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1 Introduction

Food packaging is one of the most important areas in food technology dealing with
the protection and preservation of all types of foods from microbial contamination
and oxidative damage. In addition, packaging reduces food loss and increases the
shelf life of food leading to a decreased economic loss for the distributor and con-
sumer. Around 50% of agricultural produce are ruined due to the lack of packaging.
Presently, the plastics that are commonly used in different packaging field are devel-
oped frompetroleum-based products.However, these packagingmaterials are a threat
to the environment as they are non-biodegradable, and they remain in the environ-
ment for 100–450 years [1]. At present, the technique used to manage the plastic
wastes are burning and recycling; however, it is not enough for solving the envi-
ronmental problems. An effort has been taken to decrease the waste disposal during
the maintenance of food quality, as well as the production of eco-friendly packag-
ing film using renewable sources. The increasing petroleum prices have also led to
the search for an economical method for the development of packaging materials.
Furthermore, there is a constant consumer demand to develop packaging materials
that are biodegradable, as well as eco-friendly [2], thus encouraging researchers and
industries to develop packaging materials derived from natural biopolymers. The
natural polymers market value improved from 0.4 to 1.3 billion pounds in the year
2006–2013 [3]. To attain this growing trend, there is a need to venture resources that
are sustainable and renewable. By the way, polysaccharides such as chitosan (CS)
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and cellulose are the most important since these two are the most abundant natural
polymer.

2 Chitosan

Chitosan is a natural polysaccharide derived from chitin that consists of N-acetyl
glucosamine and d-glucosamine [4]. Chitosan is insoluble in water but only soluble
in aqueous acidic solution which restricts its use. Chitosan has various exciting
physicochemical and biological properties like biocompatibility, biodegradability,
and non-toxicity, whichmakesCSmore appropriate for use inmany applications, like
complementary foods, ingredients, drug delivery, wastewater treatment, cosmetics,
and postharvest preservation of fresh produce [5, 6].

Generally, biopolymer-based packaging films are more sensitive to the environ-
mental situation and usually have poor mechanical properties. To solve this problem,
various researchers developed blend film based on the combination of biopolymers
and synthetic polymers [7]. Poly(vinyl alcohol) [PVA] has been extensively used for
the development of composites by blending with various natural polymers [8].

3 Polyvinyl Alcohol

The PVA is a water-soluble, semi-crystalline polymer widely used because of its
excellent physical characteristics, which arise owing to the presence of hydroxyl
groups and the formation of hydrogen bond [9]. It has good biodegradability, excel-
lent resistance to chemicals, and better mechanical behavior [10]. Conversely, the
usage of biopolymers for packaging of foods is still challenging due to its poor phys-
ical properties. The addition of nanocellulose (NC) as fillers to these composites
might augment the physical properties. This paves a way for use of cellulose as a
by-product of agricultural waste for the application in food industries.

4 Cellulose

Cellulose is one of the most plentiful natural biopolymers, which is actually prepared
fromplants sources andother novel resources of bacteria and tunicate [11–14], among
which, the cotton fibers are most important fibers for the production of cellulose and
nanocellulose. The fibers are primarily made up of three constituents like cellulose,
hemicellulose, and lignin [15, 16]. Conversely, hemicellulose and lignin compounds
are comparatively amorphous and cellulosematerial ismore crystalline in nature [17].
The cellulose has both crystalline and amorphous section. Cellulose has a strong and
long-chain polymer that are tightly arranged with inter- and intramolecular hydrogen
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bonding during the van der Waals forces [18, 19]. Cellulose microcrystals (CMCs)
hold better mechanical behavior, as well as very cheap, low density, hydrophilicity,
chirality, biodegradability, low thermal enlargement, and less toxicity [20–22].

Cellulose is one of the most commonly available biopolymer globally, which is
renewable and biodegradable. Cellulose is a natural polymer consisting of d-glucose
in chain form (Fig. 1). Mostly, it is existing in the form of pure cellulose in cotton,
whereas, in wood and plant materials, it is available in a combined form with lignin
and hemicelluloses. Mechanical and chemical treatments of cellulose result in more
valuable materials like CNC and CNF. The CNC has good mechanical properties,
thermal behavior, aspect ratio, eco-friendly, and low cost [23]. CNC comprises of
the highly crystalline rod-like structure with a large specific area and length in the
range of tens to hundreds of nanometers and 1–100 nm in diameter [24]. Moreover,
CNC holds ample of OH groups on its surfaces, creating a hydrophilic nanomaterial
that may enable their diffusions in the water-soluble polymer matrices [25]. Ear-
lier, some researchers have stated the use of nanofibers from agricultural residue as
reinforcement in polymer matrices such as CS [26] and PVA [27].

5 Nanocellulose

With the progress of nanotechnology, cellulose is themost important natural biopoly-
mer on earth, which gains more attention in the form of nanocellulose (Fig. 2). Based
on the size and shape, NC is grouped as CNC, cellulose nanofibers (CNF), and bac-
terial cellulose [BC] [28, 29]. The lignocellulosic fibers acquired from agricultural
residues have a great importance due to its abundance, low cost, renewability, and
biodegradability [30]. The plant fibers containing relatively high cellulose content
make it an attractive material for the use in the development of biocomposites that
may efficiently reduce the environmental pollution, saving the limited forest and
petroleum resources, and thus encourage the added value of agricultural waste fibers.

CNC and CNF can be obtained from the same cellulose source by two different
methods (Fig. 3). CNC can be prepared by acid hydrolysis of wood fiber or any other

Fig. 1 Cellulose structure
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cellulosic materials, resulting in a rod-like nanoscale structure with 3–20 nm width
and 50–500 nm in length [31]. CNF can be produced using mechanical processes,
with or without chemical and biological treatments, yielding 4–50 nm width and
greater than 500 nm in length of linear or branched chains [31]. In addition to CNC
and CNF, there are two more types of cellulose nanomaterials: microcrystalline cel-
lulose (MCC) consisting of purified and partially depolymerized cellulose particles
with an average degree of polymerization between 200 and 450 and microfibril-
lated cellulose (CMF), obtained from cellulose fibers which are submitted to high
mechanical shearing forces.

5.1 Cellulose Nanocrystals

TheCNC is a natural biological polysaccharide, having great potential inmany appli-
cations due to its various key properties, e.g., better tensile and modulus value, high
surface area, good optical properties, eco-friendly, and good biodegradable proper-
ties [33]. Usually, CNC has been described as reinforcing filler for the production
of polymer composites [34, 35]. Nanocellulose is commonly used as a reinforcing
agent; however, they might also be used as matrixes for several types of composites
including films for the applications of food packaging.

Generally, CNCs can be synthesized from many sources, like plants [36, 37],
animals [38], and bacteria [38–41]. Recently, numerous agricultural and industrial
residues have gathered much interest in the production and utilization of CNC;
these residues include sugarcane bagasse [42], rice husk [43], rice straw [44] and
wastepaper [45, 46].

CNC is a derivative of cellulose which comprises of nanofiber, which determines
the product characteristics and its functionality. The nanofibers are very useful mate-
rial for the development of low cost, lightweight, and strong nanocompositematerials
[47]. Usually, CNC is prepared by the bioformation of cellulose via bacteria as well
as by the breakdown of plant celluloses using shear forces in refiner techniques.

Fig. 2 Chemical structure of
nanocellulose
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Fig. 3 Mechanism of chemical and mechanical methods for producing the CNC and CNF [32]

CNC derived from wood pulp can also be produced by electrospinning [48] or by
controlled acid hydrolysis of bleached fibers [49].

5.2 Cellulose Nanofibers

CNF is documented as more efficient materials than microfibers to strengthen the
composite because of their interactions between the nanomaterials which may form
a percolated network formed by hydrogen bonds, only if there is a good dispersal
of nanofibers in the composites and their large specific area in the arrangement of
various 100 m2/g. It is expected that NC as reinforcing filler in the composites could
offer value-added particles with greater characteristics and wide applications for the
next generation of biodegradable materials. CNC is likely to exhibit better stiffness
since the tensile modulus of the CNC is as high as 134 GPa. The tensile strength of
the CNC was evaluated to be nearly 0.8 up to 10 GPa [50–52]. Polymer matrices are
the combinations of polymers with inorganic or organic materials holding particular
geometries like fibers, flakes, spheres, and particulates. The usage of nanofillers is
leading to the production of polymer composites and denotes a radical substitute to
the conventional polymer nanocomposites [53].
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Fig. 4 Synthesis of nanocellulose from cellulosic fibers [103]

5.3 Bacterial Cellulose

Previously, bacterial cellulose (BC) is produced in the form of nanomaterial by Glu-
conacetobacter species which is grown in a medium containing carbon and nitrogen
sources. Though it is chemically similar to plant cellulose, BC is formed as a bottom-
up process, in that the bacteria produce cellulose and form a bunch of nanofibrils
and gathering of a nano-sized ribbon-shaped fibrils in the range of 70–80 nm width
[54] preparing a pellicle membrane which has a water-holding capacity of 60–700
times its dry weight [55]. The BC is also synthesized in pure form which is not
combined with hemicellulose and lignin components, decreasing the purifying costs
and environmental pollutions resulting from the usage of harsh chemicals reagents
[56]. It might also be used to prepare composites in various methods.

5.4 Preparation of Nanocellulose

Various techniques have been stated for the isolation of NC fibers from agricultural
residues (Table 1). Alemdar and Sain [57] synthesized CNF from agricultural wastes
like wheat straw and soy hulls to utilize as reinforcing filler in biocomposites by
the chemo-mechanical method. Fahma et al. [58] prepared CNF by hydrolyzing
oil palm empty fruit bunch (OPEFB) with H2SO4 hydrolysis (Fig. 4). They noted
a decline in crystallinity and degree of polymerization during the acid hydrolysis.
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Table 1 Preparation of nanocellulose from different sources and various methods

Methods for
obtaining CNC

Cellulose source Nanocellulose Particle size
(nm)

References

H2SO4 acid
hydrolysis

Sugarcane
bagasse

CNC 5 ± 1.1, 275 ±
73

Achaby et al.
[42]

Enzymatic
hydrolysis

Sugarcane
bagasse

CNC 14–18, 193–246 Camargo et al.
[63]

Acid hydrolysis Red algae CNC 5.2–9.1,
285.4–315.7

Achaby et al.
[27]

H2SO4
hydrolysis

Rice straw CNC 3–11, 39–117 Lu and Hsieh
[12]

H2SO4
hydrolysis

Rice husk CNC 10–15 Johar et al. [43]

H2SO4
hydrolysis

Cassava bagasse CNF 2–11, 360–1700 Teixeira et al.
[64]

H2SO4
hydrolysis

Grain straws CNC 10–25, 120–800 Oun and Rhim
[65]

H2SO4
hydrolysis

Kenaf bast fibers CNC 12, 158 Kargarzadeh
et al. [66]

H2SO4
hydrolysis

Kenaf fibers CNC 12 ± 3.4,
70–190

Zainuddin et al.
[67]

Acid hydrolysis
(H2SO4 and
HCl) and
ultrasound
assisted
extraction

Waste cotton
cloth

CNC 3–35, 28–470 Wang et al. [68]

H2SO4
hydrolysis

Industrial waste
cotton

CNC 10 ± 1, 180 ±
60

Thambiraj and
Ravi Shankaran
[69]

Chemo-
mechanical
fibrillation via
griding and
homogenization

Areca nut husk
fibers

CNF 1–10 Chandra et al.
[30]

H2SO4
hydrolysis and
chemical,
enzymatic
pretreatment

Barley straw and
husk

CNC 5–15, 40–270 Fortunati et al.
[70]

H2SO4
hydrolysis,
Microbial
degradation

Okra fibers CNC – Fortunati et al.
[71]

H2SO4
hydrolysis

Kiwi pruning
stalks

CNC 10–15, 100–150 Luzi et al. [72]

(continued)
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Table 1 (continued)

Methods for
obtaining CNC

Cellulose source Nanocellulose Particle size
(nm)

References

H2SO4
hydrolysis

Cotton NCC 25, 450, Shamskar et al.
[73]

Ethanol and
peroxide +
ultrasonication

Wood CNC 1 ± 9, 500 Li et al. [74]

H2SO4
hydrolysis

Hemp CNC 1–4.5, 20–120 Luzi et al. [75]

NaOH and
H2SO4
hydrolysis

Miscanthus
giganteus

CNC 8.5, 2.8 Cudjoe et al.
[76]

NaOH and
H2SO4
hydrolysis

Ramie fibers CNC 3–15, 100–300 Habibi et al. [77]

H2SO4
hydrolysis

Sugarcane CNC 20–60, 250–480 Kumar et al. [78]

H2SO4
hydrolysis
mechanical
treatment

Wheat straw CNF 30–70, 90–110 Kaushik et al.
[79]

H2SO4
hydrolysis

Tunicate CNC 30–40,
500–3000

Roman and
Gray [80]

Enzymatic
hydrolysis

Tunicate CNC 16.04 Zhao et al. [81]

NaOH and
H2SO4
hydrolysis,
steam extraction

Coconut coir
fiber

CNF 5–50 Abraham et al.
[15]

H2SO4
hydrolysis

Soy hulls CNC 4.9, 503 Neto et al. [82]

H2SO4
hydrolysis

Mengkuang
leaves

CNC 5–25, 5–80 Sheltami et al.
[83]

H2SO4
hydrolysis

Corncob CNC 4.15, 210.8 Silvério et al.
[84]

H2SO4
hydrolysis

Bamboo fibers CNC 5–8, 100–130 Brito et al. [85]

H2SO4
hydrolysis

Banana
pseudostem

NCC 1.9–7.2, 12–135 Pereira et al.
[86]

Acid and ball
milling methods

Sugarcane
bagasse

CNC and CNF 160–400, 20–30 Sofla et al. [32]

Chemo-
mechanical
method

Wheat straw and
soy hull

CNF 10–120 Alemdar and
Sain [57]

(continued)
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Table 1 (continued)

Methods for
obtaining CNC

Cellulose source Nanocellulose Particle size
(nm)

References

H2SO4
hydrolysis

Oil palm empty
fruit

CNF 10–80 Fahma et al. [58]

Chemo-
mechanical
method

Oil palm empty
fruit

CNF 5–10 Fatah et al. [59]

Chemical
ultrasonic
method

Wood, bamboo,
wheat straw and
flax fibers

CNF 10–40 Chen et al. [60]

TEMPO
oxidation
mediated system

Hardwood
celluloses

CNF 3–4 Saito et al. [61]

Chemical,
grinder and
homogenizer
method

Coir CNF 18–20 Kanoth et al.
[87]

H2SO4
hydrolysis

Rice straw CNC 15 ± 1.3 Anand babu
et al. [88]

H2SO4
hydrolysis

Cotton wool CNC – Popescu [89]

Chemo-
mechanical
process

Cotton fibers NCF 70–300 Savadekar et al.
[90]

Grinding and
homogenization

Kenaf fibers CNF 15–80 Jonoobi et al.
[91, 92]

Disintegration in
a Waring
blender;
homogenization,
TEMPO

Sugar beet pulp NC – Habibi and
Vignon [93]

Enzymatic
pretreatment,
high shear
refining,
cryocrushing

Bleached kraft
pulp

CMF 100 Janardhnan and
Sain [94]

Mechanical
pretreatments
followed by
homogenization

Rubber wood CNF 10–90 Jonoobi et al.
[92]

Mechanical
pretreatments
followed by
homogenization

Empty fruit
bunches

CNF 5–40 Jonoobi et al.
[92]

Homogenization Swede root CMF – Bruce et al. [95]

(continued)
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Table 1 (continued)

Methods for
obtaining CNC

Cellulose source Nanocellulose Particle size
(nm)

References

Substrate media Bacterial
cellulose

CNF 40–70 Castro et al. [96]

H2SO4
hydrolysis

Bacterial
cellulose

CNC 50, 100–1000 Grunert and
winter [97]

H2SO4
hydrolysis

Bacteria CNC 10–50,
100–1000

George et al.
[98]

HCl hydrolysis Bacteria CNC 15–25, 160–420 George and
Siddaramaiah
[99]

HCl hydrolysis Cotton CMC 5–10, 100–150 Araki et al.
[100]

Steam explosion
treatment and
hydrolysis

Sunflower stalk CNC and CNF 5–20, 150–200 Fortunati et al.
[101]

Ultrafine
grinding

Sludge (residue
from dissolving
cellulose
production)

CNF 100 Jonoobi et al.
[102]

Fatah et al. [59] reported a chemo-mechanical method to extract CNF from OPEFB
and successfully achieved in attaining the CNF with a diameter ranging from 5 to
10 nm and observed a decrease in the crystallinity that is inclined by the pressure of
mechanical method. The chemical ultrasonic technique was reported by Chen et al.
[60] for the extraction of CNF from four different fibers such as wood, bamboo,
wheat straw, and flax fibers. The authors successfully isolated the nanofibers with
a diameter in the range of 10–40 nm from bamboo, wheat straw, and wood fibers;
however, flax fibers with rich content of cellulose were not nanofibrillated evenly.
Saito et al. [61] presented a pretreatment of cellulose by oxidation with 2,2,6,6-
tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated method. They extracted
CNF in the range of 3–4 nm in width from hardwood celluloses. The defibrillation
of nanofibrillated cellulose generally involves various mechanical techniques like
cryocrushing, microfluidization, high-intensity ultrasonication, grinding, and high-
pressure homogenization [62].

Kanoth et al. [87] synthesized nanofibrillated cellulose with the diameter of
18–20 nm from coir with the help of a commercial grinder to prepare the pulp
followed by a chemical process. For the nanofibrillation of chemically pretreated
and bleached pulp, an ultrahomogenizer was utilized.
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5.4.1 Acid Hydrolysis

Sulfuric acid (H2SO4) is the most frequently used acids for the extraction of CNC.
It is more stable than any other organic acids, and it can offer a better effect on
hydrolysis. The CNC was evenly distributed during H2SO4 hydrolysis because its
sulfate ion showsnegative charges and could create an electrostatic repulsion between
CNC particles [86]. However, H2SO4 is a strong oxidizing acid. The greater thermal
degradation of cellulose generally happens when sulfates are introduced on the sur-
faces of cellulose during hydrolysis, mainly at maximum temperature, which leads
to lesser yields of CNC, resulting in a negative impact on the manufacturing in the
large-scale and CNC application. Due to these motives, growing efforts have been
made to utilize other acids to substitute H2SO4 for the cellulose hydrolysis in recent
periods. Hydrochloric acid (HCl) has the weak oxidizing capability and less thermal
degradation of CNC leading to poor dispersal capability for CNC. The combina-
tion of H2SO4 and HCl may be a good option for the extraction of CNC. The HCl
hydrolysis may improve the CNC dispersion property by the electrostatic repulsion
of sulfate during the mixed acid hydrolysis.

Martins et al. [104] stated that the acidic hydrolysis is the common method used
for the isolation of cellulose nanowhiskers (CNW), which could be performed using
H2SO4 or HCl. In this method, the crystalline parts are insoluble in acid, under the
conditions used for isolation. The isolation procedure and the source of cellulose
are tremendously influent on the morphology and other properties of CNW; hence,
selecting the hydrolysis method to be used becomes an important stage in the suc-
cessful isolation of nanocrystals. It is well known that the utilization of different
acidic solutions might cause variations in the stability of the colloidal suspension,
because of the presence of different loads on the surface of fibers. The use of H2SO4

for isolation leads to the introduction of negative sulfate groups on the outer crystals
surface during the hydrolysis process and considered that it is responsible for the
stabilization of crystals in the resultant solution, although the presence of sulfate
groups might cause the decrease in thermal stability, as a large amount of sulfate
groups on the cellulose lead to decreased thermal degradation of the cellulose. If
HCl is used instead of H2SO4 to hydrolyze the cellulose, the thermal stability of the
obtained nanocrystals is enhanced; however, the nanocrystals are likely to aggregate
due to the lack of electrostatic repulsion force between the particles, resulting in an
unstable solution [104].

The isolation of CNW by acid hydrolysis might cause digestion of the pre-
treated fiber structure amorphous region, resulting in crystalline nanoparticles [105].
Siqueira et al. [106] explains the principle of the amorphous regions of cellulose
disruption, to produce CNC. The hydronium ions can pierce into the amorphous
domains which promote the hydrolytic cleavage of glycosidic bonds liberating indi-
vidual crystallites [107].

Similarly, Siqueira et al. [106] studied the influence of the use of H2SO4 or HCl to
extract stable suspensions of CNC. However, the H2SO4 might produce more stable
suspensions when compared to the HCl because it results in CNC with marginal
loading area and the CNC obtained by H2SO4 hydrolysis has a negatively charged
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surface due to esterifying the hydroxyl groups of the surface for generating the sulfate
groups.

Johar et al. [43] mentioned in the reports that the process should ultimately
decrease the size of the micro fibers to nanoscale level. The resulting nanoparti-
cles are in the range of 15–20 nm in diameter and aspect ratio of 10–15 nm.

5.4.2 Ultrasound

The very simple and effective method for valuable recycling and degradation of cel-
lulose wastes includes hydrolysis and ultrasonic degradation. Oksman et al. [108]
compared theCNWobtained by ultrassonification, homogenization, and acid hydrol-
ysis. The degree of crystallinity of thematerials was 73% after ultrasonification, 77%
after homogenization, and 75% after acid hydrolysis. This study concluded that the
nanowhiskers produced by mechanical methods have good thermal stability com-
pared to the chemical treatment. On the other hand, this stability is not greater than the
thermal stability of native cellulose because the cellulose chains are shorter andmight
have a lower degree of polymerization. But, the dimensional of residues extracted
by sonication and homogenization was 10 nm in sizes. Thus, the ultrasonification,
homogenization, and grinding processes have gained more attention to the extrac-
tion of micro- and nanofibrils [109]. Additionally, the ultrasonic-assisted hydrolysis
method has been confirmed to be more effective to enhance the productivity of CNC
[110, 111].

5.4.3 Oxidation Mediated 2,2,6,6-Tetramethylpiperidine-1-Oxyl
(TEMPO)

The nanofibrillated cellulose can be obtained through oxidation method using
TEMPO and consequent mechanical dispersion in water. This technique has some
important characteristics: The final material could be dispersed in water, with all
individual fibrils having a uniform width of 3–4 nm. Also, there is plentiful pres-
ence of carboxylate groups on the surface of cellulose fibrils (~1.7 nm) by which
the electrostatic repulsion or working of the osmotic behavior is efficient between
the fibrils produced by this method anionically charged water [112–114]. Iwamoto
et al. [114] described that the wood pulp oxidation by radical TEMPO which acts
as a catalyst in an aqueous medium with sodium hypochlorite and sodium bromide
at pH 10 might cause the development of C6 carboxylate groups on the surface of
microfibrils, retaining the original crystallinity of cellulose I and the crystal width.

The films developed by TEMPO oxidation of CNF dispersed in water have better
properties like good transparency and resistance to elasticity, low thermal expansion,
and low oxygen permeability [114, 115]. Fukuzumi et al. [113] isolated CNFwith an
averagewidth of ~4 nm, butwith different lengths: 200, 680, and 1100 nmbyTEMPO
oxidation method. By examining the viscosity, average degree of polymerization
(DPV) for individual CNF obtained was found to be 250, 350 and 400, respectively.
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The nanofibrils having short length result in fewer DPV values; however, it has good
light transmittance. In contrast, nanofibrils are in greater length and result in better
tensile strength and elongation at break for the film. The barrier properties of all the
films with different CNF lengths may differ, in which the nanofibrils with maximum
length showed good oxygen barrier properties. However, in the case of water vapor
permeability, theCNF length does not show any significant effect andmostly inclined
by the water vapor transmission rates (WVTR) film.

Fukuzumi et al. [115], successfully isolated the nanofibrils from bleached kraft
pulp prepared by TEMPO oxidation. The subsequent treatment with various calcium
solutions was performed to exchange the ions by converting the carboxylate groups.
The nanofibrils subjected to various treatments might improve the thermal behavior
of CNF.

5.4.4 Mechanical

The CNF isolated by mechanical method provides some advantages than chemi-
cal treatment methods. The mechanical method being an environmentally friendly
method does not involve the use of solvents or any other chemical reagents. Fur-
thermore, the produced material can be used as reinforcement in polymer matrices
[116, 117]. The mechanical methods utilize energy during its performance, how-
ever, make use of all wood materials for the production of CNF, whereas during the
chemical method, almost half the wood becomes pulp and other half is dissolved
[118].

Mtibe et al. [117] studied a comparison between two forms of isolation of corn
stover CNF, by acid hydrolysis and mechanical method. Primarily, the waste was
treated by basic procedure, then the pulp of cellulose was collected, and finally,
it was subjected to these two methods. The mechanical method comprises of two
steps:At first, the natural fiberwas processed into amechanicmixer and consequently
passed through a mechanical grinder. By evaluating the results of both the nanofibers
and nanowhiskers prepared by mechanical and chemical treatment respectively, it
was noted that the dimensions of CNF were 4–10 nm in diameter and length in
few microns, whereas chemically treated CNW had a dimension between 3–7 nm
in diameter and 150–450 nm in length. Regarding the crystallinity data, the CNF
exhibited 66.4% of crystallinity, but for the CNW, it was 72.6% of crystallinity.
The degree of crystallinity is less because of the mechanical method used to break
the crystalline domains of the cellulosic fibers. As for the mechanical behavior,
the obtained CNF by mechanical technique indicates the enhancement of the stress
transfer fiber to fiber that explains the increase in themechanical and thermal behavior
of the material, with better stability [117].

Ardanuy et al. [11] reported the elimination of amorphous phase of cellulose to
form a crystalline CNC in the range of around 2–20 nm in diameter and 100–600 nm
in length. The CNC might be utilized as reinforcing filler for the development of
functional nanomaterials, antimicrobial films, protective coatings, polymeric nano-
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biocomposites, food packaging films, drug delivery, and membrane filters and sub-
strates for flexible electronics [119–121].

Robles et al. [122] illustrated the variations of polylactic acid (PLA) behavior after
the application of CNC obtained from blue agave. They observed that the different
methods of producing the cellulose in nanoscale can provide various characteristics
to the obtained composite, like enhanced mechanical behavior and hydrophobicity
due to the non-polar covalent bond formation between the hydroxyl groups and free
coupling which also improves the dispersion within the matrix that is important in
producing the materials with good water barrier property.

5.4.5 Enzyme Hydrolysis

Enzyme hydrolysis is the new technology based on the use of hydrolytic enzymes
alone or in combinationwith someother organic chelating compounds. This approach
is now a very popular method to perform the pretreatment of the lignocellulosic
materials. The aim is to purify the cellulose from other interfering compounds like
lignin and hemicellulose, prior to its final acid hydrolysis which results in CNC
[123]. The enzymatic pretreatments are more particular than the chemical treatment
and have minimal effect on the surroundings. The use of enzymes like pectinases
and cellulases has gained more attention for their capability in eliminating the water-
soluble material, minerals, pectin, and amorphous hemicelluloses, etc. [106].

Fortunati et al. [70] explained that CNC was successfully isolated from both bar-
ley straw and husk by approaching two different methods: an alkaline and enzymatic
pretreatment, followed by an acid hydrolysis. The results prove the efficacy of the
enzymatic pretreatment on the value of resultant CNC. The outcomes showed that
chitosan decreased the optical transmittance and the mechanical properties of PVA
matrix, while its combination with CNC, particularly when isolated by enzymatic
pretreatment and incorporated at a higher concentration, was capable to modify the
optical transparency, and the mechanical and thermal behavior. In the case of enzy-
matically pretreated fibers, the defibrillation procedure appears to be more effective
and certain coils, noticeable as vascular protoxylem arrangements were observed.
They were visible because of the more efficient elimination of hemicellulose and
lignin compounds.

Cellulases are complexes of endo-glucanases, exo-glucanases, and cellobiohydro-
lases. These enzymes act synergistically in the cellulose hydrolysis. Endo-glucanase
enzymes randomly attack and hydrolyze the amorphous region of cellulose at the
same time as exo-glucanase break down the polymer chain of cellulose either in
the reducing ends or non-reducing ends. Cellobiohydrolases hydrolyze the cellulose
chains either in the C1 or in the C4 ends by the utilization of protein in every case,
into the cellobiose units.

Several enzymes, like hemicellulase, pectinase, xylanase, and cellulase, have been
used to eliminate the non-cellulosic components. The proposed constituents of the
enzyme are a mixture of various proportions of pectinase, hemicellulase, and cellu-



4 Biocomposite Reinforced with Nanocellulose for Packaging … 97

lose [124]. It is well understood that the cellulase enzyme is used to hydrolyze the
cellulose which leads to the removal of amorphous regions.

In recent times,NovozymepresentedScourzymeL to commercialize in themarket
for the application in textile industry. The enzyme, called pectate lyase, particularly
catalyzes the breakdown of internal a-1,4-glycosidic linkages by β removal in pectic
acid (pectate) at alkaline pH between 8 and 10. The specific attack on carboxylic
acids decreases the acid constituent in the natural fibers, giving rise to lowhydrophilic
characteristics. Generally, this enzymaticmethod could bewell fitted to the cellulosic
fibers comprising of pectin.

Enzymatic pectin removal in the traditional softening procedure results in disas-
sembly of fiber bundles in fibrous crops, like hemp and flax [125–127].

6 Biocomposites with Nanocellulose

6.1 Biocomposites Incorporated with Cellulose Nanocrystals

Chen et al. [128] produced nanocomposites with polylactide-grafted CNC (CNC-
g-PLA) and poly(bhydroxybutyrate) (PHB) as a matrix. The results suggest that
the nanocomposites with unmodified CNC exhibited a greater crystallization rate
compared to neat PHB, whereas CNC-gPLA showed less crystallization degree.
Additionally, several researchers illustrated that the CNC can also be able to act as
nucleating agents, which affect the crystalline degree of the polymer [129, 130].

Fortunati et al. [131] developed poly(lactic acid) (PLA)-based nanocomposite
films reinforced with modified CNC with an acid phosphate ester of ethoxylated
nonylphenol (Beycostat A B09). The report suggests that the surfactant helps in NC
distribution in the polymer composites, augmenting the nucleation effect of CNC
and leading to plasticization.

The biocomposites prepared based on various polymers such as PLA [132, 133]
and alginate [134] reinforced with CNC have been proven for the enhanced thermal
properties of biocomposites. Starch biocomposite film with the addition of CNC
content could increase the crystallinity up to 15% CNC [135].

Azeredo et al. [136] investigated the influence of CNC extracted from cotton
or coconut husk fiber on alginate–acerola film. The biocomposite reinforced with
CNC from both the fibers exhibited similar tensile and water vapor permeability.
Similarly, Azeredo et al. [137] examined the effect of CNC isolated from coconut
fiber on alginate-based film and compared with the nanoclay as a reinforcing agent.
Both the biocomposite film showed better water vapor permeability than the pure
matrix film.

A bio-nanocomposite film based on PLA reinforced with CNC at a concentration
of 1wt% and 5 wt% results in improved tensile properties as well as transparency
[138]. Likewise, the water vapor permeability was enhancedwhen themodified CNC
and different concentrations of pristine were added to PLA [139]. A nanocomposite
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film prepared by using chitosan, CNC, glycerol, and olive oil exhibited enhanced
water resistance and water vapor permeability [140].

6.2 Biocomposites Containing Cellulose Nanofibers

The chitosan [141] and PVA [142] film added with CNF were reported to have
improved the thermal properties, water solubility, and water permeability. PLA rein-
forced with CNF obtained by Iwatake et al. [143] confirms the increased tensile
strength and modulus. Similarly, Fernandes et al. [141] obtained the chitosan film
with CNF reinforcement which results in the increment of tensile strength and mod-
ulus of the composite films. The xylan-rich hemicellulose film prepared with the
addition of sorbitol as plasticizer improved the tensile strength and young modulus
very effectively [144]. Bilbao-Sainz et al. [145] demonstrated the addition of CNF
and TEMPO-CNF to HPMC films and compared it with the HPMC films reinforced
with CNC. The results revealed that HPMC with CNC exhibited a better tensile and
water vapor barrier properties and good transparency level of the film.

6.3 Biocomposites Reinforced with Bacterial Cellulose

George et al. [146] prepared the PVA-based film reinforced with the 4 wt% BCNC
which improved the tensile and thermal properties of the films than the PVA matrix.
Moreover, the starch film added with BCNF (50 wt%) exhibited a better tensile
strength and modulus [147].

Barud et al. [148] studied the poly(3-hydroxybutyrate) filmwith bacterial cellulose
which results in very good tensile and modulus properties because of its strong inter-
facial interactions between the BC and PHB networks. Conversely, the chitosan film
was developed by Lin et al. [149] and reinforced with BC followed by comparison
with the pure BCmatrix which confirmed the enhancement of mechanical properties
of the biocomposites. Likewise, the gelatin film combined with BC demonstrated
the improvement of tensile behavior by interlinking the networks uniformly [55].

7 Development of Nanocellulose-Based Biocomposites

Nanocellulose materials can be produced by different methods which directly
enhance the characteristics of final products. The important research efforts are
focused on the production of NC-based biodegradable composites with enhanced
properties [150].

The incorporationofCNCas reinforcingfiller in polymer compositesmight lead to
the formation of H-bonded three-dimensional network within the matrix [151]. This
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Fig. 5 Melt intercalation processing for the preparation of the bio-nanocomposite film [177]

network gives the energy to withstand the external strains, enhancing the mechanical
behavior of nano-biocomposites. Furthermore, the CNC network had good oxygen
permeability and improved the thermal behavior of nanocomposites [139]. CNC
could also change the crystallization kinetics of the polymer matrices, and also, the
surface modification has an important role in this process [152].

Petroleum-based polymers prevail in food packaging because of its simple han-
dling, low cost, and good barrier behavior [153]. The utilization of nanocellulose
might prolong the keeping quality of food and may also enhance the quality of food
as they could aid as carriers for antimicrobial and antioxidants compounds.

Recently, the fast development of polymeric science and broad utilization of poly-
meric materials in technology have led to gaining interest in the development and
characterization of polymer-based composite (Table 2).

7.1 Melt Processing

The knowledge of using heat to make soften and mold polymers has existed since
1868. John W. Hyatt manufactured a machine for the production of the billiard ball
from plastics which can be utilized for the injection of themoltenmaterial into amold
form. More than 70 years later, a screw was added to a similar machine, permitting
the mixing and recycling of polymers at high temperatures. Melt processing of bio-
composites is an important method to market composite materials in large volume,
and also, it is very cost-effective and quick progress method (Fig. 5).

Abundant progress has occurred in current techniques for preparing polymeric
nanocomposites. The main part of these studies on cellulose nanocomposites is done
in liquid media since the materials can reach good or reasonable suspension states
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in aqueous media and some organic solvents. Nowadays, melt processing method
is a greener approach because no solvents are used. Conversely, it involves some
complications due to the inconsistencies between cellulose and polymeric matrices.
In such cases, the auxiliary method could be followed to produce cellulose-based
nanocomposites. Composites prepared by an extrusion technique, injection, in situ
polymerization and resin transfer molding are generally found in the literature.

Zhang et al. [178] developed CNC/PBAT nanocomposites with 0.5, 1.0, 1.5, and
2.0 wt% of sulfonated CNC bymelt mixingmethods and altered by acetic anhydride.
They noted that the surface alteration leads to even diffusion and a better interfacial
linkage between modified CNC and PBAT, augmenting the mechanical behavior of
the nanocomposites.Morelli et al. [179] added CNCproduced by acid hydrolysis and
altered with phenylbutyl isocyanate in PBAT matrices by melt extrusion technique.
The results revealed that the nanocomposites with modified NC exhibited a modulus
whichwas smaller than themodulus of nanocompositeswith unmodifiedNCwith the
same concentration of nanofillers. They ascribed this result to the greater crystallinity
noted in the nanocomposites reinforced with unmodified CNC.

Habibi et al. [180] studied the CNC-g-PDLA added in PLLA matrix by melt pro-
cessing. They described that the greater mechanical properties are possible because
of the stereo complexion that hardens and stabilizes the percolation network.

Castro et al. [181] reported the reinforcement of high-density biopolyethylene
with CNW isolated from curauá fiber and castor oil, soy, and linseed epoxidized
as compatibilizers. The total process includes the extrusion and hot pressing, tar-
geting to estimate the dispersal of CNW in the polymeric matrix. The TGA/DTG
was performed to analyze the thermal degradation of the film incorporated with
CNW. Menezes et al. [182] reported the reinforcement of polyethylene with CNW
by extrusion technique to produce a nanocomposite film. This research suggests the
possibility of CNC processing by a totally industrial procedure without affecting the
characteristics desired for the material.

7.2 Injection Molding

It is a technique used to prepare a material with various structures and properties by
the combination of different polymers and also by the addition of nanofillers. The
injection molding process is well documented for the production of various compos-
ites reinforced with nanofibers. In this technique, the polymers are heated to prepare
a composite in a definite shape using themoldwhich results in composites with better
crystallization due to the heat transfer into the polymers. The polypropylene com-
posite with CNC was developed by Yousefian and Rodrigue [183] by this injection
molding which resulted in the composites with enhanced viscosity.
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7.3 Extrusion

Extrusion method is the simplest technique used to prepare the composites based on
various polymers including cellulose. This technique is used most commonly due to
its easy procedure, and also, it can be useful in the industrial sector. In thismethod, the
dispersion of the particles or agents in the polymer materials is achieved by imposing
the mechanical stress through the screw. Alloin et al. [184] developed the nanocom-
posite films by various techniques including extrusion and casting evaporation for
comparisonwhich has proven the significant differences between similar composites.
The mechanical properties of similar composites prepared using extrusion method
are higher than the casting and evaporation technique at the same concentration of
the materials.

Several researchers have reported that the twin-screw extrusion was used to com-
bine the nanocellulose and different polymers such as PP [183], PE [185], and PVA
[186]. Moreover, cellulose-based composites result in poor dispersion, while the
extrusion method is performing due to the insufficient stress during this process to
disperse the materials within the matrix. The dispersion capacity of CNF in the PE
matrix was confirmed by using fluorescent marker by Zammarano et al. [187], who
used the microscopic technique to identify the dispersion level. In this extrusion
technique, the size of the nanofibers is decreased by the shear force which results in
better reinforcement leading to strong mechanical properties.

7.4 Resin Transfer Molding

Resin transfer molding or liquid transfer molding is same like injection molding in
few aspects. Nevertheless, the classical approach of this method needs prior placing
of the filler within the mold in which resin is placed at a lower pressure. In addition,
the resin is usually cured after settlement [188]. The process has several advantages
like low cost and the possibility of controlling fiber orientation. The first attempt
made to prepare nanocomposites by RTM was done by Lekakou et al. [189]. In this
work, they suspended nanosilica materials in an appropriate solvent and formed a
class of epoxy–silica masterbatch, which was used to produce solid layers. These
layers were compacted into glass fabric–epoxy laminates with enhanced mechanical
behavior. BC was used as auxiliary filler in thermoplastic composites prepared by
liquid transfer molding where sisal fibers were used as continuous fibers [190]. Few
researchers utilized NC itself as the mold for the resin. In this procedure, CNF was
used as scaffolding for the resin by dipping the dry nanofibers into a resin bath under
vacuum. The curing of the resin produced solid particles that were consequently
molded by abrasion or pressure [191]. In recent times, Barari et al. [192] examined
the influence of modified CNF as a scaffold for resin before curing. The utilization
of non-modified cellulose could avoid the diffusion of resin to the middle of the
specimen, forming dry spots within the fibrillar structure. The silylation of the CNF
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enhanced the spreading of the resin and improved the mechanical response of the
post-cure structure than the pristine nanofibers. The alteration step also enhanced the
curing of the resin by decreasing its activation energy [193].

7.5 In Situ Polymerization

In situ polymerization was the first technique used to develop nanocomposites.
Recently, this method was used to prepare the thermoset composites. For thermosets
like epoxies or unsaturated polyesters, a curing agent or peroxide is mixed to start
the polymerization. For thermoplastics, the polymerization could be started either
by the incorporation of a curing agent or by improving the temperature.

The monomer polymerization in the presence of nanofillers is an effective substi-
tute for simply mixing to dispersing the particles in the matrix. The basic knowledge
of using in situ polymerization has been applied to the development of cellulose-
based nanocomposites (Fig. 6). Polymerization is usually achieved using a sufficient
solvent in which the monomers are soluble and the cellulose nanoparticles are dis-
persible that can include a previous step of drying [194].

As discussed by Iyer and Torkelson [195], these necessities for the solvent could
limit the industrial applications of in situ polymerization, as with casting and evapo-
ration techniques. Certain limitations exist on the quantity of nanofiller which can be
efficiently dispersed by this method. Auad et al. [196] observed that CNC materials
altered by in situ polymerization exhibited higher percolation thresholds compared
to non-modified CNC. A moderate addition of CNF could sustain good dispersion
during polymerization. Concurrently, the existence of nanofiller altered the viscos-
ity of the system, demanding increased reaction time to finish the polymerization
[197]. The rise in viscosity might happen by the surface grafting of cellulose during
polymerization method. Rueda et al. [198] explained the use of CNC as precursors
of PU chains by grafting 1,6-hexamethylene diisocyanate onto CNC surfaces. The

Fig. 6 In situ polymerization for the preparation of bio-nanocomposite film [177]
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modified particles were used as templates to produce polymeric chains in a second
reaction. A similar method was examined by Yu et al. [199]. The results enhanced
the mechanical characteristics of methyl methacrylate (MMA) and butyl acrylate
(BA) co-polymer P(MMA-co-BA) using a combination of grafted CNCs with the
linear MMA-co-BA. The addition of CNC enhanced Young’s modulus and tensile
strength of the composite by augmenting the compatibility and entanglement of chain
between grafted CNCs and co-polymer. Other properties might also be improved by
in situ polymerizations. Müller et al. [200] revealed that the use of bacterial NC
permitted the production of membranes with good flexibility for the application in
organic electronics. Kaboorani et al. [201] added 1 and 3 wt% of CNC to develop a
UV-curable coating for wood furniture. At higher content (e.g., >50%), the hydroxyl
groups of NC could be used as crosslinkers for epoxy resins as the nanoparticles
self-organize, which produces the iridescent colors and particles with exciting pho-
tonic applications [202]. Numerous reports using in situ radical polymerization have
been reported previously for the development of nanocomposites based on NC with
epoxy resin [203], enzymes [204], hydroxylbutyl acrylate [205], polyamide-6 (PA-
6) [206], poly(3,4-ethylenedioxythiophene) [200], poly(n-butyl acrylate-co-methyl
methacrylate) [194], poly(N-isopropylacrylamide) [207], and among others.

Morelli et al. [208] studied that the sulfonatedCNCwas grafted using a lowmolec-
ular weight poly(butylene glutarate) by in situ polymerization method and added
the modified nanocellulose into PBAT matrices by the technique of melt extrusion.
The grafting improved the thermal behavior of the NC by 208 °C and lessens its
hydrophilicity. The addition of 10 wt% of NC augments the tensile and elastic mod-
ulus of PBAT around 50%, without modifying its good extensibility and upsurges its
storage modulus by almost 200%.

Biocomposite with bacterial cellulose (BC) and polypyrrole (PPy) was produced
by Muller et al. [209] using an in situ oxidative polymerization of pyrrole (Py) in
the presence of bacterial cellulose hydrogels with ammonium persulfate (APS) as an
oxidant. The electrical conductivity, morphology, mechanical behavior, and thermal
response of the nanocomposites achieved by ammonium persulfate (BC/PPy·APS)
were examined and compared with BC/PPy composites obtained using as oxidant
agent Iron III chloride hexahydrate. The morphology, electrical conductivity, and
the thermal and mechanical response of/PPy·APS composites were studied and also
compared with BC/PPy·FeCl3 composites. The BC/PPy·FeCl3 exhibits the electrical
conductivity in the range of 0.01–1.2 S cm−1, i.e., 100-fold higher than the BC/PPy
APS composites.

7.6 Layer-by-Layer Lamination

Hand laminating, or layer-by-layer (LbL) laminating, is a simple and easy technique
for molding the products by intercalating the layers, either by hand or by spray. The
resultant materials are laminated, and the mixture of layer properties could provide
the superior surface and mechanical behavior. It is well documented that the desired
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properties for various LbL systems are strongly reliant on the number of layers, pH,
ionic strength, deposition conditions, and polymerization degree of the materials
[210]. When the structure of the layered films of CNC and xyloglucan (XG) was
compared to that of films prepared from a direct combination of CNC/XG in water,
both resulted in similar thicknesses, however dissimilar in internal structures [211].
LbL normally uses aqueous media to dissolve the alternative layers of oppositely
charged molecules.

The application of nanoparticle layers might be used to prepare materials with
different characteristics. These layers might act as reinforcing agents or oxygen bar-
riers, or developmaterials with biomedical applications, like tablets with outstanding
properties as drug carriers [212, 213].

The deposition of CNC from an anisotropic aqueous dispersion is entropy-driven.
The materials produce layers with either random or aligned arrangements. The dif-
ference in arrangements is achieved by regulating the critical concentration that is
dependent on the materials aspect ratio and dispersion of ionic strength [214].

Cranston et al. [215] studied Young’s modulus of multilayer films of CNF and
polyethyleneimine. The results confirmed that the humidity was vital to the film
properties, as the presence of water altered the interlayer interactions, which leads
to reductions in the modulus by more than 10 times. Furthermore, the introduction
of charged particles like CNC looks like to make difficulties in the layer interactions
more than it did for uncharged layered particles. Since layers are usually charged,
the particle interface acts as a composite material and interacts particularly with the
opposing layer.

Mesquita et al. [216] evaluated the charge properties to generate electrostatic
interactions between negatively charged sulfate groups on CNC surfaces and the
ammonium groups of chitosan. The prepared films exhibited thick and uniform dis-
persals of the CNC nanoparticles, with bilayer resulting in an average thickness of
7 nm. At the same time, the average thickness of collagen–CNC system determined
was 8.6 nm for bilayers [217].

7.7 Solvent Casting Method

Solvent casting method is one of the easiest techniques for the development of
polymer nanocomposites (Fig. 7) as it requires simple apparatus and is less time-
consuming; however, in this technique, it is very difficult to manufacture films with-
out sandwiching with another polymer film for support. Additionally, because of its
rigidity, the film developed cracks easily, and this leads to easy peeling off into thin
layers like mica. Films formed by the extrusion technique and tubular procedure,
where the liquid-crystalline polymer (LCP) is considerably melted give rise to the
problem of vertical anisotropy and interlayer peeling due to the peculiar alignment
features. So, in such cases, if the solvent casting technique is used where, after dis-
solution in a solvent, the solvent is removed to obtain the product, a non-anisotropic
filmmay be produced and the film could be preparedwithoutmelting the LCP. There-
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Fig. 7 Preparation of bio-nanocomposite film

fore, solvent-casted films from LCP transfer from an amorphous state to the film by
treatment in such a way that the anisotropy in the processing of LCP films does not
happen.

Composites produced by casting and evaporation technique result in themaximum
mechanical reinforcement presented by CNCs. This is because sample preparation
takes place over long time periods. During preparation, the materials have sufficient
period to self-assemble into network systems. This method was widely examined in
the last 20 years, leading to a well-developed theory and describing the complete
potential of cellulose nanoparticles as agents of mechanical reinforcement [183,
218–220].

Nanocomposites might be produced by casting and evaporation technique with
the help of polymers matrix which does not need to be water-soluble. A limited num-
ber of water-soluble polymers could be directly added with aqueous suspensions of
cellulose nanoparticles. This confirms an optimal dispersal of nanoparticles after sol-
vent evaporation technique, while the polymer is dried under controlled conditions.
The preferred shape and thickness of the film might also be prepared. Conversely,
as with masterbatch production, the use of high-speed homogenizer during polymer
dispersion may cause chain scission. Bossard et al. [221] observed a decrease in
poly(ethylene oxide) molecular weight led by chain scission during dissolution with
stirring at high speed.

Even with these restrictions, the casting technique might be used to prepare very
interesting composites. Recently, Cheng et al. [222] used (TEMPO)-oxidized CNF
(TOCNF) to prepare waterborne polyurethane coatings (WPU) for the wood appli-
cation. The addition of various fractions of TOCNF to the polymer–additive mixture
intensely enhanced the mechanical behavior of the films. Young’s modulus of the
film upsurged from 8.6 MPa (pristine WPU) to 440 MPa (5 wt% TOCNF). On the
other hand, the inclusion of the nanoparticles also improved the surface roughness
of the films from 3 to 27 nm and reduced the adhesive strength of the coating. This
reduction was early described by Poaty et al. [223], who described the use of low
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molecular weight resins and various ratios of NC to regulate adhesiveness. Other
features, like enhanced scratch behavior, have also been defined in the literature
[224].

Morelli et al. [208] developed nanocomposites by solvent casting method from
PBAT and CNC. Sulfonated CNCs were altered by 4-phenylbutyl isocyanate (5
and 10 wt% of CNC). The results suggest that augmented mechanical response of
the nanocomposite with modified CNC to the p–p interfaces between the phenyl
rings grafted onto the CNC particles and the aromatic rings of the polymeric chain.
Furthermore, the DSC results confirmed that neither the NC incorporation nor their
surface modification leads to the lessening of the PBAT amorphous region and in the
entire crystallinity of the PBAT matrices.

Gardebjer et al. [225] prepared nanocomposite till 20 wt% of desulfated CNC and
chemically alteredwith PLA.ThemodifiedCNCand unmodifiedCNCwere added as
nanofillers in three different biodegradable matrices: PLA (polylactide acid), PLGA
(poly(lactide-coglycolide)), and PHBby solvent casting technique. ThemodifiedNC
exhibited low agglomeration and improved interfaces with the polymers like PLA,
PLGA, and PHB which are hydrophobic.

Bio-nanocomposites prepared using wheat straw nanofibers and thermoplastic
starch (modified potato starch) by solution casting technique [57]. Tensile strength
and Young’s modulus of the biocomposite films were considerably improved that
might be described by the even dispersion of CNF in the polymer matrices. Azeredo
et al. [50] prepared chitosan films reinforced with NC and glycerol content as a
plasticizer. Sodium caseinate-based films were produced by Pereda et al. [159] with
the addition of NC by diffusing the fibers into the film forming solutions, casting,
and drying. The composite films exhibited less transparency and more hydrophilic
surface when compared to neat sodium caseinate films. Caseinate films developed
showed an initial upsurge in the water vapor permeability and then reduced as the
filler concentration improved.

7.8 Electrospinning

Electrospinning process produces a nanofiber of films with uniform diameters from
the polymer solution with the help of high electric current. The fibers combined with
the various polymers will stretch by the electrostatic repulsion between the solvent
and surface area which results in nanofibers or films. Two different types of elec-
trospinning methods are generally followed: (1) Two different polymer solution was
injected simultaneously through the syringe needle for the formation of nanofibers
or films; (2) initially, two polymers are mixed, and the blend was injected into the
chamber for the formation of the films which is the most commonly used method for
the better achievement of the products with good properties.

Several studies were reported on the electrospinning of the polymers with
nanocellulose as reinforcing agents. Zhou et al. [226] stated the nanocellulose-based
polyethylene oxide film by electrospinning technique. The rod-like CNC which was
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well dispersed in the composite nanofibers by this electrospinning results in the
improved mechanical and thermal properties of the composites. The PVA-based
nanocomposite films were obtained by Peresin et al. [227, 228] by using the elec-
trospun method. The incorporation of CNC to the polymer composites enhanced the
mechanical properties due to the formation of the percolation network by the strong
bond fromations [227–229].

8 Nanocellulose-Reinforced Biocomposite in Food
Packaging Applications

Chitosan-based films have been effectively used as a packaging material for the
preservation of food quality [230]. NC-reinforced nanocomposite films might have
a promising effect in food packaging applications in upcoming years because of its
excellent mechanical and barrier response. Boumail et al. [162] prepared antimi-
crobial dispersed films for food applications. Antimicrobial dispersed films demon-
strated themaximum tensile strength during storage. In addition, Savadekar et al. [90]
productively isolated NFC from short cotton fibers by chemo-mechanical technique.

Abdollahi et al. [163] prepared a bio-based nanocomposite by the addition of cel-
lulose nanoparticles extracted from sulfuric acid hydrolysis into alginate biopolymer
by solution castingmethod. The tensile strength of the biocomposite films augmented
with growing NC concentration from 0 to 5 wt%; then, it reduced with an additional
upsurge of the filler concentration.

An innovative, technical, and economical process to mix the vermiculite
nanoplatelets with NC fiber dispersals into functional biohybrid composites was
obtained by Aulin et al. [231]. NC fibers of 20 nm in diameters and several
micrometers in length were combined with high aspect ratio exfoliated vermiculite
nanoplatelets by high-pressure homogenization.

The influence of CNF in the PLA matrix was demonstrated by Jonoobi et al.
[160] in terms of mechanical and dynamic mechanical response in concern of the
proposed application in food packaging. The upsurge in tensile strength, Young’s
modulus, and enhanced visco-elastic behavior were noted for nanocomposites films
with 5 wt% of CNF. This highlights the success of the melt component process to
produce the cellulose nanocomposites.

All cellulose nanocomposite films were prepared from sugarcane bagasse
nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The research
investigated that a very less value agricultural residue could be changed into a high-
performance nanocomposite. Cellulose nanocomposite films might be taken as a
multiperformance particle with high potential in cellulose-based food packaging
application due to its valuable properties such as toughness, bio-based, biodegrad-
ability, and acceptable levels of WVP. Thus, cellulose nanocomposite films have
the potential for the production of the barrier and protective film in food packaging
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industries. The tensile behavior of cellulose nanocomposite films is at least similar
to that of other biodegradable or non-biodegradable film [232].

Mechanical behavior of bio-nanocomposites films holding 6 wt% of CNC in
thermoplastic cassava starch exhibited the maximum tensile strength of 8.2 MPa.
This confirms the stress transfer and interfacial interactions between the matrix and
the nanofiller that is associated with the great L/D and effectiveness of the fiber
treatment. The kenaf fibers are also noted to be well suited with agar and starch
prepared from potato, and the films were evaluated for their potential use in food
packaging [233, 234].

An edible film based on alginate–acerola puree reinforced with CNW or MMT of
coating application on fresh acerolas minimized fruit weight loss, reduced diseases
incidence, and ripening behavior as well as enhanced the retention of ascorbic acid.
Similarly, chitosan-based nanocellulose film studied by Dehnad et al. [158], to pro-
long the shelf life of meat results in reduced lactic acid bacteria than the nylon film
packed samples after 6 days of storage at 25 °C.

PLA-CNC biocomposite film incorporated with oregano essential oil prepared by
solvent casting was used for packaging to preserve the vegetables which revealed
the retardation of Listeria monocytogenes during the storage at 4 °C for 14 days.
Likewise, PLA-CNC nanocomposite film prepared with the addition of nisin by
compression molding method that revealed the inhibition of L. monocytogenes for
14 days in cooked ham pack [235]

Cellulose nanofibrils with calcium carbonate were utilized by coating method
for the preservation of blueberries [236]. The quality and shelf life of strawberries
were enhanced by coating the fruits with chitosan and nanocellulose. It also helps
to retain the bioactive compounds [237]. Similarly, Anand Babu et al. [44] reported
that the biocomposite film (PVA-Mt/CNC) reinforced with CNC has prolonged the
shelf life of mango cultivars till 19 ± 2 days by delaying the ripening behavior and
also maintained the overall fruit quality.

Nanocellulose-based polymer composites also exhibit broad applications in vari-
ousfields such as coatings for foodpackaging,water treatment, drugdelivery, cosmet-
ics, barrier films, and packaging bag for the preservation of food products. Nanocel-
lulose also acts as natural emulsifying and stabilizing agent and might efficiently
substitute the hydrophilic polysaccharides produced from seaweeds, microorgan-
isms and carboxymethylcellulose and vegetable seeds. Nanocellulose exhibits great
effects on various food products like salads, foams, soups, sauces, and puddings.
Nanocellulose-based composites have wide applications in food packaging because
of its competence with petroleum-based synthetic materials. CNC and CNF rein-
forced composites and its coating application, lessening the oxygen permeability
that prolongs the keeping quality of the packaged food products as well as reducing
the packaging waste of processed foods.
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9 Conclusion

Biocomposites reinforced with CNC or CNF has very good potential to use in food
packaging applications by substituting the petroleum-based conventional plastics.
Some of the disadvantages of the polymer composites like poor mechanical and
water vapor permeability limit their use in various applications specifically in food
packaging industry. To improve the mechanical and barrier properties of the com-
posites, the nanocellulose was generally used to reinforce with the polymer which
may augment the composites behavior like antimicrobial, antioxidant, and mechan-
ical characteristics. The composites with enhanced properties could be well suited
for preserving the fruits, vegetables, and other foods in the food packaging applica-
tions. Thus, the nanocellulose-based polymer composites will provide the solution
to overcome the problems mainly faced by the food industry.
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