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Preface: History of Genome-Wide Association 
Study

As we understand from variations in individual’s height, weight, character, or looks, 
human is diverse in every aspect. From the clinical point of view, it is one form of 
the expression of human diversity that every patient diagnosed with the same dis-
ease does not respond equally to the same therapy. Naturally, these diversities come 
from complex combination of different genetic and environmental factors. Genetic 
epidemiology focuses on revealing genetic backgrounds of clinical status including 
the disease itself, drug responses, or adverse effects of drugs. As a scientific back-
bone, common disease-common variant hypothesis (CDCV hypothesis) claims that 
genetic risk of common diseases would be due to variations in the genome with rela-
tively high allele frequencies. The simplest and thorough way to investigate this 
hypothesis is to examine all the DNA variations, especially SNPs (single nucleotide 
polymorphisms) in the genome, and this approach is called genome-wide associa-
tion study (GWAS). Nowadays, it has become one of the most powerful tools to 
understand genetic aspects of human/disease diversity. However, its potency was 
not proven true until 2002, when our team in RIKEN first in the world reported in 
Nature Genetics (Ozaki et al. 2002) the identification of functional variants through 
GWAS that are genetically associated with myocardial infarction, one of the com-
mon cardiovascular diseases. The success completely changed the mainstream of 
study for identifying disease genes/loci, from linkage analyses to GWAS, from rare 
to common diseases.

Several important mechanisms were indispensable for this first-in-the-world 
achievement that were established through the Japanese Millennium Genome 
Projects started in 2000. These projects were financially supported as a Japanese 
National Project by the Japanese Government led by the late ex-prime minister, 
Keizo Obuchi. One of the mechanisms is gene-based SNP discovery project, which 
aimed to identify 150,000 SNPs located within gene regions, because public SNP 
databases contained considerable “noises” that could not be found in the real world. 
The reason why we focused on gene regions was very simple; considering the com-
plexity and uncovered significance of the variations in the genome which are out-
side gene regions, it should be much easier to interpret the links between genetic 
variations and phenotypes. As a first step toward personalized medicine that utilizes 
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genetic information, this SNP discovery project was successful by the identification 
of 190,000 genetic variations in the human genome (Haga et al. 2002).

Another concurrent project was raised by the question how we could examine 
large number of SNPs in a practical time that would be identified through the SNP 
discovery project. To solve this problem, high-throughput genotyping system was 
developed using combination of multiplex PCR and Invader assay (Ohnishi et al. 
2001). With this system, 100 SNP loci for each of the 384 individuals could be 
examined simultaneously. Even today, the number of individuals that can be exam-
ined in one experiment seems to be among the largest, that is, this system is appro-
priate for replication study that should examine a limited number of loci for a large 
number of individuals.

In parallel with these achievements originated in Japan, an international collab-
orative effort named International HapMap Project started in 2001 to develop 
genetic information database served as an infrastructure for GWAS. This project 
was based on two previous findings. First, the genetic backgrounds seem to be dif-
ferent among ethnicities; therefore, allele frequency of some loci might be different, 
which might cause stratification of the sample population. This raised the need of 
knowing genetic information on ordinary individuals from each ethnicity to serve as 
control subjects. Second is linkage disequilibrium (LD). In the genome, crossover 
of chromosomes during meiosis does not occur at any point randomly but rather 
accumulate at specific loci, called “recombination hotspot.” Therefore, recombina-
tion rate is not flat throughout the genome but has sharp spike-like form at the loci. 
Generally, the region surrounded by the two spikes is in LD (LD block). Within LD 
block, SNP loci are sometimes completely linked with another SNP in the same 
block. This phenomenon enabled the researchers to perform GWAS much more 
efficiently because they do not need to examine each of the two loci that are in abso-
lute LD; just one out of two is enough. The achievements were published in Nature 
in 2005, where RIKEN made largest contribution among nine genotyping institutes 
in the world. We genotyped 269 DNA samples from four populations for 1,000,000 
SNP loci throughout the genome and found 250,000 to 500,000 SNP loci (tag SNP) 
are enough to study whole genome variations, depending on the populations (The 
International HapMap Consortium 2005). The rapid progress in genotyping tech-
nology using DNA microarray also has accelerated GWAS, and now, more than 
10,000 study results have been published, and the data can be browsed through 
web site.

The subject of this book is the discussion of the history, future, and beyond of the 
genome-wide association study (GWAS), which enabled exploration of unknown 
disease etiology in the whole human genome. In particular, it aims to show the cur-
rent utility and limitation of GWAS and how to breakthrough that limitation. This 
book presents (1) analytic methodologies  of GWAS, (2) results for disease and 
pharmacogenomic analysis, (3) GWAS in the era of next-generation sequencing 
(NGS), and big data. For typical common diseases, we focus on cardiovascular, 
autoimmune, diabetic, cancer, and infectious diseases. Important feature of this 
book is that it gives directions as to (1) which types of diseases/phenotypes are 
suited for GWAS, (2) future of GWAS, and (3) what is beyond GWAS. The readers 
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would expect to understand how a road map resulting from GWAS can lead to the 
realization of personalized/precision medicine: functional analysis, drug seeds, 
pathway analysis, disease mechanism, risk prediction, and diagnosis.

Tokyo, Japan�   Toshihiro Tanaka 
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Chapter 1
Genotyping and Statistical Analysis

Artem Lysenko, Keith A. Boroevich, and Tatsuhiko Tsunoda

Abstract  Development of technologies for high-throughput profiling of DNA vari-
ation has led to rapid discovery of causal genetic mutations underlying complex 
phenotypic traits and diseases. These exciting advances were originally enabled by 
the results from the Human Genome project (1990–2003) that allowed the comple-
tion of the first genome-wide association study in 2002 and led to the development 
of haplotype maps of the human genome. Technological advances in microarray 
genotyping and next-generation sequencing have since  made possible the wide-
spread and cost-effective application of this approach and, in combination, have 
powered the new age of biomedical discovery. This chapter introduces the history 
and fundamental principles of genetic association analysis, and explains key con-
cepts and current statistical methods for processing these data. In particular, dis-
cussed topics include experimental design of association studies, quality control 
procedures, approaches for dealing with the population stratification, statistical test-
ing for genetic associations and more recent developments in detection of effects of 
rare variants and genetic interactions.

Keywords  Genome-wide association study · High-throughput genotyping 
technologies · Genetic association testing · Genotype imputation · Haplotype 
mapping
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1.1  �Principles of Genetic Association Analysis

Genetic association is the co-occurrence of inherited genomic characteristics that 
exist with a frequency higher than would be expected by chance. The study of 
genetic associations therefore aims to identify such associations, most commonly 
for the purpose of establishing a link to an observable phenotype, like a disease, 
which can provide hints about the underlying genetic mechanism giving rise to the 
trait in question. Importantly, an association may also exist between particular 
genetic polymorphisms themselves, either due to physical proximity of their sites 
(genetic linkage) [1] or due to differences in frequencies of particular alleles (link-
age disequilibrium). Similarly, according to this definition, genetic associations can 
be said to exist between particular phenotypes, even if exact genetic determinants 
are not known.

Physical proximity on the chromosome is an important factor underlying key 
principles of genetic association analysis. During prophase I of meiosis in eukary-
otes, recombination occurs between different pairs of homologous chromosomes, 
which gives rise to new combinations of paternal alleles in the offspring. As recom-
bination points are essentially random, greater distance between different alleles 
will increase the probability that they will be separated and vice versa. As some 
alleles can produce easily observable phenotypes, in combination with cross-over 
frequency information, they could be used to construct genetic linkage maps even in 
cases where the exact genomic locations of these causal alleles are still unknown 
[2]. Patterns of genetic linkage may make actual identification of exact causal vari-
ants more challenging, as the causal variant is usually embedded in a linkage dis-
equilibrium block of its genomic region.

1.2  �Common Disease-Common Variant Hypothesis, Linkage 
Disequilibrium, and SNPs

Determination of the first complete human genome sequence by the International 
Human Genome Project (1990–2003) has rapidly accelerated medical research and 
became a major turning point for its future direction. In particular, it has led to 
advances in genetic linkage analysis, where genotype markers in the genomes of 
patients’ families were used to successfully identify the causes of several mono-
genic diseases. However, eventually it became clear that the relevant genes underly-
ing many common diseases could not be as easily identified using this method. The 
reason for this is that common diseases are often multifactorial diseases, meaning 
that many factors with moderate penetrance are involved. However, given that a 
presence of a particular factor by itself only confers a moderate increase in risk, it 
also follows that these factors would have to be relatively common in affected popu-
lations (if the disease in question is also common). This interpretation of these early 
observations gave rise to the Common Disease-Common Variant (CDCV) 
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hypothesis [3]. CDCV proposes that the causes of common diseases are often high-
frequency polymorphisms within the population that originated as DNA mutations 
of common ancestors and have been inherited by their many descendants. In case of 
these common multifactorial diseases, it was theoretically shown that an association 
study using unrelated individuals, which examines allele frequency differences 
between cases (disease carriers) and healthy controls, has higher detection power 
than the classical pedigree-based linkage analysis. Also, owing to linkage disequi-
librium (LD) between polymorphisms based on the inheritance of common genomic 
fragments (haplotypes) from a small set of ancestor individuals, it would be possi-
ble to detect true genetic causes of the disease by looking at surrounding polymor-
phisms as their proxies. In this respect, among different types of genetic 
polymorphisms single nucleotide polymorphisms (SNPs) are considered to be par-
ticularly promising as very large number of them occur in the human genome with 
high population frequency. For the same reason, the number of SNPs that needed to 
be directly genotyped for association analysis was found to be relatively small 
because the experiments can be made more efficient by carefully selecting represen-
tative (tag) SNPs to cover the majority of all haplotype regions. This largely removes 
the need to profile a large number of redundant SNPs in linkage disequilibrium with 
each chosen tag SNP. In combination, these observations suggested the theoretical 
possibility of a genome-wide association study (GWAS) – a type of analysis that 
looks for genetic association using tag SNPs covering the entirety of the human 
genome. However, due to the technology available at the time, GWAS analysis only 
rose to prominence several years later.

1.3  �First GWAS in the World and the Dawn of the High-
Throughput Genomics Age

In order to identify genes related to common diseases using GWAS, it was first 
necessary to isolate SNPs in proximity to all genes in the human genome. The first 
project aiming to collect these necessary data was done by the Institute of Medical 
Science and the University of Tokyo with the support of the Japan Science and 
Technology Agency (2000–2002) [4]. During this work, the regions flanking exons 
and promoters for each gene were sequenced in genomic DNA of 24 Japanese indi-
viduals. The analysis identified 174,269 polymorphisms that were subsequently 
released for public use in the Japanese Single Nucleotide Polymorphisms (JSNP) 
database (http://snp.ims.u-tokyo.ac.jp). Using this information, a group of Japanese 
researchers from RIKEN Institute successfully developed the first pioneering 
GWAS. These early efforts also lead to the introduction of several notable techno-
logical advances, among them was a robotic system that enabled highly accurate 
SNP genotyping assay (Invader method) [4], which was instrumental in greatly 
facilitating necessary data collection. From a biomedical perspective, the most 
important outcome was the discovery of myocardial infarction-related genes in 
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2002 [5]. Additionally, the large-scale analysis of about 80,000 genotyped SNPs in 
564 individuals led to the development of the first map of LD/haplotype blocks of 
all human chromosomes, which in turn allowed to greatly improve the efficiency of 
subsequent genotyping efforts by identifying a suitable representative set of (tag) 
SNPs that captured sufficient information about haplotypes of over 13,000 genes 
[6]. The establishment of this powerful approach paved the way for the rapid 
advances in discovery of disease-related genes for multiple human diseases.

1.4  �The Rise of Commercial SNP Genotyping Assays

With the success of the first GWAS, many commercial platforms for high-throughput 
genotyping began to appear. Most of these protocols use a combination of DNA 
hybridization and DNA ligase, nuclease or polymerase, followed by a technique to 
visualize the alleles present, such as fluorescence [7].

�Primer Extension Methods

A common method among early SNP genotyping techniques was primer extension. 
One, developed by SEQUENOM, is the homogenous MassEXTEND (hME) assay 
[8]. Sample DNA is hybridized with oligonucleotide primers based on the sequence 
adjacent to the SNP of interest.1 These primers are then extended, using DNA poly-
merase with a mixture of terminator nucleotides, by a single base, into the polymor-
phism. This single base extension (SBE) results in two allele-specific extension 
products with different mass. The difference in mass is then quantified using matrix-
assisted laser desorption/ionization time-of-flight (MALDI-TOF) in a mass spec-
trometer. Later developments allowed for the multiplexing of reactions through the 
careful design of the expected products [8].

The AcycloPrime-FP assay developed by PerkinElmer uses template-directed 
dye-terminator incorporation with fluorescence-polarization (FP-TDI) [9, 10]. 
Similar to MassEXTEND, primers specific to the sequence adjacent to the SNP are 
hybridized with genomic DNA. The primers are then extended in the presence of 
dye-terminators specific for the SNP alleles, resulting in amplicons of different 
mass for each allele. However, rather than using mass spectrometry to quantify the 
products, FP is used. When excited by plane-polarized light, a fluorescent molecule 
will emit polarized light [11]. Under constant conditions, the degree of FP is propor-
tional to the molecular volume, and therefore the weight, of the fluorescent 
molecule.

1 https://www.ahc.umn.edu/img/assets/19726/Multiplexing_hME_App_Note.pdf.

A. Lysenko et al.
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�Hybridization Methods

One of the first genotyping assays was the TaqMan assay, first devised by research-
ers at Cetus Corporation [12], and later developed by Roche Life Science and 
Applied Biosystems. This assay is a hybridization method built on the Taq poly-
merase, a thermostable DNA polymerase with 5′ exonuclease activity from the ther-
mophilic bacteria Thermus aquaticus. TaqMan hybridization probes are designed 
for both alleles of the SNP of interest and hybridized with genomic DNA.  The 
probes have a reporter fluorophore specific to each allele on the 5′-end and a 
quencher molecule on the 3′-end. When intact, the quencher molecule is in close 
enough proximity to quench the fluorescence emitted by the reporter. PCR using 
Taq polymerase is performed using primers flanking the SNP of interest. As the 
polymerase extends the sequence, if it encounters a perfectly hybridized probe, one 
that matches the genomic sequence, it cleaves both dyes off the probe, and the fluo-
rescence or the reporter dye is observed. If the probe does not perfectly match, 
hybridization is greatly reduced, neither the reporter nor quencher is released, and 
no fluorescence is observed.

Another hybridization approach is that of the Invader assay [13], developed by 
Third Wave Technologies and mentioned in the previous section. The Invader assay 
is an isothermal probe-based method that utilizes the action of a flap endonuclease 
(FEN) named cleavase. FENs are a class of endonucleases that catalyze structure-
specific cleavage [14]. In the most basic assay, an allele specific primary probe, 
containing a reporter fluorophore and quencher molecule, and an allele independent 
Invader probe are hybridized to target genomic DNA. If the probe is complementary 
to the target, an overlapping invader structure is formed, the 5′ end of the probe is 
cleaved off releasing the reporter, and fluorescence is observed. This assay was fur-
ther developed to include two invasive cleavage reactions and a distinct fluorescent 
signal for each of the SNP alleles [13].

�Multiplexing Methods

Multiplexing involves minimizing the number of times an assay has to be performed 
while maximizing the number of independent SNPs genotyped. Today’s technolo-
gies can genotype close to one million SNPs in a single DNA microarray. Microarrays 
consist of a two-dimensional array of synthesized oligonucleotides bound to a sub-
strate [15].

The Affymetrix GeneChip DNA microarray technology uses a photolithographic 
process to synthesize oligonucleotides directly onto a treated quartz wafer [16]. 
Nucleotides are added with protected terminal hydroxyl groups. Between each 
round of oligonucleotide extension (coupling), a UV mask is used to allow light 
through only at sites where the current nucleotide (A, T, C, or G) is to be added 
(deprotection). Through repeating rounds of deprotection and coupling, 25-mer 
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probe sequences are synthesized. For SNP genotyping, multiple probes for both 
alleles are generated. The location of the SNP within the probe varies ±4 nucleo-
tides from the center. Sample genomic DNA is amplified and labeled and hybridized 
to the microarray, after which the fluorescence intensity of each site is measured, 
and genotypes are determined through relative intensity of all the SNPs’ probes.

In comparison, Illumina’s BeadArray technology2 uses 3-μm silica beads cov-
ered with hundreds of thousands of copies of a unique address oligonucleotide. The 
beads are randomly placed into wells on a substrate. In the GoldenGate Assay,3 
three primers per SNP are required: two allele specific sequences, each with a dif-
ferent forward-facing universal primer sequence, and one locus specific sequence, 
attached to a bead address oligonucleotide, and a reverse facing universal primer. In 
the allele specific extension and ligation step, only allele specific primers present in 
the target genomic DNA are extended and ligated to the address sequence. The next 
step of PCR amplification uses Cy3 and Cy5 fluorophore-labeled universal primers 
to tag each allele. The amplicons are then hybridized to the beads on the array and 
genotypes can be determined by the fluorescence observed at locations of each 
address tagged bead.

ParAllele Bioscience developed the Molecular Inversion Probe (MIP) [17] assay 
as a multiplex genotyping solution. MIPs, also known as padlock probes, are linear 
oligonucleotides containing two sequences complimentary to the target sequence at 
the 5′ and 3′ ends, separated by a linker sequence [18]. When hybridized perfectly 
to the target sequence, the MIP’s ends can be joined using DNA ligase, forming a 
circularized molecule. For genotyping, locus specific MIPs are designed with the 
complementary sequence flanking the SNP and a unique 20 base tag. After anneal-
ing to the target genomic DNA, the gaps are filled in four separate polymerization 
and ligation reactions, one for each of the four possible nucleotides. Each reaction 
is then amplified and a fluorescent label is added. The four nucleotide specific reac-
tions are then hybridized to a separate array and visualized.

1.5  �The International HapMap Project

In October 2002, the International HapMap project began, an international initiative 
to comprehensively examine the polymorphisms and LD patterns throughout the 
human genome [19, 20]. This project was a collaborative effort by the researchers 
from Japan, UK, Canada, China, Nigeria and the United States. The initiative aimed 
to profile the genetic diversity across several key human sub-populations by geno-
typing the DNA of 90 African (30 families), 90 Caucasian (30 families), 45 Chinese 
and 45 Japanese individuals. To achieve best possible efficiency of human labor use, 
lower genotyping expenses and effectively target common diseases, it was decided 
that in Phase I, the genotyping will be done for at least one SNP with high allele 

2 https://www.illumina.com/science/technology/beadarray-technology.html.
3 http://barleyworld.org/sites/barleyworld.org/files/illuminasnpgenotyping.pdf.

A. Lysenko et al.
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frequency (minor allele frequencies ≧ 0.05) in each 5-kb window. More than 1 mil-
lion SNPs were genotyped across ten centers, using five different genotyping plat-
forms. Among all contributors, Japanese researchers from RIKEN were responsible 
for 24.3% (seven chromosomes) of all data, which was the largest contribution from 
any single institution. In Phase II, Perlegen Sciences, Inc. received funds from US 
National Institutes of Health (NIH) and aimed to genotype an even larger number of 
SNPs, no longer limited by the distance and allele frequency. This led to the suc-
cessful genotyping of about 4.4 million SNPs using an oligonucleotide array tech-
nology. In addition, data for about 11,000 non-synonymous SNPs and 4500 SNPs 
located in the major histocompatibility complex (MHC) region, and data collected 
using Affymetrix GeneChip Mapping Array 500K set, Illumina HumanHap 100 
chip, and Illumina HumanHap 300 chip platforms, were combined to create the 
most comprehensive dataset available at the time. Subsequently, sets of SNPs under 
linkage disequilibrium coefficients of r2  >  0.8 were consolidated and merged in 
order to create a combined reference set of 500,000 tag SNPs. Based on this new 
data, Illumina, Inc. was able to develop probes to target these tag SNPs on microar-
ray chips, which greatly improved speed and reduced costs of high-throughput 
genotyping. During the same period, Affymetrix commercialized a genotyping 
array equipped with SNP probes picked at random positions in the human genome 
(though on SNP Array 6.0, tag SNPs from the international HapMap project were 
also included). With these commercial chips and arrays, GWAS developed rapidly 
all over the world, and in 2007, the approach came into a wide-spread use [21].

1.6  �Next Generation Sequencing and the 1000 Genomes 
Project

After the International HapMap project, which predominantly focused on high-
frequency polymorphisms (minor allele frequencies >5%) in several key popula-
tions, the focus gradually shifted to other types of potentially highly relevant 
variants. In particular, polymorphisms with moderate frequencies and penetrance, 
and variants with low frequencies and high penetrance were also believed to be 
promising for discovery of novel associations between specific genes and diseases. 
High-throughput genotyping of these SNPs became increasingly more tractable 
with the rise of a completely new family of sequencing methods, called “next gen-
eration sequencing”. Rapid development of these technologies coincided with the 
early efforts to establish the GWAS methodology. Once next generation sequencing 
platforms had sufficiently matured, it became possible to sequence the whole 
genome of each individual at a very rapid speed. Taking advantage of these techno-
logical advancements, in January 2008, the 1000 Genomes project was launched 
with the aim to take forward the efforts of HapMap project. One of the goals was to 
identify and comprehensively profile 1–5% minor allele frequency SNPs through-
out the whole genome using the next generation sequencing [22]. This was a joint 
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research effort by the NHGRI in the United States, Wellcome Trust Sanger Institute 
in the United Kingdom, and BGI in China. As a pilot study, the following whole 
genomes were sequenced: 1 Caucasian and 1 African family (total of 6 people) with 
high coverage (depth = 42×) as well as 179 individuals from 4 populations with low 
coverage (3.6×). In addition, 8,140 exonic regions of 697 individuals from 7 popula-
tions were sequenced with high coverage (56×). From these results, 15 million 
SNPs, 1 million short insertions/deletions and 20,000 structural variations were 
identified and genotyped [22]. At the time, it was estimated that 95% of the human 
genomic variations were detected. Additional plans were then made to sequence a 
further 2500 genomes with low coverage (4×). New tag SNP sets that take into 
account this information about SNPs with minor allele frequencies as low as 2.5% 
were used to further extend the Illumina chip designs, starting from the Illumina 
HumanOmni1 microarray onwards. Although the number of probes on those new 
chips was 2.5 million to begin with, it was expected that it will increase to 5 million 
due to the new information to be generated by the 1000 Genomes project. In addi-
tion to advances in whole-genome coverage chips, many specialized chips were also 
made possible with this great wealth of information. Some examples include path-
way specific chips, such as the metabochip [23] and immunochip [24] are enriched 
for SNPs that have been associated with metabolic diseases and immunogenetics 
studies, respectively. Exome chips, such as the Illumina HumanExome BeadChip, 
not only contains common exonic SNPs, but also known rare non-synonymous vari-
ants [25].

Following in the footsteps of the 1000 Genomes project, multiple population-
specific projects have appeared in recent years. The UK10K Project performed the 
low coverage whole genome and high coverage exome sequencing of almost 10,000 
normal and diseased individuals from the British population [26]. Over 24 million 
novel variants were discovered. Similarly, the Tohoku Medical Megabank Project 
sequenced the whole genomes of over 1000 Japanese individuals, identifying over 
4 million autosomal SNPs with a MAF greater than 5% [27]. The project has since 
increased the number of individuals to over 3.5 thousand and 7 million SNPs with a 
MAF greater than 1%. The efforts of these and similar projects will continue to 
strengthen our knowledge of human variation.

1.7  �Experimental Design of Genome-Wide Association 
Studies

While these efforts have been greatly increasing our knowledge about the structure 
and variation of the human genome, GWAS methods for associating these variations 
with diseases and other phenotypic traits likewise became increasingly more refined 
and standardized. As with many other types of biomedical experiments underpinned 
by statistics, appropriate experimental design plays a particularly important role in 
ensuring success of such studies. This is because hypothesized relative risks 
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attributable to particular factors, the number of samples, and the number of markers 
to be examined (in relation to multiple testing) directly affect statistical power (i.e. 
the probability to correctly reject the null hypothesis) – and therefore chances of 
successfully discovering robust novel associations between individual variants and 
traits. The estimation of statistical power and determination of the sample size nec-
essary to detect a significant association effect is most commonly done by testing 
for the difference in the relevant population proportions [28].

Most commonly, an independent statistical test is performed to check for an 
association between each individual genetic locus and a phenotype of interest. 
Therefore, the number of such tests can easily number in the millions and ade-
quately accounting for multiple testing is particularly important for controlling false 
positive findings. While more detailed overview of this topic will be introduced 
elsewhere in this chapter, from the experimental design perspective it is important 
to highlight the central the role that replication of results plays in ensuring robust-
ness of all GWAS findings. For these reasons it is now usually expected that a 
GWAS will have at least two sets of samples, a “discovery” subset and a possibly 
smaller “replication” subset. Ideally, a replication subset would have been generated 
from a distinctive cohort of patients, with two sets of samples potentially being col-
lected and processed at different sites. These sets of samples are then independently 
analyzed and any genome-wide significant results are compared, with the idea being 
that only variants that were well-replicated across these two datasets represent true 
associations. However, it is worth noting that interpretation of these replication 
results may not always be straightforward, as different top variants in the same LD 
regions may often be found across the two sets.

1.8  �Fine-Mapping of Trait Associated Variants

As outlined above, even when a highly significant trait-associated variant is identi-
fied by GWAS analysis, it may not necessarily mean that the variant is mechanisti-
cally causal of that trait. A possibility always exists that it may be one of many other 
variants located in the same LD block is the true cause. For this reason, it is usually 
necessary to conduct additional post-hoc analysis to identify actual mechanisms 
from the raw GWAS association results. One possible strategy is to perform targeted 
resequencing around the identified markers in order to comprehensively map out the 
surrounding variations in LD patterns in relevant case/control samples. Due to 
effects of random variation and complexity of the haplotype structure, the  true 
causal variant can be very far from the strongest association signal, therefore there 
is no definitive strategy to determine how large this surrounding region needs to be. 
Despite these potential complications, starting the search in an LD region of the 
strongest association signal is still a reasonable first step. Among all of these regions, 
it is common to first consider the variants with the most significant associations and 
then explore the wider haplotypes (consisting of multiple variants) more signifi-
cantly associated with the disease than any single variants. It may then be possible 
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to further narrow down these candidates to more likely ones by performing meta-
analyses – i.e. to combine the association statistics of equivalent GWAS performed 
in other ethnic groups in order to further increase power of the association tests. 
However, meta-analysis can be complicated as different studies often use different 
microarray platforms, which may profile very different sets of tag SNPs. It follows 
that if SNPs are not found in all of the platforms they cannot be meta-analyzed. 
Likewise, due to imperfections of the modern microarray technology, some of the 
SNPs may not be called at a 100% rate, leading to presence of missing values. When 
multiple studies are combined, these eventualities tend to increase by chance and for 
this reason whole-genome imputation is often essential for allowing GWAS meta-
analysis to be done across these diverse microarray platforms.

Tagged haplotype blocks are often larger than a genomic region for a given gene 
and its non-coding regulatory elements (i.e. transcription factor binding, enhancer 
and promoter regions). Therefore, a situation can frequently arise were more than 
one underlying causal polymorphism may be present in a block. These types of 
independent signals can be recovered using conditional analysis, where an associa-
tion test is repeated while including the SNP with a strongest signal as a co-variate. 
In this setup, SNPs that do not contribute an independent signal will tend to have 
their significance lowered, whereas any remaining highly significant SNPs may 
indicate an existence of an independent causal polymorphism in the tagged area. 
Despite being relatively simple, this approach can frequently yield new and more 
precisely localized association signals [29].

1.9  �Identifying Single Nucleotide Variants in Next 
Generation Sequencing Data

Genetic variants found in a particular genome can be directly profiled by next gen-
eration sequencing technologies. The completion of the Human Genome Project 
has generated a first reference genome, which then allowed unambiguous locations 
to be defined for newly discovered variants by using this complete sequence as a 
reference. When a new sequence is determined using NGS technologies, it is then 
compared to the reference genome to identify potential differences in a process 
called “variant calling” [30]. Understanding function of these genotyped variants 
can facilitate disease diagnosis, suggest their driving mechanisms and improve our 
understanding about how complex phenotypes arise. Although high-throughput 
sequencing was made increasingly easy and cost-effective by recent technological 
advances, this process is still error-prone. For this reason, when interpreting NGS 
data, one important factor is sequencing depth, which refers to the number of times 
a particular fragment of the genome has been sequenced. As different errors are 
likely to occur each time a particular fragment is sequenced, it follows that if the 
process is repeated enough times it will be possible to derive a true sequence by 
consensus. However, sequencing errors are not always entirely random and 
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are frequently determined by the particular biases of technologies used, which also 
means that these patterns can be modelled statistically to correct those errors.

If the sequencing depth is insufficient, difficulties can arise in distinguishing 
errors from true observed variants. In principle, sufficient sequencing depths could 
largely eliminate the need for more sophisticated statistical analysis to distinguish 
variants from errors. In cases where sequencing depth and quality are  adequate, 
even simple heuristic approaches like majority call can be sufficient to produce an 
accurate result. In practice, sequencing is still relatively expensive and the resources 
spent on increasing sequencing depth in most cases can ultimately be better spent 
on sequencing additional samples. Therefore, statistical methods for variant calling 
often have a pivotal role in modern NGS analysis pipelines, where their use can 
deliver better value through more efficient use of the laboratory-based sequencing 
resources.

Most current methods for variant calling use Bayesian statistical approaches, 
which bring certain advantages of being able to incorporate various kinds of addi-
tional information to improve results. The simplest of such methods are single-site 
calling approaches, where each site for which alternative bases are called is consid-
ered independent of all others [31]. The base is called by combining a genotype 
likelihood (e.g. how often a particular call is observed in a sample) and some form 
of informative prior derived from a suitable reference panel. However, this approach 
cannot easily resolve the situation where different calls are made in different sam-
ples, which can frequently arise in cases where sequencing depth is insufficient. 
Therefore, more sophisticated methods combine the information from multiple 
samples [32], e.g. genotype frequency information and can optionally assume 
Hardy-Weinberg equilibrium as part of the estimation process. Due to the increased 
amount of information such methods need to reconcile, the problem is most com-
monly solved using expectation maximization (EM) algorithms. As newer technolo-
gies can produce longer reads containing multiple polymorphisms, more refined 
methods can now use information across these multiple sites in order to further 
improve call quality [33, 34]. Given the complex structure of multi-site likelihood 
and respective priors, the problem is most commonly solved using an MCMC 
approximation approach.

1.10  �Quality Control Procedures in Genome-Wide 
Association Studies

Reliability of samples and markers can have a profound effect on downstream sta-
tistical analysis of genome-wide association studies [35]. Batch effects, population 
stratification, and sample relatedness are all major factors that need to be identified 
and potentially corrected to ensure the results are not biased and true associations 
are discovered.
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Although a wide variety of quality control issues can arise depending on the 
nature of the study, technologies used, and data collection protocols, most widely 
applicable factors include population stratification, call rate profiling, sex consis-
tency and sample relatedness. One of the most frequently employed ways to check 
for sample handling errors is to look at the gender recorded in annotation versus one 
that could be derived from the genomic data. This can be done by considering the 
X-chromosome heterozygosity rate. An additional advantage of this check is that it 
may also reveal some common types of chromosome abnormality syndromes, 
which can adversely affect downstream analysis. Sample relatedness can be checked 
using kinship coefficients and by looking at the distribution of alleles identical by 
decent (IBD). An IBD statistic refers to a piece of DNA inherited from a common 
ancestor where no recombination events have occurred. Long IBD regions can indi-
cate the relatedness of samples and complete identity can be an indicator of a dupli-
cate sample, whereas frequencies of IBD alleles can be used to deduce the degree of 
relatedness, which can then be checked against a pedigree, if available. Population 
substructure refers to systematic differences between much larger groups of indi-
viduals and are commonly associated with wider ethnically or geographically-
linked groups. Global similarity of genomic sequences of such individuals can 
easily lead to spurious associations due to allele frequencies inherent in these differ-
ent populations. Due to complexities involved in profiling and correcting these pat-
terns, this topic is covered in detail in its own section further in this chapter. Lastly, 
it is important to look at inconsistencies of allele sets across independent markers, 
especially where variant calls could not be made due to insufficient confidence and 
exclude these cases from downstream analysis. These checks are usually done both 
with respect to individual samples and loci. If it is found that these types of errors 
are particularly prominent in specific sample(s), it can be an indication of poor qual-
ity of DNA material. For this type of quality control commonly used filtering thresh-
olds are usually set at 98–99% call rate.

Batch effect analysis can be done by looking at the differences in quality between 
samples, like call rate differences, minor allele frequencies (MAF) and genomic 
inflation. Batch effects commonly originate from influence of practical aspects of 
laboratory analysis or data collection considerations, where it is often more efficient 
to process a set of samples at the same time and slight differences between these sets 
therefore unavoidably arise. One way to control for batch effects is at a stage of 
experimental design, e.g. by ensuring random allocation of samples to batches. If 
information about experimental processing of batches is retained, differences in 
quality can be identified by comparing call rates and minor allele frequencies 
between them, where strong differences can indicate incorrect calls made in one of 
the subsets. A more comprehensive diagnostic can also be done using an association 
test with batch label treated as a dependent variable. If detected, batch effects can be 
adjusted for using standard multivariate modelling techniques.

Lastly, the problem can be approached from the perspective of individual marker 
analysis. Here, quality control methods include evaluations of marker-specific call 
rates, comparison with established reference datasets to identify deviations and, if 
available, using duplicate samples to assess overall quality by concordance. Low 
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call rate can be a property of a particular marker as well as a particular sample. 
Recommended practice is to evaluate and filter low call rate markers prior to per-
forming an analogous type of analysis for particular samples. Likewise, some 
experimental designs could incorporate control samples, i.e. duplicate samples 
which can be effectively leveraged to verify overall reproducibility of experimental 
profiling. To validate accuracy of experimental profiling, one common strategy is to 
conduct the genotyping of reference cell lines for which the true sequence is known 
with great confidence, like those originating from the HapMap or 1000 genomes 
projects. If accurate pedigree information is available, genotypes can be checked for 
Mendelian errors, defined as instances where alleles are found that could not be 
received from either of the parents. SNPs which have very low minor allele fre-
quency (MAF), usually below 1 or even 5%, are also commonly excluded from 
analysis. The reason is that low occurrence of one allele can lead to violation of 
underlying distribution assumptions for most of the conventional parametric signifi-
cance tests and, likewise, very low MAF also commonly arises as an artifact due to 
genotyping errors. Another common quality control test is to statistically examine 
evidence of selective pressure affecting the marker. This is usually done by comput-
ing the deviation from Hardy-Weinberg equilibrium using Pearson’s Chi-squared 
test. However, it is worth pointing out that such departure from equilibrium can be 
both evidence of true association signal as well as evidence of genotyping error, so 
Hardy-Weinberg equilibrium is most commonly taken into consideration when 
interpreting the results and may not always be used at the quality control stage. In 
the cases where binary traits are investigated, like presence or absence of a given 
disease, one option could be to do the Hardy-Weinberg equilibrium-based filtering 
on the control samples only, where no deviation due to trait of interest would be 
expected.

1.11  �Genotype Inference Methods

Despite recent advances, whole-genome sequencing technologies remain relatively 
expensive compare to genotyping arrays. One potential way to ameliorate the cost 
is to use arrays for profiling in combination with whole-genome imputation meth-
ods [36]. Imputation is a collective name for a family of statistical inference 
approaches that aim to predict untyped genotypes based on observed ones using 
prior knowledge about haplotype structure and frequencies in a given reference 
panel. Imputation is especially useful for identification of causal SNPs in a given 
genomic location, as a causal variant will likely be in linkage disequilibrium with 
the ones found significant by the association tests, even in cases where it is not 
directly observed.

Haplotype phasing can improve both accuracy and performance of imputation 
methods. Given that in most cases the human genome is profiled in a diploid state, 
modern profiling techniques will usually not be able to directly determine the hap-
lotype to which a particular variant belongs. However, if the overall distribution of 
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different haplotypes in a population is known, this information can be reconstructed 
using statistical modelling approaches in a process called “haplotype phasing”. 
Possible strategies include simple multinomial brute force expectation-maximization 
algorithms, for example one of the early successful tools PHASE employed this 
strategy [37].

Once haplotypes in a sample are determined, this information can be further 
leveraged in combination with a suitable reference panel in order to estimate the 
unobserved makers. Accuracy of these whole genome imputation methods can be 
greatly improved by using a larger reference panel. If size of the reference is large 
enough, even very rare SNPs can be imputed very accurately using the current gen-
eration of these methods [22]. Therefore, efforts to expand available reference pan-
els are currently underway for several major human population groups. HapMap 
was the first project to produce a reference set for multiple human populations, 
however this dataset is now largely superseded by the reference panel from 1000 
Genomes project, which now covers several other major ethnic groups. As was 
already discussed earlier in this chapter, this information is also used to improve the 
quality of modern genotyping arrays by ensuring that the most informative markers 
for all haplotypes in a population of interest are included on the array.

1.12  �Population Stratification and Its Implications

Population stratification is defined as systematic differences in allelic frequencies 
arising due to differences in ancestry of sub-populations considered in a given study. 
Subpopulations with low intra-mating frequencies can be subject to differential 
genetic drift, where frequencies of alleles not under selective pressure can diverge 
by chance, given sufficient time. These ancestry differences can therefore confound 
the true genetic determinants underlying the phenotype of interest [38]. For this 
reason, it is important to control for population stratification in order to identify true 
association. One obvious way to control for stratification would be to ensure com-
plete population homogeneity during the experimental design stage, e.g. through 
use of ethnicity or family ancestry information during recruitment into the study. 
Though this is still one of the most important ways for controlling stratification, this 
information is usually subject to considerable inaccuracies and is often found to be 
insufficient to fully reflect full complexity of possible population structure. 
Alternatively, a family-based design can be used, where data is collected from indi-
viduals known to be related and therefore guaranteed to be unaffected by issues of 
population stratification.

Detection and quantification of population stratification is possible using the 
genomic control method proposed by Devlin and Roeder [39]. Their approach uses 
a Cochran-Armitage trend test to compute the inflation factor, which can then be 
used to adjust relevant association test statistics. However, one disadvantage is that 
possible differences between individual alleles are not taken into account, as adjust-
ment is applied in a uniform way. To allow for greater flexibility, structured 
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association tests (e.g. [40]) were proposed that seek to identify sub-groups or clus-
ters of individuals and therefore allows for greater flexibility, but these are compu-
tationally costly to apply and depend on additional parameters, like the number of 
clusters.

To address these limitations, yet another alternative method was developed, 
which uses principal components analysis to capture the population structure [41]. 
Principal component analysis identifies major axes of variation within the data, and 
was shown to accurately reflect self-reported ethnicity or even geographic distance 
between the samples. The amount of variation attributed to particular axes can then 
be directly used to adjust for effects of population stratification by incorporating 
them as co-variates in a regression model used for association test at a level of indi-
vidual samples. Owing to its great computational efficiency and flexibility, principal 
component-based stratification analysis is now the most commonly used method to 
control for population stratification. Typically, a subset of reference markers is used 
to perform the analysis and identify any highly divergent outlier samples, which are 
then excluded. If the remaining main dataset is still determined to be subject to 
substantial stratification, top principal components are added to the model as a sim-
ple and efficient way to adjust for those effects.

1.13  �Statistical Testing for Genetic Association

Once adequate preparatory and quality control steps have been completed, the next 
step is to investigate the genetic association that can explain the observed phenotype 
of interest. Most commonly, a trait linked to particular locus can be binary (a “case-
control” design), like affliction with a particular disease or quantitative, like height 
or cholesterol levels. Of particular note among quantitative associations is the one 
linking genetic variation to expression patterns of particular gene(s), called expres-
sion Quantitative Trait Locus (eQTL). Based on the design of a particular study, 
recruited individuals can be from particular families or considered unrelated. For 
brevity, this section will only deal with the by far most common study design where 
recruited individuals are not related – a “population-based” study design. This sec-
tion will describe most typical strategies for identifying associations of common 
variants whereas some of the alternative techniques for rare variants will be covered 
separately in the last section of this chapter.

In by far the most typical scenario, particular alleles do not necessarily lead to 
certain manifestation of a binary trait, but rather alter the probability or risk of such 
an occurrence. The probability of an individual in a population to display a trait is 
formally called “penetrance”. Given that in a diploid human genome two possible 
copies of each allele are normally present, the correct statistical model of the rela-
tionship between genotype and phenotype will depend on the type of genetic domi-
nance in effect at a given locus. Likewise, number of alleles can have additive or 
multiplicative effect – and this is equally applicable both for magnitude of quantita-
tive traits and penetrance of binary traits. In case of binary traits, the strength of 
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association can be quantified as an “odds ratio”, which is a ratio of odds for a trait 
of interest given particular alternative genotypes.

Given computationally intensive nature of the analysis at a whole-genome scale, 
each locus is usually tested independently of all others. In a simpler scenario, exact 
genotypes will be called and therefore (in case of a binary test) data can be repre-
sented as a contingency table where counts in each cell would be numbers of indi-
viduals with a particular genotype-trait combination category. The type of the model 
determines how the table is constructed, e.g. a two-by-two table in case of a domi-
nant or recessive model or a two-by-three one if no particular model is assumed. As 
usually the correct model is not known, it is common to assume an additive model, 
which can be represented with a two-by-three contingency table that is also consid-
ered to have an ordered relationship to the trait. If there is an assumption of trend or 
ordering, this relationship can be captured using Cochran-Armitage trend test, oth-
erwise a Chi-squared test can be used if independence between all categories is 
judged more appropriate. However, in practice it is often highly desirable to incor-
porate additional covariates into the model, which these types of simple tests cannot 
accommodate. For example, probability of developing particular diseases often 
increases with age or may be affected by individual’s gender. This information can 
only be incorporated by using more sophisticated multivariate models and, in the 
case of GWAS analysis, logistic or linear regression models are most commonly 
used. Most typically, logistic regression models for binary traits include covariates 
for age, gender and, when correcting for population stratification, the first few prin-
cipal component values for each sample.

Given the complexity of GWAS experiments and very large number of factors 
that can potentially lead to bias, it is vitally important to check and identify the pres-
ence of these potential problems. One commonly used generic way to verify the 
results is using the quantile-quantile (QQ) plots of the final association significance 
values. Given that the number of true signals in a GWAS is usually expected to be 
small, the patterns of unrelated SNPs are expected to be effectively random, i.e. an 
expectation to observe a particularly high significance value by chance is only influ-
enced by the number of samples in a dataset. A QQ-plot is a scatter plot of expected 
versus observed significance values that can be used to verify this pattern. If all 
sources of bias have been accounted for, most of the points would fall on a 45-degree 
line, with a handful of highly significant points above this line if a true association 
signal is present. This analysis is often also summarized as a genomic inflation fac-
tor (λ) statistic. Genomic inflation factor is formally defined as a ratio of an actual 
over expected Chi-squared distribution medians, with λ close to 1 meaning no infla-
tion. Though most typically this analysis is used to check for the presence of popu-
lation substructure, other types of artifacts like block effects, may also be detected.

Given that the number of loci that can be profiled using whole-genome sequenc-
ing or array technologies supported by genome imputation can be in the millions, it 
is particularly important to correct the significance values for the number of tests 
performed. However, standard procedures to correct for family-wise error rate, like 
Bonferroni correction assume independence between individual tests. Due to link-
age disequilibrium patterns, this assumption does not hold true in the case of GWAS 
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and therefore such methods are likely to be too conservative [42]. Previous esti-
mates determined that an appropriate number of assumed independent signals is 
roughly in the region of 1,000,000. Insights from this work where used to derive a 
widely accepted GWAS significance cut-off of 5 × 10−8, though it must be noted that 
this estimate is most applicable for the European population and the true correct 
value would depend on the diversity of the population being studied. Another alter-
native is to use a permutation test to compute the adjusted significance values. By 
permuting the response labels and calculating significance, an empirical distribution 
of probabilities can be computed. For this reason, the permutation test is considered 
to be the best method of correction, however this approach is very computationally 
intensive which can make it infeasible to apply in practice – though efficiency can 
be improved by using approximate methods [43].

To ensure the voracity of reported associations, the last step in the analysis usu-
ally involves replication of the result in an independent dataset. Replication is par-
ticularly important in the context of GWAS as it has been found that genomic 
patterns underlying polygenic phenotypes tend to be highly complex and it is com-
mon to identify large numbers of loci which individually explain only very small 
amount of total heritability. The size of observed effect can mean that studies are 
often underpowered to robustly confirm the true effect. Likewise, replication can 
help to identify and discount spurious associations arising due to bias and can also 
serve to confirm the existence of the effect under different sets of conditions and 
derive a more accurate estimate of a true effect size.

1.14  �Recent Methodological Advances in Genotype 
Association Analysis

Genetic heritability refers to the rate at which a particular phenotype is inherited by 
an offspring from its parent. By comparing known heritability (e.g. how often sib-
lings inherit a disease from their parents) with what can be predicted by existing 
models based on genomic data it is possible to determine how much of the variation 
in a phenotype is accounted for by currently identified genetic polymorphisms. 
Conventional GWAS analysis considers individual effects of genetic polymor-
phisms on the trait of interest, however it has now become evident that entirety of 
such variations still explains only small part of all known heritability. This phenom-
enon is referred to as the problem of “missing heritability” [44]. Several explana-
tions for this problem have been proposed, including possible methodological 
limitations of estimating true heritability, accurately measuring or defining pheno-
types and possible epigenetic effects. Other possible explanations attribute missing 
heritability to genomic effects which are not adequately captured by the classical 
GWAS analysis methods, like interactions, influence of rare polymorphisms or 
highly polygenic effects. If a phenotype is determined by additive effects of a very 
large number of polymorphisms with very small individual effects, simply 
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increasing the number of samples will eventually sufficiently increase the statistical 
power to detect all of these small associations, though this strategy will inevitably 
be subject to considerable diminishing returns. On the contrary, other possibilities 
imply that the missing heritability problem may eventually be solved by further 
improvements in methodology and several novel approaches have already been put 
forward to explore these avenues.

Considerable advances have been made in detecting the effects of rare SNPs. 
Detection of rare polymorphism by conventional GWAS statistical tests leads to 
inflated risk of false positive detections, due to highly unbalanced frequencies of 
alleles which violate distribution assumptions of commonly used significance tests. 
In most current analysis pipelines this risk is mitigated by not considering any poly-
morphisms where minor allele frequency is below particular threshold, most com-
monly below 1% or 5% of all samples profiled in the study. To capture these effects, 
rare SNPs can be pooled and considered as a group, where a test would then con-
sider the overall effect of a set of polymorphisms [45], usually in the context of 
some form of a burden model. Consequently, such tests require additional inputs 
about how to group different SNPs into meaningful sets, with some common strate-
gies being to group SNPs around particular genes or even pathways.

Interaction between polymorphisms occurs when an effect of one allele is condi-
tionally dependent on the effect of another, a phenomenon also referred to as epis-
tasis. Detection of interactions is challenging due to their combinatorial nature, 
which means that very large number of individual tests would be required to exhaus-
tively check all possibilities [46]. As well as being computationally infeasible, this 
also leads to loss of statistical power due to multiple testing. Therefore, epistasis 
detection methods commonly involve development of strategies to reduce the num-
ber of tests performed by using some form of prior knowledge, e.g. for example by 
looking at interactions between polymorphisms found to be individually 
significant.

Ultimately it is most likely that some combination of these possible explanations 
underlies the problem of missing heritability and some evidence has been found to 
suggest influence of all of these factors in particular cases. It is also likely that dif-
ferent factors are prominent for different types of phenotypes. Given this diversity 
of possible hypotheses and the absence of a definitive solution, at present the ques-
tion about the causes of missing heritability and best strategies to address it still 
remain the subject of active debate.
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Chapter 2
Genetics of Coronary Disease

Kouichi Ozaki and Toshihiro Tanaka

Abstract  Coronary artery disease (CAD), including its severe form, myocardial 
infarction (MI), is a common serious disorder, and a leading cause of death in indus-
trial countries. The pathogenesis depends on multiple interactions on an environ-
mental and genetic basis. As genetic heritability of CAD comprises ~ 50% of the 
pathogenesis, elucidating the detailed genetic architecture of CAD would facilitate 
development of a future precision medicine. Initially, we started a genome-wide 
association study (GWAS) for MI with about 100,000 single nucleotide polymor-
phisms (SNP) in Japanese from early 2000, and identified the SNPs in lymphotoxin-α 
gene (LTA) associated with the increased risk of MI. As far as we know, this study 
is the first GWAS for common disease worldwide. This hypothesis-free GWAS ulti-
mately led to identification of a possible MI pathological condition by mediating an 
inflammatory cascade including IKK signalosome and BRAP, encoded by the gene 
that was robustly associated with an increased risk of MI in Asian population. On 
the other hand, recent mega-GWASs for more than 200 traits have collectively 
revealed many genetic risk factors for common diseases. To date, GWASs from 
around the world have shown 98 genetic risk factors for CAD.

Keywords  Coronary artery diseases · Myocardial infarction · Genetic heritability 
· Genome-wide association study · Susceptibility loci · IKK signalosome and 
BRAP · Inflammation
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2.1  �Introduction

Coronary artery disease (CAD) and its severe form myocardial infarction (MI) are 
leading causes of death worldwide. CAD results from complicated interactions of 
multiple genetic and environmental factors. Life quality for CAD patients has been 
greatly improved by current pharmaceutical and diagnostic approaches, whereas the 
high morbidity still exists. In particular, MI often occurs without any preceding 
clinical signs and is followed by severe complications, especially ventricular fibril-
lation and cardiac rupture, which may result in sudden death. MI is a disease of the 
vessel that feeds the cardiac muscle, called the coronary artery. Irreversible damage 
to the cardiac muscle is incurred by abrupt occlusion of the coronary artery. The 
detailed CAD/MI pathogenesis is largely unknown; however, studies on epidemiol-
ogy show that the risk factors for CAD include dyslipidemia, type 2 diabetes mel-
litus, obesity, hypertension, smoking, inflammation, and inheritance [4, 5]. The 
contribution of heredity to CAD seems to be relatively large because of ~50% 
genetic heritability [32, 37]. A hypothesis for common diseases – common genetic 
variants and much of the contribution of genetic variants to the increased/higher risk 
of common/sporadic disorders were proposed and considered respectively [6, 18, 
36]. In 2000, we launched genome-wide association studies (GWASs) for CAD in 
Japanese, with nearly 100,000 SNPs selected in genes based [11] on a high-
throughput multiplex PCR invader assay system [24], and found genetic loci associ-
ated with risk for CAD, including LTA [2, 10, 14, 17, 26, 31]. These observations 
showed the power of the GWAS, hypothesis-free, to find the clue for important 
novel pathogenesis of disease to further figure out the pathway of the disorder and 
to explore new diagnostic and therapeutic methods for precision medicine. For inte-
grative genetic and biological analyses of the LTA-related pathway, we clarified 
further CAD molecules [27, 29, 30]. Improvement of the genetic infrastructure such 
as haplotype and linkage disequilibrium structure and genomic architecture (http://
www.internationalgenome.org/) [40, 43] and the construction of large-scale geno-
typing array and informatics, statistical technologies, in addition to computing envi-
ronment for big/large data allow global studies to clarify the genetic structure of 
common disorders. Many comprehensive GWASs and meta-analyses for CAD have 
been conducted worldwide, especially in Europe and the USA, and have identified 
a total of 98 loci with statistical GWAS significance [13, 31, 45]. These loci show a 
relatively modest effect with an increased relative risk from 1.04 to 1.92. We esti-
mate that heritability accounts for only ~10% of these loci; however, these results 
could contribute several important biological and pathological pathways to CAD 
and reveal new insights for future precision medicine. In this book, we view and 
discuss the genetic architecture of CAD and its functional role that improves the 
establishment of future precision medicine for CAD.

K. Ozaki and T. Tanaka
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2.2  �The First Hypothesis-Free GWAS with a Japanese 
Population Connects the BRAP Inflammatory Cascade 
Strongly Associated with an Increased Risk of MI

Initially, we started a GWAS with a Japanese population using a high-throughput 
multiplex PCR-invader assay method developed by us with gene-based SNPs 
(approximately 100,000) as an initial stage of a global case–control association 
study. As far as we know, the study would be the first worldwide GWAS with com-
prehensive SNP markers demonstrating a disease-associated gene. From the GWAS, 
as a candidate risk locus for MI, we identified one SNP in the lymphotoxin-α gene 
(LTA) on chromosome 6p21.3, encoding a cytokine that is secreted at an early stage 
of inflammation [26, 28, 31]. Haplotype/linkage disequilibrium mapping analysis 
and further functional analyses showed that two SNPs (rs909253; LTA intron 
1252A > G and rs1041981; exon 3804C > A) with functional annotations were in 
linkage disequilibrium in the chromosome 6 locus and associated with an increased 
risk of MI in the Japanese population. In the Precocious Coronary Artery Disease 
[PROCARDIS] study (white Europeans), a transmission disequilibrium test analy-
sis of large trio families (447) with CAD revealed statistically significant excessive 
transmission (χ2 = 8.44, P = 0.002, recessive association model) to affected off-
spring for the LTA 804C allele (26 N-LTA) [33].

We next explored the molecules that bind to LTA to totally comprehend the role 
of LTA in the pathogenesis of CAD. We have therefore identified a protein, galectin-
2, as a possible interaction partner of LTA with both the Escherichia coli two-hybrid 
system and a phage display method. After confirming the interaction of LTA protein 
and galectin-2 in vitro and in vivo, we also explored the association between genetic 
variants in LGALS2 and risk of MI. We found one SNP (rs7291467; 3279C > T) in 
LGALS2; this variant decreases the level of galectin-2 (encoded by LGALS2) mRNA 
expression and showed a statistically significant association for MI [27, 28, 31]. 
Other researchers properly replicated the finding for rs7291467 SNP with MI by a 
meta-analysis [19]. This genetic variant affected the mRNA level of LGALS2 and 
resulted in altered cellular secretion of LTA, and then which affected the inflamma-
tion status. We also identified that galectin-2 interacts with tubulins, important com-
ponents of the microtubule complex, suggesting a role in intracellular trafficking 
[27, 28, 31]. LTA seems to be another protein that utilizes the microtubule cytoskel-
eton network for translocation, and galectin-2 mediates LTA trafficking through 
binding to microtubules, although the detailed role of galectin-2 in this trafficking 
machinery complex has yet to be elucidated.

Interaction of LTA and its cell surface receptor strongly activates nuclear factor 
kB (NFkB) by proteasomal degradation of its inhibitory partner, I kappa B (IkB) 
protein; therefore, we have hypothesized that the variation(s) in the genes encoding 
proteasomal proteins could confer MI susceptibility. Therefore, we have performed 
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comprehensive association analysis for genes encoding proteasome subunits using 
selected tagging SNP by linkage disequilibrium structure and identified a significant 
association for an SNP (rs1048990) in PSMA6, encoding a proteasome subunit, 
alpha type 6 with MI [29, 31]. Another large Chinese study robustly replicated our 
association with approximately the same number as our study and a meta-analysis 
[21]. The associated SNP, existing within 5’UTR of exon 1 in PSMA6, facilitated 
the mRNA level of PSMA6. Furthermore, the reduction of the mRNA expression 
level of PSMA6 with short interfering RNA in cultured human cells, including coro-
nary vascular endothelial cells, inhibited the activity of NFkB, a central mediator of 
inflammation regulating I kappa B stabilization [15]. Therefore, expression levels of 
PSMA6 protein affect the degree of inflammation reaction, suggesting that the func-
tional variant of PSMA6 is a genetic factor with an increased risk for MI in Japanese 
and Asian populations.

We further systematically explored molecular pathways associated with an 
increased risk of MI using a modified tandem affinity purification method [27] and 
identified BRAP, as a binding partner of galectin-2. We also explored genetic asso-
ciations for tag SNPs in BRAP with MI and found the tight association for two 
SNPs, rs3782886 and rs11066001, in BRAP with increased MI risk (P  <  10−20, 
OR = ~1.5). Both other Japanese and Taiwanese cohorts precisely replicated the 
associations. Allele frequencies of these variants were hardly detected in Centre 
d'Etude du Polymorphism Humain individuals and Yoruba individuals, indicating 
that these SNPs are likely to be specific only to Asian populations. Conventional 
risk factors such as age, gender, diabetes, lipidemia, smoking, and blood pressure 
were not associated with the variants, suggesting that the variants in BRAP are of 
independent increased genetic risk for MI [30, 31].

BRCA1 associated protein (BRAP) is also known to be an E3 ubiquitin ligase 
that interacts with Ras and is associated with MAP kinase signaling through regula-
tion of the scaffolding activity of kinase suppressor of ras (KSR). The MAP kinase 
pathway has an important physiological function associated with cell growth, cell 
survival regulation, cell differentiation, cell transformation, and pro-inflammatory 
factor production. Experiment for BRAP knock-down revealed suppression of 
NFkB activation in human coronary artery endothelial cells, suggesting that altered 
expression of BRAP might affect the expression of NFkB-dependent inflammatory 
molecules. We also identified that several molecules related to inflammation and 
cell proliferation, such as major components of IKK signalosome interacting with 
BRAP molecules (Fig. 2.1) [20]. Together, the findings showed that the degree of 
inflammation through activation of NFkB-IKK signalosome might be enhanced by 
up-regulated BRAP expression from risk alleles, thereby implying an important role 
in MI pathogenesis. Figure 2.1 shows the hypothetical implication of the BRAP 
cascade/pathway and immune/inflammation proteins in MI pathogenesis. Additional 
exploration of BRAP and immune/inflammatory molecules may provide useful 
information for exploring a novel therapeutic strategy with pharmaceutical/biologi-
cal approaches. To date, we have constructed an ELISA system to screen possible 
molecules to intervene between BRAP and IKK signalosome (NFKBIB). We have 
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also identified several molecules that possibly intervene between BRAP and 
NFKBIB interaction (unpublished).

2.3  �Large Scale GWASs Reveal 98 CAD Loci

To date, 98 loci have been identified for CAD with genome-wide significance 
(p < 5 × 10−8) by comprehensive GWASs from around the world, mainly Western 
countries (Table 2.1). The estimated effect size from odds ratios for each variant are 
not so high, and still there is “missing heritability,” similar to other common disor-
ders [23]. These CAD loci are associated with conventional risk factors and only 28 
loci are observed (Table 2.1; 18 associated with lipid traits, and 11 with blood pres-
sure), indicating that there are large uncertain mechanisms with fundamental roles 
for CAD pathogenesis that remain to be elucidated [13, 31, 45].

In 2007, some GWASs with several thousands of Caucasian samples and sev-
eral millions of SNP variants detected the association between variants on chromo-
some 9p21.3 and CAD [44], which, excluding African ancestry, have been robustly 
replicated in other races [37, 38]. At an early age of CAD onset, the risk ratio of 
this genetic factor increases with a small effect, but may be independent of other 

Fig. 2.1  Possible inflammatory cascade for pathogenesis of myocardial infarction. Green arrows 
indicate direct interaction for BRAP. TF transcription factor
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26

Ta
bl

e 
2.

1 
C

or
on

ar
y 

ar
te

ry
 d

is
ea

se
 (

C
A

D
) 

ge
ne

tic
 lo

ci
 f

ro
m

 la
rg

e-
sc

al
e 

ge
no

m
e-

w
id

e 
as

so
ci

at
io

n 
st

ud
y 

(P
 <

 5
 x

 1
0–

8)

SN
P 

ID
C

hr
om

os
om

e
G

en
e

Po
ss

ib
le

 C
A

D
-r

el
at

ed
 f

un
ct

io
n

R
is

k/
no

n-
ri

sk
 

al
le

le
R

A
F

O
R

Y
ea

r

rs
11

20
65

10
a

1p
32

.3
P

C
SK

9
L

D
L

 m
et

ab
ol

is
m

T
/C

0.
81

1.
15

20
09

rs
17

11
40

36
1p

32
.2

P
PA

P
2B

L
ip

id
 s

yn
th

es
is

A
/G

0.
91

1.
17

20
11

rs
59

98
39

a
1p

13
.3

SO
R

T
1

L
D

L
 m

et
ab

ol
is

m
A

/G
0.

77
1.

29
20

07
rs

48
45

62
5

1q
21

IL
6R

In
fla

m
m

at
io

n
T

/C
0.

47
1.

06
20

13
rs

11
81

05
71

1q
21

.3
T

D
R

K
H

–
G

/C
0.

79
1.

07
20

17
rs

18
92

09
4

1q
24

.2
A

T
P

1B
1

–
C

/T
0.

5
1.

04
20

17
rs

67
00

55
9

1q
32

.1
D

D
X

59
–C

A
M

SA
P

2
–

C
/T

0.
53

1.
04

20
17

rs
28

20
31

5
1q

32
.1

L
M

O
D

1
Sm

oo
th

 m
us

cl
e 

ce
ll 

ac
tiv

at
io

n
T

/C
0.

3
1.

05
20

17
rs

17
46

56
37

1q
41

M
IA

3
In

hi
bi

tio
n 

of
 in

fla
m

m
at

or
y 

ce
ll 

pr
ol

if
er

at
io

n
C

/A
0.

71
1.

2
20

07
rs

51
51

35
a

2p
24

-p
23

A
P

O
B

C
ho

le
st

er
ol

 m
et

ab
ol

is
m

G
/A

0.
83

1.
07

20
13

rs
65

44
71

3a
2p

21
A

B
C

G
5-

A
B

C
G

8
C

ho
le

st
er

ol
 m

et
ab

ol
is

m
T

/C
0.

3
1.

06
20

13
rs

15
61

19
8

2p
11

.2
V

A
M

P
5-

V
A

M
P

8-
G

G
C

X
–

A
/G

0.
45

1.
06

20
13

rs
22

52
64

1
2q

22
.3

Z
E

B
2-

A
C

07
40

93
.1

–
G

/A
0.

46
1.

06
20

13
rs

67
25

88
7

2q
33

.1
W

D
R

12
–

C
/T

0.
14

1.
17

20
09

rs
25

71
44

5
2q

35
T

N
S1

Sm
oo

th
 m

us
cl

e 
ce

ll–
ex

tr
ac

el
lu

la
r 

m
at

ri
x 

as
so

ci
at

io
ns

A
/G

0.
39

1.
04

20
17

rs
12

50
22

9b
2q

35
F

N
1

Sm
oo

th
 m

us
cl

e 
ce

ll–
ex

tr
ac

el
lu

la
r 

m
at

ri
x 

as
so

ci
at

io
ns

T
/C

0.
26

1.
07

20
17

rs
29

72
14

6
2q

36
.3

L
O

C
64

67
36

–
T

/G
0.

65
1.

06
20

17
rs

76
23

68
7

3p
21

.3
1

R
H

O
A

-A
M

T-
T

C
TA

-C
D

H
R

4-
K

L
H

D
C

8B
–

A
/C

0.
86

1.
07

20
17

rs
46

18
21

0
3p

24
.3

P
L

C
L

2
In

fla
m

m
at

io
n

G
/A

0.
42

1.
1

20
14

rs
14

26
95

22
6

3q
21

.2
U

M
P

S-
IT

G
B

5
C

el
l p

ro
lif

er
at

io
n,

 a
dh

es
io

n
G

/T
0.

14
1.

08
20

17
rs

98
18

87
0

3q
22

.3
M

R
A

S
C

el
l p

ro
lif

er
at

io
n,

 a
dh

es
io

n
T

/C
0.

15
1.

15
20

09
rs

43
39

03
3q

25
.2

A
R

H
G

E
F

26
-D

H
X

36
–

G
/A

0.
86

1.
08

20
17

K. Ozaki and T. Tanaka



27
SN

P 
ID

C
hr

om
os

om
e

G
en

e
Po

ss
ib

le
 C

A
D

-r
el

at
ed

 f
un

ct
io

n
R

is
k/

no
n-

ri
sk

 
al

le
le

R
A

F
O

R
Y

ea
r

rs
10

85
71

47
b

4p
21

.2
1

P
R

D
M

8-
F

G
F

5
C

el
l g

ro
w

th
, i

nv
as

io
n

T
/A

0.
27

1.
06

20
17

rs
17

08
73

35
4q

12
R

E
ST

-N
O

A
1

–
T

/G
0.

21
1.

11
20

15
rs

11
72

34
36

4q
27

M
A

D
2L

1-
P

D
E

5A
–

G
/A

0.
31

1.
05

20
17

rs
27

39
09

b
4q

31
.1

-q
31

.2
G

U
C

Y
IA

3
C

el
l d

if
fe

re
nt

ia
tio

n,
 c

he
m

ot
ax

is
G

/A
0.

81
1.

08
20

13
rs

18
78

40
6

4q
31

.2
2

E
D

N
R

A
V

as
oc

on
st

ri
ct

io
n,

 in
fla

m
m

at
io

n
T

/C
0.

15
1.

1
20

13
rs

35
87

98
03

4q
31

.2
1

Z
N

F
82

7
–

C
/A

0.
7

1.
05

20
17

rs
11

74
83

27
5p

15
.3

IR
X

1
–

C
/T

0.
76

1.
25

20
11

rs
18

00
44

9
5q

23
.1

L
O

X
Sm

oo
th

 m
us

cl
e 

ce
ll–

ex
tr

ac
el

lu
la

r 
m

at
ri

x 
as

so
ci

at
io

ns
T

/C
0.

17
1.

07
20

17

rs
27

39
09

5q
31

.1
SL

C
22

A
4-

SL
C

22
A

5
–

C
/T

0.
14

1.
07

20
13

rs
24

66
00

5q
31

.3
A

R
H

G
A

P
26

Sm
oo

th
 m

us
cl

e 
ce

ll–
ex

tr
ac

el
lu

la
r 

m
at

ri
x 

as
so

ci
at

io
ns

T
/C

0.
48

1.
05

20
17

rs
12

52
64

53
6p

24
P

H
A

C
T

R
1

–
C

/G
0.

65
1.

12
20

09
rs

35
54

19
91

6p
22

.3
H

D
G

F
L

1
–

C
/C

A
0.

31
1.

05
20

17
rs

37
98

22
0a

6q
25

.3
L

PA
L

ip
id

 m
et

ab
ol

is
m

C
/T

0.
02

1.
92

20
09

rs
17

60
99

40
a

6p
21

.3
1

A
N

K
S1

A
–

G
/C

0.
75

1.
07

20
11

rs
12

19
02

87
6q

23
.2

T
C

F
21

–
C

/G
0.

62
1.

08
20

11
rs

69
03

95
6

6p
24

.1
C

6o
rf

10
5

–
A

/G
0.

07
1.

65
20

11
rs

69
29

84
6

6p
22

.1
B

T
N

2A
1

–
T

/C
0.

06
1.

51
20

11
rs

10
94

77
89

6p
21

K
C

N
K

5
–

T
/C

0.
76

1.
07

20
13

rs
42

52
12

0
6q

26
P

L
G

In
fla

m
m

at
io

n
T

/C
0.

73
1.

07
20

13
rs

10
95

35
41

7q
22

.3
B

C
A

P
29

–
C

/T
0.

8
1.

07
20

11
rs

11
55

69
24

7q
32

.2
Z

C
3H

C
1

–
C

/T
0.

62
1.

09
20

11
rs

20
23

93
8

7p
21

.1
H

D
A

C
9

H
em

at
op

oi
es

is
G

/A
0.

1
1.

08
20

13
rs

10
23

73
77

7q
34

PA
R

P
12

–
G

/T
0.

65
1.

05
20

17
rs

39
18

22
6

7q
36

.1
N

O
S3

Pr
od

uc
tio

n 
of

 n
itr

ic
 o

xi
de

T
/C

0.
06

1.
26

20
15

rs
26

4a
8p

22
L

P
L

L
ip

id
 s

yn
th

es
is

G
/A

0.
86

1.
11

20
13

(c
on

tin
ue

d)

2  Genetics of Coronary Disease



28

Ta
bl

e 
2.

1 
(c

on
tin

ue
d)

SN
P 

ID
C

hr
om

os
om

e
G

en
e

Po
ss

ib
le

 C
A

D
-r

el
at

ed
 f

un
ct

io
n

R
is

k/
no

n-
ri

sk
 

al
le

le
R

A
F

O
R

Y
ea

r

rs
29

54
02

9a
8q

24
.1

3
T

R
IB

1
L

ip
id

 m
et

ab
ol

is
m

A
/T

0.
55

1.
06

20
13

rs
13

33
04

9
9p

21
.3

C
D

K
N

2A
, B

/A
N

R
IL

/I
F

N
W

1/
IF

N
A

21
C

el
l p

ro
lif

er
at

io
n,

 in
fla

m
m

at
io

n
C

/G
0.

47
1.

47
20

07
rs

57
94

59
a

9q
34

.2
A

B
O

T
hr

om
bo

ge
ne

si
s

C
/T

0.
21

1.
33

20
11

rs
14

12
44

4
10

q2
3.

2-
q2

3.
3

L
IP

A
L

ip
id

-r
el

at
ed

T
/C

0.
42

1.
09

20
11

rs
50

11
20

10
q1

1.
1

C
X

C
L

12
In

fla
m

m
at

io
n,

 li
pi

d 
m

et
ab

ol
is

m
T

/C
0.

87
1.

17
20

09
rs

25
05

08
3

10
p1

1.
23

K
IA

A
14

62
E

nd
ot

he
lia

l c
el

l f
un

ct
io

n
C

/T
0.

38
1.

07
20

11
rs

12
41

34
09

b
10

q2
4.

32
C

Y
P

17
A

1,
 C

N
N

M
2,

 N
T

5C
2

L
ip

id
 s

yn
th

es
is

G
/A

0.
89

1.
12

20
11

rs
10

94
02

93
11

p1
5.

4
SW

A
P

70
C

el
l m

ig
ra

tio
n 

an
d 

ad
he

si
on

A
/G

0.
55

1.
05

20
15

rs
13

51
52

5b
11

p1
5.

2
A

R
N

T
L

L
ip

og
en

es
is

T
/A

0.
67

1.
05

20
17

rs
12

80
16

36
a

11
q1

3.
1

P
C

N
X

3
L

ip
id

 m
et

ab
ol

is
m

G
/A

0.
77

1.
05

20
17

rs
59

01
21

11
q1

3.
5

SE
R

P
IN

H
1

Pl
aq

ue
 r

up
tu

re
 (

se
ri

ne
 p

ro
te

as
e 

in
hi

bi
to

r 
de

ri
ve

d 
fr

om
 s

m
oo

th
 m

us
cl

e 
ce

lls
)

T
/G

0.
3

1.
05

20
17

rs
97

48
19

11
q2

2.
3

P
D

G
F

D
In

fla
m

m
at

io
n,

 li
pi

d 
sy

nt
he

si
s

T
/C

0.
32

1.
07

20
11

rs
96

41
84

a
11

q2
3.

3
Z

N
F

25
9,

 A
P

O
A

5-
A

4-
C

3-
A

1
L

D
L

 m
et

ab
ol

is
m

G
/C

0.
13

1.
13

20
11

rs
10

84
14

43
12

p1
2.

2
R

P
11

-6
64

H
17

.1
–

G
/C

0.
67

1.
05

20
17

rs
11

17
08

20
12

q1
3.

13
H

O
X

C
4

–
G

/C
0.

08
1.

1
20

17
rs

31
84

50
4a,

b
12

q2
4

SH
2B

3
–

T
/C

0.
38

1.
13

20
09

rs
67

1
12

q2
4

B
R

A
P

-A
L

D
H

2
In

fla
m

m
at

io
n

A
/G

0.
28

1.
43

20
12

rs
11

83
01

57
12

q2
4.

2
K

SR
2

In
fla

m
m

at
io

n,
 c

el
l p

ro
lif

er
at

io
n

G
/T

0.
36

1.
12

20
15

rs
22

58
28

7a , 
rs

22
44

60
8a

12
q2

4.
31

C
12

or
f4

3–
H

N
F

1A
L

ip
id

 m
et

ab
ol

is
m

A
/C

0.
34

1.
05

20
17

rs
11

05
78

30
a

12
q2

4.
31

SC
A

R
B

1
H

D
L

 r
ec

ep
to

r
A

/G
0.

16
1.

07
20

17
rs

11
05

74
01

a
12

q2
4.

31
C

C
D

C
92

–
T

/A
0.

69
1.

06
20

17
rs

93
19

42
8

13
q1

2
F

LT
1

A
ng

io
ge

ne
si

s,
 in

fla
m

m
at

io
n

A
/G

0.
32

1.
06

20
13

rs
47

73
14

4
13

q3
4

C
O

L
4A

1,
 C

O
L

4A
2

Pl
aq

ue
 d

es
ta

bi
liz

at
io

n
G

/A
0.

44
1.

07
20

11

K. Ozaki and T. Tanaka



29
SN

P 
ID

C
hr

om
os

om
e

G
en

e
Po

ss
ib

le
 C

A
D

-r
el

at
ed

 f
un

ct
io

n
R

is
k/

no
n-

ri
sk

 
al

le
le

R
A

F
O

R
Y

ea
r

rs
38

32
96

6
14

q2
4.

3
T

M
E

D
10

, Z
C

2H
C

1C
, R

P
S6

K
L

1,
 

N
E

K
9,

 E
IF

2B
2,

 A
C

Y
P

1
–

In
se

rt
io

n/
de

le
tio

n
0.

46
1.

05
20

17

rs
28

95
81

1
14

q3
2.

2
H

H
IP

L
1

–
C

/T
0.

43
1.

07
20

11
rs

56
06

21
35

15
q2

2.
3

SM
A

D
3

C
el

l p
ro

lif
er

at
io

n
C

/T
0.

79
1.

17
20

15
rs

64
94

48
8

15
q2

2.
31

O
A

Z
2,

 R
B

P
M

S2
–

A
/G

0.
82

1.
05

20
17

rs
38

25
80

7
15

q2
5.

1
A

D
A

M
T

S7
Sm

oo
th

 m
us

cl
e 

ce
ll 

ac
tiv

at
io

n
A

/G
0.

57
1.

19
20

11
rs

17
51

48
46

b
15

q2
6.

1
F

U
R

IN
-F

E
S

Pr
ot

ea
se

 c
on

ve
rt

as
e

A
/C

0.
44

1.
07

20
13

rs
80

42
27

1
15

q2
6.

1
M

F
G

E
8-

A
B

H
D

2
A

nt
i-

in
fla

m
m

at
or

y 
(M

F
G

E
8)

, c
el

l a
dh

es
io

n,
 

m
ig

ra
tio

n 
(A

B
H

D
2)

G
/A

0.
9

1.
1

20
15

rs
10

50
36

2a
16

q2
2.

2
D

H
X

38
C

el
l g

ro
w

th
C

/A
0.

38
1.

04
20

17
rs

33
92

88
62

b
16

q2
3.

1
B

C
A

R
1

C
el

l m
ig

ra
tio

n,
 s

ur
vi

va
l, 

tr
an

sf
or

m
at

io
n,

 
in

va
si

on
D

el
et

io
n/

in
se

rt
io

n
0.

51
1.

05
20

17

rs
38

51
73

8
16

q2
3.

1
C

F
D

P
1

–
C

/G
0.

6
1.

05
20

17
rs

75
00

44
8b

16
q2

3.
3

C
D

H
13

C
el

l a
dh

es
io

n
A

/G
0.

77
1.

07
20

17
rs

21
61

72
17

p1
3.

3
SM

G
6,

 S
R

R
–

C
/G

0.
37

1.
07

20
11

rs
12

93
65

87
17

p1
1.

2
R

A
SD

1,
 S

M
C

R
3,

 P
E

M
T

–
G

/A
0.

56
1.

07
20

11
rs

46
52

2
17

q2
1.

32
U

B
E

2Z
, G

IP
, A

T
P

5G
1,

 S
N

F
8

In
su

lin
 r

es
is

ta
nc

e 
(G

IP
)

T
/C

0.
53

1.
06

20
11

rs
17

60
87

66
b

17
q2

1.
32

G
O

SR
2

–
C

/T
0.

14
1.

07
20

17
rs

72
12

79
8

17
q2

3.
2

B
C

A
S3

C
on

tr
ol

 c
el

l p
ol

ar
ity

 a
nd

 m
ot

ili
ty

 in
 

en
do

th
el

ia
l c

el
ls

C
/T

0.
15

1.
08

20
15

rs
18

67
62

4
17

q2
3.

3
P

E
C

A
M

1
C

el
l–

ce
ll 

ad
he

si
on

T
/C

0.
61

1.
04

20
17

rs
66

31
29

18
q2

1.
3

P
M

A
IP

1-
M

C
4R

G
en

er
at

io
n 

of
 r

ea
ct

iv
e 

ox
yg

en
 s

pe
ci

es
A

/G
0.

26
1.

06
20

15
rs

11
22

60
8a

19
p1

3
L

D
L

R
L

D
L

 m
et

ab
ol

is
m

G
/T

0.
75

1.
15

20
09

rs
38

03
91

5
19

p1
3.

3
A

P
3D

1-
D

O
T

1L
-S

F
3A

2
–

C
/A

0.
19

1.
12

20
14

rs
20

75
65

0a
19

p1
3.

32
A

P
O

E
-A

P
O

C
1

L
D

L
 m

et
ab

ol
is

m
G

/A
0.

14
1.

14
20

11

(c
on

tin
ue

d)

2  Genetics of Coronary Disease



30

Ta
bl

e 
2.

1 
(c

on
tin

ue
d)

SN
P 

ID
C

hr
om

os
om

e
G

en
e

Po
ss

ib
le

 C
A

D
-r

el
at

ed
 f

un
ct

io
n

R
is

k/
no

n-
ri

sk
 

al
le

le
R

A
F

O
R

Y
ea

r

rs
12

97
64

11
19

q1
3.

1
Z

N
F

50
7-

L
O

C
40

06
84

–
T

/A
0.

09
1.

49
20

15
rs

13
81

20
07

7
19

q1
3.

2
H

N
R

N
P

U
L

1,
 T

G
F

B
1,

 C
C

D
C

97
–

D
el

et
io

n/
in

se
rt

io
n

0.
14

1.
07

20
17

rs
81

08
63

2
19

q1
3.

2
T

G
F

B
1,

 B
9D

2
–

T
/A

0.
48

1.
05

20
17

rs
19

64
27

2
19

q1
3.

32
SN

R
P

D
2

–
G

/A
0.

51
1.

05
20

17
rs

86
71

86
b

20
q1

1.
22

P
R

O
C

R
E

nd
ot

he
lia

l c
el

l f
un

ct
io

n
A

/G
0.

89
1.

08
20

17
rs

99
82

60
1

21
q2

2
SL

C
5A

3-
M

R
P

S6
-K

C
N

E
2

–
T

/C
0.

13
1.

2
20

09
rs

18
08

03
22

q1
1.

2
P

O
M

12
1L

9P
-A

D
O

R
A

2A
A

nt
i-

in
fla

m
m

at
or

y 
(A

D
O

R
A

2A
)

G
/T

0.
97

1.
2

20
15

ID
 id

en
tifi

er
, R

A
F

 r
is

k 
al

le
le

 f
re

qu
en

cy
, O

R
 o

dd
s 

ra
tio

; –
, u

nk
no

w
n 

fu
nc

tio
n 

fo
r 

C
A

D
a A

ss
oc

ia
te

d 
w

ith
 li

pi
d 

tr
ai

ts
b A

ss
oc

ia
te

d 
w

ith
 b

lo
od

 p
re

ss
ur

e

K. Ozaki and T. Tanaka



31

conventional risk factors such as lipidemia. Moreover, the association between the 
9p21.3 locus and the increased risk of other diseases including abdominal aortic 
and intracranial aneurysms, type 2 diabetes, Alzheimer’s disease, subclinical phe-
notype for CAD, and cancers, has been observed, but in different variants from 
CAD, indicating pleiotropic effects of the associations for the 9p21 locus and 
many disorders. The 9p21.3 variants associated with CAD exist in nearby 
CDKN2B-AS1, a long noncoding RNA (lncRNA), close to the genes CDKN2A and 
B, encoding cyclin-dependent kinase inhibitor proteins. An association of the 
higher expression of mRNA for CDKN2B-AS1 with the CAD risk allele of 9p21.3 
was found in the functional analysis; however, an inverse association was observed 
in the expression of CDKN2A/B mRNA. In adipose tissue, a statistical association 
between CDKN2B expression and the 9p21.3 SNP was revealed in an eQTL analy-
sis. Identification of a putative enhancer for the 9p21.3 CAD locus and subsequent 
chromatin conformation capture to detect long-range chromosome interaction by 
Harismendy et al. revealed that the interval of the enhancer interacts physically 
with the chromosome loci, CDKN2A/B, MTAP, and further chromosomes down-
stream of IFNA21, encoding interferon alpha 21, in vascular endothelial cells. On 
the contrary, other studies follow up the above findings with several cells, includ-
ing aortic smooth muscle and endothelial cells did not support interferon-related 
inflammatory cascade for 9p21.3 variant suggesting that there might be unidenti-
fied uncertain mechanisms for the 9p21.3 risk variant [22].

Reilly et al. performed a GWAS in CAD patients with MI and those without MI 
and identified an association with a protective role on several SNPs tagging the O 
allele in the ABO blood group at chromosome 9p34.2 with MI [35]. A Japanese 
population with MI replicated this association [12], but no association was found 
with CAD [41]. ABO contributes to the blood group system. The gene encodes pro-
teins (transferase A, alpha 1–3-N-acetylgalactosaminyltransferase; transferase B, 
alpha 1–3-galactosyltransferase), which transfer carbohydrate to von Willebrand 
Factor (vWF). By a deletion of guanine-258 near the N-terminus of the protein, the 
O allele encodes a protein without any enzymatic activity and thus cannot modify 
the vWF molecule, which is assumed to enhance the proteolysis of vWF and results 
in circulating vWF and Factor VIII in lower concentrations. Associations of ABO 
blood group with LDL-C, type 2 diabetes and inflammatory adhesion molecules, 
and ACE activity are also observed. These findings suggest that ABO proteins might 
have multiple functions implicating thrombosis and/or plaque rupture that are asso-
ciated with the risk of MI. In the future, the clarification of the detailed mechanism 
associated with MI with ABO and clinical studies are required, people with blood 
group A, B or AB may receive therapies such as antiplatelet agent treatment [3, 38].

As a druggable CAD-associated gene in GWAS hits, we can suggest a gene 
named PCSK9, which encodes a calcium-dependent serine endoprotease and 
belonging to the proprotein convertase subtilisin/kexin (PCSK) family, an enzyme 
that cleaves latent precursor proteins to biologically/physiologically active mole-
cules. In an initial study, PCSK9 was identified as a protein encoded by a gene with 
gain-of-function mutations for two families with hypercholesterolemia [1], was a 
druggable molecule that dramatically reduced LDL-C, and its clinical use was 

2  Genetics of Coronary Disease
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investigated [39]. PCSK9 binds with LDL cholesterol receptor in liver and resolves 
the receptor to inactivate it. A full human monoclonal antibody for PCSK9 to inhibit 
the LDL receptor interaction certainly decreased circulating levels of LDL choles-
terol in humans, which seemed to have no side effects in a phase III clinical study 
[34]. GWAS also identified another molecule, FURIN, which also encodes a PCSK 
family member, and mainly expressed atherosclerotic plaques in humans, indicating 
that the molecule might be a druggable molecule druggab to atherosclerotic dis-
eases. We need further investigation into atherosclerotic diseases and FURIN func-
tion. These findings implicate that the genetic diversities for disease risk are 
associated with the pathogenesis of certain disorders and significantly contribute to 
discovery of the druggable targets for atherosclerotic diseases, implying the signifi-
cant power of comprehensive genetic analysis, including GWAS, that contributes to 
exploring novel unanticipated insights/knowledge for precision medicine.

On the other hand, several GWASs identified six CAD loci in an East Asian 
population, among which we have identified four loci with genome-wide signifi-
cance for CAD in a Japanese population that are close to the genes IRX1, BRAP-
ALDH2, PLCL2, and AP3D1-DOT1L-SF3A2 on chromosome 5p15, 3q24, 12q24, 
and 19p13 respectively [2, 12]. In another Japanese study, Yamada et al. identified 
an SNP with functionality into BTN2A1 on chromosome 6 [47] and Takeuchi et al. 
also showed a BRAP-ALDH2 locus [41] for CAD risk with GWAS significance. In 
the GWAS with Han Chinese, Wang et al. reported a 6p24 locus for the certain risk 
of CAD [46], whereas, these Asian-associated loci for CAD failed in the Caucasian 
GWASs. This racial difference may be explained partly by the variance among race 
in allelic frequencies and the study power owing to the small number of samples and 
the difference in relative risk ratio. The ethnic diversity in the architecture of genetic 
structure such as the presence of undiscovered hidden variations and accurate differ-
ences in linkage disequilibrium structure in Europeans may be an influence. We 
have left to answer the questions related in ethnic diversity for these loci associated 
with several traits.

The hypothetic functions of the molecules near the CAD loci are shown in 
Table 2.1. We could divide these functions roughly into five groups associated with 
lipid metabolism: inflammation, cell adhesion, cell migration, cell proliferation, and 
unknown function. A mega GWAS by the CARDIoGRAMplusC4D Consortium 
identified 15 novel CAD loci in 2013. They also conducted pathway analysis in 
silico and identified four common pathways: liver/retinoid X receptor activation, 
atherosclerosis signaling, acute phase response signaling, and retinoid X receptor 
activation, molecules related to lipid metabolism and inflammation. Furthermore, a 
large meta-analysis GWAS included a further 30 risk loci for CAD mainly in 
Caucasians and implicated in CAD with arterial-wall-specific and blood vessel 
morphogenesis, cell adhesion, cell migration, angiogenesis, insulin pathway, signal-
ing of nitric oxide, and inflammation/immune pathway [13, 16, 25, 45]. The accom-
panying role related to thrombosis/atherosclerosis and rupture of plaque for these 
molecules and pathways remains to be elucidated. This evidence may enhance the 
discovery of therapeutic/diagnostic targets for further biological, physiological, and 
pharmacological examination.
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2.4  �Genetic Variants with High Odds Ratios

Renovation of technologies for nucleic acid sequencing and informatics permit us 
the comprehensive discovery of rare variants (mutations) with pathogenicity in the 
whole genome and whole exome with large populations. Exome sequencing with 
several thousand European and African individuals with CAD and investigation into 
the association between the rare variants and plasma triglyceride levels were per-
formed by the Exome Sequencing Project [42]. They found druggab loss-of-function 
mutations in APOC3, encoding apolipoprotein C. In triglyceride levels, the carriers 
with the variants were 39% lower than those of carriers without the variants and 
were 40% lower in the CAD risk than those of non-carriers. The rare coding variants 
in two genes, APOA5 and LDLR, were respectively associated increased MI risk 
with exome-wide significance in another exome sequencing project with ~ 5000 
individuals with early onset MI and controls [9]. The increased risk ratios for MI 
individuals were 4.2-fold for LDLR variants and 2.2-fold for APOA5 variants. The 
dysfunctional mutations in nitric oxide signaling genes, GUCY1A3 and CCT7, were 
associated with increased MI risk by yet another exome study with a large MI fam-
ily. In vitro and in vivo functional experiments showed enhanced thrombosis forma-
tion by reduced nitric oxide signaling via downregulated expression and enzyme 
activity of the mutated proteins. Dewey et  al. in the DiscovEHR human genetic 
study [7, 8] reports sequences with tens of thousands of people for whole exons of 
the angiopoietin-like 3 and 4 genes (ANGPTL3 and ANGPTL4). They identified 
loss-of-function variants and examined the association with the variants. They also 
identified that the variants were associated with lower lipid levels (LDL, HDL, tri-
glycerides, and total cholesterol for the variants of ANGPTL3, and triglycerides for 
the variants of ANGPTL4) and reduced CAD risk. They additionally showed that 
the reduction of the lipid levels and odds of atherosclerotic CAD by pharmacologi-
cal inactivation targeted these genes. These findings provide novel insights for early 
diagnosis of asymptomatic patients and biological, physiological, and pharmaceuti-
cal investigation for precision medicine of atherosclerotic disorders, even if these 
variants have only a small impact on CAD heritability (< ~ 1%).

2.5  �Summary

To our knowledge, the world’s first GWAS with no hypothesis in Japanese ulti-
mately elucidated a candidate pathology of MI by implicating an inflammatory/
immune cascade including the IKK signalosome and BRAP encoded by the gene 
was certainly associated with increased MI/CAD risk in the Asian population. The 
inflammatory cascade, including NFkB signaling, plays a pivotal role in the patho-
genesis of CAD/atherosclerosis as also suggested in an analysis by 
CARDIoGRAMplusC4D consortium and others. It would be a common final path-
way that emerges as inflammation that is present in CAD/atherosclerosis. These 
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findings resulted from hypothesis-free, genome-wide, and comprehensive studies, 
which indicates the potent power of the GWAS to identify a pathogenetic pathway 
for this common but serious disease. The genetic knowledge could also apply to 
facilitating future biological and pharmaceutical investigations to develop innova-
tive diagnoses and therapies to adapt to individuals who suffer from certain disease, 
which is called precision medicine.

Many GWASs identified large numbers of unanticipated genetic risk loci for 
CAD/atherosclerosis, and highlighted new clues to future preventive medicine for 
the development of genetic diagnosis and new druggable CAD targets. Each genetic 
factor contributes to CAD pathogenesis with modest effects and gathering of all 
variants cannot explain well the previously estimated heritability by epidemiologi-
cal findings. Although several exome sequencing studies discovered pivotal CAD 
risk variants and contributed valuable knowledge to the medical field, the explora-
tion of missing heritability remains to be clarified. There seem to be many common 
variants with small effects for CAD susceptibility that remain to be clarified; how-
ever, the additional rare variants that have a relatively large effect on transcriptional 
regulatory elements, including histone modification regions, Dnase hypersensitiv-
ity, and methylation sites, may contribute to the investigation of missing heritability. 
Whole-genome sequencing for these regulatory elements with appropriately large 
individuals and suitable informatics techniques will elucidate this common issue for 
common diseases in the future. Only a small portion of genetic variants identified 
through GWAS is dependent on conventional risk factors and hardly explains the 
molecular function that mediates CAD susceptibility; thus, comprehending the 
molecular mechanisms for CAD/atherosclerosis risks affected by these genetic fac-
tors will be focused on in the next era.

Coronary artery disease is attributable to arterial defects, is a common but seri-
ous disorder, and is a leading cause of death worldwide. Elucidating the genetic 
architecture contributing to CAD pathogenesis would lead to the discovery of inno-
vative diagnoses, preventive measures, and therapy that can be adapted to each indi-
vidual suffering from the disorder, the so-called precision medicine.
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Chapter 3
Genetic and Functional Genetics 
of Autoimmune Diseases

Kazuhiko Yamamoto, Kazuyoshi Ishigaki, Akari Suzuki, and Yuta Kochi

Abstract  The majority of autoimmune diseases are multi-factorial diseases that 
develop through the interaction of several factors, such as genetic and environmen-
tal factors. A limited number of disease susceptibility genes, including those of the 
major histocompatibility complex have been known to exist for several decades. 
After these eras, genome-wide association studies have been used for more than 
10  years to identify susceptibility genes for certain autoimmune diseases. These 
findings have contributed to our understanding of the pathogenesis of these dis-
eases. As the analysis of susceptibility genes has progressed, it has become apparent 
that many disease susceptibility gene variants are involved at the expression level of 
genes. Furthermore, expression of genes related to disease pathogenesis is cell-
specific, with involvement of epigenetic mechanisms. Genetic information exists 
before the onset of disease, and thus has a causal relationship to the disease. 
Therefore, the analysis of genomic function in human immunology research is 
essential, with regard to understanding the pathological mechanisms as well as hav-
ing applications for drug discovery. In this article, we discuss these issues, with a 
particular focus on rheumatoid arthritis.
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3.1  �Genetic Factors in Autoimmune Diseases

Genetic factors have been reported to be involved in the pathogenesis of autoimmune 
diseases. The concordance rates for autoimmune diseases in monozygotic twins are 
higher than those for dizygotic twins, and these are higher than the prevalence in the 
general population. For example, the concordance rate of monozygotic twins with 
rheumatoid arthritis (RA) is approximately 12–15%, compared to 2–4% for 
dizygotic twins [1]. On the other hand, the prevalence of RA in the general 
population has been reported to be 0.5–1%, although there are some differences 
among ethnic groups. These pieces of evidence strongly indicate genetic factors are 
involved in the majority of autoimmune diseases, even though factors such as infec-
tions, socioeconomic status and the environment are also likely to be involved.

3.2  �The Major Histocompatibility Complex Group of Genes

The major histocompatibility complex (MHC), also called the Human Leukocyte 
Antigen complex (HLA) in human, is important in immune responses. Association 
between genetic variants in the HLA gene and autoimmune diseases has been 
reported, not only in RA but other diseases such as systemic lupus erythematosus 
(SLE), ankylosing spondylitis, Behcet’s disease, Graves’ disease, and type 1 diabe-
tes. Since class I and class II molecules of HLA have the function of presenting 
antigen to T cells, the association with these immune diseases is understandable. 
However, as will be describe later, it is not clear whether antigen presentation is the 
only function of HLA in the pathogenesis of autoimmune diseases.

Historically, serological typing of the HLA class II molecules exhibited 
HLA-DR1 and HLA-DR4 had strong associations with RA. Furthermore, it was 
reported that several alleles of DRB1 ∗01:01, 04:01, 04:04, 04:05 that encode for the 
β chain of the DR antigen are involved. As the stretch of amino acid residues (70–
74) that corresponded to the β chain hypervariable region encoded by these alleles 
is common, a shared epitope (SE) hypothesis was proposed by Gregersen et al. [2]. 
However, as recent studies revealed that the amino acid positions 11 and 13 in HLA-
DRB1 were also influential, revising the SE hypothesis has been recommended [3]. 
Nevertheless, over all the concept of the SE hypothesis has not changed, indicating 
that the HLA class II molecules translated from disease susceptible alleles bind and 
present the epitopes of RA specific antigens. It has been shown that HLA class II 
molecules of RA susceptible alleles have high avidities to citrullinated peptides. In 
fact, anti-citrullinated protein antibodies (ACPA) are auto-antibodies with the high-
est disease specificity in RA. According to these lines of data, the functional under-
standing of the RA susceptibility HLA class II genes is in progress [4].

Meanwhile, Okada and colleagues, together with the International Collaborative 
Research Group, utilized the HLA imputation method to undertake a large-scale 
fine-mapping analysis of the HLA gene sequence [5]. They analyzed samples 
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collected from Japanese people (6244 RA and 23,731 controls) and Asian (7097) 
and European (23,147) control populations. They found that in addition to the clas-
sical HLA genes such as HLA-DRB1, HLA-DPB1, HLA-B, the HLA-DOA gene, a 
non-classical HLA gene, was also involved in RA. Unlike the classical HLA genes, 
changes in expression levels of the non-classical HLA gene shown to be involved in 
the onset of the disease [5].

3.3  �Analysis of Non-HLA Genetic Factors by Genome-Wide 
Association Analysis

Along with decoding the whole human genome, it has become possible to analyze 
disease susceptibility gene polymorphisms of common diseases, including autoim-
mune diseases. Among several different variants, single nucleotide polymorphisms 
(SNPs) were shown to be important because of feasibility of their analysis and the 
functional significance of the variants. Since the beginning of this century, research-
ers at the RIKEN institute focused on this area of research using a method that could 
be described as a prototype of the method that is now widely used. Further, the 
international HapMap project analyzed haplotype blocks and selected tag SNPs [6]. 
Along with progress in the development of technology to type genetic variants using 
microarrays, genome wide association studies (GWAS) have become a common 
approach [7]. Since 2007, GWAS of common diseases has been performed globally, 
with many reports published on autoimmune diseases [8, 9].

Okada et  al. recently undertook a meta-analysis of GWAS studies of RA, 
analyzing 29,880 RA patients and 73,758 controls, with Asian and European 
ancestries [9]. They identified that 42 novel loci were associated with RA, increasing 
the total number of gene loci to 101 that show susceptibility to RA. However, it is 
important to understand that each locus has potentially multiple genes in a linkage 
disequilibrium block. Therefore, various databases were integrated to estimate 
genes and SNPs, most likely to be associated with RA among each locus. 
Furthermore, RA associated genes were found to be significantly enriched (via the 
network of protein-protein interactions) in target genes of drugs currently being 
used to treat RA. These findings not only provided us with important information 
about the pathogenesis of RA, but also demonstrated a new strategy for drug 
discovery using GWAS.  For example, some drugs for other diseases were also 
found potentially to targets RA genes.

Although some of the RA risk variants were found to be involved in generating 
qualitatively different proteins with alterations in amino acid regions, many other 
RA risk SNPs were involved at the expression levels of genes [9]. This is called 
expression quantitative trait loci (eQTLs) (Fig. 3.1). It has been estimated that the 
accumulation of differences in gene function and expression levels due to such 
genetic variants was indeed associated with the pathogeneses of polygenic diseases. 
For example, it was reported that 53% of chromosomal regions associated with 
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Celiac diseases revealed by GWAS are eQTL, being involved at the level of gene 
expression. Recently, it has been observed that by including variants that regulate 
genes at a distance (trans), disease risk SNPs became more frequently eQTL than 
the initial estimation [10].

3.4  �Hidden Heritability in GWAS of Autoimmune Diseases

GWAS has been performed under the common disease-common variant hypothesis 
or “common diseases are caused by common genetic variants”. In fact, more than 
100 disease susceptibility loci that occur in relatively high frequencies have been 
elucidated, even in one disease such as RA. However, it has been suggested that we 
are not able to sufficiently explain all of the genetic contribution to disease, even 
when combining the GWAS risk variants. Thus, it is possible that more common 
variants are involved or rare variants, occurring at a lower frequency.

Sequencing of the exon region of the sialic acid acetylesterase (SIAE) gene, 
previously shown to be involved in immune-tolerance pathogenesis in mice, was 
performed on patients with autoimmune disease as well as healthy human samples 
[11]. As a result, rare variants that lacked gene function were found in patients with 
multiple autoimmune diseases. The frequency of these variants was significantly 
different between patients (24/923) and healthy individuals (2/648). The odds ratio 
to inherit the SIAE variants was 8.3 in patients with RA, whilst the odds ratio for the 
majority of common variants of autoimmune disease susceptibility genes was 1.1–
1.5. Thus, the contribution of each of these rare variants to the pathogenesis of 
individuals is high. Conversely, these types of rare variants are at a low frequency in 
the general population. Subsequently, many studies have investigated the incidence 
of rare variants in patients with autoimmune diseases, the majority observing diffi-
culty of identifying causal rare variants.

A
A

A
G

G
G

2 copy

4 copy

6 copy

Fig. 3.1  An eQTL (expression quantitative trait loci): a quantitative trait loci with gene expression 
levels affected by nucleotide sequences differences
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3.5  �Genetic Factors Common to Multiple Autoimmune 
Diseases

There are several disease susceptibility genes that are common to many types of 
autoimmune diseases. It has also been reported that multiple autoimmune diseases 
have been observed in the same family and an individual can suffer from multiple 
autoimmune diseases. Thus, it is possible that the basic mechanisms for different 
autoimmune diseases are shared. However, it is important to point out that genetic 
factors common to multiple diseases do not apply to all autoimmune diseases. For 
example, STAT4 is a common risk gene for RA and SLE. STAT4 is a transcription 
factor that regulates important cytokines, such as IL-12, IL-23 and type I interferon 
and is thought to be involved in the differentiation of Th1 type and Th17 type CD4+ 
T cells. On the other hand, it has been reported that STAT3 was associated with 
Crohn’s disease and multiple sclerosis. This suggests that different transcription 
factors are expressed by different helper T cell subsets and thus contribute to differ-
ent diseases. Furthermore, when we look at the pathway involving disease suscepti-
bility genes for RA, many of the genes involved in NF-κB signaling, such as CD40, 
TRAF1, TNFAIP3, PRKCO, TNFRSF14 have been found to be involved. This sug-
gests the NF-κB signaling pathway is also involved in the pathogenesis of RA.

Further examples of genes associated with multiple autoimmune diseases are 
described below:

	1.	 PTPN22 (protein tyrosine phosphatase nonreceptor-type 22)

PTPN22 is a gene that encodes lymphoid tyrosine phosphatase (LYP), which 
suppresses a signal from both T cell receptor and B cell receptors [12]. The SNP in 
the PTPN22 gene responsible for type 1 diabetes, SLE, RA and Graves’ disease in 
European American people has a specific amino acid substitution, 
R620W.  Interestingly, the R620W variants has not been identified in East Asian 
populations, including Japanese people. Upon signal transduction, tyrosine kinase 
phosphorylates tyrosine of various molecules, while tyrosine phosphatase such as 
PTPN 22 dephosphorylates them. Therefore, PTPN22 is considered to act as a nega-
tive regulator of antigen receptor signaling.

	2.	 CTLA4 (cytotoxic T lymphocyte-associated protein 4)

CTLA4 has been identified as a susceptibility gene for several autoimmune 
diseases such as RA, SLE, type 1 diabetes and Graves’ disease [13]. The CTLA4 
gene encodes a molecule that is expressed on the cell membrane of T cells where it 
transmits an inhibitory signal. It also plays an important role in regulatory T cells. 
A soluble molecule exists as a splicing variant in CTLA4, and the expression of this 
soluble CTLA4 decreases in disease susceptible alleles. Thus it is estimated the 
soluble CTLA4 molecule plays an important role in maintaining immune 
tolerance.
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	3.	 FCRL3 (Fc receptor-like 3)

Genetic variants in the FCRL3 gene have been shown to be associated with RA, 
SLE and Graves’ disease [14]. The site of the risk SNP in the promoter region of 
FCRL3 strongly binds to the transcription factor NF-κB, increasing gene expression 
[14]. The molecule FCRL3 was highly expressed by mature B cells. When it was 
strongly cross-linked to the B cell receptor, FCRL3 suppressed the signal, suggest-
ing FCRL3 is associated with B cell related immune tolerance. Furthermore, a func-
tional relationship between the FCRL3 SNP and regulatory T cells has also been 
reported.

	4.	 IL23R (interleukin 23 receptor)

It has been identified that the IL23R is a disease association gene that encodes a 
protein with an amino acid change (R381Q) in Crohn’s disease, psoriasis and anky-
losing spondylitis. The functional effect of this mutation is unclear. However, since 
IL23 is a cytokine essential for differentiation and maintenance of Th17 lympho-
cytes, it is estimated that Th17 lymphocytes have an important role in these dis-
eases. Conversely, the association of this polymorphism with RA and SLE is not 
clear.

	5.	 CCR 6 (chemokine (C – C motif) receptor 6)

The CCR6 gene has also been shown to be associated with susceptibility to RA, 
Graves’ disease and Crohn’s disease [15]. Gene expression in the disease suscepti-
ble allele is relatively higher, most likely due to differences in binding to transcrip-
tion factors. The protein encoded by CCR6 is expressed on T cells, B cells and 
dendritic cells, and highly expressed by Th17 T cell subsets, suggesting a role in the 
migration of Th17 T cells to inflammatory sites.

3.6  �PADI4 (Polymorphisms Specifically Associated with RA)

We reported that a gene encoding an enzyme called peptidylarginine deiminase type 
4 or PADI4 was associated with susceptibility to RA in the Japanese population 
[16]. Initially, PAD14 was classified as an ethnic specific disease susceptibility gene 
because the result was replicated in Asians (Japanese, Korean and Chinese) by 
large-scale follow-up analysis, but not in those with European ancestries. However, 
it has also been shown recently using meta-analyses (with better detection capabili-
ties), that European and American populations have the susceptible allele. There are 
two main PADI4 gene haplotypes, and mRNA transcribed from the RA susceptible 
haplotype is more stable than that from the non-susceptible haplotype. The enzyme 
encoded by the PADI genes, PAD, is involved in post-translational modification, 
converting an arginine residue into citrulline. As a result of this citrullination reac-
tion, the protein loses a positive charge. Therefore, citrullination may influence the 
three-dimensional structure of the molecule, potentially altering its antigenicity and 
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function. Although various autoantibodies have been detected in the sera of RA 
patients, ACPA have been found to be highly specific (from 89% to 98%). Joint 
destruction was reported to be more advanced in patients who were positive for 
ACPA. These findings affirmed an association between PADI4 and RA, not only 
based on genetics but on biological consequences. However, it was shown that 
PADI4 was also involved in the formation of neutrophil extracellular traps (NETs). 
Therefore, the involvement of PAD14 in the pathogenesis of RA needs further 
investigation [17].

3.7  �From GWAS to Functional Genomics

As previously discussed, the majority of SNPs associated with risk for autoimmune 
diseases have been found to be eQTL. Thus, genomic function of disease suscepti-
ble variants could be studied based on this information. Recently, we sampled 
peripheral blood mononuclear cells (PBMC) donated by 100 healthy individuals 
and separated using a cell sorter, for the major immune cells such as CD4+ T cells, 
CD8+ T cells, B cells, NK cells and monocytes. Gene expression by these cells was 
quantified using a next generation sequencer (RNA-Seq). Furthermore, we analyzed 
the relationship of gene expression with genetic variants, and created an eQTL cata-
log (Fig. 3.2). As most of the previous studies analyzed whole blood leukocytes, this 
study generated a novel database to investigate how genetic variants influence the 
expression levels of specific genes, in particular immune cells (Published at the 
National Bioscience Database Center (NBDC)). The expression levels of genes dif-
fered in each cell type. It is understood that the epigenome provides another mecha-
nism for cell specificity. Thus, we could determine which cell types express specific 
genes with the variants associated with disease risk. This information can only be 
obtained when cell subsets are analyzed separately.

Furthermore, by applying the eQTL catalog, we developed a new method to 
analyze the pathogenesis of immune diseases, focusing on the direction of abnormal 
gene expression regulation caused by risk-associated variants. Usually, a single risk 
variants could not be anticipated to have significant influence on disease onset. 
However, with this method, the influence of multiple risk variants could be evalu-
ated and the results interpreted based on our understanding of a certain pathway. 
Specifically, by analyzing the genetic information of RA patients and healthy indi-
viduals, we predicted the effects of 176 genes involved in TNF receptor downstream 
pathways in CD4+ T cells. As a result of our analysis, it was confirmed that the 
activation of TNF receptor regulated pathways in CD4 + T cells was important for 
the pathology of RA [17]. Importantly, this result was obtained from healthy indi-
viduals, therefore not influenced by environmental factors such as treatment 
regimes. Therefore, only the genetic contribution to the disease could be evaluated. 
The TNF inhibitor is an effective treatment option for RA patients and TNF signal-
ing is known to be important in the pathogenesis of RA. However, our study identi-
fied that downstream pathways of the TNF receptor in CD4+ T cells were specifically 
involved in the patogenesis [18].
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3.8  �Epigenetic Research

As described above, the concordance rates of monozygotic twins with RA are 
higher than dizygotic twins. However, since these rates are not 100%, factors other 
than genetics are also involved in pathogenesis of RA. It has been suggested that 
environmental factors working through the epigenome have an important role in 
autoimmune diseases, by controlling gene expression in a cell specific manner. In 
fact, differences in DNA methylation and gene expression between monozygotic 
twins displaying the onset of SLE have been observed [19].

Since the early 1990s, the methylation levels in peripheral T cells have been 
observed to be lower in active SLE than inactive SLE. An analysis of genome-wide 
DNA methylation in CD4+ T cells indicated changes in methylation levels according 

Disease GWAS risk allele GWAS P-value
Rheumatoid arthritis rs2301888-G 1.E-18
Rheumatoid arthritis rs12529514-C 2.0E-8

GWAS Catalog

eQTL catalog
SNPs Cells Genes Effects on 

expression

SNP1 Cell A Gene I Up

SNP2 Cell B Gene II Down

SNP3 Cell C Gene III Up

rs2301888-G CD4+ T cell PADI4 Up

rs12529514-C B cell CD83 Down

SNP4 Cell D Gene IV Down

… … …
…………

…………

rs2301888-G CD4+ T cell PAPP DI4 Up

rs12529514-C B cell CD83 Down

- Upregulation of PADI4 in CD4+ T cells
- Downregulation of CD83 in B cells

are the risk of RA 

Fig. 3.2  Example of an eQTL catalog and example of a list of DNA variants involved in the 
pathogenesis of rheumatoid arthritis
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to the progression of SLE [20]. More comprehensively, a study that compared meth-
ylation of about 46,000 CpG sites on DNA in CD4+ T cells, CD 19+ B cells and CD 
14 + monocytes from both SLE patients and healthy individuals was reported [21]. 
This study showed methylation was lower in SLE patients compared to healthy 
controls, especially in the vicinity of the gene where the alleles were associated with 
risk for SLE. The hypomethylation levels of T cell, B cell and monocytes between 
SLE patients and controls was significant. With regards to histone modification, 
histone H3 and H4 hypoacetylation and H3K9 hypomethylation in CD4+ T cells 
has been reported in SLE patients but not compared to healthy individuals [22].

Similar to those observed in SLE patients, DNA from synovial fibroblast-like 
cells collected from RA patients was demethylated, most likely inducing aggressive 
granulation in tissues [23]. Suppression of DNA methyl-transferase 1 (DNMT1) 
activity results in demethylation. For example, abnormal demethylation of the CpG 
site of the MMP13 gene increased MMP13 expression, and subsequently degrada-
tion of type II collagen in cartilage by the protease activity of MMP 13. With regards 
to histone modification, histone deacetylase (HDAC) activity differs between vari-
ous types of cells. For example, HDAC expression is enhanced in peripheral blood 
[24] and synovial fibroblast-like cells, but the total HDAC activity has been reported 
to be low in synovial tissue [23]. In RA synovial tissue, hypomethylation of histone 
H3K9, and hyperacetylation of histone H3, H4 have also been observed [25].

Abnormal expression of microRNA (miRNA) has been also associated with 
autoimmune diseases [26], although miRNA regulation slightly differs from the 
fundamental concept of the epigenetic modifications described above. It has been 
shown that miR-146a is a regulator of inflammatory cytokines such as TNF-α. 
Interestingly, miR-146a expression levels decreased in patients with SLE but were 
elevated in RA patients [26]. It has also been reported that long-chain ncRNA 
(lncRNA), was involved in autoimmune diseases through tissue-specific transcrip-
tional regulation and present at higher levels than miRNA [27].

3.9  �The Integration of Functional Genomics into Human 
Immunology Research

Our immune system consists of higher-order functions through the interaction of 
various cell types, molecules and genes. To date, the immune system has mainly 
been investigated using mouse models, including through inactivation of specific 
genes (knockout mice). Overall, mouse and human immune systems are similar. 
However, there are differences, in particular where a treatment shown to be effective 
for an immunological disease in mice does not work in humans. Therefore, it has 
been recognized that immunological research in humans is important. In this 
respect, human studies that examine only the immune responses may not provide 
information about causal relationships. For example, data on gene expression, pro-
tein expression, or epigenetic changes alone cannot indicate whether they are a 
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cause or consequence. Therefore, similar to gene knockout studies in mice, an 
investigative methodology that clarifies both cause and consequence should be 
adopted for human immunology research. In this context, the study of disease-
susceptible genetic variants is important. With the exception of antigen receptor 
genes, a patient’s genetic information exists before the disease onset and does not 
change. These findings provide us with evidence into the causal relationship of the 
observed phenomenon and its pathogenesis. As discussed earlier, many of the dis-
ease susceptible variants identified by GWAS have been found to function as an 
e-QTL, regulating the expression levels of genes. The SNP regions associated with 
RA significantly overlap the histone mark of an active promoter and enhancer in T 
cells from RA patients [28]. Therefore, using global genomic information, qualita-
tive and quantitative analyses of gene expression together with information about 
disease susceptible variants, cell specific epigenomes and proteins, we will better 
understand the pathogenic components of immuno-competent cells in various 
immune-related diseases. This research will make it possible to elucidate causal 
intermediate phenotypes such as gene expression, epigenome and protein expres-
sion patterns in individual diseases. By comprehensively understanding the human 
immune system, it could be possible to elucidate the immune status of each indi-
vidual in more detail, making precision medicine a reality [29, 30].
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Chapter 4
Genome-Wide Association Study for Type 
2 Diabetes

Minako Imamura, Momoko Horikoshi, and Shiro Maeda

Abstract  Genome-wide association studies (GWAS) have facilitated a substantial 
and rapid rise in the number of confirmed genetic susceptibility variants for type 2 
diabetes (T2D) and glycemic traits. Approximately 90 variants for conferring sus-
ceptibility to T2D and 80 variants for glycemic traits have been identified until the 
end of 2016. This success has led to widespread hope that the findings will translate 
into improved clinical care for the increasing numbers of patients with diabetes. 
Potential areas or clinical translation include risk prediction and subsequent disease 
prevention, pharmacogenomics, and the development of novel therapeutics. In con-
trast, worldwide efforts to identify susceptibility loci to diabetic nephropathy have 
not been successful so far, and most of heritability for diabetic nephropathy remains 
to be elucidated. Uncovering the missing heritability is essential to the progress of 
T2D genetic studies and to the translation of genetic information into clinical 
practice.
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4.1  �GWAS for Type 2 Diabetes

More than 400 million people are affected by diabetes mellitus worldwide, and the 
number of patents is estimated to rise to more than 600 million by 2040 [1]. 
Increasing prevalence of diabetes is a serious concern in many countries. Of the 
total global diabetes rate, 90% are living with type 2 diabetes (T2D), which is char-
acterized by insulin resistance in peripheral tissues and impairments of insulin 
secretion from pancreatic β-cells. Although the current rise in T2D prevalence is 
explained mainly by changes in life-style, complex genetic determinants are widely 
considered to contribute to an inherent susceptibility to this disease [2–5]. A sibling 
relative risk of T2D was reported to be approximately 2 [4], and its heritability has 
been estimated at 30–70% [5]. Like other common diseases, the pathogenesis of 
T2D is considered polygenic, and the effects of individual genetic factors are mod-
est by themselves [6]. Development of high-throughput genotyping technologies 
and statistical and computational software has allowed remarkable progress over the 
past decades in the research fields for genome-wide search to discover novel genetic 
loci for T2D susceptibility [6]. In 2007, five GWAS for T2D performed by European 
and American Groups identified robust susceptibility loci to European T2D, and 
until 2016, more than 90 T2D susceptibility loci have been identified through 
GWAS in different ethnic groups. The empirical threshold for statistical signifi-
cance used here is p < 5 × 10−8 unless a different study-wise threshold has been 
applied and noted. It is also important to remember that loci are labeled by the 
gene(s) nearest to or functionally plausible for the association signal and that they 
do not necessarily explain the true functional gene responsible for the signal.

�Genetics of T2D: Before the GWAS Era

Prior to the GWAS era, the importance of genetic factors in the etiology of T2D had 
been well established through family and twin studies [2–5], and the linkage analy-
sis and candidate-gene association studies were applied as the primary approaches 
to identify susceptibility loci for diseases or phenotypic traits [7, 8]. Reynisdottir 
et al. identified segments in chromosomes 5 and 10 with suggestive linkage to T2D 
[8], and showed that the chromosome 10 region harbored the TCF7L2 [9]. 
Subsequently, the association of TCF7L2 with T2D was replicated not only in popu-
lations of European descent but also in other ethnic groups [10–16], including the 
Japanese [17, 18]. Candidate-gene association studies showed that PPARG [19] and 
KCNJ11 [20] were susceptibility genes for T2D. Both genes encode targets of anti-
diabetes medications (thiazolidinediones and sulfonylureas, respectively) and har-
bor missense variants associated with T2D: P12A in PPARG and E23K in KCNJ11 
[19, 20]. The successful identification of these genes encouraged the genetic study 
of T2D; however, these classical approaches were not recognized as suitable to 
identify variants that have a smaller effect on disease susceptibility. Therefore, the 
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discovery of novel T2D susceptible loci had been challenging, and a more powerful 
strategy was needed to overcome this difficulty.

�The Initial Phase of GWAS Era of T2D Genetics (2007–2008)

In 2007, GWAS for T2D was conducted in a French population composed of 661 
cases and 614 controls, covering 392,935 SNP (single nucleotide polymorphism) 
loci. This study identified novel association signals at SLC30A8, HHEX, LOC387761, 
and EXT2 and validated the association at TCF7L2 previously identified through 
linkage analysis [21]. Shortly after the French GWAS, the Icelandic study group 
confirmed the association of SLC30A8, HHEX, and the newly identified CDKAL1 
with T2D [22]. At the same time, three collaborating groups, the Wellcome Trust 
Case Control Consortium/United Kingdom Type 2 Diabetes Genetics consortium 
(WTCCC/UKT2D), the Finland-United States Investigation of NIDDM (FUSION), 
and the Diabetes Genetics Initiative (DGI), reported the consistent associations of 
SCL30A8, HHEX, CDKAL1, IGF2BP2, and CDKN2A/B with T2D in European 
populations [23–25]. These novel loci and two previously known variants (PPARG 
P12A and KCNJ11 E23K) were confirmed by multiple replication studies com-
posed of European and non-European populations with the exception of LOC387761 
and EXT2. Thus, the first round of European GWAS confirmed eight T2D suscepti-
bility loci across multiple ethnic groups: TCF7L2, SLC30A8, HHEX, CDKAL1, 
IGF2BP2, CDKN2A/B, PPARG, and KCNJ11 [21–25]. In addition to these eight 
loci, the WTCCC/UKT2D study identified a strong association between FTO vari-
ants and T2D, although the effect of FTO variants on conferring susceptibility to 
T2D was mostly mediated through increase in body weight [26].

After the first round of European GWAS, an effort was made to increase sample 
size so that common variants with smaller effect sizes would be detectable. WTCCC/
UKT2D, FUSION, and DGI combined their data to form the Diabetes Genetics 
Replication and Meta-analysis (DIAGRAM) consortium. Six additional novel loci, 
JAZF1, CDC123/CAMK1D, TSPAN/LGR5, THADA, ADAMTS9, and NOTCH2, 
were identified in a genome-wide scan comprising a substantial sample size (4549 
cases and 5579 controls) and more than 2.2 million SNPs (either directory geno-
typed or imputed), followed by replication testing [27].

�GWAS in Groups of East Asian Descent (2008–2011)

Over the past decades, many Asian countries have experienced a dramatic increase 
in the prevalence of T2D. Cumulative evidence suggests that Asians may be more 
susceptible than populations of European ancestry to insulin resistance and diabe-
tes, which was thought to be due to differences in interethnic genetic inheritance 
[28]. Many of the association of the T2D loci identified by European GWAS, 
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especially the first round of GWAS, have been confirmed in Japanese populations 
[6, 29, 30]. However, there are significant interethnic differences in the risk allele 
frequency or in effect sizes at several loci, which may affect the power to detect 
associations in these populations. For example, risk allele frequencies of TCF7L2 
variants showing the strongest effect on T2D in European populations are very few 
in the Japanese (~5%) compared to populations of European descent (~40%) [17, 
18]. Consequently, the association of TCF7L2 variants and T2D appears statisti-
cally less significant in the Japanese [17, 18]. In addition, the effects of some loci 
identified through European T2D GWAS were not consistent in Japanese popula-
tions [6, 29, 30]. Therefore, it is necessary to identify ethnic group-specific T2D 
susceptibility loci, those have not been captured by the European studies, to explain 
T2D heritability in populations of Asian descent.

In 2008, two independent Japanese GWAS, conducted by Millennium genome 
project (MHLW) and BioBankJapan (BBJ), simultaneously identified the KCNQ1 
locus as a strong T2D susceptibility locus in the Japanese [31, 32]; this was the first 
established T2D susceptibility locus through non-European GWAS.  Subsequent 
replication studies performed in different ethnic groups revealed that single nucleo-
tide variants located at intron 15 of KCNQ1 had the strongest effects on conferring 
susceptibility to T2D in several East Asian populations [33–36]. The association of 
the KCNQ1 locus with T2D was replicated in European populations, but the minor 
allele frequencies in Europeans were considerably lower than those in East Asian 
populations (~7% in Europeans versus ~40% in East Asians). Thus, in contrast to 
TCF7L2, the attributable fraction of KCNQ1 on T2D susceptibility was relatively 
small in European populations. Since the KCNQ1 locus was not captured in the 
European studies, this finding emphasizes the importance of examining susceptibil-
ity loci in different ethnic groups. Although the two Japanese GWAS successfully 
identified the KCNQ1 locus, these studies had limited sample sizes at the initial 
stage of the genome-wide scan: MHLW, 187 T2D cases vs. 752 controls [32]; BBJ, 
194 T2D cases vs. 1558 controls [31].

A Japanese GWAS of a larger sample size (4470 T2D vs. 3071 controls) discov-
ered additional two T2D susceptibility loci, UBE2E2 and C2CD4A-C2CD4B in 
2010 [37]. Associations between these loci and T2D were confirmed in East Asian 
replication study [37] and large-scale European GWAS afterward [38], suggesting 
GWAS for T2D using non-European as well as European populations is useful to 
facilitate identification of both ethnicity-specific and common-susceptibility loci 
among different ethnic groups.

An effort was made to increase sample size in East Asian population as well as 
in European combined their data to form Asian Genetic Epidemiology Network 
(AGEN) consortium [39]. Eight additional novel loci, GLIS3, PEPD, FITM-
R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6, and ZFAND3, were 
identified in a genome-wide scan comprising a substantial sample size (6952 cases 
and 11,865 controls) followed by replication testing (Stage 2 in silico replication 
analysis 5843 cases and 4574 controls de novo replication analysis 12,284 cases and 
13,172 controls) [39].
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�GWAS with Imputation and Large-Scale Meta-Analyses (2012–)

In order to identify common variants of weaker effects, efforts have been made to 
increase sample size by combining association data from multiple cohorts by meta-
analyses. DIAGRAM consortium has constantly developed the scale of collabora-
tion, incremental meta-analyses (DIAGRAM+ and DIAGRAM v3) [38, 40] adding 
GWA data from further studies from European descent to DIAGRAM v1 data 
(DIAGRAM+; total of 8130 cases and 38,097 controls [40], DIAGRAM v3; total of 
12,171 cases and 56,862 controls [38]) together with extensive replication have 
identified additional loci (12 and 8 loci, respectively).

In the meantime, four additional loci (ANK1, MIR129-LEP, GPSM1, and 
SLC16A11-SLC16A13) have been identified by Japanese GWAS, with increment of 
the sample size [41] and number of variants examined by the imputation of geno-
types [29, 41]. The latest Japanese GWAS meta-analysis has identified seven addi-
tional T2D susceptibility loci (CCDC85A, FAM60A, DMRTA1, ASB3, ATP8B2, 
MIR4686, and INAFM2) in a genome-wide scan comprising the largest sample size 
in the East Asian population (15,463 cases and 26,183 controls) followed by repli-
cation testing (7936 cases and 5539 controls) [30].

Thus, larger GWAS meta-analyses combined multiple cohorts with homoge-
neous populations have continued to expand the number of T2D loci. In 2014, moti-
vated by a consistency of common variant associations observed across different 
populations [42, 43], a trans-ethnic GWAS meta-analysis of more than 110,000 
individuals, which combined GWAS data in multiple ethnic groups including 
European, East Asian, South Asian, and Mexican/Mexican American, has been per-
formed [44]. Seven additional new loci for T2D susceptibility were successfully 
identified by combining GWAS from multiple ancestry groups, which highlighted 
the benefits of trans-ethnic GWAS [44].

Established susceptibility loci for T2D identified by 2016 are shown in Fig. 4.1.

�What Have T2D GWAS Brought About So Far?

�Identified Loci for T2D Linked More Frequently to β-Cell Function 
than to Insulin Sensitivity

The etiology of T2D is a combination of β-cell dysfunction and insulin resistance, 
which is promoted by either genetic or environmental factors (e.g., obesity, 
Westernized diet, and lifestyle). Interestingly, majority of the known T2D suscep-
tible variants appear to influence insulin secretion rather than insulin resistance. For 
example, large meta-analysis from DIAGRAM+ demonstrated that of 31 confirmed 
T2D susceptibility loci, 10 (MTNR1B, SLC30A8, THADA, TCF7L2, KCNQ1, 
CAMK1D, CDKAL1, IGF2BP2, HNF1B, and CENTD2) were nominally associated 
with reduced homeostasis model assessment of β-cell function (HOMA-β) which 
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estimates steady-state β-cell function and only 3 (PPARG, FTO, and KLF14) were 
associated with HOMA of insulin resistance (IR)(HOMA-IR), an indicator for insu-
lin resistance [40]. Consistent result was observed in larger study afterward [45]. 
Moreover, the loci identified in the early phase of Japanese GWAS, namely, KCNQ1, 
UBE2E2, C2CD4A-C2CD4B, and ANK1 were shown to be associated with 
decreased β-cell function in nondiabetic control groups [29, 32, 34, 37]. Prior to the 
accumulation of GWAS data, a genetic predisposition to insulin resistance had been 
considered to play dominant roles in development of T2D, especially in populations 
of European origin [40]. The results obtained from GWAS, however, emphasize the 
crucial role of the pancreatic β-cell in the onset of T2D, and a genetic predisposition 
to reduced β-cell function may contribute more to the susceptibility to T2D.

�Missing Heritability

GWAS have successfully identified novel T2D susceptibility loci that had not been 
captured by classical approaches. However, it has been estimated that only ~10% of 
the known T2D heritability could be explained by those T2D susceptibility loci [38, 
46]. Because polygenic analyses in the European ancestry GWAS have suggested 
many more common variant loci not yet reaching genome-wide significance could 
contribute to the heritability of T2D susceptibility [38, 46], residual genetic 
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Fig. 4.1  Established T2D susceptible loci. The x-axis shows the year of publication. Background 
color indicates ethnic composition of the samples in the discovery GWAS: European (blue), 
Japanese (red), Chinese (purple), African American (gray), East Asian (orange), South Asian 
(green), trans-ethnic (yellow), and Inuit (pink)

M. Imamura et al.



55

variance explained by a long tail of common variant signals of lesser effect could be 
captured in larger-scale analyses of various individual ethnic populations or trans-
ethnic meta-analysis. The rationale of GWAS is based on the “common disease-
common variant” hypothesis, and studies have focused on finding common variants 
associated with the disease; therefore, susceptibility variants having a minor allele 
frequency (MAF) of less than 1% are frequently missed, with limited exceptions 
[47, 48]. It has been a matter of considerable debate whether low-frequency risk 
variants, which could be evaluated by next generation sequencing and may have 
relatively large effects, could explain the missing heritability. To test this hypothe-
sis, the GoT2D and T2D-GENES consortia performed whole-genome sequencing 
(WGS, n = 2657) and whole-exome sequencing (WES, n = 12,940) with 26.7 mil-
lion variants, including 4.16 million low frequency (0.5 <MAF <5%) or 6.26 mil-
lion rare (MAF <0.5%) variants. The results indicated variants associated with T2D 
after sequencing were overwhelmingly common (MAF >5%); therefore they con-
cluded that this sequencing analysis did not support the idea that lower-frequency 
variants have a major role in predisposition to T2D [49], although sample sizes for 
initial WGS/WES were considered too small for rare variants analyses.

�Translation of T2D Genetics into Clinical Practice

The Possibility of Disease Prediction and Prevention

One of the most anticipated clinical uses of genetic information is to predict an 
individual’s risk of developing T2D. Indeed, genetic investigations suggested life-
style intervention arm of the Diabetes Prevention Program (DPP) attenuated genetic 
risk defined by carrying TCF7L2 risk allele [10] or GRS constructed with 34 con-
firmed loci attenuated risk of developing diabetes [50]; these are good examples of 
the clinical usefulness of genetic testing to allow detection of high-risk individuals 
with whom physicians should aggressively intervene. Since the discovery of multi-
ple T2D risk genetic variants, genetic risk score (GRS) calculated based on the 
number of risk alleles in subjects who developed disease has become a common 
approach to indicate individual’s genetic risk. Our study group examined the utility 
of GRS based on 49 established T2D loci (GRS-49) in the Japanese (Fig. 4.2) [51]. 
GRS-49 was significantly associated with T2D risk in a Japanese population, and 
those with a GRS ≥60 (5.7% of the population examined) were 9.81 times as likely 
to have type 2 diabetes compared with those with a GRS <46 (4.2% of the popula-
tion examined) (Fig. 4.2b) [51]. The result suggested even though the impact of 
each T2D susceptibility locus was very small, accumulation of genetic information 
was useful to detect a high-risk group for the disease in a population. However, the 
area under the receiver operating characteristic (ROC) curves for GRS was 0.624, 
and the effect of adding GRS into clinical factor (age, sex, and BMI) was as small 
as 0.03 even though the incremental effect was statistically significant (Fig. 4.2c) 
[51]. The performance of genetic prediction models using GRS has been evaluated 
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Fig. 4.2  Evaluation of a genetic risk score (GRS) constructed by summing up the number of risk 
alleles for GWAS-derived 49 single nucleotide variants (SNVs) in 4399 Japanese participants [51]. 
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in over 30 studies including Asian and European with case-control study sets or 
prospective cohorts [52]. The results were consistent among these studies including 
ours [51]: AUCs of genetic information alone for T2D were 0.579–0.641 and incre-
mental predictive performance of T2D using established marker is statistically sig-
nificant but limited [52]. Insufficient information is available to construct a genetic 
risk score for T2D because of so-called missing heritability, and it is far from trans-
lating into clinical practice at present. Identification of causal variants, epigenetic 
modifications, gene-gene interactions, and gene-environment interactions as well as 
uncovering residual T2D susceptible genetic variants may improve the clinical util-
ity of genetic information for T2D prediction [52].

�The Possibility of Identifying Novel Biological Mechanisms 
and Therapeutic Targets

Because GWAS is a biology-agnostic method to detect genetic variations that pre-
dispose to a disease, the results may contribute to identify novel biological mecha-
nisms, which may lead to discover novel therapeutic targets for T2D.  However, 
uncovering underlying molecular mechanisms by which the loci contribute to sus-
ceptibility to type 2 diabetes has been behind, compared with GWAS discovery. A 
major obstacle is that the causal variants and molecular mechanisms for diabetes 
risk are unknown in the most of the identified T2D susceptibility loci. Furthermore, 
most genetic risk variants are found in the intronic or noncoding regions of genes 
and are more likely to affect regulation of transcription rather than gene function. 
Thus, it has been challenging to elicit novel biological insight, which may uncover 
the disease pathogenesis and guide drug discovery from GWAS derived genetic 
information.

To identify biological candidate for causal genes at established T2D risk loci 
systematically, our study group utilized an in silico pipeline, originally developed 
by Okada et al. [53], using various publicly available bioinformatics methods based 
on (i) functional annotation, (ii) cis-acting expression quantitative trait loci, (iii) 
pathway analyses, (iv) genetic overlap with monogenic diabetes, (v) knockout 
mouse phenotypes, and (vi) PubMed text mining [30]. Seven genes (PPARG, 
KCNJ11, ABCC8, GCK, KIF11, GSK3B, and JUN) were identified as potential drug 
targets for T2D treatment by integrating disease-associated variants with diverse 
genomic and biological datasets and subsequent drug target search (Fig. 4.3) [30]. 
Of these, PPARG, KCNJ11, and ABCC8 have been well known as targets for the 

Fig. 4.2  (continued) (a) Distribution of the number of risk alleles in patients with T2D (black bars, 
n = 2613) and controls (white bars, n = 1786). (b) Odds rates (ORs) for individual groups with 
different number of T2D risk alleles relative to the reference group having 37–45.5 risk alleles. The 
vertical bars represent 95% confidence intervals. (c) Receiver Operating Characteristic plot for 
model 1 containing GRS (black line, area under the curve (AUC) = 0.624); model 2 containing sex, 
age, and body mass index (BMI) (broken line, AUC = 0.743); and model 3 containing GRS, age, 
sex, and BMI (gray line; AUC = 0.773)
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already approved T2D treatment options, and a GCK activator is currently 
undergoing clinical trials for the T2D treatment. Thus, this in silico pipeline was 
capable to detect drug target of established T2D treatment suggesting the capability 
for developing novel T2D treatment. Inhibitors for KIF11, GSK3B, and JUN were 
under clinical trial for the treatments of cancers (KIF11, GSK3B) or rheumatoid 
arthritis (JUN); these compounds could also be potential treatments for T2D [30]. 
Thus, systematic approaches for integrating the findings of genetic, biological, and 
pharmacological studies could be a useful strategy for developing new T2D 
treatments.

rs1801282

rs1111875

rs28642252

rs6813195

rs1111875

rs10923931

rs11063069

GSK3B

JUN

NOTCH1

NOTCH2 

CCND2

FBXW7

HHEX

rs10278336

rs5215

GCKRrs780094

KCNJ8

GCK

PPARG

ABCC8

KIF11

KCNJ11

Thiazolidinediones *

Sulfonylureas *

Glinides *

Glucokinase ac�vators **

KIF11 inhibitors ***

GSK3B inhibitors ***

AP-1 inhibitor ***

T2D risk SNPs

Biological T2D genes 
within the loci

Genes in  direct PPI

Targeted drugs

En�re genes within 
established T2D loci 1) T2D risk missense variant 

2) Monogenic diabetes 
3) Protein-protein interac�on
4) Knockout mouse phenotype 
5) Pubmed text mining 
6) cis-eQTL

priori�za�on Genes priori�zed PPI

Genes in direct PPI

Established T2D loci

Biological T2D genes 

Search drug target database
Genes targeted by 

exis�ng drugs

A

B

Fig. 4.3  Discovery of potential drug targets for the treatment of T2D [30]. (a) Strategy for drug 
targets search based on the genetic information derived from GWAS. Biological T2D risk genes 
were selected from among the T2D potential risk genes located in any of the established T2D risk 
loci, using a scoring system by summing up the number of prioritization criteria satisfied. We 
selected novel T2D therapeutic targets from the overlapping genes between the drug target genes 
and the biological T2D risk genes or genes those products are in direct PPI with the biological T2D 
risk gene products. (b) Representative connections between T2D risk SNVs (blue), T2D biological 
genes (green), drug target genes (purple), and targeted drugs. ∗ Approved compounds for T2D 
treatment ∗∗Compounds for T2D treatment under clinical trial ∗∗∗ Compounds under clinical trial 
for treatment against diseases other than T2D
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4.2  �GWAS of Metabolic Traits

The etiology of T2D is characterized by reduced insulin secretion due to impaired 
beta-cell dysfunction and the presence of insulin resistance. The heritability of insu-
lin secretion, peripheral insulin action, and nonoxidative glucose metabolism has 
been investigated in young and old Danish twins and was estimated that 75–84%, 
53–55%, and 48–50% were attributed to genetic factor, respectively, showing that 
there is a strong genetic component in the etiology of these traits [54]. As a result, 
we would expect to find genetic loci associated with these traits through non-
hypothesis-driven GWAS, and see new loci, which we would not have known to be 
implemented in these traits. As GWAS for type 2 diabetes have been successful in 
identifying many susceptibility loci (please see the section described above), so has 
been the case for insulin secretion and action. There are many kinds of metabolic 
traits such as lipid, adiponectin, and leptin levels that play an important role in the 
metabolism of type 2 diabetes. Here we will focus on genetic loci reported for fast-
ing glycemic traits, including fasting glucose and insulin, proinsulin, and hemoglo-
bin A1c (HbA1c).

�GWAS of Common Variants for Glycemic Traits

�European Studies

Before the advent of the GWAS era, a few loci were demonstrated to be influencing 
fasting glucose level in healthy individuals. Using candidate gene approach, asso-
ciation studies identified variants in three genes, GCK, G6PC2, and GCKR [55–58], 
unequivocally implemented in fasting glucose level. The first GWAS to report 
genetic loci for diabetes-related quantitative traits was conducted on HbA1c level. 
Pare et  al. evaluated 337,343 SNPs in 14,618 nondiabetic women of Caucasian 
ancestry in the Women’s Genome Health Study [59]. In addition to confirming the 
HbA1c association at GCK and G6PC2, they identified a novel locus at HK1. 
Another locus, SLC30A8, which was known for its association with T2D reached 
border-line genome-wide significance (p = 9.8 × 10−8).

The Meta-Analyses of Glucose and Insulin traits Consortium (MAGIC) investi-
gators undertook a series of GWAS on fasting glycemic traits in nondiabetic indi-
viduals and succeeded in identifying several genetic loci (Fig. 4.4). By 2011, their 
efforts led to the discovery of 16 loci for fasting glucose level (known G6PC2, 
MTNR1B, GCK, GCKR, SLC30A8, TCF7L2; recently reported DGKB-TMEM195; 
novel ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1, and 
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C2CD4B), 2 for fasting insulin level/HOAM-IR (known GCKR and novel IGF1), 5 
for postoral glucose tolerance test (OGTT) (GIPR, GCKR, ADCY5, TCF7L2, 
C2CD4A/B), 10 for proinsulin level (MADD, SLC30A8, TCF7L2, C2CD4A/B, 
PCSK1, ARAP1, LARP6, SGSM2; body mass index (BMI) adjusted locus SNX7, 
women-specific locus DDX31), and 10 for HbA1c (known HK1, MTNR1B, GCK, 
G6PC2; novel SPTA1, FNK3, HFE, TMPRSS6, ANK1, APT11A/TUBGCP3) [60–
63]. This brought the number of loci associated with one or more glycemic traits to 
31. These studies highlighted several important biological pathways involved in 
glucose and insulin metabolism, such as signal transduction, cell proliferation, 
development, glucose-sense, and circadian regulation. It also demonstrated that on 
one hand, studying genetics of glycemic trait can help identify T2D risk loci but, on 
the other hand, that not all loci associated with glycemic traits in healthy population 
(with glucose level in the “physiological” range) affect the risk of T2D (with glu-
cose level in the “pathological” range), showing that there are un-overlapping 
mechanisms between fasting glucose elevation and development of T2D.

MAGIC investigators extended their effort by increasing the sample size for dis-
covery GWAS from 46,186 to 133,010 nondiabetic participants and incorporating 
Illumina CardioMetabochip, a custom iSELECT array of ~200 k SNPs that covers 
putative association signals for a wide range of cardiometabolic traits and fine-maps 
established loci [64]. This approach identified 41 novel loci associated with glyce-
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Fig. 4.4  Schematic view of the >80 established loci for fasting glycemic traits, including fasting 
glucose, insulin, proinsulin, and HbA1c
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mic traits, raising the number of loci associated with fasting glucose level to 36, 
fasting insulin to 19 and 2 h postprandial glucose (2hGlu) to 9 (Fig. 4.4). The large 
increase in the number of insulin-associated loci (from 2 to 19) was partly owing to 
the incorporation of analyses with and without adjustment for BMI [64]. The authors 
speculated that because BMI explained more of the variance in fasting insulin level 
than in fasting glucose (R2 32.6% vs. 8.6%), BMI adjustment provided more oppor-
tunity to detect true genetic associations for fasting insulin level by removing the 
variance in insulin level influenced by BMI.  These loci affecting fasting insulin 
concentration showed association with lipid levels and fat distribution, suggesting 
impact on insulin resistance. Of the total 53 glycemic loci, 33 were also associated 
with increased risk of T2D (q < 0.05). Although the overlapping loci between gly-
cemic traits and T2D were increased, the overlap was incomplete and many glyce-
mic loci had no discernible effect on T2D (Fig. 4.5) [64].

From a similar point of view with the BMI adjusted analysis undertaken by 
MAGIC investigators, Manning et al. implemented a joint meta-analysis approach 
to test associations with fasting insulin and glucose concentration accounting for 
variant by BMI interaction on a genome-wide scale [65]. Six previously unknown 
loci associated with fasting insulin at genome-wide significance were identified 
(COBLL1-GRB14, IRS1, PPP1R3B, PDGFC, LYPLAL1, and UHRF1BP1).

To characterize the known 37 T2D loci and examine the relationship with indices 
of proinsulin processing, insulin secretion, and insulin sensitivity, MAGIC investi-
gators combined data on both basal and dynamic measures to perform cluster analy-
sis [45]. This analysis highlighted clusters characterized by (i) primary effects on 
insulin sensitivity (PPARG, KLF14, IRS1, GCKR), (ii) reduced insulin secretion and 
fasting hyperglycemia (MTNR1B, GCK), (iii) defects in insulin processing (ARAP1), 
(iv) influence on insulin processing and secretion without a detectable change in 
fasting glucose level (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/B), and 
(v) unclassified (20 loci).

�Studies Conducted in Non-European Population

GWAS on glycemic traits in non-European population was conducted around the 
world. In 2011, a large-scale GWAS meta-analysis on metabolic traits was con-
ducted in East Asian population, identifying one novel locus for fasting glucose at 
SIX2-SIX3 [66]. GWAS in African Americans identified novel loci for insulin and 
insulin resistance assessed by Homeostasis Model Assessment for Insulin Resistance 
(HOMA-IR) at SC4NOL and TCERG1L [67]. More recent GWAS in East Asians 
detected several novel loci for glycemic traits: C12orf51, PDK1-RAPGEF4, 
KANK1, IRS1 for fasting glucose; MYL2, C12orf51, OAS1 for 1-2hGlu; TMEM79, 
HBS1L/MYB, MYO98, CYBA for HbA1c [68–70]. Among these novel loci, IRS1 
and C12orf51 were associated with T2D [38, 71]. GWAS in an isolated Inuit popu-
lation in Greenland has been successful in identifying a common variant in TBC1D4 
associated with higher 2hGlu, 2 h-insulin, 2 h-C-peptide, and reduced insulin sensi-
tivity index [72]. This variant was common (minor allele frequency (MAF) 17%) in 

4  Genome-Wide Association Study for Type 2 Diabetes



62

Greenlandic population, but almost absent in any other population. Homozygous 
carriers of this TBC1D4 variant had unprecedentedly high risk of T2D (OR = 10.3).

�Exome-Wide Association Analyses for Glycemic Traits

GWAS for fasting glucose and fasting insulin have identified several common vari-
ant loci associated with the traits. However, lead SNPs at GWAS loci have relatively 
modest effect and explain only a small portion of the variance (4.8% and 1.2%, 

Fig. 4.5  Per-allele β coefficients for glucose and insulin concentrations versus ORs for T2D 
(reproduced from Scott et al. [64]). (a) Fasting glucose concentration versus type 2 diabetes (T2D). 
(b) Fasting insulin (FI) concentration versus T2D. (c) Fasting insulin concentration adjusted for 
body mass index (BMI) versus T2D. (d) 2-hour glucose versus T2D. Each locus is color-coded 
according to the strength of association with T2D as indicated in (a)
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respectively) [73]. The Illumina HumanExome Beadchip array, a custom array, was 
designed to facilitate large-scale genotyping of ~250 k mostly rare (MAF <0.5%) 
and low-frequency (MAF 0.5–5%) protein altering variants selected from sequenced 
exomes and genomes of ~12,000 individuals. Analyses using this Exomechip have 
enabled not only to identify novel loci for glycemic traits, but also to clarify the 
effector transcripts through which the association signals are exerting their effect.

The first report of exome-wide analysis revealed novel loci for low-frequency 
variants associated with proinsulin level. Low-frequency missense variants in 
KANK1 (Arg667His, MAF 2.9%) and TBC1D30 (Arg279Cys, MAF 2.0%) were 
associated with proinsulin level. Missense variants in PAM (Asp563Gly, MAF 
5.3%) and the neighboring PPIP5K2 (Ser1228Gly, MAF 5.3%) were associated 
with insulinogenic index [74]. These two missense variants are significantly associ-
ated with T2D and are indistinguishable [75, 76]. Exome array analysis identified 
two low-frequency missense variants in known GWAS signal for fasting proinsulin 
concentration, which were independent of the known GWAS SNPs. One was 
Arg766X (MAF 3.7%) in MADD and the other was Val996Ile (MAF 1.4%) in 
SGSM2, demonstrating that these two genes were the likely effector transcripts at 
these loci [74]. Nominal p < 4.46 × 10−8 was used as statistical significance in this 
analysis, correcting for the number of tests (number of phenotypes multiplied by 
number of variants tested) conducted [74].

MADD locus was initially identified through GWAS for proinsulin and resides 
in a region of long-range linkage disequilibrium (LD) that extends >1  Mb in 
Europeans. Cornes et al. performed targeting deep sequencing of this 11p11.2 locus, 
encompassing MADD, ACP2, NR1H3, MYBPC3, and SPI1, and conducted associa-
tion analysis for fasting glucose and insulin concentration using gene-based test 
(sequence kernel association test (SKAT)) [77]. SKAT is a useful approach to 
aggregate low-frequency exonic variants to test against phenotype of interest. Gene-
based test at 11p11.2 locus demonstrated that 53 rare variants at NRH13 was jointly 
associated with fasting insulin, suggesting the existence of >2 independent signals 
at this locus.

Two other exome-array based analyses for fasting glucose and insulin concentra-
tion were reported at the same time. Both studies identified a low-frequency mis-
sense variant Ala316Thr (MAF 1.5%) at a novel locus GLP1R associated with 
fasting glucose [73, 78]. The glucose-raising allele of Ala316Thr was associated 
with lower early insulin secretion, higher 2hGlu concentration and risk of T2D [73]. 
Multiple low-frequency missense variants at G6PC2/ABCB11, a locus known for its 
strong association with fasting glucose, were reported in both studies. His 177Tyr, 
Tyr207Ser, Val219Leu (MAF 0.3%, 0.6%, 45.3%, respectively) in G6PC2 had 
influence on fasting glucose independently of each other as well as of the known 
noncoding GWAS common signal [73]. In vitro experiments showed that these mis-
sense variants were responsible for the loss of G6PC2 function through proteoso-
mal degradation, and leads to a reduction in fasting glucose level in human [73]. 
Gene-based SKAT test demonstrated significant association between G6PC2 and 
fasting glucose level [78]. The two studies used study-wide significance based on 
the number of variants, genes, and tests performed. For example, one of the studies 
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used p < 3 × 10−7 as significance threshold for single variant analysis and p < 1.6 × 
10−6 for gene-based analysis.

Custom Exomechip array contains a certain proportion of noncoding common 
variants, including known GWAS lead SNPs, in order to facilitate conditional 
analyses to test evidence for multiple distinct signals at a locus. As a consequence, 
Exomechip analysis has led to the discovery of several novel loci for glycemic traits 
with common variants. Exomechip analysis identified additional loci at GPSM1 and 
HNF1A for Insulinogenic index [74], ABO for insulin action (disposition index) and 
fasting glucose [73, 74], and URB2 for fasting insulin level [73].

Currently, we are in an exciting time for the discovery of many genetic loci asso-
ciated with T2D-related quantitative phenotypes. We have summarized >80 loci that 
have influence on fasting glycemic traits, including fasting glucose, insulin, proin-
sulin, and HbA1c level (Fig. 4.4). Concurrent approaches using GWAS and Exome 
array-based analyses have compensatory features to detect these loci. GWAS is 
widely performed and enables to combine a large number of samples in the meta-
analysis. To date, GWAS meta-analysis for fasting glycemic traits are reported on 
data imputed up to the HapMap reference panel, but ongoing effort to use the latest 
reference panel for imputation provided by the 1000 Genomes Project will give a 
better coverage across the low-frequency allele spectrum and is expected to yield 
many more novel loci for fasting glycemic traits. For exome array-based approach, 
though it may have limited ability to investigate very rare variants compared to 
exome sequencing, it is still a cost-effective way and can be more easily performed. 
Importantly, we have seen proof of principle that exome array genotyping is a pow-
erful way to detect low-frequency variant associations and to enable fine-mapping 
of the association loci to identify functional variants and effector transcripts through 
which the association is mediated. The use of these two wheels of analyses is 
expected to help deciphering the complex picture of the genetics of fasting glycemic 
traits and its relation with T2D.

4.3  �GWAS for Diabetic Nephropathy or Diabetic Kidney 
Diseases

Diabetic nephropathy is a leading cause of end-stage renal disease (ESRD) in 
Western countries and Japan. The rising incidence of diabetic nephropathy, espe-
cially among patients with type 2 diabetes, is a serious worldwide concern in terms 
of both poor prognosis and medical costs. Up to now, strict glycemic and/or blood 
pressure control, protein restriction, or combination of these treatment have been 
shown to be effective for the prevention of the progression of diabetic nephropathy 
as well as for reducing cardiovascular events in patients with diabetic nephropathy 
[79–82]. Furthermore, remission and/or regression of microalbuminuria have also 
been reported [83–85], and thus the prognosis of subjects with diabetic nephropathy 
has been significantly improved during the last decade. However, still considerable 
numbers of subjects were suffered with diabetic nephropathy.

M. Imamura et al.



65

The pathogenesis of diabetic nephropathy appears to be multifactorial, and sev-
eral environmental and/or genetic factors might be responsible for the development 
and progression of the disease [86], but precise mechanisms have not been elucidated 
yet. It has been reported that the cumulative incidence of diabetic retinopathy 
increased linearly according to the duration of diabetes, whereas the occurrence of 
nephropathy was almost none after 20–25 years of diabetes duration, and only mod-
est number of individuals with diabetes (~30%) developed diabetic nephropathy 
[87]. Familial clustering of diabetic nephropathy was also reported both in type 1 
[88] and type 2 diabetes [89], From these cumulative evidences, it is suggested that 
genetic susceptibility plays an important role in the pathogenesis of diabetic 
nephropathy. Worldwide efforts have been conducted to identify genes conferring 
susceptibility to diabetic nephropathy, but the efforts by classical approaches, i.e., 
candidate gene approaches or linkage analyses, have not been successful so far.

GWAS for diabetic nephropathy or diabetic kidney diseases have been performed 
in European, African American, and Japanese populations. However, the results 
were not consistent each other, and only a few loci satisfied genome-wide signifi-
cant level.

�GWAS for Diabetic Nephropathy (Diabetic Kidney Disease) 
in Populations of European Descent

In patients with type 1 diabetes, GWAS for diabetic nephropathy was first con-
ducted by Genetics of Kidneys in Diabetes (GoKinD) study group using 820 cases 
(284 with proteinuria and 536 with end-stage renal disease) and 885 controls for 
~360,000 SNPs, followed by a validation analysis using 1304 participants of the 
Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes 
Interventions and Complications (EDIC) study, a long-term, prospective investiga-
tion of the development of diabetes- associated complications [90]. Four SNP loci 
were reported to show suggestive associations through the GWAS, rs10868025 near 
FRMD3 (9q21.32), rs39059 within CHN2 (7p14.3), rs451041 within CARS 
(11p15.4), and rs1411766/rs1742858 near MYO16/IRS2 (13q33.3). Among the four 
loci, association of two loci, FRMD3 and CARS, were validated in the DCCT/EDIC 
study, although the association did not attain genome-wide significant level. The 
association of the four loci were further evaluated in 66 extended families of 
European ancestry, the Joslin Study of Genetics of Nephropathy in Type 2 Diabetes 
Family Collection, the results indicated that FRMD3 locus showed evidence of 
association with diabetic nephropathy (advanced diabetic nephropathy or advanced 
diabetic nephropathy plus high microalbuminuria) or with albuminuria (log trans-
formed albumin to creatinine ratio) [91]. The association of FRMD3 locus with 
diabetic end-stage renal disease was observed in African American patients with 
type 2 diabetes lacking two MYH9 E1 risk haplotypes, which was well-known 
strong risk for nondiabetic kidney diseases in African Americans [92]. In Japanese 
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patients with type 2 diabetes, rs1411766 at ch. 13q33.3 was associated with diabetic 
nephropathy, and the association attained a genome-wide significant level after inte-
gration of two data, Japanese type 2 diabetes and Caucasian type 1 diabetes, by a 
meta-analysis [93].

In 2012, a meta-analysis of diabetic nephropathy for patients with type 1 diabe-
tes in populations of European origin was performed by the Genetics of 
Nephropathy-an International Effort (GENIE) consortium [94]. The analysis using 
advanced diabetic nephropathy (4409 overt proteinuria or end-stage renal disease) 
and 6691 controls identified that rs7588550 within ERBB4 showed suggestive evi-
dence of associated with diabetic nephropathy. In a subsequent sub-analysis for 
end-stage renal disease, 1786 cases and 8718 controls including patients with overt 
proteinuria, two loci, rs7583877  in the AFF3 (2q11.2) and rs12437854  in 
RGMA/MCTP2 locus (15q26.1), were associated with ESRD with a genome-wide 
significant level. However, these associations were not validated in independent 
case-control studies [95]. Genotype imputation using directly genotyped data and 
linkage disequilibrium data in 1000 genomes database for patients with type 1 dia-
betes was performed in the Finnish Diabetic Nephropathy (FinnDiane) study. The 
analysis for 11,133,962 tested SNPs and subsequent first and second stage analyses, 
comprising of 2142 cases and 2494 controls, identified rs1326934 within the 
SORBS1 as top signal for susceptibility to diabetic nephropathy, but the association 
did not reach a genome-wide significant level [96]. Sex stratified GWAS for diabetic 
nephropathy in European patients with type 1 diabetes identified rs4972593 on 
chromosome 2q31.1 as susceptibility to ESRD only in women, but not in men, and 
the results were replicated in independent replication studies [97].

In a GWAS meta-analysis for quantitative traits analysis regarding kidney func-
tions in 54,450 individuals, variants within CUBN showed genome-wide significant 
association with urinary albumin-to-creatinine ratio (UACR), and it was also shown 
that an effect size on logarithmic UACR values was fourfold larger among 5825 
individuals with diabetes (0.19 log[mg/g], p = 2.0 × 10−5) compared with 46,061 
individuals without diabetes (0.045 log[mg/g], p = 8.7 × 10−6; p = 8.2 × 10−4 for 
difference) [98]. In this analysis, rs649529 at RAB38/CTSC locus on chromosome 
11q14 and rs13427836  in HS6ST1 on chromosome 2q21 were associated with 
UACR only in patients with diabetes.

�GWAS for Diabetic Nephropathy in the Japanese Population

In order to identify genes conferring susceptibility to diabetic nephropathy, we have 
performed a GWAS for diabetic nephropathy using 188 Japanese patients with type 
2 diabetes [99, 100]. We commenced an association study using SNPs from a 
Japanese SNP database [101, 102] established prior to the HapMap database. We 
screened approximately 100,000 gene-based SNP loci, and the genotype and allele 
frequencies of 94 nephropathy cases, defined as patients with overt proteinuria or 
ESRD were compared with those of 94 controls defined as patients with 
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normoalbuminuria and diabetic retinopathy. Approximately 80,000 SNP loci were 
successfully genotyped, and 1615 SNP loci with p < 0.01 were selected, and for-
warded to the validation study. These 1615 SNP loci were analyzed further in a 
greater number of subjects to clarify their statistical significance. As a result, several 
SNP loci, including the SLC12A3 locus [103], ELMO1 locus [104], and NCALD 
locus [105] were found to be associated with diabetic nephropathy.

�Solute Carrier Family 12, Member 3 (SLC12A3)

The SLC12A3, at chromosome 16q13, encodes a thiazide-sensitive Na  +  -Cl- 
cotransporter that mediates reabsorption of Na+ and Cl− at the renal distal convo-
luted tubule; this molecule is the target of thiazide diuretics. Mutations in SLC12A3 
are responsible for Gitelman syndrome [106], which is inherited as an autosomal 
recessive trait characterized by hypokalemia, metabolic alkalosis, hypomagnese-
mia, hypocalciuria, and volume depletion. A coding SNP in exon 23 of the SLC12A3 
(rs11643718, +78 G to A: Arg913Gln) was shown to be associated with diabetic 
nephropathy (p = 0.00002, odds ratio 2.53 [95% CI 1.64–3.90]). The results impli-
cated that substitution of Arg913 to Gln in the SLC12A3 might reduce the risk to 
develop diabetic nephropathy. The association of rs11643718 with diabetic nephrop-
athy was replicated in independent case-control studies, including Japanese [107], 
South Asian [108], and Malaysian subjects [109] with type 2 diabetes. Rs11643718 
was associated with end-stage renal disease in Korean patients with type 2 diabetes, 
but direction of effect was opposite to that in the original report [110]. Rs11643718 
did not show significant effect in Caucasian patients with type 2 diabetes (Table 4.1) 
[111].

�Engulfment and Cell Motility 1 (ELMO1)

We identified that the ELMO1 was a likely candidate for conferring susceptibility to 
diabetic nephropathy (rs741301, intron 18 + 9170, GG vs. GA+AA, χ2  =  19.9, 
p = 0.000008, odds ratio: 2.67, 95%CI 1.71–4.16) [104]. The association of ELMO1 
locus with diabetic nephropathy was observed also in African American patients 

Table 4.1  Effect of non-synonymous SNP (rs11643718, Arg913Gln) within the SLC12A3 with 
diabetic nephropathy

Ethnicity n Case: control Odds ratio 95% CI p value Allele frequency

Japanese 716: 543 0.443 0.309−0.636 0.00002 0.076
Japanese 71: 193 0.09 0.01−0.92 0.043 0.143
Malaysian 124: 259 0.547 0.308−0.973 0.038 0.112
South Indian 583: 601 0.658 0.459−0.943 0.020 0.101
Korean 175: 183 2.295 1.573−3.239 0.003 0.055
European 277: 164 1.213 0.775−1.897 0.397 0.098
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with type 2 diabetes [112], Caucasian patients with type 1 diabetes [113], South 
Indian patients with type 2 diabetes [108], Chinese patients with type 2 diabetes 
[114], and American Indian patients with type 2 diabetes [115], although associated 
SNPs or direction of the effects varied among the individual studies. The ELMO1 
gene, on chromosome 7p14, is a known mammalian homologue of the C. elegans 
gene, ced-12, which is required for engulfment of dying cells and for cell migration 
[116]. ELMO1 has also been reported to cooperate with CrkII and Dock180, which 
are homologues of C. elegans ced-2, ced-5, respectively, to promote phagocytosis 
and cell shape changes [116, 117]. However, until then no evidence had been 
reported to suggest a role for this gene in the pathogenesis of diabetic nephropathy. 
By in situ hybridization using the kidney of normal and diabetic mice, we found that 
ELMO1 expression was weakly detectable mainly in tubular and glomerular epithe-
lial cells in normal mouse kidney, and was clearly elevated in the kidney of diabetic 
mice. Subsequent in vitro analysis revealed that ELMO1 expression was elevated in 
cells cultured under high glucose conditions (25 mM) compared to cells cultured 
under normal glucose conditions (5.5  mM). Furthermore, we identified that the 
expression of extracellular matrix protein genes, such as Type 1 collagen and fibro-
nectin, were increased in cells that over-expressing ELMO1, whereas the expression 
of MMPs (matrix metalloproteinase) was decreased [104, 118]. Therefore, it is sug-
gested that persistent excess of ELMO1 in subjects with disease susceptibility allele 
leads to the overaccumulation of extracellular matrix proteins and to the develop-
ment and progression of diabetic glomerulosclerosis. It has been also reported that 
excess of Elmo1 accelerated the progression of renal injury in mouse model of 
diabetes, whereas Elmo1 depletion protected the renal injury in these mice [119]. In 
contrast, experiments using zebrafish suggested that elmo1 had a protective role in 
the progression of renal injury under diabetic conditions [120].

The association of NCALD locus with diabetic nephropathy was not replicated in 
an independent population, and the association of above mentioned loci identified 
in Japanese GWAS for diabetic nephropathy did not attain a genome-wide signifi-
cant level.

�Acetyl-Coenzyme a Carboxylase Beta Gene (ACACB)

We extended the previous GWAS for diabetic nephropathy to the SNPs with p val-
ues between 0.01 and 0.05 and provide evidence that a SNP, rs2268388, within the 
acetyl-coenzyme A carboxylase beta gene (ACACB; MIM: 601557) contributes to 
an increased prevalence of proteinuria in patients with type 2 diabetes across differ-
ent ethnic populations [121].

The frequency of the T allele of rs2268388 was consistently higher among 
patients with type 2 diabetes with proteinuria (combined meta-analysis gave a p 
value of 5.35 × 10−8 in the Japanese, 2.3 × 10−9 for all populations). The association 
of rs2268388 was replicated in patients with type 2 diabetes in different ethnic 
groups, including Han Chinese [122] and Indians [123].
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Expression of ACACB was observed in adipose tissue, heart, and skeletal muscle, 
and, to a lesser extent, in the kidney. The results of in situ hybridization with normal 
mouse kidney revealed that Acacb was localized to glomerular epithelial cells and 
tubular epithelial cells. We also observed the expression of ACACB in cultured 
human renal proximal tubular epithelial cells (hRPTECs). In cultured hRPTECs, a 
29-bp DNA fragments containing the SNP region had significant enhancer activity, 
and fragments corresponding to the disease susceptibility allele had stronger 
enhancer activity than those for the major allele [121].

The quantitative real-time PCR (polymerase chain reaction) using glomeruli iso-
lated from these mice revealed that the expression of Acacb was increased in the 
glomeruli of diabetic db/db mice compared to those of control mice [124]. 
Furthermore, overexpression of ACACB in hRPTECs resulted in remarkable 
increase of the expressions of genes encoding pro-inflammatory cytokines, includ-
ing IL-6, CXCL1, CXCL2, CXCL5, and CXCL6.

Combining these results with the finding in the genetic study, it is suggested that 
ACACB contributes to conferring susceptibility to diabetic nephropathy at least in 
part, via the effects of the pro-inflammatory cytokines, and the ACACB-IL-6 or 
ACACB-CXCLs systems may be considered as new pathways for the development 
and progression of diabetic nephropathy.

�GWAS for Diabetic Nephropathy in Other Ethnic Groups

An African American GWAS for diabetic nephropathy evaluated 965 ESRD patients 
with type 2 diabetes and control individuals without type 2 diabetes or kidney dis-
ease for 832,357 SNP loci, and in addition to MYH9-APOL1 locus, which is already 
known susceptibility to nondiabetic kidney diseases, several loci, RPS12, LIMK2, 
SFI1, were associated with ESRD in patients with type 2 diabetes, although any 
association did not attain a genome-wide significant level [125].

Results of multiethnic GWAS meta-analysis, including African American, 
American Indian, European, and Mexican, identified significant association of 
rs955333 at 6q25.2 with diabetic nephropathy [126].

Susceptibility loci for diabetic nephropathy or diabetic kidney disease with 
genome-wide significant association are listed in Table 4.2.

4.4  �Future Perspective

After the human genome (sequencing) project was completed [127, 128], a large 
body of information on the human genome has been accumulated [129]. 
Simultaneously, high-throughput genotyping technologies as well as statistical 
methods and/or tools for handling innumerable datasets have been developed. Then, 
genome-wide association studies for investigating genes associated with disease 
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susceptibility across the entire human genome have been facilitated, and more than 
2000 loci susceptible to various diseases or traits have been discovered [130].

Although this is excellent progress, it has also been recognized that the informa-
tion obtained from GWAS is still insufficient for clinical application. The focus of 
ongoing research efforts includes detailed functional characterization of the identi-
fied T2D susceptibility variants and the search for missing heritability.

Certain modifications of the GWAS study design will be necessary to uncover 
the missing heritability. Much larger intra- or trans-ethnic sample sizes will be 
required to increase the power to detect true signals, which may be conducted in 
meta-analyses. Examining populations of non-European descent is likely to identify 
additional T2D loci, and this should be performed more vigorously. Association 
analyses of low frequency variants for T2D are an additional option. Additionally, it 
has been shown that the study using small and historically isolated populations may 
have advantages to identify novel susceptibility to the disease [72]. In this report, 
GWAS for glycemic traits using a relatively small number of Greenlandic inuits 
(~2500) identified the nonsense variants in the TBC1D4, which had a striking effect 
on susceptibility to T2D (OR = ~10). Since similar success was reported to identify 
novel missense variants within CREBRF associated with obesity in the Samoan 
population [131], unique variants with a large effect size are conserved in geneti-

Table 4.2  Genetic loci associated with diabetic nephropathy

Ethnicity
Nearest 
gene Chromosome Phenotype

Type of 
diabetes Method Replication

Japanese ACACB 12q24.11 Overt 
proteinuria

Type 2 GWAS Yes

European AFF3 
RGMA-
MCTP2

2q11.2 End-stage renal 
disease

Type 1 GWAS No

European rs4972593 2q31.1 End-stage renal 
disease (women 
only)

Type 1 GWAS Yes

European GLRA3 4q34.1 Urinary albumin 
excretion rate

Type 1 GWAS No

European EPO 7q22.1 End-stage renal 
disease + 
proliferative 
retinopathy

Type 1 Candidate 
gene 
approach

No

Multiethnic rs955333 6q25.2 Overt 
proteinuria + 
end-stage renal 
disease

Type 2 GWAS No

European CUBN 10q13 Urinary albumin 
excretion rate

Type 2 GWAS Yes

European SLC19A3 2q36.3 Advanced 
retinopathy + 
end-stage renal 
disease

Type 1 Candidate 
gene 
approach

No
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cally homogeneous populations, and GWAS in these populations, even if its sample 
size is not so large, are useful to identify novel susceptibility to T2D.

Characterizing disease biology is another relevant goal of genetic studies for 
T2D, which has been behind compared with GWAS discovery. Recent biological 
and clinical studies have suggested possible means to increase the translational use 
of genetic findings through convergence on common resources and workflows, 
regarding comprehensive gene expression data, epigenomics, PPI networks, and 
information of cellular and animal models [30, 53, 132]. In order to exploit these 
trends to advance biological understanding of T2D, it is urgent needs of establish-
ment and effective utilization of publicly available databases including genetic data 
with large-scale sample size with rich phenotype information, epigenomic and tran-
scriptomic data for diverse tissue types, and comprehensive biological data resource 
from cellular and animal models.
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Chapter 5
The Association of Single Nucleotide 
Polymorphisms with Cancer Risk

Koichi Matsuda

Abstract  Cancer is the second leading cause of death and there were 17.5 million 
cancer cases and 8.7 million deaths worldwide in 2015. Although cancer mortality 
decreased in the most of countries, cancer cases increased in the most of countries. 
Recent progress in medical treatment and personalized medicine have significantly 
improved cancer survival, however prevention and early detection of cancer are the 
most important approach to reducing cancer mortality. Family history is also associ-
ated with a two to fourfold increased risk of cancer in European populations, and 
20–40% is expected to be explained by heritable factors. More than 250 studies 
have identified about 700 significant SNPs. The identification of cancer susceptibil-
ity genes contributes to our understanding of disease pathogenesis and risk predic-
tion. Here, we reviewed recent GWAS of prostate, breast, colorectal, lung, liver, 
gastric, esophageal, bladder, pancreas, ovary, bone, and testicular cancers.

Keywords  GWAS · Cancer · Prostate · Breast · Colorectal · Lung · Liver · Gastric 
· Esophagus · Bladder · Pancreas · Ovary · Bone · Testis

5.1  �Introduction

Cancer is the second leading cause of death after cardiovascular disease [133]. In 
2015, there were 17.5 million cancer cases and 8.7 million deaths worldwide [55]. 
Although cancer mortality decreased in the most of countries, cancer cases increased 
in the most of countries. In 2005, 14% of all deaths were due to cancer, which 
increased to 16% in 2015 [133]. Prostate cancer, TBL (tracheal, bronchus, and lung) 
cancer, and colorectal cancer were the most common cancers in men with 1.6 mil-
lion, 1.4 million, and 0.92 million cases (42% of all cancer cases among men), 
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respectively. The most common causes of cancer deaths for men were TBL, liver, 
and stomach cancer with 1.21 million, 577,000, and 535,000 deaths, respectively. 
For women, the most common incident cancers were breast, colorectal, and TBL 
cancer, with 2.4 million, 733,000, and 640,000 (46% all incident cases among 
women), respectively. The leading causes of cancer deaths were breast, TBL, and 
colorectal cancer, 523,000, 517,000, and 376,000 deaths, respectively. Thus, cancer 
is a major global public health problem. Recent progress in medical treatment and 
personalized medicine have significantly improved cancer survival, however pre-
vention and early detection of cancer are the most important approach to reducing 
cancer mortality.

Environmental carcinogens and their association with cancer were reviewed by 
the WHO, and more than 100 factors were shown to increase human cancer risk. In 
addition to these external factors, host genetic factors were shown to increase cancer 
risk. Family history is also associated with a two to fourfold increased risk of cancer 
in European populations [59, 173]. An epidemiological study using a Japanese dis-
ease biobank consisting of 200,000 patients with 47 common diseases revealed a 
two to sevenfold higher risk for individuals with a positive family history. Prostate 
cancer and ovarian cancer showed relatively high odds ratios (ORs) of 7.191 (95% 
confidential interval (C.I.): 6.284–8.230) and 6.547 (95% C.I.: 4.372–9.804) com-
pared with other diseases (2.300–3.875), indicating the particularly crucial roles of 
genetic factors in these diseases [74]. In addition, a large scale twin study revealed 
an effect of heritable factors on various cancers of approximately 20–40% [114]. 
Because rare genetic defects (mutations) inherited from a parent are estimated to 
account for less than 6% of total cancers, the remaining 15–35% is expected to be 
explained by common genetic variations.

In 2002, the first genome-wide association study (GWAS) for myocardial infarc-
tion was conducted in a Japanese population and identified a susceptibility locus at 
6p21 [138]. Subsequently, GWAS have been successfully applied to a broad range 
of disease types, and the NHGRI-EBI Catalog of published genome-wide associa-
tion studies [200] currently lists over 2600 publications and 30,000 SNPs. GWAS 
have also been extensively applied to cancers, and disease-associated SNPs have 
been identified for the majority of cancers [116]. Here, we review recent case con-
trol studies focused on evaluating single nucleotide polymorphisms (SNPs) and the 
risks of various cancers.

5.2  �Prostate Cancer

Prostate cancer is the most common cancer in men and its incidence has rapidly 
increased recently [63, 126]. In 2015, there were 1.6 million incident cases of pros-
tate cancer and 366,000 deaths, while there were 974,000 cases in 2005. In 2015, 
prostate cancer was the cancer with the highest incidence for men in 103 countries, 
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and the leading cause of cancer deaths for men in 29 countries. Environmental fac-
tors, such as a high-fat diet, androgens, physical activity, inflammation, and obesity, 
may play some important roles in prostate carcinogenesis, but their roles remain 
unclear [77]. Based on epidemiological evidence and twin studies, a genetic compo-
nent contributes to its etiology. Approximately 42% of the risk of prostate cancer is 
accounted for by genetic factors [114]. A family history of prostate cancer doubles 
the risk of disease development in first-degree relatives [203]. In a Japanese popula-
tion, a positive family history was associated with as much as a sevenfold increased 
risk of prostate cancer [74]. Linkage and genetic sequencing studies identified rare 
moderate- to high-risk gene loci, such as HOXB13 [43] and BRCA1/2 [110, 184], 
which predispose an individual to prostate cancer when mutated. In addition to 
these cancer predisposition genes, GWAS have identified more than 100 common 
SNPs which confer a risk of prostate cancer development with an increasing num-
ber of risk alleles [6, 15, 42].

In 2006, a genome-wide linkage scan using 1068 microsatellite markers typed 
for 871 Icelandic men identified a prostate cancer susceptibility locus on chromo-
some 8q24 that showed the strongest association (OR of 1.62 and P = 2.7 × 10−11 for 
DG8S737-8 and OR of 1.51 and P = 1.0 × 10−11 for rs1447295). In 2007, two groups 
performed the first GWAS of prostate cancer using multiple SNPs as genetic mark-
ers and identified a susceptibility locus on chromosome 8q24. In the study by 
Gudmundsson J et al. in Iceland, 1453 prostate cancer cases and 3064 controls were 
analyzed using the Illumina HumanHap300 BeadChip, followed by four replication 
studies [66]. In the study by Yeager et al., 550,000 SNPs were screened in 1172 
cases and 1157 controls of European origin and the association at 8q24 was ana-
lyzed using four additional sample sets (4296 cases and 4299 controls), confirming 
the association of the locus at 8q24 with prostate cancer [213]. In 2007, another 
GWAS of 1501 Icelandic men with prostate cancer and 11,290 controls and follow-
up studies identified an association of two SNPs on chromosome 17 with prostate 
cancer. These two variants are located within a region previously implicated in pros-
tate cancer by family-based linkage studies [67].

Prostate cancer GWAS were also reported in Asian populations. In 2010, a 
GWAS and replication study of 4584 Japanese men with prostate cancer and 8801 
control subjects identified five new loci for prostate cancer at 5p15.13 
(P = 3.9 × 10−18), 6q22.1 (GPRC6A/RFX6, P = 1.6 × 10−12), 13q22 (P = 2.8 × 10−9), 
2p24.1 (C2orf43, P = 7.5 × 10−8) and 6p21.1 (FOXP4, P = 7.6 × 10−8) [179]. In addi-
tion, a Chinese group reported two novel prostate cancer risk loci at 9q31.2 and 
19q13.4 in a GWAS of 4484 prostate cancer cases and 8934 controls [211].

In 2014, a comprehensive meta-analysis of 43,303 prostate cancer cases and 
43,737 controls from studies of individuals of European, African, Japanese, and 
Latino ancestry was reported [7]. Twenty-three new susceptibility loci were identi-
fied with an association of P < 5 × 10−8. Currently, GWAS have yielded approxi-
mately 100 prostate cancer risk SNPs, accounting for 33% of the relative familial 
risk in European populations. About 30 GWAS studies were reported so far 
(Table 5.1).
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5.3  �Breast Cancer

Breast cancer is the most common cancer in women worldwide with an estimated 
2.4 million cases in 2015 [55]. The majority of breast cancer occurred in women, 
with 2.4 million cases vs 44,000 cases in men, and more than 10% of women will 
be diagnosed with breast cancer in their lifetime [93]. For women, breast cancer was 
the leading cause of death (523,000 death in 2015). According to a large scale twin 
study, genetic factors account for 27% of breast cancer risk [114]. Approximately 
10% of patients with breast cancer have a family history of breast cancer [144]. 
Compared with women without a family history, women with a premenopausal 
first-degree relative with breast cancer are at a 3.3-fold greater risk. In a Japanese 
population, a positive family history was associated with a 3.3-fold increased risk of 
breast cancer [74], indicating that germline transmission significantly contributes to 
risk [172]. The disease aggregates in families, indicating an important role of 
genetic factors in breast cancer etiology [127, 217]. This inherited component is 
driven by rare variants, notably in BRCA1, BRCA2, PTEN, TP53, PALB2, STK11, 
ATM and CHEK2, conferring a high lifetime risk of the disease. These cancer pre-
disposition genes account for less than 25% of the familial risk of breast cancer 
[40]. Therefore, the remaining heritable breast cancer risk (approximately 20%) 
would be caused by common variants with modest effects. Since 2007, genome-
wide association studies (GWAS) have identified approximately 100 common 
genetic susceptibility loci for breast cancer risk (Table 5.1). In 2007, three groups 
reported breast cancer susceptibility loci at 10q26 [82], 16q12 [176], 5q11, 8q24, 
11p15, and 2q35 [41, 82, 176]. Easton et al. conducted a two-stage genome-wide 
association study of 4398 breast cancer cases and 4316 controls in a European pop-
ulation, followed by a third stage using 21,860 cases and 22,578 controls and identi-
fied five novel independent loci that exhibited strong and consistent evidence of an 
association with breast cancer (P < 10−7) [41]. Four of these loci contain plausible 
causative genes (FGFR2, TNRC9, MAP3K1 and LSP1).

A GWAS of an Asian population also identified breast cancer susceptibility loci. 
A GWAS of Chinese women analyzed 607,728 SNPs in 1505 cases and 1522 con-
trols, and 29 SNPs for fast-track replication in an independent set of 1554 cases and 
1576 controls. Further analysis identified SNP rs2046210 at 6q25.1, with 
P = 2.0 × 10−15 and OR of 1.36.

In 2015, a meta-analysis of 11 GWAS comprising 15,748 breast cancer cases and 
18,084 controls together with 46,785 cases and 42,892 controls from 41 studies 
genotyped on a 211,155-marker custom array (iCOGS) identified 15 new loci asso-
ciated with breast cancer (P < 5 × 10−8) in individuals of European ancestry [129]. 
To date, nearly 100 genetic risk variants have been identified in these studies that 
explain approximately 16% of the familial breast cancer risk in European 
descendants.

In addition to genetic factors related to sporadic breast cancer, genetic modifiers 
of BRCA1- and BRCA2-related breast cancer were also identified. A genome-wide 
association study of 1193 individuals with BRCA1 mutations who were diagnosed 
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with invasive breast cancer under age 40 and 1190 BRCA1 carriers without breast 
cancer (over age 35) identified five SNPs on chromosome 19p13 that were associ-
ated with breast cancer risk (P = 2.3 × 10−9 to P = 3.9 × 10−7) [10]. Genotyping of 
these SNPs in 6800 population-based breast cancer cases and 6613 controls identi-
fied a similar association with estrogen receptor-negative breast cancer (OR = 0.83, 
P  =  0.0003) and an opposite association with estrogen receptor-positive disease 
(OR = 1.07, P = 0.016). A subsequent GWAS of BRCA1 mutation carriers identified 
novel loci associated with breast and ovarian cancer risk [30]. A multi-stage GWAS 
of 11,705 BRCA1 carriers, including 5920 breast cancer cases and 1839 ovarian 
cancer cases, with a further replication in an additional sample of 2646 BRCA1 car-
riers identified a novel breast cancer risk modifier locus at 1q32 (rs2290854, P = 2.7 
× 10−8, HR = 1.14). BRCA1 breast cancer risk-modifying loci could enable us to 
estimate breast cancer lifetime risks from 28% to 50% for a low risk group (5% of 
total BRCA1 carriers) and 81–100% for a high risk group (TOP 5% of total BRCA1 
carrier). This estimation may have important implications for the clinical manage-
ment of BRCA1 carriers. Thirty six studies were reported so far (Table 5.2).

5.4  �Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer and the fourth leading 
cause of cancer-related death worldwide. There are 1.7 million new CRC cases and 
832,000 deaths per year. The odds of developing colon and rectum cancer before 
age 79 years at the global level was higher for men than for women (1 in 28 men, 
1 in 43 women) [55]. A Westernized lifestyle, such as obesity, sedentary behavior, 
and a high-meat, high-calorie, fat-rich, and fiber-deficient diet, has been linked to an 
increased colorectal cancer risk [16, 124]. In addition, nearly 15% of patients with 
CRC have a positive family history of the disease [22, 50], and family history is 
acknowledged to be one of the strong risk factors. An approximately twofold 
increased risk of CRC was observed among patients who have a first-degree relative 
with CRC [90]. In a Japanese population, a positive family history was associated 
with a 2.4-fold increased risk of colorectal cancer [74]. Although inherited suscep-
tibility is thought to account for ∼35% of all CRC cases [114], high-risk germline 
mutations in APC, DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS2), 
MUTYH, SMAD4, BMPR1A, and LKB1 account for <6% of all cases [2]. Therefore, 
the remaining heritable CRC risk (approximately 30%) would be caused by the 
combination of common variants with modest effects. More than 20 GWAS of CRC 
have successfully identified common SNPs associated with CRC risk [20, 31, 39].

In 2007, the first GWAS for colorectal cancer was reported by two groups and 
identified 8q24 as a susceptibility locus [186, 215]. In these analyses, approximately 
1000 cases and control samples (one study used both patients with colorectal cancer 
and advanced adenoma as the case group) were genotyped for 100,000–550,000 
tagged SNPs. A further replication analysis identified a significant association of 
SNPs at 8q24 with colorectal cancer risk, with P = 1.27 × 10−14 and P = 3.16 × 10−11 

5  The Association of Single Nucleotide Polymorphisms with Cancer Risk
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and ORs of 1.27 and 1.17, respectively. In addition, another study of 1477 colorectal 
adenoma cases and 2136 controls suggests that susceptibility to CRC is mediated by 
the development of adenomas (OR = 1.21; P = 6.89 × 10−5).

In 2008, a genome-wide association study analyzing 550,163 tagged SNPs in 
940 individuals with familial colorectal tumors (627 CRC and 313 advanced adeno-
mas) and 965 controls and subsequent replication analyses (7473 cases and 5984 
controls) identified an association of SNP rs4939827 located on chromosome 
18q21.1 (SMAD7) with CRC (P = 1.0 × 10−12). Subsequently, many studies have 
identified multiple CRC loci at 11q23 [182], 14q22.2, 16q22.1, 19q13.1 and 20p12.3 
[178], 15q13.3 [188], 10p14 and 8q23.3 [83], 1q41, 3q26.2, 12q13.13 and 20q13.33 
[76]. Most of these studies were conducted using European subjects.

Regarding other ethnic populations, a Japanese group conducted the first GWAS 
of an Asian population and identified an association of 6q26-q27 with distal colon 
cancer in 2011 [31]. A GWAS and sub-analyses by tumor location of 1583 Japanese 
CRC cases and 1898 controls and subsequent replication analyses of 4809 CRC 
cases and 2973 controls, including Korean subjects, identified a novel locus on 
6q26-q27 (p = 7.92 × 10−9, OR of 1.28). In 2013, a GWAS of 2098 Chinese cases 
and 5749 controls and a replication analysis of East Asians, including up to 5358 
cases and 5922 controls, was reported [86]. Three of the four loci were replicated in 
26,060 individuals of European descent, with combined P values of 1.22 × 10−10 for 
5q31.1, 6.64 × 10−9 for 20p12.3 and 3.06 × 10−8 for 12p13.32. In 2016, Schimit 
et al. reported a GWAS of CRC in Hispanics (1611 CRC cases and 4330 controls). 
The authors identified four suggestive associations, although the associations were 
not statistically significant.

In addition to these analyses, several studies of European and East Asian indi-
viduals identified other CRC loci at 14q22.2, 20p12.3 [187], 6p21, 11q13.4, Xp22.2 
[38], 2q32.3 [142], 10q24.2 [202], 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3, 
19q13.2 [218], 4q32.2 [164], and 10q25 [196]. Among these loci, the following loci 
were validated by multiple studies; 5q31.1, 8q23.3, 8q24.21, 10p14, 11q23, 
12p13.32, 12q13.13, 14q22.2, 15q13.3, 16q22.1, 16q22, 18q21.1, 19q13.1, 20p12.3, 
20q13.33, and Xp22.2. Thus, a further meta-analysis of multiple studies with vari-
ous ethnic backgrounds would identify new CRC genetic factors and would contrib-
ute to the elucidation of the molecular pathogenesis of CRC and improve risk 
prediction. List of 24 CRC GWAS was shown in Table 5.3.

�Lung Cancer

Lung cancer is the most common cause of cancer-related death worldwide, with 
over 1.7 million deaths annually. Men were more likely to develop lung cancer than 
women, with 1 in 18 men and 1 in 45 women developing tracheal, bronchus, and 
lung (TBL) cancer between birth and age 79 years [55]. Between 2005 and 2015, 
TBL cancer cases increased by 29%. Cigarette smoke, including secondhand smoke, 
is associated with disease risk and a substantially elevated risk of mortality [220]. 
Lung cancer types are histologically classified as small cell lung cancer (SCC) and 
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non-small cell lung cancer, which includes adenocarcinoma (ADC) and squamous 
cell carcinoma (SQC) [72]. SCC and SQC are strongly associated with smoking, 
whereas ADC is relatively common among female non-smokers [174], indicating 
differences in the molecular pathogenesis among the histological types. Lung can-
cer has an important heritable component, and a positive family history is associated 
with an approximately twofold higher risk of lung cancer [125]. In a Japanese popu-
lation, a positive family history was associated with a 2.4-fold increased risk of lung 
cancer [74]. Therefore, identifying genes associated with lung cancer risk may sug-
gest chemoprevention targets or identify groups at high risk. Several GWAS reported 
that inherited genetic factors increase the risk of lung cancer [80, 81, 107, 130, 168, 
169, 198, 199] (Table 5.1).

In 2008, a genome-wide association study of 317,139 single-nucleotide poly-
morphisms in 1989 lung cancer cases and 2625 controls and replication studies 
comprising an additional 2513 lung cancer cases and 4752 controls identified a 
locus on chromosome 15q25 that was strongly associated with lung cancer 
(P = 5 × 10−20) [81]. The associated region contains several genes that encode nico-
tinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). A non-
synonymous variant in CHRNA5 (D398N) is one of the strongest disease 
associations, providing compelling evidence that a locus at 15q25 predisposes indi-
viduals to lung cancer.

In addition, a GWAS of lung cancer comparing 511,919 SNP genotypes in 1952 
cases and 1438 controls identified two novel loci at 6p21.33 (BAT3-MSH5; 
P = 4.97 × 10−10) and 5p15.33 (CLPTM1L; P = 7.90 × 10−9) [198]. In the analysis of 
Asian populations, 3q28, 5p15.33, 6p21, and 17q24.2 were shown to be associated 
with ADC risk in Japanese and/or Korean populations [130, 168]. In addition, loci 
at 5q32, 10p14, 13q12.12, 20q13.2, and 22q12.2 are associated with lung cancer 
risk in the Chinese population [36, 80] and loci at 10q25 and 6p21 are associated 
with susceptibility to lung cancer in Asian females who have never smoked [106]. 
Loci at 12p13.33 and 12q23.1 are associated with SQC risk in individuals of 
European ancestry [166] and in the Chinese population [37].

In addition to lung cancer susceptibility loci, GWAS of smoking behavior have 
also been reported. A meta-analysis of more than 200,000 individuals confirmed an 
effect of loci at 15q25 (rs1051730, beta = 1.03, P = 2.8 × 10−73), 10q25 (rs1329650, 
beta = 0.367, P = 5.7 × 10−10), and 9q13 (rs3733829, beta = 0.333, P = 1.0 × 10−8) 
on smoking quantity. In addition, loci at 11p14.1 (rs6265, OR = 1.06, P = 1.8 × 10−8) 
and 9q34.2 (rs3025343, OR = 1.12, P = 3.6 × 10−8) were significantly associated 
with smoking initiation and smoking cessation, respectively [1]. In addition, loci at 
19q13 and 8p11.21 were shown to be associated with smoking behavior [185].

More than 20 GWAS have currently identified nearly 30 genetic factors associ-
ated with lung cancer predisposition. However, the effect sizes of each variant were 
relatively small (<1.3 per allele) and the results are not consistent among different 
ethnic groups. This inconsistency may be partially explained by the differences in 
allele frequency and genetic/environmental backgrounds. Therefore, additional 
studies of larger numbers of subjects with different ethnic backgrounds are required 
to elucidate common and population-specific genetic factors. List of 22 lung cancer 
GWAS was shown in Table 5.4.
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�Liver Cancer

More than 400 and 170 million people are estimated to be infected with hepatitis B 
virus (HBV) and hepatitis C virus (HCV) worldwide, respectively [32, 57]. 
Persistent HBV/HCV infections cause chronic hepatitis and subsequent fatal liver 
diseases, such as liver cirrhosis and hepatocellular carcinoma (HCC). HCC is the 
third most common cause of cancer-related death [140]. In 2015, there were 854,000 
cases for liver cancer and 810,000 deaths in the world. Therefore, the treatment of 
HCV/HBV carriers is an issue of global importance. HBsAg seropositivity rates are 
as high as 5–12% in Thailand and China, but as low as 0.2–0.5% in North America 
and Europe [32]. Most HBV carriers were infected through maternal transmission 
in the neonatal period or infancy [100]. Although some HBV carriers spontaneously 
eliminate the virus, 2–10% of individuals with chronic hepatitis B are estimated to 
develop liver cirrhosis each year, and a subset of these individuals suffer from liver 
failure or hepatocellular carcinoma [147]. Chronic HBV infection seems to be the 
most important risk factor for HCC [147] [105]. Approximately 80% of individuals 
with HCC in China have a history of HBV infection [100]. A segregation analysis 
of familial HCC suggests an interaction between HBV infection and a major genetic 
locus [108]. In a Japanese population, a positive family history was associated with 
a 2.3-fold increased risk of liver cancer [74]. According to a two-stage genome-
wide association study using 786 Japanese chronic hepatitis B cases and 2201 con-
trols, chronic hepatitis B is significantly associated with HLA-DPA1 and HLA-DPB1. 
An association of HLA-DP with chronic hepatitis B was confirmed in various ethnic 
groups, indicating that MHC class 2 variations play important roles in susceptibility 
and resistance to HBV infection.

A GWAS of HBV-related HCC (348 cases and 359 controls) in a Chinese popu-
lation led to the identification of one intronic SNP (rs17401966) in KIF1B on chro-
mosome 1p36.22 [219]. SNP rs17401966 lies in an approximately 244-kb linkage 
disequilibrium (LD) block containing UBE4B, KIF1B, and PGD. KIF1B encodes a 
kinesin superfamily member involved in the transport of organelles and vesicles. 
Both germline and somatic loss-of-function mutations in the KIF1Bβ isoform have 
been detected in multiple cancers.[214] Furthermore, KIF1Bβ was identified as a 
potential 1p36.2 tumor suppressor in neuroblastoma,[163] suggesting that KIF1B is 
a causative gene on 1p36.2. However, this locus was not validated in the other stud-
ies [87, 162].

The second GWAS of 1538 HBV-positive HCC patients and 1465 chronic HBV 
carriers [113] and subsequent analysis of four independent cohorts totaling 4431 
cases and 4725 HBV carriers identified two novel associations at rs9272105 (HLA-
DQA1/DRB1, OR = 1.28 and P = 5.24 × 10−22) and 21q21.3 (GRIK1, OR = 0.84 and 
P = 5.24 × 10−10). SNP rs455804 on chromosome 21q21.3 is located within intron 1 
of the GRIK1 gene. The GRIK1 gene encodes an ionotropic glutamate receptor, 
GLUR5, which is involved in glutamate signaling. Glutamate plays a central role in 
the malignant phenotype of glioma, and inhibition of glutamate release and/or glu-
tamate receptor activity suppresses the proliferation and invasion of various cancer 
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cells. Thus, the association of GRIK1 with HCC indicates a crucial role of glutamate 
signaling in HCC development after HBV infection.

In the third study of 11,799 Chinese chronic HBV carriers (GWAS of 2514 
chronic HBV carriers; 1161 HCC cases and 1353 controls and a 2-stage validation 
among 6 independent populations of chronic HBV carriers including 4319 cases 
and 4966 controls) identified two novel loci: rs7574865  in the STAT4 gene 
(P = 2.48 × 10−10, OR = 1.21) and rs9275319 in the HLA-DQ (P = 2.72 × 10−17, 
OR = 1.49) [87]. The risk allele G at rs7574865 was significantly associated with 
lower levels of the STAT4 mRNA in both the HCC and non-tumor tissues of 155 
individuals (P = 0.0008 and 0.0002, respectively). In addition, the expression of the 
STAT4 mRNA was decreased in HCC tumors compared with paired adjacent non-
tumor tissues (P  =  2.33  ×  10−14). STAT family members are phosphorylated in 
response to cytokines and growth factors and translocate to the nucleus where they 
act as transcriptional activators. STAT4 is essential for mediating responses to 
IL-12 in lymphocytes and regulating the differentiation of T helper cells, and varia-
tions in this gene are associated with autoimmune diseases such as systemic lupus 
erythematosus, rheumatoid arthritis, and inflammatory bowel diseases [118, 136, 
149]. Thus, STAT4 variations would regulate the host immune response and subse-
quently affect HCC risk among HBV carriers.

HCV infection is present in 20–70% of individuals with HCC [195]. HCV-
induced HCC is a multistep and progressive liver disease in which disease progres-
sion is influenced by both environmental and genetic risk factors. The impact of 
host genetic variations on the progression to chronic hepatitis C (CHC) after HCV 
exposure is well elucidated by GWAS [54, 183]. SNPs in the IL28B promoter were 
shown to be associated with natural HCV clearance (P = 3 × 10−13, OR = 2.6–3.1) 
[54, 183]. In addition, GWAS identified the associations of C6orf10 (Japanese), 
RNF7 and MERTK (European) with liver fibrosis after HCV infection [141, 193].

In 2011, a GWAS of a Japanese population analyzed 432,703 SNPs in 721 HCV-
induced HCC cases and 2890 HCV-negative controls. A further analysis of 673 
cases and 2596 controls identified a novel locus in the MICA promoter on chromo-
some 6p21.33 (rs2596542, P = 4.21 × 10−13, OR = 1.39) that was significantly asso-
ciated with HCV-induced HCC. This SNP is not associated with CHC susceptibility 
(P  =  0.61), but is significantly associated with progression from CHC to HCC 
(P  =  3.13  ×  10−8) [104]. MICA is a membrane protein that acts as a ligand for 
NKG2D to activate the anti-tumor effects of natural killer cells and CD8+ T cells 
[14]. MICA is highly expressed on the cell surface of cancer cells and virus-infected 
cells. Elevated expression of both the membrane-bound and soluble forms of MICA 
(sMICA) have been reported in several cancers, including HCC [62, 89]. The 
sMICA level was elevated among patients without HCC, including patients with 
chronic hepatitis C, and was not correlated with disease progression. Additionally, 
risk allele A was correlated with low sMICA levels in subjects with HCV-induced 
HCC (P = 1.38 × 10−13). Considering the association of risk allele A with low levels 
of sMICA, individuals who carry the rs2596542 A allele would express low levels 
of membrane-bound MICA in response to HCV infection, leading to reduced or no 
activation of natural killer cells and CD8+ T cells in response to virus-infected cells. 
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Thus, HCV-infected cells with low MICA expression would escape from the 
immune surveillance system and progress to HCC.

Another Japanese group analyzed 467,538 SNPs in 212 cases and 765 individu-
als with chronic HCV infection without HCC. An analysis of an independent case 
control population (710 cases and 1625 controls) identified an association between 
one intronic SNP in the DEPDC5 gene on chromosome 22q12.2 with HCC risk 
(rs1012068, P = 1.27 × 10−13, OR = 1.75) [131]. DEPDC5 expression is elevated in 
HCC tissues, and the risk allele is associated with elevated DEPDC5 expression 
among male subjects. These findings indicate an oncogenic role for DEPDC5  in 
hepatocellular carcinogenesis. List of eight liver cancer GWAS was shown in 
Table 5.5.

�Gastric Cancer

Gastric cancer is the third leading cause of cancer mortality, and there were 1.3 mil-
lion cases and 819, 000 deaths worldwide in 2015 [56, 73]. Helicobacter pylori 
infection is the major cause of gastric cancer [64, 192]. Approximately 90% of 
patients with gastric cancer are infected with H. pylori, and the eradication of H. 
pylori by antibiotics in combination with proton pump inhibitors effectively pre-
vents the risk of gastric cancer [51], indicating a causal role for H. pylori in disease 
pathogenesis. Due to the high prevalence of H. pylori infections, the incidence of 
gastric cancer is very high in Japanese populations [55]. However, although more 
than 50% of individuals are infected with H. pylori worldwide [34], only a small 
subset of infected individuals develops this disease [11], indicating the presence of 
other factors that modify disease onset. A large scale twin study revealed that 28% 
of the risk of gastric cancer was explained by genetic factors [114]. In a Japanese 
population, a positive family history was associated with a 2.44-fold increased risk 
of gastric cancer [74]. Germline mutations in the CDH1 gene that encodes the 
E-cadherin protein were shown to cause hereditary diffuse gastric cancer syndrome, 
but the overall frequency of E-cadherin germline mutation is a rare event, affecting 
<3% of the screened population [21]. Previous genome wide association studies 
(GWAS) identified genetic variations associated with gastric cancer, such as PSCA 
[160], PLCE1 [4], MUC1 [160], 3q13.31 and 5p13.1 [167], 6p21.1 [79, 88], and 
ATM [70] (Table 5.1).

In 2008, a GWAS of a Japanese population identified the PSCA gene as diffuse 
gastric cancer locus (rs2294008, OR = 1.62, P = 1.11 × 10−9). SNP rs2294008 is 
located in the PSCA promoter. PSCA encodes a glycosylphosphatidylinositol (GPI)-
anchored membrane glycoprotein involved in cell renewal and proliferation [65]. 
PSCA is upregulated in various cancers, including bladder, pancreatic and kidney 
cancers [158], and PSCA expression is correlated with a higher tumor grade and 
metastatic properties of prostate cancer [65]. PSCA is also expressed in differentiat-
ing gastric epithelial cells and is frequently silenced in gastric cancer and esopha-
geal cancer [158]. In addition, its growth-suppressive effects have also been reported 
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in these cancer cells. The T allele of rs2294008 encodes a translation initiation 
codon for the PSCA gene upstream of the known site, resulting in a PSCA protein 
with an additional nine amino acids at its N-terminus (long PSCA) compared to the 
reported PSCA protein (short PSCA, 114 amino acids). Long PSCA contains an 
N-terminal signal peptide, and localizes to the plasma membrane, whereas short 
PSCA is localized to the cytoplasm. Thus, the PSCA SNP alters the subcellular 
localization of the PSCA protein and subsequently changes its function. In addition, 
the PSCA SNP is associated with PSCA expression [49]. SNP rs2294008 was also 
reported to be associated with bladder cancer [210] and duodenal ulcer risk [181]. 
Interestingly, the T allele of rs2294008 increases gastric and bladder cancer risk, but 
reduces duodenal ulcer risk. Thus, the growth-promoting effects of PSCA are 
responsible for the increased risk of gastric cancer and reduced risk of duodenal 
ulcers among T allele carriers.

The MUC1 gene on chromosome 1q22 was identified as a GC susceptibility 
locus by GWAS of Japanese and Chinese populations (rs2070803: P = 4.33 × 10−13; 
OR = 1.71) [159]. MUC1 exerts an anti-apoptotic function and is considered an 
oncogene; however, the mucin 1 protein protects gastric epithelial cells from a vari-
ety of external insults that cause inflammation and carcinogenesis, such as an H. 
pylori infection. Two major MUC1 transcripts are expressed in the gastric epithe-
lium: variants 2 and 3. SNP rs4072037 influences the splicing of the primary tran-
scripts. SNP rs4072037 is located in the splicing acceptor site of exon 2 and 
determines the type of variants; the G and A alleles result in the expression of vari-
ants 2 and 3, respectively [135, 159]. Thus, these two functional variations are asso-
ciated with gastric cancer risk.

PLCE1 is associated with cardia and noncardia gastric cancer in a Chinese popu-
lation [197]. PLCE1 SNPs are also associated with the prognosis of Chinese 
patients, but not Caucasian patients [121, 139]. PLCE1 is a member of the phospho-
lipase family that is involved in cell growth, differentiation and gene expression. 
PLCE1 is a novel Ras-related protein effector that regulates the actin cytoskeleton 
and membrane protrusion [137]. PLCE1-knockout mice revealed a crucial role of 
PLCE1 in Ras oncogene-induced de novo carcinogenesis. Knockout mice showed a 
delayed onset and markedly reduced incidence of carcinogen-induced squamous 
skin tumors, and the papillomas that formed in the mice did not undergo malignant 
progression into carcinomas [13]. ApcMin/+ mice, which carry an inactivated allele of 
the adenomatous polyposis coli gene, exhibited a higher resistance to spontaneous 
intestinal tumorigenesis on the PLCE1−/− genetic background compared with mice 
with intact PLCE1 [112]. Low-grade adenomas in the PLCE1−/− ApcMin/+ mice 
exhibited accelerated apoptosis, reduced cellular proliferation, marked attenuation 
of tumor angiogenesis and a reduction in vascular endothelial growth factor expres-
sion. In contrast, high-grade adenomas in these mice exhibited marked attenuation 
of tumor-associated inflammation without significant differences in apoptosis and 
proliferation. Therefore, PLCE1 seems to plays crucial roles in intestinal tumori-
genesis through two distinct mechanisms, augmentation of angiogenesis and inflam-
mation, depending on the tumor stage.
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A locus on chromosome 5p13.1 [167] was identified by a GWAS of the Chinese 
population and was validated by other studies. The recombination rate analyses and 
LD analyses of this locus identified a critical region for the association that harbors 
five genes: PRKAA1, PTGER4, RPL37, SNORD72, and TTC33. Three SNPs with 
the lowest P-value of less than 1 × 10−10 are located adjacent to PRKAA1, TTC33 
and PTGER4; however, the SNP located on the 5′ side of RPL37 also showed a 
moderate association, indicating that further studies are required to identify a caus-
ative gene in this region. Compared with other cancers, only seven loci have been 
identified to date. Therefore, further analyses are required to elucidate the molecular 
pathogenesis of gastric cancer and predict risks for H. pylori carriers. List of eight 
gastric cancer GWAS was shown in Table 5.6.

�Esophageal Cancer

Esophageal cancer is the sixth most common cause of cancer-related death in the 
world [55]. There were 483,000 cases and 439,000 deaths worldwide in 2015. Most 
patients are at advanced stages at the time of diagnosis, and the overall 5-year sur-
vival rate is approximately 10–20%, despite the availability of modern surgical 
techniques combined with various treatment modalities [180]. Because detection of 
esophageal cancer at earlier stages can improve clinical outcomes, the identification 
of epidemiologic factors that influence the development of esophageal cancer would 
facilitate the prevention or early detection of the disease.

Esophageal cancer is prevalent among Asian populations, with marked regional 
variations in incidence and mortality; for example, a 20-fold difference in incidence 
is observed between high-risk China and low-risk western Africa [212]. Although 
the pathogenesis of esophageal cancer has not been completely elucidated, accumu-
lating epidemiological evidence has identified several disease-promoting factors, 
such as tobacco smoking, heavy alcohol drinking, nutritional deficiencies, and 
dietary carcinogen exposure [47]. In addition, familial aggregation of esophageal 
cancer has also been reported, suggesting that some genetic factors might be 
involved in the pathogenesis of ESCC [78]. In a Japanese population, a positive 
family history was associated with a 3.8-fold increased risk of esophageal cancer 
[74]. Thus, genetic and environmental factors play crucial roles in the etiology of 
ESCC.

Recent advances in genomic research identified many genes associated with dis-
ease risk. To date, 7 GWAS studies have reported 19 genetic variations associated 
with esophageal cancer susceptibility (Table 5.1). In 2009, a 2-step genome-wide 
association study of 1070 Japanese ESCC cases and 2836 controls identified signifi-
cant associations of ESCC with ADH1B (rs1229984, P = 6.76 × 10−35) and ALDH2 
(rs671, P = 3.68 × 10−68). Individuals who had two genetic factors (ADH1B and 
ALDH2) and two lifestyle-related risk factors (smoking and drinking) had a nearly 
190-fold higher risk of ESCC than individuals without these factors. Thus, lifestyle 

5  The Association of Single Nucleotide Polymorphisms with Cancer Risk
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intervention based on genetic risk factors would be effective for the prevention and 
early detection of ESCC.

Many GWAS of esophageal cancer were conducted in Chinese populations. In 
2010, 551,152 SNPs were analyzed in 2240 Chinese gastric cancer cases, 2115 
ESCC cases and 3302 controls and multiple variants at chromosomes 10q23 
(rs2274223, a nonsynonymous SNP located in PLCE1, P = 3.85 × 10−9; OR = 1.34) 
and 22q12 (rs738722 in CHEK2, P = 3.85 × 10−9; OR = 1.34) were identified [4]. 
In addition, loci at chromosomes 5q11.2 (PDE4D), 6p21 (HLA region), 21q22 
(RUNX1) [206] and 2q33.1 (CASP8), 2q35 (IGFB2), 3q27.3 (ST6GAL1), 13q33.2 
(SLC10A2), 16q12.1 (HEATR3) [5, 207] are associated with ESCC. Moreover, a 
GWAS of more than 10,000 samples identified loci at chromosomes 5q31.2 
(TMEM173) and 17p13.1 (TP53) [209].

Esophageal adenocarcinoma is more common in European populations, whereas 
squamous cell carcinoma is common among Asian populations. Esophageal adeno-
carcinoma frequently occurs in an intestinal metaplastic epithelium, which is a 
diagnostic of Barrett’s esophagus. A GWAS of esophageal adenocarcinoma cases 
(n = 2390) and Barrett’s esophagus cases (n = 3175) with 10,120 controls identified 
three novel associations with loci at chromosome 19p13 (rs10419226: 
P = 3.6 × 10−10) in the CRTC1 gene (encoding CREB-regulated transcription coacti-
vator), at chromosome 9q22 (rs11789015: P = 1.0 × 10−9) in the BARX1 gene, and 
at chromosome 3p14 (rs2687201: P  =  5.5  ×  10−9) near the transcription factor 
FOXP. CRTC1 encodes a CREB-regulated transcription coactivator, and its aber-
rant activation is associated with oncogenic activity. BARX1 encodes a transcription 
factor important for esophageal specification. FOXP1 regulates esophageal devel-
opment [111]. However, these loci are associated with both esophageal cancer and 
Barrett’s esophagus, but none of them cleared the genome-wide significant thresh-
old, with the exception of esophageal adenocarcinoma cases, indicating that these 
variations play roles in the development of Barrett’s esophagus, but not adenocarci-
noma. List of nine esophageal cancer GWAS was shown in Table 5.7.

�Bladder Cancer

Bladder cancer is one of the most frequent cancers (541,000 cases) and causes 
188,000 deaths per year worldwide in 2015 [55]. Both environmental and genetic 
factors are involved in the development of bladder cancer. Tobacco smoking is 
known to be the most important factor that increases the risk of bladder cancer; and 
current or former smokers have a two to sixfold higher risk than never-smokers [23, 
48]. In addition, occupational exposures to industrial chemicals [29, 58, 101], arse-
nic contamination in drinking water [25], and infectious diseases [12] also increase 
the bladder cancer risk. The bladder cancer incidence in males is nearly threefold 
higher than the incidence in females [23], probably due to the higher prevalence of 
tobacco smoking and occupational exposure in males. However, familial 
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aggregation of bladder cancer has also been reported [3, 134], suggesting the impor-
tance of genetic factors in bladder cancer development.

NAT2 and GSTM1 are involved in the detoxification of carcinogens [69], and a 
NAT2 slow-metabolizer genotype and a GSTM1 null genotype are associated with 
an increased risk of bladder cancer [52, 153]. In addition, recent genome-wide asso-
ciation studies (GWAS) of European populations have identified multiple genetic 
factors associated with bladder cancer [45, 53, 151, 156, 210].

In 2008, the first GWAS of 1803 bladder cancer cases and 34,336 controls from 
Iceland and The Netherlands and follow-up studies in seven additional case control 
groups (2165 cases and 3800 controls) identified rs9642880 on chromosome 8q24, 
which is located 30 kb upstream of MYC (OR = 1.22; P = 9.34 × 10−12), as bladder 
cancer susceptibility locus [99]. A further analysis of 4739 cases and 45,549 con-
trols revealed an association of rs798766 on chromosome 4p16.3 with bladder can-
cer (OR = 1.24, P = 9.9 × 10−12) [98]. rs798766 is located in an intron of the TACC3 
gene and is 70 kb away from the FGFR3 gene. The FGFR3 gene often harbors 
activating somatic mutations in patients with low-grade, noninvasive bladder can-
cer. The frequency of the T allele of rs798766 is higher in Ta tumors (non-invasive 
papillary bladder tumor) that carry an activating mutation in the FGFR3 gene than 
in Ta tumors with wild-type FGFR3, indicating an association between germline 
variants, somatic mutations of FGFR3 and the risk of bladder cancer.

A GWAS of 969 bladder cancer cases and 957 controls and further replication 
analysis of three additional US populations identified a missense variant (rs2294008) 
in the PSCA gene that showed a consistent association with bladder cancer in 
European populations (6667 cases, 39,590 controls with overall P-value of 
2.14  ×  10−10 and OR of 1.15) [210]. As described for gastric cancer, rs2294008 
alters the start codon and is predicted to truncate nine amino acids from the 
N-terminal signal sequence of the primary PSCA translation product. Another 
GWAS with a primary scan of 591,637 SNPs in 3532 bladder cancer cases and 5120 
controls of European descent followed by a replication strategy that included 8382 
cases and 48,275 controls identified three new regions associated with bladder can-
cer on chromosomes 22q13.1, 19q12 and 2q37.1 [156]. rs1014971, (P = 8 × 10−12) 
maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10−11) on 
chromosome 19q12 maps to the CCNE1 gene and rs11892031 (P = 1 × 10−7) maps 
to the UGT1A cluster on chromosome 2q37.1.

Bladder cancer loci were also identified in Asian populations. According to a 
GWAS and an independent replication study of 1131 bladder cancer cases and 
12,558 non-cancer controls in the Japanese populations, 15q24 is bladder cancer 
locus (OR = 1.41 and P-value of 4.03 × 10−9). SNP rs8041357, which is in complete 
linkage disequilibrium (r2 = 1) with rs11543198, is also associated with bladder 
cancer risk in Europeans (P = 0.045 for an additive and P = 0.025 for a recessive 
model), despite the much lower minor allele frequency in Europeans (3.7%) com-
pared with the Japanese individuals (22.2%). rs8041357 is located in the CYP1A1-
CYP1A2 locus, indicating the role of generic variations in a tobacco metabolizing 
enzyme in the development of bladder cancer. List of ten bladder cancer GWAS was 
shown in Table 5.8.
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�Pancreatic Cancer

Pancreatic cancer is the seventh-leading cause of cancer-related death [55]. There 
were 426,000 cases and 412,000 deaths worldwide in 2015 [55, 170, 189]. Its 5-year 
survival rate is less than 10% and no specific symptoms are observed in patients 
with early stage pancreatic cancer. Therefore, most of the patients were diagnosed 
at advanced stages, which have a very low possibility of cure for the disease [96]. 
Epidemiological studies have identified a number of possible risk factors, such as 
smoking, diabetes, and chronic pancreatitis, which are likely to predispose individu-
als to the disease. In addition, familial aggregation of the disease has implied a pos-
sible involvement of genetic factors in pancreatic cancer [35]; approximately 10% 
of the patients were reported to have a family history and individuals having first-
degree relatives with pancreatic cancer display a two- to fourfold higher risk of the 
disease [128]. In Japanese populations, a positive family history was associated 
with a 3.2-fold increased risk of pancreatic cancer [74]. Several hereditary cancer 
syndromes caused by mutation of STK11, CDKN2A, and DNA mismatch repair 
genes [60, 122] and an inherited form of pancreatitis [119, 204] are associated with 
a high risk of pancreatic cancer. In addition, several GWAS identified common vari-
ations associated with pancreatic cancer risk [9].

In 2009, the first GWAS analyzed 558,542 SNPs in 1896 pancreatic cancer cases 
and 1939 control and a replication analysis using 2457 cases and 2654 controls 
identified an association between a locus on 9q34 (rs505922 P = 5.37 × 10−8 and 
OR  =  1.20) [8]. Although this SNP did not clear the genome-wide significance 
threshold (P = 5 × 10−8), this locus was validated in other studies [205]. The protec-
tive allele T for rs505922 is in complete LD (r2 = 1.0) with the O allele of the ABO 
locus, indicating that individuals with blood type O have a low risk of pancreatic 
cancer.

In addition to 9q34.2 (in the ABO blood group gene), Petersen et al. reported a 
GWAS of 3851 pancreatic cancer cases and 3934 unaffected controls and identified 
three loci on 1q32.1 (NR5A2), 5p15.33 (CLPTM1L-TERT) and 13q22.1 (in a large 
non-genic region flanked by KLF5 and KLF12) in 2010 [143]. Subsequent GWAS 
in European populations identified additional pancreatic cancer susceptibility loci 
on 5p15.33 (a second independent risk locus in the CLPTM1L-TERT gene region), 
7q23.2 (LINC-PINT), 16q23.1 (BCAR1), 13q12.2 (PDX1), 22q12.1 (ZNRF3), 
8q24.1 (nongenic) [205] and 17q24.3 (LINC00673), 2p14 (ETAA1), 7p14.1 
(SUGCT), and 3q28 (TP63) [27]. Moreover, a GWAS of a Chinese population 
including 3584 pancreatic cancer cases and 4868 controls identified five significant 
risk loci on 5p13.1/DAB2, 10q26.11/PRLHR, 21q21.3/BACH1, 21q22.3/TFF1, and 
22q13.32/FAM19A5 [208].

The most significant SNP on chr1q32.1 maps to the first intron of the NR5A2 
gene (rs3790844, OR = 0.77, P = 2.5× 10−10). This gene encodes nuclear receptor 
subfamily five group A member 2 (NR5A2). NR5A2 is a transcription factor that 
plays important roles in multiple aspects of pancreatic development and function, 
including cholesterol synthesis, bile acid homeostasis, steroidogenesis and in 
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regulating stemness [44]. Likewise, NR5A2 is an important regulator of exocrine 
function in the adult pancreas, where it regulates the expression of a number of 
acinar-specific genes [75]. Heterozygous Nr5a2 mice are viable and exhibit 
increased rates of pancreatic acinar to ductal metaplasia and impaired recovery after 
chemically induced acute pancreatitis [46, 194]. Furthermore, Nr5a2 haploinsuffi-
ciency cooperates with pancreatitis in a mouse model driven by oncogenic KRAS, 
increasing the number of preneoplastic pancreatic intraepithelial neoplasia lesions 
and driving their progression toward pancreatic ductal adenocarcinoma [46, 194]. 
Thus, NR5A2 appears to be important for maintaining homeostasis in the exocrine 
pancreas, promotes the regeneration of functional acinar cells from metaplastic 
duct-like cells after pancreatitis-induced inflammation, and protects the pancreas 
from KRAS-driven pre-neoplastic changes. Based on the mouse studies, the under-
lying mechanism may involve negative regulation of NR5A2 gene expression or 
function, perhaps in combination with inflammation in the pancreas. List of six 
pancreatic cancer GWAS was shown in Table 5.9.

�Ovarian Cancer

Ovarian cancer is the eighth-leading cause of cancer-related death among women 
[55]. There were 251,000 cases and 161,000 deaths worldwide in 2015. Evidence 
from twin and family studies suggests that an inherited genetic component contrib-
utes to ovarian cancer risk [114, 177]. The relative risk for first degree relatives is 
3.1 (95% CI 2.6–3.7) and 6.54 (95% CI 4.372–9.804) among European and Japanese 
populations, respectively. Rare, high-penetrance alleles of genes such as BRCA1 
and BRCA2 account for approximately 25–40% of the increased familial risk [85, 
177]. In addition, recent GWAS have identified more than 20 common risk 
variants.

In 2009, the first GWAS of 1817 cases and 2353 controls and replication analysis 
identified an association of a locus on 9p22 with disease risk (rs3814113 OR = 0.82, 
P = 5.1 × 10−19) [175]. The association differs by histological subtype and is stron-
gest for serous ovarian cancers (OR 0.77, P = 4.1 × 10−21). Most of the associated 
SNPs are located within intron 2 of BNC2 gene. BNC2 is highly expressed in repro-
ductive tissues (ovary and testis) and may play a role in the differentiation of sper-
matozoa and oocytes [154]; however, the role of BNC2 in cancer development is not 
well understood. Other studies of European populations identified multiple loci on 
chromosomes 1p36.12, 1p34.3, 2q31.1, 3q25.31, 4q26, 5p15.33, 6p22.1, 6q25.1, 
8q21.13, 8q24.21, 9p22.2, 10p12.31, 16q21, 17q12, 17q21.31, 17q21.32, 17q23.2, 
and 19p13.11 [26, 61, 103, 145, 150]. A three-stage GWAS of a Chinese population 
identified loci on chromosomes 9q22.33 (rs1413299 in COL15A1, P = 1.88 × 10−8) 
and 10p11.21 (rs1192691 near ANKRD30A, P = 2.62 × 10−8) [26].

A multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5920 were diagnosed 
with breast cancer and 1839 were diagnosed with ovarian cancer) with an additional 
sample of 2646 BRCA1 carriers was conducted to identify cancer risk-modifying 
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loci among BRCA1 mutation carriers20. As a result, two novel ovarian cancer risk 
modifier loci were identified: 17q21.31 (rs17631303, P = 1.4 × 10−8, HR = 1.27) and 
4q32.3 (rs4691139, P = 3.4 × 10−8, HR = 1.20). The 4q32.3 locus was not associated 
with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a 
BRCA1-specific association. The 17q21.31 locus was associated with ovarian can-
cer risk in 8211 BRCA2 carriers (P = 2 × 10−4). Based on the known ovarian cancer 
risk-modifying loci, the 5% of BRCA1 carriers with the lowest risk have a 28% or 
less estimated lifetime risk of developing ovarian cancer, whereas the 5% with the 
highest risk will have a risk of 63% or higher. List of nine ovarian cancer GWAS 
was shown in Table 5.10.

�Bone Malignancy

Primary bone cancer is rare disease with approximately 2500 new cases diagnosed 
and 1400 deaths each year in the United States [171]. To date, two studies of malig-
nant bone tumors have been reported. Ewing sarcoma is an aggressive and very rare 
bone tumor with the most unfavorable prognosis of all primary musculoskeletal 
tumors. Ewing sarcoma is characterized by a fusion transcript of EWSR1 (22q12)/
FLI1 (11q24) in approximately 90% of cases. Despite its very low incidence rates 
(0.155, 0.082 and 0.017 per 105 in Europeans, Africans, and Asians, respectively) 
[84], familial Ewing sarcoma has been reported [91], suggesting the presence of 
genetic susceptibility factors for Ewing sarcoma. In 2012, a GWAS of 401 cases and 
4352 controls in a European population coupled with two independent replication 
cohorts identified candidate risk loci on chromosomes 1p36.22 (P = 1.4 × 10−20; 
OR = 2.2), 10q21 (P = 4.0 × 10−17; OR = 1.7) and 15q15 (P = 6.6 × 10−9; OR = 1.5) 
[146]. SNP rs9430161 on chromosome 1p36.22 is located 25 kb upstream of the 
TARDBP gene, and rs224278 on chromosome 10q21 is located 5 kb upstream of the 
EGR2 gene. Variants at these loci are associated with the expression levels of 
TARDBP and EGR2. TARDBP shares structural similarities with EWSR1 and FUS, 
which encode RNA binding proteins, whereas EGR2 is a target gene of EWSR1-
ETS, suggesting important roles for these genes in the pathogenesis of Ewing 
sarcoma.

Osteosarcoma is the most common malignant bone tumor. Osteosarcoma fre-
quently occurs in the long bones of children and young adults and is associated with 
the pubertal growth spurts, suggesting that proliferating osteoblasts or its precursors 
are the origin of this malignancy. A tall stature and high birth weight are known risk 
factors. Osteosarcoma is associated with familial tumor syndromes, such as the 
Li-Fraumeni syndromes, which are caused by mutations in TP53 gene. Up to 9.5% 
of young patients with osteosarcoma were shown to carry pathogenic (3.8%) or rare 
exonic TP53 variations (5.7%), indicating the important roles of host genetic factors 
in disease onset [132]. In 2013, a multistage genome-wide association study con-
sisting of 941 cases and 3291 controls of European ancestry identified two loci in 
the GRM4 gene on chromosome 6p21.3 (encoding glutamate receptor metabotropic 

K. Matsuda



117

Ta
bl

e 
5.

10
 

L
is

t o
f 

ov
ar

ia
n 

ca
nc

er
 G

W
A

S

Sc
re

en
in

g 
(c

as
e/

co
nt

ro
l)

R
ep

lic
at

io
n 

(c
as

e/
co

nt
ro

l)
Sc

re
en

in
g_

et
hn

ic
ity

Jo
ur

na
l

Y
ea

r
PU

B
M

E
D

ID
Fi

rs
t a

ut
ho

r
Id

en
tifi

ed
 r

eg
io

ns

18
17

/2
35

3
69

44
/9

47
7

E
U

N
at

 G
en

et
20

09
19

64
89

19
So

ng
 H

9p
22

.2
17

68
/2

35
4

87
09

/5
17

64
E

U
N

at
 G

en
et

20
10

20
85

26
32

G
oo

de
 E

L
2q

31
.1

, 8
q2

4.
21

17
68

/2
35

3
87

39
/1

08
31

E
U

N
at

 G
en

et
20

10
20

85
26

33
B

ol
to

n 
K

L
19

p1
3

64
0/

41
60

7
E

U
N

at
 G

en
et

20
11

21
96

45
75

R
af

na
r 

T
17

q2
3.

2
37

69
/4

39
6

39
99

1/
10

78
E

U
N

at
 G

en
et

20
13

23
53

57
30

Ph
ar

oa
h 

PD
(3

)
(1

) 
68

3/
20

44
17

06
/1

02
58

E
U

PL
oS

 G
en

et
20

13
23

54
40

13
C

ou
ch

 F
J

4q
32

.3
, 9

p2
2.

2,
 

17
q2

1.
31

(2
) 

10
44

/1
17

2
14

52
/2

80
3

C
N

N
at

 
C

om
m

un
20

14
25

13
45

34
C

he
n 

K
9q

22
.3

3,
 1

0p
11

.2
1

(2
) 

43
68

/9
12

3
14

16
2/

42
09

2
E

U
N

at
 G

en
et

20
15

25
58

14
31

K
uc

he
nb

ae
ck

er
 

K
B

(4
)

(2
) 

16
44

/2
16

93
E

U
N

at
 G

en
et

20
15

26
07

57
90

K
el

em
en

 L
E

2q
14

.1
, 2

q3
1.

1,
 1

9q
13

.2

E
U

 E
ur

op
ea

n,
 A

A
 A

fr
ic

an
 a

m
er

ic
an

, A
S 

A
si

an
, E

A
 E

as
t A

si
an

, C
N

 C
hi

ne
se

, J
P

 J
ap

an
es

e,
 K

R
 K

or
ea

n,
 L

A
 L

ar
in

o/
H

is
pa

ni
c,

 A
F

 A
fr

ic
an

. (
1)

 B
R

C
A

1 
ca

rr
ie

rs
, 

(2
) 

E
pi

th
el

ia
l, 

3)
 2

q3
1.

1,
 3

q2
5.

31
, 8

q2
1.

13
, 8

q2
4.

21
, 9

p2
2.

2,
 1

0p
12

.3
1,

 1
7q

12
, 1

7q
21

.3
2,

 1
9p

13
.1

1,
 p

36
.1

2,
 1

p3
4.

3,
 2

q3
1.

1,
 3

q2
5.

31
, 4

q2
6,

 5
p1

5.
33

, 6
p2

2.
1,

 
8q

21
.1

3,
 8

q2
4.

21
, 9

p2
2.

2,
 1

0p
12

.3
1,

 1
6q

21
, 1

7q
12

, 1
7q

21
.3

1,
 1

7q
21

.3
2,

 1
9p

13
.1

1

5  The Association of Single Nucleotide Polymorphisms with Cancer Risk



118

4; rs1906953; P = 8.1 × 10−9) and a locus in the gene desert at 2p25.2 (rs7591996; 
P = 1.0 × 10−8) [161]. GRM4 is implicated in intracellular signaling and inhibition 
of the cyclic AMP (cAMP) signaling cascade. GRM4 is expressed in human osteo-
sarcoma cells[92] and is associated with a poor prognosis in patients with various 
human cancers [19, 24], as well as with cancer cell proliferation in vitro [120], sug-
gesting that the cAMP pathway is important in osteosarcoma. List of two malignant 
bone tumor GWAS was shown in Table 5.11.

�Testicular Germ Cell Tumors

Testicular germ cell tumors (TGCT) are one of the common causes of cancer in 
young men, with a mean age at diagnosis of 36 years [18]. Testicular germ cell 
tumors account for approximately 1% of all male cancers, with an estimated 72,000 
new cases and 9000 deaths worldwide [55]. The incidence of the disease varies 
considerably between ethnic groups. Its incidence is particularly elevated in 
European populations [109] and has increased rapidly over recent decades. Well-
recognized risk factors for TGCT include a history of undescended testis, microli-
thiasis, infertility and other testicular abnormalities [190]. Family history is also 
associated with four to tenfold increased risk of TGCT [71]. Multiple GWAS of 
TGCT have now been conducted, yielding more than 20 independent loci associated 
with TGCT risk (Table 5.1) [28, 94, 95, 102, 115, 117, 152, 157, 165, 191].

In 2009, the first GWAS were reported from two groups, in which 730/277 cases 
and 1435/919 controls were genotyped. A subsequent replication analysis identified 
three loci on chromosome 12p22 within the KITLG gene, (OR = 2.55, P = 10−31), 
chromosome 5q31.3 (OR = 1.37, P = 3 × 10−13) and chromosome 6p21 (OR = 1.50, 
P = 10−13) [94, 152].

The KITLG gene encodes the ligand for the receptor tyrosine kinase KIT, and 
several previous reports support an association between the KITLG/KIT system and 
TGCT formation. Somatic missense mutations or amplifications of KIT are observed 
in approximately one-quarter of human seminomas [97]. Germline homozygous 
mutations in either KIT or KITLG cause infertility in mice [155], and the KITLG/

Table 5.11  List of malignant bone tumor GWAS

Screening 
(case/
control)

Replication 
(case/control)

Screening_
ethnicity Journal Year PUBMEDID

First 
author

Identified 
regions

(1) 
427/4352

661/1299 EU Nat 
Genet

2012 22327514 Postel-
Vinay S

1p36.22, 
10q21.3, 
15q15.1

(2) 
694/2703

247/550 EU Nat 
Genet

2013 23727862 Savage 
SA

2p25.2, 
6p21.31

EU European, AA African american, AS Asian, EA East Asian, CN Chinese, JP Japanese, KR 
Korean, LA Larino/Hispanic, AF African. (1) Ewing sarcoma, (2) Osteosarcoma
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KIT system has been shown to regulate the survival, proliferation and migration of 
germ cells [17]. In addition, a mouse model with a germline heterozygous deletion 
of the KITLG coding sequence exhibits an increased risk of TGCT [68]. A SNP 
within the same LD block of rs995030 was shown to encode a functional p53-
binding site, and the SNP influences the ability of p53 to bind to and regulate the 
transcription of the KITLG gene [216]. These lines of evidence support an associa-
tion between the KITLG/KIT system and TGCT formation. List of eight testicular 
tumor GWAS was shown in Table 5.12.

5.5  �Conclusions

Recently, more than 2500 GWAS have identified over 25,000 genetic factors associ-
ated with various phenotypes, such as disease risk, drug response, and quantitative 
traits. These studies revealed important biological pathways that will contribute to 
the implementation of personalized medicine. Regarding cancer risk, more than 250 
studies have identified about 700 significant SNPs. The identification of cancer sus-
ceptibility genes contributes to our understanding of disease pathogenesis and risk 
prediction. However, more than 70% of the variations exhibited a relatively weak 
effect, with ORs of less than 1.3. Collectively, these variants explain only less than 
20% of the reported cancer heritability [7, 129]. The reason for the missing herita-
bility remains largely unclear [123]. The inability of GWAS to identify a greater 
proportion of the genetic risk stems from many factors, including genotyping plat-
form limitations in interrogating rare variations [172]. One explanation for this 
missing heritability is that GWAS are designed to identify common variants 
(MAF  >  0.01) and only poorly interrogate rare variants (MAF  <  0.01) [221]. 
Consequently, genetic research has shifted to examine the association of rare varia-
tions with diseases using next generation sequencing. Cybulski et al. applied whole-
exome sequencing in BRCA1, BRCA2, CHEK2, NBN or PALB2 mutation-negative 
breast cancer patients with strong family histories and/or young ages of onset 
(n = 195) and identified rare recurrent RECQL mutations in populations from both 
Quebec and Poland (P = 0.00004 and 0.008, OR = 49.6 and 5.4) [33]. Mutations in 
RECQL are very rare in the general population (risk allele frequency = 0.00007–
0.00021). RECQL is implicated in resolving stalled DNA replication forks to pre-
vent double-stranded DNA (dsDNA) breaks [148], and its function is related to 
other known breast cancer susceptibility genes. Therefore, RECQL is likely to be a 
novel breast cancer predisposition gene. In addition, whole-exome sequencing of 51 
individuals with multiple colonic adenomas from 48 families identified homozy-
gous germline nonsense mutations in the base-excision repair gene NTHL1 in three 
unrelated families [201]. Moreover, all three affected women developed an endome-
trial malignancy or premalignancy. This mutation was exclusively observed in a 
heterozygous state in controls (minor allele frequency of 0.0036; n = 2329), indicat-
ing that a homozygous loss-of-function germline mutation in the NTHL1 gene pre-
disposes individuals to BER-associated adenomatous polyposis and CRC.
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Thus, whole exome sequencing is promising strategy to identify rare but highly 
penetrant cancer predisposition genes. Recently, many investigators have turned to 
next generation sequencing to study rare variants in complex diseases. However, a 
larger number of samples is required to validate the results of rare variant associa-
tion studies compared with common variant association studies [221]. Therefore, 
the combination of a rare variant association study and a common variant associa-
tion study would be a useful strategy for investigating the missing heritability of 
various cancers.
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Chapter 6
Genetics of Infectious Diseases

Yosuke Omae and Katsushi Tokunaga

Abstract  Genome-wide association studies (GWASs) have been performed in the 
field of human genetics to identify disease- or phenotype-related genetic variants. 
Infectious diseases are caused by bacteria, viruses, parasites, or fungi and these 
pathogens are considered as one of the environmental factors of disease onset. The 
first GWAS in infectious disease was reported in 2007 for acquired immunodefi-
ciency syndrome (AIDS). More than 80 GWASs have since been reported in various 
infectious diseases and successfully revealed genetic risk factors. In this chapter, we 
will review GWAS reports published between 2007 and 2016 for three major global 
infectious diseases (AIDS, malaria, and tuberculosis), hepatitis (B and C), and other 
infectious diseases. We will also discuss the currently proposed mechanisms based 
on GWAS findings.

Keywords  GWAS · Infectious disease · AIDS · HIV · Malaria · Plasmodium · 
Tuberculosis · Mycobacterium · Hepatitis · HBV · HCV · Leprosy · 
Meningococcus · Helicobacter pylori · Pneumococcus · Salmonella · 
Staphylococcus · Bacteremia · Sepsis · Dengue · Herpes zoster · HPV · Influenza · 
Leishmaniasis · HLA

6.1  �Introduction

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, 
viruses, parasites, or fungi, and can spread from one person to another. Infectious 
diseases are leading causes of human mortality and morbidity. To identify host 
genetic risk factors for infectious diseases, candidate gene approaches and family-
based approaches have been applied and the contribution of several human genetic 
factors has been suggested [1]. Human leukocyte antigen (HLA) is one of the major 
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genetic factors reported from candidate gene studies in various infectious diseases 
[1]. HLA is a gene complex encoding the major histocompatibility complex (MHC) 
in humans and an important regulator of the immune response. HLA genes show 
great polymorphisms which allow them to fine-tune the adaptive immune system 
against foreign pathogens. In brief, antigen-presenting cells (APCs) engulf a patho-
gen through phagocytosis and load small peptides digested from pathogen proteins 
onto HLA antigens (referred to as peptide presentation) [2]. HLA class I molecules 
(e.g., HLA-A, -B, and -C) present peptides to CD8-positive or cytotoxic T cells and 
class II molecules (e.g., HLA-DP, -DQ, -DR) present peptides to CD4-positive or 
helper T cells so that pathogens can be destroyed by the immune system [2]. HLA 
gene polymorphisms can alter peptide presentation and pathogen clearance by the 
immune system, resulting in various susceptibilities to pathogen infection.

Several non-HLA genes have also been reported in previous candidate gene stud-
ies and family-based studies. However, a limitation of candidate gene approaches is 
that a priori knowledge is necessary and researchers may overlook the major deter-
minant for the diseases, which was unexpected at the time of analysis. Conversely, 
a limitation of family-based approaches is that identified genetic variants in familial 
disease onset cases can be rare among sporadic cases. Genome-wide association 
studies (GWASs) can overcome these limitations by using a hypothesis-free and 
comprehensive approach in analyses. In GWASs, we use single nucleotide poly-
morphisms (SNPs) as markers for disease causative genetic variants, genotype mul-
tiple SNPs simultaneously by using a DNA-microarray, and compare the differences 
in genotype frequencies between a case group and a control group or assess the 
correlation between genotype frequencies and clinical parameters.

In this chapter, we will review genetic factors detected to be associated with 
infectious disease by GWASs. We focused on associations that passed statistically 
significant thresholds after considering multiplicity or the standard genome-wide 
significance p-value threshold (α = 5.00E-08). We hope this review and the gene list 
will be of some help to the readers for better understanding of genetics in infectious 
diseases.

6.2  �Three Major Global Infectious Diseases (Table 6.1)

�Acquired Immune Deficiency Syndrome (AIDS)

AIDS is caused by human immunodeficiency virus (HIV) infection. AIDS interferes 
with the host immune system and increases the risk of opportunistic infections after 
a prolonged period with no symptoms. Great variability in the susceptibility to HIV-1 
infection and in the subsequent disease course is known, and the first GWAS for 
HIV-1 was reported in 2007 as the first GWAS in infectious diseases [3]. The 
Goldstein group conducted an association analysis between plasma circulating virus 
levels (viral load) and genotype frequency of SNPs in 486 HIV-1 infected European 
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Table 6.1  List of significantly associated genes and polymorphisms in GWAS of three major 
global infectious diseases

Gene Polymorphism Study design
Cases/Controls 
(Population) P

Effect size 
(Odds ratio, 
if not 
specified) Ref.

AIDS (Viral load)
HLA-B/HCP5 rs2395029, 

B∗5701
Viral load Case 486 

(European)
9.36E-
12

9.6% of 
total 
variation

[3]

HLA-C rs9264942 Viral load Case 486 
(European)

3.77E-
09

6.5% of 
total 
variation

[3]

CCR5 rs333 (delta 
32)

Viral load Case 2362 
(European)

1.70E-
10

1.7% of 
total 
variation

[10]

HLA-B B∗57:03 Viral load Case 515 
(African-
American)

5.60E-
10

~10% of 
total 
variation

[5]

HLA-B, 
HLA-A

Peptide 
binding groove

Viral load Case 6315 
(European)

2.00E-
83

12.3% of 
total 
variation

[7]

CCR5/CCRL2 rs1015164, 
delta 32, 
Hap-P1

Viral load Case 6315 
(European)

1.50E-
19

2.2% of 
total 
variation

[7]

AIDS (Disease progression)
ZNRD1/
RNF39

rs9261174 Disease 
progression

Case 1071 
(European)

1.80E-
08

5.8% of 
total 
variationa

[10]

PARD3B rs11884476 Disease 
progression

Case 755 
(European/
American)

3.37E-
09

Hazard 
ratio=0.30

[17]

HLA-B/HCP5 rs2395029 AIDS-
nonprogressors 
vs 
HIV-uninfected

275/1352 
(European)

6.79E-
10

3.47 
(2.39–
5.04)b

[11]

CXCR6 rs2234358 AIDS-
nonprogressors 
vs 
HIV-uninfected

276/697 
(European/
American)

2.10E-
08

1.77 
(1.44–
2.18)b

[16]

HLA-B Position 97 
(67, 70)

AIDS-
controllers vs 
AIDS-
progressors

974/2648 
(European)

4.00E-
45

No data [12]

(continued)
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Table 6.1  (continued)

Gene Polymorphism Study design
Cases/Controls 
(Population) P

Effect size 
(Odds ratio, 
if not 
specified) Ref.

HLA-C rs9264942 AIDS-
controllers vs 
AIDS-
progressors

974/2648 
(European)

2.80E-
35

2.9 (No 
95% CI 
data)b

[12]

MICA rs4418214 AIDS-
controllers vs 
AIDS-
progressors

974/2648 
(European)

1.40E-
34

4.4 (No 
95% CI 
data)b

[12]

PSORS1C3 rs3131018 AIDS-
controllers vs 
AIDS-
progressors

974/2648 
(European)

4.20E-
16

2.1 (No 
95% CI 
data)b

[12]

AIDS (HIV acquisition)
CYP7B1 rs6996198 HIV-infected 

cases vs 
HIV-uninfected 
controls

1739/1397 
(European)

7.76E-
08

0.70 (No 
95% CI 
data)c

[26]

CCR5 delta32 HIV-infected 
cases vs 
HIV-uninfected 
controls

6334/7247 
(European)

5.00E-
09

0.2 (No 
95% CI 
data)d

[27]

Malaria (Severe)
HBB rs11036238 Cases vs 

Controls (in 
children)

2045/3078 
(Gambian)

3.70E-
11

0.63 
(0.55–0.72)

[34]

ABO rs8176719 Cases vs 
Controls

2645/3050 
(Ghanaian)

1.10E-
20

1.67 
(1.50–1.86)

[35]

ATP2B4 rs2365860 Cases vs 
Controls

2645/3050 
(Ghanaian)

1.50E-
08

0.63 
(0.55–0.74)

[35]

MARVELD3 rs2334880 Cases vs 
Controls

2645/3050 
(Ghanaian)

3.90E-
08

1.24 
(1.15–1.34)

[35]

FREM3/
GYPE

rs184895969 Cases vs 
Controls

~10,000/15,000 
(African)

9.50E-
11

0.67 
(0.60–0.76)

[36]

Tuberculosis
18q11.2 rs4331426 Cases vs 

Controls
3632/7501 
(Ghanaian/
Gambian)

6.80E-
09

1.19 
(1.13–1.27)

[42]

11p13 rs2057178 Cases vs 
Controls

2127/5636 
(Ghanaian)

2.63E-
09

0.77 
(0.71–0.84)

[43]

ASAP1 rs10956514 Cases vs 
Controls

6396/8038 
(Russian)

1.00E-
10

0.85 
(0.81–0.89)

[44]

HLA-DQA1/-
DRB1

rs557011, 
rs9271378

Cases vs 
Controls

9654/29,4043 
(European)

2.00E-
15

1.18 
(1.13–1.23)

[45]

(continued)
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individuals. They replicated the association of HLA-B identified in previous candi-
date gene approaches and revealed a novel association of HLA-C with HIV-1 viral 
load [3]. Association of these HLA class I genes with HIV-1 viral load was confirmed 
by subsequent GWASs from independent studies in European [4], African American 
[5], and Chinese [6] populations. The most significant SNP in the European GWAS 
(rs2395029) is located near the HLA complex 5 (HCP5) gene but is in almost com-
plete linkage disequilibrium (LD) with the HLA-B∗57:01 allele in the European 
population [3]. Conversely, a GWAS in African Americans revealed a strong associa-
tion between HLA-B∗57:03 and HIV-1 viral load [5], suggesting that HLA-B∗57 
group alleles affect viral load variations. An analysis of amino acid residues within 
the HLA loci further indicated that the major genetic associations observed between 
the HLA locus and HIV control were due to polymorphisms in amino acids located 
at the HLA-B peptide binding groove [7]. This finding suggests that presentation of 
specific viral epitopes is dependent on the structure of the HLA peptide binding 
groove and may alter the efficiency of the cytotoxic T cell response. Another signifi-
cantly associated SNP (rs9264942) is located 35-kb upstream of the HLA-C gene 
and the protective allele of rs9264942 was strongly associated with higher expres-
sion of the HLA-C gene [3]. The Carrington group revealed that higher expression of 
HLA-C correlated with stronger cytotoxic T cell responses and contributed to viral 
control [8]. Later, the group attributed the molecular mechanism for variability in 
HLA-C expression to a polymorphism in the 3′ untranslated region of HLA-C, which 
is in strong LD with rs9264942 and regulates the binding of a microRNA, hsa-
miR-148, to its target site [9]. Decreased binding of this microRNA can increase the 
expression of HLA-C and promote cytotoxic T cell responses. Furthermore, an 
expanded GWAS for viral load in 2362 European HIV-1 infected cases identified a 
significant association of C-C chemokine receptor type 5 (CCR5) with viral load, 
which was reported in previous candidate gene studies [10]. The Goldstein group 
estimated that common variants located in HLA class I molecules and the CCR5 
region explained the majority (25%) of the host genetic contribution to the variation 
in HIV-1 viral load using GWAS data from 6315 European individuals [7].

Table 6.1  (continued)

Gene Polymorphism Study design
Cases/Controls 
(Population) P

Effect size 
(Odds ratio, 
if not 
specified) Ref.

MAFB rs6071980 Young cases vs 
Controls

393/1255 (Thai/
Japanese)

6.69E-
08

1.73 
(1.42–2.11)

[49]

IL12B rs4921437 HIV-positive TB 
cases vs 
HIV-positive 
controls

267/314 
(Ugandan/
Tanzanian)

2.11E-
08

0.37 
(0.27–0.53)

[50]

CI confidence interval
aData in reference [3]
bProtective for disease progression
cData before meta-analysis
dData under a recessive model
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A GWAS to identify genetic variants associated with AIDS progression after 
HIV-1 infection was also first conducted by the Goldstein group using the drop in 
CD4-positive T cell counts as the indicator of AIDS progression [3]. Their later 
expanded GWAS identified a significant association of zinc ribbon domain-
containing 1/ring finger protein 39 (ZNRD1/RNF39) with AIDS progression [10]. 
Furthermore, a GWAS comparing HIV-infected non-progressors to AIDS and HIV-
uninfected controls identified a significant association of HLA-B polymorphism 
with AIDS progression, which emphasized the role of HLA-B in control of disease 
progression soon after infection [11]. A GWAS in a multiethnic cohort of HIV-1 
controllers and AIDS progressors revealed associations of specific amino acids in 
the HLA-B peptide binding groove with progression phenotype and independent 
associations for HLA-C and major histocompatibility class I polypeptide-related 
sequence A (MICA) gene variants [12]. The associations of HLA-B, HLA-C, and 
MICA with AIDS progression have been confirmed by subsequent GWASs in inde-
pendent European cohorts [13, 14]. MICA functions as a ligand for natural killer 
group 2 member D (NKG2D), which is present on CD8-positive T cells and natural 
killer (NK) cells. The engagement of MICA with NKG2D activates cytolytic 
responses against infected cells and tumor cells [15]. Different expression levels of 
soluble MICA due to genetic polymorphism can alter the infection status of HIV-1. 
Other loci including psoriasis susceptibility 1 candidate 3 (PSORS1C3) [12], C-X-C 
motif chemokine receptor 6 (CXCR6) [16], and par-3 family cell polarity regulator 
beta (PARD3B) [17] showed significant associations with AIDS progression, 
although their associations and other suggestive associations [18–20] required fur-
ther confirmation in independent cohort studies.

Compared to the GWAS for viral load and disease progression, GWASs for 
HIV-1 acquisition through comparison of HIV-infected individuals and HIV-
uninfected individuals have experienced difficulty in identifying significant associa-
tions of genetic variants with HIV [21–25]. Thus far, only two multi-cohort GWASs 
have revealed significant associations of genetic variants with HIV-1 acquisition 
[26, 27]. The largest GWAS comprised 6300 cases and 7200 controls and identified 
an association between 32-base-pair deletion in CCR5 gene and HIV-1 acquisition 
[27]. The necessity of large sample numbers to identify significant associations sug-
gests that genetic influence on HIV acquisition is smaller than that on viral load or 
disease progression.

GWASs for other aspects of HIV-1 infection have focused on the development of 
cross-reactive neutralizing antibodies [28], in vitro replication of HIV-1 in monocyte-
derived macrophages [29], and death as disease course of AIDS [30]. However, no 
significant associations have been identified from these studies, possibly due to their 
limited sample sizes. Of note, the Fellay group considered the interaction between 
host and pathogen in infectious diseases and proposed a unique genome-to-genome 
analysis of associations between human genetic variation, HIV-1 sequence diver-
sity, and viral control [31]. Their method identified associations between SNPs 
within the HLA region and 48 amino acid variants in HIV and will be worth noting 
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for future identification of AIDS genetic risk factors through consideration of the 
viral genome.

�Malaria

Malaria is caused by pathogenic parasites in the genus Plasmodium, which are 
transmitted through the bites of infected mosquitoes. Infection by malaria parasite 
may result in a wide variety of symptoms, ranging from absent or very mild symp-
toms to severe disease, including malarial anemia with hemolysis and cerebral 
malaria with neurological symptoms. Five species of Plasmodium can infect humans 
and Plasmodium falciparum is the major cause of severe malaria. Malaria affects 
mortality and morbidity in endemic areas of sub-Saharan Africa. Molecular genetic 
studies before the first GWAS suggested that hemoglobinopathies including sickle 
cell trait and glucose-6-phosphate dehydrogenase (G6PD) deficiency confer a sur-
vival advantage against severe malaria and have subsequently increased in fre-
quency through natural selection over generations [32]. Genetic variance component 
analysis considering the correlation between the disease incidence and the degree of 
genetic relationship estimated that host genetic factors accounted for nearly 25% of 
the risk of severe malaria [33]. The first GWAS in malaria reported in 2009 con-
ducted a two-stage GWAS including 958 Gambian children with severe malaria and 
1382 controls, followed by a replication study in an independent sampling of 1087 
cases and 2376 controls. The GWAS identified the HBB region, which encodes beta 
globin of hemoglobin [34]. It is already well known that the sickle cell allele, hemo-
globin S, confers resistance to P. falciparum [32]. Subsequent GWASs in 2012 and 
2015 further identified ATPase plasma membrane Ca2+ transporting 4 (ATP2B4) 
[35], MARVEL domain containing 3 (MARVELD3) [35], and FRAS1 related extra-
cellular matrix 3/glycophorin E (FREM3/GYPE) genes [36] as novel malaria resis-
tance genes in addition to the ABO gene, which encodes for histo-blood group ABO 
system transferase and has already been identified as a malaria risk gene from can-
didate gene studies [37]. Associations between HBB, ABO, and ATP2B4 loci and 
severe malaria were confirmed in a multicenter study comprising 11,890 malaria 
cases and 17,441 controls from 12 locations in Africa, Asia, and Oceania [38]. 
ATP2B4 is a major calcium pump in the plasma membrane of erythrocytes [39], 
suggesting that an alteration of its structure or expression can disturb homeostasis 
of intra-erythrocytic calcium concentrations and affect the development and struc-
ture of the parasite at intra-erythrocytic stages. Interestingly, an association between 
G6PD deficiency and malaria has not been detected in reported GWASs, however, 
the multicenter study revealed opposing effects on cerebral malaria and severe 
malarial anemia, which was consistent across different populations [38]. As G6PD 
deficiency has been observed to suppress P. vivax infection more effectively than P. 
falciparum infection [40], parasitic genetic variation is proposed as a source of 
observed differences in clinical outcome. Further investigation for causative para-
sitic variation in malaria is warranted.
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�Tuberculosis (TB)

TB is caused by the pathogenic bacterium, Mycobacterium tuberculosis (MTB), 
which is transmitted through the air from person to person. MTB most commonly 
grows in the lungs and symptoms during the active infection phase include a bad 
cough, chest pain, and coughing up blood or sputum, which can be fatal if not 
treated. TB is one of the major causes of infectious disease-related mortality world-
wide. Although one-third of the world population is infected by MTB, only 5–15% 
of infected people develop active TB; the remaining 90% of infected people remain 
in a dormant stage throughout their life [41], suggesting the contribution of host 
genetic factors to TB onset. The first GWAS for TB was reported in 2010. The Hill 
group reported the association between the chromosome 18q11.2 locus and TB 
onset among 3632 cases and 7501 controls in an African population [42]. The Hill 
group further expanded the candidate SNPs through the application of the whole 
genome SNP imputation method and reported another significant association in the 
chromosome 11p13 locus [43]. A GWAS in Russian with pulmonary TB reported an 
association of ArfGAP with SH3 domain, Ankyrin repeat and PH domain 1 (ASAP1) 
gene with TB onset, and decreased macrophage migration was observed in individu-
als homozygous for the risk allele [44]. The association of the HLA class II locus, 
which was reported in previous candidate gene studies, with TB onset was also 
identified from a GWAS in European populations [45]. However, the effect sizes of 
these identified genes were weak (odds ratio <1.5) and reproducibility of these iden-
tified genetic factors was controversial among independent GWASs conducted in 
Indonesia, South Africa, Morocco, Thailand, and Japan [46–49]. Therefore, identi-
fication of common genetic risk factors remains challenging for TB.

The Mahasirimongkol group and our group have focused on differences in TB 
onset. Primary TB patients show symptoms within 5 years after infection, whereas 
recurrent TB patients generally progress >5 years after infection. We proposed that 
this difference in TB onset can be a determinant of genetic risk factors, and identi-
fied a genetic risk factor specific for young age onset (assuming primary TB) and 
shared among Thai and Japanese populations [49]. The identified SNP is located 
near MAF BZIP transcription factor B (MAFB), which functions as a transcription 
factor that determines the fate of monocyte/macrophage differentiation. Another 
unique approach focusing on HIV-positive individuals who are at high risk for dis-
ease progression has been proposed. A GWAS comparing 267 HIV-infected TB 
cases and 314 HIV-infected non-TB controls successfully identified a common vari-
ant near the interleukin-12B (IL12B) gene, which is involved in cell-mediated 
immunity against intracellular bacteria [50].

These reports suggest the importance of considering the clinical heterogeneity of 
TB to identify shared genetic risk factors for TB. MTB is also known to demonstrate 
differences between its genome structure and in vitro phenotype [51]. We recently 
conducted a GWAS based on lineage information of MTB and revealed that patho-
gen lineage can affect the risk of host polymorphisms [52]. The risk of HLA class II 
alleles also differed according to the specific lineage in MTB [53]. Further consid-

Y. Omae and K. Tokunaga



153

eration of pathogen heterogeneity may also help facilitate identification of shared 
risk genetic factors for TB onset.

6.3  �Chronic Hepatitis Virus Infection (Table 6.2)

�Hepatitis C

Hepatitis C is a liver disease caused by blood-borne infection of hepatitis C virus 
(HCV), and chronic HCV infection leads to liver cirrhosis or liver cancer. The 
genetic basis of HCV infection was identified through analysis of differences in 
anti-HCV treatment response [54–56]. It was well known that many patients will 
not be cured by treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin 
combination therapy, which is a standard treatment for HCV patients [57]. GWASs 
comparing treatment responders and non-responders were reported from three inde-
pendent research groups at approximately the same time in 2009. All three GWASs 
revealed an unexpectedly strong association of IL28B (also called IFN-λ3) with 
HCV treatment response in different populations [54–56]. IL28B was also found to 
be associated with the baseline (pre-treatment) viral load and contributes to the host 
viral clearance [58–60]. Lower IL28B expression levels were observed in individu-
als carrying risk alleles [55, 56]. IL-28B is a cytokine distantly related to type I IFNs 
and forms a gene cluster with IL28A and IL29, which comprise the type III IFN 
family. These type III IFNs were reported to be induced by viral infection and have 
antiviral activity [61, 62], however, a surprisingly strong effect during HCV clear-
ance is observed. All three type III IFNs interact with a unique heterodimeric class 
II cytokine receptor consisting of IL-10Rβ, which is a receptor shared with other 
cytokine receptors, and IL-28Rα, which is a receptor specific to these IFNs [61, 62]. 
Thus, they may serve as an alternative to type I IFNs, which are well-known regula-
tors of antiviral response, in providing immunity to viral infection through a com-
mon downstream signaling system. Moreover, IFN-λ signaling has been proposed 
as a potential target for novel antiviral drug development. The association of HLA 
class II alleles with viral clearance and chronic HCV infection has been reported in 
addition to IL28B [60, 63]. In addition, the first GWASs focused on individuals 
infected by HCV genotype 1, the most common type in developed countries with 
the lowest treatment response among several HCV genotypes, and the association of 
IL28B was confirmed in HCV genotype 4 but not in HCV genotype 2 or 3 [59]. 
HCV viral genome analysis further revealed that variation in the HCV genome core 
region is associated with poor response to IFN therapy, indicating that both host and 
viral genetic factors contribute to the IFN response [64].

Besides the viral clearance phenotype, host genetic factors related to the progres-
sion of HCV-induced liver diseases have also been explored among chronic hepati-
tis C cases. Initial GWASs on HCV-induced hepatocellular carcinoma (HCC) were 
reported in Japanese populations. One GWAS compared HCV-induced HCC 
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Table 6.2  List of significantly associated genes and polymorphisms in GWAS of hepatitis B and C

Gene Polymorphism Study design
Cases/Controls 
(Population) P

Effect 
size 
(Odds 
ratio) Ref.

HCV (infection status)
IL28B rs12979860 Treatment-induced 

viral clearance
Case 1137 
(diverse ethnic 
groups)a

1.37E-
28

7.3 
(5.1–
10.4)b

[54]

IL28B rs8099917 Treatment-induced 
viral clearance

128/186 
(Japanese)

2.68E-
32

27.1 
(14.6–
50.3)

[55]

IL28B rs8099917 Treatment-induced 
viral clearance

261/294 
(Australian/
European)

9.25E-
09

1.98 
(1.57–
2.52)

[56]

IL28B rs8099917 Spontaneous viral 
clearance

347/1015 
(European)

6.07E-
09

2.31 
(1.74–
3.06)

[59]

IL28B rs12979860 Spontaneous viral 
clearance

919/1482 
(European, 
African, others)

2.17E-
30

0.45 (No 
95% CI 
data)c

[60]

HLA-
DQB1

rs4273729 Spontaneous viral 
clearance

919/1482 
(European, 
African, others)

1.71E-
16

0.59 (No 
95% CI 
data)

[60]

HLA-
DQB1

rs9275572 Chronic infection 
cases vs healthy 
controls

6218/29,894 
(Japanese)

3.59E-
16

0.79 
(0.75–
0.84)

[63]

HCV (Disease progression)
MICA rs2596542 HCC cases vs 

controls
1394/5486 
(Japanese)

4.21E-
13

1.39 
(1.27–
1.52)

[65]

DEPDC5 rs1012068 HCC cases vs 
non-developers

922/2390 
(Japanese)

1.27E-
13

1.75 
(1.51–
2.03)

[66]

TLL1 rs17047200 HCC cases after 
eradication vs 
non-developers

253/543 
(Japanese)

2.66E-
08

2.37 
(1.74–
3.23)

[67]

RNF7 rs16851720 Liver fibrosis, 
progression

Case 1636 
(European)

8.90E-
09

0.23 
(0.15–
0.31)d

[68]

MERTK rs4374383 Liver fibrosis, blood 
transfusion

Case 319 
(European)

1.10E-
09

0.19 
(0.10–
0.37)e

[68]

C6orf10 rs910049 Liver cirrhosis cases 
vs non-developers

1618/4854 
(Japanese)

9.15E-
11

1.46 
(1.28–
1.58)

[69]

BTNL2/
HLA-DRA

rs3135363 Liver cirrhosis cases 
vs non-developers

1618/4854 
(Japanese)

1.45E-
10

1.37 
(1.24–
1.51)

[69]

(continued)
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Table 6.2  (continued)

Gene Polymorphism Study design
Cases/Controls 
(Population) P

Effect 
size 
(Odds 
ratio) Ref.

HLA-
DQA1

∗06:01 allele Liver cirrhosis cases 
vs non-developers

682/1045 
(Japanese)

4.53E-
04

2.80 
(1.38–
3.32)

[69]

HLA-
DQA1/-
DRB1

rs9461776 Vasculitis cases vs 
non-developers

448/626 
(European)

7.10E-
09

2.02 (No 
95% CI 
data)

[70]

HBV (Infection status)
HLA-
DPA1/-
DPB1

rs9277535, 
rs3077

Chronic hepatitis B 
cases vs healthy 
controls

1890/3350 
(Japanese/Thai)

6.34E-
39

0.57 
(0.52–
0.62)

[72]

HLA-
DQA1/-
DQB1

rs7453920, 
rs2856718

Chronic hepatitis B 
cases vs healthy 
controls

2662/6486 
(Japanese)

3.99E-
37

1.56 
(1.45–
1.67)

[73]

HLA-
DPA1/-
DPB1

rs9277535, 
rs3077

HBV carriers vs 
HBV resolvers

651/434 
(Japanese/
Korean)

1.89E-
12

0.43 
(0.34–
0.54)

[74]

HLA-
DQA1/-
DQB1

rs7453920 HBV carriers vs 
HBV resolvers

5181/6610 (Han 
Chinese)

4.93E-
37

0.53 
(0.48–
0.59)

[75]

HLA-C rs3130542 HBV carriers vs 
HBV resolvers

5181/6610 (Han 
Chinese)

9.49E-
14

1.33 
(1.23–
1.44)

[75]

UBE2L3 rs4821116 HBV carriers vs 
HBV resolvers

5181/6610 (Han 
Chinese)

1.71E-
12

0.82 
(0.77–
0.87)

[75]

EHMT2 rs652888 HBV carriers vs 
healthy controls

1371/2938 
(Korean)

7.07E-
13

1.38 
(1.22–
1.57)

[79]

TCF19 rs1419881 HBV carriers vs 
healthy controls

1371/2938 
(Korean)

1.26E-
18

0.73 
(0.66–
0.81)

[79]

HLA-DPA3 rs9366816 HBV carriers vs 
controls (in males)

1065/1623 (Han 
Taiwanese)

2.58E-
10

1.43 
(1.28–
1.60)

[76]

CFB rs12614 Chronic hepatitis B 
cases vs controls

9114/9257 
(Chinese)

1.28E-
34

1.89 
(1.69–
2.08)

[80]

HLA-DOA rs38352 Chronic hepatitis B 
cases vs controls

9114/9257 
(Chinese)

1.04E-
23

1.26 
(1.20–
1.31)

[80]

HLA-C rs2853953 Chronic hepatitis B 
cases vs controls

9114/9257 
(Chinese)

5.06E-
20

1.47 
(1.35–
1.59)

[80]

(continued)
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patients and HCV-negative controls and identified an association with the MICA 
gene [65]. Another GWAS compared HCV-induced HCC patients and chronic HCV 
individuals without HCC and identified the DEP domain-containing 5 (DEPDC5) 
gene; its function has been poorly understood, however, its expression was increased 
in HCC cases [66]. A GWAS for HCC after eradication of HCV infection was con-
ducted using 123 cases and 332 controls, followed by a replication study in a 
Japanese population. This GWAS identified a SNP in tolloid-like 1 (TLL1) and 
expression of TLL1 was increased in animal models of liver injury and liver tissues 

Table 6.2  (continued)

Gene Polymorphism Study design
Cases/Controls 
(Population) P

Effect 
size 
(Odds 
ratio) Ref.

NOTCH4 rs422951 Chronic hepatitis B 
cases vs controls

9114/9257 
(Chinese)

5.33E-
16

1.27 
(1.20–
1.35)

[80]

CD40 rs1883832 Chronic hepatitis B 
cases vs controls

9114/9257 
(Chinese)

2.95E-
15

1.19 
(1.14–
1.25)

[80]

INTS10 rs7000921 HBV carriers vs 
HBV resolvers

5156/4413 
(Chinese)

3.20E-
12

0.78 
(0.73–
0.84)

[81]

HBV (Disease progression)
KIF1B rs17401966 HCC cases vs 

non-developers
2310/1789 
(Chinese)

3.40E-
19

0.62 
(0.56–
0.69)

[82]

HLA-
DQA1/-
DRB1

rs9272105 HCC cases vs 
non-developers

5969/6190 
(Chinese)

5.24E-
22

1.28 
(1.22–
1.35)

[85]

GRIK1 rs455804 HCC cases vs 
non-developers

5969/6190 
(Chinese)

5.24E-
10

0.84 
(0.80–
0.89)

[85]

HLA-
DQB1/−
DQA1

rs9275319 HCC cases vs 
non-developers

5480/6319 
(Chinese)

8.65E-
19

1.51 
(1.38–
1.66)

[86]

STAT4 rs7574865 HCC cases vs 
non-developers

5480/6319 
(Chinese)

1.66E-
11

1.22 
(1.15–
1.29)

[86]

FDX1 rs2724432 Liver 
cirrhosis+HCC 
cases vs 
non-developers

76/343 (Arab) 4.29E-
08

3.01 
(2.21–
5.30)

[88]

CI confidence interval
aEuropean-American, African-American and Hispanic
bData for C allele, recessive model in European population
cData for T allele
dData under an additive model
eData under a recessive model
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of patients with fibrosis compared with respective controls [67]. Several other host 
genetic factors were found to be significantly associated with the progression of 
other HCV-induced liver diseases, such as ring finger protein 7 (RNF7) and MER 
receptor tyrosine kinase (MERTK) with liver fibrosis status [68], and chromosome 
6 open reading frame 10 (C6orf10), butyrophilin-like 2 (BTNL2)/HLA-DRA and 
HLA-DQA1 with liver cirrhosis [69]. GWASs for cryoglobulin-related vasculitis, an 
autoimmune and B cell lymphoproliferative disorder, and lichen planus, a chronic 
inflammatory mucocutaneous disease, among patients with HCV infection have 
also been established [70, 71]. These reports suggest the association of host immune 
system including HLA with several aspects of disease progression after chronic 
HCV infection.

�Hepatitis B

Hepatitis B is caused by hepatitis B virus (HBV) infection through contact with the 
blood or other body fluids of an infected person, and chronic HBV infection leads 
to a high risk of death from cirrhosis and liver diseases such as HCC. Clinical out-
comes after exposure to HBV are known to be highly variable and approximately 
15% of HBV-infected people become chronic carriers, 75% of who live in Southeast 
Asia and East Pacific areas. The first GWAS for HBV infection was conducted in 
786 Japanese chronic hepatitis B cases and 2201 controls, followed by replication 
studies in three additional Japanese and Thai cohorts consisting of 1300 cases and 
2100 controls. The first GWAS revealed an association of SNPs in the HLA-DPA1/
HLA-DPB1 locus with susceptibility to chronic HBV infection [72]. An expanded 
GWAS including 2662 Japanese chronic hepatitis B cases and 6486 healthy controls 
further revealed an association of HLA-DQA1/HLA-DQB1 with susceptibility to 
chronic HBV infection [73]. Subsequent GWASs based on the viral clearance status 
comparing HBV carriers and HBV resolved individuals confirmed the association 
of HLA-DP and HLA-DQ with susceptibility to chronic HBV infection in Japanese 
[74], Korean [74], Han Chinese [75], and Han Taiwanese [76] populations. 
Furthermore, trans-ethnic association analysis of HLA-DPA1/HLA-DPB1 alleles 
and haplotypes identified susceptibility and resistance alleles to chronic HBV infec-
tion in Asian populations including Japanese, Korean, Hong Kong, and Thai [77] 
populations. However, few studies have examined and replicated the association of 
HLA-DPA1/HLA-DPB1 with chronic HBV infection in non-Asian populations. One 
possible explanation is that risk SNPs identified in Asian population have low minor 
allele frequency in non-Asian populations. HLA-DPA1 and HLA-DPB1 form a het-
erodimer consisting of an alpha and a beta chain of class II HLA molecules on the 
surface of APCs [78]. Polymorphisms in HLA may result in different binding affini-
ties between HLA-DP subtypes and extracellular antigens and alter the pathogene-
sis of HBV infection. In addition to the HLA class II locus, associations of HLA-C 
and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) with chronic HBV infection 
were identified in Han Chinese [75]. Thus far, GWASs in Korean and Chinese 
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populations revealed seven additional risk loci for chronic HBV infection, including 
euchromatic histone-lysine-methyltransferase 2 (EHMT2), transcription factor 19 
(TCF19) [79], HLA-DPA3 [76], complement factor B (CFB), HLA-DOA, neuro-
genic locus notch homolog (NOTCH4), CD40 [80], and integrator complex subunit 
10 (INTS10) [81], although additional studies are warranted to further confirm these 
findings.

Host genetic variants related to HBV-induced liver disease progression among 
chronic HBV cases have been examined in Chinese populations. The first GWAS 
was conducted using 355 HBV-induced HCC cases and 360 HBV carriers without 
HCC among Southern Chinese individuals, followed by replication studies in five 
additional independent Chinese cohorts. The GWAS identified one SNP at the 
intronic region of kinesin family member 1B (KIF1B) [82], although this associa-
tion has not been confirmed in other populations [83, 84]. Subsequent GWASs iden-
tified a significant association of HLA-DQA1/HLA-DRB1, glutamate ionotropic 
receptor kainate type subunit 1 (GRIK1) [85], HLA-DQB1/HLA-DQA1, and signal 
transducer and activator of transcription 4 (STAT4) with HBV-induced HCC [86]. 
Trans-ethnic association analysis of HLA-DPA1/HLA-DPB1 alleles in Asian popu-
lations confirmed the association of class II HLA alleles [77]. These results suggest 
that HLA class II is strongly associated with both chronic HBV infection and HBV-
induced progression of liver disease. Another GWAS in Southern Chinese individu-
als suggested an association of different host genetic factors with HBV-induced 
HCC, although these results must be confirmed [87]. Additionally, a GWAS on liver 
cirrhosis progression identified a novel candidate risk allele in the upstream region 
of the ferredoxin 1 (FDX1) gene among chronic HBV carriers in an Arab population 
[88].

Variations in HBV genotype are well recognized and HBV genotype and muta-
tions were reported to be associated with HBV-related HCC risk of host genetic 
variants [89]. This result suggests important interactions between host genome vari-
ation and virus genome variation, which is consistent with HIV and HCV infections 
mentioned above.

6.4  �Other Infectious Diseases (Table 6.3)

�Leprosy

Leprosy is caused by the pathogenic bacterium M. leprae and progresses to periph-
eral neuropathy and permanent progressive deformity if not treated. Although both 
leprosy and TB originate from infection by Mycobacterium species, GWASs for 
leprosy have achieved outstanding success compared to those for TB.  The first 
GWAS for leprosy was reported from the Zhang and Liu group in 2009 based on 
706 affected cases and 1225 unaffected controls from a Han Chinese population. 
They detected a strong signal at the HLA-DR-DQ locus on chromosome 6p21, 
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Table 6.3  List of significantly associated genes and polymorphisms in GWAS of other infectious 
diseases

Gene Polymorphism Study design

Cases/
Controls 
(Population) P

Effect 
size 
(Odds 
ratio) Ref.

Leprosy
C13orf31(LACC1) rs3764147 Cases vs 

Controls
3960/7180 
(Chinese)

3.72E-
54

1.68 
(1.57–
1.80)

[90]

NOD2 rs9302752 Cases vs 
Controls

3960/7180 
(Chinese)

3.77E-
40

1.59 
(1.49–
1.71)

[90]

LACC1/CCDC122 rs3088362 Cases vs 
Controls

3960/7180 
(Chinese)

1.36E-
31

1.52 
(1.41–
1.63)

[90]

HLA-DR-DQ rs602875 Cases vs 
Controls

3960/7180 
(Chinese)

5.35E-
27

0.67 
(0.62–
0.72)

[90]

TNFSF15 rs6478108 Cases vs 
Controls

3960/7180 
(Chinese)

3.39E-
21

1.37 
(1.28–
1.46)

[90]

RIPK2 rs42490 Cases vs 
Controls

3960/7180 
(Chinese)

1.38E-
16

0.76 
(0.71–
0.81)

[90]

HLA-DRB1/−
DQA1

rs9270650 Cases vs 
Controls

377/370 
(Indian)

4.90E-
14

2.30 
(1.85–
2.86)

[94]

TLR1 rs5743618 Cases vs 
Controls

434/460 
(Indian/
Turkey)

1.70E-
09

0.37 
(0.26–
0.51)

[94]

RAB32 rs2275606 Cases vs 
Controls

4407/10,880 
(Chinese)

3.94E-
14

1.30 
(1.21–
1.39)

[91]

IL23R rs3762318 Cases vs 
Controls

4407/10,880 
(Chinese)

3.27E-
11

0.69 
(0.62–
0.77)

[91]

CIITA rs77061563 Cases vs 
Controls

8313/16,017 
(Chinese)

6.23E-
15

0.84 
(0.80–
0.88)

[92]

CCDC88B rs663743 Cases vs 
Controls

8313/16,017 
(Chinese)

8.84E-
14

1.24 
(1.17–
1.31)

[92]

EGR2 rs58600253 Cases vs 
Controls

8313/16,017 
(Chinese)

3.02E-
12

1.22 
(1.15–
1.29)

[92]

CDH18 rs73058713 Cases vs 
Controls

8313/16,017 
(Chinese)

9.54E-
09

1.19 
(1.12–
1.27)

[92]

(continued)
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Table 6.3  (continued)

Gene Polymorphism Study design

Cases/
Controls 
(Population) P

Effect 
size 
(Odds 
ratio) Ref.

DEC1 rs10817758 Cases vs 
Controls

8313/16,017 
(Chinese)

1.15E-
08

1.13 
(1.08–
1.18)

[92]

BATF3 rs2221593 Cases vs 
Controls

8313/16,017 
(Chinese)

3.09E-
08

1.15 
(1.10–
1.22)

[92]

CTSB rs10100465 Cases vs 
Controls

8156/15,610 
(Chinese)

2.85E-
11

0.85 
(No 
95% CI 
data)

[93]

MED30 rs55894533 Cases vs 
Controls

8156/15,610 
(Chinese)

5.07E-
11

1.15 
(No 
95% CI 
data)

[93]

BBS9 rs4720118 Cases vs 
Controls

8156/15,610 
(Chinese)

3.85E-
10

1.16 
(No 
95% CI 
data)

[93]

SYN2 rs6807915 Cases vs 
Controls

8156/15,610 
(Chinese)

1.94E-
08

0.89 
(No 
95% CI 
data)

[93]

Meningococcus
CFH/CFHR3 rs426736 Cases vs 

Controls
1443/6079 
(European)

4.60E-
13

0.63 
(0.55–
0.71)

[100]

H. pylori
TLR1 rs10004195 Anti-H. pylori 

IgG titer high vs 
lowanti-H. pylori 
IgG titer high vs 
low

2623/7862 
(European)

1.40E-
18

0.70 
(0.65–
0.76)

[105]

FCGR2A/
FCGR2B

rs368433 Anti-H. pylori 
IgG titer high vs 
lowanti-H. pylori 
IgG titer high vs 
low

2623/7862 
(European)

2.10E-
08

0.73 
(0.65–
0.81)

[105]

Pneumococcus
AC011288.2 
(lincRNA)

rs140817150 Cases vs 
Controls

542/4013 
(Kenyan)

1.69E-
09

2.47 
(1.84–
3.31)

[108]

(continued)
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Table 6.3  (continued)

Gene Polymorphism Study design

Cases/
Controls 
(Population) P

Effect 
size 
(Odds 
ratio) Ref.

Salmonella
HLA-DRB1/-
DQB1

rs7765379 Cases vs 
Controls

522/2011 
(Vietnamese/
Nepalese)

2.29E-
13

0.22 
(0.15–
0.34)

[112]

STAT4 No 
information

Cases vs 
Controls

323/3013 
(Kenyan/
Malawian)

1.40E-
09

7.2 
(3.8–
13.5)

[113]

Staphylococcus
HLA-DRA/-DRB1 rs115231074 Cases vs 

Controls
4701/45,344 
(American)

1.30E-
10

1.22 
(No 
95% CI 
data)a

[116]

KAT2B rs61440199 Intermittent 
nasal carriers vs 
non-carriers

97/620 
(Mexican-
American)

8.68E-
09

8.68 
(4.16–
18.13)

[117]

Sepsis
FER rs4957796 Non-survivor vs 

Survivors
460/2078 
(European)

5.60E-
08

0.56 
(0.45–
0.69)

[119]

Dengue
MICB rs3132468 Cases vs 

Controls
3745/4952 
(Vietnamese)

4.41E-
11

1.34 
(1.23–
1.46)

[122]

PLCE1 rs37665524 Cases vs 
Controls

3745/4952 
(Vietnamese)

3.08E-
10

0.80 
(0.75–
0.86)

[122]

Herpes zoster
HLA-B/HCP5 rs114045064 Cases vs 

Controls
2016/16,407 
(European)

2.24E-
08

0.78 
(0.71–
0.85)

[130]

HPV
HLD-DQB1 rs9357152 HPV8 

seropositive vs 
seronegative

1333/3414 
(European)

1.20E-
10

1.37 
(1.24–
1.50)

[134]

Leishmaniasis
HLA-DRB1/−
DQA1

rs9271858 Cases vs 
Controls

2287/2079 
(Indian/
Brazilian)

2.76E-
17

1.41 
(1.30–
1.52)

[140]

CI confidence interval
aImputed data

6  Genetics of Infectious Diseases



162

which has been identified using a candidate gene approach [90]. After combining 
three replication studies from Han Chinese and minority groups in China, receptor-
interacting serine/threonine kinase 2 (RIPK2), tumor necrosis factor superfamily 
member 15 (TNFSF15), nucleotide-binding oligomerization domain containing 2 
(NOD2), and laccase domain containing 1/coiled-coil domain containing 122 
(LACC1/CCDC122) were identified to be associated with leprosy [90]. Thereafter, 
expanded GWASs in the Chinese population further identified 12 loci including 
IL23R for leprosy risk with a small effect size (odds ratio <1.5) [91–93]. Another 
GWAS in Indian and Turkey confirmed the association of HLA-DR-DQ with lep-
rosy and identified a novel association with toll-like receptor 1 (TLR1) [94]. A rep-
lication study in Brazilians confirmed the association of NOD2 and LACC1/
CCDC122 with leprosy [95]. NOD2 recognizes bacterial molecules and triggers 
innate immune responses. Unique muramyl dipeptide in M. leprae was shown to be 
recognized by NOD2 [96]. Expression of LACC1 was shown to be regulated by the 
peroxisome proliferator-activated receptor (PPAR) signaling pathway, which plays 
important anti-inflammatory roles [97]. In addition, the Zhang group focused on 
evidence that NOD2, TNFSF15, IL23R, and LACC1/CCDC122 genes, which have 
been identified in GWASs of leprosy, have also been reported in GWASs of Crohn’s 
disease and ulcerative colitis, which are autoinflammatory diseases. They evaluated 
the effect of other Crohn’s disease risk genes and revealed the association of IL18AP/
IL18R1 and IL12B with leprosy [98]. Variants in IL18AP/IL18R1 and IL12B genes 
showed opposing associations between leprosy and inflammatory bowel disease. 
Their results suggest shared or pleiotropic genetic susceptibility between infectious 
diseases and inflammatory diseases.

�Meningococcus

Neisseria meningitidis (meningococcus) causes meningococcal diseases such as 
meningitis and septicemia, which are major causes of death in children of European 
descent. The sibling familial risk ratio for meningococcal disease is similar to that 
for polygenic diseases [99], suggesting the importance of genetic factors in menin-
gococcal disease. A GWAS for meningococcal disease was conducted using 475 
cases and 4703 controls in the United Kingdom and identified the association of 
SNPs at the locus between complement factor H (CFH) and CFH-related protein 3 
(CFHR3) with meningococcal disease [100]. The association was replicated in 
Western European [100], South European [100], and Central European [101] 
cohorts. Association of CFH-related genes was consistent with in vitro evidence 
that N. meningitides evades complement-mediated killing through the binding of 
host CFH protein to meningococcal factor H-binding protein (fHbp) [102]. Altered 
risk to N. meningitides infection mediated by genetic variation in the CFH/CFHR3 
locus was subsequently attributed to differences in circulating levels of CFH protein 
and CFHR3 protein, which compete for binding to fHbp [103]. Moreover, higher 
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expression of CFHR3 than CFH was proposed to enhance protection against N. 
meningitides and protect hosts from disease onset [103].

�Helicobacter pylori

H. pylori is a major cause of gastritis and gastric ulcers and is linked to the develop-
ment of cancer. Although 90% of individuals are infected by H. pylori in developing 
countries [104], some individuals are never colonized, regardless of exposure. To 
identify genetic loci associated with anti-H. pylori serum IgG antibody titer, a 
GWAS compared 2623 cases and 7862 controls from three independent European 
cohorts. This GWAS identified associations of SNPs on the TLR locus and the Fc 
gamma receptor 2A/2B (FCGR2A/FCG2B) locus with anti-H. pylori serum IgG 
antibody titer and the identified SNPs were significantly correlated with mRNA 
levels of TLR1 and FCGR2A/FCGR2B [105]. The association between the TLR 
locus and anti-H. pylori antibody levels was confirmed in an independent Finnish 
population [106]. TLRs are known to be essential for protective immunity against 
infection. TLR1 forms a heterodimer with TLR2 and recognizes triacylated lipo-
peptides released from the cell envelope of Gram-negative bacteria [107]. As 
H. pylori possesses lipid A, which can consist of triacylated lipopeptides, TLR-
mediated differential prevalence of H. pylori antibodies seems biologically 
plausible.

�Pneumococcus

Streptococcus pneumoniae (pneumococcus) causes lung, ear, brain, spinal cord, and 
bloodstream infections, which can lead to hearing loss, brain damage, and death in 
young children. Despite widespread exposure and asymptomatic carriage of this 
bacterium, only a proportion of individuals develop bacterial bloodstream infection 
(bacteremia). A GWAS consisted of 542 Kenyan children with culture-confirmed 
pneumococcal bacteremia and 4013 healthy controls identified a statistically signifi-
cant association of a SNP in a long intergenic non-coding RNA (lincRNA) gene 
with pneumococcal infection [108]. LincRNAs are transcribed from non-coding 
DNA sequences between protein-coding genes and more than 8000 human lin-
cRNAs have been reported. Additionally, expression of lincRNA is more tissue-
specific than that of protein-coding genes. The associated lincRNA is expressed only 
in neutrophils, which is consistent with the fact that neutrophils are a major player 
in pneumococcal clearance [109, 110]. LincRNAs are key regulators of diverse cel-
lular processes through the attachment to messenger RNA to block protein produc-
tion [111]. To our knowledge, this GWAS is the first to propose that lincRNAs have 
a role in immunity by regulating host susceptibility to pathogen infections.
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�Salmonella

Salmonella causes intestinal tract infections through consumption of water or food 
contaminated with Salmonella enterica serovar Typhi, Salmonella enterica serovar 
Paratyphi, or non-typhoidal Salmonella (NTS) and leads to diarrhea, fever, vomit-
ing, and abdominal cramps. The first GWAS for Salmonella infection was reported 
in 2014. This three-stage GWAS included 432 patients with clinical signs and 
symptoms of enteric fever with culture-confirmed Salmonella Typhi or Salmonella 
Paratyphi A and 2011 controls in Vietnam, followed by two independent datasets 
from Nepal and Vietnam. Although almost all cases (>99%) in Vietnam were 
infected by Salmonella Typhi, whereas 66.7% and 33.3% of cases in Nepal were 
colonized by Salmonella Typhi and Salmonella Paratyphi A, respectively, a varia-
tion in HLA-DRB1 was associated with resistance to enteric fever both in Vietnam 
and Nepal [112]. The minor allele of the identified SNP conferred nearly fivefold 
greater resistance, indicating a substantial effect of HLA class II variation on sus-
ceptibility to enteric fever caused by Salmonella species.

A GWAS for NTS infection was later reported using 180 Kenyan cases and 2677 
controls, followed by an replication analysis with 143 Malawian cases and 336 con-
trols [113]. An intronic variant in the STAT4 gene, which is a well-known cytokine 
production-related transcriptional factor, was identified and the risk allele for NTS 
infection was associated with lower STAT4 gene expression [113]. This finding is 
consistent with the role of STAT4 as a transcription activator, which is essential for 
mediating responses to IL-12  in lymphocytes and regulating T helper cell 
differentiation.

�Staphylococcus

Staphylococcus aureus is present on the nose and skin in 30–50% of healthy indi-
viduals. Infection by S. aureus can cause a variety of diseases ranging from mild 
skin and soft tissue, eye (cornea), and bone infections to life-threatening blood-
stream, lung, and heart infections. To identify genetic variants for the risk of S. 
aureus infection, initial GWASs compared 361 S. aureus bacteremia cases and 699 
controls [114] and 309 S. aureus infected cases and 2925 uninfected controls [115], 
however, no statistically significant associations were detected. A larger scale 
GWAS including 4701 culture-confirmed S. aureus infected cases and 45,344 unin-
fected controls identified a significant association between the HLA class II (HLA-
DRA/HLA-DRB1) region and S. aureus infection [116], suggesting that previous 
GWASs were underpowered to detect an effect at genome-wide significance. 
Moreover, a GWAS focusing on S. aureus nasal carriage identified a significant 
association of the intronic variant of lysine acetyltransferase 2B (KAT2B) gene with 
intermittent carriage of S. aureus [117]. Interestingly, this GWAS recruited only 97 
intermittent carriers and 620 non-carriers. KAT2B, also known as P300/
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CBP-associated factor, is involved in immune function. KAT2B expression in mice 
was reported to be affected by the nature of the infecting S. aureus strain [118]. 
These results support the importance of KAT2B in S. aureus infection. As S. aureus 
is known to have a complex infection mechanism, using a wide variety of virulence 
factors that interact with several host pathways, analyses focusing on the specific 
status of S. aureus may help facilitate identification of host genetic variants for this 
pathogen.

�Sepsis

Sepsis is a complication caused by the body’s overwhelming and life-threatening 
response to a pathogen infection and can lead to tissue damage, organ failure, and 
death. Sepsis is often associated with infections of the lungs (pneumonia), urinary 
tract, skin, and gut. Several types of Gram-positive species, e.g., Staphylococcus 
and Streptococcus, and Gram-negative species, e.g., Escherichia and Neisseria, are 
often observed in sepsis cases. The first GWAS evaluated 28-day survival from 
sepsis caused by pneumonia and recruited 460 non-survivors and 2078 survivors 
among European sepsis patients. Although the cases including both Gram-positive 
and -negative bacteria infected cases, this GWAS successfully identified an associa-
tion of a SNP in the intronic region of the Fps/Fes related tyrosine kinase (FER) 
gene with reduced risk of death from sepsis [119]. The reduction in mortality asso-
ciated with this SNP was substantial; the approximately 25% mortality rate observed 
in major allele homozygous patients was decreased to 15% in heterozygous carriers 
and 10% in minor allele homozygous carriers. When patients with sepsis due to 
pneumonia and intra-abdominal infection were combined, no significant associa-
tions were detected, suggesting the importance of tailoring homogeneous categories 
in sepsis. FER is known to have a role in the regulation of neutrophil chemotaxis 
and endothelial permeability [120, 121]. As neutrophil recruitment to the site of 
infection is essential in innate immune defense and changes in relevant signaling 
pathways can lead to failure of bacterial clearance or promotion of tissue damage, 
FER may be a potential mechanism affecting survival from sepsis.

�Dengue

Dengue is an acute systemic viral infection caused by dengue virus. Dengue is a 
mosquito-borne infection and a wide variety of disease manifestations is seen from 
asymptomatic infection to severe and fatal hypovolemic shock, called dengue shock 
syndrome (DSS). In southern Vietnam, serological studies have estimated that 85% 
of the population is exposed to dengue virus infection by 15 years of age, and DSS 
is estimated to occur in <1% of exposed individuals. To reveal genetic risk factors 
for severe dengue, a GWAS comparing 2008 DSS cases among Vietnamese children 
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and 2018 controls were conducted, and two strong, independent associations were 
observed between DSS and the MHC class I polypeptide-related sequence B (MICB) 
locus on chromosome 6 near HLA class I and II loci and phospholipase C epsilon 1 
(PLCE1) on chromosome 19 [122]. These associations were confirmed in replica-
tion studies in independent Vietnamese DSS cases [122] and Thai cases [123] or 
non-severe dengue cases without shock [124]. MICB is one of the stress-induced 
molecules expressed by virus-infected cells and activates the receptor NKG2D on 
NK cells [15, 125]. Activated NK cells induce killing of virus-infected cells through 
cytokine expression and cytolytic response [126]. The DSS risk allele was signifi-
cantly associated with lower mRNA expression of MICB [123], which can lead to 
decreased killing by NK cells early in infection and increased viral burden for 
severe disease progression. Additionally, mutations in PLCE1 have been shown to 
be associated with nephrotic syndrome [127], which leads to proteinuria that has 
been proposed as a potential predictor in determining the risk to develop severe 
dengue [128].

�Herpes Zoster

Herpes zoster, also known as shingles, is caused by varicella zoster virus (VZV). 
VZV initially manifests as chicken pox. It can remain asymptomatic in nerve tissues 
for many years but later lead to a painful skin rash with blisters in a localized area. 
In the absence of vaccination, person who live to 85 years of age has a 50% risk of 
herpes zoster and 10–50% of them will develop chronic postherpetic neuralgia 
[129]. To identify the genetic risk for re-emergence of VZV, a GWAS was con-
ducted including 2016 cases and 16,407 controls in the European ancestry group 
and identified protective variants in the HLA-B/HCP5 locus [130]. This locus has 
been associated with delayed development of AIDS as described above, suggesting 
a shared and critical role of the HLA-B/HCP5 locus in viral suppression.

�Human Papillomavirus (HPV)

HPV is a DNA virus that infects mucosal or cutaneous epithelia through skin-to-
skin contact and causes warts, squamous intraepithelial lesions, and anogenital and 
oropharyngeal cancers, such as cervical cancers. HPVs have great diversity in their 
genomes and more than 100 HPV types, which share nucleotide identity, have been 
reported [131]. A limited number of HPV types cause anogenital and oropharyngeal 
cancers, whereas other HPV types lead to non-melanoma skin cancer [132]. 
Antibodies against HPVs are considered as markers for HPV infections, however, 
not all infected persons show detectable levels of specific antibodies [133]. To 
understand the genetic basis of serological immune responses to HPV infections, a 
GWAS evaluated serology data on 13 HPV types in 4811 European subjects with 
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lung, head and neck, and kidney cancers. A significant association between HPV8 
seropositivity and a SNP located in the HLA class II region was identified, and this 
association was subsequently confirmed in an independent set of 2344 Latin 
American patients with head and neck cancers [134]. These results provide a proof 
of concept that genetic variation plays a role in antibody reactivity to HPV 
infection.

�Influenza

Influenza is an infectious disease caused by influenza virus that leads to a high fever, 
runny nose, sore throat, muscle pains, headache, and coughing. Influenza virus A 
(H1N1)pdm09 caused the first influenza pandemic of the twenty-first century in 
2009 and avian influenza A(H7N9) caused a >30% case-fatality rate in 2013–2014 
[135]. Although statistically significant associations between influenza virus infec-
tion and host genetic factors have not yet been identified due to limited sample 
sizes, GWASs for these pandemic influenza virus infections have been attempted. A 
GWAS on influenza A(H7N9) compared 102 A(H7N9) patients and 106 heavily-
exposed healthy poultry workers and revealed a potential association with lectin 
galactoside-binding soluble 1 (LGALS1) gene variants, which regulates the expres-
sion of a beta-galactoside-binding protein, galectin 1 [136]. Moreover, another 
GWAS on influenza A(H1N1)pdm09 compared 162 cases with severe infection and 
247 controls with mild infection and suggested an association of higher-expression 
variants of the transmembrane protease, serine 2 (TMPRSS2) gene with a risk of 
severe A(H1N1)pdm09 influenza infection [137]. Interestingly, this GWAS reported 
that the same risk variants increased susceptibility to human A(H7N9) influenza 
[137], and TMPRSS2-knockout mice were highly tolerant to the lethal challenge of 
A(H1N1)pdm09 and A(H7N9) viruses, demonstrating the essential role of 
TMPRSS2 during influenza virus infections [138].

�Leishmaniasis

Leishmaniasis is an infectious disease caused by protozoan parasites, Leishmania 
species, which live in macrophages and are transmitted by sand flies. Most infected 
people remain asymptomatic throughout life, whereas some infected people develop 
cutaneous, mucocutaneous, and visceral leishmaniasis [139]. Visceral leishmaniasis 
can be fatal if not treated. A GWAS on visceral leishmaniasis compared 2287 cases 
and 2079 controls in Indian and Brazilian populations. Although leishmaniasis in 
India is caused by L. donovani and that in Brazil is caused by L. infantum chagasi, 
the combined analysis successfully identified significant associations between vis-
ceral leishmaniasis and HLA class II region polymorphisms [140]. This result indi-
cated shared genetic risk factors for visceral leishmaniasis that cross the human 

6  Genetics of Infectious Diseases



168

population and parasite species, emphasizing the biological importance of peptide 
presentation from infected macrophages and dendritic cells to CD4-positive T cells 
to drive immune responses to this pathogen.

6.5  �Conclusions

During the last decade since the first GWAS report in infectious disease, we have 
observed the identification of various genetic factors associated with a variety of 
clinical manifestations. Especially, the importance of HLA genes has been con-
firmed in GWASs. Associations have been reported between HLA class I alleles and 
AIDS, HBV infection, and herpes zoster, and between HLA class II alleles and TB, 
HCV- and HBV-infection, HCV- and HBV-related diseases, leprosy, Salmonella 
infection, Staphylococcus infection, HPV infection, and leishmaniasis. Associations 
between non-HLA genes and infection have also been reported with biological 
plausibility. Especially, the identification of IL28B in HCV clearance is a striking 
example to illustrate the impact of GWASs in infectious disease [54–56, 58–60].

Simple case-control GWASs have, of course, identified significant associations 
between host genetic factors and disease. Some researchers have focused on hetero-
geneity of disease onset in infectious disease and identified genetic factors that 
showed more clear associations in selected patients. For example, Mahasirimongkol 
et al. focused on young age onset TB patients and identified a significant association 
of one SNP that did not reach significance before the consideration of disease onset 
[49]. Brown et al. focused on nasal infection of S. aureus and revealed a clear and 
significant association with KAT2B variant in a relatively smaller sample number 
than that used to identify genetic variants associated with Staphylococcus blood-
stream infection [117]. As pathogens possess a wide variety of virulence factors that 
interact with several host pathways during infection, analyses focusing on a specific 
aspect of infection may reveal more clear associations with host genetics in infec-
tious diseases.

Furthermore, specific associations between pathogen genome variants and host 
genetic susceptibility factors have been identified, as described above, for AIDS 
[31], TB [52, 53], HCV [59, 64], HBV [89], and HPV [134], whereas several simple 
case-control association studies without considering pathogen species have also 
demonstrated specific associations in the susceptibility to Salmonella species [112], 
Leishmania species [140], and sepsis survival [119]. This evidence suggests that 
heterogeneity in pathogen genomes can also be an important factor in host suscep-
tibility to infectious diseases. Consideration of both host and pathogen factors in 
GWASs can provide critical clues to reveal detailed mechanisms involved in infec-
tious diseases.
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Chapter 7
Pharmacogenomics

Hitoshi Zembutsu

Abstract  Pharmacogenomics is the field of study to discover the genetic factors 
which affect the response to drugs. The final goal of the pharmacogenomics is to 
identify clinically useful biomarkers for the drug efficacy or toxicity and to provide 
the most appropriate drugs to each individual based on the results of genetic test. 
Genome-wide association study (GWAS) has considered to be a powerful tool to 
identify novel genetic variations related to disease susceptibility as well as drug 
efficacy and toxicity. The results of GWAS could clarify the cause of the diseases or 
interindividual differences of drug response. The validation studies or meta-analysis 
for the results of GWASs are essential for clinical application of biomarkers identi-
fied in the GWASs. This chapter highlights the notable results of pharmacogenomic 
GWASs which have been published until today.

Keywords  Genome-wide association study · Pharmacogenomics · Precision 
medicine · Adverse drug reactions (ADRs) · Drug efficacy · Toxicity

7.1  �Introduction

Pharmacogenomics, which is a part of precision medicine, is the study to discover 
the role of genetic variations that affect drug-response phenotype such as responder 
or nonresponder to the drug or adverse drug reactions. Genetic variations including 
common and rare genetic variants in the genes encoding drug transporters or 
enzymes could explain a part of this interindividual difference in drug-response phe-
notype such as drug efficacy or drug toxicity. Through the candidate gene approach, 
genetic variation in TPMT gene has been identified as a well-known biomarker for 
the risk of 6-mercaptopurine-induced myelosuppression for the treatment of acute 
lymphoblastic leukemia, and the genetic variation in UGT1A1 also has been reported 
to be a biomarker for camptothecin-induced neutropenia and diarrhea for the 
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treatment of solid cancers [1, 2]. The drug labels of 6-mercaptopurine and campto-
thecin were revised by the Food and Drug Administration (FDA) in United States to 
describe that genotypes of TPMT and UGT1A1 could be risk factors for toxicity, and 
they stated that the genotypes of the above genes could be useful to predict the risk 
of adverse drug reactions before initiation of the treatment [3]. The main approach 
of pharmacogenomics studies has been a candidate gene approach focusing on the 
genes involved in drug transport, metabolism, and so on. Moreover, the association 
of genes involved in immune-mediated responses such as human leukocyte antigens 
(HLA) and the drug response has also been reported by many research groups [4, 5].

Pharmacogenomics studies using candidate gene approach have been extremely 
successful in human genetics; however, since genome-wide association studies 
(GWAS) had been prevalent, genetic variations associated with drug response as 
well as susceptibility of common diseases have been successfully identified [6], and 
it has become one of the most powerful tools in pharmacogenomics study. Although 
the candidate gene approach mainly focuses on only the genes involved in pharma-
cokinetics or drug metabolism, GWAS could discover novel biomarker genes or 
genetic variations, and it could identify the novel mechanism which regulate the 
efficacy or toxicity of the drugs. Since President Obama announced the Precision 
Medicine Initiative in 2015, the integration of genetic and environmental factors has 
been thought to be of importance to classify the subpopulations of patients based on 
their susceptibility to diseases or their responses to the treatments [7]. In this chap-
ter, we describe the current status of pharmacogenomics in precision medicine, indi-
cating the promising biomarkers, which have been identified through GWAS, for 
the response to the drugs including the anticancer drugs and adverse drug reactions, 
suggesting the possibility of clinical application.

7.2  �GWAS of Adverse Drug Reactions

The World Health Organization (WHO) defines adverse drug reactions (ADRs) as 
“any noxious, unintentional, and undesired effect of a drug, which occurs at doses 
used in humans for prophylaxis, diagnosis, or therapy” [8, 9]. ADRs are one of the 
major issues in drug treatment because they could interfere with continuous and 
effective drug treatment, and lead to unnecessary hospital admission and result in 
death. Basically, adverse drug reactions (ADRs) are classified into two categories: 
type A pharmacological and type B idiosyncratic [10]. The former represents an 
augmentation of the pharmacological actions of a drug and is dose-dependent and 
therefore readily reversible on decreasing the dose or withdrawing the drug admin-
istration. On the other hand, the latter is usually unrelated to the dose and unpredict-
able from the general pharmacological information such as dose of the drug.

Although GWAS to identify susceptible genes of common disease usually require 
thousands of cases and controls, the GWAS for pharmacogenomics could identify the 
loci which are associated with ADRs with genome-wide significant levels using rela-
tively smaller sample sizes [11, 12]. Table 7.1 shows the 7 genome-wide association 
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studies which reported the SNPs strongly associated with ADRs [13–19]. The median 
sample size in screening phase was 402 (range 79–1183), and a median number of 
cases and controls in screening phase were 67 (range 48–303) and 354 (range 
28–882), respectively. The GWAS strategy needs validation phase using independent 
cohorts because some of the results from screening stage should be false positive. To 
prove that the significant association results from screening phase are true positive, 
these validation studies should be carried out using as many as independent cohorts. 
Here representative results of GWASs to identify the biomarker for ADRs are 
summarized.

�Peripheral Neurotoxicity

Anticancer drug-induced peripheral neurotoxicity is one of the most severe and 
common adverse reactions especially in cytotoxic anticancer drug therapy [20]. It is 
known that treatment with anticancer drugs such as platinum drugs (cisplatin, oxali-
platin), taxanes (paclitaxel, docetaxel), vinca alkaloids could cause this toxicity, 
which is reversible in some kinds of anticancer drugs (taxanes and so on), but irre-
versible in the other drugs such as platinum drugs [21]. The variation of the pheno-
type might be partially due to the difference of mechanism of action in each drug. 
Although the damage to body of neuron in the ganglion and axonal toxicity through 
transport deficits has been suggested to be one of the mechanisms of action for 
peripheral neurotoxicity, the detail mechanisms had been unclear [22].

Although the interindividual genetic variation (common and rare variants) has 
been considered to be involved in peripheral neurotoxicity, genetic loci responsible 
for this toxicity have been unclear. Since GWAS has been proven as a powerful tool 
to identify genetic factors which make individuals susceptible to the ADRs, lots of 
researchers attempted the GWAS to identify a genetic variation(s) which regulate 
the susceptibility to neurotoxicity. One of the first GWAS of drug-induced neuropa-
thy was reported by Baldwin in 2012 [13]. To identify genetic risk factors for the 
development of paclitaxel-induced neuropathy, they performed a genome-wide 
association study using 855 samples of European ancestry, and replication study 
using additional 154 European and 117 African American samples [13]. As shown 
in Table 7.1, they identified the single nucleotide polymorphism in FGD4 which 
was associated with the risk of peripheral neurotoxicity in the screening cohort 
(rs10771973, P value of 2.6 × 10−6, hazard ratio of 1.57). Moreover, in two indepen-
dent replication cohorts, European and African American subjects successfully 
showed P value of 0.013, hazard ratio of 1.72 and P value of 6.7 × 10−3, hazard ratio 
of 1.93, respectively. The other two loci including EPHA5 (rs7349683) and FZD3 
(rs10771973) also showed possible association with the onset of paclitaxel-induced 
peripheral neurotoxicity [13].
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�Alopecia

Chemotherapy-induced alopecia is one of the most common ADRs which is experi-
enced by thousands of cancer patients every year [23]. Although the treatment of 
some ADRs has been developed, the treatment for alopecia is still critical issue for 
the patients treated with anticancer drugs [24]. Chemotherapy-induced alopecia 
leads lower quality of life and a negative body image in patients with cancer, and it 
is psychologically difficult for women to manage. Alopecia is induced as one of 
ADRs of taxanes, alkylating agents, anthracyclines, which are commonly used for 
the treatment of many cancers. Patients might need to select less effective chemo-
therapy to avoid the above anticancer-induced alopecia. To identify molecular 
mechanisms of chemotherapy-induced alopecia and contribute to development of 
drugs for prevention or treatment of this toxicity, many researchers have reported 
the pathogenesis and the mechanism of action for this toxicity [25, 26].

Chung et al. first reported the GWAS of chemotherapy-induced alopecia using 
patients with breast cancer [16]. They used 303 breast cancer cases who developed 
grade 2 alopecia and 880 controls who did not show alopecia after chemotherapy, 
and carried out association study between them. rs3820706 in CACNB4 (calcium 
channel voltage-dependent subunit beta 4) was identified as an SNP significantly 
associated with chemotherapy-induced alopecia with P value of 8.13 × 10−9 and 
odds ratio of 3.71 as shown in Table 7.1. CACNB4 is a member of a beta subunit 
family of the voltage-dependent calcium channel (VDCC) complex [27]. Calcium 
ion is reported to function as a messenger in some cellular signal transduction path-
ways including cell proliferation or apoptosis [28]. Chung et al. speculated that Ca2+ 
involved in the pathogenesis of alopecia as a potassium channel opener, minoxidil, 
is effective a subset of hair loss patients [16, 29]. They also established the scoring 
system for prediction of chemotherapy-induced alopecia and found that patients in 
the highest risk group showed 443 times higher risk of chemotherapy-induced alo-
pecia than the lowest risk group [16].

�Neutropenia

There is heterogeneity in the occurrence of the toxicity among patients who are 
treated with anticancer drugs. Neutropenia, which is one of the most common ADRs 
of anticancer drugs, could be dose-limiting toxicity, and could prevent the patients 
from receiving the effective anticancer treatment. Candidate gene approaches previ-
ously identified the association of genetic variants in TPMT with 6-mercaptopurine-
induced myelosuppression in hematopoietic cancer treatment and the association of 
UGT1A1 variants with camptothecin-induced neutropenia and diarrhea in cancer 
treatment, and genetic test of these genes have been recommended for the prediction 
of severe adverse reactions prior to use of the drugs by US Food and Drug 
Administration [1, 2, 30]. Accurate genotyping around a million genetic variants is 
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currently possible by using genome-wide SNP array system. Today, GWAS using 
clinical samples (normal cells) from patients treated with anticancer drugs could be 
a promising tool to identify novel genetic marker(s) for the risk of chemotherapy-
induced neutropenia, and lots of GWAS of chemotherapy-induced neutropenia have 
been reported [14, 15, 31, 32].

�Gemcitabine-Induced Neutropenia

Gemcitabine, which is a deoxycytidine analogue, is the anticancer drug of the treat-
ment for various types of cancers including pancreatic and non-small-cell lung can-
cers [33, 34]. Hematological toxicities such as neutropenia and leukopenia are 
common ADRs of gemcitabine, and these toxicities often limit the effective gem-
citabine treatment. The frequency of gemcitabine-induced severe leukopenia/neu-
tropenia was reported to be 13–35% [35, 36]. Although candidate gene approaches 
to identify the genes associated with the toxicities of gemcitabine have been 
reported, any genetic variation is not yet used as a biomarker for the risk of 
gemcitabine-induced leukopenia in clinic [37]. As shown in Table  7.1, Kiyotani 
et  al. conducted a genome-wide association study to identify a genetic variation 
associated with the risk of gemcitabine-induced leukopenia/neutropenia using 54 
cases (grade 3 or more leukopenia/neutropenia) and 120 controls (without any tox-
icities) [14]. In the GWAS, four loci were identified as possibly associated region 
with gemcitabine-induced leukopenia/neutropenia (rs11141915  in DAPK1, 
Pcombined = 1.27 × 10−6, odds ratio (OR) =4.10; rs1901440, Pcombined = 3.11 × 10−6, 
OR = 34.00; rs12046844 in PDE4B, Pcombined = 4.56 × 10−5, OR = 4.13; rs11719165, 
Pcombined = 5.98 × 10−5, OR = 2.60) [14]. When they investigated the combined effects 
of the above four SNPs, significantly higher risks of gemcitabine-induced leukope-
nia/neutropenia were observed in the patients having 3 risk genotypes 
(P = 4.13 × 10−9, OR = 50.00) relative to patients with 0 or 1 risk genotype, suggest-
ing the clinical usefulness of the scoring system [14].

�Epirubicin-Induced Neutropenia

Epirubicin, an anthracycline cytotoxic agent, forms a complex with DNA by inter-
calation between base pairs in the nucleus of cell and have cytotoxic activity. Many 
types of cancers including breast cancer, ovarian cancer, and so on, were treated 
with this anticancer drug, and neutropenia, which could be dose-limiting toxicities, 
is one of the most common ADRs for the patients treated with epirubicin [38]. Its 
frequency is reported to be approximately 42% [38, 39]. As shown in Table 7.1, 
Srinivasan et  al. reported genetic factors affecting the risk of epirubicin-induced 
leukopenia/neutropenia through the GWAS [15]. They used 270 patients including 
67 cases (patients with grade 3 or more leukopenia/neutropenia) and 203 controls 
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(no toxicity), and further carried out replication study using 48 cases with grade 3 
or more epirubicin-induced leukopenia/neutropenia. In their study, rs2916733  in 
microcephalin 1 showed significant association with epirubicin-induced leukope-
nia/neutropenia (Pcombined = 2.27 × 10−9, OR = 2.74), suggesting that the above SNPs 
could be a genetic marker for the risk of epirubicin-induced neutropenia.

�Chemotherapy-Induced Neutropenia

Majority of anticancer drugs especially cytotoxic agents can cause neutropenia/leu-
kopenia as a dose-limiting or life-threatening toxicity. Therefore, clarification of 
mechanism of the interindividual difference in the risk of ADRs including neutro-
penia/leukopenia and establishment of prediction system for the risk of ADRs have 
considered to be important to provide safe and effective chemotherapy to the 
patients with cancer. It has been thought that there should be common and specific 
mechanism to cause neutropenia/leukopenia among anticancer drugs, which are the 
common ADRs after treatment with anticancer drugs [40]. To fully clarify the 
underlying mechanism and susceptible risk factors that cause neutropenia, Low 
et al. carried out GWAS using 13,122 cancer patients who had been treated with 
various drug regimens (cyclophosphamide, platinum, anthracycline, and antime-
tabolite, antimicrotubule drugs, and topoisomerase inhibitors monotherapy, or com-
bination therapy of them) [32]. Although they could not identify genetic variants 
which achieve the genome-wide significant level through the GWAS, they showed 
that weighted genetic risk score (wGRS) analysis could be the possible prediction 
system for the risk of chemotherapy-induced neutropenia/leukopenia. This GWAS 
is one of the largest studies for the ADRs in patients treated with anticancer drugs 
[32].

�Skin Hypersensitivity

Skin hypersensitivity is basically dose-independent, unpredictable, and sometimes 
life-threatening ADRs (type B ADRs) [41]. Most of the drugs have possibility to 
cause hypersensitivity syndrome. Drug-induced hypersensitivity syndrome (DIHS), 
which is also described as severe cutaneous adverse drug reactions (cADRs), is 
characterized by skin rash, fever, and systemic reactions such as hepatitis and so on 
[42, 43]. Moreover, Stevens-Johnson syndrome (SJS) and toxic epidermal necroly-
sis (TEN) are also severe hypersensitivities [44]. GWAS have proven to be useful 
tool for identification of genetic factors of many kinds of ADRs. Although the report 
for GWASs of skin hypersensitivity is limited, we introduce the representative 
results of GWASs for this toxicity.
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�Nevirapine-Induced Skin Hypersensitivity

Nevirapine is a potent nonnucleoside reverse transcriptase inhibitor and one of the 
first-line drugs for antiretroviral therapy to human immunodeficiency virus type 1 
(HIV-1) infection. Nevirapine often causes cADRs with approximate incidence of 
15–20% [45–47]. Mild to severe skin reactions including SJS and TEN could be 
induced by this drug [48]. Chantarangsu et al. reported the first GWAS to identify 
the genetic variations associated with nevirapine-induced rash using 72 HIV–
infected Thai patients with nevirapine-induced rash and 77 controls (without 
nevirapine-induced toxicity), and as a replication cohort, 88 cases (cADRs positive) 
and 145 controls were used. The GWAS and replication studies showed that 
rs1265112 and rs746647 within CCHCR1 were significantly associated with 
nevirapine-induced rash (Pcombined = 1.2 × 10−8, OR = 4.36) as shown in Table 7.1. 
They suggested that a predictive model that includes genetic and clinical risk factors 
for nevirapine-associated rash could be a useful model in reducing the risk of rash 
induced by nevirapine in HIV-infected patients [17].

�Carbamazepine-Induced Skin Hypersensitivity

Carbamazepine (CBZ) is one of the drugs for control of epilepsy [49]. This drug works 
by reducing abnormal electrical signal in the brain. Pharmacogenomics study of CBZ-
induced cADR using Taiwanese population has shown that HLA-B∗1502 was associ-
ated with SJS/TEN induced by carbamazepine [50]. This result was confirmed by the 
studies using populations in the other Southern Asian countries [51, 52]. Although this 
positive association could be a prediction model of CBZ-induced cADRs in clinic in 
the above countries, the allelic frequencies of this loci in the other populations are <1% 
[53]. Hence, HLA-B∗1502 could not be a widely used genetic biomarker for the car-
bamazepine-induced cADRs in these populations. Ozeki et al. performed the GWAS 
using 53 cases (the CBZ-induced cADRs including SJS, TEN) and 882 controls in 
Japanese population [18]. They identified significantly associated SNP, rs1633021 
(P = 1.18 × 10−13), which is located in the locus including HLA-A. They further geno-
typed the HLA-A alleles using 61 cases and 376 controls (no CBZ-induced ADRs) 
and observed that HLA-A∗3101 was present in 60.7% of the patients with CBZ-
induced cADRs; however, it was present in 12.5% of the CBZ-tolerant controls 
(OR = 10.8, P = 3.64 × 10−15), suggesting that HLA-A alleles could be a useful bio-
marker for making a decision of individualized treatment of epilepsy [18].

�Drug-Induced Liver Injury (DILI)

Drug-induced liver injury (DILI) is one of the common ADRs [54]. Many drugs can 
induce liver injuries through different mechanisms [55]. The annual incidence of 
DILI is reported to be about 13.9–24.0 in 100,000 patients [56]. Although there are 
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few pathognomonic findings in DILI, immune-mediated (known as allergic) and 
metabolism-mediated mechanisms for this ADR have been suggested [57]. Many 
association studies between HLA and ADRs were reported, and some HLA types 
have suggested to be a predictive marker for DILI [58–61]. However, GWAS of 
DILI is limited partially due to its low frequency of the incidence. Petros et  al. 
reported the GWAS and replication study of antituberculosis drug-induced liver 
injury in 2016 [19]. To identify the antituberculosis drug-induced liver injury, the 
authors carried out GWAS using 646 Ethiopian patients receiving rifampicin-based 
short course antituberculosis therapy. In the first screening phase, they used 48 DILI 
cases and 354 controls (antituberculosis tolerant) [19]. They further perform repli-
cation study for the 50 SNPs showing lowest P values using an independent cohort 
consisting of 27 DILI cases and 217 controls. The top SNP showing lowest P value 
was rs10946737 (P = 4.4 × 10−6, OR = 3.4) in the intron of FAM65B in chromosome 
6 in the combined analysis (Table 7.1). A cluster of SNPs, which was possibly asso-
ciated with antituberculosis-induced liver injury, was also observed in the intron of 
ATP-/GTP-binding protein-like 4 (AGBL4) [19].

Moreover, Nicoletti et al. also reported the association of DILI by specific drugs 
or groups of drugs with HLA type and SNPs in other genes through GWAS [62]. 
They performed a GWAS using 862 patients with DILI and 10,588 population-
matched controls. In the first screening cases, they used 137 cases from European 
and 274 cases from USA. They found that rs114577328 (A∗33:01 a HLA class I 
allele) and with rs72631567 on chromosome 2 were significantly associated with 
DILI (odds ratio of 2.7 and 2.0, P value of 2.4 × 10−8 and 9.7 × 10−9, respectively) 
[62]. HLA-A∗33:01 was strongly associated with terbinafine-, fenofibrate-, and 
ticlopidine-induced liver toxicity [62]. They successfully validated the association 
between A∗33:01 terbinafine- and sertraline-induced liver toxicity. Furthermore, 
they showed the significant association between rs28521457 (within the LRBA 
gene) and hepatocellular DILI with P value of 4.8 × 10−9, odds ratio of 2.1. The 
results from the above 2 GWASs of DILI are expected to be useful predictors for 
DILI in clinical setting.

7.3  �GWAS of Drug Efficacy

Many candidate gene approaches had suggested associations between genetic varia-
tion and responses to drugs before GWAS has been common [63]. A candidate gene 
approach had been prevalently used to identify the predictive marker for drug effi-
cacy because this approach could discover the causative genetic variant in well-
known genes (drug transporter, metabolic enzyme, and so on) with lower cost for 
the experiment. Although the efficacy of the drugs considered to be regulated by the 
genetic background of cancer tissues (somatic mutation, gene expression patterns) 
and germline variation in host (human), many research groups reported the signifi-
cant association between germline variation and drug efficacy.
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�GWAS of Tamoxifen Efficacy

Tamoxifen has been mainly used for the adjuvant therapy for patients with estrogen 
receptor (ER)-positive breast cancers. It is reported that five-year tamoxifen therapy 
could improve the risk of its relapse at least for 15 years, particularly for ER-positive 
invasive tumors in premenopausal women [64]. The results of ATLAS (adjuvant 
tamoxifen longer against the shorter) trial showed that the risk of recurrence during 
years 5–14 was more than 20% in the tamoxifen-treated patients in adjuvant setting 
[65]. The mechanisms underlying the efficacy of this drug in a subset of the patients 
are not fully clarified. Two representative metabolites of tamoxifen, 
4-hydroxytamoxifen and endoxifen (4-hydroxy-N-desmethyltamoxifen), are known 
to be active therapeutic moieties [66, 67]. These two metabolites have greater affin-
ity to ER and greater potency in inhibiting estrogen-dependent cell growth com-
pared with a parent compound, tamoxifen [66–68]. Therefore, the differences in the 
formation of these active metabolites considered to affect the interindividual vari-
ability in efficacy of tamoxifen.

Cytochrome P450 2D6 (CYP2D6) is one of the well-known enzymes for the 
generation of the strong active metabolites of tamoxifen, “4-hydroxytamoxifen” and 
“endoxifen” [69]. As a candidate gene approach in tamoxifen pharmacogenomics, 
many studies indicated that decreased—or null-function—alleles of CYP2D6 were 
associated with poor response to tamoxifen [70–73]. Moreover, results of CYP2D6 
genotype-guided dose-adjustment studies of tamoxifen proved that dose adjustment 
based on the genotype could realize the personalized tamoxifen therapy [74, 75]. 
There are several reports claiming the lack of association between CYP2D6 geno-
types and tamoxifen efficacy [76–79]; however, these studies have been criticized 
due to multiple issues which cause false-negative results, i.e., inappropriate patient 
population, inappropriate DNA sources, and incomplete genotyping analysis [80].

It is known that some of the patients with homozygous CYP2D6 wild-type allele, 
who should have potent CYP2D6 activity, could recur after tamoxifen therapy. 
Moreover, some of the patients carrying variant alleles (CYP2D6 Wt/V or V/V), who 
should have intermediate or weak CYP2D6 activity, do not recur after tamoxifen 
therapy [81]. Although CYP2D6 genotype could be associated with tamoxifen effi-
cacy and promising predictive marker for the response to this drug, there should be 
also the other genetic factors which related to the response to tamoxifen treatment. 
The genes, such as Cytochrome P450 2C19 (CYP2C19), Cytochrome P450 3A5 
(CYP3A5), sulfotransferase 1A1 (SULT1A1), UDP-glucuronosyltransferase 2B15 
(UGT2B15) and ATP-binding cassette sub-family C member 2 (ABCC2), could be 
possible candidates related to response to tamoxifen therapy [72, 76, 81, 82]; how-
ever, associations of these candidate genes have not yet been sufficiently validated.

To fully understand and identify the genetic factors determining individual response 
to tamoxifen, Kiyotani et al. carried out and reported a genome-wide association study 
(GWAS) in 2012 [83]. They studied 462 Japanese patients with hormone receptor-
positive, invasive breast cancer treated with tamoxifen in adjuvant setting. They 
observed significant associations with recurrence-free survival at 15 SNPs on 9 chro-
mosomal loci (1p31, 1q41, 5q33, 7p11, 10q22, 12q13, 13q22, 18q12, and 19p13) that 
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satisfied a genome-wide significant threshold (log-rank P = 2.87 × 10−9 – 9.41 × 10−8) 
in the GWAS stage. Of the above SNPs, rs10509373  in C10orf11 gene on 10q22 
showed significant association with clinical outcome in two independent replication 
studies (105 and 107 cases, respectively) and a combined analysis showed a strong 
association of this SNP with clinical outcome of breast cancer patients treated with 
tamoxifen (log-rank P  =  1.26  ×  10−10) [83]. Moreover, in a combined analysis of 
rs10509373 with CYP2D6 and ABCC2, the number of risk alleles of these genes had 
cumulative effects on recurrence-free survival among 345 breast cancer patients 
treated with tamoxifen in adjuvant setting (log-rank P = 2.28 × 10−12), suggesting the 
clinical usefulness of this prediction system for the response to tamoxifen [83].

7.4  �GWAS of Dose Adjustment

�GWAS of Warfarin Dose Adjustment

Warfarin is one of the most commonly used anticoagulants for thromboembolic 
therapy [84]. The interindividual variability in its maintenance dose is known to be 
large [85, 86]. International normalized ratio (INR) is used to monitor the appropri-
ate (effective but not toxic) dose, and it usually takes about 30–60 days to decide the 
appropriate maintenance dose by monitoring the INR in each patient. As a result of 
candidate gene approach for warfarin pharmacogenomics, genetic variations in the 
CYP2C9 (cytochrome P450, family 2, subfamily C, polypeptide 9) and VKORC1 
(vitamin K epoxide reductase complex subunit 1) genes are considered to influence 
warfarin responsiveness because these gene products play essential roles in the 
pharmacokinetics and pharmacodynamics of warfarin [87–89]. However, it has 
been suggested that there are the other unknown factors to determine interindividual 
variability in warfarin dose [90].

Cha et  al. carried out the GWAS of warfarin responsiveness and identified 
rs2108622 in cytochrome P450, family 4, subfamily F, and polypeptide 2 (CYP4F2) 
as a genetic determinant of warfarin responsiveness for Japanese [90]. They incor-
porate the genotypes of rs2108622 into a warfarin dosing algorithm that they previ-
ously had established considering age, body surface area, status of amiodarone 
coadministration, and genotypes of SNPs in the CYP2C9 and VKORC1 genes and 
found the improvement of the model’s predictability to 43.4% [90, 91].

�GWAS Between Mercaptopurine Dose and Its Toxicity

Thiopurines such as mercaptopurine (MP), thioguanine, and azathioprine are com-
monly used anticancer drugs for the treatment of hematopoietic cancer including 
acute lymphoblastic leukemia (ALL) [92–95]. A subset of patients is known to suffer 
from mercaptopurine-induced myelosuppression, which could prevent the patients 
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with ALL from receiving the effective treatment [96–98]. The lack of thiopurine 
methyltransferase (TPMT) resulting from genetic polymorphisms is known to increase 
the levels of active metabolites of thiopurines and the risk of thiopurine-induced 
myelosuppression [2]. However, interindividual variation in thiopurine-induced 
myelosuppression could not be explained by only genetic variations in TPMT, and 
many patients carrying TPMT wild type also suffer from myelosuppression [99].

To identify the genetic factors which could be associated with variability in MP 
tolerance, Yang reported the result of GWAS in two prospective clinical trials of 
childhood ALL with common chronic MP treatment regimens [100]. They used 657 
and 371 patients in discovery GWAS and replication cohorts, respectively, and 
regarded MP dose intensity during maintenance therapy as a marker of the drug tol-
erance and toxicities [100]. They observed two significantly associated loci with MP 
dose intensity: rs1142345 in TPMT (Tyr240Cys, present in ∗3A and ∗3C variants; 
P = 8.6 × 10−9) and rs116855232 in NUDT15 (P = 8.8 × 10−9). In this study, patients 
with TT genotype at rs116855232 showed significantly lower MP dose intensity 
(%), with an average dose intensity of 8.3%, compared with those with TC and CC 
genotypes, who tolerated 63% and 83.5% of the planned dose, respectively [100]. In 
the result of their study, of children homozygous for either TPMT or NUDT15 vari-
ants or heterozygous for both, 100% required ≥50% MP dose reduction, compared 
with only 7.7% for other patients, suggesting that these two genetic polymorphisms 
could be useful predictors for the appropriate maintenance dose of MP [99].

7.5  �Conclusion

This chapter summarized the current GWASs of pharmacogenomic, especially stud-
ies of adverse drug reactions, drug efficacy, and dose adjustment. Advances in geno-
typing technologies enabled us to perform GWAS with relatively lower cost than 
previous, and have accelerated identification of hundreds of candidate genetic mark-
ers for drug response. The results of GWASs of pharmacogenomic could identify 
useful biomarkers for drug response and provide novel insights into pharmacological 
mechanism which could explain the interindividual difference of drug response. To 
identify available biomarkers for drug efficacy and/or toxicity in clinic, it is clear that 
multicenter validation studies for pharmacogenomics are important and essential.
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Chapter 8
The Future of and Beyond GWAS

Tatsuhiko Tsunoda

Abstract  Although GWAS technologies themselves have become mature, there are 
still many issues to be solved. One such issue is the missing heritability problem. It 
is still unknown whether it is sufficient to base the genetic architecture, which is 
required when attempting to fully explain the heritability, on common markers, or if 
rare markers, markers other than SNVs, or interactions between the markers must 
be considered. This may depend on the specific disease types and traits. Simulation 
methods to estimate the heritability with hypothetical markers have found that the 
top few thousand markers may explain much of the heritability. However, because 
of the statistical power issue, whether this is valid will be unclear until the sample 
size is sufficiently large. Therefore, international meta-analyses to increase power 
have become popular. Another direction to advance GWAS is to consider molecules 
other than the genome, which is expected to approach the mechanism of disease 
with the GWAS results: genomic annotation with omic data, integrated association 
analysis with multiomics and transomics, in particular expression quantitative loci 
(eQTL), will be harnessed with GWAS data to focus on disease related genes and 
markers, and to identify correlation and even causality of the relationships between 
molecules and diseases. These must be based on different networks of cell types 
interacting with the environment. Disease phenotype itself could also be consid-
ered. These have a complex relationship with each other and cannot be categorized 
clearly. Rather, such relationships may be used effectively for GWAS and further 
analyses. Methodological advancement will be needed to solve these complex rela-
tionships and dynamics. GWAS applications include drug target discovery and pre-
cision medicine – personalized medicine and prevention. To properly achieve these, 
we need new mathematical methodologies. It is expected that data sharing and 
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utilization of molecular databases will be promoted, and a next generation of math-
ematical models and methods based on AI will be developed.

Keywords  Missing heritability · Rare variants · Interaction · Structural variation · 
Omic analysis · eQTL · Disease phenotypes · Precision medicine · Artificial 
intelligence

8.1  �Current Issues to Be Solved

�Missing Heritability Problem and Common vs. Rare Variants

GWAS researchers have been facing the missing heritability problem – the accumu-
lation of GWAS results cannot explain much of the observed disease heritability. 
They are considering both its cause and solutions, however, results have not yet 
been promising. It is frequently discussed whether heritability could be finally well 
captured through GWAS common SNPs, or will it be necessary to look at other fac-
tors, in particular rare SNVs.

Although it is under discussion how much GWAS common SNPs can explain 
heritability, several simulations suggest that, if potential ones are included, they will 
cover 50–100%. For example, simulations with polygenic models have shown that 
using all common variants, irrespective of significance, is able to explain almost 
half of type II diabetes (T2D) heritability. Soon, thousands of these smaller effect 
associations will likely be identified, in addition to those already identified [1]. 
Similarly in height, additional common SNPs are likely to explain more of the miss-
ing heritability than can now be explained: common SNPs and low frequency/rare 
causal variants will both explain 50% of the heritability [2, 3]. Using a simulation 
with the Approximate Bayesian Computation method, Stahl et  al. estimated that 
about 65–100% of heritability of RA, celiac disease, MI/CAD, and T2D can be 
explained by thousands of GWAS common SNPs [4]. Recently, a more accurate 
method, which considers minor allele frequencies of and linkage disequilibrium 
between SNPs, for estimating disease SNPs’ heritability was proposed [5]. 
Reevaluating the GWAS results using this method resulted in most heritability 
being explained, much more than before. There is an excellent review of SNP-based 
heritability methods and interpretations [6].

In the analyses of real data, although many common SNPs have been identified 
as disease associated markers, finding associations between rare SNVs and other 
markers is much less common; their contribution is still unknown. In T2D, there has 
not been any strong evidence that rare variants are associated with the disease [1]. 
For example, an exome sequencing study with 2000 Danes (1000 cases and 1000 
controls) could not find any low frequency/rare variants associated with 
T2D. Therefore, at the very least, there is no support for an extreme model in which 
T2D can be explained by low frequency non-synonymous variants of large effects. 
In 2014, a genome sequencing study of 2630 Icelandic T2D patients revealed three 
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new T2D associated variants with low allele frequencies, however, all were within 
an already reported T2D or T2D-related loci. Also, using a candidate gene approach, 
various frequency alleles associated to T2D were found within genes that had been 
previously suggested to have common variants associated with T2D. However, the 
contribution of these variants was small. These results support the model that low 
frequency variation and coding region variation contribute, at most, only limitedly 
to T2D and common variants are the dominant genetic factors of T2D. A recent 
T2D GWAS, which explored low frequency/rare variants using datasets of 2657 
whole genome sequencing (WGS), 12,940 whole exome sequencing (WES), and 
111,548 GWAS with imputation, found associations to only already known GWAS 
loci, and the hypothesis that low frequency variants dominate was not supported [7]. 
T2D loci, particularly common ones, will continue to increase with GWAS using 
more than a hundred thousand samples, and much larger sample sets will be neces-
sary to find rare variants associated with T2D [1]. In the latest study of height, 83 
height-related coding variants (nonsynonymous/splice-site variants with 
0.1%<MAF<4.8%) were found using the 241,453 SNV exome chip data (83% with 
MAF <5%) of 711,428 individuals [8]. Three additional loci were identified by 
applying a gene-based test method to the dataset. These results suggest that it  is 
worth examining low frequency (0.5–5%) variants using an imputation technique, 
which is more efficient than resequencing, even when rare variants are targeted [9]. 
To accelerate such studies, much more accurate imputation, reference panels with 
many more markers, WGS, and larger sample sets, are necessary [1, 10]. In another 
recent study, a large-scale genome analysis of schizophrenia (an exome study with 
4133 cases and 9274 controls, a de novo mutation study with 1077 trios, a CNV 
study with 6882 cases and 11,255 controls) was conducted [11]. As a result, it was 
found that rare damaging variants contribute to the disease, and that there is genetic 
overlap with neurodevelopmental disorders. Another expectation is that rare vari-
ants associated with disease could be captured by distal common variants that have 
common haplotypes with the rare variants under linkage disequilibrium, which 
is called synthetic association [12]. However, as far as the loci of autoimmune dis-
ease are concerned, synthetic association is unlikely, and the influence of rare cod-
ing variants on heritability appears to be small [13]. These findings support the 
model that accumulation of weak effects by common variants can cause disease. 
Recently, expanding on such GWAS, the UK10K consortium has been looking into 
the influence of rare and low frequency variants to various traits (lipid, adiponectin, 
etc.) and found that they are extremely small [14].

These results show that even with large sample sets, detection of rare/low-
frequency variants that are associated with diseases/traits is challenging. However, 
it should be considered that these studies evaluated just association of single mark-
ers with disease using the case-control design [15]. Many types of methodologies, 
e.g. SKAT, that account for accumulation of variants within gene have been pro-
posed. Still, not many significant results have been reported, and what amount the 
accumulation of rare variants significantly contributes to disease is unknown [16]. 
An Alzheimer disease study reported that gene-based tests had much better perfor-
mance than single-variant analysis [17]. Conversely, in a blood lipid study, single 
variants showed much stronger association compared to the gene-level tests [18].
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�Interaction and Haplotypic Effect

One factor being considered that may explain the remaining heritability is interac-
tions between GWAS loci/alleles. However, the power of interaction detection is, by 
most methods, insufficient. The number of marker combinations is huge, e.g. 
106 × 106/2 = 5 × 1011, when we want to comprehensively identify the statistical 
interactions that may show synergistic effects to disease risk by combinations. When 
we apply Bonferroni correction, one of the most standard methods for multiple com-
parison, the significance level becomes very stringent: alpha  =  0.05/
(106 × 106/2) = 10−13. At such a stringent significance level, huge sample sizes are 
required and current datasets are too small to give sufficient power. In addition, there 
is the issue that biological interactions are not exactly the same as statistical interac-
tions, and need biological interpretation after their detection [19]. Although one may 
think haplotypic effects would be better to consider, they are much harder to detect 
because an additional degree of freedom is statistically necessary when we analyze 
with logistic regression [20]. Furthermore, it is very difficult to determine the regions 
(units) to define the haplotypes for markers to be compared between cases and con-
trols. Another type of interaction would be the non-additive (dominance) effect 
between diploid alleles within each marker. Precise investigation into HLA markers 
have revealed the existence of interactions between different HLA alleles and 
between different amino acid products for disease susceptibility [21]. However, this 
kind of analysis is limited to datasets with large sample size, common alleles, and 
HLA alleles within each locus. Due to these restrictions, comprehensive interaction 
analysis has not progressed as much as we initially expected. Rather, recently, the 
risk of autism has been found to be additive, indicating that different genes and 
pathways contribute independently to it [22]. Also, a method of using SNP data to 
partition and estimate the proportion of phenotypic variance contributed by additive 
and dominance genetic variation at all SNPs was developed and applied to 79 quan-
titative traits in 6715 unrelated European Americans. This result suggests that the 
dominance variation contributes little to the missing heritability [23].

�Copy Number Variation, Structural Variation, and Other 
Markers

Copy number variation (CNV) and structural variation (SV) have not been fully 
explored for disease. They can be strong candidates as disease markers because 
they may directly affect overlapping genes: changing gene expression and/or gene 
function. The relationship between CNV/SV and disease has been shown in psy-
chiatric diseases. Recently, a schizophrenia study using GWAS chips with about 
200,000 cases and controls identified more than eight CNV loci and four pathways 
related to the disease [24]. However, CNV/SV studies have so been less successful 

T. Tsunoda



197

than SNP GWAS because of a lack of databases, difficulty in their definition as 
markers, and their low frequency spectrum. Also, the differences of genomic DNA 
structures may indirectly influence transcription regulation of proxy and/or distal 
genes through three-dimensional alterations of chromatin conformation. 
Retrotransposons, which can jump into and sometimes move in the human genome, 
may have a similar effect. For example, non-coding RNA transcribed from Alu 
sequences might be a cause of diseases. Retrotransposons can affect germline as 
well as somatic genomes, and it has recently been suggested that C4 transposable 
element may be involved in schizophrenia occurrence [25, 26]. To promote this 
kind of analyses, we need richer genomic annotations, including three-dimensional 
structure of DNA, for example.

�Attempts to Enlarge Study Size

Irrespective of common and rare variants, or the type of marker, current studies are 
small yet and do not have the power to find disease etiologies fully explaining the 
observed heritability. Researchers have given much effort to enlarge study sample 
sizes. Currently, the main approach is international meta-analyses, i.e. collecting 
and combining existing GWAS summaries worldwide accompanied with imputa-
tion techniques to use different GWAS chips simultaneously and to explore low-
frequency SNVs. Another approach would be borrowing samples from other 
projects for making large control sets. For example, Exome Aggregation Consortium 
(ExAC) have collected various kinds of exome data, which would be used as control 
for association studies comparing variant accumulations between cases and controls 
mostly with exome sequencing. Also, although sample collections in GWAS have 
been conducted after designing research plans, future research will fully utilize 
electric medical records (EMR) and electric health records (EHR) available from 
patients in hospitals and medical institutions, simultaneously asking the patients to 
provide blood, etc. with written informed consent for collecting omic, particularly 
genomic, profiles. For example, recently, the EHR of 100,000 people from a GERA 
cohort, one of Kaiser RPGEH, were used for a blood pressure study [27]. They 
looked at association between blood pressure data obtained in a time-series and 
genomic variation, and identified 75 loci (of which 39 were novel). The results were 
validated with ICBP and UK BioBank cohorts. In addition, by combining the three 
studies, 241 additional loci were revealed as candidates. This study shows the 
advantages of multiple institutional EHR-based genomic cohorts. That is, the sam-
ple size is large, and the averaged data measured many times over a long period can 
be obtained. This study also showed that non-strictly controlled EHR can be used 
for medical studies. Such large-scale genome cohort studies are now occurring at a 
national level. The US government established the Precision Medicine Initiative: a 
prospective cohort to collect genomic sequence, clinical, and lifestyle data from one 
million people [28]. Data collection includes the human genome, cell-free DNA, 
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proteome, metabolome, biochemical data, as well as personal activity records such 
as social networking and procurement records of OTC drugs, which reflects the situ-
ation that citizens have becoming more conscious of their health. UK Biobank and 
INTERVAL are other examples reflecting these [29–31]. In addition, private com-
panies have recently promoted this area very strategically. One example of a private 
enterprise’s entry into academia disease research is 23andMe. By collecting clients’ 
genomic data, which were originally sequenced for commercial interpretation of 
their genomic variation, and reusing it for GWAS, they have identified new disease 
related genes.

Although data sharing has recently been done to expand GWAS, privacy protec-
tion is a major issue [32]. For this, summary statistics analysis would be the sim-
plest and easiest way, and depending on the aim, several categories exist: (a) 
single-variant association tests with meta-analysis, conditional analysis, and impu-
tation using summary statistics, (b) gene-based association tests by accumulating 
signals across multiple rare variants or utilizing transcriptome data, (c) fine-map-
ping causal variants with the help of functional annotation and/or trans-ethnic data, 
(d) polygenic predictions of disease risk, and (e) joint analysis of multiple traits. 
Recently, advanced methods to analyze GWAS data with summary statistics has 
been proposed as an efficient method for conducting meta-analysis internationally 
[33]. Development of such methodologies will be much more important in the 
future.

�Extreme Phenotype and Population Specificity

Looking at disease phenotype more deeply would be one of the methodologies for 
making GWAS more efficient. For example, limiting samples to only those with 
extreme phenotypes, e.g. severe and/or early onset12), would achieve almost the 
same results with much lower cost compared to studies with all samples [15]. 
Another aspect is that disease is often heterogeneous. Deep phenotyping of patients 
may help capturing the heterogeneity, which can be used for stratification of study 
samples [1]. Researchers try to find variants that increase disease risks for more 
harmful phenotypes [15]. For such phenotype strata, rare/low frequency and strong 
effect variants are expected to be found with WGS. From this study, it was sug-
gested that functional-variant annotation with deeply phenotyped individuals 
would be useful for finding disease etiologies. Another issue related to populations 
is that we can use the fact that allele frequencies of variants are different depending 
on population groups. For each variant, if populations that have a greater advan-
tage for its statistical detection power are selected by considering the difference of 
its allele frequencies across populations, we will have a much greater chance to 
detect new disease etiologies. Conducting GWAS across different populations will 
be of great help.
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8.2  �Trend and Future of GWAS

�Omic Annotation

Although GWAS have reported many disease-associated loci, it is more challenging 
to identify the functional (causative) variants that directly influence disease. They 
might be variants located near or even distal to the landmark SNPs. Such analyses 
have not had great success thus far, and have only just begun.

When GWAS were first introduced, people expected that associated variations 
would be missense ones that change protein coding amino acids. However, the 
majority were not missense, and not under linkage disequilibrium with missense 
variation. That is, they are mostly related to gene expression. Therefore, researchers 
have developed methodologies of prioritizing variation that could affect gene 
expression among many markers under linkage disequilibrium at each associated 
locus.

The simplest method is genome annotation. Transcriptomic and transcription 
regulation sequence analyses have greatly helped in identification of potential 
causal variants and gene products. However, there are many examples that cannot 
be explained by proximal gene expression control, and even many variants within 
gene desert regions have been reported in association studies. Association between 
these regions and disease is thought to be explained with variants that regulate distal 
genes and/or variants that are not be captured in current databases because they are 
stemming from population-, tissue-, and cell-type specific gene expression regula-
tion, interaction between regions, modification of chromatin structure, or non-
coding RNA. An attempt was made to estimate the detailed function of the noncoding 
regions. Soon, catalogues of long non-coding RNA from various kinds of cells will 
be constructed, using CRISPRi-based genome-scale techniques for example, and 
used for fine-mapping of causal variants/genes and their interpretation [34, 35]. In 
addition, the amazing recent progress of sequencing technologies have enabled pro-
filing of various molecules in human cells, which have been changing the interpreta-
tion of GWAS results from experimental functional analyses to integrated 
information analyses with trait information from different cell/tissue types. There 
are many cell traits related to the expression and modification of genes that can help 
interpret the GWAS results. Among them, and one of the most important traits, is 
the epigenome. The mouse ENCODE epigenome map was the first constructed, 
based on experiments with various mouse cells/tissues [36]. In addition, by map-
ping known GWAS loci to the map, it was found that they tend to align with enhancer 
elements. Building on this result, genome annotations will enable fine-mapping of 
causal variants, narrowing down the broad regions of many GWAS loci under link-
age disequilibrium. Furthermore, the ENCODE and Epigenomics Roadmap proj-
ects have created reference maps of transcriptional regulatory regions, such as 
promoters and enhancer regions for various types of human tissues [1]. An epig-
enome analysis showed that more than 80% of genomic regions influence gene 
regulation or chromatin structures in at least one cell type. Therefore, it would be 
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reasonable to prioritize histone modification, transcription factor binding, open 
chromatin, and chromatin state in many different cells and tissues as the most 
important regulating regions. For example, using such an approach, transcription 
regulatory region clusters that are closely associated with pancreatic functions have 
been identified. Also, cell types most relevant to each disease were estimated. 
Recently, Mumbach et al. attempted to create high-resolution contact maps of active 
enhancers and disease target genes using the H3K27ac HiChIP method [37]. From 
now on, the epigenome map will be extended to account for the differences between 
individuals and populations.

In addition to these omics analyzes, many bioinformatic analyses have also been 
attempted: use of evolutionary conserved sequences obtained from the sequence 
alignment of multiple species [1], prediction of three dimensional structural changes 
by polymorphisms and SVs on DNA and prediction of their influence on disease, 
and evaluation of protein structure changes by polymorphisms in coding regions. 
Recently, fine-mapping to one nucleotide resolution of GWAS loci was done for 
inflammatory bowel disease using high density genotyping [38]. Most were found 
to be protein coding and TF binding site changes, and/or within tissue specific epig-
enome marks (especially enriched in immune cells). It can be expected that this field 
will be greatly advanced by genome editing technology in the future. In addition to 
interpreting GWAS results, such genomic annotations have been used to make 
GWAS much more efficient [39–41]. Through differential weighting by genome 
annotation (functionality), we can adjust Bonferroni correction and increase the 
power of GWAS [42]. Researchers have started statistical genetic analyses that inte-
grate disease risk variants and epigenetic modification mechanisms.

�Linkage Between Markers and Genes by Using QTL Analysis

One of techniques to find functional variants among many is to look at quantitative 
trait loci (QTL), particularly expression QTL (eQTL) that represent variants associ-
ated with gene expression. To identify eQTL, gene expression profiles and genomic 
variation are first obtained from cells, e.g. lymphoblastoid cell-lines and tissues, of 
many people. Next, correlation statistics are calculated across all or cis pairs of 
genomic variants and gene expression levels to exhaustively explore variation that 
could influence gene expression in the human genome. The first genome-wide 
eQTL set was identified using lymphoblastoid cell lines established in the interna-
tional HapMap project [43]. This eQTL dataset is used for identifying disease-
associated genes linked with functional SNPs, i.e. eQTL, discriminating them from 
other markers under linkage disequilibrium with the GWAS landmark SNPs. 
Recently, the GTEx consortium identified thousands of eQTL by simultaneously 
analyzing RNA-seq and genotype data of 43 type tissues obtained from each of 175 
individuals. Subsequently, many studies have defined other types of QTL: chroma-
tin accessibility QTL with DNaseI-seq, transcription factor binding sites and his-
tone modification QTL with ChIP-seq, methylation QTL, and splicing QTL (sQTL) 
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[44]. Together, these results show that many variations in the human genome influ-
ence gene regulation. These QTL have been identified with lymphoblastoid cell 
lines from blood, peripheral blood cells, or tissues from donations (e.g. GTEx proj-
ect), and differentiated cells from iPS have been used for determining eQTLs, 
meQTLs (methylation QTLs), and caQTLs (chromatin accessibility QTLs). In 
addition, 1960 individuals’ WGS were recently examined for association with 644 
blood metabolites, and 113 variants affecting 17 genes (mQTL) were found [45]. 
Interestingly, most of these were heterozygous rare variants.

�Integrating GWAS and eQTL

Although it has been typical to look at eQTL for each GWAS result, some method-
ologies aim to analyze eQTL and GWAS in an integrated manner. One of the most 
striking methodologies is to do transcriptome-wide association studies (TWAS), 
which look at association between phenotypes and gene expression. In TWAS, gene 
expression is imputed (predicted) from the genotypes of the samples and eQTL 
reference panel of matched tissue types, obtained from projects like GTEx consor-
tium [46]. In near future, owing to advanced profiling technologies such as next-
generation sequencer, personal multi-omic data, in addition to genome data, will be 
obtained from many individuals and integrated for identifying functional/causal 
variants from GWAS results and for clarifying pathways that cause disease.

�Association Studies with Omics Markers Besides SNVs

Although several studies have started to directly look at omic markers other than 
SNVs for disease association, they are a variety of difficulties. For example, research 
on epigenetic markers have the issue of whether or not the cells from the samples 
match well with the target disease. A recent study identifying epigenetic markers 
associated with BMI and adiposity used blood materials based on the hypothesis 
that epigenetic states in blood should correlate well with BMI and adiposity mecha-
nisms [47]. Although some CNVs and SVs have already been used for GWAS 
markers, those marker sets are not yet exhaustive and many markers are too difficult 
to detect with current GWAS chip technologies [24]. Using WGS, it may possible 
to conduct genome wide association analyses with balanced rearrangements, small 
CNV, and STR. Catalogues, particularly population specific ones, of CNV and SV 
regions will likely be necessary for identifying those that are related to disease. One 
solution would be using long single molecule mapping in addition to the current 
short-read mapping techniques for next-generation sequencer data. Although it is 
gradually progressing at the laboratory level, it should be cataloged in a large 
project.
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�Molecular Network Analysis and Identifying Specific Cell Types 
for Disease

Once we obtain sufficient genes/loci associated with disease, we next expect a total 
analysis of disease mechanisms with the gene lists. Several methodologies have 
been developed to test whether or not the associated loci/markers are significantly 
accumulated in cell-specific, gene expression regulatory regions, molecules, or 
molecular networks. As a result, molecular networks, in particular, cell types deter-
ministic for disease incidence, will be revealed. Particularly, constructing dynamic, 
time-dependent, and context-dependent network models for incidence and progres-
sion of common diseases will be one of most important issues. In near future, such 
network analyses will help making strategies for therapy targets, and drug repurpos-
ing and discovery [48].

�Relationship with Environments

Although GWAS researchers have mostly been identifying genetic etiologies sepa-
rate from environmental effects, it would be necessary to explore and interpret 
genetic etiologies while  simultaneously considering environmental factors. For 
example, the influence of gene-environment interaction on BMI was recently inves-
tigated, and it was found that age-genotype and smoking-genotype interactions con-
tributed to 8.1% and 4.0% of BMI variation, respectively [49]. As one of the more 
complicated examples, excess of weight does not always lead to diabetes; adipose 
tissues increase insulin resistance, and abdominal fat increases diabetes risk greater 
than hip and thigh fat [15]. Exercise not only allows one to control weight but also 
increases energy consumption of glucose and insulin sensitivity of the cells. 
Understanding their genetic etiologies, we will be able to clarify mechanisms 
behind such complicated and heterogeneous phenotypes of diseases. In addition, 
genetically small effects might be hindered through potential interactions with envi-
ronmental factors that vary across loci. Consideration of environmental perturbation 
or drugs to gene transcription responses, particularly RNA processing, may increase 
the power of etiology detection.

�Revisiting Disease Phenotypes and Traits

Disease phenotypes and traits can not be independently defined – they could be 
related with each other, and also could be correlated well through genetic variations. 
We have to consider multi-functionality and the pleiotropy of genes, e.g. genes may 
be affecting BMI, WHR, fasting glucose, or fasting insulin levels simultaneously. It 
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is necessary to analyze mutually correlated diseases and traits. Analytical methods 
for evaluating the relationship of genetic factors among such traits have also been 
developed in recent years using the results obtained from GWAS. Genetic correla-
tion, which calculates similarity measures of genetic background between traits 
with whole genome information, is one such method. For example, it has been 
shown that neuropsychiatric diseases, like schizophrenia and bipolar disease, have 
very similar genetic backgrounds, which suggests that common mechanisms might 
be involved in their incidence. In addition, even for subtypes that have been distin-
guished by differences in clinical findings, such as ulcerative colitis and Crohn’s 
disease, and have been categorized as different diseases, have been suggested to 
share a common background. Another aspect is phenotyping for GWAS: we should 
proceed further deep phenotyping of groups that have specific variants for stratified 
GWAS [1]. In addition, in near future, complication, dynamic, time series, condition-
dependent analyses will become challenges [48]. One of interesting approaches is 
to use insurance claims to investigate into correlation between familial shared 
genetic/environment backgrounds and common diseases [49]. There is a possibility 
that the definitions and concepts of diseases will be reviewed based on such genetic 
findings in the future [50–52].

Genetic correlation can be statistically evaluated with GCTA [3] and LD score 
regression [53], for example. Furthermore, several new methodologies have been pro-
posed. One method is to find associated genes common to similar diseases by using 
common controls [54]. Another method uses Mixture Gaussians to investigate whether 
genetic differences are found between given two subgroups using all SNPs [55].

8.3  �GWAS Applications and the Future

�GWAS Applications

GWAS, which have been exploring genetic etiologies in basic research, will soon 
face more practical issues: adequate interpretation and social applications. One of 
most expected applications will be precision medicine, i.e. proposing the optimum 
therapy for patients (more precisely, strata according to patients’ profiles). Another 
will be genomic drug discovery that searches for new targets though GWAS [48]. 
On the basis of molecular evidence, we will be able to achieve drug repurposing, 
the application of drugs to other diseases than the original target disease. Prediction 
accuracy of clinical trials, such as predicting the main action and side effects prior 
to administration will be improved [56]. Lastly, the prevention of disease will be 
targeted: establishment of preemptive medicine with exploration of preventive/
protective factors against disease and risk prediction of disease incidence is 
expected.
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�Methodologies for GWAS Applications

To establish above GWAS applications, we will need more advanced methodologies 
than currently established. Integration of various databases is expected to build 
paths from related genes to applications, improving detectability and efficiency. We 
will need well organized methodologies for integrating heterogeneous databases 
across genetic sequence structure, gene expression and protein level change, epi-
genetic modifications, gene function change in model animals, high-dimensional 
network information, disease epidemiology, drug discovery databases, and clinical 
information. In addition, we have entered the era of analyzing omic data of patients’/
individuals’ tissue cells obtained from surgery, biopsy, and organ donation as well 
as blood. Multi-omic and trans-omic analyses of data from epigenome, transcrip-
tome, proteome, metabolome etc., in addition to the genome, are expected to lead to 
a much better understanding of disease mechanisms. Furthermore, various types of 
next-generation sequencing methodologies and new assays will accelerate analyses 
of disease biomarkers and variants at a single cell level. Metagenomes of intestinal 
bacteria interacting with humans will also be one of the important omics as it greatly 
affects disease and drug response via our immune-systems. Another future issue is 
to develop methods of utilizing clinical information, including electric medical 
records, diagnostic tests, biochemical tests, drug treatments and their effects/side-
effects, as well as electric health records.

PheWAS (phenome-wide association study), which have already been done for 
association studies with wide-phenotype sets and genotype data, could be a compre-
hensive analysis method of association between clinical information stored in the 
electronic medical records and genetic variation, for example. It is expected to be 
used for prediction of drug response, i.e. efficacy and side effects, in the human 
body before administration. The analysis of medical big data, including genomic 
information, has progressed, and the arrival of an era where big data are applied to 
improve prediction accuracy of clinical trials is soon to come. As an example of 
improving prediction accuracy of clinical trials, it may be considered with exome 
studies for looking at variants/mutations to prioritize drugs passing through phase 
III [56]. These will be done more comprehensively and systematically, and develop-
ment of new methods will be necessary.

In addition to the omics and clinical data, there will also be an advancement of 
methodologies for comprehensively acquiring biomedical data using biological 
sensors and monitoring devices (bioimaging, PET, MRI, mobiles) and monitoring 
environment both comprehensively and time-dependently to completely describe 
the states of our bodies [57, 58]. Novel methods for collecting these data from large 
groups will be also necessary. Disease, population, retrospective, and prospective 
cohorts will become larger and larger. For example, BioVU already has Electronic 
Medical Records of more than 230,000 people and has started genotyping their 
DNA. They also explore methods for drug discovery and repurposing by combining 
expression data with the genomic data. The relationship between the Mendelian/
orphan disease genes and common diseases has also been analyzed. The DiscovEHR 
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study is another big collaboration between the Regeneron Genetics Center and 
Geisinger Health System, which aims to combine high-throughput DNA sequenc-
ing technology with longitudinal electronic health records for discovery of genetic 
variation important for human disease and therapeutic response [59, 60].

The US government has launched the Precision Medicine Initiative: a prospec-
tive cohort to collect genomic sequence, clinical and lifestyle data of one million 
people [28]. In addition to the human genome, biochemical data of cell-free DNA, 
proteome, metabolome, and personal activity records, such as social networking 
and purchasing records of OTC drugs, are also subject to data collection, in reflec-
tion of the people’s awareness of public health. One of the objectives of such com-
prehensive monitoring is to find prophylactic or alleviating factors by deeply 
investigating individuals who do not develop disease while having mutations related 
to Mendelian genetic diseases or familial tumors and based on evidence, and finally 
to establish preventive medicine. Such ideas of sharing genomic and clinical data 
are now planned on a global scale. The Global Alliance for Genomics and Health 
(GA4GH), which aims to accelerate research and clinical application by promoting 
global sharing of genomic and clinical data, was launched in 2013, in over 40 coun-
tries with more than 420 universities and companies participating, and are making a 
standard format for data sharing and a policy of ethics and regulation [61].

Now, in order to further advance precision medicine, it is necessary to predict the 
onset and progress of disease. For this, mathematical models of disease prediction 
will be necessary. In the situation of “N << p” (new NP problem), it will be more 
useful to take an approach to explaining and predicting phenomena using quantita-
tive mathematical models rather than to clarify the function and contribution of each 
genomic variation. The simplest, and currently the most powerful, approach is using 
genome-wide polygenic score [62]. In actuality, the prediction of the risk of traffick-
ing and disease development using a linear mixture model or Bayesian model, con-
sidering the variance and covariance matrix of genotype data as a kernel matrix, is 
shown to be highly accurate [63]. Moving forward, theoretical mathematical formu-
las will be examined and the addition of genetic factors (rare variants, intergenic 
interactions, gene-environment interactions, epigenome modifications, etc.) other 
than common variants to models will be in progress. In the future, it will be required 
to consider the complexity and temporal progression of diseases and their applica-
tion to therapeutic target strategies based on the prediction of drug responses, net-
work analysis that considers diseases as intermolecular relationships, and 
methodologies for time series analysis of diseases. Inference of causality will also 
be one of the important issues to solve the mechanisms and to predict the progress 
more accurately [33, 64, 65].

Furthermore, one of the most anticipated and promising medical techniques is 
artificial intelligence (AI). AI is being developed to realize human intelligence by a 
computer. It has three main functions: accumulation of external knowledge, learn-
ing from this, and reasoning about new cases. Recently, AI has had a resurgence in 
popularity due to the excellent progress of machine learning techniques based on 
deep learning and image big data, however, deep learning is not everything. 
Extraction of meaningful information from huge data, including non-structural data 
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such as electronic medical records and literature, and construction of meaningful 
reasoning of medical treatments largely depends on not only deep learning but also 
natural language processing, hypothetical reasoning, implementation for social 
value, and so on. Data sources in the medical field, MEDLINE, i.e. medical litera-
ture abstracts, NCCN guidelines, clinical trial reports, etc. can be used. Instead of a 
questionnaire, descriptions of a patient’s symptoms and profiles including genetic 
information are input. As the outputs corresponding to the questionnaire, options 
such as suitable treatment methods, tests, and clinical trials, for examples, will be 
proposed. Jun Wang et al. recently launched ICarbonX, the center of an alliance to 
develop AI to revolutionize health care [66]. “The iCarbonX alliance will scour 
biological molecules from various tissues to provide a more accurate and actionable 
picture of someone’s health” [66]. “The end result will be an unwieldy set of data 
from various sources, which is why Wang and a team at iCarbonX are developing 
algorithms to understand how these variables correlate with healthy or diseased 
states. The Meum app enables users to enter their meals and activity levels, as well 
as any physiological or vital-sign data, and gives advice on what to eat, when to 
sleep and how active they should be” [66]. With AI, it will be possible to accumulate 
enormous medical and biological knowledge in the past far exceeding the limits of 
humans, to make it efficient, to learn, and to infer therapies. In clinical practices, AI 
will be able to even propose candidates of new therapies that are not in conventional 
protocols. However, how to make such inferences correctly depends on how the AI 
is implemented. It should be kept in mind that AI is not a universal machine, it uses 
solutions that are developed by humans, and we use datasets that are rather small 
when we consider the algorithms for the inference. However, the data are getting far 
larger than originally thought because they are updated every day. Unexpected 
results may occur.

In the future, the key to success will be determining how to make the clinician, 
mathematicians, information scientists, and national policy makers work in collabo-
ration to construct the whole system with AI, for interpreting and utilizing GWAS 
results.

References

	 1.	Flannick J, Florez JC (2016) Type 2 diabetes: genetic data sharing to advance complex disease 
research. Nat Rev Genet 17:535–549

	 2.	Visscher PM, Yang J, Goddard ME (2010) A commentary on ‘common SNPs explain a large 
proportion of the heritability for human height’ by Yang et al. (2010). Twin Res Hum Genet 
13:517–524

	 3.	Yang L et al (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 
88:76–82

	 4.	Stahl EA et al (2012) Bayesian inference analyses of the polygenic architecture of rheumatoid 
arthritis. Nat Genet 44:483–489

	 5.	Speed D et al (2017) Reevaluation of SNP heritability in complex human traits. Nat Genet 
49:986–992

T. Tsunoda



207

	 6.	Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM (2017) Concepts, estimation and inter-
pretation of SNP-based heritability. Nat Genet 49:1304–1310

	 7.	Fuchsberger C et al (2016) The genetic architecture of type 2 diabetes. Nature 536:41–47
	 8.	Marouli E et  al (2017) Rare and low-frequency coding variants alter human adult height. 

Nature 542:186–190
	 9.	Surakka I et al (2015) The impact of low-frequency and rare variants on lipid levels. Nat Genet 

47:589–597
	10.	Zheng HF et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone 

density and fracture. Nature 526:112–117
	11.	Singh T et al (2017) The contribution of rare variants to risk of schizophrenia in individuals 

with and without intellectual disability. Nat Genet 49:1167–1173
	12.	Dickson SP et al (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 

8:e1000294
	13.	Hunt KA et al (2013) Negligible impact of rare autoimmune-locus coding-region variants on 

missing heritability. Nature 498:232–235
	14.	UK10K Consortium et  al (2015) The UK10K project identifies rare variants in health and 

disease. Nature 526:82–90
	15.	Rich SS (2016) Diabetes: still a geneticist's nightmare. Nature 536:37–38
	16.	Lee S et al (2014) Rare-variant association analysis: study designs and statistical tests. Am 

J Hum Genet 95:5–23
	17.	Cruchaga C et al (2014) Rare coding variants in the phospholipase D3 gene confer risk for 

Alzheimer’s disease. Nature 505:550–554
	18.	Liu DJ et al (2014) Meta-analysis of gene-level tests for rare variant association. Nat Genet 

46:200–204
	19.	Ahlbom A, Alfredsson L (2005) Interaction: a word with two meanings creates confusion. Eur 

J Epidemiol 20:563–564
	20.	Cordell HJ, Clayton DG (2002) A unified stepwise regression procedure for evaluating the 

relative effects of polymorphisms within a gene using case/control or family data: application 
to HLA in type 1 diabetes. Am J Hum Genet 70:124–141

	21.	Lenz TL et al (2015) Widespread non-additive and interaction effects within HLA loci modu-
late the risk of autoimmune diseases. Nat Genet 47:1085–1090

	22.	Weiner DJ et al (2017) Polygenic transmission disequilibrium confirms that common and rare 
variation act additively to create risk for autism spectrum disorders. Nat Genet 49:978–985

	23.	Zhu Z et al (2015) Dominance genetic variation contributes little to the missing heritability for 
human complex traits. Am J Hum Genet 96:377–385

	24.	CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium (2017) 
Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 
subjects. Nat Genet 49:27–35

	25.	Sekar A et al (2016) Schizophrenia risk from complex variation of complement component 4. 
Nature 530:177–183

	26.	Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from 
conflicts to benefits. Nat Rev Genet 18:71–86

	27.	Hoffmann TJ et al (2017) Genome-wide association analyses using electronic health records 
identify new loci influencing blood pressure variation. Nat Genet 49:54–64

	28.	https://obamawhitehouse.archives.gov/node/333101
	29.	http://www.ukbiobank.ac.uk
	30.	Moore C, Sambrook J, Walker M, Tolkien Z, Kaptoge S, Allen D, Mehenny S, Mant J, Di 

Angelantonio E, Thompson SG et al (2014) The INTERVAL trial to determine whether inter-
vals between blood donations can be safely and acceptably decreased to optimise blood sup-
ply: study protocol for a randomised controlled trial. Trials 363:15

	31.	Astle WJ et al (2016) The allelic landscape of human blood cell trait variation and links to 
common complex disease. Cell 167:1415–1429

	32.	Pasaniuc B, Price AL (2017) Dissecting the genetics of complex traits using summary associa-
tion statistics. Nat Rev Genet 18:117–127

8  The Future of and Beyond GWAS

https://obamawhitehouse.archives.gov/node/333101
http://www.ukbiobank.ac.uk


208

	33.	Visscher PM et al (2017) Am J Hum Genet 101:5–22
	34.	 Iyer MK et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat 

Genet 47:199–208
	35.	Liu SJ et al (2017) CRISPRi-based genome-scale identification of functional long noncoding 

RNA loci in human cells. Science 355:aah7111
	36.	Yue F et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 

515:355–364
	37.	Mumbach MR et  al (2017) Enhancer connectome in primary human cells identifies target 

genes of disease-associated DNA elements. Nat Genet 49:1602–1612
	38.	Huang H et al (2017) Fine-mapping inflammatory bowel disease loci to single-variant resolu-

tion. Nature 547:173–178
	39.	Yang J  et  al (2017) A scalable Bayesian method for integrating functional information in 

genome-wide association studies. Am J Hum Genet 101:404–416
	40.	He Z, Xu B, Lee S, Ionita-Laza I (2017) Unified sequence-based association tests allowing for 

multiple functional annotations and meta-analysis of noncoding variation in metabochip data. 
Am J Hum Genet 101:340–352

	41.	Trynka G et al (2015) Disentangling the effects of colocalizing genomic annotations to func-
tionally prioritize non-coding variants within complex-trait loci. Am J Hum Genet 97:139–152

	42.	Sveinbjornsson G et al (2016) Weighting sequence variants based on their annotation increases 
power of whole-genome association studies. Nat Genet 48:314–317

	43.	Stranger BE et al (2007) Relative impact of nucleotide and copy number variation on gene 
expression phenotypes. Science 315:848–853

	44.	Zhang X et al (2015) Identification of common genetic variants controlling transcript isoform 
variation in human whole blood. Nat Genet 47:345–352

	45.	Long T et al (2017) Whole-genome sequencing identifies common-to-rare variants associated 
with human blood metabolites. Nat Genet 49:568–578

	46.	 Ishigaki K et al (2017) Polygenic burdens on cell-specific pathways underlie the risk of rheu-
matoid arthritis. Nat Genet 49:1120–1125

	47.	Wahl S et al (2017) Epigenome-wide association study of body mass index, and the adverse 
outcomes of adiposity. Nature 541:81–86

	48.	Hu JX, Thomas CE, Brunak S (2016) Network biology concepts in complex disease comor-
bidities. Nat Rev Genet 17:615–629

	49.	Robinson MR et al (2017) Genotype-covariate interaction effects and the heritability of adult 
body mass index. Nat Genet 49:1174

	50.	Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A (2017) Classification of common human dis-
eases derived from shared genetic and environmental determinants. Nat Genet 49:1319–1325

	51.	Cox NJ (2017) Reaching for the next branch on the biobank tree of knowledge. Nat Genet 
49:1295–1296

	52.	Cortes A et al (2017) Bayesian analysis of genetic association across tree-structured routine 
healthcare data in the UK Biobank. Nat Genet 49:1311–1318

	53.	Bulik-Sullivan BK et al (2015) LD score regression distinguishes confounding from polygen-
icity in genome-wide association studies. Nat Genet 47:291–295

	54.	Fortune MD et al (2015) Statistical colocalization of genetic risk variants for related autoim-
mune diseases in the context of common controls. Nat Genet 47:839–846

	55.	Liley J, Todd JA, Wallace C (2017) A method for identifying genetic heterogeneity within 
phenotypically defined disease subgroups. Nat Genet 49:310–316

	56.	Dewey FE et al (2016) Inactivating variants in ANGPTL4 and risk of coronary artery disease. 
N Engl J Med 374:1123–1133

	57.	Yom-Tov E (2016) Crowdsourced Health. The MIT Press, Cambridge, MA
	58.	Neff G, Nafus D (2016) Self-tracking. The MIT Press, Cambridge, MA
	59.	Dewey FE et al (2016) Distribution and clinical impact of functional variants in 50,726 whole-

exome sequences from the DiscovEHR Study. Science 354(6319). https://doi.org/10.1126/sci-
ence.aaf6814

T. Tsunoda

https://doi.org/10.1126/science.aaf6814
https://doi.org/10.1126/science.aaf6814


209

	60.	Abul-Husn NS et al. Genetic identification of familial hypercholesterolemia within a single 
U.S. health care system. Science 354(6319). https://doi.org/10.1126/science.aaf7000

	61.	https://www.ga4gh.org
	62.	Khera AV et al (2018) Genome-wide polygenic scores for common diseases identify individu-

als with risk equivalent to monogenic mutations. Nat Genet 50:1219–1224
	63.	Zhou X, Carbonetto P, Stephens M (2013) Polygenic modeling with bayesian sparse linear 

mixed models. PLoS Genet 9:e1003264
	64.	Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instru-

ments: effect estimation and bias detection through Egger regression. Int J  Epidemiol 
44:512–525

	65.	Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with mul-
tiple genetic variants using summarized data. Genet Epidemiol 37:658–665

	66.	Cyranoski D (2017) Chinese AI company plans to mine health data faster than rivals. Nature 
541:141–142

8  The Future of and Beyond GWAS

https://doi.org/10.1126/science.aaf7000
https://www.ga4gh.org

	Preface: History of Genome-Wide Association Study
	References

	Contents
	Chapter 1: Genotyping and Statistical Analysis
	1.1 Principles of Genetic Association Analysis
	1.2 Common Disease-Common Variant Hypothesis, Linkage Disequilibrium, and SNPs
	1.3 First GWAS in the World and the Dawn of the High-Throughput Genomics Age
	1.4 The Rise of Commercial SNP Genotyping Assays
	Primer Extension Methods
	Hybridization Methods
	Multiplexing Methods

	1.5 The International HapMap Project
	1.6 Next Generation Sequencing and the 1000 Genomes Project
	1.7 Experimental Design of Genome-Wide Association Studies
	1.8 Fine-Mapping of Trait Associated Variants
	1.9 Identifying Single Nucleotide Variants in Next Generation Sequencing Data
	1.10 Quality Control Procedures in Genome-Wide Association Studies
	1.11 Genotype Inference Methods
	1.12 Population Stratification and Its Implications
	1.13 Statistical Testing for Genetic Association
	1.14 Recent Methodological Advances in Genotype Association Analysis
	References

	Chapter 2: Genetics of Coronary Disease
	2.1 Introduction
	2.2 The First Hypothesis-Free GWAS with a Japanese Population Connects the BRAP Inflammatory Cascade Strongly Associated with an Increased Risk of MI
	2.3 Large Scale GWASs Reveal 98 CAD Loci
	2.4 Genetic Variants with High Odds Ratios
	2.5 Summary
	References

	Chapter 3: Genetic and Functional Genetics of Autoimmune Diseases
	3.1 Genetic Factors in Autoimmune Diseases
	3.2 The Major Histocompatibility Complex Group of Genes
	3.3 Analysis of Non-HLA Genetic Factors by Genome-Wide Association Analysis
	3.4 Hidden Heritability in GWAS of Autoimmune Diseases
	3.5 Genetic Factors Common to Multiple Autoimmune Diseases
	3.6 PADI4 (Polymorphisms Specifically Associated with RA)
	3.7 From GWAS to Functional Genomics
	3.8 Epigenetic Research
	3.9 The Integration of Functional Genomics into Human Immunology Research
	References

	Chapter 4: Genome-Wide Association Study for Type 2 Diabetes
	4.1 GWAS for Type 2 Diabetes
	Genetics of T2D: Before the GWAS Era
	The Initial Phase of GWAS Era of T2D Genetics (2007–2008)
	GWAS in Groups of East Asian Descent (2008–2011)
	GWAS with Imputation and Large-Scale Meta-Analyses (2012–)
	What Have T2D GWAS Brought About So Far?
	Identified Loci for T2D Linked More Frequently to β-Cell Function than to Insulin Sensitivity
	Missing Heritability

	Translation of T2D Genetics into Clinical Practice
	The Possibility of Disease Prediction and Prevention
	The Possibility of Identifying Novel Biological Mechanisms and Therapeutic Targets


	4.2 GWAS of Metabolic Traits
	GWAS of Common Variants for Glycemic Traits
	European Studies
	Studies Conducted in Non-European Population
	Exome-Wide Association Analyses for Glycemic Traits


	4.3 GWAS for Diabetic Nephropathy or Diabetic Kidney Diseases
	GWAS for Diabetic Nephropathy (Diabetic Kidney Disease) in Populations of European Descent
	GWAS for Diabetic Nephropathy in the Japanese Population
	Solute Carrier Family 12, Member 3 (SLC12A3)
	Engulfment and Cell Motility 1 (ELMO1)
	Acetyl-Coenzyme a Carboxylase Beta Gene (ACACB)

	GWAS for Diabetic Nephropathy in Other Ethnic Groups

	4.4 Future Perspective
	References

	Chapter 5: The Association of Single Nucleotide Polymorphisms with Cancer Risk
	5.1 Introduction
	5.2 Prostate Cancer
	5.3 Breast Cancer
	5.4 Colorectal Cancer
	Lung Cancer
	Liver Cancer
	Gastric Cancer
	Esophageal Cancer
	Bladder Cancer
	Pancreatic Cancer
	Ovarian Cancer
	Bone Malignancy
	Testicular Germ Cell Tumors

	5.5 Conclusions
	References

	Chapter 6: Genetics of Infectious Diseases
	6.1 Introduction
	6.2 Three Major Global Infectious Diseases (Table 6.1)
	Acquired Immune Deficiency Syndrome (AIDS)
	Malaria
	Tuberculosis (TB)

	6.3 Chronic Hepatitis Virus Infection (Table 6.2)
	Hepatitis C
	Hepatitis B

	6.4 Other Infectious Diseases (Table 6.3)
	Leprosy
	Meningococcus
	Helicobacter pylori
	Pneumococcus
	Salmonella
	Staphylococcus
	Sepsis
	Dengue
	Herpes Zoster
	Human Papillomavirus (HPV)
	Influenza
	Leishmaniasis

	6.5 Conclusions
	References

	Chapter 7: Pharmacogenomics
	7.1 Introduction
	7.2 GWAS of Adverse Drug Reactions
	Peripheral Neurotoxicity
	Alopecia
	Neutropenia
	Gemcitabine-Induced Neutropenia
	Epirubicin-Induced Neutropenia
	Chemotherapy-Induced Neutropenia

	Skin Hypersensitivity
	Nevirapine-Induced Skin Hypersensitivity
	Carbamazepine-Induced Skin Hypersensitivity

	Drug-Induced Liver Injury (DILI)

	7.3 GWAS of Drug Efficacy
	GWAS of Tamoxifen Efficacy

	7.4 GWAS of Dose Adjustment
	GWAS of Warfarin Dose Adjustment
	GWAS Between Mercaptopurine Dose and Its Toxicity

	7.5 Conclusion
	References

	Chapter 8: The Future of and Beyond GWAS
	8.1 Current Issues to Be Solved
	Missing Heritability Problem and Common vs. Rare Variants
	Interaction and Haplotypic Effect
	Copy Number Variation, Structural Variation, and Other Markers
	Attempts to Enlarge Study Size
	Extreme Phenotype and Population Specificity

	8.2 Trend and Future of GWAS
	Omic Annotation
	Linkage Between Markers and Genes by Using QTL Analysis
	Integrating GWAS and eQTL
	Association Studies with Omics Markers Besides SNVs
	Molecular Network Analysis and Identifying Specific Cell Types for Disease
	Relationship with Environments
	Revisiting Disease Phenotypes and Traits

	8.3 GWAS Applications and the Future
	GWAS Applications
	Methodologies for GWAS Applications

	References


