
Chapter 5
KAW Turbulence in Solar Wind

5.1 Solar Wind: Natural Laboratory for Plasma
Turbulence

Plasma turbulence is a stochastic state of the plasma and its electromagnetic fluctu-
ations in spatial and temporal structures. Unlike the randomness of thermal fluctua-
tions (or i.e., thermal noise) that is caused by the discrete randomness of microscopic
particles (or i.e., the hypothesis of molecular chaos), however, the turbulent stochas-
ticity of the plasma turbulence should be attributed to the chaotic nondeterminacy
of plasma collective modes when dynamically evolving into the chaos state via their
nonlinear coupling (Ruelle and Takens 1971; Gollub and Swinney 1975). Plasmas,
consisting of charged particles, are intrinsically different from neutral fluids, con-
sisting of neutral atoms or molecules, and can have a number of various collective
eigenmodes due to the interparticle electromagnetic interaction. The nonlinear cou-
pling between these collective modes not only is the most distinctive and essential
characteristic of the plasma dynamics but also can make the plasma more easily
develop into a turbulent state. Therefore, plasma turbulence is ubiquitous phenom-
ena and may play important and crucial roles in various plasma processes such as
plasma diffusion and transport, plasma acceleration and heating, plasma intermittent
structures and energy dissipation.

The solar wind continuously expands from the solar outmost atmosphere (i.e.,
the solar corona) into the interplanetary space in the form of supersonic and super-
Alfvénic plasma flows and directly impacts on the earth’s magnetosphere. Observa-
tions and theoryboth show that as its high-Mach expands the solarwindhas developed
into a strongly turbulent state filled by large-amplitude electromagnetic fluctuations
from low frequencies much less than the ion gyrofrequency to high frequencies near
the electron Langmuir frequency in the interplanetary space. Therefore, the solar
wind not only plays an important linking and transport role in the solar-terrestrial
coupling system, but also is a natural laboratory for studying plasma turbulence
(Tu and Marsch 1995; Bruno and Carbone 2013).
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The study of ordinary fluid turbulence can be traced back to the experimental
investigation by Osborne (1883) more than one century ago, who observed and
investigated experimentally the transition from laminar to turbulent flow inside a
pipe and found that this transition depends on a single parameter,

Re = U L

ν
, (5.1)

now called the Reynolds number, where U is the characteristic flow velocity, L
is the characteristic length scale of the velocity field u(r, t), and ν is the viscosity
coefficient. TheReynolds number Re, in fact, represents the relative strength between
the non-linear convection term, (u · ∇)u, and the viscosity term, ν∇2u, in theNavier-
Stokes equation:

∂tu + (u · ∇) u = −ρ−1∇ p + ν∇2u, (5.2)

where the incompressible condition of ∇ · u = 0 has been used for the sake of sim-
plicity and ρ and p are the mass density and the kinetic pressure of the fluid, respec-
tively. A larger Reynolds number represents stronger nonlinearity and the turbulent
flow usually occurs in the case of high Reynolds numbers, in which the non-linear
term dominates the dynamical behavior of the flow.

For the incompressible MHD case of a conducting fluid in a magnetic field, the
Navier-Stokes equations may be reduced to

∂tu + (u · ∇) u = (
b′ · ∇)

b′ − ρ−1∇ pt + ν∇2u

∂tb′ + (u · ∇) b′ = (
b′ · ∇)

u + νm∇2b′, (5.3)

where pt ≡ p + B2/2μ0 is the total pressure,b′ ≡ B/
√

μ0ρ = vA + b the totalmag-
netic field in the velocity form, vA = B0/

√
μ0ρ the Alfvén velocity, B0 = B0 ẑ the

uniform ambient magnetic field, b ≡ (B − B0) /
√

μ0ρ is the fluctuation magnetic
field in the velocity form, νm ≡ 1/σμ0 the magnetic viscosity coefficient, and σ the
conductivity. Similar to the Reynolds number Re, a magnetic Reynolds number that
represents the relative strength of the nonlinear convection of the conducting fluid,
Rm , can be defined as follows:

Rm = U L

νm
∼ vA L

νm
, (5.4)

In the solar wind, the magnetic Reynolds number can be very large as Rm > 1010,
implying that the turbulence can be ubiquitous states of solar wind plasma flows.

From the MHD equation (5.3), the plasma flow u and the magnetic field b are
coupled together each other through the Lorentz force. Introducing the so-called
Elsässer variables:

z± ≡ u ± b, (5.5)
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the MHD equation (5.3) can be rewritten as symmetrized form as follows:

(
∂t ∓ vA · ∇ + z∓ · ∇)

z± = −ρ−1∇ pt + ν±∇2z± + ν∓∇2z∓, (5.6)

where 2ν± = ν ± νm . The total pressure pt can be determined by the condition
∇ · z± = 0, or given by the solution of the following equation

∇2 pt = −∇∇ · ·z+z−. (5.7)

Neglecting the viscous term, the linearization of Eq. (5.6) leads to

(∂t ∓ vA · ∇) z± = 0, (5.8)

which general solutions with the “traveling wave” form, z∓(r ∓ vAt), describe
Alfvénic fluctuations propagating parallel (“−”) and antiparallel (“+”) to the uniform
ambient magnetic field B0, respectively.

Although the experimental investigation of turbulence had started more than one
century ago, so far the most important achievement is still the legacy of A. N. Kol-
mogorov based on some phenomenological considerations and simple dimensional
analysis, that is, so-called the Kolmogorov inertial spectrum of turbulence driven by
the nonlinear energy cascade. According to the scenario proposed by Kolmogorov
(1941), the structurized energy at the injection scale L is transferred by nonlinear
interactions, throughout a string of intermediate scales λ, to the small dissipation
scale lD � λ � L , and eventually is dissipated at this dissipation scale lD . Accord-
ing to the first similarity hypothesis by Kolmogorov (1941), the whole dynamical
process from the energy injection at the large scale L to the energy dissipation
at the small dissipation scale lD is controlled mainly by the two parameters: (1)
the energy transferring rate εT λ ∼ u2

λ/τT λ ∼ u3
λ/λ and (2) the energy dissipation

rate εDλ ∼ u2
λ/τDλ ∼ u2

λν/λ2 (or by their ratio, that is, the local Reynolds number
Reλ = εT λ/εDλ = uλλ/ν), where τT λ ∼ λ/uλ and τDλ ∼ λ2/ν are the characteristic
transferring and dissipation times at the scaleλ, respectively. The two parameters εT λ

and εDλ represent the relative strengths of the nonlinear convection and the viscosity,
respectively, and in general, both are dependent on the scale λ. In particular, in the
large injection scale L one has εT L/εDL = U L/ν = Re 	 1, implying that in the
case of large Reynolds numbers, the fluid is unable to dissipate the whole injection
energy at the scale L and the excess energy must be transferred to smaller scales
λ < L until it is dissipated entirely at the dissipation scale λ ∼ lD � L . This is the
physical reason for the energy turbulent cascade toward small scales.

For a steady case, the energy injection rate εT L ∼ U 3/L at the large injection
scale L must be balanced by the energy dissipation rate εDlD ∼ u2

lD
ν/ l2D at the small

dissipation scale lD , that is,

εT L ∼ εDlD ⇒ l2D
L2

∼ 1

Re

u2
lD

U 2
. (5.9)
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In particular, in order to avoid the energy piled up at some scales λ, it is a plausible
hypothesis, that is, that second similarity hypothesis by Kolmogorov (1941), that the
energy transferring rate εT λ is independent from the scale λ in the so-called inertial
scale region of L 	 λ 	 lD where the viscosity has a negligible smallness (i.e., the
infinite Reynolds number approximation), that is, one has

εT λ = u3
λ/λ = constant ⇒ uλ ∼ ε

1/3
T λ1/3, (5.10)

where εT is the constant energy transferring rate. Thus, from Eq. (5.9) the effective
dissipation scale lD can be estimated as

lD

L
∼ R−1/2

e

ulD

U
∼ R−1/2

e

(
lD

L

)1/3

⇒ lD ∼ R−3/4
e L , (5.11)

which depends on the Reynolds number Re as well as the energy injection scale L
and is much less than the injection scale L in the case of high Reynolds numbers.

In the case of high Reynolds numbers Re 	 1 there can be a very wide iner-
tial region of structurized scales λ (i.e., L 	 λ 	 lD ∼ R−3/4

e L) in which the flow
motions uλ at almost all scales λ from L to lD are excited by the nonlinear convection
interaction through driving the large-scale structurized energy (U 2) to be fragmented
into small-scale structurized energy (u2

λ) at smaller and smaller scales λ � L until
approaching the effective dissipation scale lD . In this inertial region, based on the
requirement of the constant energy transferring rate εT , the energy of fragmented
structures at the scale λ, u2

λ, may be estimated by

u2
λ ∼ ε

2/3
T λ2/3 ⇒ u2

k ∼ ε
2/3
T k−2/3, (5.12)

where k ∼ 1/λ represents the wave number at the fragmented scale λ. Introducing
the spectral energy density Ek in the wave number k space, one has

δu2
k = Ekδk ⇒ Ek ∼ ∂ku2

k ∼ ε
2/3
T k−5/3. (5.13)

This inertial-scale spectrum Ek is the famous Kolmogorov spectrum and the frag-
mented process of the large-scale structurized energy toward the small-scale struc-
turized energy also is called the nonlinear energy cascade process or the turbulent
cascade process, which is driven possibly by nonlinear interactions. However, the
physical mechanism of the nonlinear interactions that leads to the energy cascade
toward small-scale structures is still unclear.

Based on the theory of classical nonlinear dynamical systems originated by
Poincaré at the end of the 19th century, the early studies on the laminar-turbulent
transition mechanism were modeled by a sequence of Hopf bifurcations. The first
transition scenariowas proposed byLandau (1944), inwhich as theReynolds number
increases the transition is attributed to a infinite series of Hopf bifurcations and each
subsequent bifurcation adds a new incommensurate frequency to the flow motions,
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in consequence, the quasi-periodic motions involving the infinite number of degree
of freedom resemble the state of a turbulent flow (Hopf 1948). However, this Lan-
dau scenario is very difficult to be realized because the incommensurate frequencies
cannot exist without coupling between them (Smale 1967).

Ruelle and Takens (1971) described another scenario of the birth to turbulence, in
which after a few, usually three, Hopf bifurcations the flowbecomes suddenly chaotic
state characterized by a very intricate attracting subset, called a strange attractor. The
flow in the chaotic state appears a highly irregular and very complicated topological
structure, and its trajectories in phase space look to be unpredictable because the
extremely strong dependence of their behavior on initial conditions leads to the
exponential divergence of neighboring trajectories. This chaotic feature also is called
the “butterfly effect” and represents the deterministic chaos. A few years later, the
experimentalmeasurements byGollub andSwinney (1975) further confirmed that the
transition to turbulence in a flow between co-rotating cylinders does not agree with
the scenario proposed by Landau (1944), but is more consistent with that described
by Ruelle and Takens (1971).

In the Ruelle-Takens scenario, however, the formation of wide continuous spectra
of turbulence is still an open problem. The complexity and difficulty of the turbulence
study both are beyond imagination, as implied by its name “turbulence”. Up to now
there are fewbasic principles that have been definitely established, exactly confirmed,
and convincingly accepted in this community. As pointed out by Lumley andYaglom
(2001), “even after 100 years, turbulence studies are still their infancy”.

In the case of plasma turbulence, the situation becomes more intricate because
a lot of eigenmodes of plasma and electromagnetic field fluctuations can present
simultaneously in the plasma, which have various and different dispersion relations
and polarization states. For instance, multiple fields and species, different kinetic
processes perpendicular and parallel to the localmagnetic field, the coupling between
various eigenmodes, and so on, all inevitably increase greatly the complexity of
plasma turbulent cascade processes. In particular, the collisionless characteristic of
major space and astrophysical plasmas leads to the classical scenario of the turbulence
transition from the inertial to dissipative regimes, where the injected turbulent energy
is converted eventually into the thermal energy of particles by collisional dissipation,
no longer being valid. In collisionless plasma environments plasma turbulence with
variously continuous spectra has been extensively observed (e.g., in the solar wind,
Bale et al. 2005;Bruno andCarbone 2005; Sahraoui et al. 2009, 2010;He et al. 2012a;
Salem et al. 2012; Podesta 2013; Goldstein et al. 2015). While the kinetic theory
obviously is necessary to understand the physics of collisionless plasma turbulence.

In this chapter, our concerns focus on the kinetic scales of solar wind turbulent
spectra, in particular, on the spectral transition from large MHD scales to small
kinetic scales of particles, where KAWs can play an important and crucial role. After
briefly introducing the anisotropic cascade ofMHD turbulence from theMHD scales
to the particle kinetic scales in Sects. 5.2 and 5.3 describes some basic concepts of
the gyrokinetics, which is proper model for KAWs. Recent progresses of studies of
KAW turbulence in the solar wind in theory and observation will be discussed in
Sects. 5.4 and 5.5, respectively.
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5.2 Anisotropic Cascade of AW Turbulence Towards Small
Scales

5.2.1 Iroshnikov-Kraichnan Theory of AW Turbulence

Iroshnikov (1963) and Kraichnan (1965) earliest realized that the presence of a mag-
netic field could significantly influence the turbulence of a conducting fluid, in which
the fluctuations of flow andmagnetic field,uλ andbλ at the scaleλ can be related each
other via the Lorentz force j × b and the related fluctuations propagate in the form
of the eigenmode (i.e., AWs) at the Alfvén velocity vA along the ambient magnetic
field B0. From the reduced MHD equation (5.6), the nonlinear interaction between
the fluctuations z± is included in the term z∓ · ∇z±, which describes the interac-
tion of the head-on “collision” between opposite propagating fluctuations z+ and z−.
Similar to the case of ordinary fluids, the energy transferring rate can be estimated by
εT λ ∼ u2

λ/τT λ. Unlike the case of ordinary fluids, however, the characteristic time of
the head-on interaction τT λ is no longer simple flow turnover time ∼λ/uλ, rather is
lengthened by a factor

√
N because of the stochastic nature of the collision process in

which N ∼ v2
A/u2

λ is the random collision number for a λ-scale wave to lose memory
of its initial state (Dobrowolny et al. 1980). In fact, from Eq. (5.6) the amplitude δuλ

during one collision can be estimated by δuλ ∼ (λ/vA)
(
u2

λ/λ
) ∼ u2

λ/vA, and hence
the number of random collisions N ∼ 〈u2

λ〉/〈(δuλ)
2〉 ∼ v2

A/u2
λ, where 〈∗〉 represents

the random average. In result, the characteristic time τT λ ∼ λvA/u2
λ and hence the

energy transferring rate εT λ ∼ u4
λ/vAλ. For the inertial scale region of λ, adopting

the Kolmogorov hypothesis of the constant energy transferring rate, that is, εT λ = εT

independent of the scale λ, one has

u2
λ ∼ (εT vAλ)1/2 ⇒ Ek ∼ (εT vA)1/2 k−3/2. (5.14)

This is so-called the Iroshnikov-Kraichnan spectrum, an isotropic MHD turbulent
spectrum, which was viewed as self-evidently correct for 30 years until the mid-
1990s, Sridhar and Goldreich (1994) directly challenged the correctness of the
Iroshnikov-Kraichnan theory and proposed the resonant 4-wave coupling scenario
for weak turbulence of AWs.

5.2.2 Goldreich-Sridhar Theory of AW Turbulence

The ideal MHD or reduced MHD equations (5.3) or (5.6) with ν = νm = 0 have an
important feature that they can have steady and stable nonlinear traveling wave solu-
tions with arbitrary amplitude and form of u(x, y, z ± vAt) = ±b(x, y, z ± vAt),
which propagate along (for the sign −) or opposite to (for the sign +) the mag-
netic field B0 = B0 ẑ at the Alfvén velocity vA = B0/

√
μ0ρ0 (see e.g., Parker 1979).
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The only possible nonlinear coupling is the “collision” between oppositely propa-
gating waves. The Iroshnikov-Kraichnan scenario of AW turbulence describes the
“isotropically” random walking process of an AW in the “sea” of other AWs with
random phases. Each collision of a λ-scale AW with other oppositely propagating
AW (the characteristic collision time τA ∼ λ/vA) causes only a small variation of
its amplitude (i.e., δuλ ∼ u2

λ/vA � uλ), until these variations build up to be com-
parable with its amplitude so that it has entirely lost memory of its initial state after
undergoing successive-N random collisions, implying the effective energy transfer or
cascade from the λ-scale AW to smaller scale AWs is finished. Sridhar and Goldreich
(1994) argued that this process is equivalent to the resonant 3-wave interaction but
does not work because the 3-wave coupling coefficients vanish in isotropic case.

In a magnetized plasma, the parallel and perpendicular variations are caused
mainly by the second and third terms of Eq. (5.6), respectively, the former represents
the propagation of AW with the characteristic Alfvén time

τA ∼ λz

vA
∼ 1

kzvA
∼ 1

ωk
, (5.15)

and the latter does the nonlinear interaction between opposite propagation AWs with
the characteristic nonlinear time

τN ∼ λ⊥
uλ⊥

∼ 1

k⊥uλ⊥
, (5.16)

where λz (kz) and λ⊥ (k⊥) are the parallel and perpendicular scales (wave numbers)
of AWs, respectively. Based on the weak turbulence approximation of τA � τN (or
i.e., uλz ∼ uλ⊥ � vA) and the resonant 4-wave interaction description, Sridhar and
Goldreich (1994) derived the three dimensional inertial-region energy spectrumwith
form as follows:

∑

λ

u2
λ =

∫
E(kz, k⊥)

d3k

(2π)3
⇒ E(kz, k⊥) ∼ ε

1/3
T vAk−10/3

⊥ , (5.17)

where the energy transferring rate εT ∼ u2
λ/τT can depend only on the parallel wave

number kz and the characteristic transferring time τT ∼ √
NτN ∼ NτA.

The three dimensional energy spectrum E(kz, k⊥) ∝ k−10/3
⊥ leads to u2

λ ∝ k−4/3
⊥

and hence N ∼ τT /τA ∝ k−4/3
⊥ because of the k⊥-scale independence of εT . This

implies that as the cascade proceeds to high k⊥ (i.e., short perpendicular scale λ⊥),
N decreases for fixed kz . In particular, when N decreases to approaching to the order
of unity the weak turbulence approximation will be invalid. In fact, when N ∼ 1 the
inertial region range of the turbulence cascade by the resonant 4-wave interaction
will shrink to zero and the turbulence is called the strong turbulence.
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Goldreich and Sridhar (1995) introduced the “critical balance” condition to char-
acter the strong turbulence of AWs as follows:

N ∼ 1 ⇒ τT ∼ τN ∼ τA ⇒ k⊥uk⊥ ∼ kzvA, (5.18)

where k⊥ = 2π/λ⊥. For the inertial region of the strong turbulence, the second
Kolmogorov hypothesis of the scale independence of the energy transferring rate,
that is, εT ∼ u2

k⊥/τT ∼ u2
k⊥/τN ∼ constant leads to

u3
k⊥ ∼ εT k−1

⊥ ⇒ Ek⊥ ∼ ε
2/3
T k−5/3

⊥ , (5.19)

to return back to the Kolmogorov spectrum again, but an anisotropic version.
Simultaneously, from the critical balance condition of Eq. (5.18) one has

kzvA ∼ k⊥uk⊥ ⇒ kz ∼ v−1
A ε

1/3
T k2/3

⊥ , (5.20)

implying the anisotropic cascade of the strong AW turbulence towards small scales,
now known as the Goldreich-Sridhar theory of AW turbulence, an anisotropic model
of AW turbulent cascade. This scale dependent anisotropy also is the most important
result of the Goldreich-Sridhar theory, which predicts that as the turbulent cascade
proceeds towards smaller and smaller scales the anisotropy of the wave becomes
stronger and stronger, that is, the anisotropic ratio k⊥/kz = λz/λ⊥ ∼ vAε

−1/3
T k1/3

⊥
increases with k⊥ ∼ 1/λ⊥.

The result of the strong turbulence theory byGoldreich and Sridhar (1995)may be
universal although it is established on the base of the strong turbulence condition, that
is, the critical balance condition. In fact, for an even initially isotropic excitation of
small fluctuation of uL � vA with kz ∼ k⊥ ∼ L−1 and hence N 	 1 at the injection
scale L , the initially weak turbulence develops towards and eventually into the strong
turbulence with N ∼ 1, in which the colliding waves are strongly anisotropic AWs
with k⊥ 	 kz (i.e., λ⊥ � λz) and faster split into small scale waves at the direction
perpendicular than at the parallel to the magnetic field (Goldreich and Sridhar 1995).
For the intermediate case between the weak and strong turbulence, Goldreich and
Sridhar (1997) further investigated the spectral transition from the weak to strong
turbulence and found that the interactions of all orders, i.e., the 3-wave and 4-wave
interactions, can have the same contribution to the energy cascade transferring rate,
although the 3-wave interaction dominates over all higher order interactions during
individual collisions (Ng and Bhattacharjee 1996).

Subsequently, a series of numerical simulations further confirmed the scale depen-
dence of the anisotropy predicted byGoldreich and Sridhar (1995). For instance, Cho
and Vishniac (2000) performed directly three-dimensional numerical simulations for
MHD turbulence by use of a pseudospectral code to solve the incompressible MHD
equation and found that the anisotropy almost is scale independencewhen the compo-
nents of the wave vector k, kz and k⊥, are calculated straightforwardly at the parallel
and perpendicular to the direction of the large-scale magnetic field, respectively.
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However, for the wave numbers k̃z and k̃⊥ measured relative to the local magnetic
field direction, the results can be consistent with the scaling law of the anisotropy,
that is, k̃z ∝ k̃2/3

⊥ , predicted by Goldreich and Sridhar (1995). This indicates that the
energy transfer of the AW turbulence towards small scales exactly is a local spectral
cascade process whose anisotropy depends on the local magnetic field.

Maron and Goldreich (2001) simulated incompressible MHD turbulence for the
strong magnetic field case with γ ≡ v2

A/u2
L 	 1. Similar to the result by Cho and

Vishniac (2000), the simulation result by Maron and Goldreich (2001) showed also
that the anisotropy increases with increasing k⊥ such that excited modes are confined
inside a cone bounded by kz ∝ k2/3

⊥ as predicted by Goldreich and Sridhar (1995).
However, their results also have a notable discrepancy that the one-dimensional
energy spectra determined from their simulations display Ek ∝ k−3/2

⊥ predicted by
the Iroshnikov-Kraichnan theory, rather than Ek ∝ k−5/3

⊥ expected by the Goldreich-
Sridhar model. In particular, the results of numerical simulations of decaying and
forced MHD turbulence without and with mean magnetic field presented by Müller
et al. (2003) showed a gradual transition of the perpendicular energy spectrum
from the Goldreich-Sridhar form at the weak field case of γ � 1 to the Iroshnikov-
Kraichnan spectrum at the strong field case of γ 	 1.

5.2.3 Boldyrev Theory of AW Turbulence

Motivated by these intriguing numerical findings, Boldyrev (2005, 2006) proposed
a new phenomenological model for MHD turbulence, which can lead to an external
field dependent energy spectrum such that in the limiting cases of a weak and strong
external field the new model can reproduce the Goldreich-Sridhar and Iroshnikov-
Kraichnan spectra, respectively. Boldyrev (2005, 2006) further analyzed the non-
linear interaction term in the reduced MHD equation (5.6), z∓ · ∇z±, and proposed
that the nonlinear interaction possibly is reduced by a factor

(
uλ⊥/vA

)α
due to the

dynamically aligned effect betweenu andb, whereα is some undetermined exponent
with the range 0 ≤ α ≤ 1. Moreover, this dynamic alignment effect can be the scale
dependent, that is, increases with the scale decreases, so that turbulent structures in
small scales become locally anisotropic in the plane perpendicular to the large-scale
ambient magnetic field B0.

Following Boldyrev (2005, 2006), the nonlinear interaction reduced by the
dynamic alignment effect in Eq. (5.6) can be estimated by

z∓ · ∇z± ∼ uλ⊥
λ⊥

(
uλ⊥
vA

)α

. (5.21)

Thus, the characteristic time of the nonlinear interaction τN may be given by

τNλ⊥ ∼ λ⊥
uλ⊥

(
vA

uλ⊥

)α

. (5.22)
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Assuming the strong turbulence condition in small scales, that is, the energy transfer-
ring time τT ∼ τN , the constant energy transferring rate condition, εT ∼ u2

λ⊥/τT ∼
constant, leads to the inertial-region turbulent energy spectrum as follows

u2
λ⊥ ∼ εT vα

Aλ⊥u−(1+α)

λ⊥ ⇒ u2
k⊥ ∝ k−2/(3+α)

⊥ ⇒
Ek⊥ ∝ du2

k⊥/dk⊥ ∝ k−(5+α)/(3+α)

⊥ . (5.23)

The anisotropy of the scaling law can be obtained by the critical balance condition
or equivalently by the causality principle (Boldyrev 2005), that is,

λz

vA
∼ τNλ⊥ ⇒ kz ∝ k2/(3+α)

⊥ . (5.24)

The condition Ek⊥dk⊥ = Ekz dkz gives the parallel energy spectrum

Ekz = Ek⊥
dk⊥
dkz

∝ k−2
z , (5.25)

independent of α and hence independent of the external field strength.
In comparison with the numerical simulation results (Cho and Vishniac 2000;

Maron andGoldreich 2001;Müller et al. 2003), the undetermined exponentαmay be
associated with the external field strength parameter γ = v2

A/u2
L . In consequence, the

Goldreich-Sridhar spectrum is obtained by α → 0 for the weak field limit of γ � 1
and the Iroshnikov-Kraichanan spectrum is given by α → 1 for the strong field limit
of γ 	 1. It is difficult, however, that the alignment exponent α is determined by the
simple dimensional analysis.

In fact, the dynamic alignment effect ofα �= 0 leads to the local anisotropy of AW
structures in the plane perpendicular the large-scale mean magnetic field B0 (i.e., the
l direction in Fig. 5.1), as shown in Fig. 5.1 (Boldyrev 2006). The perpendicular wave
vector k⊥ ∼ 1/λ⊥ (i.e., the λ direction in Fig. 5.1) is along the maximum gradient
direction of AWs in the plane perpendicular to B0, also which is approximately
perpendicular to the AW field b (i.e., the ξ direction in Fig. 5.1). Meanwhile, the
wave field b causes the distortion of the field line and the corresponding field line
displacement along b, λ×, can be estimated by

λ× ∼ bλ⊥
vA

λz ∝ λ
3/(3+α)

⊥ , (5.26)

where bλ⊥ ∼ uλ⊥ and the scaling relations (5.23) and (5.24) have been used. Usually
one has λ× 	 λ⊥, implying that individual small-scale AWs appear anisotropic
turbulent “eddy” structures.

In the case of decaying MHD turbulence, magnetic and velocity fluctuations
can approach their configuration so that u = b or u = −b and hence the nonlinear
interaction vanish in the reduce MHD equation (5.6), called the dynamic alignment
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Fig. 5.1 Left: Structures of anisotropic turbulent eddies, in which the large-scale mean magnetic
field is in the vertical direction; Right: Sketch of three-dimensional angular alignment relation
between velocity and magnetic field fluctuations (reprinted figure with permission from Boldyrev,
Phys. Rev. Lett. 96, 115002, 2006, copyright 2006 by the American Physical Society)

effect (Dobrowolny et al. 1980; Grappin et al. 1982; Pouquet et al. 1986). As pointed
out by Boldyrev (2006), in the case of driven turbulence the tendency of the dynamic
alignment should be preserved although the exact alignment can not be reached
because the energy cascade towards mall scales needs to be maintained by non-zero
nonlinear interaction. In the steady case, the alignment between the velocity and
magnetic field fluctuations should be consistent with maintaining a constant energy
transferring rate. This leads to the scaling relation

θλ⊥ ∼ λ⊥
λ×

∝ λ
α/(3+α)

⊥ , (5.27)

where the scaling relation (5.26) and the alignment approximation θλ⊥ � 1 have
been used (see the right panel of Fig. 5.1). From the right panel of Fig. 5.1, on the
other hand, we have

θ̃λ⊥ ∼ λ×
λz

∝ λ
1/(3+α)

⊥ , (5.28)

where the scaling relations (5.24) and (5.26) have been used. Therefore, the mis-
aligned angle between velocity and field fluctuations

φλ⊥ =
√

θ2λ⊥ + θ̃2λ⊥ ∝ λ
α/(3+α)

⊥
√
1 + λα

⊥. (5.29)

If we require further the best alignment to be reached, that is, the minimal mis-
aligned angle φλ⊥ , the condition θλ⊥ = θ̃λ⊥ should be satisfied, which minimizes the
“uncertainty” of the misaligned angle (Boldyrev 2006). This leads to the alignment
exponent α = 1, which is corresponding to the Iroshnikov-Kraichnan spectrum in
the strong field case of γ 	 1. Perhaps this is a universal phenomenon in the small-
scale AW turbulence spectra. In fact, for the small-scale fluctuations the so-called
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“local external field” actually is the mean fluctuation in larger scales and the larger-
scale fluctuation always is stronger relative to the smaller-scale fluctuation. In conse-
quence, for the small-scale AW turbulence, the local external field always can satisfy
the strong field condition of γ > 1.

In addition, the results of some numerical simulations show that the dissipative
structures inMHD turbulence aremicrocurrent sheets rather than filaments (Biskamp
andMüller 2000;Maron and Goldreich 2001; Biskamp 2003). This also is consistent
with anisotropic structures of turbulent eddies at small scales due to the dynamic
alignment effect in the driven turbulence. These small-scale eddies can be viewed as
strongly anisotropic sheets or ribbons stretched along the local mean and fluctuation
magnetic field lines described by Boldyrev (2006), rather than filaments along the
local mean magnetic field but approximate isotropy in the plane perpendicular to the
local mean field expected in the Goldreich-Sridhar theory (Goldreich and Sridhar
1995).

5.2.4 Observations of Spectral Anisotropy of AW Turbulence

The solar wind, as supersonic and super-Alfvénic plasma flows outwards from the
active solar corona, is ubiquitously in the strong turbulence, in which the majority is
dominated by AW turbulence (Tu andMarsch 1995). Also observations of solar wind
turbulence further confirmed the theoretical expectation of the anisotropic nature of
AW turbulence. For instance, by use of Ulysses satellite observations of the polar
fast wind, Horbury et al. (2008) estimated quantitatively the anisotropic power and
scaling of magnetic field fluctuation in inertial range MHD turbulence and found for
the first time the magnetic power spectra index ∼ −2 in the quasi-parallel direction
and ∼ −1.67 in the quasi-perpendicular direction.

Based on data of high-speed streams measured by the Stereo satellites (A and
B) in the ecliptic plane, Podesta (2009) found that overall, the power-law indices
resulted from high-speed streams in the ecliptic plane are qualitatively and quantita-
tively similar to these resulted from the polar fast solar wind byUlysses observations.
However, for high-speed streams in the ecliptic plane the scaling exponent of the per-
pendicular to parallel power ratio, whose precise value is important for comparisons
with turbulence theories, is difficult to determine because there is not sufficient data
to obtain reliable measurements at low frequencies where the record length is limited
by the relatively short lifetime of high-speed streams in the ecliptic plane. By using
the same Ulysses data used by Horbury et al. (2008), Podesta (2009) reproduced the
similar results in the inertial range, that is, the spectral index of solar wind turbulence
in the inertial range varies continuously from ∼ −2 in the quasi-parallel direction to
∼ −1.6 in the quasi-perpendicular direction. Meanwhile, he also found the power
spectrum has an evident spectral break near k⊥ρi ∼ 1 when extended the spectrum
into the kinetic scales of plasma particles, implying the transition from the inertial to
dissipative range, that is, the turbulent cascade transition from AW cascade to KAW
cascade process.
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Figure5.2 shows a typical example, in which the upper panel shows clearly the
typical characteristic of the variation of the power-law exponent continuously from
∼ −2 in the quasi-parallel direction to ∼ −1.6 in the quasi-perpendicular direction.
While the lower panel presents the perpendicular to parallel power ratio versus the
satellite frame frequency ν, which is reversely proportional to the spatial scale, or
i.e., directly proportional to the wave number. The scaling law exponent of 0.35 is
well consistent with the value 1/3 expected by the Goldreich-Sridhar theory (or i.e.,
the weak-field approximation of α � 1 in the Boldyrev theory). In particular, an
evident spectral break occurs between 0.1 and 0.2Hz near the transition regime from
the inertial to dissipative range, implying that the kinetic effects begin to play an

Fig. 5.2 Upper panel:
Power-law exponent versus
the angle θ between the local
mean magnetic field and the
mean flow direction (radial
direction) for the Ulysses
data on 1995 DOY
100 − 130. The red and
black curves are obtained by
the power averaged with and
without directing selection,
respectively; Lower panel:
The ratio of the
perpendicular to parallel
power versus the frequency ν
in the satellite frame, in
which the red line represents
the linear least-squares fit
with the slope 0.35 ± 0.04
(from Podesta 2009)
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important role in the AW turbulent cascade and the AW turbulent cascade starts to
turn into the KAW turbulent cascade.

Wicks et al. (2010) further extended the measurements of the power and spectral
index anisotropy of solar wind magnetic field fluctuations from scales larger than the
outer scale down to the ion gyroscale, covering the entire inertial range. Their results
show that the power spectrum above the outer scale of turbulence is approximately
isotropic, while at smaller scales the turbulent cascade causes the power spectral
anisotropy: close to ∼ −2 along and ∼ −5/3 across the local magnetic field consis-
tent with a critically balanced Alfvénic turbulence. In particular, they found that an
enhancement of the parallel power coincident with a decrease in the perpendicular
power presents at the smallest scales of the inertial range, that is, close to the ion
gyroscale. They conjectured that this is most likely related to energy injection by ion
kinetic modes such as the kinetic firehose instability driven by the ion temperature
anisotropy and marks the beginning of the kinetic range, that is, the dissipation range
of solar wind turbulence.

Introducing the scale-dependent local mean magnetic field, Luo and Wu (2010)
directly calculated for the first time the scaling index of the anisotropy of solar wind
turbulence based on the scale-dependent local mean field and resulted in k‖ ∝ k0.61

⊥
with the index ∼0.61 between 2/3 and 1/2, that is, the weak-field limit of α → 0 and
the strong-field limit of α → 1, where α is the “depletion” index of the nonlinear
interaction due to the dynamic alignment effect (Boldyrev 2005, 2006). In fact, the
above observations and others (see Podesta 2013) all show that the “depletion” of
the nonlinear interaction due to the dynamic alignment effect can possibly play an
important role in the formation of the observed anisotropic power spectra of solar
wind AW turbulence, in which the parallel power spectra have the same index∼ −2,
independent from the depletion index α, and the perpendicular power spectral index
ranges well between −5/3 and −3/2, that is, the weak-field limit of α → 0 and the
strong-field limit of α → 1 (Boldyrev 2005, 2006).

Moreover, detailed analyses of numerical simulations show that the
scale-dependent dynamic alignment also can possibly be responsible for the presence
of the intermittency in solar wind AW turbulence, especially in small scales (Beres-
nyak and Lazarian 2006; Mason et al. 2006; Chandran et al. 2015). In more general
unbalanced cases between the energy transferring rate and the nonlinear interaction
driven rate, the unbalanced turbulent cascade can possibly lead to the formation of
intermittent structures in the unbalanced scales, in which the depletion index of the
nonlinear interactionα < 1. Besides the dynamic alignment, the unbalance turbulent
cascade can be caused by other scale-dependent processes, such as the dissipation
and dispersion of plasma waves, which both sensitively depend on the wave scales in
small scales approaching to the kinetic scales of plasma particles. These will greatly
increase the complexity and difficulty of theoretical studies of AW turbulence in
small scales. Therefore, the KAW turbulence, the kinetic-scale AW turbulence, must
become the new frontier in the plasma physics and turbulence physics communities.
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5.3 Gyrokinetic Description of KAWs

5.3.1 Gyrokinetic Approximations

The theories of incompressible MHD turbulence, from the early isotropic
Iroshnikov-Kraichnan scenario (Iroshnikov 1963; Kraichnan 1965), to the later
Goldreich-Sridhar theory with two-dimensional anisotropy (Sridhar and Goldre-
ich 1994; Goldreich and Sridhar 1995, 1997), and recently the Boldyrev model
with three-dimensional anisotropy (Boldyrev 2005, 2006), all propose an anisotrop-
ically turbulent cascade process towards small scales. The anisotropic scaling law,
k‖ ∝ k2/(3+α)

⊥ with the parameter 0 < α < 1, indicates that the energy cascades pri-
marily by developing preferentially small scales perpendicular to the local magnetic
field, i.e., with k⊥ 	 kz , as schematically shown in Fig. 5.3. As the AW turbulent
cascade towards smaller scales proceeds to approaching to the kinetic scales of par-
ticles, such as the ion gyroradius ρi or the electron inertial length λe, AWs inevitably

Fig. 5.3 Schematic diagram of the low-frequency, anisotropic AW cascade in wave number space.
The horizontal axis is perpendicular wave number; the vertical axis is the parallel wave number,
proportional to the frequency. MHD is valid only in the limit ω � ωci and k⊥ρi � 1; gyrokinetic
theory remains valid when the perpendicular wave number is of the order of the ion gyroradius,
k⊥ρi ∼ 1. Note that ω → ωci only when k⊥ρi → 1, so gyrokinetics is applicable for kz � k⊥
(from Howes et al. 2006)
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enter the scale range of KAWs where the AW turbulent cascade becomes the KAW
turbulent cascade and the MHD theory will be no longer valid.

In the solar wind the mean collision free path of particles λc ∼ 1 AU, much larger
than the parallel wavelength of AWs, this implies that the solar wind plasma typically
is collisionless and the kinetic processes of particles can play an important role in the
turbulent cascade of small scale AWs. In particular, due to the intrinsic anisotropy
of AW turbulence, low-frequency AWs with frequencies well below the ion gyrofre-
quency, that is, ω � ωci can have short perpendicular wavelengths comparable to
the ion gyroradius (i.e., k⊥ρi ∼ 1), much less than the parallel wavelength of AWs
(i.e., k‖ � k⊥). The motion of individual particles in the small sacle wave fields can
be separated well into the fast cyclotron motion around the local magnetic field (with
the characteristic time scale t f ∼ 1/ωci ) and the slow drift motion of the gyrocenter
(with the characteristic time scale ts ∼ 1/ω 	 t f ). Gyrokinetics is a reduced kinetic
theory by averaging over the fast cyclotron motion of charged particles and describes
the particle as the charged ring centering at the gyrocenter and moving in the ring-
averaged electromagnetic field (Rutherford and Frieman 1968; Frieman and Chen
1982; Howes et al. 2006; Schekochihin et al. 2009). The gyrokinetic approximation
retains incompressible AW and the slow magnetosonic wave with the finite Larmor
radius effects as KAWs and KSWs (Chen and Wu 2011a, b), the collisionless dissi-
pation due to parallel Landau damping, as well as the Coulomb collisions (if so), but
excludes the fast magnetosonic wave and the cyclotron resonance.

Gyrokinetics, a very valuable tool in the study of laboratory plasmas (Chen and
Zonca 2016), is particularly suitable for describing the low-frequency, small-scale,
and anisotropic AW turbulence, that is, the KAW turbulence, in the solar wind and
other astrophysical plasma environments (Howes et al. 2006; Schekochihin et al.
2009). The simplifications of equations for gyrokinetics are mainly based on the
low-frequency (ω � ωci ) and small-scale (ρi � l0) approximations, where l0 is the
scale length of the parallel wavelength λ‖ much larger than the scale size of the
perpendicular wavelength λ⊥ (i.e., ρi ). The former approximation allows to average
all quantities over the cyclotron period of particles, and the latter approximation
allows to expand all averaged quantities into the series of powers with the small
parameter

ε = ρi

l0
� 1. (5.30)

Thus, there are three relative scales in the gyrokinetics: the fast gyromotion scale
at ωci and ρi = vTi /ωci for the microscopic motions of particles; the intermediate
fluctuation scale at ω and l0 associated with the fluctuations of distribution function
and electromagnetic fields in waves; and the slow equilibrium scale at T and L
connected to the system macroscopic processes such as heating and inhomogeneity,
that is, the outer or injection scale for the turbulence system. For their relative orders
one has:
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k‖
k⊥

∼ ρi

l0
∼ O(ε),

ω

ωci
∼ k‖vA

ωci
∼ k⊥ρi√

βi
ε ∼ O(ε), (5.31)

where βi ∼ 1 (or i.e., vTi ∼ vA) has been assumed for the solar wind plasma envi-
ronment. Figure5.4 depicts schematically the relative scaling relation in the gyroki-
netics. The perpendicular flow velocity u⊥ is roughly in order of the E × B/B2

0 drift
velocity, that is,

u⊥ ∼ E × B

B2
0

∼ E

b

b

B0
∼ O(ε)vA ∼ O(ε)vTi . (5.32)

If using the critical balance and constant energy transferring rate conditions, for the
microscopic kinetic scale ρi and the macroscopic injected scale L we can have the
scaling relation as follows:

ε ∼ u⊥
vA

∼
(ρi

L

)1/3 ⇔ l0
L

∼ ε2, (5.33)

where the constant energy transferring rate condition of Eq. (5.19) have been used
for the injection and kinetic scales, λ ∼ L and λ ∼ ρi . For the case of the solar wind,
we have typically L ∼ 108 km and ρi ∼ 102 km, and hence ε ∼ (ρi/L)1/3 ∼ 10−2

and l0 ∼ 104 km.
Gyrokinetics is most naturally described in gyrocenter coordinates as shown in

Fig. 5.4, where the position of a particle r and velocity v are given by

r = Rs − ω−1
cs v × ẑ

v = vz ẑ + v⊥
(
cos θx̂ + sin θŷ

)
, (5.34)

whereRs is the position of the gyrocenter of a s-species particle, vz and v⊥ are parallel
and perpendicular velocities of the particle, and θ is the gyrophase angle. Gyrokinetic
averages all quantities over the gyrophase angle θ associated with particles at a fixed
gyrocenter Rs and all quantities associated with electromagnetic fields at a fixed
position r, that is,

〈A(r, v, t)〉Rs = 1

2π

∮
A(Rs − ω−1

cs v × ẑ, v, t)dθ,

〈A(Rs, v, t)〉r = 1

2π

∮
A(r + ω−1

cs v × ẑ, v, t)dθ, (5.35)

where the θ integration is done keeping vz and v⊥ constant.
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Fig. 5.4 Gyrocenter coordinates and scales in gyrokinetics. The open and filled circles are the
particle and its gyrocenter positions, respectively; l⊥ ∼ λ⊥ ∼ ρi and _ ‖∼ λ‖ ∼ l0 are the charac-
teristic perpendicular and parallel length scales in gyrokinetics, respectively, and B0 (dashed line)
and B (solid line) are the ambient and perturbed magnetic field, respectively (from Howes et al.
2006)

5.3.2 Gyrokinetic Equations

In the gyrokinetic approximations, the distribution function of the s-species particles
can be expanded into power series of ε as follows (Howes et al. 2006):

fs = Fs0(v, t) exp

(
−qs�(r, t)

Ts0

)
+ hs(Rs, v, v⊥, t) + δ fs2 + . . . , (5.36)

where v =
√

v2
z + v2

⊥ and the equilibrium distribution function, i.e., the zero-order
term, is assumed to be an isotropic Maxwellian distribution:

Fs0(v, t) = ns0

(2π)3/2 v3
Ts

exp

(

− v2

2v2
Ts

)

. (5.37)
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The first-order distribution function consists of the Boltzmann term caused by the
fluctuation electric potential �,

[
exp

(
−qs�(r, t)

Ts0

)
− 1

]
Fs0(v, t) � −qs�(r, t)

Ts0
Fs0(v, t), (5.38)

and the “charged ring” distribution hs(Rs, v, v⊥, t).
By gyroaveraging the following kinetic equation,

〈
∂ fs

∂t
+ v · ∇ fs + qs

ms
(E + v × B) · ∂ fs

∂v
=

(
∂ fs

∂t

)

c

〉

Rs

, (5.39)

the so-calledgyrokinetic equation that governs the ringdistribution functionhs(Rs, v,

v⊥, t) can be derived as follows (Frieman and Chen 1982; Howes et al. 2006; Chen
and Zonca 2016):

∂hs

∂t
+

〈
dRs

dt

〉

Rs

· ∂hs

∂Rs
=

〈
dE s

dt

〉

Rs

Fs0

Ts0
+

(
∂hs

∂t

)

c

, (5.40)

where the second term on the right-hand side (i.e., (∂hs/∂t)c) denotes the effect of
collisions on the perturbed ring distribution function, called the gyrokinetic collision
operator, and the first term,

〈
dEs

dt

〉

Rs

Fs0

Ts0
= −

〈
∂ fs

∂Es

dEs

dt

〉

Rs

, (5.41)

represents the effect of collisionless work done the charged rings by the fluctuation
fields, in which Es ≡ msv

2/2 + qs� is the total energy of the particle and the first
adiabatic invariant condition 〈dμs/dt〉Rs

= 0 with μs = msv
2
⊥/2B0 has been used.

The drift velocity of the gyrocenter in Eq. (5.40) is given by

〈
dRs

dt

〉

Rs

= vz ẑ − ∂ 〈�〉Rs

∂Rs
× ẑ

B0
+ ∂ 〈v · A〉Rs

∂Rs
× ẑ

B0
, (5.42)

where the second and third terms on the right-hand side are the electric and magnetic
drifts, respectively, � and A are the scalar and vector electromagnetic potentials
with the Coulomb gauge condition of ∇ · A = 0 and are related to the perturbed
electromagnetic fields by

E = −∇� − ∂A
∂t

,

δB = ∇ × A. (5.43)
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Correspondingly, the fluctuation fields satisfy the Maxwell equations under the
gyrokinetic approximations as follows:

∑

s

qsδns =
∑

s

(
−q2

s ns0

Ts0
� + qs

∫
〈hs〉r d3v

)
= 0,

∇2
⊥ Az = −μ0

∑

s

qs

∫
vz 〈hs〉r d3v,

∇⊥δBz = −μ0

∑

s

qs

∫ 〈(
v⊥ × ẑ

)
hs

〉
r d3v, (5.44)

which are, in turn, the quasi-neutrality condition, the parallel and perpendicular
components of the Ampere law, respectively.

5.3.3 Gyrokinetic Dispersion Relation of KAWs

The coupled Eqs. (5.40), (5.42), and (5.44) establish the base of gyrokinetics. Fol-
lowing Howes et al. (2006), the collisionless linear gyrokinetic dispersion equation
can be obtained by the straightforward linearization procedure as follows:

(
χi

M2
z

A − AB + B2

)(
2A

βi
− AD + C2

)
= (AE + BC)2 , (5.45)

where

A = 1 + I0(χi )e
−χi ζi Z(ζi ) + τ0

(
1 + I0(χe)e

−χeζe Z(ζe)
)
,

B = 1 − I0(χi )e
−χi + τ0

(
1 − I0(χe)e

−χe
)
,

C = ci2(χi )ζi Z(ζi ) − ce2(χe)ζe Z(ζe),

D = 2ci2(χi )ζi Z(ζi ) + 2τ0ce2(χe)ζe Z(ζe),

E = ci2(χi ) − ce2(χe), (5.46)

where ζs ≡ ω/
√
2kzvTs and τ0 = Ti0/Te0. From the gyrokinetic dispersion equation,

the gyrokinetic dispersion relation, MG K
z depends on the three parameters, the per-

pendicular wave number k⊥ρi , the plasma kinetic to magnetic pressure ratio β, and
the ion to electron temperature ratio τ0.

The first and second factors on the left-hand side of the gyrokinetic dispersion
equation (5.45) correspond to the KAWandKSWmodes, respectively, and the factor
on the right-hand side represents the coupling between KAWs and KSWs that is only
important at finite ion gyroradius and high β cases. Here we discuss some limiting
cases below. In the high-β limit of βi 	 1, by use of the approximation of the plasma
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dispersion function under the small-argument expansion, Z(ζs) � i
√

π, Eq. (5.46)
is reduced to

A � 1 + τ0 + i
√

πζi

(
I0(χi )e

−χi + √
Qτ

3/2
0

)
,

B � 1 − I0(χi )e
−χi ,

C � i
√

πζi

(
ci2(χi ) − √

Qτ0

)
,

D � i2
√

πζi

(
ci2(χi ) + √

Q/τ0

)
,

E � ci2(χi ) − 1. (5.47)

In the limit of χi ∼ 1/
√

βi � 1, the dispersion equation (5.45) is reduced to

(
B − χi

M2
z

)
D = E2 (5.48)

with B � χi , D � i2Mz
√

π/βi , and E � −3χi/2. Its solution is

Mz = ±
√√
√√1 −

(
9

16

√
βi

π
χi

)2

− i
9

16

√
βi

π
χi . (5.49)

In the long wavelength limitχi � 1/
√

βi , this leads to the ordinary AWof Mz = ±1
with weak damping of ωi � ωr . When χi > (16/9)

√
π/βi , the dispersion relation

of Eq. (5.49) leads to a purely damped mode.
On the other hand, for the low-β case of βi � 1, the gyrokinetic dispersion equa-

tion (5.45) is reduced to

(
χi

M2
z

A − AB + B2

)
2A

βi
= 0. (5.50)

The second factor A = 0 leads to the ion acoustic wave in the long wavelength limit
of χi � 1, that is,

Mz = ±
√

βe

2
− i

√
πβi

16
τ−2
0 e−1/2τ0 . (5.51)

The first factor of Eq. (5.50),

χi

M2
z

A − AB + B2 = 0, (5.52)

corresponds to KAWs in low-β plasmas. In the kinetic regime of Q < βi � 1,
expanding the ion and electron dispersion functions in large and small arguments,
respectively, one has
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A � 1 + τ0 − I0(χi )e
−χi

+i Mz

√
π

βi

(
I0(χi )e

−χi −M2
z /βi + √

Qτ
3/2
0 I0(χe)e

−χe

)
. (5.53)

The resulting dispersion relation may be obtained by the weakly damping approxi-
mation of |ImMz| � |ReMz| as follows:

ReMz = ±
√

(1 + τ0 − I0(χi )e−χi ) χi

τ0 I0(χe)e−χe B
,

ImMz = − χi eχe

2I0(χe)

√
π

βi

(
I0(χi )

τ 2
0 I0(χe)

eχe−χi −M2
z /βi +

√
Q

τ0

)

. (5.54)

In the inertial regimeofβi < Q � 1, the expansionof all plasmadispersion functions
in large arguments gives approximation

A � B − I0(χe)e−χe

M2
z

βi

2Q
+ i Mz

√
π

βi
×

(
I0(χi )e

−χi −M2
z /βi + √

Qτ
3/2
0 I0(χe)e

−χe−Qτ0M2
z /βi

)
. (5.55)

This leads to the dispersion relation,

ReMz = ±
√

I0(χe)e−χeβiχi

(2Qχi + I0(χe)e−χeβi ) B
,

ImMz = − 2Q2 I0(χe)e−χeβiχ
3
i

(2Qχi + I0(χe)e−χeβi )
3 B2

√
π

βi
×

(
I0(χi )e

−χi −M2
z /βi + √

Qτ
3/2
0 I0(χe)e

−χe−Qτ0M2
z /βi

)
. (5.56)

For the short-wavelength case of the perpendicular wavelength between the ion
and electron gyroradii,χi 	 1 	 χe, we have A � 1 + τ0

(
1 + i

√
πζe

)
, B � −E �

1, C � −i
√

πζe, and D � i2
√

πζe/τ0. Thus, the solution of the gyrokinetic disper-
sion equation (5.45) becomes

ReMz = ±
√
2k⊥ρi√

βi + 2τ0/ (1 + τ0)
,

ImMz = −χi

2

√
Qπ

τ0βi

{

1 +
[

(1 + τ0)βi

2τ0 + (1 + τ0)βi

]2
}

. (5.57)

This agrees with the KAWdispersion relation in the short-wavelength limit (Kingsep
et al. 1990). In fact, for the short-wavelength case of k⊥ρi 	 1, the low-frequency
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Fig. 5.5 Numerical solutions of the linear gyrokinetic dispersion relation showing the transition
from AWs in the inertial range (k⊥ρi � 1) to KAWs in the ion (k⊥ρi ∼ 1) and electron (k⊥ρe ∼ 1)
gyrokinetic ranges: Panels, from left to right, show three cases forβi = 0.01, 1, and100, respectively,
where bold solid and dashed lines represent the real frequencyω and the damping rateγ, respectively,
and dotted lines give the asymptotic KAW solution in the short-wavelength limit case of k⊥ρi 	 1
by Eq. (5.56). All solutions are normalized by the Alfvén frequency ωA ≡ kzvA (denoted by the
horizontal line) and they are functions of k⊥ only in gyrokinetics. Two vertical lines show the
ion (k⊥ρi = 1) and electron (k⊥ρe = 1) gyroradius, respectively. Finally for the sake of simplicity
the parameter τ0 = 1 has been used (from Schekochihin et al. 2009, ©AAS reproduced with
permission)

dynamics is dominated by KAWs. When the AW cascade approaches to the wave-
length k⊥ρi ∼ 1, some fraction of the AW energy seeps through to wavelengths
smaller than the ion gyroradius and is channeled into a cascade of KAWs. This cas-
cade can extend to smaller wavelengths until approaching the electron gyroradius,
k⊥ρe ∼ 1, at which the KAWs are dissipated by the electron Landau damping.

Figure5.5 shows the numerical solutions of the linear dispersion relations of the
gyrokinetics, which illustrates how the AW becomes a dispersive KAW and the
kinetic Landau damping becomes important as the wave scale approaches the ion
gyroscale.

5.4 Theory and Simulation of KAWs Turbulence

5.4.1 Basic Properties of KAW Turbulence

When the AW turbulence cascades to small scales comparable to the kinetic scales of
plasma particles, such as k⊥ρi ∼ 1, the AWs become dispersive, that is, KAWs. For
the kinetic physics of low-frequency KAW with frequencies ω � ωci , the gyroki-
netics presented in the last section provides a powerful tool and can well describe
the low-frequency KAWs in a wide wave-number range from the ion gyroscale
(k⊥ρi � 1) to the electron gyroscale (k⊥ρe ∼ 1). Based on the gyrokinetics, the last
section discusses analytically the basic characteristics of KAWs, including their lin-
ear dispersion relations and Landau damping. Besides these small-scale KAWs have
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strongly anisotropic characteristics, the dispersion of KAWs breaks the original criti-
cal balance of theAW turbulence, the polarization of KAWs contains perturbations of
plasma density and magnetic field strength, and the collisionless damping of KAWs
due to the wave-particle interaction leads to the dissipation of the turbulent wave
energy. These factors all can significantly influence the turbulent cascade process
and the scaling law of the turbulence spectrum. Moreover, these new characteristics
of KAWs all are sensitively dependent on the local plasma parameters. Meanwhile,
other modes presented nearly the ion gyroscales, such as whistler, magnetosonic, and
ion-Bernstein waves, also could possibly play some role in the dynamical cascading
and coupling of turbulent waves. These all inevitably result in the great increase of
the complexity and difficulty of KAW turbulence.

In order to simplify further the complexity, another approximation often used in
the ion gyroscale range of

√
Q � k⊥ρi � 1/

√
Q is the small-parameter expansion

of the electron gyrokinetic equation in powers of
√

Q. This approximation alsomeans

k⊥ρe ∼ √
Qk⊥ρi � 1. (5.58)

Thus, the gyrokinetics of electrons may be reduced further to the dynamics of a
magnetized fluid with the perturbed density δne and field-aligned flow velocity uez ,
which are given by Schekochihin et al. (2009)

δne

ne0
= − Ze�

Ti0
+

∑

k

eik·r

ni0

∫
J0(k⊥ρ′

i )hikd3v,

uez = 1

μ0ene0
∇2

⊥ Az +
∑

k

eik·r

ni0

∫
vz J0(k⊥ρ′

i )hikd3v, (5.59)

where Z = qi/e is the ion charge number, ρ′
i = v⊥/ωci and Re � r has been used

because of the smallness of the electron gyroradius ρe. The perturbed field equations
can be written as:

∂ Az

∂t
+ b̂ · ∇� = b̂ · ∇

(
Te0

e
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)
, (5.60)
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, (5.61)

and
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hikd3v, (5.62)
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where

d

dt
≡ ∂

∂t
+ uE · ∇ = ∂

∂t
+ 1

B0
{�, · · · },

b̂ · ∇ ≡ ∂

∂z
+ δB⊥

B0
· ∇ = ∂

∂z
− 1

B0
{Az, · · · }, (5.63)

uE = ẑ × ∇⊥�/B0, and the Poisson brackets “{A, B}” are defined by

{A, B} ≡ ẑ · (∇ A × ∇B) . (5.64)

The above Eqs. (5.59)–(5.62), combining the ion gyrokinetic equation (5.40) for
s = i , give the kinetic description of plasma fluctuations near the ion gyroscale.

For the long-wavelength (or weak dispersion) case of k⊥ρi � 1, the expansion
of the gyrokinetics in k⊥ρi can obtain precisely the similar results with that by the
reduced MHD description, in which there is no change in the physical nature until
the ion gyrokinetic range of k⊥ρi ∼ 1. The understanding of the physics of turbulent
cascade processes in this transition regime is still very poor. However, on the other
side of this transition regime, that is, in the short-wavelength limit of k⊥ρi 	 1, some
further simplification is possible because this short-wavelength limit indicates that
k⊥ρ′

i 	 1 and hence the all Bessel functions in Eqs. (5.59) and (5.62) are small. This
results in Eqs. (5.59) and (5.62) to be reduced to

δni
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,
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Ze�
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√
βi

2

(
1 + Z

τ0

)
φ

ρivA
, (5.65)

where φ ≡ �/B0 and ψ ≡ −vA Az/B0 are the so-called scalar stream and flux func-
tions. The first equation here indicates that the ion response is approximated by the
Boltzmann distribution in the electrostatic potential field �, the second equation
implies that the contribution of the ions on the field-aligned current is ignorable, and
the third equation expresses that the magnetic pressure is balanced by the electron
and ion kinetic pressures.

Substituting Eq. (5.65) into the field equations (5.60) and (5.61), a closed equation
system of the scalar stream and flux functions φ and ψ can be obtained as follows:

∂ψ

∂t
= vA

(
1 + Z

τ0

)
b̂ · ∇φ,

∂φ

∂t
= − vA

1 + (1 + Z/τ0) βi/2
b̂ · ∇ (

ρ2i ∇2
⊥ψ

)
. (5.66)
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This equation system is also referred as the equations of the electron reduced MHD,
in which the magnetic field is frozen into the electron flow velocity ve, while the ions
are immobile, that is, ui ∼ 0 (Kingsep et al. 1990). The linear dispersion relation of
this electron reducedMHDequation system is given by the dispersion equation (5.57)
(instead of τ0 by τ0/Z for Z �= 1) and describes KAWs in the short-wavelength limit
of χi 	 1. The polarization relations of its two linear eigenmodes can be expressed
by

ϕ±
k =

√
Z + τ0

τ0

(
1 + Z + τ0

τ0

βi

2

)
1

ρi
φk ∓ k⊥ψk, (5.67)

which represent the parallel (i.e., Mz > 0 for a single “+”) and antiparallel (i.e.,
Mz < 0 for a single “−”) propagating KAWs, respectively. In particular, for the
electric and magnetic field fluctuations of the KAWs we have
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This indicates that the waves have an elliptically right-hand polarization with an
elongated ellipse because |ωk/ωci | � 1.

Similarly to the reduced MHD equations, the electron reduced MHD equation
system (5.66) with the Elsässer-like variables ϕ± in the velocity dimension also
allows steady and stable nonlinear traveling wave solutions with arbitrary amplitude,
which can be constructed by setting the Poisson brackets to be equal to zero that leads
to

{ψ, φ} = 0 ⇒ ψ = c1φ

{ψ, ρ2i ∇2
⊥ψ} = 0 ⇒ ρ2i ∇2

⊥ψ = c2ψ, (5.69)

where c1 and c2 are two undetermined constants. Substituting them into the equation
system (5.66), one has

c21 = − 1

c2

(
1 + Z

τ0

) (
1 + Z + τ0

τ0

βi

2

)
, (5.70)

implying c2 < 0 for real solutions. In gyrokinetics, in fact, the Poisson bracket non-
linearity vanishes for anymonochromaticKAWs in thewave numberk space because
the Poisson bracket of two KAWs with wave numbers k and k′ is directly propor-
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tional to ẑ · (
k × k′). Therefore, any monochromatic linear KAWs can be also an

exact nonlinear solution with an arbitrary amplitude and the constant c2 = −2k2
⊥ρ2i .

However, different from the AW case, the nonlinear interaction of two KAWs can
occur not only between counterpropagating KAWs but also between copropagating
KAWs because their dispersive nature allows the fast one of the copropagating waves
with different wave numbers k⊥ to catch up the slow one and to interact with it.

5.4.2 Power Spectra of KAW Turbulence

Based on the electron reducedMHD equation system (5.66), the scaling law of KAW
turbulence can be obtained by combining the constant-flux KAW cascade and the
critical balance hypotheses. As the AW turbulence in the inertial range, the critical
balance of turbulent cascade is set up by the hypothesis that the parallel correlation
length λz ∼ k−1

z is determined by the wave propagating distance in the nonlinear
decorrelation time τK T k⊥ ∼ k−1

⊥ u−1
E ∼ k−2

⊥ φ−1
k⊥ , that is, the linear propagating time

scale τL ∼ ω−1 ∼ τK T k⊥ (the nonlinear interaction time scale). This leads to

τL ∼ τK T k⊥ ⇒
√
1 + βi√

2k⊥ρi kzvA

∼ 1

k2
⊥φk⊥

, (5.71)

where the scaling relation between the scalar flow and magnetic functions, ψk⊥ =
c1φk⊥ ∼ √

1 + βiφk⊥/ρi k⊥, and Z = τ0 = 1havebeenused.The constant-fluxKAW
cascade indicates the kinetic energy transferring rate εK T k⊥ independent of k⊥, that
is,

εK T k⊥ ∼ k2
⊥ψ2

k⊥
τK T k⊥

∼ 1 + βi

ρ2i

φ2
k⊥

τK T k⊥
∼ εK T = constant. (5.72)

The combination of Eqs. (5.71) and (5.72) leads to the the scaling relations of the
scalar potential φk and the anisotropy as follows:

φk ∼ ε
1/3
K T ρ

2/3
i

(1 + βi )
1/3 k−2/3

⊥ ;

kz ∼ ε
1/3
K T (1 + βi )

1/6

ρ
1/3
i vA

k1/3
⊥ . (5.73)

In particular, from the polarization relations in Eq. (5.68) the energy spectral densities
of magnetic and electric fields for KAWs can be obtained as follows:
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EBk⊥ ∼ d

dk⊥
|φk|2 ∼ k−7/3

⊥ ;

EEk⊥ ∼ d

dk⊥
|k⊥φk|2 ∼ k−1/3

⊥ . (5.74)

The results of numerical simulations based on the electron MHD turbulence also
showed similar scaling relations (Biskamp et al. 1996, 1999; Cho and Lazarian
2004).

Figure5.6 illustrates the critical balance for the transition of the KAW turbu-
lent cascade from the low wave number regime of k⊥ρi � 1 to high wave number
regime of k⊥ρi 	 1. The critical balance condition of ω = ωnl constrains the tur-
bulent energy flow cascading along the path in the kz − k⊥ plane, which is given
by the solid line in Fig. 5.6. From Fig. 5.6, the KAW turbulent cascading process
towards smaller scales has the same anisotropic scaling (i.e., kz ∝ k2/3

⊥ ) with that
of the AW turbulence described by the Goldreish-Sridhar theory until the transition
point at k⊥ρi = 1 is approached. Above this transition point the anisotropy becomes

Fig. 5.6 Schematic diagram of the critical balance and anisotropy for the KAW turbulent cascade
from lowwavenumbers of k⊥ρi � 1 to highwave numbers of k⊥ρi 	 1.The horizontal and vertical
axes are the perpendicular (k⊥ρi ) and parallel (k‖ρi ) wave numbers, respectively. ω = MzkzvA and
ωnl = k⊥v⊥ are the linear wave and nonlinear interaction frequencies, respectively. The critical
balance is given by ω = ωnl, and ω > or < ωnl correspond to the weak or over-strong turbulence,
respectively (from Howes et al. 2008b)
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stranger, that is, kz ∝ k1/3
⊥ , implying that the KAW turbulence faster develops into

field-aligned filamentous structures in the kinetic scales of k⊥ρi > 1.

5.4.3 AstroGK Simulations of Ion-Scale KAW Turbulence

Based on some fluid codes, the critical balance and its leading to results have been
examined and verified extensively in MHD simulations for AW turbulence (Cho and
Vishniac 2000; Maron and Goldreich 2001; Müller et al. 2003) and in electronMHD
simulations for kinetic turbulence (Biskamp et al. 1996, 1999; Cho and Lazarian
2004). However, these fluid codes can not properly model the effect of wave-particle
interactions and the kinetic dissipation in kinetic turbulence. In order tomore properly
take account of the kinetic effects due to wave-particle interactions in astrophysical
plasmas, a kinetic simulation, called the AstroGK code, has been developed based
on the gyrokinetic theory (Howes et al. 2006; Schekochihin et al. 2009; Numata et al.
2010). One of benchmarks to check the applicability of numerical simulations is to
reproduce analytical results of the linear theory. The applicability of the AstroGK
code has been checked extensively to agree well with the linear gyrokinetic theory
in the kinetic scales of plasma particles. For example, Fig. 5.7 displays the normal-
ized real frequency (ω/k‖vA) and damping rate (γ/k‖vA)of KAWs produced by the
AstroGK (squares) as the function of the normalized perpendicular wave number
k⊥ρi and the corresponding analytic results from the linear collisionless gyroki-
netic theory (lines) in the typical kinetic scale range from k⊥ρi = 0.1 to k⊥ρi = 10
(Howes et al. 2008a).

Fig. 5.7 Normalized frequencies ω/k‖vA and damping rates γ/k‖vA versus normalized perpen-
dicular wave number k⊥ρi for a plasma with βi = 1 and Ti = Te. The AstroGK code (squares)
correctly reproduces the analytic results from the linear collisionless gyrokinetic dispersion rela-
tion (reprinted the figure with permission from Howes et al., Phys. Rev. Lett. 100, 065004, 2008a,
copyright 2008 by the American Physical Society)
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From Fig. 5.7, one can find almost exact agreement between the numerical sim-
ulation by the AstroGK code and the analytical results from the linear gyroki-
netic theory, in which the ordinary AW dispersion relation (ω = ±k‖vA) with lit-
tle damping (γ � k‖vA) is obtained again for the MHD limit of k⊥ρi � 1 and
for the high wave-number case of k⊥ρi 	 1 the KAW dispersion relation ω =
±k‖vAk⊥ρi/

√
βi/2 + τ/ (1 + τ ) (see Eq. 5.57) with stronger damping can be redis-

covered. TenBarge and Howes (2012) further investigated the applicability of the
critical balance to kinetic turbulence and found that the results of kinetic simulations
can well agree with the theoretical predictions. This implies that the critical balance
also is satisfied well in kinetic turbulence and a more strongly anisotropic turbulent
cascade may extend into the kinetic scales.

Howes et al. (2008a, 2011) used the AstroGK code more in detail to solve numer-
ically the gyrokinetic and Maxwell coupled equations (5.40), (5.42), and (5.44),
in which the equilibrium distributions for electrons (Fe0) and protons (Fi0) both
are assumed are uniform Maxwellian distributions, the real ion-electron mass ratio
mi/me = Q−1 = 1836 is used. The spatial coordinates (x , y) perpendicular to the
mean magnetic field (B0) are dealt with pseudospectrally and the development along
the parallel coordinate z is calculated by an upwind finite-difference scheme. Colli-
sional effects are includedbya conservative linearized collisionoperator of consisting
of energy diffusion and pitch-angle scattering (Abel et al. 2008; Barnes et al. 2009).
For the kinetic simulation of collisionless kinetic turbulence in astrophysical plasmas
one of main difficulties is how to model the energy injection at the largest driving
scales and how to remove the energy at the smallest dissipating scales because the
kinetic scales are much less than the physical driving scale and physical processes of
astrophysical plasmas in the kinetic scales have naturally collisionless characteristic.

For a kinetic system to reach a steady state in kinetic simulations, the driving
injection power in large scales into the system must be dissipated into heat in small
scales. In a collisionless or weak-collision kinetic system, the distributions possibly
develop some non-physical small-scale structures near the grid resolution scale of
the numerical simulation, which leads to falsely and strongly numerical gradients
and disturbs significantly the system evolution, even no reachable steady state. Thus,
numerical simulations of kinetic turbulence must include proper collisions as well as
sufficient grid resolutions to guarantee the correct relationship between small-scale
structures in velocity and position space. In general, it is very difficult that a physical
collision operator simultaneously satisfies the grid resolution requirements for ions
and electrons. Therefore, a artificially enhanced hypercollisionality (analogous to
the hyperviscosity in fluid simulations) often is involved to terminate the cascade of
kinetic turbulence at small scales close to the grid scale.

Using the AstroGK code and employing a hypercollisionality with the form of a
pitch-angle scattering operator dependent on the collision rate νh (k⊥/k⊥d)

8, where
k⊥d is the grid wave number (i.e., the maximum wave number in the kinetic system),
Howes et al. (2008a) presented the first fully electromagnetic gyrokinetic simula-
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Fig. 5.8 Magnetic (solid line) and electric (dashed line) energy spectra in theMHD regime (k⊥ρi <

1) given by the AstroGK simulation. The box size is L⊥ = 2π10ρi . Electron hypercollisionality is
dominant for k⊥ρi > 1 denoted by dotted line (reprinted the figure with permission from Howes
et al., Phys. Rev. Lett. 100, 065004, 2008a, copyright 2008 by the American Physical Society)

tions of magnetized turbulence in a homogeneous weak-collision plasma near the
ion gyroscale (ρi ). Figure5.8 shows the normalized perpendicular magnetic (solid
line) and electric (dashed line) energy spectra in the inertial range of k⊥ρi < 1,
where the plasma parameters βi = Ti/Te = 1 have been used. As expected by the
Goldreich-Sridhar theory for critically balanced reducedAWturbulence in the inertial
regime, these two spectra are nearly coincident and both show a scaling consistent
with ∝ k−5/3

⊥ . Moreover, this also, for the first time, demonstrated a MHD turbu-
lence spectrum by a kinetic simulation and further confirmed the applicability of the
AstroGK simulation.

From Fig. 5.8, a spectral break at the transition from AW to KAW turbulence can
be clearly found at k⊥ρi ∼ 1. Figure5.9 shows the perpendicularmagnetic (bold solid
line) and electric (bold dashed line) and parallel magnetic (bold dash-dotted line)
energy spectra obtained by the AstroGK simulation around this transition (Howes
et al. 2008a), where the corresponding energy spectra given by a turbulent cascade
model based on the assumptions of the local nonlinear energy transfer, the critical
balance between linear propagation and nonlinear interaction times, and applicabil-
ity of linear dissipation rates are displayed in thin lines for comparison (Howes et al.
2008a). From Fig. 5.9, the energy spectra of kinetic turbulence given by the AstroGK
simulation exhibited clearly that the evidently spectral break occurs at k⊥ρi � 2 and
above this breaking point the magnetic and electric energy spectra become steepen-
ing (∼k−7/3

⊥ ) and flattening (∼k−1/3
⊥ ), respectively. Moreover, the turbulent energy

spectra at scales below and above this transition are consistent with the predictions
for critically balanced AW (Goldreich and Sridhar 1995) and KAW (Schekochihin
et al. 2009) turbulent cascades (see Eq. 5.74), respectively.
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Fig. 5.9 Bold lines: normalized energy spectra for δB⊥ (solid line), δE⊥ (dashed line), and
δB‖ (dash-dotted line); Thin lines: solution of the turbulent cascade model (Howes et al. 2008b).
Dimensions are (Nx ; Ny; Nz; Nε; Nξ; Ns) = (64; 64; 128; 8; 64; 2), requiring 5 × 109 computa-
tional mesh points, with box size L⊥ = 5πρi . Electron hypercollisionality is dominant for k⊥ρi > 8
denoted by dotted line (reprinted the figure with permission from Howes et al., Phys. Rev. Lett.
100, 065004, 2008a, copyright 2008 by the American Physical Society)

5.4.4 AstroGK Simulations of Electron-Scale KAW
Turbulence

For the importance of the hypercollisionality involved in Howes et al. (2008a), the
collision frequency νh has a marginal value for the ions, but a larger νh value is
required for the electrons, implying that the hypercollisionality can not well model
the electron heating in the electron gyroscale ρe. In order to extend the AstroGK
simulation to the electron gyroscale range, Howes et al. (2011) focused the sim-
ulation concerning domain on the kinetic scales between the ion (k⊥ρi = 1) and
electron gyroradius (k⊥ρe = 1), in which the nonlinear transferring of the turbulent
energy at scales larger than the largest scales is modeled by six driving modes of
parallel currents, jzk, with frequencies ω0 = 1.14ωA0 and wave vectors (kxρi , kyρi ,
kz Lz/2π) = (1, 0,±1), (0, 1,±1), and (−1, 0,±1), where ωA0 ≡ kz0vA. The driv-
ing amplitudes are determined by the critical balance condition at the largest scales
and the energy is injected only at k⊥ρi = 1 so that the amplitudes at all higher wave
number k⊥ρi > 1 can be attributed to the nonlinear turbulent cascade process. The
simulation domain is anisotropic and has the sizes L⊥ = 2πρi � 42.8 (2πρe) � Lz

and the plasma parameters βi = 1 and τ0 = Ti0/Te0 = 1 are used. In addition, a
recursive expansion procedure is used to reach a statistically steady state at accept-
able numerical calculation cost.
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In particular, in order to prevent the non-physical small-scale velocity structures in
the velocity space created numerically by wave-particle interactions due to exceed-
ing the velocity space resolution from disturbing the physics of the kinetic damping
(such as the Landau damping), they used the collision frequencies of νi = 0.04ωA0

for ions and νe = 0.5ωA0 for electrons, instead of the artificially enhanced hyper-
collisionality, to erase these small-scale velocity structures. Thus, all dissipations
come from resolved collisionless damping mechanisms and hence the steady state
energy spectra at all scales, including the dissipative scales, are obtained by resolved
physical processes. Therefore, the results may be more reliably compared directly to
observational data.

Figure5.10 presents the steady state energy spectra of the kinetic simulations
(thick lines) for the perpendicularmagnetic (EB⊥(k⊥), black solid), electric (EE⊥(k⊥),
green dashed), and parallel magnetic (EB‖(k⊥), purple dot-dashed) field fluctuations
in the kinetic scale range from the ion gyroscale extending to the electron gyroscale.
From Fig. 5.10 the most salient feature of the magnetic and electric energy spectra is
that they appear excellent power-law spectra over the entire scale range from the ion

Fig. 5.10 The black thick solid, green thick dashed, and purple thick dot-dashed lines are the energy
spectra of the kinetic turbulence for the perpendicular magnetic (EB⊥ (k⊥)), electric (EE⊥ (k⊥)),
and parallel magnetic field fluctuations (EB‖ (k⊥)), which are given by the kinetic simulations. The
green thin dashed and purple thin dot-dashed lines represent the perpendicular electric and parallel
magnetic energy spectra predicted theoretically from the simulated perpendicular magnetic energy
spectrum based on the polarization relations of the linear colissionless KAWs, which are excellent
agreement with the simulation results. The two vertical thin dotted lines denote the positions of the
ion and electron gyroradius (i.e., k⊥ρi and k⊥ρe), respectively (reprinted the figure with permission
from Howes et al., Phys. Rev. Lett. 107, 035004, 2011, copyright 2011 by the American Physical
Society)
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gyroscale at k⊥ρi = 1 to the electron gyroscale at k⊥ρe = 1. In general, the role of
dissipations (due to collisions or collisionless kinetic damping) is removing the tur-
bulent energy into the heating of plasma particles and a sufficiently strong dissipation
at the ion gyroscale may lead to the turbulent cascade process terminating nearly the
ion gyroscale. This results in that the turbulent energy spectra exhibit an exponential
falloff at the ion gyroscale and can not reach the electron gyroscale (Podesta et al.
2010). However, observations of turbulent energy spectra at the kinetic scales in the
solar wind (Bale et al. 2005; Alexandrova et al. 2009; Kiyani 2009; Sahraoui et al.
2009, 2010; Chen et al. 2010; Goldstein et al. 2015) show a continuation of the
kinetic turbulent cascade until to the electron gyroscale that is well consistent with
the AstroGK simulation results of the KAW turbulence presented in Fig. 5.10.

On the other hand, Fig. 5.10 also shows that the perpendicular electric (green
thin dashed line) and parallel magnetic (purple thin dot-dashed line) energy spectra
calculated directly by the perpendicular magnetic energy spectrum of the kinetic
simulations based on the polarization relations of the linear colissionless KAWs both
are excellent agreement with the corresponding simulation results. This indicates
that the nature of the KAW turbulence is well consistent with the properties of linear
KAWs although these turbulent KAWs are strongly nonlinear waves.

The effect of the Landau damping seems merely to steepen the energy spectra
slightly, for instance, the magnetic energy spectrum is closer to ∝ k−2.8

⊥ rather than
∝ k−7/3

⊥ predicted by the theory of KAW turbulence without dissipation and the elec-
tric energy spectrum also is slightly steeper than the theoretically predicted spectrum
∝ k−1/3

⊥ . One possible explanation for the turbulence energy spectra to extend to the
electron gyroscale is that the nonlinear cascade process of the KAW turbulence can
sufficiently fast transfer the energy into smaller scale waves before it is exhausted
by the linear and nonlinear Landau damping if only these damping rates are lower
than the linear wave frequency and hence slower than the nonlinear energy trans-
ferring rate. Observations of turbulent energy spectra at kinetic scales in the solar
wind (Kiyani 2009; Alexandrova et al. 2009; Chen et al. 2010; Sahraoui et al. 2010)
also show very well agreement with the slightly steepened energy spectra and further
confirmed the effect of the Landau damping on the kinetic turbulent energy spectra.

Figure5.11 shows the relative importance of various damping (or heating) pro-
cesses, where panel (a) compares the nonlinear damping rate γnl ∼ Qe/EB⊥ (dashed
line) to the nonlinear energy transferring frequency ωnl ∼ k⊥v⊥ (δB⊥/B0)√
1 + k2

⊥ρ2i /2 (dotted line), panel (b) is the ion (solid line) and electron (dashed line)
collisional heating rates normalized to the generalized energy (including both KAW
and ion entropy cascades) transferring rate E , panel (c) presents the relative damping
rates of the linear collisionless Landau damping for ions (solid line) and electrons
(dashed line) in the gyrokinetic model, and two vertical dotted lines denote the posi-
tions of k⊥ρi = 1 and k⊥ρe = 1 (i.e., k⊥ρi = 42.8), respectively. From Fig. 5.11a,
the nonlinear energy transferring rate ωnl does dominate the nonlinear damping rate
γnl above the spectral breaking point at k⊥ρi ∼ 1 until k⊥ρi ∼ 25, as expected above.
Comparing Fig. 5.11b and c, it can be found that there is an evident shift between the
peak of the ion collisional heating rate (at the higherwave number k⊥ρi ∼ 20) and the
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(a)

(b)

(c)

Fig. 5.11 a Nonlinear damping rate Qe/EB⊥ and nonlinear energy transferring frequency ωnl ;
b Ion (solid) and electron (dashed) collisional heating rate; c The linear ion (solid) and electron
(dashed) Landau damping rates (reprinted the figure with permission from Howes et al., Phys. Rev.
Lett. 107, 035004, 2011, copyright 2011 by the American Physical Society)

peak of the linear ionLandaudamping rate (at the lowerwave number k⊥ρi ∼ 1). This
shift of the peak of ion collisional heating to higher wave number can be attributed
to the effect of the ion entropy cascade because the ion entropy cascade can transfer
energy to sub-ion gyroscales. Thus, this simulation results also provide the direct
evidence of the ion entropy cascade in kinetic turbulence simulation.

In a gyrokinetic simulation covering wider scales from the tail of the MHD range
to the electron gyroradius scale, Told et al. (2015) analyzed more in detail nonlinear
energy transfer and dissipation in the transition from AW to KAW turbulence and
further confirmed the multiscale nature of the dissipation range of the KAW turbu-
lence. Their simulation results show that for typical solar wind parameters at 1 AU,
about 30% of the nonlinear energy may be transferred by the nonlinear turbulent
cascade process from the tail of the MHD inertial range to the electron gyroradius
scale. Their results also indicate that the collisional dissipation could occur across
the entire kinetic region and about 70% of the total dissipation is contributed from
electron collisions, which exhibit a broad peak around k⊥ρi ∼1–5. On the other
hand, the ion free energy can be cascaded to smaller scales and then is dissipated
close to the electron gyroradius scale (around k⊥ρi ∼ 25). This phenomenon is pos-
sibly associated with the ion entropy cascade and the fact that νi � νe (Tatsuno et al.
2009; Schekochihin et al. 2009; Howes et al. 2011).
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5.4.5 Kinetic PIC Simulations of KAW Turbulence

In a three-dimensional particle-in-cell (PIC) simulation of plasma turbulence, resem-
bling the plasma conditions found at kinetic scales of the solar wind, but using a
reduced ion to electron mass ratio mi/me = 64, Grošelj et al. (2018) also investi-
gated the power spectra of electric and magnetic fluctuations and their ratios with
focus on the kinetic region between k⊥ρi = 1 and k⊥ρe = 1. The simulation domain
is a triply periodic box of size L2

⊥ × Lz elongated along the mean magnetic field
B0 = B0ẑ, where L⊥ = 16.97λi , Lz = 42.43λi , and λi is the ion inertial length
as usual. The initial fluctuations consist of counterpropagating AWs with different
phases and wave numbers (k⊥0, 0,±kz0), (0, k⊥0,±kz0), and (2k⊥0, 0,±kz0), where
k⊥0 = 2π/L⊥ and kz0 = 2π/Lz . The initial turbulence amplitude is chosen such as
to satisfy critical balance. Ions and electrons have an initial Maxwellian velocity dis-
tribution with equal isotropic temperature T0 and uniform density n0, and hence one
has vTe = 8vTi = 0.25c, βi = 0.5, vA = 2vTi , and ωpe/ωce = 2.0. Thus, the dimen-
sionless plasma parameters and the physical setup resemble the plasma conditions
inferred from solar wind measurements.

They performed the simulation using the PIC code OSIRIS (Fonseca et al. 2002,
2008) with the spatial resolution (Nx , Ny, Nz) = (768, 768, 1536) and employing,
on average, 74 particles per cell per species. Figure5.12 shows the quasi-steady state
power spectra of normalized magnetic (red solid line), electric (green dashed line),
and density (blue dotted line) fluctuations in the kinetic region between k⊥ρi = 1 and
k⊥ρe = 1, where the ion (electron) inertial length is denoted by di(e), instead of λi

as usual, and λD is the Debye length. Although well-defined power-law spectra can

Fig. 5.12 One-dimensional k⊥ spectra of magnetic, perpendicular electric, and density fluctuations
at time t1 = 0.71tA, where tA = Lz/vA. The slope of −2.8 is shown for reference. Gray shading is
used to indicate the range of scales dominated by particle noise (reprinted the figurewith permission
from Grošelj et al., Phys. Rev. Lett. 120, 105101, 2018, copyright 2018 by the American Physical
Society)
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not be established in the reduced kinetic region because of the limitations due to the
reduced ion to electron mass ratio, the tendency of the energy spectral distribution
still is relatively good agreement with a number of observations (Bale et al. 2005;
Alexandrova et al. 2009; Sahraoui et al. 2010; Chen et al. 2013) as well as with the
gyrokinetic simulations with the realistic ion to electron mass ratio (Howes et al.
2008a, 2011; TenBarge et al. 2013; Told et al. 2015). From Fig. 5.12, one can find
that the electric field spectrum flattens in the kinetic range and separates from the
magnetic energy, whereas the density spectrum converges toward a near equipartition
with the magnetic spectrum in appropriately normalized units, which has features
consistent with solar wind observations and the gyrokinetic simulations.

In particular, the near equipartition among density andmagnetic fluctuations in the
subion range is a keyproperty ofKAWs, differentiating from theweakly compressible
whistler waves (i.e., (|δne|/n0)

2 � (|δB|/B0)
2; Gary and Smith 2009; Boldyrev

et al. 2013; Chen et al. 2013). In the asymptotic limit of ρ−1
i � k⊥ � ρ−1

e and k‖ �
k⊥, the analytical approximation ofKAWs leads toHowes et al. (2006), Schekochihin
et al. (2009), Gary and Smith (2009), Boldyrev et al. (2013):

(|δne|/n0)
2

(|δB|/B0)
2 ∼ βi + 2β2

i ,

(|δne|/n0)
2

(|δB‖|/B0
)2 ∼ 1

β2
i

,

|δB‖|2
|δB|2 ∼ βi

1 + 2βi
,

|E2
⊥|

|δB⊥|2v2
A

∼ k2
⊥ρ2i

4 + 4βi
, (5.75)

where the assumption Zi = Ti/Te = 1 has been used. Thus, for βi = 0.5 the first
expression leads to (|δne|/n0)

2 ∼ (|δB|/B0)
2, as shown in Fig. 5.12. To further

demonstrate the KAW nature of the measured fluctuations, Fig. 5.13 presents the
turbulent spectral ratios in comparison with the above analytical predictions and all
spectral ratios exhibit very good agreement between the PIC simulations and the
theoretical predictions for KAWs.

Theoretical analyses (Howes et al. 2006; Schekochihin et al. 2009) and numerical
simulations (Howes et al. 2008a, 2011; Grošelj et al. 2018) based on gyrokinetics and
full kinetics showed that the KAW turbulence has two distinctive features. The one
is that the linear physical characteristics in dispersion and polarization of KAWs still
continue to exist in nonlinear turbulent KAWs, including their anisotropy of quasi-
perpendicular propagation with k⊥ 	 k‖ and their electric and magnetic polarized
senses, such as δE⊥/δB⊥ and δB‖/δB⊥. The other one is that there are two evident
transitions in the energy spectra of the KAW turbulence, which are located near at the
wave numbers k⊥ρi = 1 and k⊥ρe = 1 and caused by the wave-number dependence
of the linear Landau damping and the KAWdispersion. In physics, the Landau damp-
ing due to the wave-particle interactions for ions (near k⊥ρi = 1) and electrons (near
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(a)

(b)

(c)

Fig. 5.13 The spectral ratios obtained from the PIC simulation: Solid lines correspond to three
different times t1 = 0.71tA, t2 = 0.88tA, and t3 = 1.06tA and their good coincidence indicates a
quasi-steady state. Dashed lines show the analytical predictions by Eq. (5.75) for KAWs (reprinted
the figure with permission from Grošelj et al., Phys. Rev. Lett. 120, 105101, 2018, copyright 2018
by the American Physical Society)

k⊥ρe = 1) leads to the KAW turbulent energy transferring directly into the resonant
ions and electrons, respectively. On the other hand, the wave-number dependence
of the KAW dispersion influences the transferring processes of the KAW turbulent
energy from large to small kinetic scales. In particular, the KAW turbulence has a
steeper energy spectrum∝ k−7/3

⊥ (or∝ k−8/3
⊥ ) in the kinetic region between k⊥ρi = 1

and k⊥ρe = 1, called the “kinetic inertial region”, evidently different from the Kol-
mogorov spectrum ∝ k−5/3

⊥ in the MHD inertial range of k⊥ρi � 1.

5.4.6 Fluid-Like Simulations of KAW Turbulence

Different from the gyrokinetic model of kinetic turbulence, which is valid only for
the low-frequency regime of ω � ωci , Boldyrev et al. (2013) analyzed in detail lin-
ear modes of electromagnetic fluctuations nearly the ion gyrofrequency with special
emphasis on the role and physical properties of KAWs and whistler waves. They
found that KAWs exist in the low-frequency regime of ω � k⊥vTi and whistler
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waves occupy a different frequency regime of k⊥vTi � ω � kzvTe . The correspond-
ing kinetic damping rates can be given by

γ

ω0
= −

√
π

2

1 + (1 + β)2

(2 + β)3/2 β1/2
k⊥ρe (5.76)

for KAWs and
γ

ω0
= −

√
π

2

k⊥
k

k⊥ρe − 2
√

π|kz|λi

β
3/2
i

e−k2z λ
2
i /βi (5.77)

for whistler waves, where β = βi + βe.
By use of fluid-like numerical simulations of strong KAW turbulence at subion

gyroscales, based on the electron MHD equation including a driving force and small
dissipation term, they also obtained similar steepened energy spectra ∝ k−8/3

⊥ for
the magnetic and plasma density fluctuations of the KAW turbulence (Boldyrev
and Perez 2012; Boldyrev et al. 2013). They proposed, however, that the nonlinear
dynamics of KAWs has an important tendency to concentrate magnetic and density
fluctuations in two-dimensional current sheet-like structures and this tendency leads
to strong spatio-temporal intermittency in the field distributions. In particular, they
thought that the energy spectrum steepening of the kinetic turbulence should be
attributed mainly to the generation of the strong intermittency in the kinetic scales
rather than the kinetic damping and the latter contributes only a small part to the
spectrum steepening.

5.4.7 Effects of Dispersion on KAW Turbulent Spectra

Based on a phenomenalogical model of the KAW intermittency at kinetic scales,
Zhao et al. (2016) further investigated the effect of the intermittency on the turbulent
energy spectra of the KAW turbulence below and above the ion gyrofrequency. The
generation of intermittent structures in turbulence indicates that the turbulent fluc-
tuations occupy only a fraction of the phase-space volume (Matthaeus et al. 2015)
and the occupying probability Pl is of scaling dependent in the form of P(l) ∝ l3−D ,
where D is the fractal dimension of the intermittent structures and is a fraction
in general cases (Frisch 1995). For instance, one has D = 0, 1, and 2 and hence
P(k⊥) ∝ k−3

⊥ , k−2
⊥ , and k−1

⊥ for the ball-like, tube-like, and sheet-like structures,
where k⊥ ∼ 2π/ l. As KAWs are elongated fluctuations along the local mean mag-
netic fields (i.e., k⊥ 	 k‖), the isotropic ball-like structures can hardly develop. Thus
a phenomenological scaling law can be given by P(k⊥) ∝ k−κ

⊥ with a scaling index
between 1 and 2 (i.e., 1 ≤ κ = 3 − D ≤ 2) for the filling probability (or the occu-
pying probability) of the intermittent structures of KAWs in the kinetic scales. In
consequence, the steady-state energy spectra can be obtained by the combination of
the scaling law of the filling probability dependent of the intermittent structures and
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the critical balance condition dependent of the dispersion relation, and the resulting
energy spectral index ranges between 7/3 and 3 (Zhao et al. 2016).

As noticed by Zhao et al. (2013), it is very evident that the linear dispersion
relation can significantly influence the turbulent energy spectra in the kinetic scales
because the critical balance condition and hence the scaling anisotropy both sen-
sitively depend on the dispersion relation. In fact, from the dispersion relation of
Eq. (1.20) for KAWs, a general scaling law for the anisotropy of the KAW turbu-
lence can be obtained as follows (Zhao et al. 2013)

kz = kz0

k2/3
⊥0

(
1 + λ2

ek2
⊥
)5/6

(
1 + ρ2isk2

⊥
)1/6 k2/3

⊥ , (5.78)

where kz0 and k⊥0 are the driving parallel and perpendicular wave numbers. In the
low-k⊥ limit of both λek⊥ and ρisk⊥ � 1, the Goldreich-Sridhar anisotropic scaling
law of kz ∝ k2/3

⊥ is recovered. For the kinetic regimeKAWswith ρ2isk2
⊥ 	 1 	 λ2

ek2
⊥,

the anisotropic scaling law of the KAW turbulence reduces to kz ∝ k1/3
⊥ as shown

in Eq. (5.73). While for the inertial regime KAWs with ρ2isk2
⊥ � 1 � λ2

ek2
⊥ and

the transition regime KAWs with ρ2isk2
⊥ ∼ λ2

ek2
⊥ 	 1, the anisotropic scaling law of

the KAW turbulence can read as kz ∝ k7/3
⊥ and kz ∝ k2

⊥, respectively, implying that
field-aligned small-scale structures can develop faster than cross-field small-scale
structures.

Correspondingly, the general steady-state energy spectra of the KAW turbulence
with the general dispersion relation of Eq. (1.20) can be derived as follows (Zhao
et al. 2013):

EB⊥(k⊥) ∝ (
1 + λ2

ek2
⊥
)−1/3 (

1 + ρ2isk2
⊥
)−1/3

k−5/3
⊥ (5.79)

for the perpendicular magnetic fluctuations,

EE⊥(k⊥) ∝ (
1 + λ2

ek2
⊥
)2/3 (

1 + ρ2isk2
⊥
)−4/3 (

1 + ρ2i k2
⊥
)2

k−5/3
⊥ (5.80)

for the perpendicular electric fluctuations, and

EEz (k⊥) ∝ [
α2

e − (
1 + ρ2i k2

⊥
)]2 (

1 + λ2
ek2

⊥
)1/3 (

1 + ρ2isk2
⊥
)−5/3

k5/3
⊥ (5.81)

for the parallel electric fluctuations.
In consideration of the dispersive effect, Voitenko et al. (2011) studied further

the turbulent spectra and spectral pattern in the transition regime from the weakly
to strongly dispersive KAWs based on the three-wave coupling dynamics (Voitenko
1998a, b). In the weakly dispersive regime of k⊥ρi < 1, the nonlinear coupling rates
are given by Voitenko (Voitenko 1998a, b)

γN L
k � 0.4ωci

vA

vTi

δBk

B0
k3
⊥ρ3i (5.82)
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for the interaction of co-propagating KAWs and

γN L
k � 0.3ωci

vA

vTi

δBk

B0
k2
⊥ρ2i (5.83)

for the interaction of counter-propagating KAWs, which is larger than the coupling
rate of co-propagating KAWs for weakly dispersive KAWs with k⊥ρi < 1. On the
other hand, in the strongly dispersive regime of k⊥ρi > 1, the nonlinear coupling
rates are (Voitenko 1998a, b)

γN L
k � 0.3ωci

vA

vTi

δBk

B0
k2
⊥ρ2i (5.84)

for the interaction of co-propagating KAWs and

γN L
k � 0.2ωci

vA

vTi

δBk

B0
k2
⊥ρ2i (5.85)

for the interaction of counter-propagating KAWs, which is close to the coupling rate
of co-propagating KAWs. It is obvious that the nonlinear coupling rates of strongly
dispersive KAWs are larger than that of weakly dispersive KAWs.

For sufficiently small perturbed amplitude and sufficiently high linear frequency,
the turbulent cascade process can not reach the critical balance and the so-called
weakly turbulent cascade process of γN L

k < ωk can occur, in which the fluctuations
have enough time to set up linear dispersion and polarization relations and conserve
their dispersive energy, and hence the energy transferring rate among the fluctuations
is relatively slow. Since the nonlinear coupling rate γN L

k is directly proportional to the
relative amplitude of the fluctuations δBk/B0, the strongly turbulent cascade process
with the critical balance can realize for sufficiently large amplitude or sufficiently low
linear frequency. For the weakly turbulent cascade, the turbulent energy spectrum
can be estimated from the conservation law of the dispersive energy and the nonlinear
coupling rate.

Motivated by the observed multi-kink pattern of kinetic turbulent spectra in the
solar wind (Chen et al. 2010; Sahraoui et al. 2010), Voitenko et al. (2011) proposed
that the entire energy spectrum from the nondispersive AW turbulence to the dis-
persive KAW turbulence can have two breaking points due to the variation of the
dispersive property of KAWs. The first breaking point occurs at the transition region
from the nondispersive AW turbulence to the weakly dispersive KAW turbulence
and the second one presents at the transition region between the weakly dispersive
KAW turbulence and the strongly dispersive KAW turbulence. Figure5.14 depicts
schematically the pattern of the double-kink energy spectrum. Taking account for
possible effects of other dynamical phenomena on the turbulent cascade process,
such as the dynamic alignment, the intermittent structure, the kinetic damping, and
the turbulent intensity (i.e., the ratio of the nonlinear coupling rate to the linear fre-
quency, γN L

k /ωk), the spectral indices of the weakly and strongly dispersive KAW
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Fig. 5.14 A schematic depiction of the double-kink pattern turbulent spectrum from the nondis-
persive AW turbulence to weakly and strongly dispersive KAW turbulence. The spectral indices−4
and −2.5 of the weakly and strongly dispersive KAW turbulent spectra should be replaced by −3
and −7/3 for the strong turbulence (from Voitenko et al. 2011)

turbulence can range from−4 to−3 and from−2.5 to−7/3, respectively, dependent
on the turbulent intensity.

5.5 Observational Identifications of KAW Turbulence

5.5.1 Initial Identifications of KAW Dispersion
and Polarization

The solar wind, a supersonic and super-Alfvénic plasma flow originating from the
solar high-temperature corona, develops a strong turbulence during its expanding
through the whole heliosphere. The solar wind turbulence spreads a very wide range
of scales from MHD scales larger than the size of the Sun to the kinetic scales
of plasma particles, such as the ion gyroradius and the electron gyroradius. The
dynamics of the solar wind turbulence in the MHD scale range is dominated by
incompressible AWs (Coleman 1968; Tu and Marsch 1995) and well described by
the Goldreich-Sridhar theory (Goldreich and Sridhar 1995, 1997), which predicts
that the AW turbulence drives an energy cascade from large to small scales pref-
erentially in the direction perpendicular to the ambient magnetic field, as shown
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by simulations (Cho and Vishniac 2000; Maron and Goldreich 2001; Müller et al.
2003), so that the turbulence becomes progressively more anisotropic and the tur-
bulent energy spectrum is concentrated in the wave-vector region of k⊥ 	 k‖ as the
energy cascade proceeds to higher wave numbers.Moreover, the observed anisotropy
of solar wind turbulence in the MHD scales also exhibits an evident wave-number
dependence consistent with the theoretical predictions (Horbury et al. 2008; Podesta
2009; Podesta et al. 2010; Wicks et al. 2010; Luo and Wu 2010; Luo et al. 2011;
Forman et al. 2011). In consequence, when the energy cascade reaches the kinetic
scales it is inevitable that the small-scale kinetic turbulence with k⊥ 	 k‖ transfers
naturally from the AW turbulence into the KAW turbulence. This implies that the
KAW turbulence predominates the solar wind turbulence in the kinetic scales (Howes
et al. 2008b; Boldyrev and Perez 2012; Podesta 2013).

In the kinetic scales, however, the dynamics of the KAW turbulence can become
much more complicated than that of the MHDAW turbulence because intricate vari-
ous factors, such as the linear dispersion and polarization relations (Zhao et al. 2013),
the kinetic dissipation due to the Landau damping (Howes et al. 2008b, 2010), the
dynamical alignment or the intermittency (Boldyrev 2005, 2006; Boldyrev and Perez
2012), and the coupling with other mode waves (Gary and Smith 2009; Mithaiwala
et al. 2012; Boldyrev et al. 2013; López 2017; Cerri et al. 2017), interweave each
other and influence the dynamics of the KAW turbulence in the kinetic scales. For
instance, recent results based on the gyrokinetic simulations (Howes et al. 2011; Told
et al. 2015) and the nonlinear wave-wave coupling (Voitenko et al. 2011) show that
the turbulent energy spectrum from the MHD to kinetic scales and from the ion to
electron gyroradius exhibits the multi-breaking feature. In this section, we present
recent observations of the solar wind turbulence in the kinetic scales and discuss
their physical nature of KAWs.

Theoretical analyses and numerical simulations in Sect. 5.4 showed that the KAW
turbulence has two distinctive features. The one is that the linear physical charac-
teristics in dispersion and polarization of KAWs still continue to have in nonlinear
turbulent KAWs, including their anisotropy of quasi-perpendicular propagation with
k⊥ 	 k‖ and their electric and magnetic polarized senses, such as δE⊥/δB⊥ and
δB‖/δB⊥. The other one is that there are two evident transitions in the energy spec-
tra of the KAW turbulence, which are located near at the wave numbers k⊥ρi = 1 and
k⊥ρe = 1 and caused by the wave-number dependence of the linear Landau damping
and the KAW dispersion. In physics, the Landau damping due to the wave-particle
interactions for ions and electrons leads to the KAW turbulent energy transferring
directly into the resonant ions and electrons, respectively, and the dispersion influ-
ences the transferring of the KAW turbulent energy from large to small kinetic scales.
In particular, theKAWturbulence has a steeper energy spectrum∝ k−7/3

⊥ (or∝ k−8/3
⊥ )

in the kinetic inertial region between k⊥ρi = 1 and k⊥ρe = 1, evidently different from
the Kolmogorov spectrum ∝ k−5/3

⊥ in the MHD inertial range of k⊥ρi � 1.
The first attempt of measuring the dispersion and polarization of solar tur-

bulent fluctuations in the kinetic scales was made by Bale et al. (2005). Based
on the data measured in situ by the four Cluster satellites during the interval
00:07:00−03:21:51 UT (∼195 min) on 19 February 2002, when the Cluster was
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near the apogee (∼19RE ) of its inclined orbit and spent several hours in the ambi-
ent solar wind, Bale et al. (2005) calculated the power, the phase velocity and the
polarization of the electric and magnetic field fluctuations as well as their spectral
density over the MHD inertial and kinetic dissipative wave number ranges. In order
to strengthen the reliability of the calculation results they computed the power spec-
tral density using both the Morlet wavelet and fast Fourier transform (FFT) schemes
(Torrence and Compo 1998) and restricted their interpretation to the region where
the two results agree.

Figure5.15 shows their calculation results, where the panel (a) presents the power
spectral densities of electric (green) andmagnetic (black) field fluctuations computed
using thewavelet (upper) and fast Fourier transform (lower) schemes. From the panel
(a) of Fig. 5.15, the turbulent energy spectra of electric and magnetic fluctuations

Fig. 5.15 Panel a shows the wavelet (upper) and FFT (lower) power spectra of Ey (green) and
Bz (black) versus the normalized wave number kρi ; Panel b shows the ratio of the electric to
magnetic spectra in the plasma frame, where the average Alfvén speed (vA � 40 km/s) is shown
by a horizontal line and the red line is a fitted curve by the KAW linear polarization relation; Panel
c shows both the cross coherence of Ey with Bz by blue dots with error bars and the correlation
between the electric and magnetic power by black dots (reprinted the figure with permission from
Bale et al., Phys. Rev. Lett. 94, 215002, 2005, copyright 2005 by the American Physical Society)
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agree strikingly each other in the inertial subrange between kρi � 0.015 and 0.45
and both show power law behavior with indices of −1.7, which is consistent with
the Kolmogorov spectrum of ∝ k−5/3, as expected by the Goldreich-Sridhar AW
turbulence theory, where the wave number is determined by the so-called Taylor
hypothesis (Taylor 1938), that is, the Doppler drift, k = ω/vsw, and vsw is the local
solar wind velocity much larger than the average Alfvén velocity vA. At kρi � 0.45
the electric and magnetic energy spectra both show evident break and then they start
to separate obviously due to the kinetic dispersion effects of KAWs, in which the
electric spectrum becomes a flattened power law spectrum with an index of −1.26
and the magnetic spectrum becomes steeper with an index of −2.12.

The panel (b) in Fig. 5.15 shows the ratio of the electric to magnetic fluctuations in
the plasma frame, δE ′

y/δBz (the subscripts y and z denote the y and z components in
the GSE (geocentric solar ecliptic) coordinate system, where the black dots and blue
line are computed from the wavelet and FFT spectrum, respectively, and well agree.
The horizontal line denotes the average Alfvén velocity vA � 40 km/s and the red
line is a fitted curve by the KAWpolarization relation in the panel (b). It can be found
that the wavelet (the black dots) and FFT (the blue line) ratios of electric to magnetic
fluctuations nearly coincide and are well consistent with the average Alfvén velocity
vA � 40 km/s in the inertial subrange 0.015 < kρi < 0.45 and in the higher wave
number range of 0.5 < kρi < 5 the FFT ratio also can be well with the fitted curve
by the KAW polarization relation. The panel (c) shows both the cross coherence of
the electric with magnetic fluctuations (blue dots with error bars) and the correlation
between their power spectra (black dots). It is clear that the fluctuations are strongly
correlated through the inertial range (with coefficient � 1), remain well correlated
in the kinetic range between the two breaking points 0.45 < kρi < 2.5, and begin to
lose correlation quickly above the second breaking point at kρi � 2.5.

In this analysis, they also compared the observed dispersion to that the prediction
of the whistler mode and found that the prediction of the whistler mode is much
shallower than the observed dispersion at the kinetic region of kρi ∼ 1. This strongly
suggested the physical nature of KAWs for the observed turbulent fluctuations and
indicated that as the turbulent cascade proceeds towards smaller and smaller scales,
the AW turbulence in the inertial subrange of kρi � 1 progressively transfers into the
KAW turbulence at kρi ∼ 1, becoming more electrostatic and eventually damping
on the thermal plasma at higher wave numbers of kρi 	 1. In spite of the similar
evidence for theKAWnature of solarwind turbulence at the kinetic scales furtherwas
confirmed later in other observations (Sahraoui et al. 2009;Kiyani 2009;Alexandrova
et al. 2009), there has been a strong debate about the actual nature of the kinetic
turbulence in the solar wind, that is, whether or not it is KAW (Bale et al. 2005;
Sahraoui et al. 2009) or whistler wave (Gary and Smith 2009; Podesta et al. 2010)
turbulence.
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5.5.2 Refined Identifications of KAW Dispersion and Spectra

Sahraoui et al. (2010) considered that the difficulty in addressing this problem unam-
biguously stems from the lack of direct measurements of three-dimensional disper-
sion relations at the kinetic scales. Indeed, nearly all previous research has used
additional assumptions, such as the Taylor frozen-in-flow approximation (i.e., the
Taylor hypothesis, Taylor 1938), to infer the spatial properties of the turbulence
from the measured temporal ones. The Taylor approximation is valid only if all fluc-
tuation phase velocities are smaller than the solar wind flow velocity vsw, and more
importantly, it provides only the wave number spectrum in the direction parallel to
the flow vsw. The absence of information on the two other directions prevents a full
estimation of the dispersion relations, which compromises the chance of identifying
unambiguously the nature of kinetic turbulence.

Using the k-filtering technique (Pincon 1995) on the Cluster multi-satellite data
on 10 January 2004 from 06:05 to 06:55 UT, Sahraoui et al. (2010) measured the
wave number k of solar wind fluctuations in the kinetic scales and analyzed the
three-dimensional dispersion relation as well as the magnetic energy spectra. This
time interval was selected because it has simultaneously several advantages suitable
for the measurements of the three-dimensional wave number k of turbulent fluctu-
ations at the kinetic scales by using the k-filtering technique: (i) The four satellites
were located in the solar wind without connection to electron foreshock to avoid as
much as possible sharp gradients in the magnetic field components; (ii) Burst mode
data (with a sampling 450 Hz) were available, which allows examination of high
frequency turbulence; (iii) The magnetic fluctuations had high amplitudes relative
to the sensitivity floor of the Cluster search-coil magnetometer; (iv) The Cluster
satellites formed a regular tetrahedron configuration, which is a necessary condition
for appropriate k-spectra determination; (v) The small separation among the Cluster
satellites (by ∼ 200 km) is appropriate for exploring subproton scales.

They selected four time periods (06 : 06 − 06 : 10; 06 : 15 − 06 : 25; 06 : 27 −
06 : 41; 06 : 50 − 06 : 55, see Table 1 of Sahraoui et al. (2010) for the average
plasma parameters during them) and measured the full wave vectors k for each
satellite-frame frequency fsc between 0.04 and 2Hz by applying the k-filtering
technique. Figure5.16 presents the angles between the measured wave vectors k
and the mean magnetic field B0 (θk B) and the solar wind flow vsw (θkv). For the
selected four time intervals, 06 : 06 − 06 : 10, 06 : 15 − 06 : 25, 06 : 27 − 06 : 41,
and 06 : 50 − 06 : 55, they obtained the propagation angles, on average, 〈θk B〉 =
86◦ ± 6◦, 91◦ ± 6◦, 87◦ ± 4◦, and 90◦ ± 7◦, respectively. This clearly demonstrated
the strongly anisotropic (k⊥ 	 k‖) and the quasi-perpendicular propagating (θk B �
90◦) characteristics of the observed turbulent fluctuations at the kinetic scales, which
are well consistent with the physical nature of KAWs.

On the other hand, the results in Fig. 5.16 also show that the wave vectors have
moderate and relative spread alignment angles, on average, 〈θkv〉 = 37◦ ± 09◦, 31◦ ±
08◦, 14◦ ± 10◦, and 37◦ ± 11◦ for the four intervals, respectively. Besides the third
interval (denoted in red) shows a quasi-alignment (i.e., 〈θkv〉 = 14◦ ± 11◦ with the
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Fig. 5.16 Angles θk B (diamonds) and θkv (dots) with related error bars as estimated by using the
k-filtering technique (reprinted the figure with permission from Sahraoui et al., Phys. Rev. Lett.
105, 131101, 2010, copyright 2010 by the American Physical Society)

solar wind flow, the finite alignment angles 〈θkv〉 ∼ 40◦ of the wave vectors k with
respect to the solar wind flow vsw during the other three intervals indicate that the
observed turbulent fluctuations are not frozen in the solar wind flows and propagate
at the wave vectors of departure from the flows by a finite angle. This breaks down
the Taylor frozen-in-flow condition and hence could lead to significant distortions in
the k-spectra if they were calculated by using the Taylor approximation.

On the other hand, using the measured wave vector k, the wave frequency in
the plasma frame can be given by the satellite-frame frequency and the Doppler
frequency shift as follows:

ω = 2π fsc − k · vsw = 2π fsc − kvswcosθkv. (5.86)

Figure5.17 displays themeasured dispersion relations compared to the theoretical
predictions based on theVlasov-Maxwellian equations forKAWs (the blue lines) and
fast magnetosonic (i.e., whistler) waves (the red lines) at three quasi-perpendicular
propagation angles θk B = 85◦, 87◦, and 89◦. It is very clear and evident from the
displayed results in Fig. 5.17 that the measured turbulent fluctuations cascade and
propagate following the dispersion relations of the KAWmode but far from those of
the fast magnetosonic (or i.e., whistler) mode in the typical kinetic scale range from
0.04 to 2 k⊥ρi , covering both the transition and the Kolmogorov inertial regions. This
directly demonstrates based on the measured dispersion relation that the observed
turbulent fluctuations in the kinetic scales have the physical nature of KAWs, rather
than that of whistler waves.

In addition, also Fig. 5.17 shows clearly that the measured wave frequencies
remarkably depart from both the proton cyclotron and electron Landau resonant
frequencies, but are close to the proton Landau resonant frequency. This indicates
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Fig. 5.17 Measured dispersion relations (dots), with estimated error bars, compared to linear solu-
tions of the Maxwell-Vlasov equations for KAWs (the blue lines) and fast magnetosonic (i.e.,
whistler) waves (the red lines) at three propagation angles θk B = 85◦, 87◦, and 89◦, where the
corresponding dashed lines are their damping rates. The black curves (L p(e)) are the proton (elec-
tron) Landau resonant frequency ω = k‖vTi(e) , and the curves C p are the proton cyclotron resonant
frequency ω = ωci − k‖vTi (reprinted the figure with permission from Sahraoui et al., Phys. Rev.
Lett. 105, 131101, 2010, copyright 2010 by the American Physical Society)

that the proton Landau damping dominates over the electron Landau and proton
cyclotron dampings. An immediate consequence of these results is that the damping
of turbulence and heating of the protons will arisemost likely by the Landau damping
and not cyclotron resonances.

In general, for KAWs one has the solar wind flow velocity vsw much larger than
the phase velocity ω/k and hence has fsc � kvswcosθkv/2π from the frequency
transform relation between the plasma-frame frequency (ω) and the satellite-frame
frequency ωsc = 2π fsc given by Eq. (5.86). This indicates that the Taylor hypothesis
is usually valid for KAWs, that is, KAWfluctuations are approximately “frozen into”
the solar wind flow (vsw). Thus, the measured power spectra in the satellite-frame
frequency fsc may be interpreted directly as reduced wave number k spectra.

Sahraoui et al. (2010) also calculated the perpendicular and parallel magnetic
power spectra of the observed turbulent fluctuations in the satellite-frame frequency
fsc. Figure5.18 shows the results for the interval of 06 : 14 : 40 − 06 : 25 : 00,which
are similar to those computed from the other three time intervals, where the parallel
(the black line) and perpendicular (the red line) magnetic fluctuations were measured
by the flux gate magnetometer for the low-frequency part ( f < 2 Hz) and by the
search-coil magnetometer for the high-frequency part ( f > 2 Hz) in order to avoid
hitting the noise floors of the flux gate magnetometer in the high-frequency part and
the search-coil magnetometer in the low-frequency part, and the black dotted line is
the in-flight sensitivity floor of the search-coil magnetometer.
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Fig. 5.18 Perpendicular (red curve) and parallel (black curve) magnetic power spectra, where
the vertical arrows are the proton gyrofrequency fci and the “Doppler-shifted” proton (electron)
gyroradius ( fρi(e) = vsw/2πρi(e)) and the vertical dotted lines delimit the interval between fmin and
fmax accessible to analysis by using the k-filtering technique (reprinted the figure with permission
from Sahraoui et al., Phys. Rev. Lett. 105, 131101, 2010, copyright 2010 by the American Physical
Society)

These spectra presented in Fig. 5.18 show very similar features to those observed
by Sahraoui et al. (2009) andAlexandrova et al. (2009), that is, a Kolmogorov scaling
law∝ f −1.7 in theMHD inertial range of large scales, a breakpoint around the proton
gyroscale (∼ fρi ) (rather than the proton gyrofrequency fci ), a steeper power law
spectrum ∝ f −2.8 in the kinetic inertial range of subproton scales, and then a second
breakpoint followed by a steepening around the electron gyroscale (∼ fρe , close to
the electron inertial length λe for βe = 1). By comparing these observed spectra with
those predicted by the AstroGK simulations for the KAWs turbulence, as shown in
Figs. 5.8, 5.9, and 5.10, one can find the striking agreement between the observed and
predicted spectra. This strongly proposed that the physical nature of the observed
turbulent fluctuations in the kinetic scales is the KAW mode.

Meanwhile, by a careful investigation of these spectra it can be found that the
spectra actually steepen more strongly to ∝ f −4 around the first breakpoint at the
proton gyroscale between fsc ∼1–3Hz, where a transition to subion dispersive cas-
cade occurs. As shown in Fig. 5.14, this stronger steepening can be attributed to
the enhanced dissipation at the ion gyroscale (Voitenko et al. 2011), in which the
turbulent energy is linearly or nonlinearly damped into protons, while the remain-
ing energy undergoes a dispersive cascade towards smaller scales where it may be
dissipated into electron heating.
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5.5.3 Identifications of KAW Magnetic Compressibility

From Fig. 5.18, in addition, by comparing the parallel and perpendicular magnetic
power spectra one can find that the parallel to perpendicular magnetic power spec-
tral ratio increases as the frequency f (i.e., the wave number k) increases. This is
consistent with the another important characteristic of KAWs, that is, the magnetic
compressibility of KAWs increases with the wave number. Gary and Smith (2009)
and Chen andWu (2011b) analyzed the dependency of the magnetic compressibility
parameter,

C‖(k) ≡ |δB‖(k)|2
|δB(k)|2 , (5.87)

on the wave number k and on the plasma β for different mode waves. The results
show that the wave-number dependency of the magnetic compressibility for KAWs
is distinctly different from that for whistler waves. In the inertial region of k⊥λi � 1
the magnetic compressibility of AWs C‖A(k) → 0 because of the incompressibil-
ity of AWs, and in the kinetic region of k⊥λi ∼ 1, KAWs have a magnetic com-
pressibility, C‖K (k), much smaller than that of whistler waves, C‖W (k), that is,
C‖K (k) � C‖W (k). As the perpendicular wave number k⊥λi increases, however,
C‖K (k) increases evidently as shownby themiddle panel of Fig. 1.3which is obtained
from Eq. (1.30), while C‖W (k) is approximately invariable, where the ion inertial
length λi ∼ ρi for a high-β plasma with β ∼ 1 such as in the solar wind. On the other
hand, for a fixed wave number k⊥ 	 k‖, the magnetic compressibility, C‖(β), is an
increasing function of β (or i.e., αe) for KAWs as shown in the middle panel of Fig.
(1.4) given by Eq. (1.30). On the other hand, for whistler waves the magnetic com-
pressibilityC‖(β) nearly is a constant function of β in the kinetic region of k⊥ρi ∼ 1,
where β = βi + βe. Thus, the measurement of the magnetic compressibility of the
fluctuations can be used as the distinction between the twomodels, KAWs or whistler
waves (Gary and Smith 2009).

In the observational aspect, based on a database of ACE observations at 1 AU,
which was constructed by Hamilton et al. (2008) and consists of 960 intervals span-
ning the broadest possible range of solar wind conditions including magnetic clouds,
Hamilton et al. (2008) analyzed the correlation between the anisotropy of magnetic
fluctuations and βp. Their result indicates that, on average, the magnetic compress-
ibilityC‖ increaseswithβp in the range of kinetic scales and that the average tendency
of the solar wind fluctuations in the kinetic scales is consistent with the behavior of
KAWs and inconsistent with that of quasi-perpendicular magnetosonic or whistler
waves. However, a mixture of KAWs and whistler waves can not be ruled out and
hence the conclusion is not conclusive one or the other. Therefore, in general, it is
of more interest to compare theoretical predictions directly with solar wind observa-
tions by plotting the two modes both on the same graph so that quantitative contrasts
between them may be made.

Salem et al. (2012) further investigated the physical nature of small-scale turbulent
fluctuations in the solar wind using the comparison between the measured magnetic
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compressibility of fluctuations to the theoretical predictions arising from the models
consisting of either KAWs or whistler waves. The data of solar wind fluctuations is
from the observation by the Cluster satellite during the interval 03:00:00−04:42:00
UTon 30 January 2003when theClusterwas travelling in the solarwind. Through the
Lorentz transformation, Salem et al. (2012) transform the magnetic compressibility
predicted theoretically by the linear modes from the plasma frame into the satellite
frame,

(|δB‖|/|δB⊥|)sc, so that it may be compared directly to the observational data
in situ measured in the satellite frame.

Figure5.19 presents the predicted magnetic field fluctuation transformed to the
satellite frame to predict signature of |δB‖/δB|sc for the two wave modes, whistler
waves (black/blue) and KAWs (red) with different angles as shown in the figure,
where the satellite-frame frequency of the fluctuations f is calculated by 2π f =
ω + k · vsw, accounting for the Doppler shift arising from the relative velocity vsw

between the solar wind plasma frame and the satellite frame for a single plane wave
with wave vector k and frequency ω. The frequency fb � 0.4 Hz corresponds the
breaking frequency of the power spectrum at the transition between the inertial
and dissipative region (Salem et al. 2012). The measured ratio of the parallel to
total magnetic fluctuations in the Cluster data, δB‖/δB, is given by the green curve.

Fig. 5.19 Prediction of |δB‖/δB|sc for KAWs (red) or whistler waves (black/blue) with specified
angle θ. Cluster flux gate magnetometer measurements up to 2 Hz, or 12 fci , are shown in green.
(from Salem et al. 2012, ©AAS reproduced with permission)
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From Fig. 5.19, it is very clear that the measured parallel to total magnetic fluctuation
ratio is inconsistent with the predictions by the whistler wave for any angle of the
wave vector, but is remarkably good agreement with the prediction for the KAW
with a nearly perpendicular wave vector.

Another parameter related to the magnetic compressibility, the magnetic
anisotropic ratio of fluctuations (i.e., the ratio of the parallel to perpendicular mag-
netic fluctuations), (

δB‖
)2

(δB⊥)2
= C‖

1 − C‖
, (5.88)

also has been used often as a method to identify the physical nature of solar wind
turbulent fluctuations near the particle kinetic scales (such as the proton gyroscale
k⊥ρp ∼ 1). In particular, the wave-number dependence of the magnetic anisotropic

ratio of KAWs,
(
δB‖

)2
/ (δB⊥)2, has a distinctive feature in the solar wind plasmas

with β ∼ 1, that is, the ratio approaches zero in the small wave number limit of
k⊥ρp � 1 and increases monotonically to values of order unity when k⊥ρp ∼ 1
(Hollweg 1999; Gary and Smith 2009; TenBarge et al. 2012; Podesta and TenBarge
2012).

Podesta andTenBarge (2012) analyzed 20high-speed solarwind streamsobserved
by the dual STEREO satellites (denoted by “A” and “B”, Acuña et al. 2008) in
the ecliptic plane near 1 AU from 2007 through 2011 (see Table1 of Podesta and
TenBarge 2012). In order to facilitate themeasurements of the ratio,

(
δB‖

)2
/ (δB⊥)2,

and their comparisons to theory, these streams have been selected during times when
the local mean magnetic field B0 is nearly perpendicular to the local flow velocity of
the solar wind vsw. Thus, the quantities

(
δB‖

)2
and (δB⊥)2 can be measured simply

by the average magnetic powers in the B0 and vsw × B0 directions, respectively.
Figure5.20 shows a sample of them, which data are from the STEREO-A satellite

for the time interval 27 July 2011, 12:00 to 30 July 18:00, 3.25 days, when vsw � 621
km/s and βi � 0.7. From Fig. 5.20, it can be found that the solar wind measurements
(open circles) and the predictions based the Vlasov-Maxwell theory of KAWs (red
curve) are good agreement for the high wave number of k⊥ρp > 1 and both exhibit a
monotonic and smooth increase at k⊥ρp ∼ 1 as expected theoretically. Based on the
analysis by Podesta and TenBarge (2012), these 20 high-speed solar wind streams
observed by the STEREO consistently yield quantitatively similar results that all
show a steady increase in the magnetic anisotropic ratio,

(
δB‖

)2
/ (δB⊥)2, in the

neighborhood of k⊥ρp ∼ 1 and are in reasonable agreement with the prediction of
KAWs derived from theVlasov-Maxwell dispersion relation. Therefore, these results
can be well interpreted as evidence for the existence of quasi-perpendicular KAWs
with k⊥ 	 k‖ in the fast solar wind at the kinetic scale range near k⊥ρp ∼ 1, where
the kinetic physics becomes more important.
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Fig. 5.20 A sample showing comparisons between the theoretical predictions for KAWs (red
curve) and solar wind measurements (open circles), including only the quasi-perpendicular data
with 84◦ < θBV < 96◦, where θBV is the angle between the local mean magnetic field B0 and flow
velocity vsw , and the vertical dashed line indicates the wave number k⊥ρp = k⊥ρi = 1 (reprinted
from Podesta, Sol. Phys., 286, 529–548, 2013, copyright 2013, with permission from Springer)

5.5.4 Identifications of KAW Magnetic Helicity

Besides the magnetic compressibility, the magnetic helicity also is used often to
distinctly identify the physical nature of the kinetic-scale fluctuations in solar wind
turbulence. In the inertial range the normalizedmagnetic helicity spectrumσm is zero,
on average, in the solar wind at 1 AU, while in the kinetic scale range has a distinctive
peak near kλi = 1. Figure5.21 shows a typical sample measured by the STEREO-
A during an interval of 4 days from February 13 2008, 08:00 UT to February 17
08:00 UT for an unusually long-lived high-speed stream with the mean flow velocity
vsw � 655 km/s, proton density n p � 2.2 cm−3, temperature Tp � 1.6 × 105 K, and
the plasma βp � 0.7. By use of the Taylor hypothesis, ω � kvsw, the wave number
kλi = 1 occurs at 0.7Hz denoted by the vertical arrow in Fig. 5.21, implying the
typical scale of the kinetic turbulence.

From Fig. 5.21, the trace spectrum (upper panel) of the magnetic fluctuations can
be fitted well by a power-low spectrumwith an index of 1.57 in the inertial range over
the satellite-frame frequency from1 to 100mHz.When approaching the kinetic scales
the trace spectrum breaks evidently and becomes steeper in the kinetic scale range,
as expected by the kinetic turbulence theory. On the other hand, from Fig. 5.21, it can
be found that the normalized magnetic helicity spectrum σm (lower panel) exhibits
strong fluctuations with an average value near zero in the inertial range. While in
the kinetic scale range immediately after the spectral break the magnetic helicity
spectrum remarkably departs from zero and has a clear peak near 1 Hz, a typical
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Fig. 5.21 A sample of the trace spectrum (upper panel) and the normalized magnetic helicity
spectrum (lower panel) of solar wind magnetic fluctuations near 1 AU, which were measured by the
STEREO-AonFebruary 13 2008, 08:00UT to February 17 08:00UT (4 days) for an unusually long-
lived high-speed streamwith themean parameters vsw � 655 km/s, n p � 2.2 cm−3, Tp � 1.6 × 105

K, and βp � 0.7. The spectral slope in the inertial range over the satellite-frame frequency from 1
to 100 mHz is 1.57. By use of the Taylor hypothesis, the wave number kλi = 1 occurs at 0.7Hz
as denoted by the vertical arrow. The normalized magnetic helicity spectrum σm exhibits clearly a
peak in the kinetic scale range immediately after the spectral break (reprinted from Podesta, Sol.
Phys., 286, 529–548, 2013, copyright 2013, with permission from Springer)

kinetic scale. In addition, the fluctuation of the magnetic helicity spectrum also is
strongly depressed in the kinetic scale range. Usually this may be explained bywaves
with a predominantly right-hand sense of polarization propagating away from the Sun
(Goldstein et al. 1994; Leamon et al. 1998a). This peak is formed possibly by the ion-
cyclotron dampingof a cascade of predominantly outward-propagating quasi-parallel
Alfvénic ion-cyclotron waves near the spectral breaking point. In consequence, only
right-hand polarized quasi-parallelmagnetosonicwhistlerwaves cascade through the
spectral breaking point into higher wave numbers (Goldstein et al. 1994; Leamon
et al. 1998a; Leamon 1998b).

However, the theory and simulation of the plasma turbulence both show that the
turbulent energy cascade towards small scales proceeds preferentially in the direc-
tion perpendicular to the local mean magnetic field (Goldreich and Sridhar 1995,
1997;Biskampet al. 1996, 1999;ChoandVishniac 2000;Maron andGoldreich2001;
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Müller et al. 2003; Cho and Lazarian 2004; Boldyrev 2005, 2006; Howes et al. 2006,
2008a, b; 2011; Schekochihin et al. 2009; Boldyrev and Perez 2012; Boldyrev et al.
2013). This results in that in the kinetic scale range the turbulent energy in quasi-
parallel fluctuations would be much less than that in quasi-perpendicular fluctua-
tions, implying that the plasma turbulence in the kinetic scales most likely consists
of a cascade of quasi-perpendicular KAWs rather than quasi-parallel whistler waves.
Therefore, the ion-cyclotron damping scenario of the formation of the kinetic mag-
netic helicity spectrum in the kinetic scale range seems unlikely. Howes and Quataert
(2010) proposed an alternative interpretation, inwhich theobservedpeak in thekinetic
magnetic helicity spectrumσm(k) is causedbyquasi-perpendicularKAWswith k⊥ 	
k‖. They showed that an anisotropic spectrum of predominantly outward-propagating
quasi-perpendicularKAWs,which are also right-handpolarized like thequasi-parallel
whistler waves, can produce a magnetic helicity spectrum σm(k) with a peak in the
kinetic scales, which is in reasonable agreement with the observations (Howes and
Quataert 2010).

In order to determine further the wave vector direction of the observed magnetic
helicity spectrum σm(k), He et al. (2011, 2012a) and Podesta and Gary (2011)
analyzed the look-angle distribution of the observed magnetic helicity spectrum,
σm(k), with respect to the local mean magnetic field. Using the same STEREO-A
data as used in Fig. 5.21, two distinct populations of the electromagnetic fluctuations
are found at the typical kinetic scales near k⊥ρi = 1 as shown in the right panel of
Fig. 5.22. One has a left-hand polarization sense with σm < 0 in the satellite frame,
denoted by the blue spot near θBV ∼ 0 (i.e., quasi-parallel propagating fluctuations)
and the other one has a right-hand polarization sense with σm > 0 in the satellite
frame, denoted by the orange and yellow spots located near θBV = 90◦ (i.e., quasi-
perpendicular propagating fluctuations). Tentatively, the quasi-parallel fluctuations
may be identified as electromagnetic ion-cyclotron waves propagating away from
the Sun or magnetosonic whistler waves propagating toward the Sun along the local
mean magnetic field, while the quasi-perpendicular waves could be identified as
KAWs or oblique whistler waves.

Heet al. (2012a) analyzed indetail the hodographs in the localRTNcoordinate sys-
tem (where R points toward the satellite from the Sun center, T is the cross product of
the solar rotation axis and R, N completes the right-handed triad) for the fluctuations
presented in Fig. 5.22. Figure5.23 shows two examples of them, which represent the
left-hand polarization with σm < 0 (b) and the right-hand polarization with σm > 0
(c). In particular, they found that the major axis of the right-hand polarization ellipses
is perpendicular to the local mean magnetic field B0, implying δB⊥ > δB‖ (He et al.
2012a). This is the typical property of quasi-perpendicular KAWs rather than quasi-
perpendicular whistler waves. In fact, for a quasi-perpendicular whistler wave, the
major axis of its magnetic polarization ellipse is expected to be aligned with the
local B0, implying significant magnetic compressibility, and the polarization sense
turns from right to left handedness as the wave propagation angle (θBV ) increases
toward 90◦. Therefore, they concluded that, in the kinetic scale range near the break
of solar wind turbulence spectra occurring around the proton inertial length (or i.e.,
the proton gyroradius), the observed right-hand polarization ellipse with orientation
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Fig. 5.22 Analysis of a five-day interval of high-speed wind observed in the ecliptic plane near 1
AU by the STEREO-A satellite: Left panel is the magnetic helicity spectrum (upper) and the trace
power spectrum (lower) same as that presented in Fig. 5.21 but focus on the kinetic scale range.
Right panel shows the look-angle distribution of the magnetic helicity spectrum, where the look
angle θ = θBV is the angle between the flow velocity vsw and the local mean magnetic field B0
of the solar wind. The vertical (left-lower panel) and horizontal (right-upper panel) dashed lines
denote the typical kinetic scale of k⊥ρi = 1 (from Podesta and Gary 2011)

perpendicular to the local B0 represents quasi-perpendicular KAWs (i.e., oblique
Alfvénic ion-cyclotronwaves) rather thanquasi-perpendicularmagnetosonicwhistler
waves, as expected by the theory and simulation of the kinetic turbulence.

In order to further understand the physical nature of the population of the quasi-
parallel fluctuations in above the observations (He et al. 2011, 2012a; Podesta and
Gary 2011), He et al. (2012b) modeled the measured angular distribution of σm by
assuming a possible distribution formedbyAlfvénic fluctuations inwavevector space
and then looked for the best fitting for the observations by adjusting the spectral distri-
butions of the assumed fluctuations. In consequence, a very good agreement between
the theoretical model and the observations can be found as shown in Fig. 5.24. Their
model shows that the observed two-component angular distribution of the magnetic
helicity spectrum (σm(k, θBV )) can be reproduced well by the superposition of two-
component Alfvénic fluctuations, which consists of quasi-perpendicular KAWs as
a major component close to k⊥ (i.e., θBV ∼ 90◦) and quasi-parallel electromagnetic
ion-cyclotron waves as a minor component close to k‖ (i.e., θBV ∼ 0).
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(a)

(b) (c)

Fig. 5.23 a Look-angle (θBV ) distribution of magnetic helicity spectrum (σm ) derived from the
STEREO-Ameasurements on 13 February 2008 (the same as that in Fig. 5.21, but a shorter interval);
bAn example of the d BT − d BN hodograph for negative σm in (a), which is extracted from a small
interval from 11:29:11 to 11:29:32 UT during which the localB0 is quasi-parallel to the R-direction
with θBV < 10◦. Red arrows denote a circle-like left-hand polarization of d BT − d BN around the
R-direction; c One case of the d BT − d BN hodograph, which is extracted from an interval from
05:13:10 to 05:13:21 UT when 80◦ < θBV < 90◦. Red arrows denote an ellipse-like right-hand
polarization of d BT − d BN around the R-direction. Blue line represents the local B0, which is
perpendicular to the major axis of the ellipse, implying d B⊥ > d B‖ (from He et al. 2012a, ©AAS
reproduced with permission)
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(a) (b)

Fig. 5.24 a Modeling result of the angular distribution of σm based on gradually balanced two-
component AWs; b Observation of the angular distribution of the two-component σm (from He et
al. 2012b, ©AAS reproduced with permission)

In an independent but similar modelling study, Klein et al. (2014) obtained similar
results. They showed that the observed two-component angular distribution of the
magnetic helicity spectrum σm can be reproduced by a perpendicular cascade of
KAWs and a local parallel non-turbulent ion-cyclotron or whistler waves generated
by temperature anisotropy instabilities. By constraining the model free parameters
through comparison to in situ data, it is found that, on average, ∼95% of the power
near the kinetic scales is contained in a perpendicular KAW cascade and that the
parallel non-turbulent waves are propagating nearly unidirectionally.

In addition, they also noticed that in order to reproduce the observed diminish-
ing of the magnetic helicity spectrum σm at shorter scales of k⊥ρi > 1 the balance
between outward and inwardwave-energy fluxes needs to be reached gradually as the
spatial scale decreases. In the observations, however, the diminishing of σm occurs
at frequencies close to the Nyquist frequency (i.e., the data sampling frequency,
He et al. 2011, 2012a; Podesta and Gary 2011; Klein et al. 2014). Also this possibly
could influence the diminishing of σm in the short scales.

From these observations and modelling investigations of the magnetic helicity
spectra, we can include two definite results, one is that in the kinetic scale range
of solar wind turbulence the quasi-perpendicular cascade component dominates the
magnetic helicity spectrum and contains ∼95% of the spectral power, and the other
is that the physical nature of the quasi-perpendicular cascade component is KAWs.
These results both can be well consistent with the predictions of the theories and
simulations of the kinetic turbulence (Boldyrev 2005, 2006; Howes et al. 2006,
2008a, b; 2011; Schekochihin et al. 2009; Boldyrev and Perez 2012; Boldyrev et al.
2013; Grošelj et al. 2018).
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