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Chapter 6
Advanced Glycation End Products (AGEs)

Halise Gül Akıllıoğlu and Vural Gökmen

6.1  Introduction

Until after the 1940s, when there were some reports about the nutritional loss in 
milk powder due to the reaction between lactose and milk proteins, the conse-
quences of Maillard reaction were not recognized [1]. Soon after it was understood 
that this reaction not only takes place during heating of foods but also in  vivo, 
Maillard reaction has gained much more attention. With the identification of a non-
enzymatic glycosylated variant of hemoglobin (HbA1c) in the blood of diabetic 
patients [2], “glycation” term was introduced to the literature. In the 1980s, Monnier 
and Cerami [3] supposed that the Maillard reaction of proteins could have a caus-
ative role in the aging of extracellular matrix proteins and related pathologies, and 
since then the interest in the field of the Maillard reaction in vivo has increased 
exponentially.

The chemistry behind the Maillard reaction/glycation is very complicated. Even 
in simple reaction systems, for example, in glucose and glycine solutions, many 
tens of reaction products are formed. Therefore, even in such simple systems, the 
Maillard reaction mechanisms have not been fully elucidated, and all the reaction 
products have still not been identified.

Maillard reaction/glycation affects many food quality parameters such as color, 
sensorial properties, textural properties, and protein functionality. However, the 
 so- called advanced glycation end products (AGEs), which are formed at the later 
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stages of the Maillard reaction during food processing, might have some undesired 
properties. The results of the animal and human studies confirm that dietary AGE 
levels have direct and indirect effects on AGE accumulation in the body and further 
complications in degenerative diseases. Therefore, inhibition of glycation reactions 
during food processing is an important issue since this may help to reduce the 
dietary intake of AGEs.

In this chapter, following brief information about protein glycation, the conse-
quences of glycation and the contribution of dietary AGEs will be discussed. The 
formation routes of the main glycation products in foods will be explained, and their 
analysis methods will be summarized. The major mitigation strategies developed so 
far will be evaluated.

6.1.1  Protein Glycation

Glycation refers to the addition of a sugar moiety to a protein molecule and occurs 
during the Maillard reaction. In the Maillard reaction, the amine moiety from free 
amino acids, peptides, or proteins reacts with the carbonyl group of a reducing sugar, 
oxidized lipids, vitamin C, or quinones. Glycation takes place in three stages as com-
monly accepted; “early”, “intermediate”, and “advanced” stages. However, it should 
be noted that the reactions occur simultaneously depending on conditions [1].

Glycation is initiated with the nucleophilic addition of amino groups of an amino 
acid-free or within a protein molecule to the carbonyl group of a reducing sugar 
such as glucose, fructose, lactose, or maltose. The covalent attachment results in the 
formation of a reversible and unstable Schiff base (Fig. 6.1). After the condensation 
reaction, the so-called Schiff base undergoes an arrangement to form an Amadori 
product (or Heyns product, if the reducing sugar is a ketose), which is the first stable 

Fig. 6.1 Simplified scheme of advanced glycation in food products
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product of the reaction. N-ε-fructosyllysine, N-ε-maltulosyllysine, or N-ε- 
lactulosyllysine are the major Amadori compounds generated in the early stage of 
protein glycation during food processing. In the intermediate stage of glycation, by 
the degradation of Amadori compounds via enolization and elimination reactions, 
reactive carbonyl species, known as dicarbonyl compounds or oxoaldehydes, are 
formed. Dicarbonyl compounds might also be formed by caramelization solely dur-
ing food processing, and this might occur to a larger extent compared to their forma-
tion via the degradation of Amadori compounds. The formation of dicarbonyl 
compounds is discussed in Chap. 2. Some early glycation compounds and dicar-
bonyl compounds are shown in Fig. 6.2. The dicarbonyl compounds are very reac-
tive, and hence they react immediately with the side chains of peptides and proteins 
to form advanced glycation end products (AGEs) in the advanced stage. The ε-amino 
group of lysine, guanidino group of arginine, sulfhydryl group of cysteine residues, 
and the N-terminal amino group of any amino acids are susceptible for the derivatiza-
tion by 1,2-dicarbonyl compounds. When oxidation takes place with glycation, the 
products formed are also called glyco-oxidation products. The great variety of the 
carbonyl species produced through sugar autoxidation and lipid peroxidation results 
in a great variety of AGEs in food systems. So far, several glycation products such 
as N-ε-fructoselysine (FL), pyrraline, pentosidine, N-ε-carboxymethyllysine 
(CML), N-ε-carboxyethyllysine (CEL), S-carboxymethylcysteine, glyoxal lysine 
dimer (GOLD), methylglyoxal lysine dimer (MOLD), and 3-deoxyglucosone lysine 
dimer (DOLD) have been identified in processed foods [4–7]. The formation and 
occurrence of these compounds will be discussed in Sect. 6.2.

N-ε-fructosyllysine N-ε-maltulosyllysine N-ε-lactulosyllysine

glucosone 3-deoxyglucosone 1-deoxyglucosone methylglyoxal glyoxal

Fig. 6.2 Amadori compounds and 1,2-dicarbonyl compounds formed in the early and intermedi-
ate stages of the Maillard reaction
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6.1.2  Factors Affecting Glycation

The extent of glycation and the formation of glycation products in food systems 
depend on several factors such as temperature, reaction time, reaction environment 
(water content, water activity), reactant species, pH of the reaction medium, the 
presence of oxygen, and protein conformation.

The extent of glycation is determined by the severity of the heat treatment, either 
by the increase in temperature or heating time. Glycation is accelerated by the 
increase in processing temperature. Mild heat treatment results mostly in the forma-
tion of Amadori products. However, when the processing temperature or time 
extends, subsequent degradation of Amadori compounds leads to the formation of 
dicarbonyl compounds and AGEs. The diversity of the amino acids within a protein 
molecule involved in the reaction increases by the increase in heating temperature.

Glycation proceeds at a higher rate in dry heating conditions than in aqueous 
conditions due to the dilution effect of the reactants in the aqueous environment. 
Since the condensation reaction between the carbonyl and amine group generates 
water [8], Amadori rearrangement product formation is restricted in the presence of 
water. The water in the reaction medium also affects the site-specificity of the reac-
tion. In several studies, it was revealed that the lactosylation site of β-lactoglobulin 
differs when protein was heated in solution or in the dry state. 47Lys [9–11] and 
100Lys [9, 12, 13] were found to be preferentially lactosylated during heating in solu-
tion, whereas 47Lys and 91Lys were lactosylated during the heating of β-lactoglobulin 
in the dry state [14, 15].

Due to the fact that water activity (aw) affects the molecular mobility of the reac-
tants, protein conformation, surface area, dynamics, and accessibility of amino 
groups besides the dissolved oxygen concentration and pH of the medium, site- 
specific glycation is affected by aw [16]. In addition to these, the solvent and its 
contact with the protein matrix influence the electrostatic and biophysical properties 
of the protein [16]. Generally, browning is considered to occur at its maximum in aw 
values between 0.5 and 0.8 [17], and researchers showed increased glycation of 
proteins at intermediate aw values [18, 19]. The reaction rate is decreased at low 
values of aw due to the diffusional limitations of the reactants, and at high values of 
aw, the decrease is attributed to the dilution effect and inhibition by water. Relative 
humidity (water activity) affects the formation of dicarbonyl compounds, and the 
proportions of dicarbonyls formed differ for the samples heated at low, intermedi-
ate, and high relative humidities. For instance, it was shown that under high relative 
humidity values in a model system containing sodium caseinate and lactose, 
3-deoxypentosulose and galactosyl 2-pentosulose were produced, whereas galacto-
syl hexosulose and 1,4-dideoxyhexosulose were produced in higher amounts under 
low relative humidities [20].
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In terms of reactant species, the type of carbonyl source is very important. The 
reactivity of carbonyl compounds generally increases in the following order [21]:

• Ketoses < aldoses
• Polysaccharides < disaccharides < hexoses < pentoses < tetroses < trioses.
• Oxoacids < saccharides < ketones < aldehydes < α-dicarbonyl compounds.

The carbonyl source has effects on the extent of glycation and site-specificity of 
the reaction. Aldose sugars are more reactive toward the lysine residues of proteins 
than ketose sugars, and these sugars prefer different glycation sites. Glycation of 
β-lactoglobulin was three to four times more efficient with glucose than that of with 
fructose [22]. 13Lys, 16Lys, 93/94Lys, 98Lys, 108Lys, 114Lys, and 122Lys residues of 
α-lactalbumin were glycated by allose and glucose, while 13Lys, 98/108Lys, and 114Lys 
were glycated with fructose and psicose [23]. Monosaccharides are generally more 
reactive than disaccharides; β-lactoglobulin was found to attach more galactose (up 
to 22 adducts) than lactose (up to 14 adducts) in a study where it was confirmed by 
LC/MS that the products were mainly the early glycation products [24]. Heating of 
β-casein with either glucose or glyoxal at 95 °C for 1 h in solution resulted in modi-
fication at 107Lys and 176Lys [25]. The Amadori product was formed preferentially on 
176Lys rather than 107Lys, while the proportion of N-ε-carboxymethyllysine (CML) 
on both lysine residues was similar. 202Arg was found to be the main modification 
site of β-casein with glyoxal [25].

Proteins react with carbonyl compounds primarily through the ε-amino group of 
lysine residues and, to a smaller extent, through the α-amino groups of N-terminal 
amino acids and other amino acid functional groups, such as the thiol group of cys-
teine and guanidine group of arginine. The availability of glycation sites within a 
protein molecule greatly influences the extent of reaction. Given the fact that the 
accessibility of glycation sites within a protein molecule depends on its conforma-
tion, any environmental factor affecting a protein’s conformation has an indirect 
effect on the glycation behavior. pH- or temperature-induced changes (including 
denaturation, aggregation, or hydrolysis) would have an effect on protein conforma-
tion and thus on the glycoforms produced. The composition of the reaction medium 
(the presence of lipids, minerals, other proteins, and reducing agents) and the 
molecular weight of the carbonyl attached to the protein influence the conformation 
of the protein [16]. Glycation of ovalbumin was favored when the tertiary structure 
was disrupted; after reducing the disulfide bonds, the number of glycated sites was 
increased from 7 to 12 in a dry state and from 1 to 2 in aqueous conditions [26].

Researchers suggested that the structural accessibility of lysine residues is the 
most important factor affecting the preferential glycation sites [27, 28]. Hydrogen 
bonding between the N-H of lysine residues with water and with the C=O with other 
amino acids in the polypeptide chain may protect lysine residues against glycation 
[29]. pKa values, phosphate and bicarbonate ions, and proximate amino acids have 
effects on the reactivity of lysine residues and play a role especially in the early 
stages of glycation [45–48]. The reactivity of a lysine residue within a protein 
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sequence may be explained by their position adjacent to the neighboring basic 
amino acids in the primary or tertiary protein structure. The Maillard reaction is 
accelerated when an acidic amino acid is present near the lysine residue in the pri-
mary structure or in the 3D conformation. Also, amino acid residues of Ile, Leu, 
Phe, and Arg increase the lysine reactivity in lysine-containing dipeptides [30]. The 
presence of histidine or lysine residue near to lysine was shown to promote the gly-
cation tendency of lysine [31–33].

The pH of the reaction medium is another factor affecting protein glycation. The 
rate of carbonyl-amine addition is related to the pKa value of the amino compound, 
which determines the concentration of reactive species at a certain pH. Lysine is the 
most reactive amino acid in a wide pH range, whereas aliphatic aromatic amino 
acids valine, leucine, and isoleucine are the least reactive ones. pH is a determining 
factor whether decomposition takes place by 1,2- or 2,3-enolization. 1,2-Enolization 
is favored that allows protonization of the Amadori product in acidic media, whereas 
2,3-enolization dominates in alkaline solutions and in nonaqueous conditions [21]. 
Increase in pH led to increased glycation in several studies conducted with milk 
proteins. The molecular weight of fructosylated and glucosylated β-lactoglobulin 
was increased with the increase of pH from 5.0 to 8.0 [22]. Thirteen glucose mole-
cules on average were attached to β-lactoglobulin at pH 5.0, while 14 glucose moi-
eties were attached at pH 8.0 [22]. Isoelectric point of a protein is important in terms 
of glycation rate. Thomsen et al. [18] reported that increasing pH during the prepa-
rations of dry reaction media caused an increase in both the rate and the degree of 
lactosylation. The reaction solution prepared at pH 5.0 was less lactosylated than 
those prepared at pH 6.0 and 7.0. Since pH 5.0 is close to the pI of β-lactoglobulin, 
protein-protein interactions might have evolved, thus making it more difficult for 
free amino groups to react with lactose. The reactivity of amino groups was limited 
due to the low amount of reactive unprotonated amine groups at low pH. However, 
when the pH is increased, negative charges on the protein molecule increase, caus-
ing repulsion and a decrease in protein-protein interactions. Therefore, the amount 
of free reactive amino groups increases yielding an increased lactosylation [18].

The presence of oxygen in the medium also affects the glycation of proteins. 
More glucose attachment is favored in the presence of oxygen. Oxygen level has an 
important effect in the later stages of glycation; dicarbonyl compounds generated 
through glycoxidation also participate in the reaction, therefore increasing the glyca-
tion rate. It was reported in a study where lysozyme was heated at 50 °C for 14 days 
that due to the higher reactivity of dicarbonyl compounds (generated in the presence 
of oxygen) for the guanidine group of arginine residues, the involvement of arginine 
in glycation favored the glycation rate [34]. The reaction rate for the systems having 
the same conditions but containing fructose was lower than that of glucose, and this 
was explained by the fact that glucose was more susceptible to glycoxidation under 
dry heating conditions. It was stated that fructose mainly reacted with the ε-amino 
group of lysine residues, whereas glucose reacted with all primary amino groups and 
guanidine groups of arginine, as well. Due to the lower reactivity of fructose, a nar-
row distribution of glycoforms was obtained; however, for glucose, a higher glyca-
tion rate and a wider range of glycoforms were observed [34].
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6.1.3  Consequences of Glycation and Contributions 
of Dietary AGEs

The glycation of protein is of particular importance for food chemistry since color 
development (such as the color of bread crust, roasted coffee, French fries, and fried 
onions) and aroma formation (roasted coffee and bakery products) are typical results 
of this reaction. On the contrary, undesired color formation as a quality defect (in 
the production of dried foods, milk powders, as well as fruits and vegetables), for-
mation of off-flavors (such as cooked flavor in UHT milk), reduction of the nutri-
tional value of foods (due to modification in amino acids), and formation of toxic 
compounds (such as HMF, acrylamide, and furan) are the drawbacks of glycation in 
food systems.

After the identification of the nonenzymatic glycosylated variant of hemoglobin, 
HbA1c, in the blood of diabetic patients [2], it was understood that glycation also 
takes place endogenously; since then, Maillard reaction has attracted attention in the 
field of biochemistry and medicine. In the human body, AGEs arise not only from 
glucose but also from the reactive products of glucose metabolism (such as glucose-
 6 phosphate, triose phosphates, and fructose-3-phosphate) and nonenzymatic degra-
dation. Methylglyoxal, glyoxal, 3-deoxyhexuloses, transformation products of 
ascorbic acid, or some secondary decomposition products of lipid hydroperoxides 
react with proteins [21, 35]. AGEs have some undesirable consequences in terms of 
chronic and especially age-related disorders. They may take part in chronic and 
degenerative diseases, such as diabetes, renal failure [36], atherosclerosis [37, 38], 
and Alzheimer’s and Parkinson’s diseases [39, 40]. Glycation is increased in diabe-
tes mellitus, where glyoxal, methylglyoxal, and 3-deoxyglucose, besides plasma 
glucose concentration, are increased and in uremia, where many α-oxoaldehydes 
are increased [41]. The body proteins of diabetic patients were found to be two to 
three times more glycated than those of healthy humans, due to the increased level 
of blood sugar [42]. Amadori products are the predominant form of circulating gly-
cated protein in patients with diabetes [43, 44]. Uremic patients accumulate pento-
sidine or CML in the plasma and tissues [45]. The serum level of pentosidine was 
found to be 2.5 times greater in patients with diabetes and 23 times greater in 
patients with diabetes with end-stage renal disease [46]. It was stated that patients 
with advancing age, diabetes, and end-stage renal disease have a very high inci-
dence of atherosclerotic vascular disease [38, 46]. An excess of blood or tissue 
AGEs is also associated with rheumatoid arthritis, amyloidosis, and Alzheimer’s 
and other neurodegenerative diseases [47].

AGEs are generally accumulated in long-lived proteins such as collagen and eye 
lens due to the low turnover of these proteins. Cataract is one of the most common 
consequences of diabetes. A high correlation was obtained between pentosidine 
cross-links and the degree of pigmentation in cataractous lenses, indicating that 
pentosidine formation in human lens leads to brunescent cataracts [48].

There are two major sources contributing to the total pool of AGEs in the body: 
AGEs that are consumed with foods and endogenous AGEs that are generated by 
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the nonenzymatic glycation of proteins, lipids, and nucleic acids, especially under 
hyperglycemic conditions in diabetes [37, 49]. The interrelationship between dietary 
AGEs and AGEs in the body has been established with several animal and human 
studies. In a study [50] where laboratory rats were fed with glucose-lysine model 
food (containing AGEs) for 3 months, dietary dicarbonyl compounds from the diet 
or dietary CML itself were found to be responsible for CML accumulation in hearts 
and tendons. Moreover, regular consumption of dietary AGEs in healthy individuals 
promoted CML accumulation in some organs, such as cardiac tissue and tail tendon 
[50]. Feeding laboratory mice with high-AGE diet resulted in twofold higher plasma 
AGE levels than the levels of mice fed with low-AGE diet [51]. Proteinuria increased 
during feeding with high-AGE diets in remnant kidney models in rats [52, 53]. 
High-AGE diets were also shown to accelerate the progression of renal fibrosis [52]. 
In another study [54] where casein-linked lysinoalanine (LAL), N-ε-fructoselysine 
(FL), and N-ε-carboxymethyllysine (CML) were administered to rats at different 
doses for 10 days, it was concluded that kidneys were the predominant sites for 
accumulation and excretion of LAL, FL, and CML. It was also observed that the 
endogenous load of compound in either plasma or tissue was increased by its dietary 
intake [54]. In a mouse model of obesity, targeted reduction of the advanced glyca-
tion improved renal function and glycemic control in obesity [55].

Ten percent of consumed dietary AGEs were reported to be absorbed by humans, 
and this was correlated with the circulating and tissue levels of AGEs [56]. Dietary 
AGE level of healthy people showed correlation with the circulating AGE levels, 
such as CML and methylglyoxal, as well as with oxidative stress markers [57]. 
Furthermore, reduction of AGEs in the diet in diabetes patients [58] and kidney 
disease patients [59, 60] or healthy individuals [61] also reduced the markers of 
oxidative stress and inflammation. In a human study where people consumed a stan-
dard diet (high amounts of AGE-containing diet) or steamed diet (low in AGEs) for 
a month, the urinary CML excretion was found to be 40% higher and fasting plasma 
CML was 7% higher in the standard diet group. This suggested that dietary CML 
was absorbed in the intestines and rapidly excreted, confirming the results obtained 
in animals [62].

The results of the animal and human studies confirm that dietary AGE levels 
have direct and indirect effects on AGE accumulation in the body and further com-
plications in degenerative diseases. Therefore, inhibition of glycation reactions dur-
ing food processing is an important issue since this may help to reduce the dietary 
intake of AGEs. The methods useful for the mitigation of glycation will be dis-
cussed in Sect. 6.4.

6.2  Occurrence of AGEs in Foods

As stated above, Amadori products are the early products of protein glycation. The 
condensation reaction between a carbonyl moiety and an amine residue of a protein 
results in the formation of an unstable Schiff base. After the condensation reaction, 
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the so-called Schiff base undergoes an arrangement to form an Amadori product 
(N-substituted 1-amino-1-deoxy-2-ketoses), which is the first stable product of the 
reaction (Figs. 6.3 and 6.4). In the case of food proteins, the ε-amino group of lysine 
is the most susceptible target for the attack of carbonyls; so the product formed is 
mostly lysine derivatives such as N-ε-fructosyllysine, N-ε-lactulosyllysine, and N-ε- 
maltulosyllysine; however, the N-terminal α-amino acids also react to the Amadori 
compounds. Free amino acids are also significantly modified [63], but it will not be 
discussed in this chapter.

Amadori products are quantitatively the most prevalent glycation products in 
many food systems. Depending upon the temperature and time of processing or 
storage of a food product, up to 70% of lysine might react to the Amadori product 
[4]. The formation of N-ε-fructosyllysine causes the loss of nutritional quality of 
proteins, since lysine bioavailability is decreased due to lysine modification. 
Therefore, furosine formation is investigated in many foods for the evaluation of the 
nutritional quality of heat-treated foods. Furosine content is measured as the quality 
indicator of milk products, honey, cereals, pasta, and several other food products 
[63–67]. It is also used for regulatory purposes; in mozzarella cheese, the furosine 
content indicates the addition of heat-treated cow’s milk to the original product 
made from low temperature-treated buffalo’s milk [68].

Fig. 6.3 Sugar-amine condensation to form N-substituted glycosylamine

Fig. 6.4 Amadori rearrangement
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Furosine concentration in foods does not always correlate well with the severity 
of heat treatment; it does not increase linearly with heat damage. Amadori com-
pounds may degrade via enolization and elimination reactions in the intermediate 
stages of glycation, forming dicarbonyl compounds. These dicarbonyl compounds 
are so reactive that they immediately react with the amine residues of proteins to 
form the advanced glycation end products. The Amadori compound is also oxi-
dized to form the advanced glycation compounds. CML is the first and the most 
common amino acid derivative of the advanced glycation that was quantified in 
foods and a major AGE structure formed in vivo. It can be formed through various 
pathways as shown in Fig. 6.5 [69]. In the autoxidative pathway, glyoxal is derived 
from glucose and then reacts with lysine residues to form CML [70]. In the Namiki 
pathway, CML is formed by the reaction with lysine residues and glyoxal derived 
from Schiff base [71]. In another pathway, Amadori product is oxidized to form 
CML [72].

CML is present in a range of heat-treated foods such as dairy products [73–76], 
cereals and bakery products [7, 77], meat [74, 78, 79], and nuts [80, 81]. Lipid 
 oxidation occurs simultaneously during heating in some food products, and lipid 
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oxidation products (highly reactive aldehydes and ketones, such as glyoxal) may be 
involved in the formation of AGEs. In a study [82], vegetable and fish oils were 
treated under accelerated storage conditions and cooking conditions, and it was 
found that fish oils with polyunsaturated fatty acids produced more glyoxal than 
vegetable oils. Glyoxal derived from lipid oxidation participated in food-derived 
CML formation [82]. Fu et al. [83] also showed that CML was formed in vitro dur-
ing copper-catalyzed oxidation of PUFA in the presence of protein. Therefore, dur-
ing thermal processing, CML may be formed through one or more of the mentioned 
pathways, depending on the food composition (precursors) and process conditions.

N-ε-carboxyethyllysine (CEL) (Fig.  6.6), which is formed by the reaction 
between methylglyoxal and lysine, is a homolog of CML and is found in several 
food products. He et al. [7] reported CEL levels ranging between 225 and 820 mg/
kg protein in bread crust, between 159 and 452  mg/kg protein in biscuits, and 
between 146 and 373 mg/kg protein in fried dough sticks. Commercial sterilization 
of chicken, beef, and pork meat was found to increase protein-bound CML and CEL 
levels significantly [79]. The amounts of protein-bound CML and CEL in fish mus-
cle increased as the heating (100 °C) time increased [84]. In a study where the effect 
of irradiation on CML and CEL formation and its relationship with lipid oxidation 
in meat products during storage was investigated [85], a linear correlation was 
found between the loss of polyunsaturated fatty acids content and the increase in 
CML and CEL contents in the irradiated beef samples during 6 weeks of storage. It 
was indicated that irradiation-induced lipid oxidation promotes CML and CEL for-
mation through oxidation pathway [85].

Another important AGE, pyrraline (Fig. 6.6), which is the product of lysine and 
3-deoxyglucosone, is found in high heat treatment-applied foods, such as bread 
crust (up to 3.7 g/kg protein), cookies (120 mg/kg protein), dried carrot products (up 
to 378 mg/kg protein), or roasted peanuts (up to 382 mg/kg protein) [80, 86, 87]. 
Considerable amounts of pyrraline were also reported in beer [88] and peptide- 
enriched drinks [89].

Pronyllysine results from lysine side chains and acetylformoin (Fig. 6.6) and was 
quantified up to 62 mg/kg in the crust and 6 mg/kg in the crumb of bread [90–92], 
whereas 0.43 mg/kg in Pilsner-type pale beer and 0.92 mg/kg in dark beer [90].

Argpyrimidine [N-δ-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-L-ornithine] is 
an AGE derived from the reaction of methylglyoxal with arginine residues (Fig. 6.6). 
It was detected as a free amino acid derivative form in beer [88, 93].

Pentosidine is a cross-linker formed by the reaction of pentose with the lysine 
and arginine residues of proteins (Fig. 6.6). In milk, up to 5 mg pentosidine/kg pro-
tein was detected in some samples of sterilized and UHT milk, whereas higher 
amounts up to 23 mg/kg protein were obtained in alkali-treated bakery products, 
such as pretzels. The highest amount of pentosidine was found in roasted coffee, 
ranging from 11 to 40 mg/kg protein [94]. 10–158 μg/100mL of pentosidine was 
detected in soy sauce, sour-sweet sauce, barbecue sauce, or tomato sauce, and meat 
treated with sauces also contained high amounts of pentosidine after baking and 
frying [95].
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DOLD, GOLD, and MOLD (Fig. 6.6), the lysine dimers resulting from the reac-
tion between two lysine side chains and two molecules of 3-deoxyglucosone, gly-
oxal and methylglyoxal, respectively, were found in the enzymatic hydrolysates of 
bakery products and boiled egg white in the mg/kg level, together with the  cross- links 
between lysine and arginine (DODIC, GODIC, MODIC) [96]. The concentrations 
of MODIC and GODIC were found to be almost five times higher than those of their 

Fig. 6.6 Examples of AGEs found in foods
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corresponding imidazolium compounds, MOLD and GOLD. 151 mg MODIC/kg 
protein was found maximum in butter biscuit samples [96]. Soy sauce- based sea-
sonings were also found to contain up to 0.19 mg/L GOLD and up to 0.30 mg/L 
MOLD in the free form [97].

Imidazolinones are formed by the reactions of the guanidine group of arginine 
residues with dicarbonyl compounds, such as methylglyoxal and 3-deoxyglucosone 
(Fig.  6.6). The acid-labile imidazolinone resulting from the reaction between 
peptide- bound arginine and methylglyoxal was quantified in alkali-treated bakery 
products [98]. The amounts of imidazolone after complete enzymic digestion 
ranged between 9 and 13 mg/g protein, indicating that between 20 and 30% of the 
arginyl residues might react with methylglyoxal during the bakery process [98]. 
Traces of methylglyoxal-dihydroxyimidazoline were detected at 124Arg of 
β-lactoglobulin in sterilized and evaporated milk and small amounts of 
methylglyoxal- imidazolinone were shown to be present at 40Arg and 124Arg in more 
severely heated products [99]. In different beer types, 35.5–136.6 mg/kg protein 
MG-H1 was detected [88], whereas free forms of MG-H1 were also determined up 
to 2.47 mg/L in beer and beer-type liquors [88, 97] and up to 7.75 mg/L in soy 
sauce-based seasonings [97].

Some AGEs and their concentrations in different food products are given in 
Table 6.1.

6.3  Analysis Methods

Monitoring of glycation is challenging given the complexity of the reaction. Until 
today, many techniques have been used to determine the AGEs in food products and 
the body, including methods that use only simple absorbance measurements or more 
sophisticated instruments.

Due to the formation of brown-colored products in the Maillard reaction, the 
absorbance at 420 nm increases by the degree of glycation; hence, absorbance mea-
surements at 420 nm might give an idea about the extent of glycation [104, 105]. 
Fluorescence measurements at 340–350 nm excitation and 400–440 nm emission 
have also been carried out to monitor protein glycation [106–109]; however, only 
AGEs with fluorescent properties such as pentosidine and crossline can be detected 
by this method, whereas nonfluorescent AGEs such as CML and CEL cannot be 
detected. Fluorescamine (4-phenylspiro [furan-2 (3H, 1-phtalan]-3–3′-dion) assay, 
which is based on the reaction between this reagent and the primary amino groups 
of protein and amino acids [110], also gives an idea about the extent of glycation. 
The resulting fluorescence decreases in case of glycation due to the decrease in the 
free amino groups [110].

Immunological detection and quantification of protein glycation based on ELISA 
[56, 111–114] have been widely used in biomedical and food science investigations. 
Although the ELISA method is easy and rapid, it is not regarded as reliable at pres-
ent since the precision and accuracy are not high. The results are expressed in arbi-
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Table 6.1 AGE contents in food products

Food category AGE type AGE content Method References

Dairy products

Raw milk Furosine 35–55 mg/kg 
protein

HPLC [100]

CML Up to 9.3 mg/kg 
protein

LC-MS/MS [74, 75]

UHT milk Furosine 500–1800 mg/kg 
protein

HPLC [76, 100]

CML Up to 34.1 mg/kg 
protein

LC-MS/MS [75, 76]

Pasteurized milk Furosine Up to 200 mg/kg 
protein

HPLC [76, 100]

CML Up to 16.3 mg/kg 
protein

LC-MS/MS [74–76]

Sterilized milk Furosine 5000–12,000 mg/kg 
protein

HPLC [100]

CML 343 mg/kg protein RP-HPLC [73]
Pentosidine 0.1–2.6 mg/kg 

protein
HPLC-FLD [94]

Evaporated milk Furosine 3400–8800 mg/kg 
protein

HPLC [100]

CML Up to 1015 mg/kg 
protein

RP-HPLC and 
UPLC-MS/MS

[73, 74]

Pentosidine 0.3–0.6 mg/kg 
protein

HPLC-FLD [94]

Condensed milk CML 205 mg/kg protein LC-MS/MS [75]
Infant formula 
(liquid)

Furosine Up to 12,500 mg/kg 
protein

HPLC and LC-MS/
MS

[76, 100]

CML Up to 62.9 mg/kg 
protein

LC-MS/MS and 
GC-MS

[76, 77]

Infant formula 
(powder)

Furosine Up to 18,900 mg/kg 
protein

HPLC and LC-MS/
MS

[76, 100, 
101]

CML Up to 148 mg/kg 
protein

LC-MS/MS and 
GC-MS

[76, 77, 101]

CEL 7.1–13.1 mg/kg 
protein

LC-MS/MS [101]

Butter CML 37.1 mg/kg protein UPLC-MS/MS [74]
Coffee cream CML Up to 618 mg/kg 

protein
RP-HPLC [73]

Whey cheese CML 1691 mg/kg protein RP-HPLC [73]
Cheese Furosine Up to 290 mg/kg 

protein
RP-HPLC [100, 102, 

103]
CML 23.2 mg/kg protein UPLC-MS/MS [74]

(continued)
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Table 6.1 (continued)

Food category AGE type AGE content Method References

Bakery products

Bread crust CML 58–94 mg/kg 
protein

LC-MS/MS [7]

Bread crumb CML 14–34 mg/kg 
protein

LC-MS/MS [7]

Biscuits CML 50–117 mg/kg 
protein

LC-MS/MS [7]

CEL 462.5 mg/kg protein LC-MS/MS [101]
Pasta Furosine 400–8500 mg/kg 

protein
HPLC [100]

Cookies CML 5–35 mg/kg protein GC-MS [77]
Corn flakes CML 6–8 mg/kg protein GC-MS [77]
Meat products

Raw minced beef CML 3.9 mg/kg protein UPLC-MS/MS [74]
CML 2.76–4.32 mg/kg LC-MS/MS [79]
CEL 2.32–3.18 mg/kg LC-MS/MS [79]

Pasteurized 
ground beef

CML 3.12–19.96 mg/kg LC-MS/MS [79]
CEL 2.65–11.89 mg/kg LC-MS/MS [79]

Boiled minced 
beef

CML 27.3 mg/kg protein UPLC-MS/MS [74]

Fried minced beef CML 61.1 mg/kg protein UPLC-MS/MS [74]
Chicken breast, 
boiled

CML 17.2 mg/kg protein UPLC-MS/MS [78]

Chicken breast, 
roasted

CML 17.4 mg/kg protein UPLC-MS/MS [78]

Chicken breast, 
fried

CML 23.5 mg/kg protein UPLC-MS/MS [78]

Coffee CML 84.1 mg/kg protein UPLC-MS/MS [78]
Pentosidine 10.8–39.9 mg/kg 

protein
HPLC-FLD [94]

Nuts

Unroasted peanut Furosine Up to 24 mg/kg 
protein

HPLC [80]

Roasted peanut Furosine 129–267 mg/kg 
protein

HPLC [80]

CML 5–77 mg/kg protein GC-MS [80]
Peanut puffs Furosine 166–256 mg/kg 

protein
HPLC [80]

CML 61–63 mg/kg 
protein

GC-MS [80]

Peanut butter Furosine 73–91 mg/kg 
protein

HPLC [80]

CML 63–203 mg/kg 
protein

GC-MS [80]

(continued)
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trary units rather than actual concentrations. The method requires the use of specific 
antibodies for each compound, and furthermore, the food matrix affects the speci-
ficity of the assay.

Determination and quantification of glycation products might be performed 
more precisely by HPLC with UV-DAD detectors, LC-MS/MS, and GC-MS. Some 
AGEs such as furosine and CML are regarded as indicators of glycation, and they 
have been used as markers for the extent of glycation. Furosine has been used as a 
reliable indicator of thermal damage in foods since its detection in 1966 [68]. It is 
one of the first identified early glycation products in foods and is the most common 
chemical indicator of the Amadori product [68]. Furosine is formed during the acid 
hydrolysis of the Amadori products, N-ε-lactulosyllysine, N-ε-fructosyllysine, and 
N-ε-maltulosyllysine and tagatosyllysine [115]. Generally, food products are hydro-
lyzed by using concentrated acids, such as 6 N or 8 N hydrochloric acid (Fig. 6.7). 
The yield of furosine from the Amadori compounds during acid hydrolysis is varia-
tional between different Amadori compounds but is considered to be constant under 
controlled conditions. Different yields ranged from 20% to 30% after hydrolysis in 
6 N hydrochloric acid, from 29% to 46% after hydrolysis in 7.8 N hydrochloric 
acid, and from 46% to 51% after hydrolysis with 8 N hydrochloric acid [115, 116]. 
If the corresponding conversion factors are known, then monitoring of the Amadori 
product formation in foods may be evaluated. Similarly, other Amadori compounds 
may be converted into N-(2-furoylmethyl) amino acids (FMAAs) by acid hydrolysis 
and then may be measured by RP-HPLC [67, 86].

CML is frequently used as a marker for AGE formation in food. Chemical analy-
ses of CML concentrations in food products include extraction of the compound 
from the food and determination of its level by immunochemical assays or instru-
mental methods [117]. High-performance liquid chromatography (HPLC), gas 
chromatography coupled with mass spectrometry (GC-MS), and liquid chromatog-

Table 6.1 (continued)

Food category AGE type AGE content Method References

Unroasted almond CML 1.5 mg/kga LC-MS/MS [81]
CEL 1.3 mg/kga [81]
Pyrraline not detected [81]

Roasted almond CML 3.7–4.9 mg/kga LC-MS/MS [81]
CEL 5.1–10.1 mg/kga [81]
Pyrraline 8.2–42.8 mg/kga [81]

Beer Pyrraline 55–400 mg/kg 
protein

HPLC-MS/MS [88]

Pronyllysine 0.43–1.07 mg/kg HRGC-MS [90]
MG-H1 35.5–136.6 mg/kg 

protein
HPLC-MS/MS [88]

MG-H1 0.09–0.23 mg/L LC-MS/MS [97]
Argpyrimidine 0.1–4.1 μg/Lb HPLC-MS/MS [88]
Argpyrimidine 27 nmol/Lb HRGC-MS [93]

afree + bound AGE
bfree form AGE
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raphy coupled with tandem mass spectrometry (LC-MS/MS) might be used for the 
identification and determination of CML. For the determination of protein-bound 
CML, acid hydrolysis is applied to release CML from the protein. Since CML might 
be formed from fructosyllysine, sample preparation should be performed with 
extreme care to avoid any potential undesirable reactions, which might give rise to 
artifactual CML formation and thus an overestimation of the real content. Therefore, 
it has been proposed to initially reduce fructosyllysine residues into hexitollysine by 
sodium borohydride to prevent this process [73, 76]. Delatour et al. [75] proposed 
that enzymatic digestion might be performed to prevent the artifactual formation of 
CML mediated by fructosyllysine. However, they concluded that a slight overesti-
mation of CML with enzymatic digestion might be observed. Determination of 
CML in food products may also be performed by GC analysis [77, 118].

N-ε-carboxyethyllysine (CEL), which is formed by the reaction between methyl-
glyoxal and lysine, is a homolog of CML. Its content may be determined after acid 
hydrolysis or enzymatic hydrolysis by HPLC and LC-MS/MS methods [7, 81, 84, 
101, 119, 120].

Pyrraline, which is the product of lysine and 3-deoxyglucosone, was first identi-
fied by amino acid analysis in heated skim-milk powder [121]. Pyrraline amount 
may be quantified using HPLC techniques either in free form or in protein-bound 
form after enzymatic hydrolysis, since the pyrrole compound is labile during acid 
and alkaline hydrolysis [1, 89, 122].

Mass spectrometry is widely used for the analysis of glycation products. 
Pronyllysine can be determined with HRGC/MS [90–92]; argpyrimidine with 
LC-MS/MS [81, 88] or high-resolution GC-MS [93]; pentosidine with LC-MS/MS 
[81] or HPLC with a fluorescence detector [95]; DOLD, GOLD, MOLD, DODIC, 
GODIC, MODIC, and methylhydroimidazolones with LC-MS [96]; and MG-H1 
with HPLC-ESI-MS/MS [88, 99].

The extent of glycation of a protein molecule could be determined by mass spec-
trometric techniques. ESI-MS and MALDI-MS have been used to evaluate the gly-
cation extent and glycoforms of proteins in different processing conditions [15, 
123–125]. In most cases, it was shown that only one or two sugar units were attached 
to proteins after heating in solution state, whereas multiple glycoforms were 
obtained in the dry state [15, 123–125]. Mass spectrometry also enables the deter-
mination of the glycation sites of the protein molecule. Formation of lactulosylly-
sine at 47Lys, 138Lys, and 141Lys and also methionine sulfoxide at 7Met, 24Met, and 
145Met in β-lactoglobulin was detected by using MALDI-TOF-MS coupled to elec-

N-ε-fructosyllysine
Furosine

N-ε-(2-furoylmethyl)lysine

Fig. 6.7 Formation of furosine during acid hydrolysis of Amadori compounds
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trophoretic protein separation and in gel digestion with the endoproteinase AspN 
[126]. CML formation was shown at different lysine residues of β-lactoglobulin 
such as 47Lys, 60Lys, 91Lys, 135Lys, and CEL formation at 69/70Lys and 91Lys by using 
ultrahigh-performance liquid chromatography tandem mass spectrometry [99]. 
Traces of methylglyoxal-dihydroxyimidazoline were detected at 124Arg in sterilized 
and evaporated milk, and small amounts of methylglyoxal-imidazolinone were 
shown to be present at 40Arg and 124Arg in severely heated products [99].

The use of mass spectrometry also allows the enlightenment of reaction mecha-
nisms for the inhibition of glycation. The ability of phenolic compounds to trap 
carbonyl compounds and the ability of oxidized forms of catechins to react with the 
amino groups of proteins were revealed by using different mass spectrometric tech-
niques such as high-resolution ESI-TOF/MS and ESI-ion trap MS [127–130]. The 
mechanisms of inhibition of glycation will be discussed in the next section.

6.4  Mitigation Strategies

The human organism has a certain protective mechanism to fight against AGE for-
mation. There are chemical and biochemical processes including enzymatic and 
immune responses. Enzymes such as glyoxalases, aldehyde reductases, aldehyde 
dehydrogenases, amadoriases, and fructosamine 3-phosphokinases are responsible 
for the suppression of glycation reactions in the body and the repair of glycated 
proteins [21]. Nonetheless, in such cases, mainly in the increased level of carbonyl 
and oxidative stress, these protective mechanisms might be insufficient to struggle 
with the consequences of glycation. Therefore, AGE inhibitors are used for the 
treatment of the consequences of glycation.

The medical concept of glycation inhibition includes any mechanism delaying or 
preventing glycation reactions in vivo. The principle of the inhibition is based on the 
following strategies [131]:

• Anti-glycation strategies involving scavenging hydroxyl radicals and superoxide 
radicals to attenuate oxidative stress and reducing the generation of reactive car-
bonyl compounds.

• Blocking the carbonyl or dicarbonyl attachment to proteins.
• Metal ion chelation since AGE formation is related to the presence of transition 

metal ions.
• Breaking the cross-linked structures in AGEs.

Pharmaceuticals used as AGE inhibitors (such as aminoguanidine or pimage-
dine) might cause adverse effects such as gastrointestinal disturbance, anemia, and 
flu-like symptoms [132, 133]. Therefore, several natural compounds have been 
investigated for their inhibitory effects on glycation. Food-derived compounds such 
as spermin and spermidine [134–136], chlorogenic acid [137, 138], and  isoflavonoid 
glycoside puerarin [139] have been shown to exert in vivo anti-glycation effects in 
human and animal studies.
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In a model system composed of bovine serum albumin and glucose/fructose, 
incubated at 37 °C for 7 days, wild berries were shown to have anti-glycation activ-
ity in a concentration-dependent manner, and reduction in the AGE formation was 
positively correlated with the total phenolic content and related to radical scaveng-
ing capacity [140]. In another study [141], vegetable seed extracts were found to 
exhibit anti-AGE activity in protein-glucose assay (37 °C, 21 days), ranging from 
20 to 92% inhibition, while peach and pomegranate extracts exhibited the highest 
anti-AGE activity in protein-methylglyoxal assay (37 °C, 14 days), ranging from 0 
to 79% inhibition [141]. Presence of white grape skin extracts yielded a reduction 
in the formation of fluorescent AGEs in bovine serum albumin-fructose model sys-
tem incubated at 37 °C for 3 days [142].

Maillard reaction and glycation have particular importance for the food industry. 
These reactions affect the organoleptic properties, color development, protein func-
tionality, and nutritional properties of the product. Since glycation reactions are also 
responsible for the desired flavor and color development, mitigation of glycation in 
food products is a challenging issue.

The factors affecting glycation was discussed thoroughly in Sect. 6.1.2. Any 
reaction conditions or environmental factors affecting the rate of glycation such as 
reactant species, water activity, pH, and oxygen status would affect the progression 
of glycation; thus, by altering these parameters, glycation could be mitigated. 
However, addition of functional ingredients able to inhibit glycation is the most 
frequently used strategy in different food products and food model systems. 
Table 6.2 summarizes the strategies used for mitigation of glycation in food prod-
ucts and model systems.

Table 6.2 Strategies used for mitigation of glycation

Strategy Function Agent References

Blocking of 
amines

Covalent attachment to 
amine residues

Catechins [127, 128]
Ferulic acid [143]
Green tea infusion [144]
Soy isoflavones [145]
Chlorogenic acid [146]

Structural 
modification

Sterically hindered 
protein complexes

Epicatechin/calcium [147]

Dissociated casein 
micelles

Tannic acid/calcium [148]
– [149]

Use of 
polyphenols

Antioxidant Grape seed extract [150]
Ferulic acid [151, 152]
Phloretin, naringenin, epicatechin, 
chlorogenic acid, rosmarinic acid

[153, 154]

Use of 
polyphenols

Dicarbonyl trapping Genistein [155]
Quercetin [156]
Catechins [157–160]

Use of 
polyphenols

Scavenging of 
MR-derived radicals

Catechins [161]
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6.4.1  Use of Polyphenols

Polyphenols are the most widely studied natural ingredients used as anti-glycation 
agents in food systems. Anti-glycation effect was mostly attributed to their antioxi-
dant activities and their dicarbonyl trapping functions. Antioxidants act as AGE 
inhibitors, presumably through metal-ion chelation and sequestration of free-radical 
species, yielding attenuation of oxidative stress [162, 163] and also by trapping 
carbonyl compounds formed in the intermediate stages of glycation.

Addition of 600 mg and 1000 mg of grape seed extract, which is rich in catechins 
and proanthocyanidins, to bread (500 g) led to over 30% and 50% reduction, respec-
tively, in the CML content of bread crust [150]. The effect was attributed to strong 
antioxidant activities of these compounds. Addition of ferulic acid to sponge cake 
baked at 190 °C for 30 min was found to lower the level of CML and CEL signifi-
cantly, and the anti-glycation activity was attributed to the free-radical scavenging 
activity in the intermediate stage of glycation [151]. In the study of Zhang et al. 
[153], addition of phloretin, naringenin, epicatechin, chlorogenic acid, and rosma-
rinic acid to the glucose-casein model system showed inhibition on the formation of 
fluorescent AGEs and CML during heating at 120 °C for 2 hours. Chlorogenic acid, 
being the most potent inhibitor among the phenolics studied, was found to lower 
glyoxal and methyl glyoxal formation due to its antioxidant activity. The same phe-
nolics in cookie models had positive correlation between glyoxal formation and 
antioxidant activity; however, methylglyoxal concentration was found to be unaf-
fected [154]. In a recent study [164], negative correlation was observed between 
total phenolic compounds and the glyoxal, methylglyoxal, and diacetyl concentra-
tions after baking, indicating the ability of phenolic compounds to trap α-dicarbonyl 
compounds during baking of cookies made of different cereal species. It was con-
cluded that colored corn flour could be the source of natural dietary anti-glycation 
agents due to the good abilities of their phenolic compounds to trap C2, C3, and C4 
α-dicarbonyl compounds [164].

Genistein was shown to inhibit the cross-links of the glycated β-lactoglobulin 
and suppress the formation AGEs in a dose-dependent manner by trapping reactive 
dicarbonyl compounds. By using LC-MS, both mono- and di-methylglyoxal adducts 
of genistein were detected in the β-lactoglobulin–methylglyoxal assay [155]. 
Quercetin was also shown to have the ability to trap dicarbonyl compounds in 
bovine serum albumin-methylglyoxal (or glyoxal) model systems [156]. Catechins 
were shown as potent dicarbonyl trapping agents in many studies. Maillard reaction 
model system studies have revealed that catechins sequester reactive dicarbonyl 
compounds through electrophilic aromatic substitution reactions, primarily on 
A-ring of flavan-3-ols [157–160]. Catechins have also been reported as trapping 
agents for the reactive imine intermediates linked to the Maillard reaction [161].

Besides their antioxidant actions and carbonyl trapping functions, polyphenols 
also may inhibit the glycation through blocking the amine residues of proteins in 
certain conditions. At alkaline conditions, polyphenols are oxidized to their corre-
sponding quinone forms. Quinone, being a reactive electrophilic intermediate, can 
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readily undergo attack by nucleophiles such lysine, methionine, cysteine, and tryp-
tophan residues in a protein chain [165, 166].

In a study [143], soy glycinin or bovine serum albumin was incubated at 60 °C 
for 60 min at pH 12 with ferulic acid, and then fructose was added into the model 
systems and incubated for further 60 min. Ferulic acid was found to reduce fluores-
cent AGEs and CML formation by nearly 90% and 85%, respectively [143]. Similar 
results were reported for the use of soy isoflavone-rich extract (containing daidzein, 
glycitein, and genistein) at oxidizing conditions (60 °C for 1 or 16 hours at pH 12) 
in the soy glycinin-fructose model system [145]. It was suggested that the formation 
of early MR products might be inhibited by the conjugation of isoflavones to the 
active site of glycation, while AGE formation might be modulated by the trapping 
of dicarbonyl intermediates and oxygen radical species [145]. Pretreatment of oval-
bumin with green tea infusion under oxidized conditions (pH 9.0, 50 °C, 1 h) was 
shown to be effective in reducing furosine and CML formation in the ovalbumin- 
glucose model system due to the reduction in the free lysine concentration of oval-
bumin [144]. It was explained that the quinone forms of green tea polyphenols 
might react with the free amino groups of ovalbumin under alkaline conditions 
(Fig. 6.8). Thereby, the concentration of glycation products occurring during heat-
ing of ovalbumin and glucose decreased due to the modified lysine moieties in oval-
bumin [144]. A similar explanation was also given for the antiglycoxidative 
mechanism of chlorogenic acid in a model system composed of bovine serum albu-
min and methylglyoxal [146]. Evidence of binding between BSA and multiple chlo-
rogenic acids and/or its derivative molecules (isomers and oxidation products) was 
found. It was also concluded that methylglyoxal and chlorogenic acid competed for 
free amine groups, which prevents methylglyoxal from binding to BSA, resulting in 
an effective decrease in AGE formation [146].

By using high-resolution ESI-TOF mass spectrometry and isotope labeling tech-
nique, various glycine adducts of catechins were shown for the reaction between 
glycine and (+)-catechin at 120 °C for 70 min under oxidative conditions [127]. 
Detailed MS/MS analysis confirmed that amino acids were added to oxidized B-ring 
of (+)-catechin through the formation of Schiff bases [127]. Similarly, Yin et  al. 

Fig. 6.8 Reaction between green tea polyphenols and proteins at alkaline condition
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[128] stated that the inhibitory effect of tea polyphenols on MR might also be cor-
related with their ability to react with amino acids. It was explained that due to the 
strong electrophilic nature of quinones, the epicatechin quinone could react with 
lysine by a Michael-type addition, where lysine is added at the C-5 or C-2 position 
of the B-ring of epicatechin. It was concluded that tea catechins, epicatechin and 
epigallocatechin gallate, inhibited the formation of intermediary radicals by the 
Maillard reaction, by competing with glucose for lysine [128].

6.4.2  Modifications on Physical Structure

The physical structure of proteins affects its glycation tendency. The availability of 
glycation sites might be changed by the modifications of the protein molecule. A 
possible anti-glycation mechanism could be due to the physical protection of pro-
teins against glycation by polyphenols. Hydrogen bonding between the phenolic 
hydroxyl groups and the amine and carboxyl groups of protein is involved in the 
protein-phenolic interactions. Hydrophobic interaction between the nonpolar 
regions of the phenolic molecules and the nonpolar domains of the protein may be 
responsible for weak interactions between the phenolic compounds and proteins 
[167, 168]. The anti-glycation mechanism involves noncovalent interactions with 
phenolics and proteins, making the glycation targets on protein molecule inacces-
sible to react in glycation [169, 170]. Vlassopoulos et al. [169] showed a reduction 
in fructosamine production in the phenolic preincubated albumin; on the contrary, 
addition of phenolic acids in the reaction solution throughout the incubation period 
had no significant effect on fructosamine production compared to glucose alone. It 
was suggested that physical protection from glycation through protein-phenolic 
acid interaction is the most likely anti-glycative mechanism especially in oxidative 
environments. Akıllıoğlu & Gökmen [147] showed that glycation of casein could be 
reduced by the complexation of casein with epicatechin prior to heating, causing a 
reduction in the available glycation sites by steric hindrance. Moreover, it was stated 
that when casein molecule was disintegrated by high-shear treatment before intro-
ducing epicatechin, better interaction between epicatechin and casein due to the 
exposed hydrophobic regions led to a further decrease in the advanced stages of 
glycation [147]. In the casein-calcium complexes prepared prior to heating in an 
aqueous solution state, calcium ions acted as cross-linking agents forming bridges 
between the casein micelles that make it difficult for carbonyl compounds to bind to 
the glycation sites on protein [147]. In a study where casein glycation was investi-
gated in terms of micellar integrity [149], significantly higher amounts of CML 
were observed in nonmicellar casein than in the casein micelles after heating for 
4 h. The lower amount of CML formation in casein micelle was attributed to the 
higher amounts of calcium when compared to sodium caseinate suspensions [149].
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To evaluate the inhibition of glycation and to determine the mechanism of anti- 
glycation agents, Akıllıoğlu and Gökmen [148] proposed a kinetic approach, which 
was similarly derived from the enzyme inhibition kinetic analysis. The kinetic anal-
ysis allowed the estimation of the activity of anti-glycation agents comparatively 
through the calculation of related kinetic constants, in addition to the interpretation 
of the possible inhibition mechanisms. The effects of tannic acid and calcium ions 
on the formation of furosine in the ovalbumin-glucose model system in the dry state 
or aqueous conditions were determined to be noncompetitive [148], which is con-
sistent with the published data about their noncovalent interactions with proteins.

6.5  Concluding Remarks

Since glycation reactions are also responsible for the desired flavor and color devel-
opment, mitigating glycation in food products is a challenging issue. Thus, particu-
lar attention must be paid to the beneficial aspects of the Maillard reaction. Generally, 
addition of a functional food ingredient is preferred rather than changing the pro-
cess conditions, to retain the sensorial and textural characteristics of the product. 
However, the concentration of the inhibitor agent is very important in terms of 
avoiding any deleterious side effects. It is necessary to know the concentration of 
the inhibitor agent to be added to food and the kinetics of the reactions taking place 
in the presence of the inhibitor agent. Unfortunately, most of the studies undertaken 
until now do not give concentration-dependent inhibition information. Further stud-
ies are needed in this regard.

The alternative techniques or agents used for processing yield different products 
during glycation. For instance, complexation of protein and oxidized phenolic com-
pounds might result in the reduction of the bioavailability of the protein. Due to the 
fact that lysine is an essential amino acid, there are health concerns about the bio-
availability of modified lysine residues in the protein. Therefore, researches with 
advanced analytical tools should be performed for the identification of neo-formed 
compounds, and the effects of new techniques should be evaluated in terms of pro-
tein digestibility and amino acid bioavailability.
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