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Preface

Liver cirrhosis is the irreversible fibrosis of the liver, the end stage of a final shared 
pathway in chronic damage to a major vital organ. It is the 9th leading cause of death 
in Japan and the 13th leading cause of death globally, with worldwide mortality hav-
ing increased by 45.6% from 1990 to 2013. Currently, the patients with compensated 
cirrhosis take a risk of death that is 4.7 times as high as the risk in the healthy popula-
tion, and those with decompensated cirrhosis take a risk that is 9.7 times as high. The 
average life expectancy of a patient with compensated cirrhosis is 10–13 years, and 
the average life expectancy may be as low as 2 years if there is decompensation.

Recent developments of antiviral therapies, including nucleotide analogues and 
direct-acting antivirals for hepatitis B and C, lead to significant leap forward in clini-
cal medicine for liver cirrhosis; however, a critical issue is an increase in the number 
of non-B, non-C cirrhosis cases in Japan. Cirrhosis is not a single disease entity but 
is based on various etiologies such as alcoholic and nonalcoholic steatohepatitis, 
autoimmune hepatitis, and congenital hepatic disorders, and it has serious complica-
tions, which exacerbate the disease prognosis. With continuous hepatocyte destruc-
tion and collagen deposition, the liver is shrunken in size and distorted in shape, 
forming multiple nodules of liver cells separated by broad fibrotic bands, which 
disturbs intrahepatic blood circulation and induces portal hypertension with exten-
sive portacaval shunts. The pathophysiological features of cirrhosis involve progres-
sive liver injury and fibrosis resulting in portal hypertension and decompensation, 
including ascites, spontaneous bacterial peritonitis, hepatic encephalopathy, variceal 
hemorrhage, and hepatocellular carcinoma. The aim of this book is to review the 
overall progress of clinical management in liver cirrhosis including etiology and 
diagnosis (Chaps. 1–5), nutritional management (Chap. 6), microbiome (Chap. 7), 
complications (Chaps. 8–13), and novel and prospective therapies (Chaps. 9–17).

We hope that this book will be helpful in facilitating clinical and research activi-
ties on liver cirrhosis. Finally, we would like to thank all of the authors for their 
contributions as well as Springer Japan for their efforts in publishing this book.

Kashihara, Japan Hitoshi Yoshiji
Kashihara, Japan Kosuke Kaji
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Chapter 1
Liver Cirrhosis with Steatohepatitis: 
Nonalcoholic Steatohepatitis and Alcoholic 
Steatohepatitis

Teruki Miyake and Yoichi Hiasa

Abstract Nonalcoholic steatohepatitis is a phenotype of metabolic diseases in the 
liver, associated with eating disorders and lack of exercise. In contrast, alcoholic 
steatohepatitis develops due to alcohol abuse. Although the causes are different, 
each type of steatohepatitis exhibits the same histological features, such as steatosis, 
lobular and portal inflammation, hepatocellular ballooning, and perisinusoidal and 
pericellular fibrosis. Untreated nonalcoholic and alcoholic steatohepatitis can prog-
ress to cirrhosis, and advanced fibrosis is a predictor of poor prognosis. Therefore, 
it is important to elucidate the pathophysiology and make appropriate diagnoses and 
initiate treatment. Various factors are involved in each pathological conditions. To 
diagnose these diseases, a more user-friendly diagnostic assessment is needed. 
Currently, predictive models combined with several indicators and imaging assess-
ments are used. Further, several treatments are attempted for patients in clinical 
practice and clinical trials, however the efficacy is not sufficient. In this chapter, we 
reviewed the epidemiology, pathophysiology, diagnosis, and treatment of cirrhosis 
due to both nonalcoholic and alcoholic steatohepatitis.

Keywords Nonalcoholic steatohepatitis · Alcoholic steatohepatitis · Cirrhosis  
Epidemiology · Pathophysiology · Diagnosis · Genetic factor · Treatment

The causes of steatohepatitis are divided into alcoholic and nonalcoholic. Alcoholic 
fatty liver disease has long been widely recognized. However, eating habit disor-
der and lack of exercise have recently increased nonalcoholic fatty liver disease 
(NAFLD), which is a phenotype of metabolic diseases in the liver. These two fatty 
liver diseases show the same histological features, such as steatosis, lobular and 
portal inflammation, hepatocellular ballooning, and perisinusoidal and pericellular 
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fibrosis [1, 2], but their causes, treatments, and prognoses are different. In this chap-
ter, we reviewed the epidemiology, pathophysiology, diagnosis, and treatment of 
nonalcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH).

1.1  Epidemiology

NAFLD is the most common liver disease worldwide. A meta-analysis includ-
ing 8,515,431 subjects from 22 countries estimated that the global prevalence of 
NAFLD was 25.24% (95% confidence interval (CI): 22.10–28.65) and the global 
prevalence of NASH among patients with biopsy-confirmed NAFLD was 59.1% 
(95% CI: 47.55–69.73). Moreover, NASH prevalence estimates among patients with 
NAFLD without an indication for biopsy were 6.67% (95% CI: 2.17–18.73) for 
Asia and 29.85% (95% CI: 22.72–38.12) for North America [3]. The incidence of 
advanced fibrosis in NASH was 67.95 in 1000 person-years (95% CI: 46.84–98.59), 
and 40.76% (95% CI: 34.69–47.13) of patients with NASH developed fibrosis with 
an average annual progression rate of 0.09% (95% CI: 0.06–0.12) [3]. Patients with 
NASH had 5.29 per 1000 person-years (95% CI: 0.75–37.56) incidence of hepa-
tocellular carcinoma (HCC). The liver-specific mortality incidence rate was 11.77 
per 1000 person-years (range, 7.10–19.53), and the overall mortality incidence rate 
was 25.56 per 1000 person-years (range, 6.29–103.80) [3]. The characteristics of 
NAFLD are different from those of other liver diseases because NAFLD frequently 
complicates various metabolic diseases. A meta-analysis and systematic review of 
16 observational or retrospective studies showed that patients with NAFLD were at 
higher risk for fatal and nonfatal cardiovascular events than those without NAFLD 
(random effect odds ratio (OR): 1.64; 95% CI: 1.26–2.13) [4]. In addition, patients 
with NASH were at elevated risk for fatal and nonfatal cardiovascular events (ran-
dom effect OR: 2.58; 95% CI: 2.58–3.75) [4]. Alcoholic liver disease (ALD) remains 
a major disease of the liver worldwide, particularly in Europe and the USA [5]. The 
definition of ALD in Europe is slightly different from that in the USA and Japan. 
Although alcoholic steatohepatitis is defined by the European Association for the 
Study of the Liver [6], it is considered as a subtype of alcoholic hepatitis in Japan 
and the USA [7]. Protein calorie malnutrition was previously common in patients 
with alcoholic liver cirrhosis (LC) [8]. However, these patients have recently become 
polarized in overnutrition and malnutrition cases [9], and obesity and metabolic dis-
eases are the risk factors for the development of alcoholic LC. The amount of alcohol 
consumption is associated with the development of fatty liver and LC [10–14]. Fatty 
liver develops in approximately 90% of individuals who consume more than 60 g/
day of alcohol [10]. The risk for developing cirrhosis increases with 60 g/day or more 
alcohol consumption for 10 years or longer (the amount of alcohol consumption is 
lower and drinking period is shorter in women than in men) [11, 12, 15], and 6–41% 
of total drinkers develop cirrhosis at this level [11, 13, 16]. An epidemiologic study 
estimated 14% and 8% increases in cirrhosis in men and women, respectively, as 
the consumption of 1 L alcohol increases per capita [17]. In patients with alcoholic 
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LC, the cumulative rate of HCC onset is 6.8–23.2% at 10 years [18–20] and that of 
survival is 41.9–53.8% at 10 years [18, 19]. However, alcoholic LC sometimes devel-
ops from alcoholic liver fibrosis without alcoholic hepatitis [7, 8, 21]. On the other 
hand, the influence of alcohol differs depending on race, gender, and genetic poly-
morphisms, among others, and alcohol consumption at lower doses and with shorter 
duration affects progression to cirrhosis [22–31]. In particular, in Japan, genetic poly-
morphisms of alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 
(ALDH2) affect susceptibility to alcoholism [22], and the age-adjusted odds ratios 
(AORs; 95% CI) for LC (1.58 [1.19–2.09]) are higher in ADH1B∗2 allele carriers 
than in ADH1B∗1/∗1 carriers, and the AORs for LC (1.43 [1.01–2.02]) are higher in 
ALDH2∗1/∗1 carriers than in ALDH2∗1/∗2 carriers. Additionally, the ADH1B∗2-
associated age-AORs increase according to the severity of the liver disease (Child–
Pugh class A, 1.81 (1.24–2.63); Child–Pugh class B/C, 3.17 (1.98–5.07)) compared 
with non-LC and no/mild fibrosis [22].

1.2  Pathophysiology of NASH (Fig. 1.1)

NASH is affected variously, and its pathological condition is completed. 
Overnutrition activates de novo lipogenesis and accumulates visceral adipose 
tissue. Accumulated visceral adipose tissue supplies excess free fatty acid to the 
liver via the portal vein, and it is the main source of hepatic triglycerides [32–34]. 

Steatosis Hepatitis Cirrhosis

Immune
activation

Mitochondrial
dysfunction

Extracellular
vesicles Inflammatory

cytokine

Overnutrition

Oxidant
stress

Adipokine

ER stress

Genetic
factor

Ethanol

Acetaldehyde

Protein
energy

malnutrition

NAFLD
Related
factor

Both
factors

ALD
related
factor

Enteric
dysbiosis

Fig. 1.1 The pathophysiologies of nonalcoholic fatty liver disease and alcoholic liver disease. 
Various factors directly or indirectly affect the liver, and influence the progress to fatty liver, ste-
atohepatitis, and cirrhosis. Abbreviations: ALD alcoholic liver disease, NAFLD nonalcoholic fatty 
liver disease, ER stress endoplasmic reticulum
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Unbalanced fatty acid intake, de novo lipogenesis, fatty acid oxidation, and export 
of very low-density lipoprotein exacerbate steatosis, hepatic inflammation, and 
hepatocellular ballooning. In the accumulated visceral adipose tissue, enlarged adi-
pocyte causes abnormal secretion of adipokines, such as decrease in adiponectin 
and increase in leptin, which decrease fatty acid oxidation and insulin sensitiv-
ity; chemokines, such as monocyte chemotactic protein-1; and inflammatory cyto-
kines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 [35–38]. This 
abnormal secretion switches macrophage phenotype from anti-inflammatory M2 
polarization to proinflammatory M1 polarization, which exacerbates inflammation 
further and induces peripheral and hepatic insulin resistance and hyperinsulinemia 
[39, 40]. Hyperinsulinemia activates sterol regulatory element-binding protein 1c 
(SREBP-1) and increases de novo lipogenesis [41]. Accumulated visceral adipose 
tissue does not only supply excessive fatty acid and alter inflammatory cytokine 
and adipokine secretion to the liver via portal vein, but also accelerate fatty acid 
synthesis through whole-body insulin resistance. Excess accumulated fatty acid 
is metabolized mainly in the mitochondria. Lipid accumulation beyond metabolic 
capacity induces mitochondria dysfunction, worsens lipid metabolism, and is a 
trigger for peroxisomal and microsomal oxidation [42]. Oxidative balance leads 
to the production of reactive oxygen species (ROS) and to liver injury [42–46]. 
Additionally, lipid overload induces endoplasmic reticulum (ER) stress, which 
triggers unfolded protein response. Inadequate response to ER stress may cause 
fat accumulation, insulin resistance, inflammation, autophagy, and apoptosis, and 
is associated with the development of NASH [47–52]. Gut microbiota contrib-
utes to various functions, such as digestion, vitamin synthesis, and immune sys-
tem development. It also helps to protect from pathogens and maintain intestinal 
homeostasis and metabolic functions [53]. Therefore, dysbiosis can be considered 
a predisposing factor for the development and progression of NAFLD [53, 54]. 
Short-chain fatty acids are products of carbohydrate fermentation by gut microbes 
[53]. They activate metabolism by increasing the secretion of peptide YY and 
incretin, and activating AMP-activated protein kinase (AMPK) [55–57]. They also 
improve barrier function to prevent the passage of bacterial toxins into the circu-
lation. However, dysbiosis inhibits the production of short-chain fatty acids [54] 
and causes increased intestinal permeability and translocation of bacteria or bacte-
rial products into the portal circulation, followed by activation of proinflammatory 
pathways after binding with several receptors in the liver [58–60] and progression 
to chronic liver injury. Toll-like receptors (TLRs) and nucleotide oligomerization 
domain-like receptors (NLRs) recognize pathogen-associated molecular patterns, 
such as bacterial peptidoglycans or lipopolysaccharides (LPS), double-stranded 
DNA and RNA [61], and damage-associated molecular patterns (DAMPs) [62], 
as a product of cell stress/death [61, 63–65]. They are associated with the relation-
ship between dysbiosis and hepatic inflammation. NLRs also mediate intracellular 
signaling and activate inflammasomes. Intracellular cascade promotes secretion of 
the biologically active cytokines IL-1b and IL-18 and induces inflammation and 
cell death [66–71]. Additionally, dysbiosis inhibits the synthesis of angiopoietin-
related protein 4 and decreases lipoprotein lipase activity resulting in decreased 
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release of free fatty acids from very low-density lipoprotein particles to the liver 
[72]. On the other hand, hepatocytes release extracellular vesicles (EVs), which are 
nanoparticles of different sizes, into the intracellular milieu. EVs are sub-classified 
into exosomes, microparticles, and apoptotic bodies according to their size and 
release mechanism [66, 73]. Lipotoxic effects cause EV release into the extracel-
lular environment, inducing inflammation, fibrosis, and angiogenesis [74–76]. 
Additionally, specific lipid types, such as saturated fatty acid, trans-fatty acid, free 
cholesterol, lysophosphatidylcholine, and ceramide, also induce ER stress [77], 
stimulate macrophage via TLR4 [78, 79], directly result in inflammasome acti-
vation [80], cause ROS generation [81] and mitochondrial dysfunction [81–83], 
or activate hepatic stellate cells (HSCs) [84, 85]. Regenerative responses for liver 
injury of various causes promote progressive scarring, and repetition of regenera-
tion leads to cirrhosis.

1.3  Pathophysiology of ASH (Fig. 1.1)

Ethanol is metabolized into acetaldehyde mainly in the liver by oxidative system path-
ways, such as ADH1 in the cytosol, cytochrome P450 in microsomes, and catalase in 
peroxisomes (Fig. 1.2) [86]. Acetaldehyde is metabolized into acetate by ALDH2 in 
the mitochondria (Fig. 1.2). ADH and ALDH reactions use nicotinamide adeninedi-
nucleotide (NAD)+ as a cofactor and induce NADH. NADH is mainly reoxidized 

Ethanol Acetaldehyde

Ethanol Acetaldehyde

Ethanol Acetaldehyde

NAD+ NADH

ADH1
Cytosol

H2O2 H2O

Catalase
Peroxisomes

NADP+ NADPH

Acetate

NAD+ NADH

ALDH2CYP2E1
ER

Mitochondria

Hepatocyte

Chronic alcohol abuse

Fig. 1.2 Ethanol metabolism in a hepatocyte. In hepatocytes, ethanol is mainly metabolized to 
acetaldehyde by the action of alcohol dehydrogenase 1 (ADH1) in the cytosol, cytochrome P450 in 
microsomes, and catalase in peroxisomes. Subsequently, acetaldehyde is metabolized to acetate by 
the action of aldehyde dehydrogenase 2 (ALDH2) in the mitochondria. In cases of low blood alco-
hol concentration, ADH metabolizes more than 80% of absorbed alcohol, and CYP2E1 plays a 
minor role. However, in cases of chronic alcohol abuse, CYP2E1 is induced and associated with 
50% of alcohol metabolism. Abbreviations: NAD nicotinamide adenine dinucleotide, ADH1 alco-
hol dehydrogenase 1, NADP nicotinamide adenine dinucleotide phosphate, CYP2E1 Cytochrome 
P450 2E1, ER endoplasmic reticulum, ALDH2 aldehyde dehydrogenase 2
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to NAD+ by the mitochondrial electron transfer chain [87, 88] and constitutes ROS 
[87]. In case of low blood alcohol concentration, ADH metabolizes more than 80% 
of absorbed alcohol, and Cytochrome P450 2E1 (CYP2E1) which is an nicotinamide 
adenine dinucleotide phosphate (NADPH)-dependent enzyme, has a small role [89]. 
On the other hand, in case of chronic alcohol abuse, CYP2E1 is induced and accounts 
for 50% of alcohol metabolism [90–94], and catalytic reaction of CYP2E1 also gen-
erates a significant amount of ROS (Fig. 1.2) [95, 96]. The catalase pathway is not 
significant in the liver. Alcohol consumption inhibits the enzyme associated with fatty 
acid oxidation because alcohol exposure directly or indirectly increases NADH and 
decreases AMPK [97–100]. Alcohol exposure also inhibits peroxisome proliferator-
activated receptor (PPAR)α via upregulation of CYP2E1-derived oxidative stress 
[101], adenosine [102], and acetaldehyde, or via downregulation of adiponectin 
[103] and zinc [104], which exacerbates fat accumulation in the liver [105]. In ALD, 
SREBP-1c expression is upregulated by increasing acetaldehyde [106], LPS signal-
ing via TLR4 [107–110], TNF-α [111, 112], circadian gene Per-1 [113], adenosine 
[102], endocannabinoids [114], early growth response 1 [115], epinephrine [116], 
c-Jun N-terminal protein kinase [117], and ER stress response [118], and by decreas-
ing AMPK [99], Sirtuin1 [119], adiponectin [120], and signal transducer and activa-
tor of transcription 3 [121]. Furthermore, autophagy is important in removing lipid 
droplets in hepatocytes [122]. Although short-term alcohol consumption activates 
autophagy, long- term alcohol consumption inhibits autophagy [122–124]. These dis-
orders, which are induced by alcohol consumption, exacerbate fat accumulation in 
the liver. ROS and acetaldehyde, which are produced by alcohol metabolism, form a 
variety of protein and DNA adducts that promote lipid peroxidation, mitochondrial 
glutathione depletion, and mitochondrial damage, and cause hepatocyte injury [125, 
126]. Alcohol-mediated hepatotoxicity induces hepatocyte apoptosis, which leads to 
the release of various DAMPs [127]. DAMPs bind to pattern recognition receptors, 
initiate inflammation [127], and activate inflammasomes [128, 129]. Further, alcohol 
consumption induces bacterial overgrowth [130], and enteric dysbiosis increases LPS 
influx from the gut to the liver [131, 132]. Increase of LPS stimulates the Kupffer cells 
and HSCs via TLR4. Activated Kupffer cells produce proinflammatory cytokines and 
oxidant stress. Moreover, acetaldehyde and LPS [133–135] stimulate parenchymal 
and nonparenchymal cells to produce IL-8, chemokine CXC ligand 1 (Gro-α), and 
IL-17, and contribute to neutrophil infiltration and activation [136–138] along with 
activated Kupffer cells. Activated C1q, C3, and C5 components by alcohol consump-
tion also stimulate Kupffer cells to produce TNF-α [129, 137–138]. This activation of 
innate immunity also causes liver injury. On the other hand, various proteins modified 
by oxidant stress and acetaldehyde, among others, serve as antigens to activate adap-
tive immune response [139–142]. Activation of adaptive immunity is also involved in 
the pathogenesis of ALD [139–142]. Additionally, acetaldehyde activates HSCs via 
activation of multiple signaling pathways and transcriptional factors, and is one of 
the main causes of alcohol fibrogenesis in the liver [143–145]. DAMPs also directly 
activate HSCs and trigger fibrosis progression [146]. Activated HSCs are regulated 
by interferon-γ production [147–149]. The cross talk between natural killer cells and 
activated HSCs induces interferon-γ production by natural killer cells, which results 
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in cell cycle arrest, apoptosis, and cytotoxicity of HSCs [147–149]. Oxidative stress 
induced by long-term alcohol consumption suppresses antifibrotic effects by blocking 
NK cell killing of activated HSCs [150] and promotes fibrosis in the liver.

1.4  Diagnosis

Advanced fibrosis is associated with liver-related illness, liver transplantation, and 
liver-related death in patients with NAFLD and AFLD. Therefore, it is important to 
enclose advanced fibrosis. Liver biopsy is currently the gold standard for determin-
ing the stage and assessing the severity of NASH and ASH. However, it is invasive, 
expensive, and inconvenient, and a more easy-to-use diagnostic assessment is desired.

Many clinical biological variables, such as age, body mass index, alanine ami-
notransferase, bilirubin, platelet, prothrombin time, albumin, fibrosis marker, and 
diabetes, are associated with advanced fibrosis. However, a single indicator is not 
sufficient for diagnosis because of the many false-positive and false-negative cases. 
Therefore, predictive models combined with several indicators are used.

In advanced NAFLD, previous reports showed that aspartate aminotransferase 
(AST) platelet ratio index score [151, 152], AST/ALT [151, 153, 154], BARD score 
[151, 155, 156], BARDI score [157], enhanced liver fibrosis test [158–160], FIB-4 
index [151, 156, 161], FibroTest [162–164], FibroMeter [159], Hepascore [165], 
NAFLD fibrosis score [151, 156, 161, 166], FIB-C3 [167], FIBROSpect test [168], 
and the model combining serum hyaluronic acid, cytokeratin (CK)-18, and tissue 
inhibitor of metalloproteinase-1 (TIMP-1) have high area under the receiver operat-
ing characteristic curve for predicting advanced NASH, and are useful models for 
predicting advanced NASH [169]. The terminal peptides of procollagen III [170] 
and pro-C3 [171] also present high diagnostic rate, but they are single markers. 
Although the aforementioned tests have not been sufficiently validated for ALD and 
values are needed to set a cut-off for ALD, the tests seem to be efficient in AFLD 
and NAFLD [159, 162, 172–175].

Imaging assessment helps to diagnose advanced NAFLD and AFLD. The find-
ings of a small, shrunken liver, hepatic nodularity, abnormal tortuous vessels from 
intra-abdominal varices, ascites, and so on are consistent with cirrhosis [176–
178]. For evaluation of steatosis, conventional ultrasonography is widely used. 
Conventional ultrasonography does not require specific techniques and is conve-
nient. It roughly assesses the severity of steatosis, but the assessment is affected by 
patient obesity and performance of the technique. Quantification of fatty deposi-
tion in the liver is evaluated by computed tomography (CT) [179], magnetic reso-
nance spectroscopy (MRS) [180–182], magnetic resonance imaging-proton density 
fat fraction (MRI-PDFF) [183], and controlled attenuation parameter (CAP) using 
vibration-controlled transient elastography (VCTE) [184–186]. MRS is the gold 
standard for quantification of fat content in the liver, but it is expensive and requires 
a specialist and a special device. Although MRI-PDFF, CT, and CAP are relatively 
convenient, they are expensive, expose patients to ionizing radiation, require an 
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additional device, or are unable to assess severely obese patients [185]. Similarly, 
in the evaluation of liver fibrosis, several modalities, such as ultrasonography, CT, 
and MRI, are used [187]. Additionally, VCTE [186–193], strain elastography [194], 
acoustic resonance forced impulse imaging [193, 195], and shear wave elastogra-
phy [193] are techniques that adapt ultrasound imaging to produce liver stiffness 
measurement. Magnetic resonance elastography also evaluates the severity of liver 
fibrosis and is better than ultrasound imaging for liver fibrosis detection [190, 193, 
195–197]. However, as shown in steatosis evaluation, several limitations exist.

1.5  Genetic Factor

Polymorphisms in patatin-like phospholipase domain-containing 3 (PNPLA3) and 
transmembrane 6 superfamily, member 2 (TM6SF2) promote NASH development 
and are risk factors for liver-related disease such as cirrhosis and HCC [198–202]. 
PNPLA3 encodes adiponutrin, a lipase that regulates both triglyceride and retinoid 
metabolism. PNPLA3 polymorphisms are strongly associated with hepatic steato-
sis, steatohepatitis, fibrosis, and cancer. In patients with ALD, PNPLA3 genetic 
polymorphism is also associated with increased risk for alcoholic hepatitis, alco-
holic cirrhosis, and HCC among drinkers [198, 203].

1.6  Treatment

In clinical practice, several treatments have been attempted on patients with 
NASH. Weight loss for overweight or obese individuals by lifestyle intervention 
resolves histological steatohepatitis and improves liver fibrosis [204, 205]. In par-
ticular, ≥5% or ≥7% weight loss improves steatohepatitis, and ≥10% weight loss 
results in steatohepatitis resolution and fibrosis regression [204]. Bariatric surgery, 
which could control body weight, is also useful for treating NASH. After surgery, a 
high proportion (85%) of patients show improvement in NASH including advanced 
NASH, and 33.8% of patients exhibit reduction of fibrotic stage by histologic 
analysis [206]. Although weight reduction is effective for patients with advanced 
NASH with sufficient residual function of the liver, enough nutrition is necessary 
for decompensated cirrhosis patient caused by NASH in order to maintain liver 
function. For nutritional therapy, please refer to the other chapter.

On the other hand, several pharmacotherapies are used for treating NASH. Vitamin 
E, an antioxidant, demonstrates improvements in various features of NASH, such as 
steatosis, lobular inflammation, and ballooning [207, 208]. Pioglitazone, an insulin 
sensitizer, improves steatosis, lobular inflammation, ballooning, and fibrosis [209–
211]. Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone, whic possesses 
multifunction. GLP-1 promotes insulin secretion, reduces glucagon secretion in a 
glucose-dependent manner, suppresses appetite, delays gastric emptying, and induces 
weight loss and insulin sensitivity [207, 208]. Administration of liraglutide (GLP-1 
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receptor agonist) is associated with greater resolution of NASH (especially steatosis) 
and less progression of fibrosis compared with placebo [212, 213]. However, further 
studies are warranted to determine whether these treatments are effective for patients 
with NASH with cirrhosis. Additionally, although numerous clinical trials for the 
pharmacotherapies for NASH have been attempted, or are still in progress, a major-
ity of clinical trials aimed at NASH of stages 0–3, not cirrhosis, and clinical trials on 
cirrhosis are limited.

Clinical trials of Emricasan [214], galectin-3 protein inhibitor [215], pegylated 
fibroblast growth factor (FGF21) analog [216], obeticholic acid [217], non-bile 
farnesoid X receptor (FXR) agonist [218], acetyl-CoA carboxylase (ACC) inhibitors 
(GS-0976) [218], apoptosis signal-regulating kinase (ASK)-1 inhibitor [219], and 
combinations using two drugs among non-bile FXR agonist, ACC inhibitors, and 
ASK-1 inhibitor [218] for LC of NASH are still in progress. These trials assessed 
the effect for HVPG (hepatic venous pressure gradient), event-free survival, change 
of fibrosis, and portal hypertension.

However, once a patient with NASH has progressed to decompensated cirrhosis, 
improvement through diet therapy or drug therapy is difficult to achieve. Liver trans-
plantation is a useful treatment for decompensated NASH. Recently, liver transplan-
tation for NASH is increasing and has the same treatment outcome as other diseases 
[220–223]. The 1-, 3-, and 5-year survival rates after liver transplantation for patients 
with NASH are 87.6%, 82.2%, and 76.7%, respectively [220]. Hence, management 
assessment is important to prevent NASH recurrence after liver transplantation.

On the other hand, with regard to patients with ASH, alcohol abstinence is the 
most important therapeutic intervention [224]. It improves histological feature 
and decreases portal pressure, improving survival for all stages in patients with 
ALD [224–227]. However, for alcoholics, continuous abstinence is difficult, and 
many patients resume drinking [228]. Therefore, to sustain alcohol abstinence, a 
combination of psychosocial intervention, pharmacological therapy, and medical 
management is the most effective management strategy for alcohol use disorder 
(AUD) patients with ALD [229]. Currently, some medications are approved in most 
countries to promote abstinence [230]. However, the use of most of these drugs 
is not supported in patients with advanced liver disease [6, 231] because of liver 
metabolism and/or possible liver toxicity. Only the efficacy and safety of baclofen 
have been confirmed for AUD patients with LC in a randomized controlled trial in 
AUD patients with advanced liver disease. Baclofen shows significant efficacy in 
promoting total alcohol abstinence and in reducing alcohol lapse and relapse [232]. 
Clinical trials of nalmefene are still in progress [233].

Nutritional therapy is more important in alcoholic cirrhosis than in other liver dis-
eases, because of the presence of not only protein energy malnutrition but also defi-
ciencies of vitamins and trace minerals such as vitamins A and D, thiamine, folate, 
pyridoxine, and zinc [234, 235]. Therefore, in addition to nutritional support for LC, 
adequate supplementation is required considering the multiple micronutrient deficien-
cies in patients with alcoholic cirrhosis [234]. For detailed liver nutritional therapy, 
please refer to the other chapter. Liver transplantation is a useful treatment for decom-
pensated alcoholic cirrhosis. The European Liver Transplant Registry data showed 
better survival rate of liver transplantation for ALD (at 84%, 78%, 73%, and 58% 
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after 1, 3, 5, and 10 years, respectively) than for hepatitis C virus (HCV) and hepa-
titis B virus (HBV)-related liver disease and cryptogenic cirrhosis [236]. However, 
in alcoholic cirrhosis, a 6-month period of alcohol abstinence is recommended to 
allow sufficient clinical improvement to render liver transplantation unnecessary, or to 
reduce the risk of post-transplant recidivism although a 6-month period of abstinence 
as predictor of post-transplantation abstinence is poor [6, 237, 238].

1.7  Conclusion

Cirrhosis of nonalcoholic and alcoholic steatohepatitis is an important problem 
worldwide. However, its onset and progression have not been suppressed and its 
treatment has not been sufficiently established. To improve a patient prognosis, 
screening for complications, such as esophageal varices and liver cancer, is also 
necessary, and further efforts are needed to overcome the disease in the future.
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Chapter 2
Liver Cirrhosis with Autoimmune Liver 
Diseases: AIH and PBC

Kazumichi Abe, Atsushi Takahashi, and Hiromasa Ohira

Abstract Autoimmune liver diseases (AILDs) are a chronic inflammatory disorder 
of unknown etiology that may proceed to cirrhosis, although some patients already 
have cirrhosis at the time of diagnosis. AILDs patients with cirrhosis have higher 
risks of morbidity and mortality and, in the decompensated phase, complications of 
portal hypertension and hepatocellular carcinoma (HCC). Management of these 
patients requires knowledge of the fibrosis stage, since liver fibrosis is closely asso-
ciated with prognosis. The aim of this report is to provide a current overview of liver 
cirrhosis in AILDs.

Keywords Autoimmune hepatitis · Primary biliary cholangitis · Liver cirrhosis

2.1  Introduction

Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are classically 
viewed as distinct autoimmune liver diseases (AILDs). AIH manifests as chronic 
liver inflammation of an unknown cause. It generally affects young- to middle-aged 
women and is associated with the presence of autoantibodies and hypergamma-
globulinemia [1]. PBC is a progressive AILD characterized by portal inflammation, 
immune-mediated destruction of the intrahepatic bile ducts, and the presence of 
highly specific anti-mitochondrial antibodies in serum [2, 3]. AILD is thought to be 
triggered by environmental factors in genetically susceptible individuals. Genome- 
wide association and murine model studies have expanded our knowledge of AILD; 
however, the factors associated with cirrhosis development are unclear. The aim of 
this report is to provide a current overview of the clinical features, diagnosis, and 
prognosis of liver cirrhosis with AILDs.
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2.2  Liver Cirrhosis in AILDs

2.2.1  Liver Cirrhosis in AIH

A diagnosis of AIH must be considered in all individuals with acute or chronic 
hepatitis, although some patients develop cirrhosis at the onset of AIH.  In past 
studies, approximately 6.4–34% of AIH patients were found to already have cir-
rhosis at presentation, and approximately 3.8–40% of AIH patients developed cir-
rhosis related to relapse during the follow-up periods [4–9]. As shown in Table 2.1, 
Roberts reported that thirty-seven patients (29%) had histological cirrhosis at entry, 
whereas 36 of the 91 patients without cirrhosis (40%) developed it over 39 months. 
Development of cirrhosis was predicted by lower serum albumin levels at presenta-
tion. The frequencies of remission, relapse after drug withdrawal, and treatment 
failure were comparable in patients with and without cirrhosis at entry. The overall 

Table 2.1 Long-term outcome of AIH patients with liver cirrhosis

Author
Roberts 
[5] Feld [10]

Kirstein 
[14]

Ngu 
[15]

Migita 
[11] Abe [12]

Yoshizawa 
[13]

Year 1996 2005 2011 2013 2011 2012 2012
Region USA Canada Germany New 

Zealand
Japan Japan Japan

Number of case 128 125 354 133 174 250 203
Mean age at 
diagnosis of 
AIH (year)

44.6 43.5 39 50.0 56.7 55.6 55.0

Female ratio 80% NA 75% 74% 91% 89% 75%
Mean follow-up 
(year)

3.3 7.9 10 9 8.0 6.8 10.9

Cirrhosis at 
presentation (%)

28.9% 
(37/128)

33.6% 
(42/125)

25% 
(76/309)

34% 
(45/133)

12.1% 
(21/174)

17.2% 
(43/250)

12.8% 
(26/203)

Development of 
cirrhosis during 
follow-up (%)

39.6% 
(36/91)

NA NA NA 9.2% 
(14/153)

3.9% 
(8/217)

NA

5-year survival 
for patients with 
cirrhosis

97% 76.3% NA NA NA 91.8% NA

10-year survival 
for patients with 
cirrhosis

89% 61.9% NA NA NA 71.2% NA

Cumulative 
survival for 
patients with or 
without 
cirrhosis at 
baseline 
(logrank test)

P = 0.85 P = 0.003 P = 0.003 P = NS NA P < 0.001 P = 0.952 
(F1-2 vs 
F3-4)

NA not available, NS not significant
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10-year survival (93%) was similar to that of an age- and sex-matched cohort from 
the population at large (94%) [5]. In another study, including 126 AIH patients, Feld 
reported that 33% of patients had histological evidence of cirrhosis at diagnosis. 
Except for platelet count, which was lower in patients with cirrhosis, laboratory 
parameters, patient demographics, and AIH scores did not differ between cirrhotic 
and non-cirrhotic patients. A similar frequency of patients from each group was 
symptomatic at diagnosis, and an equivalent proportion had good response to treat-
ment [10]. On the other hand, liver cirrhosis at presentation was found in 12.1–
17.2% of Japanese AIH cases [11–13]. The incidence of cirrhosis at presentation 
of AIH in Japan is lower than that reported in previous studies conducted in the 
USA and European countries (25–34%) [5, 10, 14, 15]. In addition, cirrhosis devel-
oped during the follow-up period in 3.9% and 9.2% of the Japanese AIH patients 
with non-cirrhosis at presentation. One possible reason for this is that revised and 
simplified scoring criteria for AIH have been clearly established, and more early 
stage cases of AIH have been diagnosed. Moreover, human leukocyte antigen DR 
status is considered to affect the clinical features of patients with AIH. In Japanese 
patients, DR4 is dominantly associated with the disease. Patients with DR4 are typi-
cally older and respond better to corticosteroid treatment than do those with DR3.

Among AIH patients, the presence of cirrhosis at the time of AIH diagnosis, 
advanced age, lack of treatment, and the appearance of symptoms have been 
reported to be negative factors for survival [10]. Another study showed that cirrhosis 
at presentation is associated with poorer prognoses [10, 12, 14]. In contrast, other 
studies have reported similar outcomes in patients with and without cirrhosis at 
presentation [5, 13, 15]. The significantly lower levels of platelet count in the group 
that developed cirrhosis during treatment are important predictors of the develop-
ment of cirrhosis, although there were no differences in liver histology findings. 
However, since the relapse rate and the rate of immunosuppressant use were signifi-
cantly higher in the patients who developed cirrhosis during the follow-up period 
than in non-cirrhosis patients, it seems that many patients who exhibited relapse 
from steroid resistance developed cirrhosis. There are indications that cirrhosis is 
more common among AIH type-1 patients compared to patients with type-2 AIH. In 
a pediatric study, 69% of ANA/SMA positive patients had evidence of definite cir-
rhosis on initial biopsy, whereas only 38% of patients positive for anti-LKM-1 were 
cirrhotic.

2.2.2  Liver Cirrhosis in PBC

PBC is a disease that occurs frequently in middle-aged women; in PBC, the intra-
hepatic lobule bile duct is destroyed by an autoimmune mechanism and exhibits 
chronic cholestasis. Destruction of the intrahepatic bile ducts causes the loss of 
bile ducts, cirrhosis, and liver failure. The concept of disease of “primary biliary 
cirrhosis” has been proposed for 50 years. Although previous cases were diagnosed 
after progression to cirrhosis, due to the development of examination methods such 
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as the measurement of anti-mitochondrial antibodies, many cases are diagnosed 
before progression to liver cirrhosis. In addition, ursodeoxycholic acid (UDCA) 
came into use, which made it possible for patients to be diagnosed before progres-
sion to cirrhosis. Recently, the name of the disease has been changed to “primary 
biliary cholangitis.” PBC progresses through several stages such as asymptomatic, 
symptomatic, and liver failure. Biochemical abnormalities eventually appear after a 
median time of 5.6 years [16], but this phase is not yet associated with the presence 
of symptoms. When symptoms eventually develop, they are most commonly fatigue 
and pruritus and, later, varices, edema, or ascites. Liver failure is characterized by 
the accelerated development of jaundice and is associated with poor prognosis [17]. 
The clinical course of PBC is classified into three types: slow progressive type, 
portal hypertension type, and liver failure type. The anti-gp210 antibody positive 
hepatic failure type has poor prognosis. The anti-centromere antibody positive por-
tal hypertension type progresses slowly [18].

Previous study showed that observed survival of non-cirrhotic patients was not 
different from that of the control population. In contrast, survival of cirrhotic patients 
was significantly lower than that of the control population (Fig. 2.1). Prognostic fac-
tors of survival were defined. The multivariate analysis identified two independent 
prognostic factors: the presence of cirrhosis and a high serum bilirubin level [19]. 

Noncirrhotic patients (n = 170)

median follow-up: 6 yrs

Cirrhotic patients (n = 36)

median follow-up: 4 yrs
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Fig. 2.1 Survival of the 
UDCA-treated PBC patients 
according to the absence or 
presence of cirrhosis at the 
beginning of treatment [19]
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The other study suggested that mean survival for patients with a bilirubin of 2.0 mg/
dL is 4 years, while for those with bilirubin of 6.0 mg/dL it is only 2 years [17]. 
Histological stages can predict survival of PBC patients [20]. In untreated PBC 
patients, the median time to the development of extensive fibrosis is 2 years. The 
probability of remaining in early stages after 4 years is 29%, whereas the develop-
ment of cirrhosis occurs in 50% of patients originally demonstrating histological 
evidence of interface hepatitis without fibrosis [21].

2.3  Diagnosis of Liver Cirrhosis in AILDs

2.3.1  Serum Indirect Markers

The gold standard for the evaluation of hepatic fibrosis is a liver biopsy, but the pro-
cedure is invasive and has problems such as sampling errors. A variety of indirect 
markers have been reported in AILDs. Table 2.2 shows the main indirect markers 
that are reported according to AUROC for their fibrotic diagnostic ability as indica-
tors in AIH and PBC [22–27]. In the report of Nyblom, the AST/ALT ratio was mea-
sured for 160 patients with PBC, and the cirrhosis cases were significantly higher 
than the non-cirrhotic cases [28]. Hino reported that the AST/ALT ratio was a risk 
factor for liver-related death along with steroid reactivity in patients with AIH [29]. 
Even in AILDs, it has been studied with various serum liver fibrosis markers, and its 
diagnostic ability is also increasing.

2.3.2  M2BPGi

The new sugar chain marker M2BPGi (Mac-2 binding protein glycosylation iso-
mer) is a liver fibrosis marker developed in Japan and is useful not only to diagnose 
hepatic fibrosis in patients with chronic hepatitis C but also in relation to liver carci-
nogenesis. In addition, the usefulness of liver fibrosis diagnosis in nonalcoholic fatty 
liver disease has been reported. The report of diagnosis of liver fibrosis in AILDs is 

Table 2.2 Serum liver fibrosis markers in AILDs: AUROC

Serum liver 
fibrosis 
marker Formula

AIH PBC
F0-1 vs 
F2-4

F0-2 vs 
F3-4

F0-3 vs 
F4

F0-1 vs 
F2-4

F0-2 vs 
F3-4

F0-3 vs 
F4

AST/ALT 
ratio

AST/ALT 0.60 0.66–
0.68

0.77–
0.80

0.61 0.59 0.66–
0.82

APRI AST/ULN/platelet 
(109/L) × 100

0.60 0.53–
0.70

0.66–
0.77

0.65–
0.75

0.75–
0.84

0.41–
0.82

FIB-4 Age + AST/platelet 
(103/mL) × ALT1/2

0.66 0.61–
0.79

0.77–
0.84

0.68–
0.72

0.71–
0.79

0.83–
0.92
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shown in Table 2.3. Nishikawa reported the relationship between M2BPGi and liver 
histological findings before treatment in patients with AIH [22]. The cut- off value 
by M2BPGi (COI) was F1, 1.5; F2, 2.1; F3, 3.3; F4, 9.8, and the extraction of liver 
cirrhosis was more effective than the serum liver fibrosis marker, such as FIB-4 or 
APRI, when the cut-off value was 3.9 COI, AUROC 0.853. In addition, the cut-off 
value by liver inflammation was A1, 1.6; A2, 2.5; A3, 5.4, and M2BPGi showed a 
positive correlation with high sensitivity CRP. In AIH, this showed that M2BPGi 
strongly reflects not only hepatic fibrosis but also the effect of liver inflammation.

On the other hand, Umemura reported an association between pretreatment 
M2BPGi and liver histological findings in patients with PBC [23]. The cut-off value 
by M2BPGi was F1, 0.7; F2, 1.0; F3, 1.4; F4, 2.0, which is low compared with 
that of AIH but increased with increasing liver fibrosis stage. In extraction of the 
liver fibrosis stage, AUROC was 0.965 with a cut-off value of 2.0 COI. In addition, 
it was found from the results of Cox regression analysis that M2BPGi 2.0 COI 
≤ is an independent risk factor for liver-related death and liver transplantation in 
PBC.  In addition, Nishikawa and colleagues reported that M2BPGi is useful for 
hepatic fibrosis stage and liver inflammation grade prediction and shows a positive 
correlation with IP-10 [24]. M2BPGi is closely related to the pathology of AILDs 
and is useful for predicting liver histology and prognosis.

2.3.3  Ultrasonic Elastography and MR Elastography

FibroScan developed as a noninvasive examination device for liver fibrosis more 
than 10 years ago. Transient elastography (TE) has been reported as a means for 
diagnosis of hepatic fibrosis of AILDs. The cut-off value of liver stiffness in an 
existing diagnosis of liver cirrhosis is 12.5–19.0 kPa in AIH and PBC. It has been 
reported that AUROC is 0.84–0.95 for AIH and 0.96–0.99 for PBC (Table 2.4) [25–
27, 30–32]. In addition to fibrosis, inflammation such as ALT, fatty liver, conges-
tion, cholestasis, diet, and deep breathing are affected factors. In AIH, atypical cases 

Table 2.3 Diagnosis of hepatic fibrosis of AILDs by M2BPGi

Author/year n AILDs
Cut-off 
(COI) AUROC Sensitivity Specificity PPV NPV

Nishikawa 
[22]/2015

84 AIH F3: 3.7
F4: 3.9

0.75
0.85

64
94

83
76

NA NA

Umemura 
[23]/2015

137 PBC F1: 0.7
F2: 1.0
F3: 1.4
F4: 2.0

0.88
0.98
0.83
0.97

70
93
83
39

100
93
90

100

100
90
69

100

21
95
95
70

Nishikawa 
[24]/2016

57 PBC F3: 3.4
F4: 3.7

0.73
0.97

50
100

92
98

NA NA

NA not available
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of acute hepatitis-like onset have been increasing in recent years. Hartl reported 
that liver stiffness correlated with the inflammation grade of the liver and did not 
correlate with the hepatic fibrosis stage within 3 months from the start of immuno-
suppressive treatment. Moreover, the correlation between liver stiffness and liver 
fibrosis stage was better 6 months after treatment [30]. It seems that 6 months after 
the initiation of immunosuppressive treatment is preferable for the assessment of 
hepatic fibrosis stage in AIH.

On the other hand, Corpechot conducted liver biopsy and TE in 103 patients 
with PBC and reported that liver fibrosis stage evaluation was superior in liver stiff-
ness compared with other serum liver fibrosis markers. In addition, in 150 patients 
with PBC repeatedly observed with TE for 5 years, the group with hepatic stiffness 
of ≤2.1 kPa/year experienced increased decompensation, liver transplantation, and 
liver-related death. Ultrasonic elastography such as TE in AIH and PBC is associ-
ated with liver histology and prognosis [27].

Along with the progress of MRI technology in recent years, it has become pos-
sible to diagnose fibrosis from elastic modulus measurement by MR elastography 
(MRE). Wang reported that MRE was more useful than serum liver fibrosis marker 
(APRI, FIB-4) in the diagnosis of hepatic fibrosis in AIH.  In MRE, AUROC in 
the diagnosis of cirrhosis is 0.98 (APRI: 0.78, FIB-4: 0.80) with a cut-off value of 
4.5 kPa, a sensitivity is 92%, and a specificity is 96% [33].

Table 2.4 Diagnosis of hepatic fibrosis of AILDs by transient elastography

Author/year n AILDs
Cut-off 
(kPa) AUROC Sensitivity Specificity PPV NPV

Hartl [30]/2016 94 AIH F2: 5.6
F3: 10.4
F4: 16.0

0.87
0.93
0.95

90
83
88

72
98

100

83
92

100

84
91
98

Xu [25]/2016 100 AIH F2: 6.45
F3: 8.75
F4: 12.50

0.88
0.88
0.91

82
80
87

88
84
90

97
84
71

49
81
96

E Anastasiou 
[26]/2016

53 AIH F2: 10.05
F3: 12.1
F4: 19

0.78
0.74
0.84

61
59
82

89
83
93

96
81
76

32
62
95

Corpechot [31]/2006 73 PBC F2: 7.10
F3: 11.10
F4: 17.30

0.88
0.91
0.96

76
71
93

93
96
95

96
94
78

61
76
99

Gomez-Dominguez 
[32]/2008

80 PBC F3: 14.7
F4: 15.6

0.86
0.96

56
88

100
98

100
88

83
98

Corpechot [27]/2012 103 PBC F1: 7.1
F2: 9.8
F3: 10.7
F4: 16.9

0.80
0.91
0.95
0.99

64
67
90
93

100
100
93
99

100
100
84
93

25
75
96
99
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2.4  Treatment for Liver Cirrhosis in AILDs

2.4.1  Treatment for Liver Cirrhosis in AIH

The aim of treatment in AIH is to obtain complete remission of the disease and to 
prevent further progression of liver disease. This requires mostly permanent main-
tenance therapy or induction of a sustained remission following treatment with-
drawal. In symptomatic patients and patients with advanced fibrosis or cirrhosis, 
treatment should always be initiated, as these findings represent a negative prog-
nostic predictor.

In addition, even in advanced fibrosis and cirrhosis, substantial regression of 
scarring after successful treatment has been reported. In view of the progressive 
nature of AIH and the effectiveness of immunosuppressive therapy, the consensus 
group recommends that all patients with active disease should receive treatment 
[34]. Prednisone as initial therapy followed by the addition of azathioprine after two 
weeks is the first-line treatment for AIH. The initial dose of prednisone should be 
between 0.5 and 1 mg/kg/day.

Individuals with cirrhosis at presentation have a higher frequency of drug-related 
complications than do those without cirrhosis (25% versus 8%) [35]. They also have 
high frequency of cytopenia that may compromise their tolerance for azathioprine. 
Patients with cirrhosis must be closely monitored during therapy, and those indi-
viduals with cytopenia should be assessed for thioprine methyltransferase activity 
prior to the administration of azathioprine [36].

Liver transplantation is indicated for AIH patients presenting with advanced cir-
rhosis. The immunosuppressive strategy most commonly adopted consists of the 
combination of prednisolone and a calcineurin inhibitor [37], leading to excellent 
outcome with 5- and 10-year patient survivals of 90% and 75%, respectively [3].

2.4.2  Treatment for Liver Cirrhosis in PBC

The introduction of UDCA as the first-line treatment for PBC patients has changed 
the natural history of the disease [2]. UDCA slows fibrosis progression and delays 
cirrhosis development [38]. In clinical trials, UDCA treatment of PBC patients 
decreased the development of esophageal varices and prolonged survival [39–41]. 
Several papers have also assessed the impact of UDCA therapy on the progression 
rate of cirrhosis in PBC patients. Corpechot et al. [42] examined progression to cir-
rhosis in 183 UDCA-treated PBC patients. In this study, 21% of patients developed 
cirrhosis during follow-up. The incidence of cirrhosis in patients followed-up from 
stages 1, 2, and 3 was 4%, 12%, and 59%, respectively, and the median length 
of time to cirrhosis development was 25, 20, and 4 years, respectively. Albumin 
and bilirubin levels and the histological severity of interface hepatitis were inde-
pendently associated with progression to cirrhosis. Cirrhosis does, however, still 
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develop in UDCA-treated PBC patients [42]. Indeed, the development of cirrho-
sis under UDCA treatment is an independent predictor of negative outcome [42]. 
Indeed, the number of PBC patients requiring LT decreased by 20% between 1996 
and 2006 [43].

2.5  HCC in AILD

2.5.1  HCC in AIH

Liver cirrhosis has been reported as a risk factor for hepatocellular carcinoma 
(HCC) in AIH [44–48]. In Japan, a recent study reported that a primary survey of 
the 496-member institutions of the Liver Cancer Study Group of Japan was car-
ried out, and a secondary survey was carried out for 250 HCC patients from 4869 
AIH patients (5.1%) identified in the primary survey [49]. One hundred twenty-
seven patients were enrolled throughout Japan. Mean age at diagnosis of HCC was 
69 years, and the male-to-female ratio was 1: 5.7, and 77.9% had liver cirrhosis. 
Another study showed that the presence of cirrhosis at presentation was a risk factor 
for HCC, according to a Cox proportional hazard model [50]. On the other hand, 
Yoshizawa et al. showed that on multivariate analysis, the prognosis of two or more 
relapses was identified as the only risk factor for the development of hepatic malig-
nancy [13].

In the EU and US, and even in Japan, AIH patients showing steroid resistance 
need to use other immunosuppressants (e.g., azathioprine), and attendant carcinoma 
has also been reported in these cases [51, 52]. While steroids are used as the first- 
line therapy for AIH, it has been shown that approximately 10% of AIH patients in 
Japan are resistant to steroid therapy. For steroid-resistant patients, azathioprine, 
which is not covered by national health insurance, is considered first-line therapy. 
When the maintenance dose of steroid was higher, the incidence of HCC was signif-
icantly higher. However, neither steroid nor azathioprine therapies were significant 
factors for the development of HCC. There was no significant difference between 
the two therapies [53].

2.5.2  HCC in PBC

With respect to HCC, its incidence in patients with PBC varies from 0.76% to 5.9%, 
depending on reports [54–57]. The number of PBC patients associated with HCC 
has been increasing recently, which may be due to the improvement of therapeu-
tic effects and prognosis. In Japan, surveys involved 8509 patients registered in 
the 1st–15th surveys performed between 1980 and 2012. According to the 15th 
National Survey performed in 2012, the incidence of malignancy at the time of PBC 
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diagnosis was 2.4%. Liver cancer was the most common (24%) [58]. Moreover, 
most female patients with PBC and with HCC develop the advanced stage at the 
time of HCC diagnosis, supporting several reports stating that cirrhosis is a risk 
factor for HCC [54, 55]. In males, HCC cases arising from an early PBC stage are 
not rare. Hence, male patients with PBC should be carefully followed from an early 
stage to identify HCC.

In contrast, a previous study reported on the possibility that UDCA may pro-
tect against HCC [59]. In UDCA-treated patients with PBC, the risk of HCC was 
relatively low, but the main risk factor for HCC was the absence of a biochemical 
response to UDCA and the development of cirrhosis. Another study showed that, 
of 4565 patients with PBC, 123 developed HCC, yielding an incidence rate of 3.4 
cases/1000 patient-years. HCC was significantly more common in men, and on uni-
variate analysis, factors at PBC diagnosis associated with future HCC development 
were male sex, elevated serum aspartate transaminase, advanced disease, thrombo-
cytopenia, and hepatic decompensation. A 12-month biochemical non-response is 
associated with increased future risk of developing HCC in PBC [60].

2.6  Conclusion

Among AIH patients, the presence of cirrhosis at the time of AIH diagnosis has 
been reported to be a negative factor for survival. In contrast, other studies have 
reported similar outcomes in patients with and without cirrhosis at presentation. 
Furthermore, the prognosis of two or more relapses was identified as a risk factor 
for the development of cirrhosis and HCC in patients with AIH. On the other hand, 
in UDCA-treated patients with PBC, the risk of HCC was relatively low, but the 
main risk factor for HCC was the absence of a biochemical response to UDCA and 
the development of cirrhosis. AILD patients with liver cirrhosis must be carefully 
monitored during treatment.

References

 1. Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med. 2005;353:1261–73.
 2. Selmi C, Bowlus CL, Gershwin ME, Coppel RL.  Primary biliary cirrhosis. Lancet. 

2011;377:1600–9.
 3. Krawitt EL. Autoimmune hepatitis. N Engl J Med. 1996;334:897–903.
 4. Murray-Lyon IM, Stern RB, Williams R. Controlled trial of prednisolone and azathioprine in 

active chronic hepatitis. Lancet. 1973;1:735–7.
 5. Roberts SK, Therneau T, Czaja AJ. Prognosis of histological cirrhosis in type 1 autoimmune 

hepatitis. Gastroenterology. 1996;110:848–7.
 6. Czaja AJ, Ammon HV, Summerskill WHJ. Clinical features and prognosis of severe chronic 

active liver disease (CALD) after corticosteroid-induced remission. Gastroenterology. 
1980;78:518–23.

K. Abe et al.



33

 7. Verma S, Gunuwan B, Mendler M, et  al. Factors predicting relapse and poor outcome in 
type I autoimmune hepatitis: role of cirrhosis development, patterns of transaminases during 
remission and plasma cell activity in the liver biopsy. Am J Gastroenterol. 2004;99:1510–6.

 8. Abe M, Mashiba T, Zeniya M, Yamamoto K, Onji M. Present status of autoimmune hepatitis 
in Japan: a nationwide survey. J Gastroenterol. 2011;46(9):1136–41. https://doi.org/10.1007/
s00535-011-0421-y.

 9. Takahashi A, Arinaga-Hino T, Ohira H, Torimura T, Zeniya M, Abe M, et al. Autoimmune 
hepatitis study group-subgroup of the intractable hepato-biliary disease study group in Japan. 
J Gastroenterol. 2017;52(5):631–40. https://doi.org/10.1007/s00535-016-1267-0.

 10. Feld JJ, Dinh H, Arenovich T, Marcus VA, Wanless IR, Heathcote EJ. Autoimmune hepatitis: 
effect of symptoms and cirrhosis on natural history and outcome. Hepatology. 2005;42:53–62.

 11. Migita K, Watanabe Y, Jiuchi Y, Nakamura Y, Saito A, Yagura M, et al. Evaluation of risk fac-
tors for the development of cirrhosis in autoimmune hepatitis: Japanese NHO-AIH prospective 
study. J Gastroenterol. 2011;46:56–62. https://doi.org/10.1007/s00535-010-0337-y.

 12. Abe K, Katsushima F, Kanno Y, Takahashi A, Yokokawa J, Ohira H, et al. Clinical features of 
cirrhosis in Japanese patients with type I autoimmune hepatitis. Intern Med. 2012;51:3323–8.

 13. Yoshizawa K, Matsumoto A, Ichijo T, Umemura T, Joshita S, Komatsu M, et al. Long-term 
outcome of Japanese patients with type 1 autoimmune hepatitis. Hepatology. 2013;56:668–76. 
https://doi.org/10.1002/hep.25658.

 14. Kirstein MM, Metzler F, Geiger E, Heinrich E, Hallensleben M, Manns MP, et al. Prediction 
of short- and long-term outcome in patients with autoimmune hepatitis. Hepatology. 
2015;62:1524–35. https://doi.org/10.1002/hep.27983.

 15. Ngu JH, Gearry RB, Frampton CM, Stedman CA. Predictors of poor outcome in patients with 
autoimmune hepatitis: a population-based study. Hepatology. 2013;57:2399–406. https://doi.
org/10.1002/hep.26290.

 16. Metcalf JV, Mitchison HC, Palmer JM, Jones DE, Bassendine MF, James OF. Natural his-
tory of early primary biliary cirrhosis. Lancet. 1996;348:1399–402. https://doi.org/10.1016/
S0140-6736(96)04410-8.

 17. Shapiro JM, Smith H, Schaffner F. Serum bilirubin: a prognostic factor in primary biliary cir-
rhosis. Gut. 1979;20:137–40.

 18. Nakamura M, Kondo H, Mori T, Komori A, Matsuyama M, Ito M, et al. Anti-gp210 and anti- 
centromere antibodies are different risk factors for the progression of primary biliary cirrhosis. 
Hepatology. 2007;45(1):118–27.

 19. Poupon RE, Bonnand AM, Chrétien Y, Poupon R. Ten-year survival in ursodeoxycholic acid- 
treated patients with primary biliary cirrhosis. The UDCA-PBC Study Group. Hepatology. 
1999;29(6):1668–71.

 20. Roll J, Boyer JL, Barry D, Klatskin G.  The prognostic importance of clinical and histo-
logic features in asymptomatic and symptomatic primary biliary cirrhosis. N Engl J Med. 
1983;308:1–7. https://doi.org/10.1056/NEJM198301063080101.

 21. Locke GR, Therneau TM, Ludwig J, Dickson ER, Lindor KD. Time course of histological 
progression in primary biliary cirrhosis. Hepatology. 1996;23:52–6. https://doi.org/10.1002/
hep.510230108.

 22. Nishikawa H, et al. Clinical significance of serum Wisteria floribunda agglutinin positive Mac- 
2- binding protein level and high-sensitivity C-reactive protein concentration in autoimmune 
hepatitis. Hepatol Res. 2016;46(7):613–21.

 23. Umemura T, et  al. Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein 
level predicts liver fibrosis and prognosis in primary biliary cirrhosis. Am J Gastroenterol. 
2015;110(6):857–64.

 24. Nishikawa H, et al. Impact of serum Wisteria floribunda agglutinin positive Mac-2-binding 
protein and serum interferon-γ-inducible protein-10 in primary biliary cirrhosis. Hepatol Res. 
2016;46(6):575–83.

 25. Xu Q, et al. Evaluation of transient elastography in assessing liver fibrosis in patients with 
autoimmune hepatitis. J Gastroenterol Hepatol. 2017;32(3):639–44.

2 Liver Cirrhosis with Autoimmune Liver Diseases: AIH and PBC

https://doi.org/10.1007/s00535-011-0421-y
https://doi.org/10.1007/s00535-011-0421-y
https://doi.org/10.1007/s00535-016-1267-0.
https://doi.org/10.1007/s00535-010-0337-y
https://doi.org/10.1002/hep.25658
https://doi.org/10.1002/hep.27983
https://doi.org/10.1002/hep.26290
https://doi.org/10.1002/hep.26290
https://doi.org/10.1016/S0140-6736(96)04410-8
https://doi.org/10.1016/S0140-6736(96)04410-8
https://doi.org/10.1056/NEJM198301063080101
https://doi.org/10.1002/hep.510230108
https://doi.org/10.1002/hep.510230108


34

 26. Anastasiou EO, et al. Performance and utility of transient elastography and non-invasive mark-
ers of liver fibrosis in patients with autoimmune hepatitis: a single centre experience. Hepat 
Mon. 2016;16(11):e40737.

 27. Corpechot C, et al. Noninvasive elastography-based assessment of liver fibrosis progression 
and prognosis in primary biliary cirrhosis. Hepatology. 2012;56(1):198–208.

 28. Nyblom H, Björnsson E, Simrén M, Aldenborg F, Almer S, Olsson R. The AST/ALT ratio as 
an indicator of cirrhosis in patients with PBC. Liver Int. 2006;26(7):840–5.

 29. Hino T, Kumashiro R, Ide T, Koga Y, Ishii K, Tanaka E, Morita Y, Hisamochi A, Murashima 
S, Tanaka K, Ogata K, Kuwahara R, Sata M, Autoimmune Hepatitis Study Group. Predictive 
factors for remission and death in 73 patients with autoimmune hepatitis in Japan. Int J Mol 
Med. 2003;11:749–55.

 30. Hartl J, et al. Transient elastography in autoimmune hepatitis: timing determines the impact of 
inflammation and fibrosis. J Hepatol. 2016;65(4):769–75.

 31. Corpechot C, et al. Assessment of biliary fibrosis by transient elastography in patients with 
PBC and PSC. Hepatology. 2006;43(5):1118–24.

 32. Gómez-Dominguez E, et al. Transient elastography to assess hepatic fibrosis in primary biliary 
cirrhosis. Aliment Pharmacol Ther. 2008;27(5):441–7.

 33. Wang J, et al. Magnetic resonance elastography is accurate in detecting advanced fibrosis in 
autoimmune hepatitis. World J Gastroenterol. 2017;23(5):859–68.

 34. European Association for the Study of the Liver. EASL clinical practice guidelines: autoim-
mune hepatitis. J Hepatol. 2015;63:971–1004. https://doi.org/10.1016/j.jhep.2015.06.030.

 35. Summerskill WH, Korman MG, Ammon HV, Baggenstoss AH. Prednisone for chronic active 
liver disease: dose titration, standard dose, and combination with azathioprine compared. Gut. 
1975;16:876–83.

 36. Czaja AJ, Carpenter HA. Thiopurine methyltransferase deficiency and azathioprine intoler-
ance in autoimmune hepatitis. Dig Dis Sci. 2006;51:968–75.

 37. Liberal R, Longhi MS, Grant CR, Mieli-Vergani G, Vergani D. Autoimmune hepatitis after 
liver transplantation. Clin Gastroenterol Hepatol. 2012;10:346–53. https://doi.org/10.1016/j.
cgh.2011.10.028.

 38. Corpechot C, Carrat F, Bahr A, Chrétien Y, Poupon RE, Poupon R.  The effect of ursode-
oxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology. 
2005;128:297–303.

 39. Poupon RE, Lindor KD, Parés A, Chazouillères O, Poupon R, Heathcote EJ. Combined analy-
sis of the effect of treatment with ursodeoxycholic acid on histologic progression in primary 
biliary cirrhosis. J Hepatol. 2003;39:12–6.

 40. Lindor KD, Jorgensen RA, Therneau TM, Malinchoc M, Dickson ER.  Ursodeoxycholic 
acid delays the onset of esophageal varices in primary biliary cirrhosis. Mayo Clin Proc. 
1997;72:1137–40. https://doi.org/10.1016/S0025-6196(11)63676-8.

 41. Lindor KD, Therneau TM, Jorgensen RA, Malinchoc M, Dickson ER.  Effects of ursode-
oxycholic acid on survival in patients with primary biliary cirrhosis. Gastroenterology. 
1996;110:1515–8.

 42. Corpechot C, Carrat F, Poupon R, Poupon RE.  Primary biliary cirrhosis: incidence and 
predictive factors of cirrhosis development in ursodiol-treated patients. Gastroenterology. 
2002;122:652–8.

 43. Lee J, Belanger A, Doucette JT, Stanca C, Friedman S, Bach N. Transplantation trends in pri-
mary biliary cirrhosis. Clin Gastroenterol Hepatol. 2007;5:1313–5. https://doi.org/10.1016/j.
cgh.2007.07.015.

 44. Montano-Loza AJ, Carpenter HA, Czaja AJ, et al. Predictive factors for hepatocellular carci-
noma in type 1 autoimmune hepatitis. Am J Gastroenterol. 2008;103:1944–51.

 45. Yeoman AD, Al-Chalabi T, Karani JB, et al. Evaluation of risk factors in the development of 
hepatocellular carcinoma in autoimmune hepatitis: implications for follow-up and screening. 
Hepatology. 2008;48:863–70.

K. Abe et al.

https://doi.org/10.1016/j.jhep.2015.06.030
https://doi.org/10.1016/j.cgh.2011.10.028
https://doi.org/10.1016/j.cgh.2011.10.028
https://doi.org/10.1016/S0025-6196(11)63676-8
https://doi.org/10.1016/j.cgh.2007.07.015
https://doi.org/10.1016/j.cgh.2007.07.015


35

 46. Dragani TA.  Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol. 
2010;52:252–7.

 47. Trivedi PJ, Cullen S. Autoimmune hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). 
Dig Dis Sci. 2011;56:276–8.

 48. Wong RJ, Gish R, Frederick T, Bzowej N, Frenette C. Development of hepatocellular carci-
noma in autoimmune hepatitis patients: a case series. Dig Dis Sci. 2011;56:578–85.

 49. Ohira H, Abe K, Takahashi A, Zeniya M, Ichida T. Clinical features of hepatocellular car-
cinoma in patients with autoimmune hepatitis in Japan. J Gastroenterol. 2013;48:109–14. 
https://doi.org/10.1007/s00535-012-0616-x.

 50. Migita K, Watanabe Y, Jiuchi Y, Nakamura Y, Saito A, Yagura M, et al. Hepatocellular car-
cinoma and survival in patients with autoimmune hepatitis (Japanese National Hospital 
Organization-autoimmune hepatitis prospective study). Japanese NHO-Liver-network study 
group. Liver Int. 2012;32(5):837–44. https://doi.org/10.1111/j.1478-3231.2011.02734.x.

 51. Samarasena J, Borgaonkar M.  Development of hepatocellular carcinoma in a patient with 
Crohn’s disease treated with azathioprine. Dig Dis Sci. 2007;52:2748–50.

 52. Ishida M, Naka S, Shiomi H, et al. Hepatocellular carcinoma occurring in a Crohn’s disease 
patient. World J Gastroenterol. 2010;16:3215–8.

 53. Hino-Arinaga T, Ide T, Kuromatsu R, et  al. Risk factor for hepatocellular carcinoma in 
Japanese patients with autoimmune hepatitis type 1. J Gastroenterol. 2011;47(5):569–76.

 54. Caballeria L, Pares A, Castells A, Ginés A, Bru C, Rodés J. Hepatocellular carcinoma in pri-
mary biliary cirrhosis: similar incidence to that in hepatitis C virus-related cirrhosis. Am J 
Gastroenterol. 2001;96:1160–3.

 55. Shibuya A, Tanaka K, Miyakawa H, et al. Hepatocellular carcinoma and survival in patients 
with primary biliary cirrhosis. Hepatology. 2002;35:1172–8.

 56. Jones DE, Metcalf JV, Collier JD, Bassendine MF, James OF. Hepatocellular carcinoma in 
primary biliary cirrhosis and its impact on outcomes. Hepatology. 1997;26:1138–42.

 57. Harada K, Hirohara J, Ueno Y, Nakano T, Kakuda Y, Tsubouchi H, et al. Incidence of and risk 
factors for hepatocellular carcinoma in primary biliary cirrhosis: national data from Japan. 
Hepatology. 2013;57(5):1942–9. https://doi.org/10.1002/hep.26176.

 58. Harada K, Nakanuma Y. Prevalence and risk factors of hepatocellular carcinoma in Japanese 
patients with primary biliary cirrhosis. Hepatol Res. 2014;44(2):133–40. https://doi.
org/10.1111/hepr.12242.

 59. Kuiper EM, Hansen BE, Adang RP, et al. Relatively high risk for hepatocellular carcinoma 
in patients with primary biliary cirrhosis not responding to ursodeoxycholic acid. Eur J 
Gastroenterol Hepatol. 2010;22:1495–502.

 60. Trivedi PJ, Lammers WJ, van Buuren HR, Parés A, Floreani A, Janssen HL, Global PBC 
Study Group, et  al. Stratification of hepatocellular carcinoma risk in primary biliary cir-
rhosis: a multicentre international study. Gut. 2016;65(2):321–9. https://doi.org/10.1136/
gutjnl-2014-308351.

2 Liver Cirrhosis with Autoimmune Liver Diseases: AIH and PBC

https://doi.org/10.1007/s00535-012-0616-x
https://doi.org/10.1111/j.1478-3231.2011.02734.x
https://doi.org/10.1002/hep.26176
https://doi.org/10.1111/hepr.12242
https://doi.org/10.1111/hepr.12242
https://doi.org/10.1136/gutjnl-2014-308351
https://doi.org/10.1136/gutjnl-2014-308351


37© Springer Nature Singapore Pte Ltd. 2019 
H. Yoshiji, K. Kaji (eds.), The Evolving Landscape of Liver Cirrhosis 
Management, https://doi.org/10.1007/978-981-13-7979-6_3

Chapter 3
Ultrasound Imaging for the Diagnosis 
of Liver Cirrhosis

Hiroko Iijima

Abstract Ultrasound evaluation of liver fibrosis has been performed by using 
B-mode and Doppler ultrasound (US). In recent years, ultrasound elastography, 
being noninvasive, is replacing liver biopsy. Several elastographies that are inte-
grated into a conventional ultrasound system are available to evaluate liver fibrosis 
and are approved for health insurance coverage.

Keywords Ultrasound elastography · Noninvasive liver fibrosis assessment  
Transient elastography · Point shear wave elastography · 2D shear wave 
elastography

3.1  Introduction

In ultrasound diagnosis of liver fibrosis, it is important to evaluate complications 
in addition to morphological changes. In patients with chronic liver disease, espe-
cially viral hepatitis, fibrosis septa are developed and extend to form bridges in the 
portal area with progression of the disease that results in lobular reconstruction 
and pseudo-lobule formation. With the progression of fibrosis, regenerative nod-
ules develop. Fibrosis appears as speckle noise on ultrasound images due to differ-
ences in acoustic impedance. Fibrosis process can be observed in the changes of the 
speckle pattern. Morphological changes on the surface and in marginal area of the 
liver also gradually occur.

Among complications of liver fibrosis, portal hypertension is associated with 
increased risk of liver cancer. It may lead to ascites and esophagogastric varices, and 
can be a factor to determine prognosis of the disease. There are different imaging 
modalities for assessing liver fibrosis including ultrasonography, computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and scintigraphy, but this article 
reviews noninvasive ultrasound elastography.
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3.2  B-mode Diagnosis

Evaluating morphological changes in the liver in B-mode imaging is important as 
these changes correlate with background liver lesions. Nodules in patients with 
hepatitis B (HBV) are larger than the ones in those with hepatitis C (HCV). B-mode 
imaging generally reflects it. As fibrosis progresses, blunt edges and an irregular 
surface of the liver occur. Coarse and speckled echotexture in the liver parenchyma 
are the most specific features in B-mode imaging. Left lobe hypertrophy and right 
lobe atrophy, and enlarged spleen due to portal hypertension are commonly dis-
played in cirrhotic patients. However, these changes are subjective and less objec-
tive for determining progression of liver fibrosis, portal hypertension, and the risk of 
developing liver cancer [1]. Though it is invasive and has the potential for sampling 
error, currently liver biopsy is the gold standard for diagnosing liver fibrosis. In 
recent years, ultrasound elastography has been widely used. Its usefulness, espe-
cially in the diagnosis of chronic hepatitis and liver cirrhosis, is recognized as seen 
in the clinical practice guideline by European Association for the Study of the Liver 
[2].

The following figures show cirrhotic liver on B-mode imaging. In patients with 
chronic hepatitis, liver surface irregularity and edge bluntness increase with fibrosis 
progression. Coarsened echotexture of the liver parenchyma, irregular running of 
portal veins and hepatic veins also occur. Atrophy of the right lobe and hypertrophy 
of the caudate and left lobe follow with further progression of fibrosis. Irregular 
surface, rough parenchyma, and narrowed hepatic vein vessels, and changes in 
diameter of vessels are displayed (Fig. 3.1a, b). In response to portal hypertension, 
enlarged spleen and collateral vessels are developed (Fig. 3.1c, d). Enlarged spleen 
is evaluated by calculating a splenic index (SI) using ultrasound. SI is obtained by 
multiplying the distance (line) between the hilar indentation and anterior cranial 
end (A cm) by length of the line perpendicular to it (B cm) (A × B). SI greater than 
20 or ≥10 cm when simplified SI (the major axis from the spleen dome to the tip) 
is used is considered suspected splenomegaly, and greater than 30 is considered 
splenomegaly [3] (Fig.  3.2). Ascites, gallbladder wall thickening, collateral ves-
sels occur (Fig. 3.3). As cirrhosis progresses, portal vein flow velocity decreases 
(Fig. 3.4). However, blood flow volume does not change because the cross-sectional 
area of the blood vessel increases. In patients with HCV, portal lymphadenopa-
thy is frequently found. Different speckled patterns appear in the liver surface or 
the parenchyma depending on the causes of cirrhosis. In alcoholic cirrhosis, the 
liver, being steatotic, appears blighter. Small, micronodules are also a common 
manifestation. In HBV hepatitis, a number of small nodules, 2–3 mm in size, may 
grossly appear with fibrosis progression, and are displayed as a “mesh pattern” on 
ultrasound images. These small nodules need to be evaluated to distinguish from 
atypical nodules or borderline lesions, and early hepatocellular carcinoma (HCC). 
When distinction of these nodules is difficult by using only B-mode ultrasound, 
contrast- enhanced ultrasonography or ethoxybenzyl-diethylenetriamine Primovist-
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enhanced MRI (EOB Primovist-enhanced MRI) may be useful. In HCV hepatitis, 
because nodules are smaller than the ones of HBV hepatitis, nodules on the surface 
gradually progress to cirrhosis and do not display changes drastically on images. 
Nevertheless, portal hepatic lymphadenopathy develops more in HCV hepatitis than 
in HBV hepatitis.

a

c d

b

Fig. 3.1 Ultrasound images of liver cirrhosis. (a) Uneven left hepatic lobe, enlarged caudate lobe, 
rough parenchyma are displayed. (b) Narrowing and irregular hepatic vein vessels are seen. (c) 
Dilation of left gastric veins is seen. (d) Dilation of paraumbilical veins to superior epigastric veins 
is seen

a
b

Fig. 3.2 The spleen in liver 
cirrhosis. The spleen is 
considered enlarged when 
spleen index (SI), a × b, is 
>20

3 Ultrasound Imaging for the Diagnosis of Liver Cirrhosis
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3.3  Principles of Ultrasound Elastography

Elastography is a technology that creates displacement in the tissue, and then visu-
alizes and quantifies the response of the deformed tissue as “stiffness” of the tissue. 
Strain imaging is a technique that measures liver tissue displacement (strain) where 
a certain amount of force is exerted on, and provides the measurement as stiffness. 
Shear wave imaging is a technique that measures the shear wave speed that propa-
gates through liver tissue. Shear wave travels faster through hard tissues and slower 
through soft tissues. Shear wave elastography has become mainstream. It uses either 
one of the following two excitation methods: mechanical vibrating method that is 
used in transient elastography (TE) and acoustic radiation force impulse method 
(ARFI). ARFI is a physical phenomenon in which acoustic pushing pulse is gener-
ated and pushes liver tissues downwards. In this method, shear waves are generated 
in response to ARFI. The detection pulse is sent after shear waves to measure the 

Fig. 3.3 HCV-related liver 
cirrhosis. Ascites and 
gallbladder wall thickening 
is observed

Fig. 3.4 Portal vein flow in 
HCV-related cirrhosis. Portal 
vein flow measurement in a 
patient with cirrhosis. In this 
patient, portal vein flow 
velocity showed a decrease of 
4.7 cm/s (17–18 cm/s in 
normal liver)

H. Iijima



41

propagation velocity of shear waves. This method that uses ARFI is categorized 
into two technical approaches: point shear wave elastography (pSWE) and 2D shear 
wave elastography (2D-SWE) (Table 3.1).

3.4  Diagnostic Capability of Each Elastography for Liver 
Fibrosis

3.4.1  Strain Imaging

3.4.1.1  Strain Elastography

Real-time tissue elastography (RTE, Hitachi Medical Systems, Tokyo, Japan) is 
imaging modality for the diagnosis of liver fibrosis in which liver displacement 
caused by heartbeat is displayed. RTE was put into clinical use for the first time 
in Japan in 2003. With RTE, differences in stiffness in the region of interest (ROI) 
are color-coded with a 256 stepwise grading and displayed on B-mode images in 
a superimposed fashion, such as blue areas indicate relatively hard tissues, green 
areas indicate relatively average stiffness, and red areas indicate relatively soft tis-
sues. Yada et al. performed RTE imaging of 245 patients with chronic viral hepatitis 
and proposed liver fibrosis index (LFI) using nine RTE parameters. In the study, 
they observed significant differences between all fibrosis stages except between F2 

Table 3.1 Classification of elastography

Strain imaging Shear wave imaging

Manual 
compression

Strain elastography
RTE (Hitachi)
Elastography (GE, Philips, 
Canon)

ARFI ARFI imaging Point shear wave elastography
VTI (Siemens) VTQ (ACUSON S2000, 3000)

ElastPQ (Affiniti, EPIQ)
SWM (ARIETTA 850LE, 850, 850SE, S70, 
E70, 70)
2D Shear wave elastography
2DSWE (ACUSON Sequoia)
SWE (Aixplorer)
SWE (Aplio300, 400, 500, i700, i800, i900)
SWE (LOGIQS8)
ElastQ (EPIQ)

Mechanical 
impulse

Transient elastography
FibroScan (Echosens)

Revised from The Japan Society of Ultrasonics in Medicine Ultrasound Elastography Practice 
Guideline

3 Ultrasound Imaging for the Diagnosis of Liver Cirrhosis
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and F3, and reported the usefulness of RTE in staging liver fibrosis [4]. It is said that 
RTE is less affected by inflammation, ascites, and jaundice compared to shear wave 
imaging; however, its methods and procedure are rather complicated.

3.4.2  Shear Wave Imaging

3.4.2.1  Transient Elastography (TE)

FibroScan (Echosens, Paris, France) induces shear waves by mechanical vibration, 
and measures liver stiffness which is expressed in kilopascal (kPa). The liver stiff-
ness measurement (LSM) is the median value of minimum 10 measurements. When 
the rate of successful measurements out of all measurements is <60% or when an 
interquartile range (IQR)/median (med) is >30%, LSM is considered unreliable [5]. 
FibroScan is the most extensively evaluated elastography for liver stiffness assess-
ment. We studied 881 patients with chronic hepatitis and cirrhosis. 199 of them had 
HBV, 350 had HCV, 4 had HBV+HCV, and 328 had nonBnonC, and their fibrosis 
stages were F0-1/F2/F3/F4; 403/188/192/98, respectively. LSMs (kPa) were F0-1: 
5.72 ± 3.01, F2: 7.99 ± 4.39, F3: 13.0 ± 10.6, F4: 24.47 ± 13.55, respectively, and 
they increased significantly with the increase of fibrosis stage (p < 0.001). The areas 
under the receiver operating characteristic curve (AUROCs) for differentiating F2≤, 
F3≤, F4 (cirrhosis) were 0.821, 0.862, 0.936, respectively, with cutoff values 7.20, 
7.80, 10.8 kPa, respectively, and showed a good diagnostic capability. Our results 
showed a comparable diagnostic capability of FibroScan to the ones in many studies 
including by Castèra et al. [5].

3.4.2.2  Point Shear Wave Elastography (pSWE)

Shear wave velocity, expressed as Vs (m/s), increases with the progression of liver 
fibrosis. Measurement area can be positioned at any desired location. Measurement 
is repeated 5–10 times to obtain the mean or median Vs value. Many reported 
that sensitivity of VTQ (virtual touch quantification; Siemens Medical Systems, 
Mountain View, USA) was equivalent to TE [6–8]. We studied 1482 patients 
with chronic hepatitis and cirrhosis. 294 of them had HBV, 680 had HCV, 10 had 
HBV+HCV, and 498 had nonB, nonC, and their fibrosis stages were F0-1/F2/F3/
F4; 660/299/316/207, respectively. The mean Vs values were 1.16 ± 0.26 for F0-1, 
1.35 ± 0.38 for F2, 1.61 ± 0.57 for F3, 2.27 ± 0.62 for F4, respectively, and they 
increased with the increase of fibrosis stage (p < 0.001). The AUROCs for differen-
tiating F2≤, F3≤, F4 were 0.800, 0.833, 0.916, respectively, with cutoff values 1.29, 
1.38, 1.63 m/s, respectively, and showed a good diagnostic capability. Friedrich-
Rust et  al. reported the diagnostic accuracy for F2≤, F3≤, F4 were 0.82, 0.91, 
0.91, respectively, with cutoff values 1.37, 1.45, 1.75 m/s, respectively [6]. ElastPQ 
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(Philips Healthcare, Bothell, USA) is also one of the pSWE. The diagnostic per-
formance of ElastPQ was evaluated using TE as the reference method in the study 
included 228 patients with viral hepatitis. AUROC for F2≤ was 0.94, F3≤ was 0.97, 
and F4 was 0.97 and showed a good accuracy for staging liver fibrosis [9]. Shear 
wave measurement (SWM, Hitachi Ltd., Tokyo, Japan) also uses pSWE technique, 
and its usefulness in evaluating liver fibrosis in patients with chronic hepatitis C is 
reported [10].

3.4.2.3  Two Dimensional (2D) Shear Wave Elastography (2D-SWE)

With 2D shear wave elastography (2D-SWE), liver stiffness is measured by plac-
ing a ROI of where the stiffness needs to be measured on top of a ROI of where 
the area is observed. The mean value of 6–10 measurements taken at two different 
locations on an image is used as a liver stiffness value. The observational ROI of 
this technique is larger than the one of pSWE, and the difference of stiffness can be 
color- coded on a display (Fig. 3.5).

We studied 521 patients with chronic hepatitis and cirrhosis with a 2D-SWE 
device (Canon Medical Systems, Otawara, Japan). 105 of them had HBV, 204 had 
HCV, 1 had HBV+HCV, and 211 had nonBnonC, and their fibrosis stages were 
F0-1/F2/F3/F4; 239/114/117/51, respectively. Vs values were 1.42 ± 0.20 for F0-1, 

a

Fig. 3.5 2D-SWE. (a) Normal liver. Vs value is 1.06, and the intervals between contour lines are 
narrow and even. (b) HCV-related cirrhosis. Vs value is 2.0 and shear wave speed is fast, and the 
intervals between contour lines are wide
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1.62  ±  0.29 for F2, 1.95  ±  0.54 for F3, 2.55  ±  0.61 for F4, and they increased 
with the increase of fibrosis stage (p  <  0.001). The AUROCs for differentiating 
F2≤, F3≤, F4 were 0.840, 0.870, 0.933, respectively, with cutoff values 1.56, 1.64, 
1.87 m/s, respectively, and showed an excellent diagnostic capability.

In the study to evaluate the diagnostic capability of 2D-SWE by SuperSonic 
Imagine (SSI, Aix-en-Provence, France) for differentiating liver cirrhosis, 349 
patients with chronic liver disease are studied. The AUROCs for differentiating 
F1≤, F2≤, F3≤, F4 were 0.89, 0.88, 0.93, 0.93, respectively, with cutoff values 
7.8 kPa, 8 kPa, 8.9 kPa, 10.7 kPa, respectively [11]. Another 2-D SWE, ElastPQ 
developed by Philips, provides swift stiffness measurement on a color-coded dis-
play by using observational ROI.

Diagnostic ability of a SWE by GE (GE Healthcare, Milwaukee, USA) for evalu-
ating liver fibrosis showed a good correlation with the one of TE, and cutoff values 
for differentiating F2≤, F3≤, F4 were 6.7, 8.2, and 9.3 kPa, respectively [12].

3.5  Recommendation for Examination Procedure Using 
Shear Wave Imaging

Measurement of liver stiffness by shear wave imaging including TE should be per-
formed through the right intercostal space while holding breath slightly on an empty 
stomach to avoid the influence of food intake.

Measurement of TE requires confirmation of positioning as the ROI positioning 
in TE cannot be monitored with B-mode imaging. In the presence of ascites and 

b

Fig. 3.5 (continued)

H. Iijima



45

severe hepatic atrophy, measurement may be unsuccessful. In highly obese patients, 
obtaining LSM was difficult; however, usage of the XL probe made it possible to 
perform TE in patients with BMI ≥30 kg/m2 or skin to capsular distance (SCD) 
≥25 mm [13]. In patients with acute liver damage, obstructive jaundice, conges-
tion, and excessive alcohol intake, LSM may be found to be higher; therefore, these 
factors need to be taken into account when interpreting the results. PSWE is also 
influenced by food intake, necrosis-inflammation, and acute liver damage.

The study by Chen et al. reported that both LSM and the collagen proportion-
ate were significantly higher in the HCV group than in the HCB group within all 
fibrosis stages [14]. Moreover, antiviral therapies for chronic viral hepatitis is also a 
factor that affects LSM [15–17]; close attention must be paid to these factors includ-
ing background liver disease and treatment history.

3.6  Conclusion

Each ultrasound elastography technique and the diagnostic capability of each elas-
tography for assessing liver fibrosis were described. The diagnostic capability of all 
elastography technique for assessing liver fibrosis is good. They are also useful in 
assessing pathology and prognosis of portal hypertension and hepatocarcinogenesis. 
Moreover, all ultrasound device manufacturers sell elastography-available device, 
and insurance reimbursement is expected to expand. Ultrasound elastography is an 
essential tool in the diagnosis of chronic liver disease.
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Chapter 4
Liver Cirrhosis with Inherited Liver 
Disease: Hemochromatosis

Keisuke Hino and Sohji Nishina

Abstract Although liver cirrhosis is most commonly caused by hepatitis B and C 
viruses, alcohol, and nonalcoholic fatty liver disease, hereditary hemochromatosis 
also causes cirrhosis as one of the hereditary liver diseases. Hereditary hemochro-
matosis is characterized by iron deposition not only in the liver but also in heart and 
endocrine organs. Therefore, hereditary hemochromatosis potentially progresses to 
liver cirrhosis, diabetes mellitus, heart failure, and/or hypogonadism without early 
diagnosis and prompt initiation of treatment. On the other hand, the identification of 
important iron metabolic molecules and genes such as hepcidin, ferroportin, and 
HFE has made it possible to understand the molecular mechanisms underlying 
hereditary hemochromatosis and to introduce proper treatment at the early stage of 
disease. This chapter will review and discuss the iron metabolic regulation and the 
molecular and clinical characteristics of hereditary hemochromatosis.

Keywords Hepcidin · Hemojuvelin · Ferroportin · Human antimicrobial peptide 
(HAMP) · Juvenile hemochromatosis

4.1  Introduction

Essential trace elements such as iron, copper, and zinc are biologically indispens-
able for mitochondrial electron transport, signal transduction, redox reaction, oxy-
gen transport, and/or physiological catalytic reaction such as hydrolysis. Because 
these elements are transition metal, they also function as active region of various 
enzymes, cytokines, and hormones. Thus, metabolic disturbance of these elements 
results in critical disorder of biological functions, leading to the development of 
various diseases.

On the other hand, liver is a crucial organ for metabolism of iron. Therefore, 
primary metabolic disorders of iron give rise to liver diseases such as liver cirrhosis 
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and hepatocellular carcinoma (HCC) in addition to iron deposition in vital organs 
such as heart and endocrine organs. This chapter will review and discuss (1) iron 
absorption, (2) hepatocellular iron transport, (3) regulation of iron homeostasis, and 
(4) hereditary hemochromatosis as primary iron metabolic disorder.

4.2  Iron Absorption

Iron can be absorbed from the diet in two forms in the proximal intestine: as inor-
ganic (nonheme) iron predominantly released from foods such as vegetables or cere-
als, or as heme iron from the breakdown of hemoglobin and myoglobin contained 
in red meat [1]. Heme (ferrous protoporphyrin IX) is more efficiently absorbed 
than inorganic iron from the diet. The mechanism responsible for heme uptake is 
not yet well understood, but it is known to occur by receptor-mediated endocytosis. 
The hem-carrier protein 1 (HCP1) has been identified as the most probable recep-
tor involved in this process [2]. However, it has low-affinity to heme and is more 
involved in folate absorption [3]. Once in the enterocyte, heme is broken by heme 
oxygenase 1 (HO1) and iron is released in its ferric state.

Nonheme-iron exists primarily in the bio-unavailable, oxidized form (Fe3+), 
which must first be reduced to Fe2+ for transport across the intestinal epithelium. At 
the apical membrane, there is a cytochrome b-like ferrireductase (Dcytb) [4]. Fe2+ 
then enters the cell through divalent metal transporter 1 (Dmt1), an iron transporter. 
Dmt1 is responsible for the absorption of the ionic forms of iron, cobalt, zinc, cad-
mium, and others, and takes advantage of the proton gradient existing between the 
gut lumen and the enterocyte cytoplasm to perform the transport of Fe2+ coupled 
with H+ [5].

In the cytoplasm iron is transferred to the basolateral membrane of the enterocyte 
or stored in ferritin, a multi-subunit protein shell that can accommodate up to 4500 
atoms of iron. The export of iron from the enterocyte to the circulation is a critical 
step for the entrance of iron in the body. The mammalian iron transporter, ferro-
portin- 1, exists on the basolateral membrane of the enterocytes [6]. Ferroportin-1 
transports Fe2+ to the extracellular side of the basolateral membrane, where Fe2+ is 
oxidized by the ferroxidase, hephaestin, and ceruloplasmin in order to be associated 
with the circulatory transferrin [7, 8].

4.3  Hepatocellular Iron Transport

Hepatocytes take up iron through at least two distinct pathways. They have a func-
tional transferrin cycle and a transport system to take up non-transferrin-bound iron. 
The cellular uptake of transferrin-bound iron is mainly mediated by the transferrin 
receptor 1 (TfR1). The molecules important for non-transferrin-bound iron trans-
port have not yet been identified. Hepatocytes store iron in ferritin. When iron is 
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needed elsewhere in the body, they can release it to transferrin through autophagy- 
dependent mechanism (ferritinophagy) [9, 10]. This mechanism is described in 
detail later. The mechanism of hepatocyte export is not well known, but it may 
involve ferroportin-1. Ceruloplasmin seems to aid in iron export from hepatocytes, 
but its precise function has not yet been defined.

4.4  Regulation of Iron Homeostasis

Systemic iron homeostasis, the control of iron balance throughout the body, requires 
controlled absorption, recycling, and storage, because there is no efficient path-
way for iron excretion in the human body. All the stages required for keeping iron 
homeostasis are strictly regulated at both systemic and cellular levels.

4.4.1  Hepcidin

The major systemic regulator of iron homeostasis is hepcidin, which is a 25 amino- 
acid peptide hormone exclusively synthesized in the liver and a soluble regulator 
that acts to attenuate both intestinal iron absorption and iron release from reticu-
loendothelial macrophages [11, 12]. Hepcidin acts by triggering internalization of 
ferroportin-1 and consequent degradation, and traps iron in absorptive enterocytes, 
macrophages, and hepatocytes [13]. Thus, coupling the internalization of ferropor-
tin- 1 to hepcidin levels generates a homeostatic loop regulating the iron plasma 
level and the tissue distribution of iron. Hepcidin is expressed from the human 
antimicrobial peptide (HAMP) gene located at the long arm of chromosome 19. 
The increase of iron levels and inflammation upregulate the transcription of HAMP 
gene, while reactive oxygen species (ROS), hypoxia, and anemia/erythropoiesis 
repress its expression [14–18].

Hemojuvelin (Hjv), HFE, TfR1, and TfR2 that are located at the surface of 
hepatocytes are considered to be “iron sensors.” The Hjv-hepcidin axis is the 
most important mechanism for the upregulation of HAMP expression during iron 
overload. Bone morphogenic protein (BMP) binding to the Hjv and BMP recep-
tor complexes induces the phosphorylation of cytosolic sons of mothers against 
decapentaplegic (SMADs) 1, 5, and 8 [14, 19]. The phosphorylated SMADs form 
complexes with SMAD4, which are translocated to the nucleus where they bind to 
the BMP responsive elements present at HAMP promoter, inducing its transcription 
[20]. Proinflammatory cytokine interleukin 6 (IL-6) activates HAMP gene transcrip-
tion through a pathway that involves Janus kinase (JAK)-signal transducer and acti-
vator of transcription (STAT) signaling and a binding site for the transcription factor 
STAT3 [17, 21]. The transcription factor CCAAT/enhancer-binding protein α (C/
EBPα) is also clearly involved in regulating hepcidin transcription [22].
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4.4.2  Iron Regulatory Protein (IRP)/Iron Responsive Element 
(IRE) System

Besides the systemic regulation of iron homeostasis by hepcidin, the IRP/IRE system 
controls both mRNA stability and translation of transcripts coding proteins involved in 
iron uptake (Dmt1 and TfR1), storage (ferritin), and export (ferroportin- 1) [23, 24]. The 
IPP1 and IRP2 proteins are the main regulators of cellular iron in humans, but the IPR2 
protein is assumed to play a central role in IRP/IRE system [25]. Under iron deficient 
conditions, IRP binds to the IRE present at the 5′ or 3′-untranslated regions (UTRs) of 
mRNAs that code for iron regulatory proteins. Under iron depleted condition in cells, 
IRPs bind to the IREs present at 5′-UTRs of FTH, FHL (genes coding heavy chain and 
light chain of ferritin), and SLC40A1 (gene coding ferroportin-1), preventing ribosome 
assembly and further translation [26, 27], while they bind to the IREs present at 3′-UTR 
of TfR1 and SLC11A2 (gene coding Dmt1), increasing the transcripts stability and subse-
quently their translation [28, 29]. Thus, cellular iron depletion downregulates iron storage 
and export, and upregulates iron uptake. Alternatively, cellular iron increase makes IRPs 
unable to bind to the IREs, resulting in suppression of iron acquisition. Cellular regula-
tion other than IRP/IRE system for iron homeostasis will be discussed elsewhere.

4.4.3  Ferritinophagy

In mammalian cells, iron homeostasis is maintained by compensatory regulation of 
iron uptake and storage depending on the availability of iron. Ferritin is the major 
iron storage protein in mammals. Ferritin forms a three-dimensional protein shell 
consisting of 24 protein subunits that can store up to 4500 atoms of iron [30]. Two 
isoforms of ferritin, ferritin heavy chain (H chain) and light chain (L chain), cooper-
ate in storing iron in the ferritin shell. The production of H and L chains is regulated 
by iron availability at the posttranscriptional level through IRP/IRE system as men-
tioned above. While the mechanism of iron-mediated regulation of ferritin expres-
sion has been well defined, comparatively little is known so far regarding the fate of 
the iron that is stored by ferritin. Ferritin is degraded via lysosomal in response to 
iron deficiency [31]. This process is mediated with autophagy [9]. Recently, nuclear 
receptor coactivator 4 (NCOA4) has been identified as the cargo receptor mediating 
autophagic turnover of ferritin (ferritinophagy) [10]. These results suggest that the 
targeting of ferritin to autophagosomes by NCOA4 is a general cellular mechanism 
for regulating bioavailable iron.

4.5  Inherited Iron Metabolic Disorder

Iron overload, especially excess divalent iron can be highly toxic, mainly via the 
Fenton reaction producing hydroxyl radicals [32]. This is particularly relevant 
for hereditary iron-overloaded liver diseases such as hemochromatosis, in which 
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oxidative stress has been proposed as a major mechanism of liver injury. Oxidative 
stress and increased iron levels strongly favor DNA damage, genetic instabil-
ity, and tumorgenesis. Indeed, a significant correlation between 8-hydroxy-2′-
deoxyguanosine (8-OHdG), a marker of oxidatively generated DNA damage [33], 
and hepatic iron excess has been shown in iron-overloaded liver diseases.

4.5.1  Hereditary Hemochromatosis

Hereditary hemochromatosis is a heterogeneous group of inherited iron-overload 
conditions that is characterized by increased intestinal absorption and deposition in 
vital organs, including the liver, heart, and endocrine organs. The hemochromatosis 
group shows common features with respect to increased transferrin saturation and 
parenchymal iron deposition in organs, resulting in the development of liver cirrho-
sis, HCC, heart failure, diabetes mellitus (DM), and hypogonadism, even though the 
severity of the different forms of hemochromatosis varies. Hereditary hemochroma-
tosis has been clinically classified into two phenotypes. The classical form induces 
mainly cirrhosis, DM, and/or skin pigmentation in middle-aged patients, while the 
other form, juvenile hemochromatosis, results in cardiac failure and hypogonadism 
before patients reach the age of 30 [34]. On the other hand, four types (type 1, 2, 3, 
and 4) of hemochromatosis have been genetically classified on the basis of muta-
tion in five genes (HFE, HAMP, Hiv, TFR2, and SLC40A1). Responsible genes 
and dysregulated iron metabolism in hereditary hemochromatosis are summarized 
in Table 4.1. The molecular mechanism common to all types but type 4 hereditary 
hemochromatosis fails to regulate hepcidin expression in response to cellular iron 
levels [35]. Figure 4.1 depicts the molecular mechanisms underlying various types 
of hereditary hemochromatosis.

4.5.1.1  Type 1 Hereditary Hemochromatosis (Classical Form)

Type 1 hereditary hemochromatosis, known as classic hemochromatosis, is 
affected by HFE mutations and accounts for approximately 90% of all cases of 
hereditary hemochromatosis. It is characterized by mild disease progression with 

Table 4.1 Responsible genes and dysregulated iron metabolism in hereditary hemochromatosis

Type Subtype
Responsible 
gene Inheritance

Transferrin 
saturation

Serum 
hepcidin

1 HFE Autosomal recessive High Low
2 2A HJV Autosomal recessive High Low

2B HAMP High Absent
3 TFR2 Autosomal recessive High Low
4 4A SLC40A1 Autosomal 

dominant
Normal High

4B SLC40A1 High High

HJV hemojuvelin, HAMP human antimicrobial peptide, TFR2 transferrin receptor 2
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a gradual iron deposition in organs [36, 37]. HFE encodes an atypical histocom-
patibility class I protein that heterodimerizes with β-2 microglobulin [37]. Most 
affected patients are homozygous for a missense mutation (C282Y) that partially 
disrupts HFE function [37]. The C282Y mutation is known to be widespread in 
populations of Northern European descent [38], but its prevalence is extremely 
low in Asians [39]. Mutated HFE protein cannot bind to β-2 microglobulin and 
be transferred to the cell surface, which presumably results in failure to regulate 
hepcidin transcription, since HFE protein is considered to be one of “iron sen-
sors” at the surface of hepatocytes.
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Fig. 4.1 The impaired hepcidin–ferroportin system in genetic hereditary hemochromatosis. 
Hepcidin secreted by the liver regulates iron release from macrophages and duodenal enterocytes 
by interacting with the ferroportin expressed on their surface. Ferroportin transports Fe2+ to the 
extracellular side of the basolateral membrane. HFE, transferrin receptor 2 (TfR2), and hemojuv-
elin (HJV) are all required to adjust hepcidin expression to current iron needs. In hemochromatosis 
except for type 4, loss of any one of these hepcidin regulators diminishes intracellular hepcidin 
signal transduction and hepcidin secretion, leading to unrestricted flow of iron into the plasma iron 
pool. In type 4A hemochromatosis, loss of function mutants of ferroportin is unable to export iron 
from cells, resulting in iron accumulation predominantly in reticuloendothelial cells. In type 4B, 
ferroportin mutations are responsible for a gain of function with full iron export capability but 
insensitivity to downregulation by hepcidin, leading to iron accumulation in parenchymal cells and 
a phenotype similar to other hepcidin deficiency-based types of hemochromatosis
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4.5.1.2  Type 2 Hereditary Hemochromatosis (Juvenile Hemochromatosis)

Type 2 hereditary hemochromatosis, known as juvenile hemochromatosis, is an 
autosomal recessive disease and affected by Hjv or HAMP mutations. This type of 
hemochromatosis is a rare but more progressive disease which includes hypogo-
nadism, diabetes, and cardiomyopathy. Severe iron overload and organ damages 
usually occur before patients reach the age of 30. Juvenile hemochromatosis is fur-
ther classified into two types: (A) Hjv-associated hemochromatosis [40], and (B) 
HAMP-associated hemochromatosis [41]. Hjv protein is also one of the “iron sen-
sors” at the surface of hepatocytes.

4.5.1.3  Type 3 Hereditary Hemochromatosis

Camaschella et al. reported six patients who met the diagnostic criteria for heredi-
tary hemochromatosis but were not linked to HFE from two families of Sicilian 
origin, and identified homozygous Y250X mutation in TRF2 in these patients [42]. 
This type of hemochromatosis affects middle-aged adults but also adolescents and 
young adults and resembles type 1 hemochromatosis. The Y245X mutation of this 
gene in mice, equivalent to Y250X in humans, causes downregulation of hepcidin 
expression and iron accumulation in the liver [43]. In type 1, 2, and 3 hereditary 
hemochromatosis, serum hepcidin level is inappropriately low despite iron over-
load, and the diseases are inherited in the autosomal recessive pattern.

4.5.1.4  Type 4 Hereditary Hemochromatosis

Type 4 hemochromatosis, which is affected by SLC40A1 mutations, is also known as 
ferroportin disease, and is less rare than type II or III [36]. The inheritance pattern is 
autosomal dominant. This disease is phenotypically heterogeneous with two forms (A 
and B). In form A, the loss of function mutants of ferroportin are unable to export iron 
from cells, resulting in iron accumulation predominantly in reticuloendothelial cells 
and decreased availability of iron for transferrin [36]. In form B, ferroportin mutations 
are responsible for a gain of function with full iron export capability but insensitivity 
to downregulation by hepcidin, leading to iron accumulation in parenchymal cells and 
a phenotype similar to other hepcidin deficiency- based types of hemochromatosis [36, 
44]. Thus, ferroportin disease form B shows elevated transferrin saturation-associated 
tissue iron accumulation, preferentially within hepatocytes.

4.5.1.5  Other Type of Hereditary Hemochromatosis

Mutations in BMP6 gene have recently been reported in several families [45, 46]. 
It has been reported that serum hepcidin levels of patients with heterozygous muta-
tions of this gene were markedly low or inappropriately low for the iron overload. 
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Also, a heterozygous mutation in the IRE in the 5′-UTR of FTH gene has been 
demonstrated in patients with systemic iron overload [47]. The proband had iron 
deposition in hepatocytes and Kupffer cells/macrophages in the liver and spleen.

4.5.2  Management of Hereditary Hemochromatosis

Early diagnosis and prompt initiation of iron depletion therapy are essential for pre-
venting irreversible organ damage. Although the penetrance of HFE C282Y is low 
among the general population except for northern European population, it is impor-
tant to consider biochemical screening for hemochromatosis (followed by genetic 
testing when indicated) when we see the patients with iron overload. Phlebotomy is 
the standard treatment for hereditary hemochromatosis, but there are no evidence-
based guidelines on the use of therapeutic phlebotomy. It should be repeated at 
appropriate intervals for at least 1 week [48]. Treatment is conventionally initiated 
when serum ferritin levels exceed the normal range [36]. The standard volume of 
phlebotomy is 400–500 mL which contains approximately 200–250 mg of iron, and 
it should be modified according to the patient’s age, body weight, hemoglobin level, 
and comorbidities [48]. Maintenance therapy is performed to keep serum ferritin 
levels 50 to 100 ng/mL, but iron deficiency with lower serum ferritin levels should 
be avoided. In patients with both iron overload and anemia, phlebotomy is inappro-
priate. In such cases, iron chelation therapy using desferrioxamine, deferasirox, or 
deferiprone may be considered [48].

Although glucose tolerance, cardiac function, and gonadal function should be 
monitored in patients with hereditary hemochromatosis, we also should bear in 
mind that HCC is at least twice as frequent among patients with hereditary hemo-
chromatosis compared with those who have other types of liver diseases because 
hepatic iron overload strongly favors DNA damage, genetic instability, and tumor-
genesis through enhanced oxidative stress.

4.6  Conclusion

Because of the identification of important iron metabolic molecules and genes such 
as hepcidin, ferroportin, and HFE, our understanding of systemic iron regulation 
and the mechanisms of iron overload-related diseases has largely progressed in the 
past two decades. As liver is a crucial organ for iron metabolism, liver is likely to 
be involved in iron overload-related disorder. Hereditary hemochromatosis is one 
of the inherited liver diseases and occasionally diagnosed after the development of 
liver cirrhosis and/or HCC. Liver cirrhosis significantly reduces survival in concert 
with disorders in vital organs due to the parenchymal iron deposition. Therefore, 
early diagnosis and prompt initiation of iron depletion therapy are essential for 
improving the prognosis of patients with hereditary hemochromatosis. Recognition 
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of this disease is critical for hepatologists, hematologists, cardiologists, endocrinol-
ogists, and family physicians because inadequate management is fatal for patients 
with hereditary hemochromatosis.
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Chapter 5
Liver Cirrhosis with Inherited Liver 
Diseases: Wilson Disease

Masaru Harada

Abstract Wilson disease is a genetic disorder of copper metabolism. Wilson dis-
ease is treatable by several pharmacological agents. If untreated, this disease results 
in severe disability and death. Therefore, early diagnosis and adequate treatments 
are important for this disease.

Keywords ATP7B · Copper · Late endosome · Oxidative stress

5.1  Introduction

Copper is an essential trace element and plays many important biological processes. 
The processes include mitochondrial energy generation (cytochrome c oxidase), 
iron metabolism regulation (ceruloplasmin), melanin formation (tyrosinase), 
oxygen- radical scavenging (superoxide dismutase), and collage cross-linking (lysyl 
oxidase). However, excess copper is toxic, because it induces oxidative stress [1]. 
Therefore, both shortage and excess of copper can induce serious problems as 
illustrated by Menkes disease and Wilson disease [2–4]. Therefore, accurate 
regulations of copper absorption, mobilization, and excretion are necessary for our 
healthy life [5].

5.2  Copper Absorption

In mammals, copper absorption mainly occurs in the small intestine. Copper trans-
porter 1 (Ctr1) transports copper across the apical membrane of enterocytes [6, 7]. 
The copper in the cytoplasm of enterocytes is delivered to Atox1, a copper chaperone, 
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which delivers copper to ATP7A [8]. In copper-depleted conditions, ATP7A 
localizes at the trans-Golgi network (TGN). ATP7A localizes in the peripheral 
vesicles in copper-rich conditions [9]. Copper containing vesicles release copper 
from the basolateral membrane to interstitial space of the small intestine by 
exocytosis.

5.3  Copper Transport to the Liver

Copper absorbed from the enterocytes enters the portal circulation [2–4, 10]. The 
liver is the central organ of copper metabolism, and the liver takes up copper from 
the portal circulation [10, 11]. Ctr1 transports copper across the sinusoidal plasma 
membrane [12].

5.4  Copper Metabolism in Hepatocytes

Wilson disease is an autosomal recessive inherited disorder of copper metabolism. 
It is characterized by the accumulation of copper in the body because of decreased 
biliary copper excretion from hepatocytes into bile. Wilson disease gene, ATP7B, 
has been cloned and it encodes a cation-transporting P-type ATPase (ATP7B) [13–
15]. It is clear that ATP7B functions in both incorporation of copper into apo- 
ceruloplasmin to form stable (mature) holo-ceruloplasmin and biliary copper 
excretion [16, 17]. Long-Evans Cinnamon (LEC) rat is an animal model of Wilson 
disease and it has mutated gene of Atp7b, the rat gene homologous to ATP7B [18]. 
Introduction of ATP7B protein to hepatocytes of LEC rats restored the normal ceru-
loplasmin secretion and biliary copper excretion [16, 17]. First, the gene product, 
ATP7B (Wilson disease protein), was detected in the TGN [19, 20]; however, the 
localization is still controversial [21–29]. We examined the intracellular localization 
of green fluorescent protein-ATP7B (GFP-ATP7B), ATP7B-DsRed, transfected- 
ATP7B, and endogenous ATP7B in primary isolated rat hepatocytes, OUMS29 (a 
human hepatocytes cell line), Huh7 and Hep3B (human hepatoma cell lines), 
HEK293, and MDCK cells [21–27]. Our examinations demonstrated that ATP7B 
colocalized with lysosomes associated protein (lamp) 1 and 2 (late endosome and 
lysosomes localized protein), Rab7 (late endosome localized protein), Niemann- 
Pick C1 protein (NPC1, late endosome localized protein), incubated rhodamine- 
dextran (all endocytic structures), but not with galactosyltransferase (TGN localized 
protein), γ-adaptin (TGN localized protein), 58-kd Golgi protein (TGN localized 
protein), cathepsin D (lysosome localized protein), or lysosomal glycoprotein 85 
(lysosome localized protein) [21–27]. Therefore, we consider that ATP7B localizes 
in the late endosomes. ATP7B translocates copper from the cytoplasm into the late 
endosomes. Then, copper in the late endosomes is transported to the lysosomes and 
copper is excreted into bile. About the copper incorporation into ceruloplasmin, we 
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demonstrated the importance of NPC1 by the experiments of NPC1 knockdown and 
introduction using cultured cells [26, 27]. Some other studies reported the impor-
tance of NPC1 in copper metabolism in hepatocytes [30, 31].

5.5  Systemic Regulation of Copper Metabolism

Systemic regulation of copper has been little understood. Cardiac copper deficiency 
produced by cardiac specific knockout of Ctr1 induced increase of copper in serum 
and decreased hepatic copper contents. Furthermore, the expression of ATP7A 
increased in the intestine and liver. These results indicated the existence of systemic 
regulation of copper metabolism [5].

5.6  History

Wilson disease is an autosomal recessive disorder characterized by the accumula-
tion of copper in the body [2–4]. First, Wilson SAK described strange familial cases 
with nervous system and liver cirrhosis as progressive lenticular degeneration in 
1912 [32]. Copper accumulation in the liver and central nervous system is associ-
ated with this disease [33]. Serum ceruloplasmin concentration had been found to 
be low in patients with Wilson disease [34]. The prevalence of Wilson disease is 
estimated one in about 40,000 individuals [2–4].

5.7  Clinical Manifestations

Clinical manifestations of patients with Wilson disease vary and the onset of the age 
is variable [35]. Symptoms include hepatic manifestations, neuropsychiatric mani-
festations, Kayser–Fleischer ring, and hemolysis in association with acute liver fail-
ure. Various manifestations of the other organs, such as kidney, heart, bone, muscle, 
and endocrine organs, are possible.

Hepatic manifestations include asymptomatic mild liver dysfunction to cirrhosis. 
Some patients may present as acute liver failure. Hepatocellular carcinoma (HCC) 
may be possible, although the prevalence of HCC is not so frequent [4].

Some patients manifest broad spectrum of neurological, behavioral, and psychi-
atric manifestations. Most, probably all, patients with neurological manifestations 
have liver abnormalities. Many of them have already progressed to cirrhosis.

Kayser–Fleischer rings represent deposition of copper in Descemet’s membrane 
of the cornea. Sunflower cataract represents copper deposition in the lens. These 
findings of the eyes represent copper deposition in the extrahepatic tissues including 
central nervous system [2–4].
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Patients with successful treatment can become pregnant [36, 37]. Treatment must 
be continued throughout the duration of pregnancy. D-penicillamine, trientine, and 
zinc have been demonstrated safe for pregnant patients and fetus [2–4, 38, 39]. 
Interruption of the treatment during pregnancy may induce acute liver failure [2–4].

5.8  Diagnosis

There is no single test to diagnose Wilson disease. Therefore, combined evaluation 
of clinical and biochemical findings is important. The Wilson disease scoring system 
is useful for the diagnosis (Table  5.1) [3, 40]. If the cumulative score from this 
scoring system is 4 or above, the diagnosis of Wilson disease is likely.

Table 5.1 Scoring system 
for the diagnosis of Wilson 
disease

Symptoms and tests Points

Kayser–Fleischer ring 2
Neurologic symptoms or MRI findings 1
Coombs negative hemolytic anemia 1
Urinary copper 1
   1–2 × ULN
   >2× 2
   Normal, but >5× after d-penicillamine 2
Liver copper content
   1–5 × ULN 1
   >5× 2
   Normal −1
Rhodanine staining
   Positivea 1
   Serum ceruloplasmin (mg/dL)
   10–20 1
   <10 2
Mutation analysis
    Disease causing mutations on both 

chromosomes
4

    Disease causing mutations on one 
chromosome

1

Total score: 4 or more: diagnosis of Wilson disease highly 
likely; 2–3: diagnosis of Wilson disease probable, do more 
investigation; 0–1: diagnosis of Wilson disease unlikely
ULN upper limit of normal, urinary copper <40 μg/day, liver 
copper content <50 μg/g, serum ceruloplasmin <20 mg/dL
aIf measurement of liver copper content is not available
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5.9  Treatments

Wilson disease was a fatal disease until the treatment was introduced. Now, Wilson 
disease is a genetic metabolic disorder that can be treated with some drugs. The 
treatments are based on the use of copper chelators to remove accumulated copper 
from the body and zinc to reduce absorption of copper from the small intestine [2–4, 
41]. Since chocolate, nuts, mushrooms, shellfish, and organ meats contain high con-
centration of copper, patients should avoid these foods.

d-penicillamine promotes urinary excretion of copper from the body. Side effects 
appear in approximately 30% of patients treated with this drug. The side effects 
include fever, eruptions, neutropenia, thrombocytopenia, proteinuria, nephrotoxic-
ity, lupus-like symptoms, myopathy, and hepatotoxicity [2–4]. Usually, the initial 
dose is 200–400  mg/day. Maintenance dose is usually 800–1000  mg/day. d- 
penicillamine should be taken 1 h before or 2 h after the meals, because food in the 
gastrointestinal tract inhibits absorption of the drug. Long-term prognosis of patients 
treated with d-penicillamine is favorable, although some patients needed the change 
of the treatment due to adverse events [42].

Trientine is another copper chelator [43]. When patients suffer from severe 
adverse effects by the use of d-penicillamine, trientine should be administrated. 
Typical dosages are 750–1500  mg/day. A recent long-term observation demon-
strated that trientine produced comparable outcomes with d-penicillamine and less 
adverse events [42].

Bis-choline tetrathiomolybdate is now tried as a new chelation therapy [44].
Zinc induces the expression of metallothionein, a metal binding protein, in vari-

ous cells including enterocytes [45, 46]. Metallothionein has greater affinity with 
copper than zinc. Copper binds with metallothionein in the cytoplasm of entero-
cytes. Therefore, copper is not absorbed but is lost into the intestinal lumen with 
enterocytes. Zinc should be administrated 1 h before or 2 h after the meals. Zinc has 
very few side effects [46]. Zinc has direct cell protection effects against copper 
toxicity [1]. Zinc is used for presymptomatic patients or for maintenance of those 
who have already received chelation therapy [47].

Combination of d-penicillamine or trientine and zinc can be used for treatment 
for patients with Wilson disease [48, 49].

Patients with acute liver failure or decompensated liver failure may require liver 
transplantation [2–4]. Living donor liver transplantation from a family member who 
has heterozygote mutation is also successful [50]. Liver transplantation does not 
always improve the neurological manifestations [2–4]. For consideration of the 
indication of liver transplantation for patients with Wilson disease, the revised 
King’s college score is very useful [51]. Sometimes intensive therapy with copper 
chelators, plasma exchange, and artificial liver support can avoid liver transplanta-
tion in patients with acute liver failure [52].
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5.10  Prognosis of Wilson Disease

Patients with Wilson disease who receive adequate care have usually favorable 
prognosis. However, prognosis is poor in patients diagnosed after the development 
to cirrhosis or advanced neurological symptoms [53, 54]. Discontinuance of the 
treatment induces intractable hepatic failure [55–57]. Suicide is one of the problems 
of patients with Wilson disease [56, 57]. Education of patients is important to pre-
vent these serious problems.

5.11  Conclusions

The liver is the central organ for the metabolism of copper. Abnormal metabolism 
of copper in the liver is detected in patients with Wilson disease. Wilson disease is 
a rare genetic metabolic disorder that can be treated by pharmacological treatments. 
Therefore, recognition and adequate treatment are essential, because inadequate 
management is fatal for these patients.
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Chapter 6
Nutrition in Liver Cirrhosis

Masahito Shimizu, Makoto Shiraki, and Yohei Shirakami

Abstract Nutritional/metabolic disorders such as protein–energy malnutrition are 
frequently observed with liver cirrhosis. Nutritional therapy prevents complications 
of liver cirrhosis and improves prognoses as well as quality of life. Branched chain 
amino acids are key drugs of nutritional therapy for liver cirrhosis, improve hypoal-
buminemia, and are useful as a late evening snack for energy malnutrition. 
Appropriate nutritional therapy must be conducted for liver cirrhosis patients asso-
ciated with sarcopenia or obesity.

Keywords BCAA · Liver cirrhosis · Nutritional therapy · PEM · Sarcopenia

6.1  Pathology and Nutrition of Liver Cirrhosis

The liver plays a central role in nutritional/energy metabolism control and liver cir-
rhosis patients with decreased hepatic functional reserve are associated with various 
nutritional/metabolic disorders. Particularly because protein–energy malnutrition 
(PEM), which is common in patients with liver cirrhosis, is deeply involved in the 
prognosis and deterioration of quality of life (QOL) in the same patients, appro-
priate diagnosis (nutritional assessment) along with early intervention (nutritional 
therapy) is important [1, 2].

Although the resting energy expenditure of liver cirrhosis patients is elevated, 
the uptake of glucose into the liver and the ability to synthesize/store glycogen in 
the liver are decreased as liver parenchymal cells decrease. In particular, as liver 
cirrhosis progresses, liver cirrhosis patients are frequently associated with abnor-
mal glucose metabolism such as diabetes and postprandial hyperglycemia/hyperin-
sulinemia because the utilization efficiency of carbohydrates decreases, while the 
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utilization efficiency of fat as a physiological energy substrate increases. Patients 
with cirrhosis show a compromised ability to store glycogen and blunted gluconeo-
genesis [3, 4].

With liver cirrhosis, a decrease in branched chain amino acids (BCAAs) and an 
increase in aromatic amino acids along with a decrease in the Fischer ratio, which 
is a molar ratio of these (amino acid imbalance), are observed. Among BCAAs, 
leucine in particular promotes protein synthesis through the activation of mTOR 
signaling. BCAA administration for protein malnutrition raises the serum albumin 
levels and improves the QOL and survival of patients with liver cirrhosis. BCAAs 
play an important role in maintaining and increasing skeletal muscle mass and the 
decline in BCAA in liver cirrhosis patients is deeply involved in the development of 
hypoalbuminemia and sarcopenia [5–7].

Sarcopenia is a syndrome characterized by reduced skeletal muscle mass and 
muscle strength. With liver cirrhosis, because BCAAs are more energy efficient 
than glucose and the substrate burned as an energy source in skeletal muscle is 
mainly BCAAs, progression of PEM, decline in BCAAs, and the development of 
sarcopenia are observed as a series of pathological conditions. Moreover, with liver 
cirrhosis, because ammonia that cannot be treated due to a decline in hepatic detoxi-
fication function is metabolized in skeletal muscle in a compensatory manner using 
BCAAs as a substrate, the BCAA concentration further decreases [8, 9]. The loss 
of hepatic functional reserve and skeletal muscle mass is also involved in glucose 
intolerance (Fig. 6.1).

In addition to malnutrition, hypernutrition also exacerbates the prognosis of 
liver cirrhosis patients. Obesity and diabetes in particular have been reported to 
increase the risk of hepatocellular carcinoma (HCC), so attention is required. 
Currently, one- third of liver cirrhosis patients are obese [10]. Moreover, liver cir-
rhosis with backgrounds of nonalcoholic steatohepatitis related to obesity and life-
style diseases is also increasing. Based on the fact that the nutritional status of 
liver cirrhosis patients is shifting from PEM/malnutrition to obesity/hypernutrition, 
improvements of nutritional therapy, exercise therapy, and lifestyle habits should 
be promoted.

6.2  Basics of Nutritional Therapy

When starting nutritional therapy of liver cirrhosis, it is important to accurately 
evaluate the nutritional status of patients, especially PEM. PEM is strongly associ-
ated with the severity of hepatic decompensation in the setting of cirrhosis and the 
Child–Pugh classification is a commonly used tool for measuring the severity of 
chronic liver failure. Cirrhotic patients with Child–Pugh classes B and C have been 
shown to be most likely to develop PEM [11]. The subjective global assessment 
(SGA), an attractive test due to its accuracy, is also used as a standard nutritional 
evaluation in hospitals. The SGA is simple to execute because it is a questionnaire 
with two main components, history and physical examination [12]. A biochemical 
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assessment is commonly performed to evaluate malnutrition and serum albumin is 
a common tool to measure nutritional status.

In 2015, the Japanese Society of Gastroenterology revised the evidence-based 
clinical practice guidelines for liver cirrhosis, which is useful to undergo nutri-
tional therapy for such disease [13]. In the guidelines, the protein malnutrition 
status of liver cirrhosis patients is evaluated using their serum albumin level. A 
serum albumin level of less than 3.5 g/dL significantly decreases survival rate. In 
liver cirrhosis patients, serum albumin levels are correlated with BCAA concentra-
tions and are the basis for demonstrating the utility of BCAA replacement therapy 
for the same patients. Energy malnutrition is evaluated using the nonprotein respi-
ratory quotient, arm muscle circumference length/arm circumference length, and 
serum free fatty acid levels. For hypoalbuminemia, amino acid imbalance, and 
energy malnutrition, it is necessary to proactively conduct nutritional therapy [3, 
14] (Fig. 6.2).

Diet plays a substantial role in cirrhosis. For liver cirrhosis, a nutritional care plan 
is prepared by paying attention to complications such as ascites/edema, impaired 
glucose tolerance, and hepatic encephalopathy/protein intolerance. Physical mea-
surements along with a subjective comprehensive evaluation are conducted and a 
nutritional assessment is conducted over time according to changes in the path-
ological conditions. Although the energy requirement is calculated based on the 
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Fig. 6.1 Pathophysiological mechanisms linking metabolic abnormalities, sarcopenia, and glu-
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intensity of daily activity, particularly in the event of impaired glucose tolerance, 
attention must be paid to avoid excessive caloric intake (25–35 kcal/kg ideal body 
weight/day as a guide). The recommendation for carbohydrates is 50–70% of daily 
calories; however, simple sugar, especially fructose, should be avoided as much as 
possible [15]. A low salt diet is effective against ascites/edema; however, excessive 
sodium restrictions require attention because they reduce appetite and deteriorate 
nutritional status.

Protein restriction is no more a recommended strategy unless contraindicated by 
clinical complications, such as hepatic encephalopathy. Because protein deficiency 
is a significant problem in malnutrition, the required protein intake in cirrhotic 
patients is 1.0–1.5 g/kg/day if there is no protein intolerance [16]. Although protein 
intake is useful as a countermeasure to sarcopenia, because excessive protein load 
may induce hepatic encephalopathy, particularly in the event of protein intolerance, 
low protein diet (0.5–0.7 g/kg/day) or enteral nutrients for liver failure including 
BCAAs is used. Fat requirements are set to 20–25% in terms of energy ratio. It is 
also important to supplement zinc and take appropriate amounts of vitamins and 
dietary fiber (measures for constipation). There should be an increased emphasis 
on BCAA and fiber with decreased ammonia when the patients suffer from hepatic 
encephalopathy (Table 6.1).

It should be emphasized that total nutritional management, including both diet 
and nutritional supplements, is important in order to prevent the progression of 
chronic liver disease and onset of HCC. In 2012, the Japanese Nutritional Study 
Group for Liver Cirrhosis published the guidelines on nutritional management in 

Nutrition management for cirrhotic patients
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Fig. 6.2 Algorithm for nutritional therapy in patients with liver cirrhosis. npRQ nonprotein respi-
ratory quotient, %AC percent arm circumference, FFA free fatty acid. This figure is referred from 
[13]
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cirrhotic patients from the perspective of preventing HCC [17]. This guideline is 
useful for the actual nutritional management of patients with liver cirrhosis.

6.3  Nutritional Therapy Using BCAA

To improve hypoalbuminemia and amino acid imbalance, oral BCAA preparations 
are useful. Although oral BCAA preparations include BCAA granules and enteral 
nutrients for liver failure, they need to be properly used depending on the energy 
malnutrition state or the presence of hepatic encephalopathy. While supplemental 
administration of BCAA granular preparation maintains/increases the serum albu-
min concentration in decompensated liver cirrhosis patients, it prevents adverse 
events of liver cirrhosis and improves vital prognosis as well as QOL. A multicenter, 
randomized, and nutrient intake-controlled trial has revealed that long-term oral 
BCAA granules supplementation (12  g/day) improves event-free survival (death 
by any cause, development of HCC, rupture of esophageal varices, or progress of 
hepatic failure), increases serum albumin levels, and improves QOL in patients 
with decompensated liver cirrhosis with hypoalbuminemia [5]. The mean annual 
changes in the model for end-stage liver disease score and Child–Pugh score were 
smaller and the incidence of overall major cirrhotic complications, such as ascites, 
was lower in cirrhotic patients taking BCAA granules, which suggests that early 
interventional oral BCAA administration may prolong the liver transplant wait-
ing period by preserving hepatic reserve in cirrhosis [18]. BCAA supplementation 
relieves minimal hepatic encephalopathy and increases muscle mass [19]. More 

Table 6.1 Recommendation for nutritional management of liver cirrhosis

1. Daily calories
  25–35 kcal/kg ideal body weight/day
  If any abnormalities are seen in glucose tolerance, intake should be 25 kcal/kg ideal body 

weight/day
2. Proteins
  If there is no protein intolerance:
  1.0–1.5 g/kg/day (including BCAA granules)
  If there is protein intolerance:
  0.5–0.7 g/kg/day (low protein diet) + BCAA-enriched enteral nutrient mixture
3. Carbohydrates
  50–70% of daily calories with decreased simple sugar, especially fructose
4. Lipids
  20–25% of daily calories
5. Sodium chloride
  If there is ascites and/or edema: 5–7 g/day
6. Divided meal (4–6 times/day) and/or LES (amounts to 200 kcal)
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importantly, BCAA supplementation is also involved in reduced incidence of HCC 
in patients with cirrhosis [20–22].

For energy malnutrition, divided meals and late evening snacks (LES), such as 
rice ball, liquid nutrients, and BCAA-enriched supplementation, are recommended. 
Approximately 200 kcal is divided from the target total daily calories and taken as 
a snack/energy before going to bed to improve nighttime starvation. LES improves 
nutritional status, increases body protein content, and diminishes fat and protein oxi-
dation in patients with liver cirrhosis [23, 24]. LES is associated with suppression 
of serum free fatty acid levels, recovery of energy metabolism, and improvement 
of health-related QOL [25, 26]. In patients with cirrhosis, divided meals with LES 
fortified with BCAA prevented hypoglycemia and led to increased nutrition due to 
reduced catabolism overnight [27]. As divided meals/LES need to be continued, one 
which is easy to prepare and ingest is preferred. Specifically, 1 pack (approximately 
200–300 kcal) of enteral nutrition for liver failure containing mostly BCAA is used. 
BCAAs are a key drug in nutritional therapy of liver cirrhosis patients (Table 6.1 
and Fig. 6.3).

Low level of serum BCAA predicts sarcopenia in patients with liver cirrhosis 
[28]. In a retrospective study of liver cirrhosis patients with sarcopenia, the oral 
administration group of a BCAA preparation has been reported as having a sig-
nificantly better prognosis compared to the non-oral administration group [8]. 
A leucine- enriched BCAA diet is able to reduce the elevated whole-body pro-
tein breakdown in patients with cirrhosis [29]. A recent clinical trial has revealed 
that combination of BCAA supplementation and walking exercise is effective for 
improving muscle volume and strength in liver cirrhosis patients [30]. As preven-

Improvement of event-free survival

BCAA Skeletal
MuscleLiver

Increase in serum albumin levels Suppression of (obesity-related) HCC

Improvement of QOL

Fig. 6.3 Beneficial impacts of BCAA in patients with liver cirrhosis
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tion/treatment of sarcopenia in liver cirrhosis patients, the usefulness of nutritional 
therapy mainly including BCAAs as well as exercise therapy is anticipated.

6.4  Liver Cirrhosis and Obesity

It has recently been revealed that the nutritional status of liver cirrhosis patients is 
shifting from PEM/malnutrition to obesity/hypernutrition. Currently, one-third of liver 
cirrhosis patients exhibit a BMI of 25 or more and liver cirrhosis with a background 
of obesity and nonalcoholic steatohepatitis is increasing [10]. Obesity exacerbates the 
prognosis of liver cirrhosis patients and increases the risk of HCC; however, replace-
ment therapy of oral BCAA preparations has been reported to suppress liver carcino-
genesis in patients with hepatitis C and cirrhosis who are obese [21]. The beneficial 
effects of BCAA supplementation on the regulation of glucose metabolism have been 
reported in recent clinical and experimental studies, which suggest that BCAA may 
suppress liver carcinogenesis in obese patients with liver cirrhosis, at least in part, 
by improving insulin resistance [7, 31]. It is necessary to practice nutritional therapy 
aimed at improvement of the long-term prognosis of liver cirrhosis patients associated 
with obesity as well as suppression of liver failure and HCC.

6.5  Conclusion

PEM is a serious problem, especially in cirrhotic patients. Appropriately evaluating 
nutritional/metabolic disorders in liver cirrhosis patients and proactively conducting 
nutritional therapy lead to the prevention of complications and improved prognoses/
QOL. Nutritional therapy for liver cirrhosis should make sure the patients reach 
the recommended daily calories and nutrients by increasing oral intake or by using 
other measures, such as oral supplementation, divided meal, and LES. It is also nec-
essary to conduct nutritional therapy including measures for sarcopenia and obesity 
in coordination with registered dietitians.
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Chapter 7
Microbiome in Liver Cirrhosis

Akira Sakamaki, Masaaki Takamura, and Shuji Terai

Abstract Humans have a codependent relationship with gut microbiota. Changes 
in microbiota are proposed to be associated with various pathological conditions. 
New analyses facilitate the assessment and exhaustive search of these nonculturable 
bacteria. These new technologies also provide evidence of a relationship between 
gut microbiota and liver cirrhosis (LC).

Gut microbiota is closely involved in maintenance of the relationship between 
gut and liver in which commensal gut microbiota inhibits harmful bacteria, pro-
duces short-chain fatty acids to protect from mucosal infection, and metabolize bile 
acids to monitor the intestinal environment. Gut microbiota in patients with LC was 
different from that in healthy individuals due to dysbiosis regardless of background 
hepatitis status. In patients with LC, dysbiosis, small intestinal bacterial overgrowth, 
leaky gut syndrome, and immune paralysis of the gut-associated lymphoid tissue 
occurred, and the interaction between these induces a disruption of the gut–liver 
barrier. Dysfunction of the immune system induces translocation of harmful bacte-
ria and endotoxin into the liver. Bacterial translocation worsens LC and contributes 
to complications such as hepatic encephalopathy, hepatocellular carcinoma, hepa-
torenal syndrome, and spontaneous bacterial peritonitis. Poorly absorbable antibiot-
ics, probiotics, prebiotics, synbiotics, and fecal microbiota transplantations were 
reported as potential treatment interventions for dysbiosis in patients with LC.
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7.1  Introduction

In humans, the intestinal tract contains up to 100 trillion gut bacteria, a number that 
is up to ten times more than that of somatic and germ cells [1]. Genes in gut bacteria 
that synthesize amino acids and vitamins are more extensive than those in humans, 
and their products are commonly utilized by humans [2], who are in a codependent 
relationship with the gut bacteria that act as a superorganism [3]. The cooperative 
relationship with gut bacteria in healthy humans reverts to a damaging one in patho-
logical conditions. Several reports indicated that changes in microbiota were associ-
ated with various pathological conditions including liver diseases [4–6], obesity [7], 
diabetes [8], cardiac diseases [9], inflammatory bowel diseases [10], irritable bowel 
syndrome [11], and autism [12]. The development of new analytical tools such as 
rRNA gene sequencing and metagenomic methods [13] facilitated the assessment 
and exhaustive search of these nonculturable bacteria that could not be found and 
accessed using earlier techniques that utilized cultivation [14].

The most commonly used identification method without cultivation is sequenc-
ing of 16S ribosomal RNA (rRNA) gene, which consists of a super variable region 
with species-specific base arrangement and a conserved region that is nearly identi-
cal across bacterial species. Therefore, universal primers that bind the conserved 
region can amplify almost all species in gut bacteria [15]. Moreover, metagenom-
ics, which analyzes extracted undiluted DNA or RNA sequences, provides exten-
sive genetic information with high-performance gene sequencers and computing 
systems or tools. Especially, functional analysis of individual genes can provide 
important information through metagenomics [16].

In this chapter, we discuss recent studies on gut bacteria that utilized new tech-
nologies, with a focus on liver cirrhosis (LC).

7.2  Gut–Liver Axis and Gut Microbiota

Liver and the intestinal environment are closely related through portal vein and bile 
duct. Foreign agents, including nutrients, drugs, and a small amount of pathogens 
that pass across intestinal epithelial cells are delivered to liver through the portal vein, 
are processed, decomposed, and reserved in liver. Intestinal epithelial cells allow for 
only detoxified products can pass through the liver to be dispersed to the whole body. 
The digestive tract and liver play an important role in the biological defense against 
foreign agents in a coordinated manner by forming the gut–liver axis [17] (Fig. 7.1a).

Over 90% of human gut microbiota consist of four main divisions: Firmicutes, 
Bacteroidetes, Proteobacteria, and Actinobacteria. Firmicutes and Bacteroidetes 
are more dominant, and relative percentages and species differ among individuals 
[2, 18] and countries [19]. Gut microbiota is closely involved in maintenance of the 
relationship between gut and liver. Specifically, commensal gut microbiota inhibits 
harmful bacteria and produces short-chain fatty acids (SCFAs) to protect mucosa 
from bacterial infection (Fig. 7.1b).
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Intestinal epithelial cells have important, life-supporting functions including 
absorption as well as barrier formation against invasion of harmful bacteria, that 
is, pathobionts. These cells have participated in an aggressive host defense by for-
mation of a thick mucus layer and tight junctions [20, 21]. Mucus layer on the 
surface of epithelial cells is composed predominantly of mucin that is secreted by 
these cells, which physically prevents the invasion of foreign matter. Furthermore, 
 secretory immunoglobulin (Ig) subtype A (IgA) produced by plasma cells in lamina 
propria covers intestinal epithelial cells [22].

Fig. 7.1 The relationship between gut and liver mediated by gut microbiota. Enterohepatic circu-
lation has a role to monitor and control the intestinal environment (a), and host immunological 
defense mechanisms maintain the intestinal environment and protect against the invasion of harm-
ful foreign substances (b) in coordination with gut microbiota. CYP7A1 cholesterol 7α-hydroxylase, 
FXR farnesoid X receptor, MAMP microbe-associated molecular pattern, SCFA short-chain fatty 
acid, TLR toll-like receptor, Treg cell regulatory T cell, IgA immunoglobulin subtype A
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Secretory IgA plays a key role in innate immunity, as part of the initial immunological 
response to pathogens. Innate immunity starts with recognition of common and charac-
teristic molecular structures by a limited number of pattern-recognition receptors (PRRs) 
expressed on natural killer cells and antigen-presenting cells such as macrophages 
and dendritic cells [23]. Secretory IgA has wide-ranging functions such as inhibition 
of bacterial adhesion to epithelial cells and neutralization of bacterial and viral toxins, 
and establishment and maintenance of cohabitation with gut bacteria via recognition of 
microbe-associated molecular patterns by several PRRs such as toll-like receptors (TLRs) 
[24]. Furthermore, particular indigenous species such as Clostridium induce regulatory T 
cells that are critical for the regulation of immunological response in gut [25, 26].

Moreover, gut bacteria ferment and disaggregate indigestible components such 
as dietary fiber and produce SCFAs such as acetic, propionic, and butyric acid by 
interaction among different bacteria, mainly Firmicutes and Bacteroidetes divisions 
[27]. These SFCAs act as nutrients for epithelial cells [28], induce mucin production 
[29], and regulate energy homeostasis [30, 31]. These immunological defense mech-
anisms, in coordination with commensal microbiota, maintain the intestinal environ-
ment and protect against the invasion of harmful foreign substances (Fig. 7.1b).
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Conversely, bile acids secreted to the gut are reabsorbed and returned to the liver 
via the portal vein, which is named as enterohepatic circulation [32]. Bile acids are 
biosynthesized from cholesterol and secreted to duodenum through the bile duct 
as the main component of bile. Cholesterol 7α-hydroxylase (CYP7A1), the rate- 
limiting enzyme of bile metabolism, receives negative feedback from the intestinal 
epithelial cell nuclear receptor, farnesoid X receptor (FXR), to regulate bile acid 
levels [33–35]. Primary bile acids are metabolized to secondary bile acids through 
deconjugation and dehydrogenation by gut bacteria in small intestine. Thereafter, 
about 95% of secondary bile acids as well as primary bile acids are reabsorbed and 
returned to liver via portal vein to be resecreted in bile. CYP7A1 and FXRs moni-
tor and control the intestinal environment by bile acids (Fig. 7.1a).

7.3  Microbiome in Patients with Liver Cirrhosis

In patients with LC, a disruption in the gut–liver barrier was found by the combina-
tion of dysbiosis, small intestinal bacterial overgrowth (SIBO), leaky gut syndrome 
(LGS), and immune paralysis of gut-associated lymphoid tissue (GALT) [36].

Several metagenomic analysis indicated that gut microbiota in patients with LC 
was different from that in healthy individuals because of dysbiosis independent of 
background hepatitis status [4–6]. Dysbiosis indicates failure of the normal intestinal 
environment and is classified into four states: decrease in commensal bacteria; path-
ological increase in pathobionts; decrease in the diversity of gut flora; and change 
of the function of gut flora [37, 38]. In summary, an increase in Enterobacteriaceae 
and Streptococcaceae families and a decrease in Bifidobacteriaceae and 
Lachnospiraceae families are found in patients with LC. Furthermore, changes in 
gut microbiota of patients with decompensated or complicated LC are different 
from that in compensated patients [6, 39], and liver transplantation improves dys-
biosis in patients with good post-transplantation congestion [40]. A study showed 
that the source of SIBO such as Veillonella and Streptococcus in patients with LC 
was the oral cavity and that proton pump inhibitors might worsen the cascade [41].

The rate of SIBO in patients with LC ranges from 48% to 73% [36, 42]. SIBO 
is defined as the presence of >105 colony-forming units/ml in proximal jejunum 
and a significant change in gut flora, with the emergence of bacteria not normally 
found in the intestines [43, 44]. Accumulating evidence suggests that SIBO might 
be associated with a reduction in intestinal movement, impaired bile secretion, and 
decreased IgA secretion.

Intestinal epithelial cells form tight junctions that allow selective passage of 
nutrients, whereas physiological permeability is achieved by nutrients, patholog-
ical increase in permeability occurs via immune cells, cytokines, and pathogens 
[45], which is termed LGS.  In patients with LGS, because of an increase in not 
only pathobionts and its components, such as lipopolysaccharide (LPS), which is 
an endotoxin produced by gram-negative bacteria, but also high molecular-weight 
chemical agents and food allergens in the intestinal mucosa, LGS leads to the inhi-
bition of physiological absorption and was shown to be associated with allergic 
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and autoimmune diseases [46]. Studies also reported that LGS was worsened by 
ingestion of particular food items, drugs, alcohol [47], fructose [48, 49], and non-
steroidal anti-inflammatory drugs [50, 51].

GALT, the largest immune organ in the human body that is located in the lamina 
propria, is the first defense mechanism against invasion of gut bacteria [36]. In 
healthy individuals, a small amount of bacteria pass the intestinal mucosa, whereas 
this amount increases in parallel with the progression of liver fibrosis; these bacteria 
produce inflammatory cytokines such as tumor necrosis factor (TNF)-α. Release of 
reactive oxygen species and nitric oxide in GALT precipitates epithelial cell dys-
function. In patients with decompensated LC, more pathogens pass the mucosa and 
lead to the paralysis of GALT.

Dysfunction of the immune system within the gut–liver axis induces pathobionts 
and the release of LPS into the epithelial mucosa, peripheral veins, portal vein, and 
liver in a process called bacterial translocation. Pathological processes that take 
place in patients with LC are summarized in Fig. 7.2.
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7.4  Influence of Bacterial Translocation in LC

Bacterial translocation from gut to liver worsens not only in patients with chronic 
liver inflammation and fibrosis, especially those with alcoholic LC and nonalco-
holic steatohepatitis (NASH) [52], but also in those with complications that are 
directly linked to worse LC prognosis, such as hepatic encephalopathy (HE) and 
spontaneous bacterial peritonitis (SBP) [20].

Chronic intake of alcohol induces LGS, which leads to an increase in serum lev-
els of LPS that activates Kupffer cells, culminating in liver injury [47]. Furthermore, 
Kupffer cells secrete TNF-α, interleukin (IL)-6, and IL-8, leading to the infiltra-
tion of neutrophils into liver tissue [53, 54]. Conversely, obese patients and those 
with type 2 diabetes exhibit increased serum LPS levels, suggesting that endotoxins 
might have an important role in the progression of NASH and nonalcoholic fatty 
liver [55]. A high-fat diet was reported to be associated with an increase in serum 
endotoxin levels in mice and human [56, 57]. LPS stimulates TLR-4 in adipose and 
Kupffer cells and leads to an increase in secretion of the inflammatory cytokines, 
which induce inflammation, fat deposition, and fibrotic changes in liver.

These mechanisms may furthermore contribute to the development and progres-
sion of hepatocellular carcinoma [58, 59]. Several studies reported that intestinal 
gram-positive bacteria were increased in obese individuals by metagenomic analysis 
[7, 60] and that deoxycolic acid, one of their metabolized products that is also a 
secondary bile acid, was significantly increased in blood. Deoxycolic acid induces 
DNA damage by reactive oxygen species [61]; in mice, hepatocellular carcinoma 
rate was significantly decreased by reduction in blood deoxycolic acid levels [62].

HE is characterized by altered consciousness accompanied by psychological and 
neurological symptoms in patients with acute or chronic liver dysfunction. HE is 
triggered by the production of encephalopathy-inducing factors in response to nitro-
gen compounds originating in the gut [63]. Proteus, Klebsiella, Pseudomonas, and 
Bacteroides are important as urease-producing bacteria [64, 65]. As a consequence 
of SIBO or LGS in patients with LC, these factors gain easy access to the portal 
vein; their blood levels increase due to the disruption in the clearance capability of 
liver and formation of the portal-venous shunt that bypasses the liver [66]. Studies 
reported that gut microbiota in patients with LC and HE was also different from that 
in healthy individuals [67].

Peritonitis-like symptoms such as fever and abdominal pain with unknown etiol-
ogy were reported in patients with decompensated LC and clinically evident ascites. 
Previous studies reported high mortality rates of 16–23% in these cases and sug-
gested that peritonitis might also arise from bacterial translocation due to a break-
down in the defense mechanism of gut in these patients [68, 69].

Hepatorenal syndrome is characterized by progressive renal failure complicated 
by decompensated LC. SBP in patients with LC with ascites is associated with high 
risk for hepatorenal syndrome. Poorly absorbable antibiotics, such as rifaximin, were 
reported to reduce acute kidney injury and hepatorenal syndrome [70]. The relation-
ship between bacterial translocation and general complications is illustrated in Fig. 7.3.
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7.5  Treatment Interventions for Dysbiosis

Poorly absorbable antibiotics, probiotics, prebiotics, synbiotics, and fecal micro-
biota transplantation (FMT) were evaluated as treatment interventions for dysbiosis 
in patients with LC.

Poorly absorbable oral antibiotics aim to inhibit pathobionts that produce 
endogenous ammonia. Neomycin, kanamycin, vancomycin, metronidazole, and 
rifaximin are used; rifaximin has been increasingly preferred due to fewer side 
effects owing to the low absorbance ratio of <0.4% in gut [71]. Efficacy of rifaxi-
min was reported not only in HE [72] but also in SBP and hepatorenal syndrome 
[73, 74]. Rifaximin reduced Veillonella and Streptococcus without significantly 
affecting the gut microbiome diversity [75]. Although Clostridium difficile infec-
tion has been reported during rifaximin administration, the incidence rate of the 
infection was not increased in patients with LC who were not administered rifax-
imin [76].
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Probiotics are live bacteria that are utilized for correcting the composition 
of gut flora or for their beneficial effects. Most commonly used probiotics are 
Lactobacillus and Bifidobacterium. Specifically, VSL#3, composed of eight 
strains that has been the most studied probiotic, was found to reduce HE and to 
improve liver function in randomized control trials [77, 78]. Moreover, prebiotics 
such as oligosaccharides, poorly digestible starch, and dietary fiber, which are 
poorly digestible dietary constituents that encourage the propagation of beneficial 
bacteria and the suppression of harmful bacteria, were previously used for the 
treatment of HE. Lactulose, the representative synthetic disaccharide, was shown 
to improve HE by reducing blood ammonia levels [73, 79]. Furthermore, synbi-
otics that are a combination of prebiotics and probiotics were shown to inhibit 
the recurrence of overt HE by reducing blood ammonia levels and increasing 
Lactobacillus in gut flora [80].

FMT is aimed at rectifying abnormal gut microbiota by introduction of fecal 
material from healthy donors to the gut of the patient. Candidates for FMT donors 
are relatives, partners, friends, and healthy volunteers. Although the risk of unex-
pected infections is low by FMT from relatives or partners because of similar life-
style and environment, the efficacy of FMT is also low due to the closely related 
gut flora. Indeed, FMT from healthy volunteers has been reported to be more effi-
cient than that from relatives, and fecal material from healthy volunteers with strict 
examination for the exclusion of pathogenic bacteria and viruses is recommended 
[81]. FMT was found to improve dysbiosis and reduce recurrent HE in a random-
ized control trial [82].

Finally, although not utilized for direct treatment of gut bacteria, obeticholic 
acid, an FXR agonist, was found to improve liver fibrosis in patients with NASH 
[83]. Therapeutic alternatives for dysbiosis are summarized in Table 7.1.

Table 7.1 Summary of treatment intervention for dysbiosis

Treatment
Functional mechanism or 
active ingredient Therapeutic targets Major side effects

Poorly absorbable 
antibiotics

Inhibit urease-producing 
bacteria

HE, SBP, 
hepatorenal 
syndrome

Pseudomembranous 
enterocolitis

Probiotics Living beneficial bacteria HE, Child–Pugh 
score

Not significant

Prebiotics A poorly digestible 
dietary constituent

HE Diarrhea, distaste

Synbiotics A combination of 
prebiotics and probiotics

HE, Child–Pugh 
score

Not significant

Fecal microbiota 
transplantation

Microbiota transplantation 
from healthy control

HE Unexpected infections

Obeticholic acid FXR agonist Liver fibrosis Pruritus

HE hepatic encephalopathy, SBP spontaneous bacterial peritonitis, FXR farnesoid X receptor
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Chapter 8
Hepatic Encephalopathy in Liver Cirrhosis

Yasuhiro Takikawa, Takuro Sato, and Keisuke Kakisaka

Abstract Hepatic encephalopathy (HE) is the most severe and often fatal compli-
cation of liver cirrhosis. Intestine-derived neurotoxic substances, such as ammonia, 
are believed to be the cause of HE. As the results from hepatocellular dysfunction 
or portosystemic shunt associated with liver cirrhosis, those toxins, which should be 
detoxified in the liver, flow into the systemic circulation and perturb the brain func-
tion. The symptoms of HE include consciousness disorders that range from mild 
disorders, such as minimal hepatic encephalopathy, to severe disorders that result in 
deep coma. HE associated with liver cirrhosis develops when some additional trig-
gers overlie liver failure or portosystemic shunt, such as constipation, a high-protein 
diet, and gastrointestinal bleeding, which are the therapeutic targets of medical 
treatment. Synthetic disaccharides and rifaximin are used to suppress intestinal 
ammonia production, and BCAA and zinc are used to support ammonia detoxifica-
tion in the liver or muscle.

Keywords Ammonia · Portosystemic shunt · Minimal hepatic encephalopathy 
(MHE) · Quantitative neuropsychological tests · Branched-chain amino acids 
(BCAAs) · Synthetic disaccharides · Rifaximin

8.1  The Concept and Classification of Hepatic 
Encephalopathy (HE)

Hepatic encephalopathy (HE) is among the most severe complications of liver cir-
rhosis, which also include jaundice and ascites. The diagnosis of HE is sufficient for 
making diagnosis of liver failure.

HE is a neuropsychiatric symptoms caused by brain toxins, which escaped from 
the hepatic detoxification system and increased in systemic circulation due to 
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hepatic failure, portal-systemic shunt, or congenital insufficiency of the urea cycle. 
The symptoms include consciousness disorders that range from mild disorders to 
severe disorders that result in deep coma. HE is largely classified into three types: 
type A or HE associated with acute liver failure (ALF) with coma; type B or HE 
associated with portal-systemic shunts without intrinsic hepatocellular disease; and 
type C or HE associated with cirrhosis and portal hypertension/or portal-systemic 
shunts. HE is further classified based on the severity of clinical manifestations 
(described below), time course, and whether or not a precipitating factor as shown 
in Table 8.1 [1]. In the grade of HE, minimal HE (MHE) is defined as a state with 
subtle abnormalities that are only detected by the use of specific neuropsychometric 
and/or neurophysiological tools [2] in cirrhosis patients with otherwise normal neu-
rological examination results. MHE is clinically indicated by a lack of awareness 
and cognitive impairment, and has been reported to be observed as a complication 
in approximately 30% of cirrhosis patients [3]. MHE can be recognized as a stage 
prior to overt encephalopathy based on a report that overt HE corresponding to 
grade II or higher occurred in 23% of cases within 6 months of the initial diagnosis 
of MHE [4], although it has not yet been determined. The diagnostic significance of 
MHE is that it is associated with a decline in quality of life (QOL) [5], impairment 
of driving skills [6], and the poor prognosis in cirrhosis patients [7].

8.2  The Pathogenic Mechanism of HE in Liver Cirrhosis

As mentioned above, toxic substances derived from the intestinal tract are believed 
to be the greatest pathogenic factor. With hepatic failure- or portosystemic shunt- 
associated liver cirrhosis, it is believed that toxic substances that are derived from 
intestinal tract and which should be detoxified in the liver flow into the systemic 
circulation and pass the blood–brain barrier (BBB), and thereby perturb the brain 
function (Fig. 8.1).

Ammonia is a neurotoxic substance that is derived from the intestinal tract. In 
addition to direct neurotoxicity, ammonia is considered to cause a range of condi-
tions including cerebral edema, pseudo-neurotransmitter, and amino acid imbal-
ance, and abnormalities in GABA and benzodiazepine (BZ) receptor complex, 
which work in combination, leading to the onset of encephalopathy.

Table 8.1 Clinical classification of hepatic encephalopathy

Type Grade Tie course Spontaneous or precipitated

A (Acute) type
B (Bypass) type
C (Cirrhosis) type

MHE Covert Episodic
Recurrent
Persistent

Spontaneousa

Precipitated (specify)1
2 Overt
3
4

aWithout recognized precipitating factors
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Besides the simple diffusion of ammonia through the BBB, increased vascular 
permeability caused by inflammatory cytokines is considered to be implicated in the 
increase in ammonia inside brain tissue [8].

8.2.1  The Neurotoxicity of Ammonia

8.2.1.1  Decline in Glutamate, an Excitatory Neurotransmitter

Ammonia inside the brain is metabolized by the conversion of glutamate into gluta-
mine by glutamine synthase in astrocytes followed by a decline in glutamate 
(Fig. 8.2). Because the glutamate is an excitatory synaptic transmitter, the decline in 
glutamate associated with ammonia processing is considered to be the primary 
causes of encephalopathy.

On the other hand, the glutamine level increases inside the brain particularly in 
astrocytes as a result of ammonia detoxification in the brain, which has been 
clinically confirmed in patients with minimal HE by a magnetic resonance 
spectroscopy [9]. Because the glutamine has a strong osmotic pressure effect, the 
increase in the glutamine level leads to a brain edema and astrocyte swelling and 
then irreversible morphological degeneration of astrocytes called Alzheimer-type II 
degeneration [10].
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Fig. 8.1 Ammonia metabolism in the intestinal tract with the portal vein and liver. Ammonia is 
constantly generated in the intestinal tract through the hydrolysis of glutamine or urea by human 
and bacterial glutaminase and by bacterial urease, respectively. The generated ammonia is absorbed 
in the portal vein and transferred to the liver
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8.2.1.2  Disturbance of the Energy Metabolism of Brain

It has been proven by both experimental and clinical studies that hyperammonemia 
inhibits energy metabolism and glucose metabolism inside the brain [11, 12]. This 
pathological mechanism tends to be especially evident in the reticular activating 
system and cerebral cortex, and is believed to be involved in consciousness disor-
ders and higher cortical dysfunction in HE.

Regarding the ammonia-detoxification system in brain, a mechanism has been 
considered in which α-ketoglutarate, which is the matrix of the tricarboxylic acid 
(TCA) cycle, becomes amidated to process excessive ammonia, which is converted 
to glutamate and glutamine, thereby decreasing the substrates of the TCA cycle and 
decreasing the production of ATP (Fig. 8.3) [13, 14].

8.2.1.3  Amino Acid and Neurotransmitter Imbalance

During chronic hyperammonemia, branched-chain amino acids (BCAAs) are 
consumed by the muscles via the metabolism of ammonia; as a result, an 
imbalance of amino acids in the blood, in particular, decreased levels of BCAAs 
and increased levels of aromatic amino acids (AAAs), is observed [15]. Because 
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the migration of AAAs in the brain via the BBB competes the migration of 
BCAAs, it is hypothesized that excessive AAAs migrates inside the brain during 
chronic hyperammonemia. As a result, the presence of excessive AAAs inside the 
brain inhibits the generation of norepinephrine, dopamine, and other 
catecholamines (which are neurotransmitters), and instead promotes the 
production of β-hydroxide sympathomimetic amines (pseudo-neurotransmitters), 
such as octopamine, β-phenylethanolamine, and serotonin. This process is 
believed to be one of the causes of HE.

Several agonists of the GABA-benzodiazepine (BZ) receptor including GABA, 
BZ themselves, a similar substance, and neurosteroids are known to increase under 
hyperammonemia [16]. The GABA-BZ receptor is linked to Cl− channel and its 
agonists open the channel, which generates an inhibitory postsynaptic potential. 
Thus the increase in the receptor agonists is considered to be one of the causes of 
HE: however, the precise through which this occurs has not been clarified.

8.3  Diagnosis and Grade

In Japan, mental state diagnoses are made based on the Inuyama classification sys-
tem. In contrast, Western countries base their diagnoses on the West Haven criteria 
(Table 8.2). In the clinical setting, however, it is difficult to diagnose and differentiate 
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Fig. 8.3 The potential effect of ammonia on glucose metabolism. A schematic representation of 
the potential effects of ammonia on glucose metabolism. Ammonia stimulates amidation by gluta-
mine synthetase and possibly α-ketoglutarate (solid arrows) leading to the increased synthesis of 
glutamine. Ammonia has also been shown to inhibit the enzyme α-ketoglutarate dehydrogenase 
α-KGDH (dashed line) and to enhance the activity of glycolytic enzymes
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grade 0–I. Amodio et al. suggested a method using the West Haven criteria with a 
quantitative neuropsychological tests to diagnose grades I–IV [17, 18] (Table 8.3).

The following criteria are said to be required for an accurate diagnosis of MHE: 
(1) an evaluation of the QOL, including changes in the behavioral patterns of daily 
life, such as appetite, sleep, and physical activity; (2) an evaluation of the mental 

Table 8.2 The West Haven 
criteria for the semi- 
quantitative grading of the 
mental state of hepatic 
encephalopathy

Grade 0 No abnormality detected
Grade I Trivial lack of awareness

Euphoria or anxiety
Shortened attention span
Impaired performance of addition and subtraction

Grade II Lethargy or apathy
Minimal disorientation for time or place
Subtle personality change
Inappropriate behavior

Grade III Somnolence to semi-stupor, but responsive to 
verbal stimuli
Confusion
Gross disorientation

Grade IV Coma (unresponsive to verbal or noxious stimuli)

Table 8.3 Suggested modifications of the West Haven criteria for the grading of the mental state 
of patients with cirrhosis

Grade Proposed operative definition

I •  Not able to complete TMT-A a in 120 s (individuals with ≥5 years of education), or 
naming ≤7 animals in 120 s

• Orientated in time and space
II • Disorientated in time: (≥3 items incorrect)

  – Day of the week
  – Day of the month
  – The month
  – The year
• Orientated in place

III • Disorientated in place: (≥2 items incorrect), and
  – State/country
  – Region/county
  – City
  – Place
  – Floor/ward
• Disorientated in time, and reduction of Glasgow score (8–14)

IV • Coma, unable to test mental state
• Unresponsive to pain stimuli (Glasgow score <8)

Y. Takikawa et al.



99

state such as memory, concentration, cognition, and consciousness; (3) quantitative 
neuropsychological testing; and (4) the presence of speech disorders, such as lisp, 
along with an evaluation of cognitive activity disorders, such as increased reaction 
time, and disordered spatial recognition [17]. However, it is difficult to perform 
such a comprehensive diagnosis in everyday clinical practice: thus, the early 
objective diagnosis of slight abnormalities in neurological function is generally 
attempted with a combination of quantitative neuropsychological tests (Table 8.4). 
Moreover, attempts have been made to use 3.0  T magnetic resonance imaging 
(MRI) and MRS for the minimally invasive detection of metabolic disturbances in 
the brain based on an increase in glutamine and a decline in myo-inositol in the 
brain [9].

8.4  Treatment

The fundamental causes of HE including acute or chronic hepatocyte dysfunction 
and portosystemic shunts are not easily resolved by medical therapy alone. Chronic 
HE develops when some additional triggers overlie these fundamental causes, such 
as constipation, a high-protein diet, and gastrointestinal bleeding, which are the 
therapeutic targets of medical treatment.

Moreover, while there is room for discussion regarding the choice of active ther-
apeutic intervention with respect to MHE, when cases are believed to be in the stage 
prior to overt encephalopathy, it is important that any improvements are carefully 
considered if hyperammonemia is observed. The principal therapies for hyperam-
monemia in liver cirrhosis are listed in Table 8.5 according to their mechanism of 
action.

Table 8.4 Clinical 
examinations for the 
diagnosis of minimal hepatic 
encephalopathy

• Quantitative neuropsychological tests
  Wechsler adult intelligence scale (WAIS)
   Number connection test A (NCT-A), number connection test 

B (NCT-B)
  Digit symbol test (DST), block design test (BDT), etc.
• Electrophysiology tests
  Electroencephalogram (EEG)
  Evoked potentials (EP), P300 wave
  Flicker frequency test (CFF test)
• Non-invasive brain functional imaging and spectroscopy
  Magnetic resonance imaging (MRI, functional MRI)
  Magnetic resonance spectroscopy (MRS)
  Positron-emission tomography (PET)
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8.4.1  Synthetic Disaccharides (Lactulose and Lactitol)

Synthetic disaccharides are administered with the objective of inhibiting the pro-
duction and absorption of ammonia in the intestinal tract [19]. Synthetic disaccha-
rides are led to the large intestine without being absorbed by the small intestine. Due 
to β-galactosidase, which is produced by enteric bacteria, lactulose is hydrolyzed to 
galactose and fructose, while lactitol is hydrolyzed to galactose and sorbitol, ulti-
mately becoming organic acids (e.g., lactic acid, acetic acid). The following factors 
are believed to play a role in the decline of ammonia: (1) the inhibited growth of 
urease-producing bacteria accompanying the decrease in pH in the large intestine 
that occurs due to the production of organic acids; (2) the ionization of ammonia 
(NH3) to NH4

+ due to the decreased pH in the large intestine, which results in 
decreased absorption from the intestinal tract membrane; and (3) the promotion of 
intestinal movement due to the production of organic acids and the increase in water 
content, and the shortening of the transit time of the intestinal tract content due to 
osmotic diarrhea.

8.4.2  Minimally Absorbed Antibiotics

Minimally absorbed antibiotics are administered with the objective of inhibiting the 
growth of gram-negative bacillus, which is an ammonia-producing bacterium that is 
found inside the intestinal tract, along with inhibiting the breakdown of urea and 
glutamine in the intestine.

Rifaximin, a rifamycin antimicrobial agent, is used worldwide for the treatment 
of HE. It has been shown to achieve a greater [20] or equal [21] improvement of 
HE and hyperammonemia in comparison to lactitol. Besides the effects on the 
decrease of the circulating ammonia level and the HE grade, rifaximin showed 

Table 8.5 Principal treatments for hyperammonemia and hepatic encephalopathy in patients with 
liver cirrhosis

Suppression of synthesis and absorption of ammonia in intestine
  1. Suppression of the protein intake and BCAA supplementation
  2.  Osmotic diarrhea and a reduced pH in the intestine: Synthetic disaccharides (lactulose and 

lactitol)
  3.  Suppression of urease-positive intestinal bacteria: Minimally absorbed antibiotics 

(rifaximin), probiotics
Assist in ammonia detoxification
  1.  Suppression of the increase in pseudo-neurotransmitters inside brain: BCAA 

supplementation
  2. Assist in ammonia detoxification in muscle: Zinc preparations, BCAA preparations
  3. Activation of ammonia detoxification in liver: Carnitine preparations, zinc preparations

BCAA branched-chain amino acid
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beneficial effects in patients with liver cirrhosis, improved overall survival in liver 
cirrhosis patients with a Child–Pugh score of ≥7 [22], and prevented the recurrence 
of HE [23].

Moreover, when rifaximin is administered, <0.4% is absorbed from the gastroin-
testinal tract into the blood, and it is associated with few side effects [24]. Based on 
these findings, rifaximin was officially approved in Japan in 2016 with an indication 
for the improvement of hyperammonemia in patients with hepatic encephalopathy.

8.4.3  BCAA

Ammonia is metabolized in the process of generating glutamine from α-ketoglutarate 
and glutamate in the brain and skeletal muscles. This results in BCAA becoming 
conjugatively oxidized. Thus, in patients with cirrhosis and hyperammonemia, a 
vicious cycle occurs in which the serum BCAA concentration declines due to the 
promotion of BCAA consumption, thereby encouraging hyperammonemia. 
Furthermore, a decline in serum BCAA promotes the transition of AAA inside the 
brain, where it causes an imbalance of amino acids, leading to an increase in the 
levels of pseudo-neurotransmitters. For these reasons, HE is treated with the oral 
and intravenous administration of a BCAA preparation.

The clinical effect of oral BCAA supplementation on HE prevention has been 
confirmed by a meta-analysis [25]. Besides the treatment of HE, BCAA supplemen-
tation also provides nutritional support for patients who also require protein restric-
tion. Indeed, it is reported that oral BCAA supplementation improved the event-free 
survival of liver cirrhosis patients [26].

8.4.4  Zinc

Ornithine transcarbamylase (OTC) is a zinc enzyme in the urea cycle in the liver. 
Zinc is also involved in maintaining ammonia metabolism, through its promotion of 
the activation of glutamine synthase in the skeletal muscles. Most of the ammonia 
that migrate inside the liver is processed via the urea cycle, with residual ammonia 
in the blood processed by glutamine synthase. It is known that zinc is depleted dur-
ing cirrhosis and that ammonia metabolism declines due to the reduced activity of 
the two enzymes. There are reports [27] that suggest that encephalopathy is 
improved by the oral administration of zinc acetate or zinc sulfate preparations, 
along with reports [28] that indicate that the concomitant administration of synthetic 
disaccharides (as mentioned above) is effective in combination with BCAA 
granules.
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8.4.5  Probiotics

The usefulness of probiotic preparations on MHE has been reported [29], with 
improvements in the neuropsychiatric function and ammonia concentration in the 
blood observed in patients who underwent treatment with a probiotic preparation 
alone and patients who used probiotics in combination with lactulose. Probiotics 
affect the intestinal flora inside the intestinal tract, causing a decline in the patho-
genesis of urease-producing bacteria, and thereby decreasing the production of 
toxic substances that are derived from the intestinal tract, in particular, ammonia.

8.4.6  Carnitine

Carnitine (CA) is a vitamin-like substance that plays an essential role in supplying fatty 
acids (long chain) inside the mitochondria for beta-oxidation. Cirrhosis is considered 
to be a state of CA deficiency because the absolute intake is insufficient due to a 
protein-restricted diet, reduced biosynthesis due to hepatocellular dysfunction, and 
reduced internal storage due to a reduced skeletal muscle mass. The metabolic 
disturbance of CA is related to disorders in the urea cycle and TCA cycle in the 
mitochondria; such a decline may therefore ultimately lead to hyperammonemia. 
Malaguamera et al. [30] performed a randomized, controlled, double-blind trial on HE 
patients and observed a significant improvement in the blood ammonia concentration 
along with improvement in the cognitive function of 88% of patients who received CA.
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Chapter 9
Hepatic Ascites in Liver Cirrhosis

Hideto Kawaratani and Hitoshi Yoshiji

Abstract Common complications of decompensated liver cirrhosis include esoph-
ageal varices, hepatic encephalopathy, and ascites. They are associated with a poor 
prognosis and quality of life. The 5-year mortality rate of patients with ascites is 
44%. A decrease in ascites improves the quality of life and survival. A newer diuretic 
tolvaptan (a vasopressin V2 receptor antagonist) has been found to be effective in 
treating hepatic ascites, but there is as yet little evidence of its effect on prognosis. 
Other treatments for ascites include large-volume paracentesis, cell-free and con-
centrated ascites reinfusion therapy, and transjugular intrahepatic portosystemic or 
peritoneovenous shunts. Although these measure may improve quality of life, liver 
transplantation remains the only curative form of treatment. This paper discusses 
the therapeutic management of cirrhotic ascites according to Japanese guidelines.

Keywords Ascites · Portal hypertension · Vasopressin receptor antagonists  
Paracentesis · Peritoneovenous shunt · Transjugular intrahepatic portosystemic 
shunt

9.1  Introduction

Ascites is the pathologic accumulation of fluid in the peritoneal cavity. It is the most 
common complication of liver cirrhosis. Over 50% of patients develop ascites 
within 10 years of a diagnosis of liver cirrhosis [1], with 15% having ascites within 
1 year and 44% by 5 years [2]. Additional conditions often associated with ascites, 
such as hyponatremia, spontaneous bacterial peritonitis (SBP), and hepatorenal 
syndrome (HRS), further worsen the prognosis. Therefore, successful treatment of 
ascites is needed. In this paper, we provide an overview of the management of 
hepatic ascites and its various complications according to Japanese guidelines.
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9.2  Diagnosis of Ascites

Ascites is diagnosed in the presence of more than 25 mL of fluid in the peritoneal 
cavity. Symptoms may include increased abdominal circumference, weight gain, 
ankle edema, abdominal discomfort, and shortness of breath. The most common 
cause of ascites is liver cirrhosis, although it can be caused by cancer, heart failure, 
tuberculosis, pancreatitis, or hepatic vein obstruction. Diagnostic abdominal para-
centesis is performed to determine the underlying cause. Paracentesis is considered 
even in patients with a low platelet count and prolonged prothrombin time. The 
overall complication rate of the procedure does not exceed 1% [3], with severe 
complications (e.g., bowel perforation or hemorrhage) occurring in <0.1% [4]. 
Therefore, prophylactic administration of platelets or fresh frozen plasma before 
paracentesis is not recommended [5].

9.3  Evaluation of Ascitic Fluid

Evaluation of the fluid helps to determine the underlying cause of the ascites. The 
fluid may appear clear, pale-yellow, cloudy, bloody, or chylous. Clear or pale- yellow 
ascites usually indicates a transudate; cloudy fluid suggests infection; bloody fluid 
may be associated with malignancy; and chylous fluid suggests trauma, postopera-
tive effects, or malignancy. The initial laboratory investigation of ascites should 
include a cell count and both serum and ascitic fluid levels of total protein, albumin, 
and lactate dehydrogenase (LDH). Ratios of ascites-to-serum total protein >0.5 and 
LDH >0.6 are suggestive of an exudate. The serum-ascites albumin gradient 
(SAAG), calculated by subtracting the ascites albumin level from the serum albu-
min level, is more useful than other values for correctly diagnosing the cause of 
ascites. A SAAG ≥1.1  g/dL indicates portal hypertension with an accuracy of 
approximately 97% [6]. Patients who have portal hypertension but also a second 
cause of ascites still generally have a SAAG ≥1.1 g/dL. This measure retains its 
diagnostic accuracy even in the face of fluid infusions and use of diuretics [7]. On 
the other hand, a SAAG <1.1 g/dL suggests the ascites arises from a cause other 
than portal hypertension [8].

9.4  Treatment of Ascites

Ascites is categorized in three grades. Grade 1 is mild, with fluid visible only on 
ultrasound or computed tomography; grade 2 indicates fluid apparent on physical 
examination with flank bulging and shifting dullness; and grade 3 includes a vis-
ibly distended abdomen with a positive fluid wave. According to American 
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guidelines, no treatment is recommended for grade 1 ascites. Grade 2 is managed 
with sodium restriction and diuretics. For grade 3 ascites, large-volume paracen-
tesis (LVP) is performed, followed by sodium restriction and diuretics (except for 
refractory ascites) [9]. The Japanese guidelines, however, advise administering 
diuretics even for grade 1 ascites. Refractory ascites is defined as “ascites that 
cannot be mobilized or the early recurrence of which (i.e. after paracentesis) can-
not be satisfactorily prevented by sodium restriction and diuretic treatment [10].” 
Figure 9.1 shows the treatment algorithm for ascites modified from the Japanese 
guidelines [11].

9.4.1  Sodium Restriction

Previously, strict sodium restriction (less than 5  g/day of NaCl) was recom-
mended. However, recently, the Japanese guidelines have recommended milder 
restriction (5–7  g/day of NaCl). The stricter limit may worsen malnutrition in 
patients with cirrhosis. Water restriction was also recommended in the past, but 
there is now controversy about this measure in the treatment of ascites. Fluid 
intake can rarely be restricted to <1 L/day, an amount insufficient to reduce the 
ascites [12]. The effect of water restriction may also depend on the level of hypo-
natremia [13].

Small~moderate amount of ascites
Spironolactone 25~100 mg
+furosemide 20~80 mg p.o.

resistant

Admission

Sodium restriction 5~7 g/day
Spironolactone/furosemide

+tolvaptan 3.75~7.5 mg

Potassium canrenoate 200~600 mg

+furosemide 20~100 mg i.v. 
(beginning with 20 mg,

be increased, if necessary)

Albumin infusion

Diuretic-resistant or
diuretic-intractable ascites

Therapeutic paracenteses
(+Albumin infusion)

or

CART

resistant

impossible

PV shunt TIPS

Liver transplantation

Massive ascites 

<70 years of age 

impossible

CPS 11

Fig. 9.1 Treatment algorithm of patients with ascites. CART cell-free and concentrated ascites 
reinfusion therapy, CPS Child–Pugh score, PV shunt peritoneovenous shunt, TIPS transjugular 
intrahepatic portosystemic shunt. Modified from reference [11]
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9.4.2  Diuretics, Including Vaptans

In patients with cirrhosis, the renin–angiotensin–aldosterone system (RAAS) is 
activated, resulting in hyperaldosteronism. Therefore, the first-line diuretics to treat 
ascites are aldosterone antagonist, such as spironolactone. The American guidelines 
recommend an initial spironolactone dose of 50–100 mg, gradually increasing to 
400 mg until the ascites is resolved. However, Japanese patients are usually intoler-
ant to high doses of diuretics because they result in dehydration or hyponatremia. In 
such cases, the patient may have diuretic-intractable ascites. Therefore, Japanese 
clinical guidelines recommend an initial dose of spironolactone of 25–50  mg, 
increasing to a maximum of 100 mg. If the response to spironolactone is insufficient 
by 2 weeks after initiation, a loop diuretic such as furosemide (20–40 mg/day) is 
added, with the dose increased as needed to 80 mg. Monotherapy with furosemide 
is less effective than spironolactone and is not recommended [14].

Tolvaptan is a newly introduced vasopressin V2-receptor antagonist, a class of drugs 
called vaptans. The use of tolvaptan has drastically changed the approach to ascites 
treatment. Japanese guidelines recommend that, in cases of ascites persisting despite 
conventional diuretics (25–100 mg/day of spironolactone and 20–80 mg/day of furose-
mide), 3.75–7.5 mg/day of tolvaptan should be administered. More recently, tolvaptan 
has been used even earlier, without waiting until maximal doses of spironolactone and 
furosemide are reached (START study) [15]. Tolvaptan was not found to be superior to 
placebo in terms of long-term survival in patients with heart failure (EVEREST study) 
[16]. Some studies have demonstrated the safety and efficacy of intermediate- and long-
term tolvaptan treatment for decompensated cirrhosis [17, 18]. However, there is little 
evidence concerning long-term safety and management of hyponatremia in patients 
with refractory ascites or diuretic intolerance. Tolvaptan is known to have a protective 
effect on renal function compared with conventional diuretics. Early introduction of 
tolvaptan to treat ascites may be effective before renal function deteriorates.

9.4.3  Albumin Supplementation

Serum albumin is a nonglycosylated negatively charged plasma protein that helps to 
maintain colloid osmotic pressure. It also has ligand-binding, antioxidant, free- 
radical scavenging, and anti-inflammatory properties. It maintains vascular integrity 
and modulates neutrophil function. Albumin increases the response to diuretics and 
prevents paracentesis-induced circulatory disturbance [19]. Japanese guidelines 
suggest that patients with ascites resistant to tolvaptan be treated with intravenous 
potassium canrenoate (200–600 mg) and furosemide (20–100 mg) along with albu-
min. However, the high cost of albumin is a concern. Compared with saline or other 
plasma expanders, albumin has been shown to reduce mortality and morbidity in 
patients with massive ascites undergoing LVP [20]. Moreover, albumin reduces the 
incidence of type 1 HRS in patients with SBP who are receiving antibiotics [9].
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9.4.4  Other Drugs

Non-selective β-blockers (NSBBs) are known to reduce portal vein pressure in 
patients with liver cirrhosis. Lebrec et al. reported that NSBBs effectively prevented 
recurrent bleeding from esophageal varices in patients with cirrhosis [21]. However, 
in 2010, Serste et al. reported that NSBBs may be associated with poor survival in 
patients with refractory ascites [22]. Thus, the use of NSBBs is controversial, requir-
ing further studies to clarify the issue. Angiotensin receptor blockers also reduce 
portal vein pressure in patients with cirrhosis, but they have not been directly com-
pared with NSBBs.

Midodrine, a potent peripherally acting α1-adrenergic receptor agonist, increases 
effective arterial blood volume by causing splanchnic vasoconstriction. Oral mido-
drine has been shown to increase urine volume, urine sodium, arterial pressure, and 
survival in patients with refractory ascites [23]. Midodrine can be added to diuretics 
to increase blood pressure and restore sensitivity to diuretics [24].

Clonidine, an α2-adrenergic receptor agonist, has sympathoinhibitory effects 
and suppresses RAAS in patients with liver cirrhosis [25]. Clonidine augments the 
effect of spironolactone, facilitating an earlier diuretic response with lower diuretic 
dose requirements and fewer complications [26].

Terlipressin is a synthetic vasopressin analog that improves renal sodium excre-
tion by enhancing renal perfusion. This agent increases V1A receptor affinity and 
decreases V2 receptor affinity. The V1A receptor causes vasoconstriction in the 
splanchnic vessels, redistributing systemic blood flow, maintaining blood pres-
sure, and lowering portal pressure. Terlipressin increases sodium excretion and 
decreases plasma renin activity in patients with cirrhosis. The combination of ter-
lipressin and albumin led to better control of refractory ascites than diuretics plus 
albumin [27]. However, it has not yet been approved in Japan or the USA. Recently, 
vasopressin 1a receptor partial agonist (FE204038) has been developed. It increases 
sodium excretion, and reduces portal hypertension and ascites in a cirrhotic rodent 
model [28]. It would be a useful drug for managing decompensated patients with 
cirrhosis.

9.4.5  Paracentesis

Therapeutic paracentesis is a fast, safe, and effective therapy for hepatic ascites. It 
reduces intra-abdominal, intrathoracic, pulmonary, and portal pressures without 
causing renal or hepatic dysfunction. Side effects seen with diuretics, such as hypo-
natremia, acute kidney injury, and hepatic encephalopathy, are significantly less 
frequent with paracentesis. LVP is performed in patients with massive ascites to 
minimize the number of paracenteses needed. LVP significantly alters the systemic 
circulation, with an acute increase in cardiac output and a reduction in systemic 
vascular resistance and arterial blood pressure [29, 30]. During LVP, an albumin 
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infusion of 6–8 g per liter of fluid removed is recommended. A meta-analysis dem-
onstrated reduced mortality when albumin was used [20]. However, some investiga-
tors have suggested that 4 g of albumin per liter of fluid removed may be adequate 
to maintain circulating plasma volume [31]. Albumin is superior to other plasma 
expanders during paracentesis. However, paracentesis does not improve the progno-
sis in cirrhosis [32].

9.4.6  Cell-Free and Concentrated Ascites Reinfusion Therapy

Cell-free and concentrated ascites reinfusion therapy (CART) has been developed in 
Japan for patients with massive ascites due to liver cirrhosis [33]. It has been proven 
to be as safe and effective as LVP with albumin infusion [34]. The aim of this ther-
apy is to maintain serum albumin levels by filtering and concentrating ascitic fluid 
that has been removed and then reinfusing the protein-rich fluid intravenously [33]. 
CART has been approved as a bi-weekly therapy by the Japanese medical insurance 
system. The advantages of CART are a reduction in the need for albumin transfu-
sions and a lower risk of infection or allergic reaction. However, CART is difficult 
to perform in patients with SBP because the filtering and concentrating process may 
increase the level of endotoxins in the fluid to be reinfused, potentially resulting in 
fever or shock. A filtration membrane cleaning function was recently added to con-
ventional CART, resulting in better filtering of many cell components. CART is thus 
also effective in patients with malignant ascites [35]. The risk of worsening renal 
failure with CART is unlikely. Moreover, a trend toward the stabilization of the 
sodium concentration during CART has been observed [36]. Studies comparing 
CART with LVP plus albumin infusion should be conducted.

9.4.7  Peritoneal-Urinary Drainage

The Alfapump® is a battery-operated automated low-flow ascites pump. It is 
implanted subcutaneously for the treatment of refractory ascites. The Alfapump 
automatically pumps ascitic fluid from the peritoneal cavity into the urinary bladder 
[37], thus enabling continuous low-volume paracentesis [37]. It is used for patients 
who have contraindications to transjugular intrahepatic portosystemic shunt (TIPS) 
placement or liver transplantation. The amount of ascitic fluid to be removed daily 
is controlled by a wireless programming system [38]. It is activated every 10–15 min 
and moves 3–30 mL of ascitic fluid into the bladder in each cycle. The pump is 
inactivated at night while the patient is asleep [38]. A recent randomized controlled 
trial demonstrated that, compared with standard LVP treatment, the Alfapump was 
effective in reducing the need for paracentesis in >50% of patients over 6 months 
and improving health-related quality of life, especially in the first 3 months [39]. 
Compared with LVP, the system was associated with improvement in patients’ 
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nutritional status as assessed by body mass index, hand grip strength, triceps skin-
fold thickness, and midarm muscle circumference. The authors speculated that this 
nutritional benefit may involve attenuation of an increased resting energy expendi-
ture [40, 41]. On the other hand, it may be associated with enhanced endogenous 
vasoconstrictor systems and impaired renal function. Continuous ascitic fluid drain-
age by the Alfapump may impair effective arterial blood volume, an effect mimick-
ing LVP-induced circulatory dysfunction. There are a number of adverse events 
related to the procedure and the device, such as wound dehiscence, wound infection, 
abdominal wall hematoma, kinking of the bladder catheter, and pump pocket infec-
tion, any of which may require surgery [38, 42]. Due to frequent and serious comor-
bidities, careful patient selection and postoperative monitoring are required [42].

9.4.8  Peritoneovenous Shunt

The peritoneovenous shunt (PVS) was designed to palliate ascites by reinfusing 
ascitic fluid into the systemic circulation. It was intended for patients with refrac-
tory ascites who were not candidates for transplantation or TIPS. The Denver shunt 
was developed in the 1970s as a physiologic treatment of ascites [43, 44]. PVS 
reportedly improved the glomerular filtration rate [45] and the quality of life. This 
procedure is covered by Japanese medical insurance. Japanese guidelines suggest 
that contraindications for TIPS include a total bilirubin ≥10 mg/dL, respiratory fail-
ure, disseminated intravascular coagulation, SBP, gastrointestinal bleeding, perito-
neal adhesions, or untreated risky varices. PVS reportedly achieved earlier control 
of ascites than TIPS, but long-term efficacy favored TIPS [46]. PVS prolonged the 
time to recurrence of ascites compared with diuretic treatment [44] and LVP with 
albumin infusion. However, PVS is seldom used because of poor long-term patency, 
excessive complications, and the lack of survival advantage over medical therapy 
[44, 47]. PVS is still reasonable to consider in patients requiring serial paracenteses 
or in whom paracentesis is difficult because of multiple abdominal scars, as well as 
not having a physician available who is willing and capable of performing paracen-
teses. Interventional radiologists have reported that PVS can be performed without 
the participation of a surgeon [48].

9.4.9  Transjugular Intrahepatic Portosystemic Shunt

TIPS can be used to treat complications of portal hypertension, including ruptured 
esophageal varices, refractory ascites, hepatic hydrothorax, portal thrombus, and 
HRS. TIPS is recommended in the Japanese guidelines for patients under 70 years 
of age with a Child–Pugh score of <12 and ascites refractory to LVP or CART. TIPS 
reduces the portosystemic pressure gradient by shunting the blood from the portal 
vein to the hepatic vein in over 90% of cases. It is usually inserted by an 
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interventional radiologist using local anesthesia [49, 50]. In studies comparing TIPS 
with LVP, TIPS was associated with better control of ascites but a higher incidence 
of hepatic encephalopathy and reduced quality of life [51, 52]. Another study 
reported that TIPS prevented HRS but at a higher financial cost [53]. TIPS was 
shown to yield good survival with similar hospitalization rates but also with more 
severe encephalopathy [54]. TIPS with covered stents has been reported to have a 
better prognosis than LVP [41]. A meta-analysis found significantly better trans-
plant-free survival with TIPS and similar cumulative occurrence of developing 
hepatic encephalopathy [55].

However, the beneficial effect of TIPS on survival is diminished beyond 1 year 
[56], possibly because it induces long-lasting cardiac overload [57, 58]. Thus, TIPS 
should be considered as bridging therapy in patients with refractory ascites who are 
awaiting liver transplantation [57].

9.4.10  Liver Transplantation

While liver transplantation is the only curative option for refractory ascites [59], 
many patients are not eligible for the procedure. For this reason, there is continued 
interest in developing alternative approaches for managing refractory ascites in indi-
viduals who cannot undergo successful transplantation.

9.5  Complications

9.5.1  Spontaneous Bacterial Peritonitis (SBP)

SBP was first defined by Kerr et al. by describing the infection of ascitic fluid in the 
absence of previous antibiotic therapy and an intra-abdominal source of infection 
[60]. The pathogenesis of SBP is a disruption of the intestinal membrane, resulting 
in bacterial translocation. For the diagnosis of SBP, culture of ascites and polymor-
phonuclear leukocyte (PMN) count of ascites are necessary. Positive cultures, 
ascitic fluid white blood cell count ≥500 cells/mm3, or PMN count ≥250 cells/mm3 
are diagnostic of SBP. To detect ascitic bacteria, ascitic fluid should be cultured in 
aerobic and anaerobic blood culture bottles. Ascitic granulocyte elastase (GE) has 
been reported of the usefulness in SBP patients [61, 62]. In situ hybridization (ISH) 
of bacterial DNA in leukocytes of the ascites in SBP patients has high sensitivity 
and specificity [63]. The mortality rate is higher in patients with culture- positive 
SBP than in patients with culture-negative SBP [64]. For the treatment of SBP, a 
third-generation cephalosporin, cefotaxime, is administered until the results of the 
specific pathogenic bacteria are determined. As the mortality rate increases, empiri-
cal therapy should be started as soon as diagnosed. The most common bacteria of 
SBP are gram-negative bacteria, including Escherichia coli and Klebsiella 
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pneumoniae. A third-generation cephalosporin covers over 90% of these bacteria. 
And oral ofloxacin is considered a substitute for cefotaxime in patients without 
recent administration of quinolones [65]. Nosocomial infection, long-term norflox-
acin prophylaxis, or recent use of β-lactam antibiotics will lead to resistance in 
bacteria [66]. Infections with resistant bacteria are associated with a higher mortal-
ity rate. When the patients of SBP have serum Cr ≥ 1.0 mg/dL, BUN ≥30 mg/dL, 
or T. Bil ≥ 4.0 mg/dL, 1.5 g per kg body weight of albumin should be administered. 
Albumin administration reduces the risk of renal dysfunction by improving the 
effective circulating blood volume and improves the mortality. Primary prophylac-
tic antibiotics (norfloxacin 400 mg/day) decreased the risk of SBP [67], as well as 
mortality [68]. And rifaximin also reduces the occurrence of SBP [69]. SBP’s usual 
recurrence has been reported to be 69% in 1 year [70]. Once SBP has occurred, 
patients should be prescribed long-term prophylactic antibiotics, and be considered 
for liver transplantation [71].

9.5.2  Hepatorenal Syndrome (HRS)

HRS is a type of renal dysfunction that is reversible and occurs as a result of 
advanced liver disease. The pathophysiology of HRS is a reduction of circulating 
blood volume due to the increased resistance to blood flow in the cirrhotic liver. The 
diagnostic criteria of HRS are shown in Table  9.1. HRS is categorized into two 
types. Type 1 HRS is associated with a doubling of the initial serum creatinine to a 
level of more than 2.5 mg/dL, or reflecting a 50% reduction in creatinine clearance 
in less than 2 weeks [72]. Type 2 HRS is defined as renal impairment that is less 
severe than that observed with type 1 HRS. Type 1 HRS usually occurs following a 
precipitating factor, such as hyponatremia, gastrointestinal bleeding, bacterial infec-
tions, LVP without albumin infusion, or SBP [73]. The most characteristic cause of 
type 2 HRS is renal vasoconstriction. LVP with plasma expander decreases the inci-
dence of HRS. Albumin infusion decreases the incidence of type 1 HRS better than 
plasma expanders [74]. Synthetic vasopressin analogs have improved the prognosis 
during treatment for HRS. Terlipressin is a vasoconstrictive agent that is effective in 
mesenteric circulation compared to renal and other vascular systems. Combination 

Table 9.1 Definition of hepatorenal syndrome (HRS)

      1. Cirrhosis with ascites
      2. Serum creatinine levels >1.5 mg/dL
      3.  Absence of hypovolemia as defined by no sustained improvement of renal function 

following at least 2 days of diuretic withdrawal and treated with albumin at 1 g/kg/day (up 
to a maximum of 100 g/day)

      4. Absence of shock
      5. No current or recent treatment with nephrotoxic drugs
      6.  Absence of parenchymal renal disease such as proteinuria >0.5 g/dL, microhematuria 

(>50 red cells/high powered field), and abnormal renal ultrasonography
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therapy with terlipressin and albumin infusion is the most effective for type 1 HRS 
[75]. TIPS also improves renal function in patients with type 1 HRS [76] and in type 
2 HRS [77], and improves the survival rate. The goal of HRS treatment is to achieve 
a serum creatinine level below 1.5  mg/dL.  And the principle of HRS treatment 
should be an early diagnosis and quick treatment. Despite all the possible treatments 
available, mortality rates remain high, especially in type 1 HRS. To reverse HRS, 
treatment may be extensive and it demonstrated a recurrence in 50% of patients. In 
cases of recurrence, the same treatment regimen is usually found to be successful. 
The only definitive treatment of HRS is a liver transplantation. However, HRS is an 
important risk factor after liver transplantation [78, 79]. The 3-year survival rate 
after liver transplantation in patients with HRS is 60%; in patients without HRS is 
70–80% [80].

9.6  Conclusion

Although invasive treatments (LVP, CART, TIPS, PVS, and liver transplantation) 
are somewhat useful for decreasing the mortality rate of refractory ascites, the con-
dition is still associated with substantial morbidity and mortality in patients with 
liver cirrhosis. The selection of the most appropriate therapy for each patient is 
necessary. While some treatments may improve the prognosis of ascites, once com-
plications occur, the prognosis worsens. The earlier the treatment begins, the better 
the outcome to be expected.
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Chapter 10
Sarcopenia in Liver Disease

Hiroki Nishikawa and Shuhei Nishiguchi

Abstract Because skeletal muscle is the largest store of proteins in the body, protein 
homeostasis is essential for the maintenance of skeletal muscle mass. Aging disrupts the 
balance between protein synthesis and breakdown in skeletal muscle, resulting in mus-
cle strength decline, walking disorders, falls, and other problems. The decreased muscle 
mass and muscle strength that accompanies aging is defined as primary sarcopenia, 
while the decreased muscle mass and muscle strength that accompanies an underlying 
disease is defined as secondary sarcopenia. Several potential biomarkers associated with 
skeletal muscle mass loss have been reported. The most conceivable mechanism which 
can cause sarcopenia in patients with liver disease is protein energy malnutrition. 
Skeletal muscle mass is not only a good indicator of nutrition in patients with liver dis-
ease, but also has recently been shown to be closely related to survival in patients with 
liver disease. In 2016, the Japan Society of Hepatology established its own assessment 
criteria for sarcopenia in liver disease as the number of liver disease patients with sarco-
penia is expected to increase and there is compelling evidence to indicate patients with 
sarcopenia have unfavorable clinical outcomes, and in subsequent several studies, its 
usefulness was validated. On the other hand, exercise and branched-chain amino acid 
supplementation may be recommended in sarcopenic patients with liver disease. Here, 
in this article, we will summarize the current knowledge of sarcopenia in liver disease.
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CT Computed tomography
HCC Hepatocellular carcinoma
JSH Japan Society of Hepatology
L3 The third lumbar level
LC Liver cirrhosis
MELD Model for end-stage liver disease
MMD Muscle mass decrease
NAFLD Nonalcoholic fatty liver disease
OS Overall survival
PEM Protein energy malnutrition
PMI Psoas muscle index
PS Performance status
RCT Randomized controlled trial

10.1  Introduction

Sarcopenia is a syndrome characterized by progressive and generalized loss of skel-
etal muscle mass and muscle strength, shown to be prevalent in patients with malig-
nancies and common chronic diseases [1, 2]. Protein homeostasis is essential for the 
maintenance of skeletal muscle mass because skeletal muscle is the largest store of 
proteins in the body [3, 4]. The decreased muscle mass and muscle strength that 
accompanies aging is defined as primary sarcopenia, while the decreased muscle 
mass and muscle strength that accompanies an underlying disease is defined as 
secondary sarcopenia [1, 2]. Sarcopenia in liver disease reflects protein energy mal-
nutrition (PEM) [5–7]. Although several potential biomarkers associated with skel-
etal muscle mass loss in liver disease have been reported to date, one of the major 
reasons for the limited understanding of sarcopenia in liver disease has been the 
difficulty in identifying the mediators of the liver-muscle axis [6–11]. Skeletal mus-
cle mass has also recently been shown to be closely related to survival in patients 
with liver disease [12–20]. However, it seems that the consequences can vary 
according to the definition of sarcopenia. In 2016, the Japan Society of Hepatology 
(JSH) established its own assessment criteria for sarcopenia in liver disease as the 
number of liver disease patients with sarcopenia is expected to increase and there is 
compelling evidence to show patients with sarcopenia have poor clinical outcomes, 
and in subsequent several studies, its usefulness has been validated [8, 21–23]. 
Although sarcopenia is one of the most frequent complications associated with sur-
vival for LC patients, the newly proposed prognostic models lack an evaluation of 
nutritional status for LC patients. This is reflected by the lack of an optimal index 
for sarcopenia in terms of objectivity, reproducibility, and practicality. Quantifying 
skeletal muscle mass using cross-sectional abdominal imaging such as computed 
tomography (CT) is a useful tool for the assessment of sarcopenia. The JSH guide-
lines were created after full consideration of these points. On the other hand, exer-
cise and branched-chain amino acid supplementation showed promising results in 
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sarcopenic patients with liver disease [24–31]. It may be clear that untreated sarco-
penia can be associated with suboptimal clinical outcomes. Considering these back-
grounds, in this article, we will summarize the current knowledge of sarcopenia in 
liver disease.

10.2  Mechanisms of Sarcopenia in Liver Disease

With the increasing age in humans, physical function starts to decline. Because 
skeletal muscle is the largest store of proteins in the body, protein homeostasis is 
essential for the maintenance of skeletal muscle mass [3, 4]. Aging disrupts the bal-
ance between protein synthesis and breakdown in skeletal muscle, resulting in mus-
cle strength decline, walking disorders, falls, and other problems. All of these can 
negatively influence the daily activities of elderly persons [3, 4]. Muscle satellite 
cells exist between the sarcolemma and the basal lamina of muscle fibers. They are 
responsible for skeletal muscle regeneration and the function of muscle satellite 
cells worsens with the increasing age [6, 32, 33]. The positive regulatory effect of 
the Akt signaling pathway on muscle hypertrophy also declines with age, which is 
thought to be associated with muscle atrophy [6, 32, 33]. In persons aged 50 years 
or more, skeletal muscle mass is reported to decrease by about 1% per year [21]. On 
the other hand, Hanai et al. reported that in 149 liver cirrhosis (LC) patients, skeletal 
muscle mass declined by 2.2% per year [34]. These results suggest that sarcopenia 
in liver disease can also develop due to other reasons than aging. The most conceiv-
able mechanism which can cause sarcopenia in patients with liver disease is 
PEM. Imbalances in amino acid metabolism and alterations of amino acid levels in 
human blood due to liver diseases, which can be closely associated with PEM, are 
demonstrated in the previous studies [5–7]. The incidence of PEM is high in LC 
patients because the liver is the primary organ involved in carbohydrate, lipid, pro-
tein, and energy metabolism [5]. LC is a state of accelerated starvation, with 
increased gluconeogenesis that requires amino acid diversion from other metabolic 
functions and protein homeostasis can be disturbed in LC patients due to multiple 
factors such as hyperammonemia, hormonal disorders, cytokine abnormalities, 
physical inactivity, and direct effects of ethanol and its metabolites [35]. In our data 
using indirect calorimetry (n = 432), six patients (2.8%) had PEM in patients with 
chronic hepatitis, 17 (13.8%) in patients with Child-Pugh A LC, 42 (52.5%) in 
patients with Child-Pugh B LC, and 10 (76.9%) in patients with Child-Pugh C LC 
(P  <  0.001), and multivariate analysis revealed that Child-Pugh classification, age 
≥64 years, aspartate aminotransferase ≥40  IU/L, and branched-chain amino acid to 
tyrosine ratio ≤5.2 were independent predictors associated with the presence of 
PEM [5]. PEM can lead to muscle atrophy and reduced muscle strength. Reduced 
glycogen storage in the liver can promote the degradation of skeletal muscle by 
requiring skeletal muscle to supply amino acids including branched-chain amino 
acids (BCAA) and glucose (from muscle glycogen) [36].

10 Sarcopenia in Liver Disease



122

10.3  Definition, Epidemiology, and Clinical Impact 
of Sarcopenia in Liver Disease

The decreased muscle mass and muscle strength that accompanies aging is defined 
as primary sarcopenia, while the decreased muscle mass and muscle strength that 
accompanies an underlying disease, such as disuse atrophy from being bedridden, 
kidney disease, liver disease, inflammatory disease, advanced malignancies, and 
poor nutrition (insufficient caloric or protein intake), is defined as secondary sarco-
penia [1, 2]. In our country, the incidence of sarcopenia among LC patients has been 
reported from 10% to 70% [12–16, 28, 37–42]. The wide range of incidence of 
sarcopenia may be due to the lack of clear definition for sarcopenia in liver disease 
patients and this was critical in the clinical settings among hepatologists in our 
country. Thus, consensus for the assessment of sarcopenia in liver disease had been 
eagerly awaited in our country.

Sarcopenia in liver disease is clinically of importance as it can influence the qual-
ity of life of LC patients [43–45]. Performance status (PS) is closely associated with 
clinical outcome in hepatocellular carcinoma (HCC), and is widely used in interna-
tional guidelines [46, 47]. Patients with poorer PS and/or HCC may have sarcopenia 
[43–45]. A recent meta-analysis reported that the average prevalence rate of sarco-
penia among participants (LC patients, 20 studies) was 48.1%, and appeared more 
among male with a rate of 61.6% whereas the rate was 36% for female, and regard-
ing clinical outcomes, LC patients with sarcopenia had poorer survival rates and an 
increased risk of complications such as infection compared with those without sar-
copenia [48]. Skeletal muscle mass is not only a good indicator of nutrition in LC 
patients, but also has recently been shown to be closely related to survival and post-
operative complications in HCC patients. In most studies, sarcopenia was demon-
strated to be an adverse predictor of clinical outcomes for HCC patients [12–20]. 
Recently, Montano-Loza et al. demonstrated that modification of model for end- 
stage liver disease (MELD) to include sarcopenia is associated with improved pre-
diction of mortality in LC patients, primarily in patients with low MELD scores 
[49]. Limitations of the MELD score include lack of assessing the nutritional and 
functional status of LC patients [49]. On the other hand, the association between 
sarcopenia and nonalcoholic fatty liver disease (NAFLD) has been indicated by 
recent epidemiological reports. A recent meta-analysis demonstrated a significantly 
increased risk of NAFLD among patients with sarcopenia [50]. Sarcopenia and 
NAFLD have similar pathophysiological profiles [51]. Sarcopenia may occur simul-
taneously with obesity, particularly the accumulation of visceral fat, which can be 
associated with chronic inflammation, insulin resistance, and further decrease in the 
skeletal muscle mass, consequently leading to muscle catabolism [52, 53]. In some 
conditions, lean body mass is lost while fat mass may be preserved or even increased 
and LC patients may have a combination of loss of skeletal muscle and gain of adi-
pose tissue. This state is defined as sarcopenic obesity and it can be a prognostic 
factor in LC patients [52, 54, 55]. A previous Korean study reported that visceral 
obesity was linked to future loss of skeletal muscle mass in Korean adults [56].
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10.4  Japanese Guidelines for Sarcopenia in Liver Disease

Definitions and diagnostic criteria for sarcopenia in liver disease vary in the literature; 
there had been no agreement on diagnostic criteria for sarcopenia in liver disease. In 
2016, the JSH established its own assessment criteria for sarcopenia in liver disease as 
the number of liver disease patients with sarcopenia is expected to increase and there 
is compelling evidence to indicate patients with sarcopenia have unfavorable clinical 
outcomes [21]. The major points in the JSH guidelines for sarcopenia in liver disease 
as compared with guidelines in Asian Working Group for Sarcopenia (AWGS) and 
European Working Group on Sarcopenia in Older People (EWGSOP) are: (1) in terms 
of handgrip strength, the same cutoff value as that in AWGS was adopted due to its 
prognostic impact in the JSH validation data; (2) elimination of age restriction from 
required evaluation items because there are several younger liver disease patients with 
sarcopenia due to PEM; (3) elimination of walking speed from required evaluation 
items because it may not be useful for assessing Japanese sarcopenic patients; (4) cut-
off values for muscle mass in CT (the third lumbar level (L3)) were proposed because 
CT is frequently used for evaluation in liver disease; (5) psoas muscle mass on CT was 
also considered because it is easily calculated in the clinical settings [21, 57, 58].

10.5  Clinical Validation Data for the JSH Guidelines

In this section, we will present several validation data using the JSH guidelines.
In our recent study with the purpose of examining the influence of muscle mass 

decrease (MMD) as determined by data in bio-impedance analysis (BIA, cutoff values: 
<7.0 cm2/m2 for male and <5.7 cm2/m2 for female) in LC patients (n = 382, 204 in male 
and 178 in female) on survival and validating the utility of cutoff values in BIA recom-
mended from the JSH guidelines, the 5-year cumulative overall survival (OS) rates were 
59.8% in patients with MMD and 84.4% in patients without MMD (P < 0.0001), and in 
the multivariate analysis for survival, MMD revealed to be a significant adverse predic-
tor for OS, indicating that cutoff values in the JSH guidelines were well validated [22].

In our previous study in LC patients, psoas muscle index (PMI, the sum of bilat-
eral psoas muscle mass calculated by hand tracing at the L3 level on CT images 
divided by height squared (cm2/m2)) was used for survival analysis. A lower PMI 
was defined as <6.36 cm2/m2 for male patients and <3.92 cm2/m2 for female patients 
according to the recommendations of the JSH guidelines, and in the multivariate 
analysis of OS, PMI revealed to be a significant factor associated with OS [8]. In our 
another study for HCC patients undergoing radiofrequency ablation (n = 182), the 
median (range) value in PMI for male was 6.03 (1.63–9.90) cm2/m2 whereas that for 
female was 4.06 (1.21–7.32) cm2/m2 and the optimal cutoff points for PMI as deter-
mined by receiver operating characteristics analysis for survival were 6.31 cm2/m2 
in male and 3.91 cm2/m2 in female, which were similar to cutoff values in the JSH 
guidelines (6.36 cm2/m2 in male and 3.92 cm2/m2 in female) [23].
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10.6  The Clinical Impact of Biomarkers in Sarcopenic 
Patients in Liver Disease

Skeletal muscle mass is maintained by the balance between protein synthesis and 
protein breakdown, and sarcopenia can occur due to an increase in proteolysis or 
a reduction in protein synthesis, or both [6, 7]. Several potential biomarkers asso-
ciated with skeletal muscle mass loss have been reported [6]. Of these, myostatin 
is a cytokine belonging to the transforming growth factor beta (TGFβ) family and 
the functional role of myostatin was first clarified in 1997 [9]. Myogenesis is facil-
itated by four myogenic regulatory factors and myostatin is a negative regulator of 
muscle protein synthesis which acts via the impaired mammalian target of rapamy-
cin signaling, which strongly suppresses growth of skeletal muscle [10]. In our 
data of LC patients (108 males and 90 females with a median age of 67.5 years), 
the median myostatin level for males was 3419.6 pg/mL, whereas that for females 
was 2662.4 pg/mL (P = 0.0024). Median serum myostatin level for Child-Pugh A 
patients was 2726.0  pg/mL, whereas that for Child-Pugh B or C patients was 
3615.2 pg/mL (P = 0.0011). The 5-year cumulative OS rates were 50.37% in the 
high-myostatin group and 73.60% in the low-myostatin group (P  =  0.0001). 
Higher age (P = 0.0111) and lower PMI (P < 0.0001) were identified as adverse 
significant predictors of OS in the multivariate analysis, while higher serum myo-
statin (P = 0.0855) tended to be a significant adverse prognostic factor. Notably, in 
both genders, serum ammonia level showed a significantly positive correlation 
with serum myostatin level [8]. Thus, we concluded that higher serum myostatin 
level can be correlated with muscle mass loss, hyperammonemia, and impaired 
protein synthesis. Particularly, hyperammonemia mediated upregulation of myo-
statin in skeletal muscle is believed to be a mechanism of impaired protein synthe-
sis and increased autophagy, which contribute to the development of sarcopenia 
and this is in consistent with our results [59]. Serum myostatin can be a useful 
biomarker for sarcopenia in liver disease; however, whether serial serum myo-
statin measurements will correlate with serial changes in muscle mass is an 
intriguing possibility as more rapid muscle loss worsens clinical outcome in LC 
patients [8, 59]. Although other potentially useful biomarkers such as follistatin 
(myostatin antagonist) for sarcopenia in liver disease have been reported, the 
prognostic impact of these is unclear [11, 60]. In this regard, further investigation 
will be needed.

10.7  Therapy for Sarcopenia in Liver Disease

There are several promising results regarding treatment for sarcopenia in liver 
disease.
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10.7.1  Exercise

In general, exercise can improve skeletal muscle mass, muscle strength, and cardio-
pulmonary function. However, in LC patients, despite the increasing interest regard-
ing the impact of exercise on sarcopenia, few clinical trials have been performed to 
date. Román et al. showed in their randomized controlled trial (RCT) (n = 17 (the 
exercise group (n = 8) and the control group (n = 9); all patients received leucine 
supplementation) that a program of moderate physical exercise together with leu-
cine supplements in LC patients is safe and improves muscle mass [25]. In a similar 
study, Zenith et al. reported in their RCT for Child-Pugh A or B LC patients that 
thigh circumference and thigh muscle thickness were significantly higher in the 
exercise group (n = 9) compared with controls (n = 10) at week 8 [29]. In view of 
these results, exercise in LC patients may be promising. However, it should be 
emphasized that exercise under insufficient nutrients and protein intake could be 
dangerous in LC patients, given that it could accelerate further protein catabolism 
and muscle mass loss [30]. At the time of patient recruitment, a precise assessment 
for nutritional status and daily physical activities will be required in each subject. 
Currently, we are undergoing an RCT for examining the effect of exercise on sarco-
penia for decompensated LC patients [31].

10.7.2  BCAA

BCAA granules were originally developed for the treatment of hypoalbuminemia 
associated with decompensated LC.  However, subsequent studies found various 
other beneficial pharmacological effects of BCAA granules than albumin synthesis 
[26]. They include: (1) suppression of proteolysis in muscle; (2) energy source; 
(3) strengthening in immune function; (4) promotion in liver regeneration; and 
(5) suppression in carcinogenesis [27]. Considering these pharmacological effects 
of BCAA granules, positive therapeutic effect for sarcopenic LC patients can be 
expected. Hanai et  al. demonstrated in their retrospective study that BCAA sup-
plementation improved the survival of sarcopenic patients [28]. Kitajima et  al. 
demonstrated that amelioration of hypoalbuminemia associated with BCAA sup-
plementation correlated with decreased fat accumulation in skeletal muscle, main-
tenance of skeletal muscle mass, and improved glucose sensitivity [61]. However, 
further studies will be needed to confirm these results. Currently, we are undergoing 
a prospective study (Change in Muscle volume In patients with LivEr cirrhosis: 
prospective cohort Study (MILE study), UMIN-ID; UMIN000023256) for examin-
ing the effects of BCAA granules and other factors on muscle mass improvement 
(Fig. 10.1). If positive results of BCAA granules are confirmed in this trial, useful 
information will be provided for clinicians.
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10.7.3  BCAA and Exercise

Supplementation with BCAA administration and walking exercise combination 
therapy may be promising. Hiraoka et al. reported that in 33 LC patients treated 
with BCAA supplementation (protein 13.5 g, 210 kcal/day) as a late evening snack 
and walking exercise (additional 2000 steps/day prescribed), muscle volume and 
handgrip strength significantly increased at 3 months [24].

10.7.4  Testosterone

With the increasing age and other muscle wasting disorders, males and females 
undergo similar pathological changes in skeletal muscle. They include enhanced 
oxidative stress, mitochondrial dysfunction, satellite cell senescence, increased 
inflammation, elevated apoptosis and proteasome activity, and suppressed protein 
synthesis and myocyte regeneration [62]. Poor food intake and physical activity can 
be linked to skeletal muscle wasting. Sex hormones also play important roles in 
maintaining skeletal muscle homeostasis [62]. Testosterone is a potent anabolic fac-
tor accelerating muscle protein synthesis and muscle regeneration. Sinclair et al. 
demonstrated that administering testosterone to male LC patients who have low 
testosterone levels significantly increased their muscle mass, bone mass, reduced fat 
mass, and HbA1c [63].

Baseline 1 year 2 year

BCAA granules etc

Changes in muscle mass (∆3)

Observational study of changes in muscle mass as assessed by computed tomography for LC patients
-Change in Muscle volume In patients with LivEr cirrhosis: prospective cohort Study-

Changes in muscle mass (∆1) Changes in muscle mass (∆2)

Decompensated
LC patients with

hypoalbuminemia

Evaluation for
muscle mass and
laboratory data etc

Examination of 
factors 

associated with
∆1–3

Evaluation for
muscle mass and
laboratory data etc

Evaluation for 
muscle mass and
laboratory data etc

MILE Study

Fig. 10.1 Study design in our prospective study (change in Muscle volume In patients with LivEr 
cirrhosis: prospective cohort Study (MILE study), UMIN-ID; UMIN000023256)
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10.8  Closing Remarks

We summarized the current knowledge of sarcopenia in liver disease. We also pre-
sented the JSH guidelines of sarcopenia in liver disease. This clinical entity will 
gain more attention among hepatologists in the future because the number of sarco-
penic liver disease patients will increase. We hope that several unsolved issues of 
sarcopenia in liver disease are clarified in future studies.
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Chapter 11
Esophagogastric Varices in Liver Cirrhosis

Hisashi Hidaka and Haruki Uojima

Abstract Bleeding esophagogastric varices (EV) represent the leading cause of 
death in patients with cirrhosis. The mechanism of EV bleeding has placed a special 
emphasis on the role of increased portal venous pressure. There are several treat-
ments depending on the condition of patients, bleeding history, endoscopic findings, 
and hemodynamics.

Keywords Portal hypertension · Nonselective beta-blocker · Portosystemic shunt  
Endoscopic variceal ligation · Balloon-occluded retrograde transvenous 
obliteration

11.1  Introduction

Bleeding esophagogastric varices (EV) are the severest complications of portal 
hypertension (PH) and represent the leading cause of death in patients with cirrho-
sis. EV develop in 50% of patients with cirrhosis, and bleed in approximately 
15–20% of patients per year [1, 2]. Variceal hemorrhage (VH) depends on the sever-
ity of liver disease, size of varices, and the presence of red color (RC) sign [2]. The 
mechanism of bleeding from EV places a special emphasis on the role of increased 
portal venous pressure [2]. On the other hand, in Japan an esophagogastroduode-
noscopy (EGD) finding of EV is thought to be the most important finding. 
Furthermore, there are some differences in treatments for the EV between Japan and 
western countries. In this chapter, I will review diagnosis and treatments for EV 
based on these standpoints.
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11.2  Risk Stratification of Esophagogastric Varices

11.2.1  Hepatic Venous Pressure Gradient (HVPG)

As mentioned in the introduction, compensated cirrhosis can be divided into mild PH 
(HVPG >5 but <10 mmHg) and clinically significant PH (CSPH), defined by HVPG 
≥10 mmHg [2]. CSPH is associated with an increased risk of developing EV and 
overt clinical decompensation (ascites, VH, and hepatic encephalopathy) [2, 3]. VH 
constitutes a decompensating event, but its mortality differs whether it presents as an 
isolated complication of cirrhosis (20% 5-year mortality) or whether it presents in 
association with other complications (>80% 5-year mortality). In patients with EV, 
an HVPG >12 mmHg identifies bleeding risk, mostly because there is clear evidence 
that shows that reducing the HVPG to levels of 12 mmHg or below is associated with 
protection from VH [4]. An HVPG >16 mmHg indicates a higher risk of death [5]. 
More than HVPG 20 mmHg predicts failure to control bleeding, early rebleeding, 
and death during acute VH [6, 7]. In patients with cirrhosis awaiting liver transplan-
tation, each 1-mmHg increase in HVPG predicts a 3% increase in the risk of death in 
a median follow-up of 19 months [8]. Despite the crucial role of HVPG in the deter-
mination of CSPH and other outcomes, HVPG measurements require specific exper-
tise, are invasive, relatively expensive, and not available in all centers. Therefore, 
noninvasive or surrogate indicators are increasingly utilized at most centers [2].

11.2.2  Noninvasive or Surrogate Indicators (Platelets, 
Ultrasound, CT, MRI, and Liver and Spleen Stiffness)

Among laboratory data, low platelet count is the most common laboratory sign of 
PH which correlates slightly with HVPG and with the presence of EV [2, 3].

Ultrasound provides safe imaging of morphological abnormalities associated 
with cirrhosis and PH. The presence of collateral circulation on ultrasound, CT, or 
MRI imaging (recanalized paraumbilical vein, splenorenal shunt, and dilated left 
and short gastric veins) or the finding of a reversal of flow within the portal system 
is 100% specific for CSPH [9]. Although splenomegaly taken alone is a sensitive, 
but nonspecific, PH and the size of the spleen should be routinely reported, because, 
when combined with platelet count and liver stiffness, they provide accurate data on 
the presence of CSPH and/or varices [10, 11].

The ability to assess liver stiffness (LS) has represented a major advance in this 
field [2]. LS by transient elastography (TE; Fibroscan) has proved very accurate for 
discrimination patients with or without CSPH [12]. Most studies have shown that the 
best LS cutoff to detect CSPH is >20–25 kilopascals (kPa), with a diagnostic accu-
racy over 90% [13, 14]. Furthermore, a sequential screening-diagnostic strategy, 
based on LS measurements assessed in the context of the presence of any  ultrasound 
abnormality and/or a platelet count <150,000/mm3, identified the subgroup of 
patients with compensate cirrhosis in whom CSPH would be more likely [14].

Spleen stiffness (SS) measurement by TE has been recently proposed as a 
novel index more tightly related to PH with promising results [15, 16]. In fact, SS 
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>54 kPa was better than LS and similar to HVPG in predicting first decompensa-
tion in one study [16].

Magnetic resonance elastography (MRE) has been shown to be accurate in the 
staging of liver fibrosis [17], but data regarding its diagnostic performance in the diag-
nosis of CSPH are still very limited [2]. Further studies are warranted in this field.

11.2.3  EGD Variceal Findings

There are some differences in EGD findings between esophageal varices and gastric 
varices (GV). Table 11.1 shows the criteria for recording EGD findings regarding 
EV according to the General Rules for Study of Portal Hypertension by the Japan 

Table 11.1 General rules for 
recording endoscopic 
findings of esophagogastric 
varices

Category Code subcategory

Location (L) Ls: Locus superior
Lm: Locus medialis
Li: Locus inferior
Lg-c: Adjacent to the cardiac orifice
Lg-cf: Extension from the cardiac orifice to the 
fornix
Lg-f: Isolated in the fornix
Lg-b: Located in the gastric body
Lg-a: Located in the gastric antrum

Form (F) F0: No varicose appearance
F1: Straight, small-caliber varices
F2: Moderately enlarged, beady varices
F3: Markedly enlarged, nodular or tumor-shaped 
varices

Color (C) Cw: White varices
Cb: Blue varices
Cw-Th: Thrombosed white varices
Cb-Th: Thrombosed blue varices

Red color 
sign (RC)

RWM: Red wale markings
CRS: Cherry red spots
HCS: Hematocystic spots
Esophageal varices: RC0, RC1, RC2, RC3
Gastric varices: RC0, RC1
Te: Telangiectasia

Bleeding sign Gushing bleeding
Spurting bleeding
Oozing bleeding
Red plug
White plug

Mucosal 
finding

E: Erosion
Ul: Ulcer
S: Scar
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Society for Portal Hypertension [18, 19]. Especially, the RC sign on and form (F) of 
varices are the most important high-risk findings determined by EGD.

11.3  Management

EV treatment should be stratified according to the clinical stage (compensated 
or decompensated), past hemorrhage, variceal forms (small and without the RC 
sign, or others), and different hemodynamics (with or without a portosystemic 
shunt). The object of therapy for patients at the early stage is to prevent the 
development of a later stage [2]. An eliminating or suppressing etiological agent 
(e.g., HBV, HCV, and alcohol) is essential for management in patients with 
cirrhosis.

11.3.1  Prophylaxis for No Varices or Small EV (<F1 Without 
an RC Sign)

A large multicenter, placebo-controlled, double-blinded trial failed to show a ben-
efit of the nonselective beta-blocker (NSBB), timolol, in the prevention of varices in 
patients with cirrhosis who had not yet developed varices [20]. Furthermore, a meta- 
analysis showed that NSBBs did not significantly reduce the first VH in patients 
with small varices [2]. Therefore, there is presently no indication that NSBBs pre-
vent the formation of varices [2, 3].

11.3.2  Prophylaxis for the First Hemorrhage of Medium 
to Large EV (F2 or F3 Varices) Without a Portosystemic 
Shunt

Either NSBBs or endoscopic variceal ligation (EVL) is recommended for the pre-
vention of the first VH of medium and large varices [2]. Traditional NSBBs (pro-
pranolol, nadolol) are valid first-line treatments [2]. Carvedilol, a non-cardioselective 
vasodilating beta-blocker, is more effective in reducing portal pressure than pro-
pranolol. Tripathi compared carvedilol and EVL for the prevention of the first vari-
ceal bleed in a randomized controlled multicenter trial [21]. Carvedilol had 
significantly lower rates of the first variceal bleed (10% versus 23%), with no sig-
nificant differences in overall mortality (35% versus 37%), and bleeding-related 
mortality (3% versus 1%). Carvedilol might be more effective than traditional 
NSBBs in reducing HVPG [21, 22] but has not yet adequately been compared head- 
to- head to traditional NSBBs in clinical trials [2].
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In Japan, Hashizume et al. reported the results of endoscopic injection sclero-
therapy (EIS) performed in 1000 consecutively treated Japanese patients with EV, 
and they concluded that EIS and the close follow-up with endoscopy led to signifi-
cant reduction in bleeding from EV and reduction of mortality related to this bleed-
ing [23]. On the other hand, in western countries, EIS should not have been used for 
the primary prevention of VH because the mortality rate was significantly higher in 
the EIS group than that in the sham-therapy group [24, 25].

11.3.3  Acute EV Hemorrhage (Esophageal Varices Only or 
Lg-c)

EVL should be performed for patients with acute VH [2, 3]. Afterward, splanchnic 
vasoactive drugs should be used for up to 5 days [26] because HVPG significantly 
increases after EVL. Vasopressin is the most potent splanchnic vasoconstrictor. It 
reduces blood flow to all splanchnic organs, thereby leading to a decrease in portal 
venous inflow and in portal venous pressure. The clinical usefulness of vasopressin 
is limited by its multiple side effects, which are related to its potent vasoconstric-
tive properties, including cardiac and peripheral ischemia, arrhythmia, hyperten-
sion, and bowel ischemia [27]. Therefore, it can only be used continuously at the 
highest effective dose for a maximum of 24 h to minimize the development of side 
effects [27].

Furthermore, VH is associated with a high risk of bacterial infections [28]. The 
use of short-term prophylactic antibiotics in patients with cirrhosis and gastrointes-
tinal hemorrhages with or without ascites has been shown to not only decrease the 
rate of bacterial infections but also to increase the survival rate [29].

11.3.4  Acute GV Hemorrhage With or Without a Portosystemic 
Shunt (Lg-cf or Lg-f)

GV bleeding is severe and is associated with high mortality [30]. Mishra et al. com-
pared the efficacy of cyanoacrylate injection and NSBBs in primary prophylaxis of 
GV bleeding [31]. Cirrhotic patients with large EV type 2 (GOV2) (Lg-cf in Japan) 
with eradicated esophageal varices or large isolated gastric varix type 1 (IGV1) 
(Lg-f in Japan), who had never bled from GV, were randomized to cyanoacrylate 
injection (Group I, n = 30), NSBBs (Group II, n = 29), or no treatment (Group III, 
n = 30). Primary end-points were bleeding from GV or death. The actuarial proba-
bility of bleeding from GV over a median follow-up of 26  months was 13% in 
Group I, 28% in Group II, and 45% in Group III. The actuarial probability of sur-
vival was higher in the cyanoacrylate group compared to the no-treatment group 
(90% versus 72%). Although a single study suggested that cyanoacrylate injections 
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are more effective than NSBBs in preventing first bleeding in patients with large EV 
or isolated GV, further studies are warranted to evaluate the risk/benefit ratio of 
using cyanoacrylate in this setting [2, 30].

11.3.5  Secondary Prophylaxis for EV (Without a Portosystemic 
Shunt)

In western countries, the first-line therapy is the combination of NSBBs + EVL in 
patients with recurrent VH [2, 3]. On the other hand, in Japan, only endoscopic 
treatment (recently EVL) is the first-line therapy in this setting. However, there 
were more severe complications included bleeding from ligation-induced esopha-
geal ulcers, chest pain, and dysphagia in EVL treatment [32]. Proton pump inhibi-
tors (PPIs) are the most potent pharmacological agents for inhibition of gastric 
acid secretion [33]. Although PPIs will attenuate the effect that gastric acid plays 
in post-EVL complications, there is one short-term study (10 days) that evaluated 
the role of PPIs after EVL [26]. In that study, Sheenan et al. reported that PPI treat-
ment for only 9  days after EVL did not significantly reduce complications or 
symptoms [26]. Hidaka et al. reported that long-term administration of PPIs sig-
nificantly reduced the risk of treatment failure after EVL [34]. However, that study 
may have been limited because enrollment was not completed (i.e., only 21 patients 
for PPIs and 22 patients for placebo were included). Moreover, PPIs may modulate 
microbiome including spontaneous bacterial peritonitis in patients with liver cir-
rhosis, which was one of the most serious complications in cirrhosis patients with 
ascites [35].

11.3.6  Secondary Prophylaxis for GV with a Portosystemic 
Shunt

In western countries, transjugular intrahepatic portosystemic shunt (TIPS) is a treat-
ment option for isolated GVs [36]. However, the risk of GV rebleeding within a year 
after TIPS has been reported to be around 10–20% [37]. Additionally, TIPS cannot 
always be the first-line therapy because of possible aggravation of hepatic encepha-
lopathy [25]. In Japan, endoscopic treatment using cyanoacrylate is performed for 
GOV2 or IGV1 bleeding, then these GVs are treated by balloon-occluded retro-
grade transvenous obliteration (BRTO) in elective cases. BRTO was introduced by 
Kanagawa et al. [38] and has been performed most frequently in Asia, especially in 
Japan. This procedure involves the insertion of a balloon catheter into an outflow 
shunt, such as a gastrorenal shunt, via the femoral or the internal jugular veins. The 
sclerosing agent EO (ethanolamine oleate) is then injected through the catheter into 
the outflow shunt, under balloon occlusion. Several studies reported relatively 

H. Hidaka and H. Uojima



137

higher rates of complete eradication of GV (i.e., 70–90%) and good control of 
bleeding after BRTO [3, 39]. Further prospective studies are warranted to evaluate 
the long-term prophylactic effect and safety of the BRTO procedure.
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Chapter 12
Mechanisms and Treatment for Muscle 
Cramps in Liver Cirrhosis

Hiroyuki Nakanishi, Masayuki Kurosaki, and Namiki Izumi

Abstract Muscle cramps are an important complication of liver cirrhosis and 
impair quality of life. The prevalence of muscle cramps with liver cirrhosis ranges 
from 29% to 88%. The exact pathophysiology of muscle cramps continues to be 
poorly understood. And effective treatments have not been established. But several 
mechanisms and treatment option have been proposed. There are several reports 
pertaining to the treatment of muscle cramps including magnesium, zinc, 
1-a-hydroxy vitamin D, vitamin E, eperisone hydrochloride, intravenous albumin, 
branched chain amino acids, taurine, quinidine, l-carnitine, and baclofen. l- 
carnitine improves the deterioration of energy metabolism. On the other hand, 
baclofen is effective for nerve dysfunction. There are needs for further study to 
determine which mechanistic targets have the highest value in developing effective 
therapies.

Keywords Muscle cramps · Carnitine · Baclofen · Liver cirrhosis · Quality of life

12.1  The Definition of Muscle Cramps Associated with Liver 
Cirrhosis

Muscle cramps are an important complication of liver cirrhosis [1–7]. Muscle 
cramps are defined as involuntary, visible, palpable, painful contractions of skel-
etal muscles, occurring at rest or strong enough to wake the patient from sleep 
[5, 6, 8].
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12.2  Prevalence of Muscle Cramps in Liver Cirrhosis or 
Chronic Hepatitis

The prevalence of muscle cramps with liver cirrhosis ranges from 29% to 88% 
depending on the inclusion criteria used by the investigators [1, 2, 9–12]. And in 
recent two reports comparing cirrhosis and chronic hepatitis, patients with cirrhosis 
had a significantly higher prevalence rate of muscle cramps than those with chronic 
hepatitis (51.8–52.0% vs. 7.5–43.7%) [1, 10]. These studies showed that muscle 
cramp in cirrhosis was an independent factor correlated with the severity of liver 
disease and worsening liver function [1].

12.3  Duration of Muscle Cramps

Muscle cramps can last for seconds to several minutes and may result in persistent 
tenderness and swelling for up to 72 h following an episode of cramping [7, 13]. 
Muscle cramps occur predominantly during the night; thereby patients suffer from 
a sleep disorder [10].

12.4  Muscle Cramps Impair Quality of Life (QOL) in Liver 
Cirrhosis Patients

Muscle cramps with liver cirrhosis are extremely painful [10, 14]. Patients find the 
symptom very uncomfortable, leading to decreased physical and social function-
ing. Moreover, muscle cramps significantly disturbed sleep in liver cirrhosis 
patients [10, 14–16]. General health-related quality of life, measured by instru-
ments such as the Medical Outcome Study Short Form-36, the Nottingham Health 
Profile questionnaires, and the Chronic Liver Disease Questionnaire (CLDQ), is 
diminished in cirrhotic patients with muscle cramps [8, 10, 14, 17–21]. And muscle 
cramp was an independent risk factor of the impaired health-related quality of life. 
Muscle cramps impair sleep, physical functioning and mobility, general health, and 
mental health [20].

12.5  Etiology of Muscle Cramps in Liver Cirrhosis

The pathogenesis of muscle cramps in patients with liver disease remains largely 
unknown and there are no significant predictors of the occurrence of muscle cramps, 
including serum potassium levels, serum 25-(OH) vitamin D levels, diuretic use, the 
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presence of ascites, hepatic edema, Child-Pugh score, and model for end-stage liver 
disease score [3, 18, 20, 22, 23]. Konikoff et  al. showed that the risk factors of 
muscle cramps were the presence of liver cirrhosis, higher total serum bilirubin 
levels, and lower serum albumin levels [3]. The exact pathophysiology of muscle 
cramps continues to be poorly understood. And effective treatments have not been 
established. But several mechanisms and treatment option have been proposed [5, 6, 
8, 20, 24–26]. The impairment in energy metabolism reflected by a decrease in 
muscle adenosine triphosphate (ATP) production [27], nerve dysfunction, and 
changes in plasma print volume/electrolytes [20] are thought to be the three most 
common mechanisms [5]. There are needs for further study to clarify which mecha-
nisms are the most important in causing muscle cramps.

12.6  Treatment Option of Muscle Cramps with Liver 
Cirrhosis

There are several reports pertaining to the treatment of muscle cramps including 
magnesium, zinc, 1-a-hydroxy vitamin D, vitamin E, branched chain amino acids, 
taurine, l-carnitine, eperisone hydrochloride, intravenous albumin, quinidine, and 
baclofen [2, 5, 6, 8, 9, 11, 24, 28–34]. Many agents showed a moderate benefit but 
have not been further studied (Table 12.1). Quinine sulfate was the most widely 
used agent for the relief of muscle cramps but has fallen out of favor because of its 
potential cardiotoxicity [35–37]. According to recent reports, there are some prom-
ising treatments such as l-carnitine and baclofen for muscle cramps in cirrhosis. 

Table 12.1 Summary of reports about treatment of muscle cramps in liver cirrhosis patient

Treatment Description Outcome Side effects Comment Author

Vitamin E Prospective 
observation and 
treatment report 
600 mg vitamin E/
day (n = 22)

Improvement 
in cramps 
(n = 22)

No control 
group

Konikoff 
et al. [31]

Pilot RCT; 
cross-over study 
vitamin E 
supplementation; 
dose unclear 
(n = 9)

No 
improvement 
(n = 9)

Worsening 
cramps 
reported in 
RCT

No 
improvement 
in muscle 
cramps

Chandok 
et al. [29]

Branched 
chain amino 
acids

Prospective 
treatment reports
Variable doses 
BCAA 6 g–12 g/
day (n = 8, 37)

Cramps 
resolved or 
reduced 
(n = 45)

None 
reported

Case-series 
reports
No control 
group

Sako et al. 
[33]
Hidaka 
et al. [30]

(continued)
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Table 12.1 (continued)

Treatment Description Outcome Side effects Comment Author

Taurine Five prospective 
treatment reports 
(n = 12, 35) taurine 
3 g/day

Cramps 
resolved or 
improved in 
all participants

None 
reported

Case-series 
reports
No control 
group

Matsuzaki 
et al. [32]
Yamamoto 
[34]

Eperisone 
hydrochloride

Prospective 
treatment report; 
variable doses 
(n = 21)

Cramps 
resolved or 
reduced 
(n = 17)

Fatigue, 
dizziness, 
epigastric 
discomfort

Case-series 
report
No control 
group

Kobayashi 
et al. [11]

Intravenous 
albumin 
infusion

Cross-over study; 
not randomized
Weekly 
intravenous 
albumin infusion 
(n = 20)

Cramps 
reduced or 
resolved 
(n = 20)

None 
reported

Angeli 
et al. [2]

Quinidine RCT; quinidine 
400 mg/day 
(n = 16)

Cramps 
resolved or 
reduced 
(n = 16)

Diarrhea 
(n = 5)

Restricted use 
due to side 
effects

Lee et al. 
[35]

l-Carnitine Prospective 
treatment
Report l-carnitine 
900–1200 mg/day 
(n = 42)

Cramps 
reduced or 
resolved in 
88.1% of 
patients 
(n = 42)

None 
reported

Case-series 
report
No control 
group

Nakanishi 
et al. [6]

Baclofen Prospective 
treatment report 
(n = 10)

Cramps 
resolved or 
reduced 
(n = 7)

None 
reported

Case-series 
report
No control 
group

Henry and 
Northup 
[25]

RCT; baclofen 
30 mg vs placebo 
(n = 100)

Cramps 
reduced in 
92% of 
patients 
(n = 100)

No 
difference 
comparing 
to placebo

Open-label 
dose increase 
until cramps 
disappearance

Elfert et al. 
[24]

However, there remains a need for further double-blinded, randomized, controlled 
clinical trials to show the effect of these treatments on muscle cramps with liver cir-
rhosis. And studies to draw clear conclusions about the most effective and risk-free 
treatment of muscle cramps in cirrhosis are needed.

12.7  l-Carnitine

l-carnitine, l-beta-hydroxy-gamma-N-trimethyl aminobutyric acid, is synthesized 
primarily in the liver and kidneys in conjunction with absorption from dietary 
sources such as meat and dairy products [38]. Moller et al. [27] performed skeletal 
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muscle biopsies in ten cirrhotic patients and found a reduction in ATP, phosphocre-
atine, and total adenine nucleotide levels. Carnitine plays an important role in lipid 
metabolism, being a cofactor for beta-oxidation of fatty acids by facilitating the 
transport of long-chain fatty acids across the mitochondrial membrane [39]. The 
fatty acid receives beta-oxidation and becomes acetyl CoA. The acetyl CoA is taken 
up into a TCA cycle. And the TCA cycle produces ATP in mitochondria (Fig. 12.1). 
Therefore, carnitine deficiency leads to a lack of ATP in skeletal muscles and this 
can cause malfunction of calcium ATPase pumps and a subsequent increase of intra-
cellular calcium levels and inadequate muscle contraction [7, 40–44]. On this basis, 
carnitine deficiency may be a cause of muscle cramps in liver cirrhosis patients. 
On  the contrary, the increase in ATP improves the diminished actin and myosin 
interaction and restores calcium into sarcoplasmic reticulum by calcium adenosine 
triphosphatase pumps [45–47], thereby preventing prolonged muscle contraction 
[5, 6]. The notable efficacy of l-carnitine administration also supports this 
hypothesis.

Nakanishi et al. evaluated the effects of l-carnitine supplementation in 42 con-
secutive cirrhosis patients with cramps [6]. The patients were treated with l- 
carnitine 300 mg three times a day (900 mg group) or four times a day (1200 mg 
group) for 8 weeks (at the discretion of attending physician). The frequency of 
muscle cramps was assessed by a questionnaire and the severity of muscle cramps 
was determined using a visual analog scale (VAS). In all patients, the frequency 
of muscle cramps significantly decreased in 88% of patients. And 29% of patients 
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achieved the disappearance of cramps after 8 weeks. The VAS score decreased in 
87% of patients after treatment. The dose of l-carnitine was significantly associ-
ated with increased disappearance rate of cramps (43.5%, n  =  23  in 1200  mg 
group vs 10.5%, n  =  19  in 900  mg group; p  =  0.037) and decreased severity 
assessed by VAS (9.9 ± 13.5 in 1200 mg group vs 39.6 ± 31.9 in 900 mg group; 
p = 0.003) at 8 weeks. No adverse effects were identified in any patient. However, 
it remains unclear whether the l-carnitine administration before going to bed was 
effective or increases in dose was effective. The optimal dose and duration of 
l-carnitine therapy should be determined in the future, larger scale studies.

12.8  Baclofen

Recently there were some reports showing the effect of baclofen on muscle cramps 
with liver cirrhosis. Henry et al. evaluated the effects of baclofen supplementation 
in ten cirrhosis patients with cramps [25]. The patients were treated with baclofen 
5 mg three times a day for 1 week, and, if tolerated, the dose was then increased to 
10 mg three times a day. The muscle cramps survey using a questionnaire was per-
formed at initiation, termination of 4-week treatment, and after 2-week washout 
period. In seven patients without those dropped out, the frequency of muscle 
cramps significantly decreased from 5.5 ± 2.1 to 1.4 ± 2.0 days per week (p = 0.01), 
with a significant relapse after withdrawal (p = 0.01). And the severity estimated by 
1–10 analog scales significantly improved from 8.5 ± 1.8 to 2.8 ± 2.7 (p < 0.01) 
[25]. Elfet et al. conducted a randomized placebo-controlled study of baclofen in 
the treatment of muscle cramps in patients with liver cirrhosis [24]. A total of 100 
cirrhosis patients with muscle cramps were enrolled. They were randomized to 
receive either 30 mg/day of baclofen or placebo for 3 months. The frequency and 
severity of muscle cramps in subjects were evaluated monthly and 1 month after 
withdrawal. In the baclofen group, the frequency and severity of muscle cramps 
decreased significantly after 1 and 3 months of treatment, with a significant relapse 
after withdrawal. After 3 months of baclofen therapy, muscle cramps disappeared 
in 72% of patients. There was no significant difference in side effects between the 
baclofen group and placebo group [24]. Baclofen might be one of the treatment 
options of muscle cramps with liver cirrhosis that are caused by disruption of the 
nervous system.

12.9  Conclusion

According to recent studies, l-carnitine improves the deterioration of energy metab-
olism. On the other hand, baclofen is effective for nerve dysfunction. There are 
needs for further study to determine which pathological mechanistic targets have 
the highest value in developing effective therapies.
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Chapter 13
Management of Pruritus in Liver Cirrhosis

Atsumasa Komori and Hiroshi Yatsuhashi

Abstract The subjective symptoms of patients with liver cirrhosis should be care-
fully evaluated in clinical practice; the nature of pruritus in liver cirrhosis, especially 
with regard to disease progression and hepatic reserve, is still an elusive clinical 
question.

The identification of the putative pruritogen lysophosphatidic acid (LPA) in cho-
lestatic liver disease sheds light on this expanding field of hepatic pruritus. Indeed, 
LPA likely plays a central role in the transmission of itching sensations from the 
peripheral tissues to the dorsal root ganglions, irrespective of the underlying disease 
(e.g., uremic pruritus).

Moreover, the demand for a pharmacological intervention for hepatic pruritus 
has been partially fulfilled with a newly available oral anti-pruritus agent, nalfu-
rafine hydrochloride, making physicians in Japan much more aware of the clinical 
relevance of hepatic pruritus.

Evidence-based management of pruritus in liver cirrhosis is in its infancy. Much 
more attention to patients’ reported outcomes, as well as meticulously planned clin-
ical intervention, coupled with translational research, is needed for hepatologists to 
address this issue.
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13.1  Introduction

A woman who had been suffering from intractable pruritus associated with HCV- 
related decompensated liver cirrhosis once recalled to the authors that on the very 
day of her undergoing orthotropic liver transplantation, “The most incredible change 
after waking up from systemic anesthesia in the ICU on the day of surgery was the 
complete absence of pruritus.” This reminded us of a very similar conversation with 
a post-transplant patient of primary biliary cholangitis (PBC), even though their 
etiologies of liver disease were distinct.

Jaundice accompanies pruritus, as was first documented by the ancient Greek 
physician Aretæus, the Cappadocian in the second century BC. As such, pruritus is 
regarded as the hallmark of cholestatic liver disease but is also found in chronic liver 
disease, including liver cirrhosis.

In this chapter, we review recent progress in the understanding of pruritus in 
chronic liver disease, especially in liver cirrhosis. As it is still an area of uncertainty, 
we should continue to explore several clinical questions regarding the prevalence, 
characteristics, pathological mechanisms, and finally management strategy with 
reference to the accumulating knowledge about those with cholestatic liver 
disease.

13.2  Prevalence of Pruritus in Chronic Liver Disease

Data on the prevalence and severity of pruritus among contemporary chronic liver 
disease patients in the mid-2010s in Japan were the focus of two very recent reports: 
a multicenter study (Study A, N = 1631) [1] and a single center study (Study B, 
N = 663) [2]. Itching was qualitatively self-assessed in both studies: in Study A by 
visual analogue scale (VAS), ranging from 0 (no pruritus) to 10 (maximal pruritus) 
and in Study B by a numerical non-VAS Kawashima score, ranging from 0 (little or 
no itch) to 4 (intolerable itch). The prevalences of pruritus from Study A and Study 
B were quite comparable, 40.3% and 34.0%, respectively; no sex difference was 
observed in either study.

The prevalence of pruritus in liver cirrhosis was calculated as 43.9% in Study A; 
liver cirrhosis was more frequently observed in patients with pruritus than in those 
without (37.8% vs 32.7%, p = 0.036). Nevertheless, multivariate analysis did not 
identify liver cirrhosis as an independent risk factor associated with the prevalence 
of pruritus. However, AST greater than 60 U/ml, an indicator of chronic liver dis-
ease activity, was statistically associated (odds ratio = 2.306, p = 0.011).

Study B, on the other hand, was not structured to include liver cirrhosis as an 
explanatory variable for pruritus. However, low platelet number (<104/mm3) was 
significantly associated with severe pruritus (Kawashima score  ≥  3; odds 
ratio = 2.39; p = 0.017), but not with overall pruritus. Even considering the different 
study designs of the two reports, pruritus itself is not likely a specific symptom of 
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liver cirrhosis. Its severity may advance in non-linear fashion during the course of 
disease progression, with some threshold point in the degree of portal hypertension, 
or in the state of decompensation. In other words, pruritus in liver cirrhosis might be 
distinct from that in non-cirrhotic chronic liver disease with regard to its character-
istics and pathoetiology.

13.3  Characteristics of Pruritus in Chronic Liver Disease

Pruritus in cholestatic liver disease, the prototype in hepatic pruritus, has been char-
acterized as follows: (1) typically localized at the limbs, soles of the feet, and palms 
of the hands, (2) no primary skin lesion, except secondary excoriation after scratch-
ing, (3) diurnal variation most intense in the late evening and early at night, and (4) 
no apparent correlation with liver biochemistry [3].

The top two common localizations of pruritus revealed from patient interviews 
in the aforementioned multicenter study [1] were, in contrast to the above character-
ization, the back (63.1%) and the abdomen (29%), the former of which was most 
common even among PBC patients. Moreover, pruritus was reported to be more 
severe by day than by night.

As such, certain differences likely exist between the features of cholestatic and 
non-cholestatic pruritus among chronic liver disease patients. Which of the two is 
more similar in nature to liver cirrhosis-related pruritus remains an elusive clinical 
question; there has thus far been no report regarding the features of liver cirrhosis- 
specific pruritus (Table 13.1).

13.4  Pathological Mechanisms of Pruritus in Chronic Liver 
Disease

The potential “pruritogens” in cholestasis have long been postulated as follows: 
they are probably (a) in systemic circulation, (b) physiologically secreted into the 
bile, and (c) transformed in the liver/intestine. Those assumptions were made by the 

Table 13.1 Distinct nature of pruritus in liver diseases; cirrhotic or cholestatic type

Pruritus in liver 
cirrhosis [1, 2] Pruritus in cholestasis [3]

Location The abdomen and the back The limbs, soles of the feet, and 
palms of the hands

Time (within day) Severer in day than at night Most intense in the late evening and 
early at night

Correlation to liver 
biochemistry

AST (with prevalence)
The number of platelet (with 
severity)

No
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clinical observations that pruritus has been shown to be alleviated by (a) plasma-
pheresis, albumin dialysis, or plasma separation/anion absorption, (b) oral adminis-
tration of the anion exchange resin cholestyramine and nasobiliary drainage, and (c) 
potent pregnane X receptor (PXR) rifampicin [3]. Correspondingly, there is a long 
list of candidate pruritogens in cholestatic pruritus, namely bile salts, endogenous 
opioids, histamines, serotonin, progesterones/estrogens, and the recently reported 
lysophosphatidic acid (LPA). Nevertheless, the plasma concentrations of these fac-
tors in cholestatic patients have not in general been found to be correlated with itch 
intensity; some are regarded as modulators (e.g., endogenous opioids, serotonin, 
and progesterones/estrogens), but not as causative agents [3].

LPA, on the other hand, was identified by translational research as a putative 
pruritogen, and has gained increasing attention, especially with regard to its potent 
role in the promotion of liver fibrosis and of hepatocarcinogenesis [4]. In key break-
through research, Kremer et al. [5] screened the cytosolic free Ca ([Ca2+]i) response 
of various neuronal cell lines, as a simple marker of cell activation, to sera of pru-
ritic and nonpruritic cholestatic patients as well as healthy volunteers. They detected 
a particularly strong [Ca2+]i response induced by sera of women with intrahepatic 
cholestasis of pregnancy (ICP) and finally identified the non-peptide endogenous 
chemical compound LPA as the neuronal activator in these sera samples as a pos-
sible trigger of unmyelinated itch-neuron endings. Indeed, intradermally injected 
LPA induced a scratch response in mice. LPA is unstable in sera and its concentra-
tion is increased in storage due to its formation from its precursor, lysophosphatidic 
acid (LPC). Accordingly, they then examined the activity of the enzyme responsible 
for the formation of LPA from LPC, lysophospholipase D (LPD), commonly called 
autotaxin (ATX).

The activity and protein levels of ATX were examined in three groups of 
patients—cholestatic patients with pruritus, those without, and healthy volunteers—
who were found to have descending serum levels [5]. Likewise, serum ATX activity 
was revealed to be decreased after successful treatment of cholestatic pruritus by 
therapeutic interventions, including administration of the anion exchange resin cho-
lestyramine or the PXR agonist rifampicin, or nasobiliary drainage, among other 
treatments [5]. Complicating the issue is the fact that ATX is not excreted into bile 
[5] and is reported to be partly cleared from plasma by scavenger receptors present 
on liver sinusoidal endothelial cells [6]. An as-yet unidentified factor (“factor X”) 
that is either excreted in the bile or retained in systemic circulation likely causes 
transcriptional upregulation of ATX, again in unidentified tissue (“tissue Y”), result-
ing in a net increase in circulating ATX levels.

Assuming that a dysregulated LPA-ATX axis exists in cholestasis patients with 
pruritus, we might hypothesize that pruritus in liver cirrhosis occurs by a similar 
mechanism, i.e., accompanied by elevated serum ATX. Recent analysis has shed 
light on LPA and ATX as novel serum markers of liver fibrosis, irrespective of etiol-
ogy. Watanabe et  al. originally described that both plasma LPA and serum ATX 
levels are increased in chronic hepatitis C [7]. Nakagawa et al. extended the former 
study, demonstrating that serum ATX antigen levels or activity were significantly 
correlated with both liver fibrosis stage and stiffness [8]. Although the exact 
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 mechanisms for the elevation of serum ATX may differ between cholestatic liver 
disease and liver cirrhosis, ATX may play a common role as pruritogen in both clini-
cal entities. Direct comparison of the levels of serum ATX in cholestatic liver dis-
ease and liver cirrhosis should be performed in the future.

13.5  Treatment of Pruritus in Chronic Liver Disease

The American Association for the Study of Liver Diseases (AASLD) and the 
European Association for the Study of the Liver (EASL) recommend an evidence- 
based treatment strategy in which the anion exchange resin cholestyramine, the 
PXR agonist rifampicin, the opioid μ antagonist naltrexone, and the selective sero-
tonin reuptake inhibitor (SSRI) sertraline are prescribed in a stepwise manner to 
adequately gain control over cholestatic pruritus. In Japan, however, the use of those 
drugs for pruritus is “off-label” in each case; only some cholestatic patients with 
concomitant hypercholesterolemia, such as symptomatic PBC, have found benefit 
from cholestyramine treatment.

With regard to the current status of empirical treatment for pruritus among all- 
cause liver disease patients, the aforementioned multicenter pruritus study docu-
mented that 45.7% of patients with pruritus received therapy with anti-pruritus 
agents; of them, 70.7%, 7.3%, and 12.3% received external medications only (e.g., 
skin moisturizer, anti-histamine, or corticosteroid ointment), oral medicine only 
(probably anti-allergic drugs), and both, respectively [1]. As patients’ subjective 
reports of the efficacy of responses included partial (41.2%) or even null response 
(16.6%), unmet needs for appropriate treatment are still present in this clinical area.

The opioid system is regarded as the central system for the perception of itching 
[9]. Countering the itch-inducible μ-opioid system, the κ-opioid pathway is consid-
ered to suppress itching from clinical observations; continuous epidural infusion of 
butorphanol (a partial κ agonist) was reported to decrease pruritus caused by epi-
dural morphine in postoperative children [10]. Moreover, intranasal administration 
of butorphanol was also effective for reducing intractable chronic itch due to various 
diseases, including PBC [11]. Kumagai et  al. validated the “yin and yang” dual 
modulation of itching by μ and κ opioid receptors with findings that the serum ratio 
of endogenous opioids β-endorphin (a μ agonist) to dynorphin-A (a κ agonist) 
increased according to the itch intensity in hemodialysis patients complaining of 
pruritus [12].

Nalfurafine hydrochloride ((2E)-N-[(5R,6R)-17-(cyclopropylmethyl)-4,5- 
epoxy- 3,14-dihydroxymorphinan-6-yl]-3-(furan-3-yl)-N-methylprop-2-enamide 
monohydrochloride), which was originally developed by TORAY, Japan, has been 
shown to be a selective κ-opioid receptor agonist in vitro, and exerts a broad range 
of antipruritic effects in both anti-histamine-effective and -ineffective models of 
itch in preclinical settings. After approval for the treatment of uremic pruritus resis-
tant to conventional drugs in Japan and Korea [13], a placebo-controlled double- 
blind phase III study for refractory pruritus in patients with chronic liver disease, 
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which included 142 liver cirrhosis patients, was undertaken in Japan [14]. Nalfurafine 
was given orally once a day for 12 weeks, at a dose of 2.5 μg or 5 μg. Changes in 
the mean VAS scale from the baseline value at week 4 were significantly greater in 
the groups treated with either 2.5 μg (p = 0.0022) or 5 μg (p = 0.0056) nalfurafine 
than in placebo groups, while a dose-response pattern was not apparent. The subse-
quent subgroup ANCOVA analysis based on the primary disease revealed a signifi-
cant difference in VAS only in PBC patients treated with 2.5  μg of nalfurafine 
(p = 0.0106), but neither in liver cirrhosis nor chronic hepatitis patients, likely in 
part because the statistical power was low due to the small sample size of the sub-
group. The major adverse drug reactions included pollakiuria, somnolence, and 
insomnia, but most such reactions were mild. In 2015, nalfurafine became the first 
drug approved for the treatment of pruritus in chronic liver disease in Japan.

After 3 years of clinical experience in Japan, at least two post-market surveys of 
the clinical efficacy of nalfurafine among patients with chronic liver disease are now 
available in the literature. A single center study among patients with various etiolo-
gies of liver disease [2] revealed that 93 out of 138 patients (67.4%) had improve-
ment of itch, defined as a self-reported decrease in VAS of 50 mm or more, after a 
median duration of 6.4 weeks. Of note, there were no significant differences in treat-
ment efficacy between those with low (<10.0 × 104/mm3) and high (≥10.0 × 104/
mm3) platelet count (p  =  0.170), implicating that pruritus in liver cirrhosis was 
indeed an indication for nalfurafine. The second study focused on the long-term 
(longer than 12 weeks) efficacy and utility of nalfurafine [15]. Nine out of eleven 
patients showed continuous improvement of symptoms, and this progress was still 
apparent at 20 weeks after starting administration (p < 0.0001).

Finally, the very recent report of a multicenter, post-marketing, single-arm pro-
spective study to investigate the efficacy of nalfurafine (2.5  μg, once daily for 
12  weeks) in PBC patients with refractory pruritus gives us some mechanistic 
insights into nalfurafine, regarding the dysregulated LPA-ATX axis. Yagi et  al. 
asked patients to complete questionnaires (the Japanese version of PBC-40 and the 
SF-36) to assess their symptoms and health-related quality of life (HRQOL), and to 
evaluate pruritus severity using the VAS [16]. The mean PBC-40 itch domain scores 
and VAS declined significantly from baseline during the study period (p = 0.041 and 
p = 0.001, respectively), while at the same time serum ATX levels were significantly 
increased (p  <  0.001). The fact that nalfurafine, a κ agonist, could mask these 
increases may indeed indicate that the opioid system for itch-sensing is upstream 
from the peripheral itch-causing LPA-ATX axis. The role of ATX in non-cholestatic 
pruritus in liver cirrhosis should continue to be evaluated cautiously in Japanese 
patients, especially in terms of the kinetics of ATX during long-term administration 
of nalfurafine; we cannot totally rule out the possibility that an increase in ATX in 
liver cirrhosis patients might have a negative impact on overall disease status.

The very recent publication by Kittaka et  al. convincingly demonstrated that 
cytoplasmic LPA produced de novo could activate TRPA1 and TRPV1  in dorsal 
root ganglion neurons to cause itching in mice, through LPA5 receptor- phospholipase 
D signaling [17]. Is this cascade also a target for the inhibition of pruritus in liver 
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cirrhosis? This will continue to be an open question until the central role of the 
LPA-ATX axis in pruritus in liver cirrhosis is validated (Fig. 13.1).

Patient-reported outcomes in liver cirrhosis should be more thoughtfully evalu-
ated in clinical practice; precise documentation of the nature of pruritus in liver 
cirrhosis, especially with regard to disease progression and hepatic reserve, will 
greatly assist the advancement of understanding in this field.
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Chapter 14
Prevention of Hepatocarcinogenesis 
in Liver Cirrhosis

Kyoko Hoshikawa and Yoshiyuki Ueno

Abstract Hepatocellular carcinoma (HCC) is still the second leading cause of 
cancer- related deaths in men worldwide. Most cases of HCC arise in the cirrhotic liver 
by various causes of hepatitis. In this chapter, we describe about the prevention of 
HCC incidence in cirrhosis. For viral hepatitis including hepatitis B and C virus hepa-
titis, use of the proper antiviral therapy is the most important way to reduce the risk of 
HCC. For other non-viral (NASH and alcoholic steatohepatitis) hepatitis, elimination 
of the causal substance is critical, such as reduction of alcohol consumption or body 
weight. However, careful surveillance is also essential for patients with cirrhosis.

Keywords Cirrhosis · Hepatocellular carcinoma · Hepatocarcinogenesis

14.1  Introduction

Despite the recent development of antiviral therapy for viral hepatitis, hepatocellu-
lar carcinoma (HCC) is still the second leading cause of cancer-related deaths in 
men worldwide [1]. Moreover, the mortality rate of HCC is increasing in North 
America, Oceania, and in Central and Northern Europe [2] due to an increasing 
number of patients with non-viral liver disease, especially with non-alcoholic ste-
atohepatitis (NASH), and lifestyle changes that result in obesity.

Most cases of HCC arise in the cirrhotic liver and occur as a result of long-term 
chronic hepatic inflammation induced by various causes of hepatitis [3]. Although 
fibrosis in the liver is closely associated with HCC, the mechanism underlying hepa-
tocarcinogenesis from fibrotic liver comprises multiple factors and remains uncer-
tain. Generally, various irritants including hepatitis B virus (HBV), hepatitis C virus 
(HCV), and non-viral (lipotoxicity and alcohol) stimuli induce apoptosis, which 
leads to inflammation in the liver. Chronic inflammation then induces the activation 
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of hepatic stellate cells, which is followed by fibrosis and cirrhosis. Within the 
fibrotic liver, alternations of molecular pathways, epigenetic changes, and somatic 
mutations can occur and contribute to hepatocarcinogenesis (Fig. 14.1). This chap-
ter mainly focuses on the prevention of hepatocarcinogenesis associated with HBV, 
HCV, and non-viral (NASH and alcoholic steatohepatitis) hepatitis.

14.2  Prevention of Hepatocarcinogenesis in HBV-Related 
Cirrhosis

Regardless of the universal development of hepatitis B vaccination and the use of 
antiviral therapy for the chronic hepatitis phase, HBV is still the leading cause of 
HCC [4, 5]. A recent publication reported that almost half of the individuals with 
HCC worldwide are infected with HBV [6]. This proportion varies with region and 
country, as a very high percentage (up to 60%) is observed in Asian countries (e.g., 
China), whereas a relatively low percentage (20%) is observed in the USA [6]. 
Therefore, better control of HBV infection is crucial to reduce the number of HCC 
cases, particularly those in high-prevalence areas of HBV.

It is well known that HBV-related HCC occurs in a non-cirrhotic liver, while 
most HCV-related HCC occur in a cirrhotic liver. This difference is due to the mech-
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Fig. 14.1 The pathogenetic mechanism of HCC in cirrhosis
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anism of the development of HCC; the part of HBV DNA such as HBx coding 
region is integrated into the host DNA as a possible oncogene and contributes to the 
onset of HCC. However, the risk of HBV-related HCC is still higher in individuals 
with cirrhosis than in those without cirrhosis. To date many studies have been per-
formed that describe the relationship between antiviral therapy and the prevention 
of HCC, although the beneficial effect of the antiviral therapy for HBV-related cir-
rhosis is inconsistent. Summaries of the results of the previous studies on antiviral 
therapy for HBV with respect to the therapy’s contribution to HCC incidence and 
recent consensus are described below.

In the last decade, new antiviral therapies such as nucleo(s)tide analogs (NAs) 
have been approved for use in HBV treatment. Thus far, interferon (IFN) therapies 
(IFN-α and pegylated IFN-α) and several NAs (lamivudine, adefovir, entecavir, and 
tenofovir) have been approved for the treatment of HBV infection. The overall 
reported effect of IFN-α treatment on the development of HCC in the setting of HBV 
is inconsistent [7]. However, some studies have shown that IFN-α treatment may be 
beneficial in reducing HCC incidence in patients with preexisting cirrhosis [8, 9].

A meta-analysis performed for initial NAs, such as lamivudine and adefovir, in 
patients with HBV and early cirrhosis showed a significant reduction in the risk of 
HCC [10–12]. More recently approved NAs including entecavir and tenofovir have 
shown more promising effects for the prevention of HCC. In one study, entecavir 
treatment significantly reduced the incidence of HCC in individuals with HBV 
infection and cirrhosis [13, 14]. Furthermore, the efficacy of entecavir with respect 
to HCC suppression was greater than that with lamivudine treatment [13]. However, 
a limited number of studies have been published on the efficacy of tenofovir therapy 
on HCC. A recent study reported that ETV/TDF therapy reduced the risk of HCC in 
patients with HBV and compensated cirrhosis [15].

Besides viral infection, other factors should also be considered in the develop-
ment of HBV-related HCC. Host factors are also important in the development of 
HCC; according to a recent study, older age, male gender, and high HBs-Ag or HBV 
DNA titer are thought to be independent risk factors for HCC. Currently, several 
scoring systems are used to assess the risk of HBV-related HCC [16, 17].

In a summary, the application of the proper antiviral therapy and subsequent sup-
pression of the viral load are the most important ways to reduce the risk of HCC due 
to HBV-related cirrhosis, but careful surveillance is also needed, particularly for 
older males with high HBs-Ag or HBV DNA viral load.

14.3  Prevention of Hepatocarcinogenesis in HCV-Related 
Cirrhosis

Recently, several direct-acting antivirals (DAAs) that provide a highly desired effect 
of sustained virologic response (SVR) in chronic hepatitis C have been approved. 
However, HCV infection is still the major cause of HCC particularly in patients 
with cirrhosis. Unlike HBV, most cases of HCV-related HCC occur in the cirrhotic 
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liver. Recently published studies regarding the long-term effect of SVR on the inci-
dence of HCC have also revealed the mechanisms of HCC prevention. On the con-
trary, some studies have shown the opposite result, and cases with early occurrence 
and recurrence of HCC after DAA treatment have been reported. Below, the details 
regarding the efficacy of antiviral treatment including past IFN-based therapy and 
current IFN-free DAA therapy are described; other non-antiviral therapies are also 
mentioned.

Historically, randomized controlled trials have been conducted to evaluate the 
efficacy of IFN-α in HCV-related HCC in patients with cirrhosis in Japan. These 
studies revealed that IFN-α decreased the incidence of HCC (4% in IFN-α patients 
vs. 38% in controls) [18]. The international hepatitis C antiviral long-term treatment 
against cirrhosis trial revealed that long-term peginterferon therapy reduced the risk 
of HCC in patients with cirrhosis [19]. Accompanied by using antiviral therapy, a 
high SVR is even achieved in the patients with cirrhosis. One study that included a 
large cohort assessed the long-term efficacy of SVR after IFN-based treatment and 
demonstrated a reduction in the incidence rate of HCC in patients with cirrhosis 
(SVR 6.4 vs. no SVR 21.0/1000 per year) [20]. More recently, treatment with sev-
eral IFN-free DAA therapies that have been approved led to a high SVR. However, 
the beneficial effect of DAAs on the incidence of HCC remains controversial. A 
group known as HCV Research UK determined the short-term effect of IFN-free 
DAA on SVR in patients with cirrhosis and concluded that antiviral therapy 
improves liver function with no indication of the development of adverse effects of 
HCC [21]. On the contrary, research groups from Italy and Spain reported an early 
occurrence and recurrence of HCC after DAA therapy in such patients [22, 23]. 
They speculate that this conflicting phenomenon occurs because of the immune 
system changes within the liver and an incomplete detection of early HCC before 
DAA therapy. A study on the long-term efficacy of IFN-free DAA therapy for the 
reduction in the incidence of HCC is warranted to resolve this issue.

In addition to those discussed above, other therapies may be used to prevent 
HCV-related HCC. Ursodeoxycholic acid and glycyrrhizin were broadly used as 
primary drugs before the advent of the current efficient antiviral therapy. These 
drugs exert anti-inflammatory effects on the liver, and longitudinally prevent fibro-
sis and HCC. A study of glycyrrhizin on a large cohort revealed that glycyrrhizin 
reduces the incidence of HCC among patients with HCV who are resistant to IFN 
therapy. Another study reported the efficacy of angiotensin-converting-enzyme 
inhibitors and angiotensin II receptor blockers for the prevention of fibrosis and 
HCC [24–26]. These drugs are broadly used as antihypertensive agents, and their 
safety is well established. The efficacy of these drugs against fibrosis may possibly 
be due to the relationship between the activation of stellate cells and angiotensin II 
receptor expression [27]. It has also been confirmed that branched-chain amino 
acids (BCAAs) prevent the development of HCC in the cirrhotic liver [28, 29]. 
Since the development of HCC is closely related to insulin resistance (IR) and 
sometimes occurs in individuals with diabetes [30], it is important to maintain a 
normal response to insulin to prevent the development of HCC. BCAAs could pre-
vent the occurrence of HCC by improving IR in the cirrhotic liver [31].
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Although several therapies can be used to prevent the development of HCC from 
HCV-related cirrhosis, older age is still the strongest risk factor [32]. Thus, to pre-
vent the development of HCC from HCV-related cirrhosis, the use of antiviral ther-
apy for patients with compensated cirrhosis and concomitant, careful surveillance is 
needed, particularly in elderly populations, even if SVR is achieved.

14.4  Prevention of Hepatocarcinogenesis  
in Non-viral- associated Cirrhosis

14.4.1  NASH-Associated HCC

With lifestyle changes followed by an increased number of individuals with obesity, 
non-alcoholic fatty liver disease and its severe phenotype, NASH, have become a 
significant public health problem. Currently, NASH is the second leading cause of 
liver transplantation among adults who are on the transplant waiting list. However, 
NASH treatment is still limited to weight reduction due to a lack of effective phar-
macological therapy. Under such circumstances, the incidence of HCC due to 
NASH has increased and has become an important issue.

As in other cancers (colorectal, breast, kidney, and esophageal cancer), obesity is 
associated with an increased risk of HCC [33, 34]. The pathogenesis of NASH is 
closely related to the condition of obesity, and thus weight control is pivotal in such 
patients. Recently, one study revealed that weight reduction by lifestyle modifica-
tion and bariatric surgery improved the condition of fibrosis in the liver [35, 36].

Other important risk factors for the development of HCC are IR followed by 
diabetes mellitus. Most NASH patients exhibit some degree of IR and/or diabetes. 
It is well known that diabetes increases the risk of HCC [30, 37]. Among the treat-
ment of diabetes, metformin, a drug that inhibits hepatic gluconeogenesis reduces 
the risk of HCC in patients with diabetes [38].

Although weight reduction and maintenance of a better metabolic status are cru-
cial in the prevention of HCC development from NASH, urgent development of 
pharmacological therapy is still needed for NASH patients.

14.4.2  Alcohol-Associated HCC

A meta-analysis demonstrated that alcohol intake is linked to an increased risk of 
HCC [39]. Furthermore, the HCC incidence rates are higher in patients with cirrhosis 
[40, 41]. The most effective and important method of HCC prevention is the reduction 
of alcohol consumption. However, since these patients also tend to have alcoholism, it 
is sometimes challenging for them to stop their alcohol intake. Therefore, at an appro-
priate time, these patients should be introduced to groups such as alcoholics anony-
mous and/or should be informed regarding a consultation with a psychiatrist.
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14.4.3  Other Causes of HCC

Although the occurrence of HCC is rare in women with primary biliary cirrhosis 
(PBC), an increased risk of HCC is observed in men with PBC [42]. Among patients 
with autoimmune hepatitis, the development of cirrhosis and HCC is rare. Similarly, 
the occurrence of HCC as a result of primary sclerosing cholangitis is low.

14.5  Conclusion

In the last decade, the treatment for chronic hepatitis has rapidly evolved, and the 
disease proportion is shifting from viral to non-viral hepatitis. However, HCC mor-
tality rates are still relatively high compared with those of other cancers, and thus 
HCC prevention has become even more important in patients with cirrhosis. In 
addition to the appropriate therapy for individual liver diseases, careful surveillance 
is essential, especially in patients with cirrhosis.

References

 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 
2012. CA Cancer J Clin. 2015;65(2):87–108.

 2. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and 
trends–an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27.

 3. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–17.
 4. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcino-

genesis. Gastroenterology. 2007;132(7):2557–76.
 5. Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepa-

tocellular carcinoma: a global and regional perspective. Oncologist. 2010;15(Suppl 4):5–13.
 6. Levrero M, Zucman-Rossi J.  Mechanisms of HBV-induced hepatocellular carcinoma. J 

Hepatol. 2016;64(1 Suppl):S84–S101.
 7. Lai CL, Yuen MF. Prevention of hepatitis B virus-related hepatocellular carcinoma with anti-

viral therapy. Hepatology. 2013;57(1):399–408.
 8. Lin SM, Yu ML, Lee CM, Chien RN, Sheen IS, Chu CM, et al. Interferon therapy in HBeAg 

positive chronic hepatitis reduces progression to cirrhosis and hepatocellular carcinoma. J 
Hepatol. 2007;46(1):45–52.

 9. Ikeda K, Saitoh S, Suzuki Y, Kobayashi M, Tsubota A, Fukuda M, et al. Interferon decreases 
hepatocellular carcinogenesis in patients with cirrhosis caused by the hepatitis B virus: a pilot 
study. Cancer. 1998;82(5):827–35.

 10. Sung JJ, Tsoi KK, Wong VW, Li KC, Chan HL. Meta-analysis: treatment of hepatitis B infec-
tion reduces risk of hepatocellular carcinoma. Aliment Pharmacol Ther. 2008;28(9):1067–77.

 11. Matsumoto A, Tanaka E, Rokuhara A, Kiyosawa K, Kumada H, Omata M, et al. Efficacy of 
lamivudine for preventing hepatocellular carcinoma in chronic hepatitis B: a multicenter retro-
spective study of 2795 patients. Hepatol Res. 2005;32(3):173–84.

 12. Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H, et al. Lamivudine for patients with 
chronic hepatitis B and advanced liver disease. N Engl J Med. 2004;351(15):1521–31.

K. Hoshikawa and Y. Ueno



165

 13. Hosaka T, Suzuki F, Kobayashi M, Seko Y, Kawamura Y, Sezaki H, et al. Long-term entecavir 
treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infec-
tion. Hepatology. 2013;58(1):98–107.

 14. Wong GL, Chan HL, Mak CW, Lee SK, Ip ZM, Lam AT, et al. Entecavir treatment reduces 
hepatic events and deaths in chronic hepatitis B patients with liver cirrhosis. Hepatology. 
2013;58(5):1537–47.

 15. Papatheodoridis GV, Idilman R, Dalekos GN, Buti M, Chi H, van Boemmel F, et  al. The 
risk of hepatocellular carcinoma decreases after the first 5 years of entecavir or tenofovir in 
Caucasians with chronic hepatitis B. Hepatology. 2017;66(5):1444–53.

 16. Yang HI, Yuen MF, Chan HL, Han KH, Chen PJ, Kim DY, et al. Risk estimation for hepatocel-
lular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive 
score. Lancet Oncol. 2011;12(6):568–74.

 17. Papatheodoridis GV, Chan HL, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular 
carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J 
Hepatol. 2015;62(4):956–67.

 18. Nishiguchi S, Kuroki T, Nakatani S, Morimoto H, Takeda T, Nakajima S, et al. Randomised 
trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active 
hepatitis C with cirrhosis. Lancet. 1995;346(8982):1051–5.

 19. Lok AS, Everhart JE, Wright EC, Di Bisceglie AM, Kim HY, Sterling RK, et al. Maintenance 
peginterferon therapy and other factors associated with hepatocellular carcinoma in patients 
with advanced hepatitis C. Gastroenterology. 2011;140(3):840–849. quiz e12.

 20. Janjua NZ, Chong M, Kuo M, Woods R, Wong J, Yoshida EM, et al. Long-term effect of sus-
tained virological response on hepatocellular carcinoma in patients with hepatitis C in Canada. 
J Hepatol. 2017;66(3):504–13.

 21. Cheung MCM, Walker AJ, Hudson BE, Verma S, McLauchlan J, Mutimer DJ, et al. Outcomes 
after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decom-
pensated cirrhosis. J Hepatol. 2016;65(4):741–7.

 22. Conti F, Buonfiglioli F, Scuteri A, Crespi C, Bolondi L, Caraceni P, et al. Early occurrence 
and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting 
antivirals. J Hepatol. 2016;65(4):727–33.

 23. Reig M, Marino Z, Perello C, Inarrairaegui M, Ribeiro A, Lens S, et  al. Unexpected high 
rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free 
therapy. J Hepatol. 2016;65(4):719–26.

 24. Terui Y, Saito T, Watanabe H, Togashi H, Kawata S, Kamada Y, et  al. Effect of angioten-
sin receptor antagonist on liver fibrosis in early stages of chronic hepatitis C.  Hepatology. 
2002;36(4 Pt 1):1022.

 25. Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL, et  al. Do 
inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet. 
1998;352(9123):179–84.

 26. Yoshiji H, Noguchi R, Toyohara M, Ikenaka Y, Kitade M, Kaji K, et al. Combination of vita-
min K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of 
hepatocellular carcinoma. J Hepatol. 2009;51(2):315–21.

 27. Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, et al. Angiotensin 
II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 
2000;118(6):1149–56.

 28. Kawaguchi T, Shiraishi K, Ito T, Suzuki K, Koreeda C, Ohtake T, et al. Branched-chain amino 
acids prevent hepatocarcinogenesis and prolong survival of patients with cirrhosis. Clin 
Gastroenterol Hepatol. 2014;12(6):1012–8 e1.

 29. Nishikawa H, Osaki Y.  Clinical significance of therapy using branched-chain amino 
acid granules in patients with liver cirrhosis and hepatocellular carcinoma. Hepatol Res. 
2014;44(2):149–58.

 30. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and 
hepatocellular carcinoma. Gastroenterology. 2004;126(2):460–8.

14 Prevention of Hepatocarcinogenesis in Liver Cirrhosis



166

 31. Kawaguchi T, Nagao Y, Matsuoka H, Ide T, Sata M.  Branched-chain amino acid-enriched 
supplementation improves insulin resistance in patients with chronic liver disease. Int J Mol 
Med. 2008;22(1):105–12.

 32. Asahina Y, Tsuchiya K, Tamaki N, Hirayama I, Tanaka T, Sato M, et  al. Effect of aging 
on risk for hepatocellular carcinoma in chronic hepatitis C virus infection. Hepatology. 
2010;52(2):518–27.

 33. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed 
mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

 34. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from 
cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

 35. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, 
Gonzalez-Fabian L, et al. Weight loss through lifestyle modification significantly reduces fea-
tures of nonalcoholic steatohepatitis. Gastroenterology. 2015;149(2):367–78 e5. quiz e14-5.

 36. Hannah WN Jr, Harrison SA. Effect of weight loss, diet, exercise, and bariatric surgery on 
nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20(2):339–50.

 37. El-Serag HB, Richardson PA, Everhart JE. The role of diabetes in hepatocellular carcinoma: a 
case-control study among United States veterans. Am J Gastroenterol. 2001;96(8):2462–7.

 38. Chen HP, Shieh JJ, Chang CC, Chen TT, Lin JT, Wu MS, et al. Metformin decreases hepatocel-
lular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut. 
2013;62(4):606–15.

 39. Bagnardi V, Blangiardo M, La Vecchia C, Corrao G. A meta-analysis of alcohol drinking and 
cancer risk. Br J Cancer. 2001;85(11):1700–5.

 40. Kuper H, Ye W, Broome U, Romelsjo A, Mucci LA, Ekbom A, et al. The risk of liver and 
bile duct cancer in patients with chronic viral hepatitis, alcoholism, or cirrhosis. Hepatology. 
2001;34(4 Pt 1):714–8.

 41. Uetake S, Yamauchi M, Itoh S, Kawashima O, Takeda K, Ohata M. Analysis of risk factors 
for hepatocellular carcinoma in patients with HBs antigen- and anti-HCV antibody-negative 
alcoholic cirrhosis: clinical significance of prior hepatitis B virus infection. Alcohol Clin Exp 
Res. 2003;27(8 Suppl):47S–51S.

 42. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T, et  al. Risk factors 
for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med. 
1993;328(25):1797–801.

K. Hoshikawa and Y. Ueno



167© Springer Nature Singapore Pte Ltd. 2019 
H. Yoshiji, K. Kaji (eds.), The Evolving Landscape of Liver Cirrhosis 
Management, https://doi.org/10.1007/978-981-13-7979-6_15

Chapter 15
Antifibrotic Therapy for Liver Cirrhosis

Le Thi Thanh Thuy, Hoang Hai, Vu Ngoc Hieu, Ninh Quoc Dat, 
Dinh Viet Hoang, and Norifumi Kawada

Abstract Liver cirrhosis plays a main cause of morbidity and mortality, espe-
cially for those at an advanced decompensated stage. The development and pro-
gression of cirrhosis involve a diffuse hepatic process characterized by fibrosis and 
the conversion of normal liver architecture into structurally abnormal nodules. 
There have been a number of recent advances in our understanding of the patho-
genesis of hepatic fibrosis, including evidence of the reversibility of fibrosis and 
the inactivation of hepatic stellate cells (HSCs) and/or myofibroblasts (MFs), and 
increasing numbers of small molecules and biological agents have been developed 
to explore new means of treating this condition. Here, we focus on the main 
approaches for antifibrotic therapy: (1) elimination of the cause of liver cirrhosis; 
(2) inhibition of the accumulation of inflammatory cells in the liver; (3) deactiva-
tion of HSCs and MFs; (4) control of key signal transduction pathways; and (5) 
antioxidant therapy.

Keywords Liver fibrosis · Cirrhosis · Hepatic stellate cells · Myofibroblast  
Antioxidant · Pro-oxidant · Cytoglobin · Antifibrosis

15.1  Introduction

Cirrhosis is an advanced stage of liver fibrosis that occurs with progression from 
chronic liver disease and results in liver inflammation, fibrogenesis with dense 
extracellular matrix (ECM), distortion of the hepatic vasculature, and collapse of 
the liver structure [1]. The ECM in cirrhosis is composed of a complex assembly 
of different molecules, including the fibril-forming interstitial collagens type I 
and III, basement membrane collagen type IV, non-collagenous glycoproteins, 
such as fibronectin and laminin, elastic fibers, and glycosaminoglycans and 
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proteoglycans [2]. The major hepatic ECM-producing cells are myofibroblasts 
(MFs), which are derived from activated hepatic stellate cells (HSCs) or portal 
fibroblasts, other inflammatory cells, and bile duct epithelial cells. The ECM also 
binds and secretes growth factors and cytokines that drive morphogenesis, cell 
function, and metabolism [3].

Rapid progress in our understanding of the molecular mechanisms underlying 
cirrhosis, and its potential reversal, has resulted in the development of a number of 
antifibrotic drugs. This chapter will discuss therapeutic approaches to the reversal of 
fibrosis, focus on treatment of the underlying disease, and the development of 
intrinsic antifibrotic drugs that specifically target the mechanism of fibrogenesis, 
regardless of the cause of liver disease.

15.2  Elimination of the Cause of Liver Cirrhosis

The earlier chapters of this book described the etiology of liver diseases that induce 
liver cirrhosis. These include chronic viral hepatitis B and C, autoimmune diseases, 
biliary disorders, drug-induced liver diseases, and alcoholic steatohepatitis (ASH), 
as well as nonalcoholic steatohepatitis (NASH). Fibrosis without control of the 
underlying causative factors can result in advanced stage cirrhosis with high levels 
of ECM deposition, causing morbidity and mortality. Therefore, to prevent fibrosis, 
the causative factors should be eliminated. Efficient therapies have been developed 
to control and alleviate the underlying causes, which are capable of not only slow-
ing down fibrosis progression, but also of inducing regression of fibrosis. About 
80% of the 143 million people exposed to hepatitis C virus (HCV) worldwide 
develop chronic infection [4, 5], and the risk of cirrhosis progression is 10–30% 
over 30 years [6]. Fortunately, highly effective therapies using direct-acting antivi-
ral (DAA) can achieve remarkably high sustained virologic response (SVR) rates of 
94–100% [7–10].

NASH and obese individuals that manage to lose 10% of their body weight can 
show reductions in liver inflammation [11] and gradually weight loss of 7% per year 
is recommended [12]. In addition, treatment with vitamin E or pioglitazone 
improved NASH in adults without diabetes [13]. ASH is induced by excessive and 
prolonged alcohol use. To prevent ASH, therefore, alcohol consumption should be 
less than 60–80 ml/day for men or 40–50 ml/day for women, for no longer than 
5 years. Autoimmune hepatitis and primary biliary cholangitis are common autoim-
mune diseases, which may progress to cirrhosis, and are treated by immunosuppres-
sion and ursodeoxycholic acid, respectively. Another etiology of fibrosis is 
drug-induced liver injury, including all classes of adverse drug reactions [14]. In 
most cases, drug withdrawal based on monitoring of liver enzyme parameters can 
improve the disease [15].
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15.3  Inhibition of Accumulation of Inflammatory Cells 
to the Liver

15.3.1  Damaged Hepatocytes Recruit Inflammatory Cells 
Secreting Cytokines and Chemokines to the Liver

Hepatocyte necrosis and apoptosis triggered by any etiology are prominent drivers 
of chronic liver inflammation and fibrosis [16–18]. Apoptotic bodies and cellular 
contents derived from damaged hepatocytes can activate quiescent HSCs and 
Kupffer cells, and lead to the accumulation of neutrophils and other immune cells. 
These activated cell populations can release the proinflammatory cytokines, inter-
leukin (IL)-1, IL-6, IL-8, IL-12, and tumor necrosis factor-alpha (TNF-α), and the 
chemokines C-C motif chemokine ligand 2 (CCL2) and CCL5 [16, 19]. These cyto-
kines/chemokines can stimulate activity in nearby cells (paracrine action), in distant 
cells (endocrine action), and in the cells from which they are produced in an auto-
crine manner [20]. The roles of these cytokines and chemokines in activating HSCs, 
amplifying inflammation, and driving liver fibrosis and cirrhosis have been well 
characterized in both human and animal studies [16, 21, 22]. Current therapies tar-
get these small proteins, either to neutralize them or inhibit them from accelerating 
liver damage and fibrosis.

15.3.2  Cytokines and Chemokines Inhibitors

If cytokines can drive HSC activation, targeting a single or multiple cytokines may 
provide a way to block or reverse at least some of the fibrotic processes occurring in 
liver disease. A number of drugs target multiple cytokines, including anti-IL-4/13 
(ClinicalTrials.gov ID # NCT 01529853) and anti-IL-17A/R [23, 24], which have 
been used for other indications such as idiopathic pulmonary fibrosis and plaque 
psoriasis. However, these drugs also have antifibrotic potential in liver fibrosis. In a 
recent study, 55 adults with biopsy-confirmed NASH were randomized to receive 
pentoxifylline (anti-TNF-α, PTX) at a dose of 400 mg three times a day (n = 26) or 
placebo (n  =  29) over 1  year. PTX significantly improved steatosis and lobular 
inflammation. PTX also improved liver fibrosis (mean change in fibrosis score − 0.2 
for PTX vs. +0.4 for placebo, p = 0.038) [25].

Chemokine-directed therapies investigated in animal models of NASH and fibro-
sis, such as the CCL2 blocker NOX-E36 [26, 27], have recently entered phase I and 
II clinical trials in patients with diabetes. Another interesting dual oral CCR2/CCR5 
inhibitor, cenicriviroc, has been used successfully in rodent models of NASH and 
fibrosis [28], but clinical trials in nonalcoholic fatty liver disease or hepatic fibrosis 
have not yet been performed.

15 Antifibrotic Therapy for Liver Cirrhosis
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Further investigations are required regarding which cytokines should be chosen 
and how they affect the whole body or organ-specific targets [29].

15.3.3  Infection in Liver Cirrhosis and Gut Microbiome-Based 
Therapies

In parallel with a state of excessive activation of proinflammatory cytokines, 
patients with cirrhosis are in a state of immune dysfunction, referred to as cirrhosis- 
associated immune dysfunction syndrome, which predisposes them to infection 
[30, 31]. Chapter 8, “Microbiome in liver cirrhosis,” described in detail these altera-
tions. Here, we summarize gut microbiome-based therapies, including probiotics, 
prebiotics, synbiotics, and antibiotics, which may control complications of liver 
cirrhosis, such as hepatic encephalopathy (HE). Many studies have shown that pro-
biotics have effects on HE by reducing blood ammonia levels, improving minimal 
hepatic encephalopathy (MHE), and preventing overt HE [32]. Shulka et al. reported 
that the administration of prebiotics, probiotics, and synbiotics was related to 
improvement of MHE [33]. A systematic review and meta-analysis of randomized 
trials indicated that probiotics and synbiotics improved HE to a greater extent than 
placebo and lactulose [34]. Rifaximin, a minimally absorbed oral antimicrobial 
agent, has broad-spectrum in vitro activity against gram-positive and gram-negative 
aerobic and anaerobic enteric bacteria, reduces the risk of HE recurrence and 
HE-related hospitalization [35], and improves systemic hemodynamics and renal 
function [36, 37]. Among 12 promising clinical trials (http://www.ClinicalTrials.
gov) in phase IV trials of single or combination microbiome therapies for liver cir-
rhosis and its complications, the most promising results were seen for rifaximin 
(Table 15.1).

15.4  Targeting Activated Hepatic Stellate Cells 
and Myofibroblasts

15.4.1  Apoptosis, Senescence, or Reversion of Activated HSCs

Hepatic fibrosis is reversible and cirrhosis may regress in some patients with reduc-
tion in the number of activated HSCs [38]. There are three main ways to eliminate 
activated HSCs, i.e., apoptosis, senescence, and reversion to an inactivated 
phenotype.

Apoptosis: Several studies in animal models of liver fibrosis in the recovery 
phase suggested a vital contribution of HSC apoptosis to the resolution of fibrosis 
[39, 40]. Many regulators of HSC apoptosis have been discovered, such as anti- 
apoptotic factors TNF-α, TGF-β, and interferon-alpha (IFN-α). In addition, the 
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expression of death receptors in activated HSCs, including Fas/CD95, TNF receptor 
1 (TNFR1), p75NTR, and TRAIL receptors, could represent another way of stimu-
lating HSC apoptosis [41–43].

Senescence: Some HSC-derived MFs may transform into senescent cells [44], 
which constitute a barrier to liver fibrosis due to stable cell cycle arrest. Several 
mechanisms have been suggested for induction of HSC senescence, including 
 replicative exhaustion, overstimulation, and oxidative stress [41]. Recently, insulin-
like growth factor-I (IGF-I) and IL-22 were found to induce HSC senescence, thus 
limiting liver fibrosis [45, 46].

Reversion: Recent studies suggested a new phenotype of HSCs, in which aHSCs 
undergo reversal to a quiescent-like phenotype [16, 47, 48]. Reverted HSCs exhibit 
downregulation of the fibrogenic genes collagen-α1, α-SMA, TGF-βRI, and TIMP1, 
and upregulation of some quiescence-associated genes to levels comparable to those 
seen in qHSCs. Human HSCs are also able to adopt an inactivated phenotype simi-
lar to the above results in mouse models [49]. This phenomenon may inform new 
therapeutic perspectives for liver cirrhosis.

15.4.2  Targeting Activated Myofibroblast and HSC-Specific 
Drug Delivery

Fibrolysis pathways target MFs and drug delivery to fibrogenic cells within the liver 
represents a major priority [38]. A number of clinical trials are currently in progress 
to assess the efficacy of potential agents (Table 15.2), including galectin 3, farnesoid 
X receptor (FXR), and combined peroxisome proliferator-activated receptor 
(PPAR)-α–PPAR-δ agonist.

Galectin 3 is required for TGF-β mediated MF activation and matrix production. 
Disruption of the galectin 3 gene [50] or treatment with galectin inhibitors signifi-
cantly reduced fibrosis and reversed cirrhosis [51]. A phase I clinical trial of 
GR-MD-O2 (galectin 3 inhibitors) in patients with NASH and a phase II study to 
evaluate efficacy in patients with advanced fibrosis have been completed.

FXR signaling stimulates sensitivity to insulin, as well as fatty acid beta oxida-
tion, and also reduces gluconeogenesis and lipogenesis in hepatocytes [52]. A large 
randomized phase II clinical trial of the FXR ligand obeticholic acid (OCA), for 
72 weeks in 283 participants with biopsy-confirmed NASH, indicated clear improve-
ment of NAFLD activity score and fibrosis stage [53].

A combined peroxisome proliferator-activated receptor (PPAR)-α–PPAR-δ ago-
nist, GFT505, which showed high efficacy in multiple animal models [54], has 
entered phase IIb of a large randomized clinical trial in 270 participants. This agent 
resolves NASH without exacerbating fibrosis in patients with moderate to severe 
NASH [55], and a phase III trial conducted in 2000 participants began in 2016 
(Table 15.2).

Despite potent activities of many antifibrotic drugs in vitro, only minor effects 
are observed in vivo due to nonspecific delivery. Therefore, many new therapies 
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Table 15.2 Current clinical trials phase I–IV for therapy targeting myofibroblasts and HSC

No Title Phase Participants Conditions Interventions Results ID

1 Safety and 
efficacy of 
selonsertib, 
GS-0976, 
GS-9674, and 
combinations 
in participants 
with bridging 
fibrosis or 
compensated 
cirrhosis due 
to 
nonalcoholic 
steatohepatitis

II 350 Nonalcoholic 
steatohepatitis

Drug: SEL
Drug: 
GS-0976
Drug: 
GS-9674
Drug: SEL 
placebo
Drug: 
GS-0976 
placebo
Drug: 
GS-9674 
placebo

Pending NCT03449446

2 Rollover study 
of cenicriviroc 
for the 
treatment of 
liver fibrosis 
in participants 
with 
nonalcoholic 
steatohepatitis

II 200 Nonalcoholic 
steatohepatitis
Liver 
cirrhosis
Non-alcoholic 
fatty liver 
disease

Drug: 
cenicriviroc 
(CCR2/
CCR5 
antagonist)

Pending NCT03059446

3 AURORA: 
Phase 3 Study 
for the 
efficacy and 
safety of 
cenicriviroc 
(CVC) for the 
treatment of 
liver fibrosis 
in adults with 
NASH

III 2000 Nonalcoholic 
steatohepatitis

Drug: 
cenicriviroc 
(CCR2/
CCR5 
antagonist)
Drug: 
placebo

Pending NCT03028740

4 Phase 3 study 
to evaluate the 
efficacy and 
safety of 
elafibranor 
versus placebo 
in patients 
with 
nonalcoholic 
steatohepatitis 
(NASH)

III 2000 Nonalcoholic 
steatohepatitis 
(NASH) with 
fibrosis

Drug: 
elafibranor 
(PPAR-α and 
PPAR-δ 
agonist)
Drug: 
placebo

Pending NCT02704403

L. T. T. Thuy et al.
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Table 15.2 (continued)

No Title Phase Participants Conditions Interventions Results ID

5 Randomized 
global phase 3 
study to 
evaluate the 
impact on 
NASH with 
fibrosis of 
obeticholic 
acid treatment

III 2370 Non-alcoholic
steatohepatitis 
(NASH)

Drug: 
obeticholic 
acid
Drug: 
placebo

Pending NCT02548351

6 Safety, 
tolerability, 
and efficacy 
of GS-4997 
alone or in 
combination 
with 
simtuzumab 
(SIM) in 
adults with 
nonalcoholic 
steatohepatitis 
(NASH) and 
fibrosis stages 
F2-F3

II 72 Non-alcoholic
steatohepatitis 
(NASH)

Drug: 
GS-4997 
(ASK1 
inhibitor)
Biological: 
SIM

Improve-
ment in 
fibrosis with 
reductions 
in liver 
stiffness, 
serum 
biomarkers 
of apoptosis 
and necrosis

NCT02466516

7 Phase 1 study 
to evaluate 
safety of 
GR-MD-02 in 
subjects with 
non-alcoholic 
steatohepatitis 
(NASH) and 
advanced 
fibrosis

I 31 Non-alcoholic 
steatohepatitis 
(NASH)

Drug: 
GR-MD-02 
(galectin 
inhibitor)
Drug: 
placebo

No results 
reported

NCT01899859

8 Clinical trial 
to evaluate the 
safety and 
efficacy of 
GR-MD-02 
for the 
treatment of 
liver fibrosis 
and resultant 
portal 
hypertension 
in patients 
with Nash 
cirrhosis

II 162 Hypertension, 
portal

Drug: 
GR-MD-02 
(galectin 
inhibitor)
Drug: 
placebo

No results 
reported

NCT02462967

(continued)
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have been developed targeting HSCs, a key component in the development of 
fibrosis, through receptors expressed on these cells, to increase the efficacy and 
reduce the disadvantages of nonspecific targeted therapies [56, 57]. Promisingly, 
Vitamin A- coupled liposomes specifically targeting HSCs completely reversed 
fibrosis in different experimental mouse models of liver injury [58]. Thus, the 
development of drug delivery systems targeting HSCs may represent a useful 
approach for inhibiting or reversing fibrosis in a therapeutic setting in clinical 
practice.

Table 15.2 (continued)

No Title Phase Participants Conditions Interventions Results ID

9 Clinical trial 
to evaluate 
efficacy of 
GR-MD-02 
for treatment 
of liver 
fibrosis in 
patients with 
NASH with 
advanced 
fibrosis

II 30 Nonalcoholic 
steatohepatitis

Drug: 
GR-MD-02 
(galectin 
inhibitor)
Drug: 
placebo

No results 
reported

NCT02421094

10 Efficacy and 
safety study of 
cenicriviroc 
for the 
treatment of 
NASH in 
adult subjects 
with liver 
fibrosis

II 289 Nonalcoholic 
steatohepatitis

Drug: 
cenicriviroc 
(CCR2/
CCR5 
antagonist)
Drug: 
placebo

No results 
reported

NCT02217475

11 Study of 
INT-747 as 
monotherapy 
in patients 
with PBC

II 59 Liver 
cirrhosis, 
biliary

Drug: 
placebo
Drug: 
INT-747

Reduction 
of alkaline 
phosphatase 
levels, GGT 
(p < 0.0001), 
ALT 
(p < 0.01) 
compared 
to control

NCT00570765

12 Study of INT 
747 in 
combination 
with URSO in 
patients with 
primary 
biliary
Cirrhosis

II 165 Liver 
cirrhosis, 
biliary

Drug: 
INT-747
Drug: URSO
Drug: 
placebo

Significant 
reduction of 
ALP, GGT, 
ALT

NCT00550862

L. T. T. Thuy et al.
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15.5  Control of Key Signal Transduction Pathways

15.5.1  Intracellular Signaling Pathways Mediating Liver 
Fibrogenesis

All in  vitro and in vivo studies in cultured HSCs and experimental fibrogenesis 
using knockout mice, or human studies, indicated several intracellular pathways 
regulating fibrogenesis [59, 60], i.e., ERK, JNK, PI3K-Akt, TGF-β1, PDGF, 
PPAR-γ, and TLRs. Extracellular-regulated kinase (ERK) was induced in acute 
liver damage by CCL4 which mediates proliferation and chemotaxis of HSC, and 
modulates nuclear signaling [61]. c-Jun N-terminal kinase (JNK) activation occurs 
during toxic, metabolic, and autoimmune liver injury [62, 63] involved in HSC 
activation and fibrogenesis [64]. The focal adhesion kinase (FAK)-
phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is important for HSC 
migration, cell attachment, and collagen production [65]. The transforming growth 
factor (TGF)-β1- activated Smad signaling pathway stimulates experimental hepatic 
fibrosis [66], shows a close correlation between increased TGFβ-1 gene expression 
and the high- level collagen type I mRNA expression in the liver tissue of patients 
with cirrhosis [60], and is major pathway induced HSCs activation and fibrosis 
development [67]. Overexpression of TGF-β1 in transgenic mice results in fibrosis 
of multiple organs [21], and TGF-β1−/− mice show strong resistance to the develop-
ment of liver fibrosis [68]. Platelet-derived growth factor (PDGF) is the most potent 
factor involved in stimulating HSC proliferation, differentiation, and migration 
[69]. The ligand- dependent transcription factor peroxisome proliferator-activated 
receptor gamma (PPAR-γ) pathway regulates HSC activation and experimental 
liver fibrosis. PPAR-γ ligands inhibit the fibrogenic actions in HSCs and attenuate 
liver fibrosis in vivo [70, 71]. Recent studies suggested a role for intracellular path-
ways signaled by toll- like receptors (TLRs) in liver fibrosis associated with hepati-
tis C infection [72], NASH and ASH [73], primary biliary cirrhosis [74], and 
cirrhosis [75, 76].

15.5.2  Targeting the Receptor–Ligand Interaction

Inhibition of the signal transduction pathways involved in liver fibrogenesis, as 
mentioned above, likely has the potential to treat liver fibrosis [77]. Blockade of 
TGF-β1 synthesis or signaling is a primary target for the development of antifi-
brotic approaches [68]. However, because TGFβ also regulates homeostatic func-
tions including growth suppression, systemic inhibition of TGFβ could enhance 
the development of neoplasia. Therefore, selective blockade of the TGFβ pathway 
by targeting cell surface molecules involved in its activation is especially 
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appealing. An inhibitory antibody to αvβ6 integrin (an activator of latent-TGF-β1) 
(STX-100, ClinicalTrials.gov ID # NCT 01371305) is currently being tested in 
idiopathic pulmonary fibrosis (IPF). Antifibrotic activity of another drug approved 
for IPF, pirfenidone, is also being tested in cirrhotic patients in a phase II clinical 
trial [78].

Targeting the PDGF signaling pathway also holds therapeutic promise [69]. 
Sorafenib and nilotinib are the typical representatives of fibrosis inhibitors through 
the PDGF pathway [69, 79]. Sorafenib is a first-line oral chemotherapy drug for 
patients with advanced hepatocellular carcinoma, sorafenib has previously been 
demonstrated to be a potential antifibrotic agent, due to its multi-targeting of the 
Ras/MEK/ERK pathway [79].

Targeting of intracellular signaling via nuclear receptors, such as PPAR-γ and 
FXR, was described in Sect. 15.4.2. The discovery of membrane and nuclear 
receptors expressed by HSCs, which have been previously identified in other tis-
sues, has opened new avenues for antifibrotic therapies, including those targeting 
the renin–angiotensin system, and serotonin, cannabinoid, and endothelin 1 recep-
tors [80, 81].

15.5.3  Combination Therapy

Combination therapies that address liver fibrosis via a multipronged approach hold 
a great deal of promise for future treatment, ideally by targeting interactions between 
cells, soluble mediators, the ECM and its receptors, and/or relevant intracellular 
signaling pathways [80]. Under conditions wherein the etiology of liver fibrosis 
cannot be eradicated, therapies for liver fibrosis may help to restrict disease progres-
sion to cirrhosis and reduce the risk of cirrhosis-related complications [82]. 
Table  15.3 lists ongoing phase III and IV clinical trials for liver cirrhosis using 
combination therapies (http://www.ClinicalTrials.gov).

15.6  Antioxidant Therapy

15.6.1  The Antioxidant System in Liver Cirrhosis

Oxygen free radicals, more generally known as reactive oxygen species (ROS), 
along with reactive nitrogen species (RNS) represent the most important group of 
radical species generated in living systems [83]. ROS and RNS play an important 
role in the establishment of fibrosis and subsequently in cirrhosis [84]. Both animal 
models of chronic liver injuries/fibrosis and human studies in fibrotic/cirrhotic 
patients showed direct detection of ROS/RNS in liver specimens [85–89]. 
Furthermore, fibrogenic progression is associated with a significant decrease and/or 
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depletion of antioxidant defenses. Vitamin E depletion was found in both carbon 
tetrachloride-injured rats [90] and in patients with parenchymal liver cirrhosis [91]. 
Therefore, the use of molecules with antioxidant properties has been proposed to 
treat fibrosis and cirrhosis caused by oxidative stress.

15.6.2  Antioxidant Therapy in Liver Fibrosis and Cirrhosis

In experimental models of liver fibrosis/cirrhosis, antioxidant compounds 
include food supplements and drugs, such as polyunsaturated phosphatidylcho-
line (PPC) [92], peroxisome proliferator-activated receptor (PPAR) α ligand 
[93], ursodeoxycholic acid [94], and resveratrol [95–98] have been tested. A 
recently discovered vertebrate globin, cytoglobin (CYGB) [99], the molecular 
characteristics of which are similar to those of myoglobin, is also an antioxidant 
due to its NO scavenging activity. CYGB may facilitate diffusion of oxygen 
through tissues, scavenge NO or other ROS, or serve a protective function during 
oxidative stress [100].

In human trials, S-Adenosylmethionine (SAMe), silymarin, and vitamin E are 
used in liver fibrosis/cirrhosis patients. SAMe has already shown beneficial effects 
in liver transplantation patients with alcoholic liver cirrhosis, improving survival 
or delaying the need for operation [101], and improves bilirubin and alkaline 
phosphatase levels of cholestasis [102]. Use of silibinin, the major active constitu-
ent of silymarin, in hepatic cirrhosis results in improvement in antioxidant status, 
cytoprotection, reversal of fibrosis, and regeneration [103], greater total glutathi-
one concentrations and concurrent decreases in N-terminal propeptide of type III 
collagen, a biomarker for hepatic fibrosis [104], and decreased mortality rates 
[105]. The effect of vitamin E in fibrosis/cirrhosis patients was reported in ASH- 
or NASH- induced fibrosis, in which the histological findings, such as steatosis, 
inflammation, and fibrosis, of the NASH patients were improved [106]. The most 
promising results were from PIVEN trial [13] performed in 247 patients for 
96 months in which vitamin E led to clear histological regression, with no fibrosis 
progression.

Currently, the ClinicalTrials.gov website lists 14 early and phase I–IV clinical 
trials of current antioxidative therapies using antioxidants for liver cirrhosis. In 
these studies, vitamins, especially vitamin E, are the most frequently studied anti-
oxidants as dietary supplements (Table 15.4).

In summary, antioxidant therapy targets (1) recovery of antioxidant enzymes/
compounds and (2) reduction in the production of ROS and RNS. Despite the clear 
effects of antioxidant therapy in animal models, human trials still showed inconsis-
tent results. However, silymarin (or silybin) and vitamin E, in both single and com-
bination therapy, were the most successful antioxidant approaches for liver fibrosis 
and cirrhosis patients.

15 Antifibrotic Therapy for Liver Cirrhosis
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15.7  Conclusion

Currently, antifibrotic drug is a matter of concern with more than 600 clinical trials 
are now ongoing studies. One of the trigger for this interest is the recognition of the 
central role of hepatic stellate cells in liver fibrosis. Promising approaches to remov-
ing fibrogenic cells are being evaluated, including development of drug delivery 
systems that target activated HSCs. In parallel, inhibition of intracellular signaling 
pathway by target receptor-ligand is of interest. Furthermore, it is interesting to use 
the well-known safety drugs which use for other indicators but also have the antifi-
brotic activities, such as anti-IL4/13, and recently new direct anti-viral agents for 
hepatitis C and B originally used to target viral replication but now being explored 
as potential antifibrotic therapies. Most importantly, the efficacy of antifibrotic 
drugs known to attenuate experimental liver fibrosis should be tested in humans. 
Hopefully, the best drug for antifibrotic therapy will be discovered in the near future.
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Chapter 16
Liver Transplantation for Liver Cirrhosis

Yuhei Hamaguchi and Toshimi Kaido

Abstract Liver transplantation (LT) is the only curative treatment that can increase 
the chances of long-term survival in patients with end-stage liver disease including 
liver cirrhosis (LC), acute liver failure, or advanced hepatocellular carcinoma 
(HCC). Especially in patients with LC and HCC, LT is an ideal treatment, allowing 
not only resection of the HCC, but also provision of normal liver in place of dam-
aged liver that would promote multicentric carcinogenesis. LT includes deceased 
donor LT and living donor LT. In this chapter, we first introduce current status and 
results of LT, and then discuss recent issues in LT for decompensated liver 
cirrhosis.

Keywords Liver cirrhosis · Living donor liver transplantation · Deceased donor 
liver transplantation · Hepatocellular carcinoma · Sarcopenia · Nutritional therapy  
Rehabilitation

16.1  Introduction

Recent advances in medical treatment have improved quality of life and prognosis 
in patients with liver cirrhosis. However, many patients still suffer from pathologies 
ranging from decompensated liver cirrhosis to liver failure without responding to 
medical treatment. Liver transplantation (LT) is the only curative treatment that can 
increase the chances of long-term survival in patients with end-stage liver disease, 
acute liver failure, or advanced hepatocellular carcinoma (HCC). Especially in 
patients with HCC, LT is an ideal treatment, allowing not only resection of the HCC, 
but also provision of normal liver in place of damaged liver that would promote 
multicentric carcinogenesis. LT includes deceased donor LT (DDLT) and living 
donor LT (LDLT). DDLT is carried out using the whole liver or only a part (split-
liver transplantation) donated after brain death. On the other hand, only the right or 
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left lobe from the living donor is generally used in LDLT. Although DDLT accounts 
for most LTs in Europe and the USA, approximately 90% of LTs are LDLTs in Asia, 
especially in Japan. In this chapter, we first introduce current status and results of 
LT, and then discuss recent issues in LT for decompensated liver cirrhosis.

16.2  Current Status and Results of LT

Indications for LT are end-stage liver diseases that cannot be treated with internal 
medicines or other surgical procedures, including hepatitis B virus (HBV)- or hepa-
titis C virus (HCV)-associated liver cirrhosis, progressive intrahepatic cholestatic 
diseases including primary biliary cholangitis (PBC) and primary sclerosing chol-
angitis (PSC), alcoholic liver cirrhosis, biliary atresia, autoimmune hepatitis, hered-
itary metabolic diseases, HCC in liver cirrhosis without distant metastasis and 
vascular invasion within Milan criteria, and acute liver failure. In the USA, a total 
of 7127 adult LTs were performed in 2015, including 6768 DDLTs and 359 LDLTs, 
and HCV-associated liver cirrhosis was the most common indication for LT [1]. 
According to that report, 6-month and 1-year graft failure rates in DDLT were 7.8% 
and 10.3%, respectively. Among patients who underwent LT in 2008–2010, the 
5-year overall survival (OS) rate was 73.6%. On the other hand, about 450 LTs have 
been recently performed per year in Japan, and the total number of LTs by the end 
of 2016 was 8825; of these, 8447 cases (95.7%) involved LDLT and 378 (4.3%) 
involved DDLT [2]. Decompensated liver cirrhosis including HBV- or HCV- 
associated liver cirrhosis, progressive intrahepatic cholestatic diseases, and HCC 
accounted for about 50% of the underlying diseases in LT recipients. One- and 
5-year OS rates were not significantly different between LDLT and DDLT (84.7% 
vs. 87.4% in 1-year OS, 78.2% vs. 81.6% in 5-year OS). In LDLT, OS rates in male 
recipients, adult cases, and re-transplantations were significantly lower than in 
female recipients, pediatric case, and primary transplantations, respectively. In anal-
yses according to original diseases, 5-year OS rates in patients with cholestatic dis-
ease (86.1%) or metabolic disease (86.1%) were significantly higher than in patients 
with hepatocellular disease (74.8%), neoplastic disease (70.1%), or acute liver fail-
ure (71.1%). By donor age, prognosis in recipients from older donors was signifi-
cantly worse than in recipients from younger donors. Although the OS in 
ABO-incompatible cases was significantly lower than in ABO-compatible cases, 
recent advances in peri-transplant treatment including rituximab prophylaxis have 
improved the prognosis in ABO-incompatible cases [2].

Since this increasing demand for LT has resulted in a worldwide shortage of 
available liver grafts, construction of a prognostic model for use in patients under-
going LT is crucial to optimize the allocation of the limited number of liver grafts to 
appropriate recipients. During 2015, 1673 patients died without LT and another 
1227 were removed from the waiting list as too sick for LT [1]. In DDLT, the model 
for end-stage liver diseases (MELD) scoring system, which is calculated using three 
objective parameters of international normalized ratio (INR) of prothrombin time, 

Y. Hamaguchi and T. Kaido



193

serum bilirubin, and serum creatinine, has been adopted to allocate organs in the 
USA since 2002 [3, 4]. In 2003, MELD score was shown to be superior to the Child- 
Pugh score in the ability to predict 3-month mortality among patients awaiting LT 
[3, 5]. MELD score has thus replaced the Child-Pugh score for predicting prognosis 
and for allocation of liver grafts in patients with liver cirrhosis [3, 4].

On the other hand, because recipients for LDLT have specific donors, a strict 
allocation system like the MELD score in DDLT is not necessarily required in 
LDLT. Many hospitals therefore evaluate and determine the indications of recipi-
ents and donors for LDLT according to selection criteria specific to the institution, 
including factors such as patient age, relationship between recipients and donors, 
ABO-compatibility, and lower limit of graft size.

16.3  Modulation of Portal Venous Pressure

Donor safety and favorable outcomes of recipients after LT are the most important 
priorities of LDLT.  In LDLT, the incidence of all-donor complications including 
donors for pediatric recipients has been reported to be higher when using right 
(n = 500, 44.2%), compared with left or extended lateral lobe grafts (n = 762, 18.8%; 
p < 0.001) [6]. Left lobe grafts are thus preferable because of the lower complication 
rates and larger remnant liver, ensuring donor safety. However, the lower limit of 
graft-to-recipient weight ratio (GRWR) and the risk of small-for-size syndrome are 
critical problems that need to be overcome when using left lobe grafts. To use 
smaller size grafts, intentional modulation of portal venous pressure (PVP) during 
LDLT has been introduced, and we have previously reported that modulation of 
PVP to <15 mmHg enabled safe transplantation of smaller grafts [7]. Figure 16.1 
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Fig. 16.1 Current strategy for intentional portal pressure control
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shows a flowchart for PVP control. If portal pressure is >15 mmHg after reflow of 
the liver graft, intentional portal pressure control is used by concurrent splenectomy. 
Portosystemic collaterals with diameter larger than approximately 1 cm, such as 
splenorenal shunts, gastric/esophageal varices, and inferior mesenteric venous vari-
ces, are temporarily clamped and then ligated if PVP is ≤15  mmHg. If PVP is 
>15 mmHg on temporary clamping of portosystemic collaterals, we perform a sple-
nectomy. After the splenectomy, portosystemic collaterals are ligated when PVP is 
≤15  mmHg on temporary clamping of portosystemic collaterals. When PVP is 
>15 mmHg on temporary clamping of portosystemic collaterals after splenectomy, 
the collaterals are not ligated. We have gradually lowered our criteria for GRWR to 
0.6% with PVP modulation [8].

16.4  LT for HCC

LT is a radical treatment for HCC because the procedure not only resects the dis-
ease, but also replaces the underlying damaged liver with normal tissue, simulta-
neously addressing both intrahepatic metastases and multicentric carcinogenesis. 
In Western countries, with the advent of the Milan criteria [9], DDLT for HCC 
has achieved favorable survival rates comparable to those for nonmalignant liver 
diseases. In contrast, due to the critical shortage of deceased donor organs, LDLT 
has great significance in Eastern countries including Japan, Korea, and China. 
The category of LT and the concept of selection criteria in LT for HCC thus differ 
markedly between Western and Eastern countries. Since the introduction of the 
Milan criteria, some expanded criteria focusing on tumor size and number have 
been proposed, including the University of California San Francisco (UCSF) cri-
teria (a single lesion ≤6.5 cm in diameter or 2–3 lesions ≤4.5 cm with total diam-
eter ≤ 8 cm on the basis of preoperative radiological data) [10], the 5–5 rule (up to 
five nodules with a maximum diameter of 5 cm) [11], and the up-to-7 rule (HCC 
with seven as the sum of the diameter of the largest tumor in centimeters and the 
number of tumors) [12]. In addition, new expanded criteria considering tumor 
biology have been established using tumor markers and 18F-fluorodeoxyglucose 
position emission tomography. Based on target outcomes of a 5-year survival 
rate ≥80% and a 5-year recurrence rate ≤10%, the Kyoto group in Japan pro-
posed new selection criteria, the Kyoto criteria, combining three independent 
significant risk factors for recurrence (tumor number and tumor size based on 
the findings from pretransplant imaging, and concentrations of tumor markers): 
tumor number ≤10; maximal diameter of each tumor ≤5 cm; and serum des-γ-
carboxyprothrombin level ≤400 mAU/ml [13]. In a retrospective analysis, 147 
patients who met the Kyoto criteria showed significantly lower 5-year recurrence 
rates (4%) than 49 patients who exceeded them (51%, p < 0.001; Fig. 16.2a). 
Similarly, 5-year survival rates in patients within the Kyoto criteria (82%) 
were significantly higher compared with patients exceeding the criteria (42%; 
p < 0.001; Fig. 16.2b) [14].
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16.5  Recurrence of Primary Liver Disease

Cirrhosis secondary to HCV infection is one of the main indications for 
LT. Recurrent hepatitis C infection of the allograft is universal if HCV is detect-
able at the moment of LT. Approximately one-third of patients progress to liver 
cirrhosis in the graft within only 5 years after LT, and graft and patient survivals 
are significantly worse in patients undergoing LT for HCV-related cirrhosis than 
in those undergoing transplant for other reasons [15, 16]. Two strategies, includ-
ing pre- and post-transplant treatment of HCV infection, can be adopted for 
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achieving sustained virologic response (SVR), virus eradication and finally 
improving clinical outcomes of recipients with HCV infection. With direct antivi-
ral agents, almost all HCV-infected patients can now be cured either before or 
after LT [17, 18]. In the future, HCV infection may no longer affect long-term 
outcomes after LT.

Long-term administration of anti-HBs immunoglobulins (HBIGs) is a major 
treatment for the prevention of HBV recurrence after LT [19]. Most LT centers use 
antiviral agents (entecavir or tenofovir) with or without concomitant administration 
of HBIGs. These therapies have drastically reduced HBV recurrence, resulting in 
excellent long-term outcomes [20].

Recurrence of PBC is uncommon and rarely responsible for graft loss [21]. On 
the other hand, PSC recurrence has been reported to occur in 10–30% of recipients 
after LT [21]. One recent study found PSC recurrence in 40% of patients at a median 
of 30 months after LT [22]. Cumulative incidences of PSC recurrence were 24.5% 
at 3 years, 39.3% at 5 years, and 45.8% at 6 years. No specific intervention has been 
found to be effective in addressing PSC recurrence, with re-transplantation as the 
only option in patients developing such recurrence.

16.6  Sarcopenia in LT

Protein energy malnutrition (PEM) is a common problem in patients with end-stage 
liver disease awaiting LT. PEM is more prevalent in those with decompensated liver 
disease, that is, those with ascites, portosystemic hepatic encephalopathy (HE), or 
portal hypertensive bleeding. PEM is also more frequent among patients hospital-
ized for alcoholic liver disease than among patients with nonalcoholic liver disease 
[23]. PEM can significantly increase the operative risk at the time of surgery and 
represents a risk factor for morbidity and short- and long-term mortality in patients 
undergoing LT, and decreased graft survival after LT [23–25]. Recently, sarcopenia 
has been defined as a pathology characterized by a progressive and generalized loss 
of skeletal muscle mass and strength. This concept has attracted much attention and 
sarcopenia has been shown to represent an independent risk factor for lower overall 
and disease-free survivals in various diseases [26]. Sarcopenia is classified accord-
ing to cause as primary when no cause other than aging is evident, or as secondary. 
With secondary sarcopenia, disease-related sarcopenia is associated with advanced 
organ failure, including failure of the liver or heart. Nutrition-related sarcopenia 
results from insufficient dietary intake of energy or protein. Patients with end-stage 
liver disease requiring LT usually have liver failure and poor nutrition. As a result, 
most patients undergoing LT meet the criteria for secondary sarcopenia. To date, 
several studies have shown that sarcopenia in LT is associated with mortality, 
increased stay in hospital and in the intensive care unit, failure to achieve rescue, 
post-transplantation sepsis, and infection [27]. Kaido et al. evaluated skeletal mus-
cle mass (SMM) using bioelectrical impedance analysis in 124 patients undergoing 
LDLT and identified patients with low SMM before transplant had significantly 
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worse survival compared with patients with high SMM (Fig.  16.3) [28]. On the 
other hand, the increase of intramuscular adipose tissue (IMAT) with aging has been 
identified as a potential contributor to declining strength and quality of muscle, one 
of the components of sarcopenia [29]. Skeletal muscle steatosis as measured by 
intramuscular adipose tissue content (IMAC) has been linked to the pathogenesis 
and severity of non-alcoholic steatohepatitis [30, 31]. Using preoperative computed 
tomography (CT), we evaluated IMAC and psoas muscle mass index (PMI) in 200 
adult patients undergoing LDLT [32]. OS rates in patients with a high IMAC (mus-
cle steatosis) or low PMI (low SMM) were significantly lower than in patients with 
normal IMAC or PMI (p < 0.001 each).

Based on our previous findings regarding the impact of pretransplant nutritional 
status, including skeletal muscle mass, in January 2013 we added the new criterion 
of “inability to walk unaided” to exclude patients with severe sarcopenia from 
LT. After implementation of the new criteria, the 1-year OS rate after LT signifi-
cantly improved to 94% compared with the rate under the previous criteria (71%) 
[33]. Interestingly, patient background, including MELD score and Child-Pugh 
classification, did not significantly differ between patients in this cohort and that of 
our previous retrospective cohort. In other words, outcomes have dramatically 
improved with the addition of only one criterion, excluding patients who cannot 
walk unaided, even though the severities of patient condition and underlying liver 
disease did not differ between before and after revision of our criteria. The new 
exclusion criterion of inability to walk unaided is a simple criterion to exclude 
patients with severe sarcopenia without using any devices. However, the criterion is 
somewhat lacking in objectivity. We therefore tried to establish a more objective 
criterion to judge sarcopenia. Recently, using CT from 657 donors for LDLT, 
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 skeletal muscle mass, muscle quality, and visceral adiposity were evaluated using 
skeletal muscle mass index (SMI), IMAC, and visceral-to-subcutaneous adipose 
tissue area ratio (VSR). Sex-specific cut-offs for SMI, IMAC, and VSR were deter-
mined, and correlations with outcomes after LDLT in 277 recipients were examined 
with the aim of establishing new selection criteria for LDLT [34]. The OS rate was 
significantly lower for each group of patients with low SMI (p < 0.001), high IMAC 
(p < 0.001), or high VSR (p < 0.001) compared to the respective normal groups. In 
addition, low SMI, high IMAC, and high VSR contributed to an increased risk of 
post-LDLT mortality in an additive manner (Fig. 16.4). Patients beyond all three 
cut-offs (n = 17, 6.1%) showed the lowest survival rate after LDLT (1-year OS rate, 
41.2%; p < 0.001). Based on these results, we have excluded patients beyond all 3 
cut-offs (low SMI, high IMAC, and high VSR) as candidates for LDLT since 
October 2016. The 1-year OS rate after LT further improved to 96% after adopting 
this new selection criterion.

16.7  Nutritional and Rehabilitation Therapy in LT

Nutritional status can worsen rapidly during the postoperative period due to preop-
erative malnutrition, surgical stress, immunosuppressive therapy, post- interventional 
complications, postoperative protein catabolism, and fasting periods. The main goals 
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of pre-LT nutritional therapy are to prevent further nutrient and muscle depletion and 
to correct any vitamin and mineral deficiencies present to minimize the risks of infec-
tion and debility. An early, planned, preoperative nutritional intervention can be per-
formed in most cases of LDLT, since the date of LT is known in advance, unlike in 
DDLT.  Nutritional therapy, as well as rehabilitation at the time of referral of the 
potential recipient, should start a few months before LT to most effectively increase 
the SMM [23]. Kaido et al. reported that perioperative nutritional therapy signifi-
cantly increased OS in patients with low skeletal muscle mass (p = 0.009) [28]. For 
adult recipients preparing for LDLT, Kaido et al. described a detailed preoperative 
nutritional therapy regimen [28]. This regimen starts approximately 2 weeks before 
LDLT after the bioelectrical impedance analysis (BIA) assessment. The therapy con-
sists of three components: a nutrient mixture enriched with branched-chain amino 
acids (BCAAs) or BCAA nutrients as a late evening snack; synbiotics using a supple-
mentation product enriched with glutamine, dietary fiber, and oligosaccharide three 
times daily, and a lacto-fermented beverage containing 5 × 108/mL of Lactobacillus 
casei strain Shirota once a day via feeding tube or orally until discharge. Additionally, 
patients with a low serum zinc level receive 1.0  g/day of polaprezinc. Dietitians 
adjust the type and amount of food for each patient to maintain a total caloric intake 
of 30–35  kcal/kg/day and a protein intake of 1.2–1.5  g/kg/day, including BCAA 
nutrients, in accordance with the guidelines of the European Society of Parenteral 
and Enteral Nutrition [35]. A tube jejunostomy for enteral nutrition is placed in the 
proximal jejunum using a 9-French enteral tube in all recipients at the time of sur-
gery. Postoperative early enteral nutrition is started within the first 24 h after surgery 
through the tube jejunostomy. We gradually increase the total daily caloric intake 
until postoperative day (POD) 3, from 10–15 kcal/kg/day to 25–35 kcal/kg/day. As 
an enteral nutrient, we prefer a new immunomodulating diet, MEIN, which is a pro-
tein complex derived from milk and enriched with hydrolyzed whey peptide (Meiji 
Dairies Co., Tokyo, Japan). Enteral feeding is stopped when the patient can tolerate 
adequate oral intake containing solid food. All patients are supplemented with synbi-
otics via the feeding tube or orally until the patient can consume a sufficient diet.

All patients undergo preoperative rehabilitation including pulmonary rehabilita-
tion, evaluation of swallowing function, and physical therapy. All patients also rou-
tinely undergo postoperative rehabilitation delivered by physical therapists at the 
bedside in the intensive care unit, usually from POD 2 or 3 until the patient is able 
to walk.
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Chapter 17
Regenerative Therapy for Liver Cirrhosis

Toshihiko Matsumoto, Taro Takami, and Isao Sakaida

Abstract Liver cirrhosis is the end stage of chronic liver disease and causes serious 
complications such as ascites, encephalopathy, and portal hypertension. The only 
radical treatment currently available is liver transplantation, but issues such as a 
shortage of donors, long-term immunosuppression, and high lifelong medical costs 
limit the feasibility of liver transplantation. To overcome these limits to the feasibil-
ity of liver transplantation, liver regeneration therapy through cell and stem cell 
transplantation, bioartificial liver systems, and organ bioengineering are advancing. 
This chapter will describe the current status and perspective of liver regeneration 
therapy for liver cirrhosis.

Keywords Liver cirrhosis · Liver regeneration · Stem cell · Granulocyte colony- 
stimulating factor · Hepatocyte-like cell · Bioartificial liver system · Bioengineered 
liver

17.1  Introduction

Recent advancements in antiviral drugs have enabled viral clearance and control of 
hepatitis in many viral cirrhosis patients [1–4]. However, the incidence of liver cir-
rhosis (LC) caused by alcohol consumption or nonalcoholic steatohepatitis contin-
ues to increase, and it is one of the main factors behind the number of patients 
awaiting liver transplants in the USA [5]. Liver transplantation is the only treatment 
with which a radical cure can be expected, but issues such as a shortage of donors, 
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long-term immunosuppression, and high lifelong medical costs limit the feasibility 
of liver transplantation. To overcome these limits to the feasibility of liver transplan-
tation, liver regeneration therapy through cell and stem cell transplantation, bioarti-
ficial liver (BAL) systems, and organ bioengineering are advancing. These therapies 
are more convenient than organ transplantation in a number of respects, including 
less invasiveness, use of autologous cells without immunological rejection, and 
multiple transplants. This chapter will initially describe the current state of cell and 
stem cell therapy for LC patients, and then introduce stem cell-derived hepatocyte- 
like cells, BAL systems, and organ bioengineering as the next step in liver regenera-
tive medicine (Fig. 17.1).

17.2  Cell and Stem Cell Therapy

The healthy liver has a high regenerative capacity and is notably resistant to damage. 
However, LC causes a decrease in the number of liver parenchymal cells and archi-
tectural distortion due to deposition of the extracellular matrix (ECM), and the 
resulting excessive scar formation prevents the proliferation of hepatocytes [6]. 
Consequently, the regenerative capacity of the cirrhotic liver is decreased. To recover 
this lost regenerative capacity, cell transplantation or stem cell transplantation can 
be performed. Supplementation of hepatocytes and resolution of liver fibrosis are 
important therapeutic targets when attempting to promote liver regeneration.
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Fig. 17.1 Current status and perspective of liver regeneration therapy for LC. Cell and stem cell 
therapies for LC patients and new technologies including stem cell-derived hepatocyte-like cells, 
BAL systems, and organ bioengineering as the next step in liver regenerative medicine. LC liver 
cirrhosis, G-CSF granulocyte colony-stimulating factor, HSC hematopoietic stem cell, MSC mes-
enchymal stem cell, BMNC bone marrow mononuclear cell, HLC hepatocyte-like cell, PSC plu-
ripotent stem cell, BAL bioartificial liver
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17.2.1  Hepatocyte Transplantation

Hepatocyte transplants are performed with the aim of supporting the synthetic func-
tions of the liver, as well as to achieve detoxification. The general approaches are 
autologous transplantation of hepatocytes isolated from a single lobe of the recipi-
ent’s cirrhotic liver or allogeneic transplantation of donor hepatocytes from noncir-
rhotic liver donors. In initial hepatocyte transplantation for LC, autologous 
hepatocytes isolated from resected liver were transplanted by means of intrasplenic 
injection [7]. Intrasplenic injection has been the most common method of hepato-
cyte delivery, because the risk of portal hypertension increased after portal infusion 
of cells into a cirrhotic liver. Following autologous hepatocyte transplantation, 
many cases of allogeneic hepatocyte transplantation for LC have been reported, and 
while the effects of hepatocyte transplantation are modest, its clinical safety has 
been confirmed [8, 9]. The reasons for the modest effects include the difficulty of 
isolating high-quality hepatocytes from suboptimal donor livers, the difficulty of 
achieving long-term effects due to low survival and growth rates of transplanted 
hepatocytes, the inability to increase cells through culturing, and the difficulty of 
cryopreservation. Transplantation of hepatocytes into extrahepatic sites, such as a 
lymph node, may be effective, but this approach has not been tested clinically [10]. 
Due to these difficulties, attempts are currently being made to transplant stem cells 
that can stimulate endogenous liver regeneration and fibrolysis, rather than directly 
supplementing liver parenchymal cells through hepatocyte transplantation.

17.2.2  Stem Cell Transplantation

The existence of Y chromosome-positive hepatocytes in female recipients of therapeu-
tic bone marrow transplantations with male donors was reported in 2000, suggesting 
that human hepatocytes can be derived from stem cells originating in the bone marrow 
[11]. Subsequently, stem cells have attracted significant attention as a cell source for 
liver regenerative therapies. The bone marrow contains stem cells, such as hematopoi-
etic stem cells (HSCs) and mesenchymal stem cells (MSCs). Although an effective 
mechanism for infusion of HSCs and MSCs to improve LC remains to be elucidated, 
activation of endogenous hepatocyte growth, fibrosis resolution, immune regulation, or 
differentiation into hepatocytes have been suggested. The infusion of harvested bone 
marrow cells, mobilizing bone marrow-derived stem cells by granulocyte colony-stim-
ulating factor (G-CSF), and transplantation of stem cells expanded in vitro are common 
methods that have been used in stem cell therapy for LC (Table 17.1).

17.2.2.1  Autologous Bone Marrow Mononuclear Cells (BMNCs)

Bone marrow mononuclear cells (BMNCs) are isolated from whole bone marrow 
and contain a diverse cell population, including lymphocytes, monocytes, hemato-
poietic stem cells, and mesenchymal stem cells. In animal models, bone marrow 
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cells infused through a tail vein efficiently migrated and repopulated cirrhotic liver. 
In this process, bone marrow cells produced matrix metalloproteinases and amelio-
rated liver fibrosis. Microenvironmental improvement produced liver regeneration 
and resulted in an improved survival rate [12]. A clinical trial of autologous bone 
marrow cell infusion (ABMi) therapy for decompensated LC was started in 2003. 
With ABMi therapy, the autologous BMNCs purified from 400 ml of bone marrow 
fluid were infused through a peripheral vein into a patient with decompensated 
LC. Significant improvements in serum albumin levels and Child-Pugh (CP) score, 
increased liver volume, and decreased ascites were observed, and no major adverse 
effects were noted [13–15]. The results of clinical trials conducted in Brazil, in 
which fewer BMNCs than in ABMi therapy were infused into the hepatic artery of 
patients with decompensated LC, have suggested that hepatic artery infusion is 
more effective than peripheral vein infusion [16]. A recent report described the 
long-term efficacy of autologous BMNC transplantation for hepatitis B virus 
(HBV)-related decompensated LC [17]. At 5-year follow-up, liver volume was sig-
nificantly greater, cirrhosis was sustained, and collagen content was decreased at 
6-month follow-up, and liver function, including serum albumin levels and CP 
scores, was improved at 1-year follow-up. Five years after cell infusion, 26.3% of 
patients maintained improved liver function. To date, one adequately randomized, 
controlled study has been performed using autologous BMNC infusion following 
G-CSF treatment in alcoholic LC patients, but had no effect [18]. In order to clearly 
demonstrate the efficacy of autologous BMNC therapy, more randomized, con-
trolled studies in decompensated LC patients of diverse etiologies are needed.

17.2.2.2  Hematopoietic Stem Cells (HSCs) and Granulocyte 
Colony- Stimulating Factor (G-CSF)

Hematopoietic stem cells (HSCs) are characterized by their extensive self-renewal 
capacity and pluripotency with expression of CD34 and CD133. G-CSF is a potent 
inducer of HSC proliferation and mobilization from the bone marrow into the 
peripheral blood. The two general approaches that have been taken are G-CSF treat-
ment followed by autologous transplantation of HSCs isolated from peripheral 
blood or bone marrow of the recipient, and G-CSF treatment alone. In an animal 
model and a clinical trial, HSCs mobilized by G-CSF were shown to migrate into 
damaged liver and to accelerate liver regeneration in a paracrine manner or by direct 
stimulation of hepatic progenitor cells [19, 20]. However, many of the previous 
studies were unable to determine the efficacy of HSC transplantation for LC, 
because of the size and nature of the trial design. Garg et al. reported that G-CSF 
treatment improved mortality of patients with acute-on-chronic liver failure due to 
alcohol consumption or HBV in a randomized, controlled study, by preventing the 
development of sepsis [21]. However, acute-on-chronic liver failure is a different 
pathophysiological state to that seen in chronic liver failure. In 2017, Verma et al. 
reported the efficacy of multiple courses of G-CSF treatment in patients with 
decompensated LC in a randomized, controlled study [22]. In their study, G-CSF 
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was injected for 5 days and then every third day until day 28, and improved survival 
rate, CP score, and MELD score, and reduced risk of septic shock were confirmed. 
Meanwhile, an adequately powered, multicenter, open-label, randomized, con-
trolled phase 2 trial, the “REALISTIC trial,” has been reported more recently [23]. 
In this study, patients with compensated LC were randomly assigned to receive 
standard care, treatment with subcutaneous G-CSF for 5 days, or treatment with 
G-CSF for 5 days followed by leukapheresis and intravenous infusion of three doses 
of CD133-positive HSCs. G-CSF with or without HSC infusion did not improve 
liver dysfunction or fibrosis and might have been associated with an increased fre-
quency of adverse events, including ascites, sepsis, and encephalopathy, compared 
with standard care. Both studies showed reliable data, but the severity and etiology 
of LC and the dose of G-CSF were different between these studies. These findings 
must be confirmed in large cohorts of patients with decompensated cirrhosis who 
essentially need liver regeneration therapy. Recently, improvement in outcomes of 
patients with decompensated LC by combined treatment with G-CSF and erythro-
poietin has been reported [24]. Like this study, the combination of G-CSF and a 
potent inducer of liver regeneration could be a new field of liver regeneration ther-
apy using G-CSF. Finally, a point to be aware of in the G-CSF treatment for LC 
patients is rupture of the spleen, because rupture of the spleen during peripheral 
blood stem cell mobilization by administration of G-CSF has been reported even in 
healthy individuals [25].

17.2.2.3  Mesenchymal Stem Cells (MSCs)

Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent stem cells 
with the capacity to differentiate into mesodermal lineage, as well as ectodermal 
and endodermal lineages. The defining characteristics of MSCs are: (1) adherence 
to plastic in standard culture conditions; (2) expression of CD73, CD90, and CD105, 
and lacking expression of CD14, CD11b, CD34, CD45, CD79α, CD19, and 
HLA-DR surface molecules; and (3) the ability to differentiate into osteoblasts, 
adipocytes, and chondroblasts under standard in  vitro differentiating conditions 
[26]. MSCs can be isolated from bone marrow fluid, adipose tissue, umbilical cord, 
dental pulp, synovium, and many others. MSCs have positive effects during liver 
regeneration such as inhibiting apoptosis in hepatocytes and suppression of a vari-
ety of immune cells and hepatic stellate cells, through secretion of soluble factors, 
including prostaglandin E2, interleukin 10, and hepatocyte growth factor [27, 28]. 
MSCs also have therapeutic benefits, including proliferative capacity that allows 
in  vitro expansion of the number of cells, and immune evasion capacity, which 
forms the basis of allogenic use.

In 2013, an initial randomized, controlled study in patients with decompensated 
LC in Iran was reported and suggested that autologous bone marrow-derived MSC 
transplantation through a peripheral vein has no beneficial effect in decompensated 
LC [29]. However, this study was limited in that LC patients with diverse etiologies 
were enrolled, which may have resulted in selection bias caused by the heterogene-
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ity of their pathophysiological states. Meanwhile, there have been two randomized 
trials of patients with HBV-related LC or alcoholic LC that reported a beneficial 
effect of MSC transplantation [30, 31]. Xu et al. reported the efficacy of autologous 
bone marrow-derived MSC transplantation in patients with HBV-related LC [30]. In 
that study, patients with HBV-related LC were randomly assigned to the transplan-
tation group that was administered entecavir (ETV) followed by MSC transplanta-
tion and the control group that was administered ETV, and the transplantation group 
showed greater improvement in liver function. In 2016, an adequately powered, 
multicenter, open-label, randomized, phase 2 trial in alcoholic LC patients was 
reported [31]. In this study, patients with alcoholic LC were randomly assigned to 
one control group and two autologous bone marrow-derived MSC groups that 
underwent either one-time or two-time hepatic arterial injection of bone marrow- 
derived MSCs. As a result of autologous bone marrow-derived MSC transplanta-
tion, reduction of collagen deposition and improvement of CP scores were 
confirmed, and the proportion of patients with adverse events did not differ among 
the three groups. No significant differences were seen between the one-time and 
two-time bone marrow-derived MSC groups. Clinical trials have been performed in 
patients with different etiologies, and varying numbers of MSCs have been trans-
planted through different routes. It will be necessary to standardize future clinical 
trials in terms of cell numbers and injection route. From the perspective of adverse 
effects, promotion of carcinogenesis and fibrosis by MSC transplantation remains 
an important concern. However, long-term 192-week observation of patients with 
HBV-related decompensated LC treated with BMNCs including MSCs revealed no 
differences in the incidence of hepatocellular carcinoma between the transplanta-
tion group and the control group [32]. The contribution of endogenous MSCs to 
hepatic fibrogenesis remains contentious as a result of conflicting reports. In con-
trast, there are no convincing reports of exogenous MSCs contributing to liver fibro-
sis [27].

17.3  Potential Cell Sources and New Technologies for Liver 
Regeneration Therapy

17.3.1  Stem Cell-Derived Hepatocyte-Like Cells

There are limited sources of primary human hepatocytes, which make it difficult to 
supply the abundant quantities that liver regeneration therapy requires. As alterna-
tives to primary human hepatocytes, the generation of highly functional stem cell-
derived hepatocyte-like cells (HLCs) is being attempted by differentiation from 
pluripotent stem cells (PSCs) or direct reprogramming of fibroblasts to HLCs [33, 
34]. Human induced pluripotent stem cells (iPSCs) have been used to create an 
organ bud capable of liver-specific protein production and drug metabolism [33]. 
Furthermore, a culture platform for massive and reproducible production of liver 
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buds entirely from human iPSCs has been developed [35]. Direct converted hepato-
cytes from human fibroblasts by overexpression of FOXA3, HNF1α, and HNF4α 
displayed functions characteristic of mature hepatocytes [36]. Important advances 
are being made to overcome the limitations of stem cell-derived HLCs, including 
scale-up limitations, heterogeneous cultures, and incomplete gene expression. Stem 
cell-derived HLCs are promising cell sources for liver regeneration therapy.

17.3.2  Bioartificial Liver Systems

A bioartificial liver (BAL) system incorporates hepatocytes into a purely mechani-
cal, albumin dialysis-based, artificial liver support device that is capable of perform-
ing synthetic functions, as well as blood detoxification. BALs need hollow-fiber 
cartridges or reservoir loaded with over 100 g of hepatocytes. Ideally, a BAL system 
would use primary human hepatocytes. However, large amounts of high-quality 
human hepatocytes are not readily available. Therefore, different cell lines or por-
cine hepatocytes are currently used. Human trials of BAL in treating acute liver 
failure have been conducted, but no BAL system has been shown to improve sur-
vival in acute liver failure patients to date [37]. However, in 2016, a BAL system 
using human HLCs induced from human fibroblasts was reported [38]. In a porcine 
acute liver failure model, this device restored liver functions, corrected blood levels 
of ammonia and bilirubin, and prolonged survival. When functional BAL systems 
using abundant high-quality HLCs become available, they could extend the wait 
time for a suitable liver donor for patients with end-stage liver disease.

17.3.3  Organ Bioengineering

A bioengineered liver through the recellularization of a three-dimensional liver 
scaffold, including synthetic matrices, such as biodegradable polymer matrices and 
natural matrices, such as decellularized xenogeneic liver matrices, has been devel-
oped [39, 40]. This whole-organ bioengineering approach could overcome the limi-
tations of liver transplantation, such as a shortage of donors and long-term 
immunosuppression, because autologous HLCs show significant promise as a read-
ily available and functional cell source. In this bioengineering approach, ECM plays 
an important role in the phenotypic stability and differentiation of HLCs through 
biochemical and molecular signaling. This approach also has several important 
advantages over the limitation of in vitro creation of liver buds, including lack of an 
external bile tree and inability to transplant such buds orthotopically, as well as size 
restriction [41]. However, further research is required, particularly concerning the 
cells used for repopulation and cell volumes required to sustain function, before this 
complex procedure can be applied to humans.
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17.4  Conclusion

The efficacy and safety of using stem cells for advanced liver disease have been 
suggested by the results of clinical trials. Furthermore, new less-invasive treatment 
methods using stem cell-derived HLCs have been developed. Physicians are eagerly 
awaiting definitive evidence of the safety and efficacy of regenerative therapy 
for LC.
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