damage is crucial in the pathogenesis of heart failure. Mitochondrial 
dysfunction plays a central role to induce mitochondrial damage, which in turn 
impairs the contraction of heart. A reduced energy supply from mitochondria due to 
age related oxidative stress leads to a diminished contractile function of cardiomyo-
cytes. Therefore, it becomes necessary to control and restore the mitochondrial 
health in heart failure [88].

Treating mitochondrial dysfunction is very difficult task as compared to target-
ing membrane receptors as the drug which is meant for targeting mitochondria has 
to cross biological cell membrane as well as mitochondrial membrane. Due to this 
condition, only highly lipophilic drugs are used for this condition.
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Mitochondrial dysfunction develops due to three basic reasons. Inadequate num-
ber of mitochondria being the leading cause followed by insufficient supply of mito-
chondrial substrates or a dysfunction of the electron transport chain leading to 
insufficient ATP supply. Mitochondrial equilibrium in the cell is maintained by 
three basic mechanisms, (1) Fusion of two dysfunctional mitochondria leading to 
mixing up of their undamaged components leading to increased efficiency of fused 
mitochondria (2) mitochondrial division (fission), and (3) mitochondrial autophagy 
(mitophagy) leading to complete removal of dysfunctional mitochondria. All these 
events play important role in maintaining enough proportion of healthy mitochon-
dria in the cell for proper functioning.

Most of the cellular ATP are produced in mitochondria. The proton gradient cre-
ated by electron transfer chain is used to generate ATP in the mitochondria by ATP 
synthase. One of the important effect of improper electron transfer in the mitochon-
dria is generation of ROS, highly reactive free radicals, which can be detrimental for 
mitochondria and cell. Therefore, to neutralize these ROS, endogenous antioxidant 
enzymes such as superoxide dismutase come in the picture. Endogenous cellular 
antioxidants are mitochondrial glutathione peroxidase and superoxide dismutase 
among others. Apart from this, dietary antioxidants provide an additional protection 
against ROS. These natural antioxidants can be exploited to counter the excessive 
ROS produced during mitochondrial dysfunction.

Understanding the molecular mechanism is very important to attenuate the mito-
chondrial dysfunction. We have discussed these molecular mechanisms in upper 
section in detail. From detailed literature review, we have proposed the following 
treatment strategies that could be effective for the mitochondrial dysfunction 
(Fig. 25.4). Grossly we can divide the treatment strategies into two main headings 
as antioxidants therapy and agents that improve ETC efficiency.

Many supplements and vitamins are being used in the treatment of mitochondrial 
dysfunction and diseases. Among all of the nutrients like vitamins, cofactors, 
enzymes, enzyme inhibitors and herbs which are being used in this ailment, only 
few are truly effective. Here we enlisted few of the promising supplements for mito-
chondrial dysfunction. After complete analyses, we concluded that, combination of 
nutrient supplements, vitamins and co factors could be a better treatment option 
rather than mono therapy.

25.8.1	 �Alpha-Lipoic Acid

Alpha- lipoic acid is an antioxidant, ion chelator and anti-inflammatory agent. It is 
an important co-factor for tricarboxylic acid cycle (TCA) enzyme called alpha keto-
glutaric acid dehydrogenase. It is one of the important component of oxidative 
phosphorylation in mitochondria. Alpha lipoic acid is used clinically as a supple-
ment in diabetes mellitus. It has several beneficial effects in diabetes such as in 
neuropathy and inflammation. Most of these effects are attributed to modulation of 
gene regulation of glucose uptake and metabolism as well as its antioxidant 
property.
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Accumulation of sphingolipids, particularly ceramide in mitochondria due to 
aging or any chronic disease condition could be fatal for cardiomyocyte. Ceramide 
accumulation in the cardiomyocyte is known to retard electron transport chain in the 
mitochondria. Alpha lipoic acid was found to decrease the ceramide level in vascu-
lar endothelium of cardiac muscle by inhibiting sphingomyelinase activity, leading 
to increased levels of mitochondrial glutathione and electron transport chain func-
tion. It has been found that, alpha lipoic acid is beneficial in diabetic complications. 
Clinical trial showed that neuropathic complications were improved significantly 
after alpha lipoic acid treatment.

Antioxidant property of alpha lipoic acid gives many beneficial effects in the 
cell, including decreased ROS and reduced activation nuclear factor kappa B 
(NFkB), which in turn reduces many cytokines and inflammatory gene expression. 
Being a transition metal chelator, alpha lipoic acid can remove excess amount of 
many metals including, copper, iron and lead, which are involved in many chronic 
diseases like, renal failure and Parkinson’s disease.

In one of the recent clinical trial it has been found that alpha lipoic acid can 
improves cardiac dysfunction and prevents from development of diabetic cardiomy-
opathy [89]. The use of alpha lipoic acid in cardiac hypertrophy and heart failure 
has not been studied in clinical trials, but researchers believe that the molecule has 
great potential for mitigating the cardiac complications and mitochondrial dysfunc-
tion. Energy efficiency of mitochondria can be improved up to 30% using treatment 
strategies based upon increasing glucose oxidation and decreasing fatty acid metab-
olism [88]. Many studies have confirmed that alpha lipoic acid can attenuate the 
progression of cardiac remodelling and improve cardiac function by improving 
mitochondrial function and energy balance [88].
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25.8.2	 �L-Carnitine

L-carnitine (3-hydroxy-4-Ν-trimethylaminobutyrate) is a fatty acid transporter 
found in the cells. Its primary function is to transport fatty acids into the mitochon-
drial matrix for beta oxidation. It also plays a crucial role in removal of excess of 
acyl groups from cell and modulating the coenzyme Co-A homeostasis balance. L 
carnitine is essential for the cell functioning and its deficiency can lead to decreased 
mitochondrial function, insulin resistance and coronary artery diseases.

L carnitine may increase the overall fatty acid uptake in the mitochondria and 
reduce the carbohydrate dependency of cell for energy production. This switch in 
the substrate utilization by cardiomyocytes could be beneficial during cardiac insult. 
L carnitine is being used in many disorders including cardiomyopathy, renal failure 
and sepsis. A small placebo controlled clinical trial was performed with L carnitine 
in patients with congestive heart failure. In this trial propionyl L carnitine adminis-
tration found to be beneficial in congestive heart failure (CHF) patients. It increased 
peak heart rate (mean 12%), exercise capacity (mean 21%) and peak oxygen con-
sumption (mean 45%) after L carnitine administration [90].

L carnitine can increase the aging impaired rate of mitochondrial oxidative phos-
phorylation. It has been found that, administration of acetyl L carnitine in old rats 
increases the fatty acid metabolism. It also restored decreased GSH level and 
improved mitochondrial complex IV activity in skeletal muscles.

It has been found that, administration of L carnitine in ischemic cardiomyopathy 
patients improved ejection fraction (mean 4.5%) as compared to placebo group 
[91]. In a meta-analysis of randomised controlled clinical trials, it was found that L 
carnitine treatment in congestive heart failure patients is effective. In participants 
with muscle weakness, fatigue and impaired mobility, treatment with L carnitine 
significantly improved physical fatigue, fatigue severity and mental fatigue. It also 
improved physical capacity and cognitive activity in these people. Few other trials 
also indicate that, administration of L carnitine can have a beneficial effect on men-
tal as well as physical health (Table 25.1).

25.8.3	 �Coenzyme Q10

Coenzyme Q is a crucial cofactor in electron transport chain, where it improves the 
function of electron transport along with other mitochondrial complexes. It is also 
known as an antioxidant in reduced form. It plays an important role in regulation of 
gene expression of certain genes involved in metabolism and transport.

Several clinical trials were carried out to find the effect of coenzyme Q adminis-
tration in physical exercise, hypertension and heart failure. Most of the studies 
showed moderate improvement in exercise capacity after coenzyme Q administra-
tion [109, 110]. However, nine randomised clinical trials that carried out to examine 
the effect of coenzyme Q administration in heart failure patients showed no signifi-
cant improvement in ejection fraction or mortality [109, 111]. Another randomised 
double blind clinical trial was performed by Rosenfeldt et  al. for a duration of 
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3 months to see the effect of coenzyme Q administration in heart failure. The study 
showed significant improvements in symptoms and mean exercise times [110].

Apart from cardiovascular diseases, coenzyme Q has also been used in neuro-
logical disorders. It has been shown that, coenzyme Q supplementation in 
Alzheimer’s disease in rats significantly delayed brain atrophy and beta amyloid 
plaque formation. In a randomised, placebo controlled clinical trial, it has been 

Table 25.1  Experimental evidences for treatment of mitochondrial dysfunction

Sr. 
No. Treatment Subjects Outcome References
1 Mitochondria-

targeted 
antioxidants

Cardiac ischemia 
reperfusion disease 
model in sheep, Guinea 
pigs and rabbit

Reduced the infract size [92–94]

2 Alpha lipoic acid Patients with diabetic 
cardiomyopathy

Improves cardiac 
dysfunction

[89]

3 L-carnitine Patients with congestive 
heart failure

It increased peak heart rate 
(12%), exercise capacity 
(21%) and peak oxygen 
consumption (45%)

[95]

4 Coenzyme Q10 1. Hypertension and 
heart failure

Improvement in exercise 
capacity

[96]

2. Heart failure patients Decreased mortality and 
improvements in symptoms

[97]

5 Nicotinamide 
adenine 
dinucleotide

Mice model of dilated 
cardiomyopathy

Preserves the heart from 
failing

[98]

6 Membrane 
phospholipids

Fibromyalgia and 
chronic fatigue 
syndrome

Improved mitochondrial 
function

[99–101]

7 Combination of 
oral supplement

1. Intractable fatigue and 
mitochondrial 
dysfunction

Behavioural, cognitive, 
sensory and improved 
muscle strength

[102, 103]

2. Patients with 
congested heart failure

Significant decrease in left 
ventricular mass (17.1%) 
and increase in left 
ventricular ejection fraction 
(5.3%)

[104]

8 Targeting post 
translational 
modifications

1. Patients with heart 
failure

Improving metabolic and 
skeletal muscle function 
(results awaited)

[105]

2. Patients with heart 
failure

Potential anti-remodelling 
agent (results awaited)

[106]

9 Aqueous extract 
of garlic

Rat model of cardiac 
hypertrophy

Attenuate the cardiac 
hypertrophy and restored 
mitochondrial health

[107, 108]

10 TLR4 inhibitor Isoproterenol induced 
cardiac hypertrophy in 
rat

Attenuate mitochondrial 
dysfunction and cardiac 
hypertrophy

[43]
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showed that coenzyme Q treatment along with other supplements significantly 
reduces oxidative stress markers.

25.8.4	 �Nicotinamide Adenine Dinucleotide

Nicotinamide adenine dinucleotide (NAD) is a substrate for many enzymes and 
plays a crucial role in many redox reactions in the cell. Presence of NADH in the 
cell at appropriate concentration is essential, deficiency of which may lead to pel-
lagra, characterised by dermatitis, dementia, diarrhoea and death. NADH in mito-
chondria delivers electrons from hydrolysed substrates to electron transport chain. 
In a reduced form, NADH acts as an antioxidant. Administration of NADH orally is 
not viable, since it gets degraded in the stomach. Therefore, it is generally adminis-
trated in the form of niacin, nicotinamide or nicotinic acid.

NAD plays a vital role in regulating the activity of sirtuins, a deacetylators in 
cell. Proper functioning of sirtuins requires NAD as a cofactor. Sirtuins deacetylase 
many important proteins in the cell including p53, MnSOD and NFkB, which are 
involved in many cellular functions ranging from cellular metabolism, cell survival 
and cell death. It has been reported that exogenous administration of NAD can 
block development of pathological hypertrophy in rats [112]. Diguet et al. reported 
that, administration of nicotinamide riboside preserves cardiac function in mice 
with dilated cardiomyopathy [98]. Sirtuin 3, which is located in the mitochondria, 
regulates the function and activity of mitochondrial complexes. Therefore, function 
and activity of sirtuin 3 is very much crucial in energy homeostasis in the mitochon-
dria. NAD, maintain this energy homeostasis indirectly by regulating the function 
of sirtuin 3 in mitochondria.

Apart from cardiac diseases, NAD is also known to play an important role in the 
neurological disorders. Recently, it has been shown that, stable NADH administra-
tion could improve cognitive function in Alzheimer’s diseases [113]. In another 
clinical trial, alzheimer patients were administered stable NADH. The study found 
significant improvement in visual construction and verbal fluency as compared to 
placebo group. However, this study failed to give any evidence of improvements in 
attention or memory [114].

25.8.5	 �Replacement of Membrane Phospholipids

Membrane phospholipids plays an important role in cellular homeostasis and sig-
nalling. Increased reactive oxygen species/reactive nitrogen species in cytoplasm 
may oxidise membrane phospholipids. Oxidation of phospholipids in cell and cel-
lular organelles renders the membrane dysfunctional. Functionally damaged phos-
pholipid membrane in mitochondria may fail to perform basic functions and hinder 
the signalling, and therefore, becomes leaky. Thus, it becomes necessary to replace 
damaged portions of membrane to avoid any further cellular damage and increase 
energy production by decreasing proton leak from mitochondria.
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The	 dietary replacement of mitochondrial membrane phospholipid using an 
exogenous molecules has been proven very efficacious in improving mitochondrial 
function [99, 115, 116]. Mitochondrial function has been shown to be improved 
after oral administration of membrane phospholipids. This improvement is associ-
ated with decreased fatigue in fibromyalgia and chronic fatigue syndrome [101].

25.8.6	 �Combination Oral Supplement

Combination of antioxidant, phospholipids and mitochondrial cofactors could be a 
very efficient treatment to treat mitochondrial dysfunction. A formulation named 
ATP Fuel, a combination of membrane phospholipids, coenzyme Q, microencapsu-
lated NADH, L carnitine, alpha ketoglutaric acid and other nutrients has been tried 
in a 2 month clinical trial to treat an intractable fatigue and mitochondrial dysfunc-
tion [102, 103]. Different parameters like behavioural, cognitive and sensory, and 
treatment effectiveness were assessed in the study. Investigator found that, there was 
a significant improvement in all the parameters after 2 months of treatment with 
ATP Fuel as compared to control group.

In another double blind, placebo controlled, randomised clinical trial conducted 
by Witte et al. to find the effect of micronutrient supplementation in congested heart 
failure patients for a period of 9 months. At the end of 9 months, there was a signifi-
cant decrease in left ventricular mass (17.1%) and increase in left ventricular ejec-
tion fraction (5.3%) as compared to placebo controlled group. Whereas, six-minute 
walk test and inflammatory marker expression remained unchanged in the interven-
tion group as compared to placebo group [104].

25.8.7	 �Mitochondria-Targeted Antioxidants

Mitochondria are the substantial source of ROS in heart. Therefore, targeting ROS 
directly in mitochondria, that is at the site of origin, could be a better treatment 
strategy to avoid further escalation of the damage in cardiomyocytes. ROS from 
mitochondria is known to play crucial role in the pathogenesis of cardiac hypertro-
phy and heart failure through mitochondrial dysfunction.

A novel class of antioxidants which can target ROS more specifically in mito-
chondria could be of great use in these conditions. Among the other options, mito-
chondrial targeted antioxidant peptides have been proven to be efficacious in 
ischemic reperfusion (I/R) injury [117]. In cardiac I/R disease model in sheep, 
guinea pigs and rabbit, SS-31 analogues, a mitochondrial antioxidant, reduced the 
infract size as compared to control [92].

25  Mitochondrial Dysfunction and Oxidative Stress: Focusing on Cardiac…



572

25.8.8	 �Post Translational Modifications

The enzyme activity of many mitochondrial proteins is regulated by their acetyla-
tion status [118]. Acetylation of proteins at lysine residue in mitochondria is gener-
ally a negative regulator of mitochondrial enzymes. Mitochondria produces a large 
amount of acetyl Co A, which in turn renders mitochondrial proteins highly suscep-
tible to acetylation.

A group of histone deacetylases named Sirtuins, which performs the function of 
deacetylation of histone and non-histone proteins. SIRT-3, SIRT-4 and SIRT-5 are 
known to present in mitochondria. Among them, SIRT-3 have robust deacetylating 
activity, which regulates the acetylation status of almost 80–90% of proteins in 
mitochondria [68]. SIRT-3 is an antiaging gene and known to be involved in multi-
ple cellular signalling events including regulation of oxidative stress, mitochondrial 
biogenesis, metabolic activity, apoptosis and cardiac hypertrophy [119–121]. 
Decreased SIRT-3 activity in heart may lead to cardiac complications due to hyper-
acetylation of proteins in mitochondria [122]. In addition, SIRT-3 plays an impor-
tant role in regulating whole body energy homeostasis by regulating the metabolic 
pathways in all organs [123].

Recently, we found decreased SIRT-3 activity and increased acetylation of many 
mitochondrial proteins including Mn-SOD and TFAM in diabetic heart [44]. This 
was followed by decreased activity of mitochondrial enzymes and mitochondrial 
dysfunction. This correlates with decreased myocardial SOD activity as observed in 
diabetic group. Mitochondrial dysfunction was attenuated after oral administration 
garlic homogenate in these rats. We found that, garlic homogenate increased the 
SIRT-3 activity in the heart of these animals which lead to restoration of mitochon-
drial enzyme activity [44].

25.8.9	 �Toll like Receptor (TLR) Inhibitors

The role of innate immunity as critical component of “adaptive cardiac biology” is 
being recently recognized [124]. The innate immunity pathway seems to play an 
important role in heart failure and pressure-overload-mediated cardiac decompensa-
tion. Damage associated molecular patterns (DAMPs) released from injured cardiac 
cells, which in turn act as a danger signal in the innate system [125]. Recently it has 
shown that, necrotic heart tissue may release DAMPs, which are potent enough to 
initiate the chronic inflammation in the myocardium [126]. Pathogen recognition 
receptors (PRRs), part of innate immunity, are critical in the identification of danger 
signals released from damaged cardiomyocytes [127]. Mitochondrial DNA released 
from cardiac cells during cardiac damage may act as a strong DAMP in heart and 
may initiate an inflammatory cascade and mitochondrial dysfunction. Inflammatory 
cytokine released by activation of PRRs in heart, activates NF-kB pathway which in 
turn increases expression of many cytokine including IL-1β, IL-6 and TNF- α [128], 
which are known to cause mitochondrial dysfunction. Recently, many studies have 
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shown that TLR4 plays an important role in the cardiac adaptation during decom-
pensated state of the system.

Recently, we investigated mitochondrial health in cardiac hypertrophy and found 
that TLR4 inhibition in isoproterenol induced cardiac hypertrophy can attenuate 
mitochondrial dysfunction [43]. To confirm the role of TLR4 on mitochondrial 
function in cardiac hypertrophy, we have analysed the protein expression of ETC 
complexes in heart of these animals. Protein expression of Complex-I, III, and V 
was significantly decreased in hypertrophy heart as compared to control. TLR4 
inhibition in hypertrophy animals retained the mitochondrial complexes protein 
expression to normal as compared to disease group animals. Our data also suggest 
that mitochondrial enzyme activity is the direct outcome of TLR4 modulation. The 
activity of mitochondrial enzymes in hearts was found to be significantly decreased 
in hypertrophy animals. However, TLR4 inhibition in hypertrophy animals pre-
served the activity of these enzymes [43].

25.9	 �Conclusion

Mitochondria are cellular powerhouse and provide constant supply of ATP for heart. 
Constant exposure of mitochondria to high workload and oxidative stress makes it 
very susceptible to dysfunction and mutations. Being a largest source of ROS in the 
cell, mitochondria need a large pool of antioxidants to neutralize all the ROS that 
has been generated during ETC electron transfer. Maintaining mitochondrial anti-
oxidant status alone may not be enough to avoid the malfunctioning of ETC chain. 
Apart from ROS, dietary deficiency of some important nutrients may also cause 
mitochondrial dysfunction. Heart being the highest energy consuming organ in the 
body, even mild dysfunction mitochondria may affect cardiac function. During the 
pathological states like cardiac hypertrophy and failure, when, heart is already fac-
ing energy deficit, mitochondrial dysfunction is a critical component of disease 
progression.

Among many attempts that have been done to target mitochondrial dysfunction 
in the treatment of cardiac hypertrophy and failure, few of them found to be success-
ful. Monotherapy of mitochondrial dysfunction is difficult because of severity and 
complexity of the disease. Therefore, we found that, combination therapy with 
nutritional agents, antioxidants and phospholipid membrane components could be 
the better strategy. However, targeting mitochondrial dysfunction in chronic dis-
eases like cardiac hypertrophy and failure where mortality is very high, extending 
the life expectancy even by few years could be a big achievement. Targeting mito-
chondrial dysfunction in these disease condition is still in its infancy, which war-
rant’s more study in this area. More clinical trials considering mitochondrial targeted 
therapy in future may give more information regarding effectiveness of these ther-
apy in cardiac hypertrophy and heart failure.
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26.1	 �Introduction

The last report of the World Health Organization highlights that ischaemic heart 
disease and stroke, which account for 15.2 millions of death in 2016 combined, are 
the two leading causes of mortality worldwide. Both diseases are strictly related to 
atherosclerosis and hypertension where oxidative stress and the renin-angiotensin-
aldosterone system (RAAS) play a crucial role.

The RAAS regulates various physiological components of the cardiovascular-
renal systems but it is also critical in engendering the pathophysiological response 
into the same systems via hypertension, progression of atherosclerosis, vascular 
remodeling. The strict interplay between the RAAS components is fine tuned by 
hormonal stimuli and the feedback of baroreceptors in the kidneys, carotid arteries, 
and the heart. The baroreceptor reflex senses the blood pressure decrease inducing 
an increase of the sympathetic tone with ensuing vasoconstriction. Furthermore, the 
reduction of the renal perfusion pressure stimulates the renin production by juxta-
glomerular cells in the afferent arterioles of the kidneys, which activates the conver-
sion of the liver generated angiotensinogen into angiotensin (Ang) I. The latter is 
then converted through the hydrolysis of the angiotensin-converting enzyme (ACE) 
into the octapeptide Ang II that is the crucial mediator of multiple cardiovascular 
and renal effects. In fact, Ang II exerts its actions via its main receptors, i.e. the Ang 
II receptor 1 (AT1R) and 2 (AT2R) and stimulates various intracellular signaling 
pathways leading to vasoconstriction/vasodilation, hypertrophy, insulin resistance/
sensitivity, and vascular remodeling. Moreover, the activation of the renin-
angiotensin system, along with serum potassium, is the main stimulus to the secre-
tion from the adrenal cortex zona glomerulosa of the steroid aldosterone, the last 
player of the RAAS, which promotes the transcription of proteins inducing sodium 
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reabsorption and potassium excretion from the kidneys, leading to blood pressure 
increase.

Reactive oxygen species (ROS), a product generated by multiple enzymatic reac-
tions, are considered one of the crucial contributor to a multiplicity of diseases. In 
pathological conditions, the exaggerated formation of ROS that commonly partici-
pate to the reduction-oxidation (redox) reactions, overwhelms the recovery capacity 
of the cells, inducing oxidative stress and cellular damage [1]. Therefore, it is not 
surprising their involvement in the detrimental effects of the RAAS in the cardio-
vascular and renal pathophysiology, where they contribute via oxidative damage of 
lipids, proteins and deoxyribonucleic acids to myocardial hypertrophy and fibrosis, 
atherosclerosis and vascular remodeling, and chronic kidney disease [2].

26.2	 �Oxidative Stress Sources and the Renin-Angiotensin-
Aldosterone System

Oxidative stress is due to an imbalance between pro-oxidant and antioxidant fac-
tors, with the formers prevailing due to the loss of the intracellular redox homeosta-
sis and leading to damage of proteins, membrane lipids, and oxidation of nucleic 
acids [3].

Reactive oxygen species are produced during the incomplete reduction of molec-
ular oxygen. Superoxide (O2

•−) is the primary ROS deriving from enzymes such as 
nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, xantine oxidase 
(XO), uncoupled nitric oxide synthase (NOS), P-450 monooxygenase, lipooxygen-
ase (LOX), cyclooxygenase (COX), and from the respiratory chain in the 
mitochondria.

NAD(P)H oxidases (Nox) entail a family of enzymes catalyzing the electrons 
transfer from NAD(P)H to flavin and heme moieties to molecular oxygen, with five 
isoforms located in cardiovascular and renal tissues: Nox1, Nox2, Nox3, Nox4, and 
Nox5 [4]. These enzymes comprise a complex of transmembrane and cytoplasmic 
proteins, which are assembled together to create the catalytic subunit. Nox2 
(gp91phox), the prototypical NAD(P)H oxidase, is found in phagocytes and through-
out the cardiovascular system and requires five subunits to create the active cyto-
chrome b558: p47phox, p67phox, p40phox, p22phox, and the small G protein Rac 1/2 [5]. 
Nox2 induces ROS generation only upon an adequate stimulation whereas non-
phagocytic Nox’s are constitutively active and produce O2

•− triggering intracellular 
signaling pathways, influencing transcription factors and molecules involved in cell 
growth, inflammation, and contraction [6, 7].

Superoxide per se, has a very short half-life and might spontaneously or catalyti-
cally dismutate to hydrogen peroxide (H2O2), a ROS with higher stability, which can 
cross the biological membranes and act as a signaling molecule along with O2

•−. The 
latter promotes also the formation of the highly reactive and toxic compound per-
oxynitrite (ONOO−), while hydroxyl radical (OH•) is formed by catalytic decompo-
sition of H2O2 [8].
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Xanthine oxidase represent a crucial enzyme in purine degradation, catalyzing 
the sequential hydroxylation of hypoxanthine to yield xanthine and uric acid. It 
entails two forms, e.g. the dehydrogenase and, under a pro-inflammatory status, 
the oxidase form, which provides electrons to molecular oxygen, generating O2

•− 
and H2O2.

 Nitric oxide synthase  comprises multiple enzymes catalyzing the nitric 
oxide (NO) production exploiting the cofactor tetrahydrobiopterin to reduce and 
incorporate molecular oxygen into L-arginine. However, in conditions of 
depleted tetrahydrobiopterin, NOS reduces molecular oxygen rather than 
L-arginine, producing O2

•− instead of NO.
Oxidative stress and RAAS are strictly intertwined as suggested by pathological 

conditions characterized by RAAS upregulation, e.g. atherosclerosis and hyperten-
sion, where Ang II activates Nox with ensuing ROS increase [9, 10]. AT1R activates 
at least two profibrotic cell signaling pathways that involve also NAD(P)H oxidase 
stimulation, e.g. the extracellular signal-regulated kinase (ERK) 1/2, and the RhoA/
Rho kinase. In vitro studies demonstrated the effect of Nox2 activation in the Ang 
II-mediated signaling of the serine-threonine kinase Akt, which is crucial for car-
diomyocyte hypertrophy development [11]. The inactivation of Nox2 in fact, abol-
ished both Ang II-induced O2

•− generation and cardiomyocyte hypertrophy by 
reducing Akt activity. In vivo studies by Li and colleagues on guinea pigs with left 
ventricular hypertrophy (LVH), supported the impact of overexpression of NAD(P)
H oxidase subunits and the generated ROS in the induction of hypertrophy. 
Alongside the increased free radicals levels, they observed significant activation of 
ERK 1/2, ERK 5, and other kinases involved in inflammatory signal and fibrosis 
pathways such as c-Jun NH2-terminal kinase 1/2, and p38 mitogen-activated protein 
kinase [12]. Conversely, Grieve et al., in Nox2 knockout mice exposed to pressure 
overload, observed a reduction of interstitial fibrosis and cardiac contractile dys-
function, compared to wild-type littermates [13]. Furthermore, in a mineralocorticoid-
dependent hypertension model Johar et al. demonstrated that aldosterone signaling 
via the mineralocorticoid receptor contributes to the Ang II cardiac profibrotic 
effects via Nox2 activation [14]. Nox2 activation, although clearly involved in this 
process, is not mandatory for the development of LVH thus, other mechanisms trig-
gered by Ang II are implicated in cellular functions reprogramming [15, 16]. Finally, 
in a model of RAAS pathway overstimulation, Wistar-Kyoto (WKY) rats infused 
with Ang II showed endothelial dysfunction and hypertrophy of vascular smooth 
muscle cells and cardiomyocytes through RhoA/Rho kinase increase of oxidative 
stress [17].

Although, these animal models are a useful tool to understand the impact of Ang 
II signaling and oxidative stress in the development of hypertension and cardiovas-
cular diseases [14, 18, 19], they do not exhibit all the features of human hyperten-
sion, making it difficult to extend the results to humans. Two renal tubular disorders, 
i.e. Bartter’s and Gitelman’s syndromes (BS/GS) [20], characterized by normal or 
low blood pressure and absence of endothelial dysfunction and cardiovascular 
remodeling [21] despite the activation of the RAAS, might shed new light on this 
field. Extensive studies on BS/GS have shown biochemical abnormalities of Ang II 
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short- and long-term signaling providing useful insights on the pathophysiology of 
vascular tone control and hypertension, as well as its complications such as athero-
sclerosis and cardiovascular remodeling. Moreover, BS/GS patients, despite the 
over activation of the RAAS, possess reduced oxidative stress and ROS production, 
and increased antioxidant defenses.

Conversely, in essential hypertensive, chronic kidney disease (CKD), and end 
stage renal diseases (ESRD) patients, oxidative stress is increased and triggers mul-
tiple inflammatory pathways [22, 23]. These diseases have been useful to investi-
gate the physiological response to hypertension in terms of oxidative stress and 
antioxidant defenses [24, 25].

Studies performed on oxidative stress and hypertension are therefore of consid-
erable relevance because of the possibility that therapies against ROS generation or 
increasing nitric oxide availability and antioxidants might be useful in preventing 
vascular injury and renal dysfunction and hypertensive end-organ damage.

26.3	 �Oxidative Stress and Hypertension

Compelling evidences demonstrate that ROS are a frequent feature of hypertension, 
although, it is still under scrutiny their role in its pathogenesis, in that it is contro-
versial if ROS are determined by or cause high blood pressure. Different animal 
models have improved our understanding of hypertension pathogenesis. They have 
been useful to investigate potential pharmacological targets and drugs and have 
been manipulated to create the factors hypothesized to influence the onset of hyper-
tension, such as excessive salt intake, overactivation of the RAAS, and genetic pre-
disposition [26, 27].

One of the first demonstration of the role played by ROS in hypertension derived 
by studies in spontaneously hypertensive rats (SHR), that have doubled vascular 
O2

•− production compared to WKY rats. In these animal models treatment with the 
superoxide dismutase mimetic tempol has been shown to normalize ROS levels, 
reduce renal sympathetic nerve activity in both SHR and WKY, decrease the mean 
arterial blood pressure in both groups of rats by increasing the plasma total antioxi-
dant capacity overall and preventing the progression of hypertension [28, 29].

The relationship between hypertension, RAAS, and oxidative stress has been 
suggested even earlier in a study by Laursen et al. [30]. The authors exploited a rat 
model of hypertension through Ang II or norepinephrine infusion. Despite a similar 
increase in blood pressure Ang II was associated to increased vascular ROS, whereas 
norepinephrine was not. Moreover, superoxide dismutase  treatment significantly 
reduced blood pressure in Ang II-infused rats, with no effect on norepinephrine-
infused rats. Based on these results the authors concluded that Ang II-mediated 
hypertension is at least in part mediated by O2

•−, probably through degradation of 
NO. In SHR and stroke-prone SHR (SPSHR) the expression of thioredoxin, a redox 
regulating protein, was reduced compared to WKY rats, and in an in vitro experi-
ment Ang II treatment of peripheral blood mononuclear cells decreased thioredoxin 
more in SHR and SPSHR compared with WKY [31].
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Further support to the interplay between RAAS and oxidative stress in hyper-
tension was provided by treatment of SPSHR with an AT1R blocker (ARB), i.e. 
irbesartan, which reduced blood pressure similarly to amlodipine and hydrochlo-
rothiazide/hydralazine, but was the most efficacious drug at reducing oxidative 
stress as demonstrated by a decrease of O2

•− and of p22phox production [32]. In 
SHR and SPSHR experimental evidences demonstrated that hypertension is asso-
ciated to NAD(P)H oxidases activity through Ang II signaling and to reduced NO 
bioavailability or dysfunctional endothelial NOS (eNOS), supported by the evi-
dence that the treatment with antioxidants and ARBs decreases superoxide pro-
duction and hypertension progression [33]. The contribution of each component 
of the RAAS to the development of hypertension and oxidative stress have been 
supported also by studies carried out in SHR rats where treatment with the renin 
inhibitor aliskiren [34] and the ACE inhibitor enalapril [35] showed ROS 
reduction.

In hypertensive humans clinical studies demonstrated an increase of ROS and a 
decrease of the antioxidant defense mechanisms in vivo and in vascular smooth 
muscle cells of arteries in vitro [36]. Systolic and diastolic blood pressure increased 
with raising ROS and decreasing plasma antioxidant status [37, 38]. Moreover, ROS 
contribute to hypertension-induced target organ damage through increase of pro-
inflammatory gene expression and modulation of cell proliferation and death path-
ways [39]. However, the role of oxidative stress in hypertension might be limited to 
advanced stages and trivial in early stages of the disease, as suggested by the finding 
of similar levels of urinary ROS in never-treated mild-to-moderate hypertensives 
compared to healthy controls [40].

Among the multiple sources relevant to the pathogenesis of human hypertension 
a crucial role is played by the production of ROS under Ang II stimulation [2, 41]. 
In fact, in the long-term AT1R activation favors the onset of hypertension complica-
tions such as changes in cardiovascular structure and induction of atherosclerosis, 
via increasing oxidative stress through NAD(P)H oxidases stimulation [25]. In 
human vascular smooth muscle cells isolated from peripheral arteries of essential 
hypertensive patients, Ang II stimulation increases ROS levels and reduces antioxi-
dant defenses [42]. Moreover, in multiple clinical studies the pharmacological inhi-
bition of the RAAS system through ACE inhibitors or ARBs together with the blood 
pressure lowering effects was able not only to reduce inflammatory markers [24, 43] 
and oxidative stress [44], but also to increase the antioxidant defenses [24, 45].

Supported by these evidences the therapeutic use of antioxidant therapy supple-
mentation in hypertensive patients, mainly by means of vitamins C and E, has been 
advocated to decrease oxidative stress and lower blood pressure. In a randomized 
clinical trial completed in 110 patients with grade 1 essential hypertension assigned 
to either vitamins C and E or placebo for 8  weeks, the treatment significantly 
decreased blood pressure and increased antioxidant capacity [46]. These data have 
been corroborated by a meta-analysis including 29 randomized clinical trials on 
short term vitamin C supplementation that demonstrated a significant reduction of 
systolic and diastolic blood pressure (−3.8 mmHg and − 1.4 mmHg, respectively) 
[47]. However, the results of all large clinical trials testing the hypothesis of a 
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positive effect of antioxidant therapy on cardiovascular disease demonstrated no 
effect whatsoever on cardiovascular endpoints or blood pressure decrease [33]. 
These results might be explained by the advanced cardiovascular disease of the 
patients enrolled, the antioxidant vitamin selected for the treatment, and its subop-
timal dose [33].

26.4	 �Oxidative Stress and Cardiovascular Remodeling

26.4.1	 �Atherosclerosis

Atherosclerosis is a chronic inflammatory disease recognizing as an early patho-
genic step endothelial dysfunction, characterized by endothelial cells changes 
induced by “irritative” stimuli (e.g., cigarette smoking, dyslipidemia, diabetes, and 
hypertension) [48]. The endothelial damage induces the expression of adhesion and 
chemotactic molecules, mediating the leucocyte migration into the arterial wall, and 
increases the permeability to macromolecules. This favors the low-density lipopro-
tein (LDL) particles entrance into the arterial subintimal extracellular matrix where 
they are trapped and oxidized by resident vascular cells [49]. The oxidized LDLs 
(oxLDL) exert a proatherogenic effect [50] stimulating the endothelial cells to pro-
duce monocyte chemotactic protein-1, macrophage and granulocyte colony-
stimulating factors that recruit monocytes and promote their conversion into 
macrophages. The latters promote the LDLs complete oxidation [51] allowing their 
recognition by macrophages scavenger receptors, which internalize them and trans-
form into foam cells, the hallmark of the atherosclerosis [52].

The RAAS plays a crucial role in the pathogenesis of atherosclerosis affecting 
the endothelium and promoting inflammatory reactions, thrombosis, and oxidant 
injury [53]. The Ang II mediated injury is at least partially mediated by ROS pro-
duced by NAD(P)H oxidase activation causing endothelial dysfunction through oxi-
dative damage of membrane lipids, which promotes inflammatory cytokine 
production such as tumor necrosis factor-α. This effect as well as arterial wall pro-
duction of endothelial cells adhesion molecules, monocyte chemoattractant protein 
1, and macrophage stimulating factors are increased via NF-κB activation. Moreover, 
an overproduction of O2

•− by NAD(P)H oxidase reacts with NO to form the highly 
reactive intermediate ONOO−, which is responsible of subsequent NOS uncoupling, 
tyrosin nitration of prostacyclin synthase (PGI2S), and vasoconstriction [54].

Endothelial progenitor cells (EPCs), a bone marrow or cord blood derived cell 
population, are deemed to be involved in vascular injury repair via production of a 
cell patch at sites of vessel injury [55]. Hypertension is characterized by a decrease 
of the EPCs number and impairment of their function, constituting an additional 
risk factor for cardiovascular events [24]. The detrimental role of the RAAS in the 
vascular system might be related also to the Ang II induction of EPCs accelerated 
senescence, as opposed to the vasorelaxant calcitonin gene-related peptide (CGRP) 
that prevents their ageing [56, 57]. In clinical studies carried out in hypertensive 
patients ARBs, in particular olmesartan medoxomil, which has indirectly been 
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shown to possess vasoprotective, anti-inflammatory, and anti-atherosclerotic prop-
erties in the EUTOPIA, VIOS, MORE, and OLIVUS clinical trials, is able to sig-
nificantly increase the antioxidant heme oxygenase (HO)-1 alongside the CGRP 
and to raise the number of circulating EPCs, thereby favoring vascular repair and 
preventing atherosclerosis [24].

26.4.2	 �Heart Failure

Heart failure is a pathological condition characterized by myocardial functional and 
structural alterations, sodium retention, endothelial dysfunction, activation of the 
RAAS and the sympathetic nervous system [58]. The increased oxidative stress in 
heart failure has been demonstrated in many studies both in animal models and in 
humans, proving that the sources of ROS in the heart and the vasculature are numer-
ous, e.g. XO, Nox2 and Nox4, mitochondrial electron transport chain activity, and 
uncoupled NOS [58, 59].

The detrimental effects of ROS in heart failure are attributable to derangements 
of redox-regulated ion handling proteins, which affects the excitation-contraction 
coupling leading to contractile and relaxation dysfunction. A crucial regulator of 
proteins involved in excitation-contraction coupling is the Ca2+/calmodulin-
dependent kinase II (CaMKII), whose expression is increased in heart failure and 
activated by ROS [60, 61]. This leads to an increased sodium influx via voltage-
gated channels, leading to intracellular accumulation with ensuing prolongation of 
the action potential, and altered calcium handling by the sarcoplasmic reticulum, 
followed by its intracellular increase and subsequent reduced contractility and 
arrhythmias [61]. Furthermore, oxidative stress is involved in ventricular remodel-
ing, mediated by the activation of CAMKII and mitogen-activated protein kinases, 
and in cardiomyocyte apoptosis and necrosis. Finally, heart failure is characterized 
by endothelial dysfunction partially secondary to NOS uncoupling with a shift from 
NO to O2

•− production, as demonstrated by the beneficial effects of eNOS blunting 
in this setting [62]. The decrease of myocardial NO leads to accumulation of cyto-
solic calcium affecting, as reported above, myocardial relaxation and contractility 
[63].

The beneficial effects of the RAAS blockers on reduced ejection fraction heart 
failure have been demonstrated more than three decades ago [64] and this is prob-
ably related, at least partially, to the reduced oxidative stress obtained by this ther-
apy. In fact, in a mouse model of heart failure Ang II induced cardiomyocyte 
increase of mitochondrial ROS with ensuing cardiac hypertrophy, fibrosis, and dia-
stolic dysfunction, which was blunted by the antioxidant effect of mitochondrial 
catalase overexpression [65]. The positive effect of the RAAS inhibition is attribut-
able also to the inhibition of the eNOS activity. In fact, in a post myocardial infarc-
tion animal model of heart failure the ACE inhibitor trandolapril and the 
ARB irbesartan were able to reduce the impaired endothelium-dependent relaxation 
normalizing the aortic eNOS expression, at least partially via reduction of O2

•−, 
which was determined only by the ARB treatment [66].
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Taken together, these observations further highlight the impact of oxidative stress 
promoted by Ang II signaling in the onset of all the molecular events that induce 
cardiovascular remodeling and heart failure.

26.5	 �Oxidative Stress and Kidney Disease

Kidney diseases are associated with  both traditional risk factors, e.g. diabetes, 
hypertension, obesity, smoke, alcohol, and non-traditional cardiovascular disease 
risk factors such as endothelial dysfunction, inflammation, and oxidative stress, 
which arise very early in renal disorders. In these stages oxidative stress related-
products are also biomarkers of disease progression and, although renal replace-
ment treatments and kidney transplantation increase patients survival, cardiovascular 
risk factors have a strong impact on patients life expectancy [67, 68].

Several studies have shown that many components of the immune system have a 
critical role in the progression of CKD, as suggested by elevated levels of circulat-
ing interleukin(IL)-6, IL-8, and C-reactive protein (CRP) [69]. In fact, in a toll-like 
receptors (TLRs) knockout model, mice are protected against acute kidney injury 
and renal dysfunction, whereas antigen presenting dendritic cells, which are crucial 
for the activation of T cells and their mediated glomerular inflammation, are over 
stimulated in animal models of glomerulonephritis [70–72]. The interplay between 
immune system and RAAS activation is supported by evidences in mice lacking 
AT1R on immune cells, where Ang II induced proliferation in splenocytes and the 
specific blockade of AT1R reversed this effect [73]. Moreover, blockade of AT1R 
and ACE inhibitor treatment in SPSHR significantly decreased the thickening and 
degeneration of glomeruli and tubules, decreasing inflammatory cells infiltration of 
the glomeruli [74].

In CKD RAAS activation contributes to oxidative damage through increased 
ROS production and impairment of antioxidant defenses. In fact, Sprague-Dawley 
rats with CKD are characterized not only by lipid peroxidation, NF-kB activation, 
mononuclear cell infiltration, upregulation of chemoattractant protein-1, Noxs, 
COX, and 12-lipoxygenase upregulation, but also by glutathione depletion and 
nuclear factor erythroid 2-related factor-2 (Nrf2) reduced activity. The latter regu-
lates the induction of genes encoding for antioxidant enzymes and related proteins, 
such as superoxide dismutase, catalase, HO-1 and others, demonstrating that anti-
oxidant system decreased function in the early stages of CKD is critical for its pro-
gression and worsens with the disease severity [75, 76].

Renal replacement therapies such as dialysis, affects the endothelium integrity 
through production of toxic and profibrotic molecules. Thus, many  studies have 
been performed on hemodialysis, CKD, and ESRD patients in order to evaluate the 
impact of renal failure and the kidney replacement therapy on oxidative stress and 
its complications in cardiovascular-and renal remodeling.

In patients on chronic dialysis the use of vitamin E-coated dialyzer reduced 
mRNA levels of p22phox and hydroperoxyde, increasing the total antioxidant power 
[77, 78]. Haemodiafiltration with online regeneration of ultrafiltrate, which is 
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reported to be effective at reducing cytokines such as IL-1, lowers oxidative stress 
as demonstrated by reduced p22phox, atherothrombogenic plasminogen activator 
inhibitor (PAI)-1 expression, and oxLDLs, promoting the increase of antioxidant 
defenses like HO-1 [77–80]. The treatment of oxidative stress reduces the proteins 
involved in fibrosis and cardiovascular remodeling as it has been shown in hemodi-
alysis patients supplemented with green tea [81]. In fact, the antioxidant treatment 
reduced ERK1/2 activation, a kinase eliciting hypertrophic responses via phosphor-
ylation of nuclear targets (c-myc, c-jun, and ATF-2) and leading to transcriptional 
reprogramming of genes associated with hypertrophy. Most of hemodialysis patients 
display LVH, which is correlated with the ROS markers oxLDL and p22phox, but the 
antioxidant therapy is able to reduce significantly the cardiac mass alongside the 
oxLDL and to blunt macrophage mobility, preventing their accumulation, and myo-
cardial fibrosis [81, 82].

Another pathway deeply involved in the fibrotic responses both in kidney and 
cardiovascular disease via induction of oxidative stress is the Rho A/Rho kinase 
pathway, which also mediates the upregulation of ROS through induction of 
NADPH oxidases. In dialysis and CKD patients Rho A/Rho kinase is over activated, 
particularly in patients who had already LVH compared to those with normal left 
ventricular mass, in agreement with data observed in hypertensive patients [23, 83]. 
The incubation of circulating leukocytes from CKD and dialysis patients with 
fasudil, a Rho A/Rho kinase inhibitor, reduced dose dependently its activity, sug-
gesting that the latter could be a very useful target for the prevention of cardiovascular-
renal remodeling [23].

26.6	 �Bartter’s and Gitelman’s Syndromes

The physiological signaling of the RAAS is critical for the control and regulation 
of vascular tone and blood pressure. In particular, as above reported, Ang II signal-
ing through AT1R is pivotal for the induction of a wide spectrum of intracellular 
pathways entangled in oxidative stress responses, profibrotic alterations, insulin 
resistance, and cardiovascular-renal remodeling [84]. Two rare genetic diseases, 
characterized by renal electrolytic derangement, display activation of the RAAS, 
but yet exhibit reduced peripheral vascular resistance, normal or low blood pres-
sure, and absence of cardiovascular-renal remodeling. Bartter’s and Gitelman’s 
(BS/GS) syndromes provide a mirror image of hypertension because of a blunted 
signaling of Ang II despite its high plasma levels and normal Ang II receptors [85]. 
Both BS/GS are characterized by hypokalemia, metabolic alkalosis, intravascular 
volume depletion due to renal salt wasting, with some key features that allow dif-
ferential diagnosis. BS shows electrolyte abnormalities similar to those induced by 
the treatment with furosemide or other drugs that inhibit the Na+K+2Cl− cotrans-
porter in the thick ascending limb of Henle’s loop, and can be classified into 5 
types based on the cotransporter or channel affected by loss-of-function mutation. 
These patients are characterized by normomagnesemia and hyper-normocalciuria 
and typically arise in infancy or childhood. GS mutations affect the 
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Na+Cl− cotransporter in the distal convoluted tubule of the nephron, therefore, their 
abnormalities are similar to those induced by the treatment with thiazides. GS is 
characterized by the concomitant presence of hypomagnesemia and hypocalciuria 
and a later onset of the symptoms in childhood or adulthood. Notwithstanding 
some different clinical features, both syndromes are a human model of blunted 
Ang II signaling as demonstrated by the reduced oxidative stress, the increased 
antioxidant defenses, and the lack of cardiovascular remodeling, suggesting that 
Ang II signaling is blocked or interrupted at the post-receptor level or very close to 
the central switch control of Ang II signaling [86].

In hypertension the binding of Ang II with its heterotrimeric G-protein-coupled 
receptors, Gq and Gi proteins, promotes the increase of free intracellular Ca2+, 
mediates the activation of phospholipase C (PLC), which stimulates the protein 
kinase C (PKC) and the Rho A/Rho kinase pathway. BS/GS have decreased gene 
and protein expression of the α subunit of Gq protein and blunted downstream intra-
cellular events that promote Ca2+ release and PKC activation [85, 87, 88]. The 
downregulation of the Gq protein signaling can be explained by the observation 
that, contrarily to what has been described in hypertension, the regulators of G pro-
tein signaling (RGS)-2 is increased in BS/GS and is crucial for the vasodilatatory 
activity of NO [89, 90].

The pathways involved in the long-term signaling of Ang II that, mainly via oxi-
dative stress, lead to cardiovascular-renal remodeling, hypertension, atherosclero-
sis, heart and kidney failure, have been extensively studied in BS/GS. These patients 
are characterized by decreased p22phox gene and protein expression, that implies 
lower production of ROS, particularly of O2

•−, and by increased gene expression of 
the antioxidant HO-1 [86]. Reduced oxidative stress in BS/GS is demonstrated by 
the decreased susceptibility of LDLs to oxidation [91], as proved by reduced levels 
of oxLDLs, coupled with increased NO production and decreased PAI-1 [92]. 
Finally, among the profibrotic effects promoted by Ang II signaling, the cytokine 
transforming growth factor-β that induces cell differentiation/proliferation and 
fibrosis is significantly reduced in BS/GS [86].

A crucial player of cardiovascular-renal pathophysiology is the balance between 
the Rho A/Rho kinase pathway and the NO system that are involved in processes 
such as induction/decrease of oxidative stress, regulation of PAI-1, control of neo-
intimal formation, inhibition/activation of phosphoinositol 3 kinase (PI3K)/Akt, 
increase/decrease of eNOS activity, and regulation of glucose transport and metabo-
lism [84]. Experimental evidences have shown that in BS/GS Rho A/Rho kinase 
activity is blunted and associated with increased NO and eNOS expression [92, 93]. 
This contention is supported by the finding that p63RhoGEF gene and protein 
expression is reduced along with the phosphorylation of myosin phosphatase target 
protein-1 (MYPT-1), a marker of Rho A/Rho kinase activation, which is conversely 
increased in hypertensive subjects [22].

The low oxidative stress in BS/GS is not associated to a reduced anti-inflammatory 
capacity, as demonstrated by unchanged levels of CRP and other inflammatory 
mediators such as vascular cell adhesion molecule (VCAM), intracellular cell adhe-
sion molecule (ICAM), IL-6, and NF-kB [94, 95].
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Taken together, the studies in BS/GS have shed light on key regulatory elements 
of Ang II signaling crucial in the vascular tone regulation and cardiovascular-renal 
remodeling. Thus, the importance of the Rho A/Rho kinase pathway and its rela-
tionship with the NO system is determinant not only for the induction of hyperten-
sion and insulin resistance, but also for the long term effects of Ang II signaling as 
seen above.

26.7	 �Conclusions

The over activation of the RAAS is the switch for many intracellular pathways that 
induce hypertension and in the long term cardiovascular-renal injury through 
increased oxidative stress.

Based on the relevance of oxidative stress on the onset of endothelial and vascu-
lar dysfunction, several experimental evidences demonstrated that its decrease 
might be the best strategy to prevent complications related to hypertension and car-
diovascular diseases. A wide range of prospective cohort studies have shown that 
the differences in cardiovascular morbidity and mortality among diverse popula-
tions are at least partially attributable to differences in the antioxidant intake from 
foods and beverages [54]. The risk factors for cardiovascular and renal diseases are 
numerous, such as unhealthy lifestyle and diet habits, but at a molecular level there 
is a strict connection between inflammation, blood pressure, and endothelial dys-
function. This awareness should be kept in mind when considering pharmacological 
interventions for the treatment of hypertension and related cardiovascular-renal dis-
eases, which can be integrated with antioxidant supplementation.
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