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Abstract In a weighted majority voting game, the weights of the players are deter-
mined based on some socioeconomic parameter. A number of measures have been
proposed to measure the voting powers of the different players. A basic question in
this area is to what extent does the variation in the voting powers reflect the variation
in the weights? The voting powers depend on the winning threshold. So, a second
question is what is the appropriate value of the winning threshold? In this work, we
propose two simple ideas to address these and related questions in a quantifiable
manner. The first idea is to use Pearson’s Correlation Coefficient between the weight
vector and the power profile tomeasure the similarity betweenweight and power. The
second idea is to use standard inequality measures to quantify the inequality in the
weight vector as well as in the power profile. These two ideas answer the first ques-
tion. Both the weight–power similarity and inequality scores of voting power profiles
depend on the value of the winning threshold. For situations of practical interest, it
turns out that it is possible to choose a value of the winning threshold which maxi-
mizes the similarity score and also minimizes the difference in the inequality scores
of the weight vector and the power profile. This provides an answer to the second
question. Using the above formalization, we are able to quantitatively argue that it is
sufficient to consider only the vector of swings for the players as the power measure.
We apply our methodology to the voting games arising in the decision-making pro-
cesses of the International Monetary Fund (IMF) and the European Union (EU). In
the case of IMF, we provide quantitative evidence that the actual winning threshold
that is currently used is suboptimal and instead proposes a winning threshold which
has a firm analytical backing. On the other hand, in the case of EU, we provide
quantitative evidence that the presently used threshold is very close to the optimal.
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1 Introduction

Voting is arguably the most important aspect of decision-making in a democratic
setup. A committee settles an issue by accepting or rejecting some resolution related
to the issue. While unanimity or consensus is desirable, this may not always be
possible due to the conflicting interests of the different committee members. In such
a situation, a voting procedure among the members is used to either accept or reject
a resolution. A resolution is accepted or passed, if a certain number of persons vote
in its favor, else it fails and is rejected.

In its basic form, each committee member has a single vote. Many scenarios of
practical interest, on the other hand, assignweights to the committeemembers. These
weights need not be the same for all the members. In the context of weighted voting,
a resolution is accepted, if the sum total of the weights of the members who vote in
its favor cross a previously decided upon threshold. A common example of weighted
voting is a company boardroom, where the members have weights in proportion to
the shares that they hold in the company. Important examples of weighted voting
in the context of public policy are the European Union (EU) and the International
Monetary Fund (IMF).

Voting procedures have been formally studied in the game theory literature under
the name of voting games. Due to its real-life importance, weighted majority voting
games have received a lot of attention. In the literature on voting games, the members
are called players. One of the basic questions is how much influence does a player
have in determining the outcome of a voting procedure? In other words, what is the
power of a player in a voting game? In quantitative terms, it is desirable to measure
the power of a player in a voting game by assigning a nonnegative real number to
the player. A power measure assigns such a number to each player in the game. This
leads to the basic question of what constitutes a good measure of power of a player
in a voting game. The literature contains a number of power measures. Each one
of these measures aims to capture certain aspects of the informal notion of power
in a voting game. We refer to Felsenthal and Machover (1998) for a comprehensive
discussion to voting games and the various power measures. An introduction to the
area can be found in Chakravarty et al. (2015).

Consider the setting of weighted majority voting games. For any such game, the
players are assigned weights based on socioeconomic parameters. As a result, there
is a variation in the weights of the players. Further, given any power measure, we
obtain a variation in the powers of the different players. It is well known that the
variation in the voting powers does not necessarily reflect the variation in theweights.
In this context, the following three questions can be formulated:
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1. To what extent does the variation in the voting powers reflect the variation in the
weights?

2. Is the inequality present in the weights preserved in the voting powers?
3. How does the value of the winning threshold (i.e., the threshold which is required

to be crossed for a motion to be passed) affect the above two questions?

This work addresses the above questions. The questions posed are not merely
theoretical. Similar questions have been posed in Leech (2002b) in the context of
measurement of voting power in IMF. For example, the following text fragments
appear in Leech (2002b):

... weighted voting raises the important question of whether the resulting inequality of power
over actual decisions is precisely what was intended for the relationship between power and
contribution.

How does the voting power of individual countries compare with their nominal votes? To
what extent is the degree of inequality in the distribution of votes reflected in the distribution
of voting power?

Different types of decisions use different decision rules, some requiring a special superma-
jority. What effect do different decision rules have on the distribution of power and also on
the power of the voting body itself to act?

The work Leech (2002b) makes a qualitative analysis of the above issues. Our work
allows a quantitative analysis of these issues. In more detail, our work makes the
following contributions.

Measurement of Similarity Between Weights and Voting Powers. We propose the use
of Pearson’s correlation coefficient as a measure of similarity between the weight
vector of the players and the vector of voting powers of the players.

Measurement of Inequality in Weights and Voting Powers. There is a large literature
on themeasurement of inequality in a vector of values obtained frommeasurement of
various social parameters. A survey on measurement of inequality appears in Cowell
(2016). The variation of the values in such a vector is captured by an inequality index.
A number of inequality indices have been proposed in the literature. We propose the
use of such inequality indices to measure the inequality in the weights and also in the
voting powers. This allows the comparison of the inequality present in the weights
to that present in the voting powers.

Winning Threshold as a Controllable Parameter. Our formalizations of both the
similarity between the weights and the voting powers as well as the measurement of
inequality in the voting powers have thewinning threshold as a parameter. By varying
this parameter, both the weight–power similarity and the voting power inequality can
be controlled. So, given a vector of weights, the winning threshold can be set to a
certain value to maximize the weight–power similarity or to minimize the difference
between the inequality in the weights and the inequality in the voting powers.

In this context, we would like to discuss the broader issue of designing games
to achieve certain desirable power profiles. This is often called the inverse problem
for voting games. Usually, the goal is to determine a set of weights which result in
the target powers. For example, in the context of the IMF voting game, an iterative
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algorithm to determine weights has been proposed in Leech (2002b). There is one
major drawback of this approach. Asmentioned earlier, in aweightedmajority voting
game, the weights often represent a socioeconomic parameter. When the weights are
artificially obtained (say, using an iterative algorithm), their interpretation in the
socioeconomic context is lost. It then becomes hard to provide a natural justification
of the weights.

Our approach of having thewinning threshold as a controllable parameter provides
an alternative method of designing games. For the complete specification of a game,
both the weights and the winning threshold need to be specified. In our approach,
the weights do not change, and hence they retain their original interpretation arising
from the background socioeconomic application.Weonly suggest tuning thewinning
threshold so that the resulting power profile is “imbued” with the intuitive natural
justification of the weights. Games designed using such an approach can be much
better explained to the general public than games where the weights are artificially
obtained.

Detailed Study.We consider seven different voting powermeasures and two different
inequality indices.We show that the scaling invariance property of an inequalitymea-
sure as well as that of the Pearson’s correlation coefficient divides the voting power
measures into three groups. The non-normalized Banzhaf measure, the normalized
Banzhaf index, and the two Coleman measures fall into one group; the public good
measure and public good index defined by Holler fall into a second group, and the
Deegan–Packel measure is in the third group. We show that any two power measures
in the same group have the same behavior with respect to both the similarity index
and the inequality index. This brings down the complexity of the analysis.

There has been a lot of discussion in the literature on the comparative suitabilities
of the Banzhaf and the Coleman indices Banzhaf (1965), Brink and Laan (1998),
Coleman (1971), Dubey and Shapley (1979), Laruelle andValenciano (2001), Lehrer
(1998), Laruelle and Valenciano (2011), Barua et al. (2009). This discussion has
both been qualitative and also formal in the sense of axiomatically deriving the
indices Brink and Laan (1998), Lehrer (1998). Our work provides a new perspective
to this discussion. The stand-alone values of the powers of the players as measured
by any power measure are perhaps not of much interest by themselves. It is only
in a relative sense that they acquire relevance. There are two ways to consider this
relative sense, in comparison to theweights and in comparison among themselves.We
propose to quantify the relative notion in comparison to theweights by the correlation
between the weight vector and the power profile and to quantify the relative values
of the powers among themselves by an appropriate inequality score. Under both of
these quantifications, we prove that the Banzhaf and the Coleman power measures
turn out to be the same. Based on this result, we put forward the suggestion that there
is perhaps no essential difference between these power measures. It is sufficient to
consider only the swings for the different players as was originally proposed by
Banzhaf (and sometimes called the raw Banzhaf measure). While this may sound a
bit radical, our analysis based on correlation and inequality does not leave scope for
any other considerations. It is of course possible that there is some other quantifiable
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ways of distinguishing between the relative spreads of the Banzhaf and the Coleman
measures. This can be a possible future research question.

The literature contains a number of voting power measures which have been pro-
posed as fundamentally different from the swing-based Banzhaf measure. Intuitive
arguments have been forwarded as to why these measures are appropriate for cer-
tain applications. In our opinion, a basic requirement for any power measure is to
reflect the “content” of weights. In addition to the Banzhaf measure, we have also
considered the Holler measures and the Deegan–Packel measure. Our simulation
experiments as well as computations with real-life data show that the “content” of
the weights is best captured by the Banzhaf measure and neither the Holler measure
nor the Deegan–Packel measure is good indicators of this “content”. Based on this
evidence, we put forward the suggestion that it is sufficient to consider the swings
as the only measure of power in voting games.

Applications. IMF decision-making procedures have been modeled as voting games
Leech (2002b). Decision-making in the EU has also been discussed in the context of
voting games Leech (2002a).

The notions of similarity between the variations in the weights and the voting
powers as well as the relation between the inequality in the weights and that in
the voting powers have been informally discussed. Our proposals for measuring
weight–power similarity and the voting power inequality formalizes this intuition.
We compute the various measures for the IMF game and (a simplified version of) the
EU voting game and suggest that the winning threshold can be used as a parameter
in achieving target values of similarity or inequality.

In both the IMF and the EU voting games, there is a “natural” justification for
assigning weights to the different players. In the context of IMF, the weights reflect
the proportion of financial contribution made by the different countries, while in
the case of EU, the weights reflect the population of the different countries. This is
reasonable, since the IMF is a financial organization, while the EU is essentially a
political organization. In both cases, however, the choice of the winning threshold is
not backed by any quantifiable parameter.

Our work provides methods for choosing a winning threshold which has a quan-
tifiable justification. There are two options. In the first option, one should choose a
value of the winning threshold which maximizes the correlation between the weight
vector and an appropriate power profile. In the second option, one should choose a
value of the winning threshold which yields an inequality score for an appropriate
power profile which is closest to the inequality score of the weight vector. In both the
cases of IMF and EU, both the options lead to similar values of the winning thresh-
old. Based on this analysis, we put forward the suggestion that the voting rule for
IMF should be modified to reflect the optimal value of the winning threshold. In the
case of EU, our results provide evidence that the presently used winning threshold
is close to the optimal value.

Previous and Related Works

The Shapley–Shubik power index was introduced in Shapley (1953), Shapley and
Shubik (1954), Banzhaf index was introduced in Banzhaf (1965) while Coleman
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indices were introduced in Coleman (1971). Later work by Holler (1982) and
Holler and Packel (1983) introduced the public good measure/index. Deegan and
Packel introduced another power measure in Deegan and Packel (1978). There are
other known measures/indices and we refer to Felsenthal and Machover (1998),
Chakravarty et al. (2015) for further details.

The first work to address the problem of inequality in voting games is Einy and
Peleg (1991). They provided an axiomatic deduction of an inequality index for the
Shapley–Shubik power measure. A more general axiomatic treatment of inequality
for power measures appears in a paper by Laruelle and Valenciano (2004). This work
postulates axioms and deduces an inequality measure for a class of power indices
which includes the Banzhaf index. A more recent work by Weber (2016) suggests
the use of the Coefficient of Variation as an inequality index for measuring inequality
arising from the Banzhaf index. Later, we provide a more detailed discussion of the
relationship of these prior works to our contribution.

2 Preliminaries

2.1 Voting Games

We provide some standard definitions arising in the context of voting games. For
details, the reader may consult Felsenthal and Machover (1998), Chakravarty et al.
(2015). In the following, the cardinality of a finite set S will be denoted by #S and
the absolute value of a real number x will be denoted by |x |.

Let N = {A1, A2, . . . , An} be a set of n players. A subset of N is called a voting
coalition. The set of all voting coalitions is denoted by 2N . A voting game G is given
by its characteristic function ̂G : 2N → {0, 1}, where a winning coalition is assigned
the value 1 and a losing coalition is assigned the value 0. Below, we recall some basic
notions about voting games:

1. For any S ⊆ N and player Ai ∈ N , Ai is said to be a swing in S if Ai ∈ S,
̂G(S) = 1 but ̂G(S \ {Ai }) = 0.

2. For a voting game G, the number of swings for Ai will be denoted by mG(Ai ).
3. A player Ai ∈ N is called a dummy player if Ai is not a swing in any coalition,

i.e., if mG(Ai ) = 0.
4. For a voting game G, the set of all winning coalitions will be denoted by W (G)

and the set of all losing coalitions will be denoted by L(G).
5. A coalition S ⊆ N is called a minimal winning coalition if ̂G(S) = 1 and there

is no T ⊂ S for which ̂G(T ) = 1.
6. The set of all minimal winning coalitions in G will be denoted by MW(G) and

the set of minimal winning coalitions containing the player Ai will be denoted as
MWG(Ai ).

7. A voting gameG is said to be proper if for any coalition S ⊆ N , ̂G(S) = 1 implies
that ̂G(N \ S) = 0. In other words, in a proper game, it is not allowed for both S
and its complement to be winning.



Correlation and Inequality in Weighted Majority Voting Games 167

Definition 1 Consider a triplet (N ,w, q), where N = {A1, . . . , An} is a set of play-
ers; w = (w1, w2, . . . , wn) is a vector of nonnegative weights with wi being the
weight of Ai ; and q is a real number in (0, 1). Letω = ∑n

i=1 wi . The triplet (N ,w, q)
defines a weighted majority voting game G given by its characteristic function
̂G : 2N → {0, 1} in the following manner. Let wS = ∑

Ai∈S wi denote the sum of
the weights of all the players in the coalition S ⊆ N . Then

̂G(S) =
{

1 if wS/ω ≥ q,

0 otherwise.

We will write G = (N ,w, q) to denote the weighted majority voting game arising
from the triplet (N ,w, q).

For a weighted majority voting game G = (N ,w, q) to be proper, it is necessary
that q > 0.5. For the technical analysis of weighted majority voting games, we do
not restrict to proper games. When considering applications, as is conventional, one
should consider only proper games.

2.2 Voting Power

The notion of power is an important concept in a voting system. A power measure
captures the capability of a player to influence the outcome of a vote.

Given a game G on a set of players N and a player Ai in N , a power measure P
associates a nonnegative real number vi = PG(Ai ) to the player Ai . The number vi
captures the power that Ai has in the game G. If

∑

Ai∈G PG(Ai ) = 1 for all games
G, then P is called a power index. In other words, for a power index, the powers of
the individual players sum to 1.

A widely studied index of voting power is the Shapley–Shubik index. This index,
however, is defined for a voting game where the order in which the players cast their
votes is important. In our applicationof votingpower to the votinggames arising in the
IMF and EU decision-making processes, the order of casting votes is not important.
So, we do not consider the Shapley–Shubik index in this work. Below, we provide
the definitions of some of the previously proposed power measures. See Felsenthal
and Machover (1998), Chakravarty et al. (2015) for further details.

Banzhaf Power Measures. The raw Banzhaf power measure BRG(Ai ) for a player
Ai in the game G is defined as the number of distinct coalitions in which Ai is a
swing. Hence,

BRG(Ai ) = mG(Ai ).

The non-normalized Banzhaf power measure BZNG(Ai ) is defined as follows:

BZNG(Ai ) = BRG(Ai )

2n−1
= mG(Ai )

2n−1
.
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The Banzhaf normalized power index BZG(Ai ) is defined as follows:

BZG(Ai ) = BRG(Ai )
∑n

j=1 BRG(A j )
= mG(Ai )

∑n
j=1 mG(A j )

.

Coleman Power Measures. The Coleman preventive power measure CPG(Ai ) for a
player Ai in the gameG is a measure of its ability to stop a coalition S from achieving
wS ≥ q. It is defined as follows:

CPG(Ai ) = mG(Ai )

#W (G)
.

The Coleman initiative power measure CIG(Ai ) for a player Ai in the game G is
a measure of its ability to turn an otherwise losing coalition S with wS < q into a
winning coalition with wS∪{Ai } ≥ q. It is defined as follows:

CIG(Ai ) = mG(Ai )

#L(G)
= mG(Ai )

2n − #W (G)
= CPG(Ai )

2n
#W (G)

− 1
.

Holler Public Good Index. Holler proposed the public good index PGIAi (G) as
follows:

PGIAi (G) = #MWG(Ai )
∑

A j∈N #MWG(A j )
.

The non-normalized version ofPGIAi (G) is called the absolute public goodmeasure.
It is defined as

PGMAi (G) = #MWG(Ai )

#MW(G)
.

Deegan–Packel Power Measure. The Deegan–Packel power measure DPG(Ai ) for
a player Ai in the game G is defined to be

DPG(Ai ) = 1

#MW(G)

∑

S∈MWG (Ai )

1

#S
.

Power Profile. Suppose P is a measure of voting power. Then, P assigns a nonneg-
ative real number to each of the n players in the game. So, P is given by a vector of
nonnegative real numbers. This vector is called the P-power profile of the game.

Computing Voting Powers. A weighted majority voting gameG = (N ,w, q) is com-
pletely specified by the set of players N , a weight vectorw, and the threshold q. Given
this data, it is of interest to be able to compute the P-power profile for any power
measure P . There are known dynamic-programming-based algorithms for comput-
ing the values of the different voting power indices. We refer to Matsui and Matsui
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(2000), Chakravarty et al. (2015) for an introduction to algorithms for computing
voting powers. In our work, we have implemented the algorithms for computing the
P-power profiles where P is any of the power measures defined above.

There is a large literature on voting powers. The various indices mentioned above
have been introduced to model certain aspects of voting games which are not ade-
quately covered by the other indices. There have been axiomatic characterizations of
these indices. A detailed discussion of the relevant literature is not really within the
focus of the presentwork. Instead,we refer to the highly respectedmonographFelsen-
thal andMachover (1998) and the more recent textbook Chakravarty et al. (2015) for
such details.Our concern in this work is how to quantify the efficacy of any particular
voting power measure that one may choose for a particular application.

2.3 Pearson’s Correlation Coefficient

Given vectors w = (w1, . . . , wn) and v = (v1, . . . , vn), Pearson’s correlation coef-
ficient is the standard measure of linear correlation between these two vectors. It is
defined as follows:

PCC(w, v) =
⎧

⎨

⎩

0 if w1 = · · · = wn or v1 = · · · = vn;
∑n

i=1(wi−μw)(vi−μv)
√

∑n
i=1(wi−μw)2

√

∑n
i=1(vi−μv)2

otherwise. (1)

Here, μw and μv are the means of w and v, respectively.
From (1), it follows that for any two positive real numbers γ and δ,

PCC(w, v) = PCC(γw, δv). (2)

The relation captured in (2) can be considered to be a scale invariance property of
the Pearson’s correlation coefficient.

2.4 Inequality Indices

The notion of inequality has been considered for social parameters including income,
skills, education, health, and wealth Cowell (2016). There are several methods for
measuring inequality. At a basic level, the idea of an inequality index I is the fol-
lowing. Given a vector a whose components are real numbers, I(a) produces a
nonnegative real number r . In other words, the index I assigns an inequality score of
r to the vector a. There is a large literature on inequality indices including the mea-
surement of multidimensional inequality Chakravarty and Lugo (2016), Chakravarty
(2017). In this work, wewill consider only basic inequality indices. Some of themost
commonly used inequality indices are mentioned below.
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Given a vector a of real numbers, let μa and σa denote the mean and standard
deviation of a. In the definition of the inequality indices below, we will assume that
the entries of a are nonnegative and μa is positive.

Gini Index. The value of the Gini index of a vector a = (a1, . . . , an) is given by

GI(a) =
∑n

i=1

∑n
j=1|ai − a j |

2n
∑n

i=1 ai
. (3)

Coefficient of Variation. For a vector a = (a1, . . . , an), the Coefficient of Variation
is computed as the ratio of the standard deviation σa to the mean μa of a.

CoV(a) = σa

μa
=

√

1
n

∑n
i=1 a

2
i − (

1
n

∑n
i=1 ai

)2

1
n

∑n
i=1 ai

. (4)

Generalized Entropy Index. The generalized entropy index is a measure of inequality
based on information theory. For a real number α, the generalized entropy index
GEIα(a) is defined in the following manner:

GEIα(a) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
α(α−1)

(

1
n

∑

Ai∈N
(

ai
μa

)α − 1
)

if α �= 0, 1;
1
n

∑

Ai∈N ,ai>0

(

ai
μ+
a

)

ln
(

ai
μ+
a

)

if α = 1;
− 1

n

∑

Ai∈N ,ai>0 ln
(

ai
μ+
a

)

if α = 0.

(5)

Here, ln denotes the natural logarithm andμ+
a denotes themean of the positive entries

in a. Also, note that for α = 0, 1 the sum is over positive values of ai as otherwise
the ln function gets applied to 0. In other words, for α = 0 and 1, the computation
of inequality considers only the positive entries of a. GEI1 is called the Theil Index
and GEI2 is half the square of CoV.

Remark For application to the context of voting powers, a power of zero implies
that the player is a dummy. If GEI0 or GEI1 is used to measure inequality, then
such dummy players will get ignored. As a result, the inequality in the power profile
will not be adequately captured by these two measures. Due to this reason, GEI0
and GEI1 are not suitable for measuring inequality in voting powers. GEI2 is half
the square of CoV and will essentially spread out the value of CoV. The relevance
of GEIk for k > 2 to the context of voting power is not clear. So, though we have
computed, we do not report the values of GEI in this work.

Computing Inequality Indices. It is quite routine to implement an algorithm, which
given a vector of nonnegative quantities computes the values of the various inequality
indices. In our work, we have implemented algorithms to compute the Gini index
and the Coefficient of Variation.



Correlation and Inequality in Weighted Majority Voting Games 171

Desirable Properties of an Inequality Index. A few basic and natural properties have
been postulated which any reasonable inequality measure should satisfy. Below, we
mention these properties. See Cowell (2016) for more details. Let I be a postulated
inequality index and a = (a1, . . . , an) be a vector of nonnegative real numbers.

Let π be a bijection from {1, . . . , n} to itself, i.e., π is a permutation of {1, . . . , n}.
Define aπ to be the vector (aπ(1), . . . , aπ(n)), i.e., aπ is a reordering of the compo-
nents of a.

Anonymity (ANON): I is said to satisfy anonymity if I(a) = I(aπ) for all permuta-
tions π of {1, . . . , n}. Anonymity captures the property that inequality depends only
on the (multi-)set of values {a1, . . . , an}. Information related to ordering or labeling
of these values using names are irrelevant for the measurement of inequality.

Egalitarian Principle (EP): I is said to satisfy the egalitarian principle if I(a) = 0
for all a such that a1 = · · · = an . EP captures the property that the inequality is the
minimum possible when all components of the vector a have the same value.

Scale Invariance (ScI). I is said to satisfy scale invariance if I(a) = I(γa) for all
real γ > 0. The idea behind scale invariance is that if all the values are scaled by the
same factor then the inequality remains unchanged.

Let a[k] denote the vector
⎛

⎝a1, . . . , a1
︸ ︷︷ ︸

k

, a2, . . . , a2
︸ ︷︷ ︸

k

. . . , an, . . . , an
︸ ︷︷ ︸

k

⎞

⎠ .

Population Principle (PP). I is said to satisfy the population principle if I(a) =
I(a[k]) for any integer k ≥ 1. The vector a[k] contains k copies of each of the values
a1, . . . , an . PP says that the inequality in such a vector remains the same as in the
original vector, i.e., by replicating each of the components of the original vector the
same number of times does not change the inequality.

For 1 ≤ i < j ≤ n, let ai, j,δ be the vector

(a1, . . . , ai−1, ai + δ, . . . , a j − δ, a j+1, . . . , an).

Transfer Principle (TP). I is said to satisfy the transfer principle if I(a) ≥ I(ai, j,δ)
for any 1 ≤ i < j ≤ n and δ > 0 such that ai < a j and ai + δ ≤ a j − δ. The transfer
principle says that if δ units are transferred from a richer person to a poorer person
without changing their relative ordering, then inequality cannot increase.

Suppose a1, . . . , ak are vectors of dimensions n1, . . . , nk , respectively, with non-
negative real entries. Let μi be the mean of ai and define µ = (μ1, . . . ,μk). Let a be
the vector formed by concatenating the vectors a1, . . . , ak .

Decomposability (Decom). I is said to satisfy decomposability if

I(a) =
k

∑

i=1

niI(ai ) + I(µ).
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Decomposability captures the following idea. The vector a is divided into k groups
and inequality is measured for each of the groups. Further, the mean of each group
is computed and inequality is computed for the vector composing of the means. The
inequality for each group is “within-group inequality’, whereas the inequality in the
vector of means is some kind of “across group inequality”. The index I satisfies
decomposability if the overall inequality in the vector can be decomposed into a sum
of “within-group inequality” and “across group inequality”.

The Gini Index, the Coefficient of Variation, and the Generalized Entropy Indices
satisfy ANON, EP, ScI, PP, and TP. It has been shown Shorrocks (1980) that any
index which satisfies ANON, ScI, PP, TP, and Decom must necessarily have the
form of a generalized entropy index for some value of α.

ANON, EP, ScI, and TP are natural properties that any inequality index should
satisfy irrespective of the domain to which it is applied. PP becomes relevant in
the context of variable population size. For voting games, the players constitute the
population which is fixed. So, the application of PP to voting games is vacuous. On
the other hand, it is not clear that Decom is necessarily a desirable property for all
applications of inequality. In particular, it is not clear that Decom is relevant in the
context of voting powers which is the focus of the present work.

3 Weight–Power Similarity

Let P be a measure of voting power. Suppose this is applied to a weighted majority
voting game G = (N ,w, q). Let v be the resulting power profile. It is of interest to
know how similar the power profile vector v is to the weight vector w. Note that the
power profile vector v depends on the winning threshold q. Based on the Pearson’s
correlation coefficient, we define the similarity index P-SIw(q) as follows:

P-SIw(q) = PCC(w, v), (6)

where v is the power profile vector generated by the voting power measureP applied
to the weighted majority voting game G = (N ,w, q).

So, for a fixed q, P-SIw(q)measures the similarity of the power profile vector to
the weight vector by the correlation between these two vectors. Note that P-SIw(q)
is a function of q. As, q changes, the power profile vector v will also change, though
the weight vector w will not change. So, with change in q, the correlation between
w and v changes. By varying q, it is possible to study the change in the correlation
between w and v.

Theorem 1 Let G = (N ,w, q) be a weighted majority voting game such that 0 <

#W (G) < 2n. Then, for any q ∈ (0, 1) the following holds:

1. BZN-SIw(q) = BZ-SIw(q) = CP-SIw(q) = CI-SIw(q).
2. PGI-SIw(q) = PGM-SIw(q).
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Proof Let v = (mG(A1), . . . ,mG(An)) be the vector of swings for the players
A1, . . . , An in the game G. Suppose v1, v2, v3, and v4 are the power profiles for
G corresponding to BZN, BZ, CP, and CI, respectively. Then

v = α1v1 = α2v2 = α3v3 = α4v4,

where

α1 = 2n−1, α2 =
∑

j∈N
mG(A j ), α3 = #W (G) and α4 = #L(G).

InG, the values 2n ,
∑

j∈N mG(A j ), #W (G), and #L(G) are fixed. So,α1,α2,α3, and
α4 are constants. Further, since 0 < #W (G) < 2n , it follows that 0 < #L(G) < 2n

and so
∑

j∈N mG(A j ) > 0. This in particular means that α2,α3,α4 > 0 and clearly
α1 > 0. So, using (2), we have

BZN-SIw(q) = PCC(w, v1) = PCC(w, v/α1) = PCC(w, v).

In a similar manner, it follows that BZ-SIw(q)= PCC(w, v),
CP-SIw(q)= PCC(w, v), and CI-SIw(q)= PCC(w, v).

The argument for PGI-SIw(q)= PGM-SIw(q) is similar. 
�
From the viewpoint of weight–power similarity, Theorem 1 shows that it is suffi-

cient to consider only BZ-SIw(q), PGI-SIw(q), and DP-SIw(q).

4 Measuring Inequality of Voting Powers

LetG = (N ,w, q)be aweightedmajority voting game.Theweights of all the players
are not equal. In fact, in several important practical situations, the voting game is
designed in a manner such that the weights are indeed unequal. The inequality in the
weights can be captured by applying an appropriate inequality measure. Suppose I
is an inequality measure. Then, I(w) is the inequality present in the weights.

Let P be a measure of voting power. Suppose P is applied to G to obtain the
power profile vector v. Then, v is a vector consisting of nonnegative real numbers.
The inequality in the vector v can be measured by the inequality index I as I(v). The
value of I(v) depends on the winning threshold q, whereas the value of I(w) does
not depend on q. So, by varying q, it is possible to vary I(v)with the goal of making
it as close to I(w) as possible. Then, one can say that the inequality present in the
weights is more or less reflected in the inequality that arises in the voting powers.

Given a weighted majority voting game G = (N ,w, q), we define the weight
inequality of G with respect to an inequality measure I as

I-WI(w) = I(w). (7)
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We consider two different options for I, namely,GI and CoV. This gives rise to two
different measures of weight inequality, which are GI-WI and CoV-WI.

Given a weighted majority voting game G = (N ,w, q), a voting power measure
P , and an inequality measure I, the power inequality of P as determined by I is
denoted by (P, I)-PIw(q) and is defined in the following manner:

(P, I)-PIw(q) = I(v), (8)

where v is the power profile vector generated by the power measure P applied to the
weighted majority voting game G = (N ,w, q).

We have considered seven options for P , namely, BZN, BZ, CP, CI, PGI, PGM,
and DP. The following results show that under a simple and reasonable condition
on an inequality measure I, it is sufficient to consider only three of these.

Theorem 2 Let I be an inequality index satisfying scale invariance. Let G =
(N ,w, q) be a weighted majority voting game such that 0 < #W (G) < 2n. Then,
for any q ∈ (0, 1), the following holds:

1. (BZ, I)-PIw(q) = (BZ, I)-PIw(q) = (CP, I)-PIw(q) = (CI, I)-PIw(q).
2. (PGI, I)-PIw(q) = (PGM, I)-PIw(q).
Proof As in the proof of Theorem 1, let v = (mG(A1), . . . ,mG(An)) be the vector
of swings and v1, v2, v3, and v4 be the power profiles corresponding to BZN, BZ,
CP, and CI, respectively, so that

v = α1v1 = α2v2 = α3v3 = α4v4, (9)

whereα1,α2,α3, andα4 are the positive constants defined in the proof of Theorem 1.
Using the scale invariance of I, we have

(BZN, I)-PIw(q) = I(v1) = I(v/α1) = I(v).

In a similar manner, it follows that (BZ, I)-PIw(q)= I(v) (CP, I)-PIw(q)= I(v)
and (CI, I)-PIw(q)= I(v).

The argument for (PGI, I)-PIw(q)= (PGM, I)-PIw(q) is similar. 
�
The Gini Index, the Coefficient of Variation, and the Generalized Entropy Index

satisfy the scale invariance property. Based on Theorem 2, if I is any of these indices,
then from the viewpoint of power inequality, it is sufficient to consider (BZ, I)-
PIw(q), (PGI, I)-PIw(q), and (DP, I)-PIw(q). For I, we will consider the Gini
Index and the Coefficient of Variation. This means that we need to consider six
possibilities.

Remark Theorem 2 has been stated for weighted majority voting games. The crux of
the argument is based on (9). This relation does require G to be a weighted majority
voting game. So, it is possible to rewrite the proof to show that for general voting
games (which are not necessarily weighted majority voting games), the inequalities
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of the different Banzhaf power profiles and the Coleman power profiles are all equal
and also the inequality of the Holler public good index is equal to that of the Holler
public good measure.

Comparison to Previous Works. The work Einy and Peleg (1991) on inequality in
voting system is concerned with measuring inequality arising in the Shapley–Shubik
power index. Since we do not consider this index in our work, we do not comment
any further on the work in Einy and Peleg (1991). Instead, we simply remark that
our approach can also be applied to the Shapley–Shubik power index.

Laruelle and Valenciano (2004) axiomatically derive an inequality index for a
class of power indices which includes the normalized Banzhaf index. We note the
following points about the work in Laruelle and Valenciano (2004):

1. The approach works only for an index, i.e., the sum of the powers must sum to
one. So, for example, it cannot be applied to measure inequality arising in either
of the Coleman power measures.

2. The notion of power considered in the work is based on swings. So, the power
measures given by PGI, PGM, and DP are not covered by their work.

3. Among the axioms, ANON and EP are assumed and it is shown that the obtained
measure satisfiesScI.On theother hand,PP andTP are notmentioned in thepaper
and it is not clear whether these two properties hold for the obtained measure.

4. Justification for one of the axioms (namely, Constant Sensitivity toNull Players) is
not clear. In the discussion leading up to this axiom, the authors remark: “Thus, at
this point any further step is questionable, though necessary to specify an index.”

In view of the above, we feel that it might be preferable to study the behavior of
standard inequality indices on both power measures and power indices rather than
relying on an axiomatically derived inequality index where at least one of the axioms
does not necessarily have a natural justification.

Weber (2016) considered the application1 of the Coefficient of Variation to the
measurement of inequality for essentially the normalized Banzhaf index. In contrast,
we consider all the standard inequality indices and a much larger class of power mea-
sures/indices. Even for the Coefficient of Variation, the result that the scale invariance
property implies that all the swing-based measures have the same inequality is not
present in Weber (2016).

5 Variation of Similarity and Inequality with Winning
Threshold

We have conducted some experiments to understand the dependence of the similarity
and inequality indices of power profiles on the winning threshold.

1The author remarks: “To the best of my knowledge, I am the first to propose ameasure of inequality
of voting systems that can be used across different constituencies.” This is an oversight since the
work by Laruelle and Valenciano Laruelle and Valenciano (2004) is much earlier.
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In the first experiment, N was taken to be {A1, . . . , A30} and one hundred weight
vectors were generated where the individual weights were chosen to be integers
independently and uniformly in the range [1, . . . , 100]. For each of the 100 weight
vectors w, the value of the winning threshold q was varied from 0.01 to 0.99 in
steps of 0.01. For the game defined by the triplet (N ,w, q), the power profiles
for the different power measures were computed. From this, the similarity indices
BZ-SIw(q), PGI-SIw(q), and DP-SIw(q) were computed and the inequality indices
I-WI(w), (BZN, I)-PIw(q), (PGI, I)-PIw(q), and (DP, I)-PIw(q) were computed
where I was taken to beGI andCoV. All the obtained results show a definite pattern.

A second experiment was conducted with n = 30 and nonrandom weights. In
particular, two distinct values of weights were used, namely, n1 of the weights were
taken to be 100 and n2 of theweights were taken to be 1with n1 + n2 = 30. The value
of q was varied as mentioned above and the corresponding similarity and inequality
indices were computed. In this case, no definite pattern was observed and there was
a rich variation in the behavior.

To further explain the above experiments, we report three particular cases with
n = 30.

Case-I: A randomweight vector. The actual value ofw (after sorting into descend-
ing order) came out to be

{93, 92, 90, 86, 86, 83, 82, 77, 72, 68, 67, 67, 63, 62, 62, 59,
49, 40, 36, 35, 35, 30, 29, 27, 26, 26, 23, 21, 15, 11}.

The plots of similarity, Gini Index, and the Coefficient of Variation are shown in
Figs. 1, 2, and 3, respectively.

Case-II: 15 of the weights were taken to be 100 and the other 15 of the weights
were taken to be 1. The plots of similarity, Gini Index and the Coefficient of
Variation are shown in Figs. 4, 5 and 6 respectively.

Fig. 1 Similarity indices for
Case-I
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Fig. 2 Gini index for Case-I

Fig. 3 Coefficient of
variation for Case-I

Fig. 4 Similarity indices for
Case-II
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Fig. 5 Gini index for
Case-II

Fig. 6 Coefficient of
variation for Case-II

Fig. 7 Similarity indices for
Case-III
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Fig. 8 Gini index for
Case-III

Fig. 9 Coefficient of
variation for Case-III

Case-III: 29 of the weights were taken to be 100 and the other weight was taken
to be 1. The plots of similarity, Gini Index, and the Coefficient of Variation are
shown in Figs. 7, 8, and 9, respectively.

Based on the plots, we make the following observations:

1. For the random case, compared to the Holler index and the Deegan–Packel mea-
sure, the Banzhaf index is a much better marker of similarity to the weight vector
and it is also much better at capturing the inequality present in the weights. For
the two nonrandom cases, there is not much difference between the three power
measures.

2. For Case-II, there are sharp spikes in the similarity and inequality plots. These
correspond to choices of q for which the lowweight players achieve power similar
to the high weight players.
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3. For Case-III, there is one player with low weight. Apart from a small range of q
where this player gains significant power, for other values of q this player becomes
a dummy. The inequality indices, however, do not reflect this. The inequality
scores are generally quite low indicating that there is small inequality in the
system. This is a feature of the inequality indices which are not sensitive to low
scores of a small number of players.

6 Applications

6.1 IMF Voting Games

The IMF has two decision-making bodies, namely, the Board of Governors (BoG)
and the Executive Board (EB).

A total of 189 member countries make up the BoG. Each country has a specified
voting share. The voting share or weight of a country is calculated as the sum of
a basic weight plus an amount which is proportional to the special drawing rights
of the country. The EB consists of 24 Executive Directors (EDs) representing all
the 189 member countries. Eight of these directors are nominated by eight member
countries while each of the other directors is elected by a group of countries. Each
ED has a voting weight which is the sum of the voting weights of the countries that
he or she represents.

The BoG is the highest decision-making body of the IMF and is officially respon-
sible for all major decisions. In practice, however, the BoG has delegated most of its
powers to the EB.2 Accordingly, in this work, we will consider only the voting game
arising from the EB weights.

Actual weights of the members of the EB are available from the IMF website.3

These weights range from the minimum of 80157 to the maximum of 831407. Since
these values are rather large, for the purposes of computation of voting powers, we
have divided these voting weights by 1000 and then rounded to the nearest integer.
While this is an approximation, it does not significantly affect the voting powers. In
particular, we have checked that no two members with originally unequal weights
get the same weight after this rounding off process. The actual weight vector that
has been used to compute the voting powers is the following:

wimf = {831, 310, 306, 273, 268, 267, 219, 208, 203, 203, 196, 170,
165, 162, 155, 154, 150, 149, 138, 131, 111, 101, 82, 80}.

The rules specify several winning thresholds.4 We mention these below:

2https://en.wikipedia.org/wiki/International_Monetary_Fund.
3https://www.imf.org/external/np/sec/memdir/eds.aspx.
4https://www.imf.org/external/pubs/ft/aa/index.htm.

https://en.wikipedia.org/wiki/International_Monetary_Fund
https://www.imf.org/external/np/sec/memdir/eds.aspx
https://www.imf.org/external/pubs/ft/aa/index.htm
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Except as otherwise specifically provided, all decisions of the Fund shall be made by a
majority of the votes cast.

The Fund, by a seventy percent majority of the total voting power, may decide at any time
to distribute any part of the general reserve.

The Fund may use a member’s currency held in the Investment Account for investment as it
may determine, in accordance with rules and regulations adopted by the Fund by a seventy
percent majority of the total voting power.

An eighty-five percent majority of the total voting power shall be required for any change
in quotas.

So, three possible values of q are used: q = 0.5, q = 0.7, and q = 0.85.
We have computed the similarity and inequality indices for the IMF EB voting

game with q varying from 0.01 to 0.99 in steps of 0.01. The plots of BZ-SIwimf(q),
PGI-SIwimf(q), andDP-SIwimf(q) are shown inFig. 10; the plots of (BZ,GI)-PIwimf(q),
(PGI,GI)-PIwimf(q), and (DP,GI)-PIwimf(q) are shown in Fig. 11; and the plots of

Fig. 10 Similarity indices
for IMF-EB weights

Fig. 11 Gini index for
IMF-EB weights
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(BZ,CoV)-PIwimf(q), (PGI,CoV)-PIwimf(q), and (DP,CoV)-PIwimf(q) are shown in
Fig. 12. The actual values of these indices for the range [0.5, 0.65] along with the
values for q = 0.70 and q = 0.85 are shown in Tables 1 and 2. Based on these data,
we have the following observations:

Fig. 12 Coefficient of
variation for IMF-EB
weights

Table 1 IMF-EB similarity indices

q BZ-SIwimf (q) PGI-SIwimf (q) DP-SIwimf (q)

0.50 0.9938690 0.7743330 0.9330398

0.51 0.9939952 0.8965981 0.9531445

0.52 0.9943706 0.9363455 0.9618091

0.53 0.9949599 0.9522328 0.9669979

0.54 0.9957522 0.9600696 0.9708993

0.55 0.9966513 0.9649342 0.9740920

0.56 0.9975953 0.9688469 0.9771681

0.57 0.9985210 0.9730949 0.9806975

0.58 0.9992881 0.9769905 0.9839294

0.59 0.9998168 0.9806887 0.9869004

0.60 0.9999911 0.9846956 0.9899614

0.61 0.9996918 0.9882609 0.9924378

0.62 0.9988216 0.9912144 0.9942195

0.63 0.9972257 0.9936152 0.9953372

0.64 0.9948817 0.9951439 0.9954396

0.65 0.9916875 0.9956169 0.9945365

0.70 0.9609858 0.9788570 0.9715726

0.85 0.7634234 0.7787653 0.7721551
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Table 2 Inequality as measured by GI and CoV in the IMF Game. In the table,
f1(q) = (BZ,GI)-PIwimf (q), f2(q) = (PGI,GI)-PIwimf (q), f3(q) = (DP,GI)-PIwimf (q), g1(q) =
(BZ,CoV)-PIwimf (q), g2(q) = (PGI,CoV)-PIwimf (q), g3(q) = (DP,CoV)-PIwimf (q). Note GI-
WI(wimf) = 0.285042 and CoV-WI(wimf) = 0.689527

q f1(q) f2(q) f3(q) g1(q) g2(q) g3(q)

0.50 0.316535 0.013684 0.023564 0.859515 0.033982 0.061049

0.51 0.316212 0.017718 0.027366 0.857502 0.046205 0.074206

0.52 0.315214 0.021654 0.031084 0.851387 0.059712 0.086957

0.53 0.313531 0.025291 0.034457 0.841354 0.072727 0.098447

0.54 0.311215 0.028989 0.037852 0.827460 0.085147 0.108920

0.55 0.308401 0.032545 0.041122 0.810689 0.096331 0.118073

0.56 0.305067 0.035747 0.044020 0.791192 0.105924 0.125614

0.57 0.301236 0.038982 0.046930 0.769085 0.114385 0.132059

0.58 0.297133 0.042029 0.049670 0.745825 0.121321 0.137161

0.59 0.292743 0.044794 0.052123 0.721395 0.126885 0.141047

0.60 0.288019 0.047504 0.054517 0.695812 0.131366 0.144021

0.61 0.283235 0.050075 0.056795 0.670527 0.134712 0.131366

0.62 0.278285 0.052419 0.058857 0.645342 0.137090 0.147386

0.63 0.273201 0.054555 0.060691 0.620092 0.138635 0.147978

0.64 0.268155 0.056714 0.062592 0.596040 0.139694 0.148302

0.65 0.263088 0.058572 0.064200 0.572826 0.140068 0.148049

0.66 0.257927 0.060254 0.065613 0.550134 0.139974 0.147422

0.67 0.252875 0.061895 0.067025 0.528952 0.139751 0.146796

0.68 0.247854 0.063419 0.068331 0.508843 0.139248 0.145961

0.69 0.242726 0.064596 0.069269 0.489429 0.138348 0.144745

0.70 0.237753 0.065816 0.070276 0.471442 0.137616 0.143776

0.85 0.158497 0.066284 0.068153 0.278829 0.116985 0.120198

1. The Holler and the Deegan–Packel indices are not good indicators of either the
similarity to or the inequality present in the weights. So, we focus only on the
Banzhaf index.

2. The following holds for the Banzhaf index:

– The plots of the two inequality indices have bell curve shapes. To a lesser
extent, the same is also true of the similarity index.

– The maximum similarity is achieved for q = 0.60.
– For theGini Index, the inequality in the power profile is closest to the inequality
in the weights for q = 0.61.

– For the Coefficient of Variation, the inequality in the power profile is closest
to the inequality in the weights for q = 0.60.

From Tables 1 and 2, we note that in comparison to q = 0.60, the choices q = 0.50,
q = 0.70, and q = 0.85 are suboptimal.
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Table 3 Voting powers of the players under various power measures for the IMF-EB game with
q = 0.60. Instead of the players, the voting powers are shown against the weights of the players

Wts BZN BZ CP CI PGI PGM DP

831 0.4033509 0.1661335 0.8949349 0.2603447 0.0662802 0.8888586 0.0682873

310 0.1508728 0.0621420 0.3347491 0.0973816 0.0435712 0.5843174 0.0442821

306 0.1488262 0.0612990 0.3302082 0.0960606 0.0434846 0.5831563 0.0441693

273 0.1322311 0.0544638 0.2933878 0.0853492 0.0427837 0.5737562 0.0432420

268 0.1297327 0.0534347 0.2878445 0.0837366 0.0426849 0.5724312 0.0431133

267 0.1292485 0.0532353 0.2867701 0.0834240 0.0426597 0.5720929 0.0430820

219 0.1055294 0.0434658 0.2341434 0.0681144 0.0416246 0.5582125 0.0417465

208 0.1001409 0.0412464 0.2221877 0.0646364 0.0414027 0.5552361 0.0414634

203 0.0976979 0.0402401 0.2167671 0.0630595 0.0413069 0.5539514 0.0413394

203 0.0976979 0.0402401 0.2167671 0.0630595 0.0413069 0.5539514 0.0413394

196 0.0942787 0.0388318 0.2091809 0.0608526 0.0411606 0.5519899 0.0411522

170 0.0816418 0.0336269 0.1811427 0.0526961 0.0406361 0.5449551 0.0404690

165 0.0792183 0.0326287 0.1757655 0.0511318 0.0405488 0.5437851 0.0403568

162 0.0777606 0.0320283 0.1725313 0.0501909 0.0404977 0.5430995 0.0402881

155 0.0743695 0.0306316 0.1650074 0.0480022 0.0403450 0.5410517 0.0400980

154 0.0738934 0.0304355 0.1639510 0.0476948 0.0403227 0.5407521 0.0400702

150 0.0719494 0.0296347 0.1596377 0.0464400 0.0402490 0.5397639 0.0399749

149 0.0714759 0.0294397 0.1585871 0.0461344 0.0402247 0.5394390 0.0399449

138 0.0661672 0.0272532 0.1468086 0.0427079 0.0399681 0.5359976 0.0396272

131 0.0627846 0.0258599 0.1393032 0.0405246 0.0397938 0.5336591 0.0394117

111 0.0531555 0.0218939 0.1179389 0.0343095 0.0389966 0.5229683 0.0384651

101 0.0483502 0.0199146 0.1072770 0.0312079 0.0383484 0.5142761 0.0377462

82 0.0392314 0.0161588 0.0870447 0.0253221 0.0361261 0.4844734 0.0353936

80 0.0382680 0.0157619 0.0849071 0.0247002 0.0356770 0.4784506 0.0349375

Based on the above analysis, we put forward the suggestion that the winning
threshold of q = 0.60 be seriously considered for any future possible change in
voting rule. For q = 0.60, the actual values of the different power measures are
shown in Table 3.

6.2 EU Voting Games

Until Brexit is effective, the European Union Council has 28 members. It votes on
different types of matters in three different ways.5 The first is the unanimity voting
where all members have to vote in favor or against for the motion to be passed or

5http://www.consilium.europa.eu/en/council-eu/voting-system/.

http://www.consilium.europa.eu/en/council-eu/voting-system/
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Table 4 Population percentages of the countries in the European Union

Country Pop (%) weu

Germany 16.06 1606

France 13.05 1305

United Kingdom 12.79 1279

Italy 12.00 1200

Spain 9.09 909

Poland 7.43 743

Romania 3.87 387

Netherlands 3.37 337

Belgium 2.21 221

Greece 2.11 211

Czech Republic 2.04 204

Portugal 2.02 202

Sweden 1.96 196

Hungary 1.92 192

Austria 1.71 172

Bulgaria 1.40 140

Denmark 1.12 112

Finland 1.07 107

Slovakia 1.06 106

Ireland 0.91 91

Croatia 0.82 82

Lithuania 0.57 57

Slovenia 0.40 40

Latvia 0.39 39

Estonia 0.26 26

Cyprus 0.17 17

Luxembourg 0.11 11

Malta 0.09 9

dismissed. In nonlegislative issues, a simple majority voting is done where at least
15 out of the 28 members have to vote in favor. For most (80%) of the issues that
are voted upon in the EU Council, the “qualified majority” method is used. This is
stated as follows6:

A qualified majority needs 55% of member states, representing at least 65% of the EU
population.

It is the qualified majority voting rule that we consider in the context of weighted
majority voting games. The population percentages of the individual countries are

6http://www.consilium.europa.eu/en/council-eu/voting-system/qualified-majority/.

http://www.consilium.europa.eu/en/council-eu/voting-system/qualified-majority/
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Fig. 13 Similarity indices
for EU weights

Fig. 14 Gini index for EU
weights

available7 and are reproduced in Table 4. These percentages are the weights of the
individual countries. For computation of the voting powers, the percentage values are
multiplied by 100 to convert these into integers which are then used as the weights.
This scaling does not affect the decision-making process.

In the qualified majority voting, the passing rule is a joint condition, one on the
number of member states which are involved and the other on the population percent-
age. While analyzing the joint condition would be more accurate, for the purpose of
this work, we have worked with the simpler setting where only the winning condition
on the population percentage is considered. This leads to a weighted majority voting
game where the weight vector weu is specified in Table 4 and the winning threshold
is q = 0.65.

7http://www.consilium.europa.eu/en/council-eu/voting-system/voting-calculator/.

http://www.consilium.europa.eu/en/council-eu/voting-system/voting-calculator/
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Fig. 15 Coefficient of
variation for EU weights

Table 5 EU game similarity indices

q BZ-SIweu (q) PGI-SIweu (q) DP-SIweu (q)

0.50 0.9988826 0.3320853 0.5051382

0.51 0.9989581 0.4181647 0.5640333

0.52 0.9991501 0.4929785 0.6151950

0.53 0.9993725 0.5596608 0.6631804

0.54 0.9995411 0.6230357 0.7099130

0.55 0.9996231 0.6830571 0.7540455

0.56 0.9996430 0.7350513 0.7910700

0.57 0.9996501 0.7765455 0.8199512

0.58 0.9996763 0.8063575 0.8409968

0.59 0.9997123 0.8289370 0.8576475

0.60 0.9997249 0.8477416 0.8722319

0.61 0.9996959 0.8642583 0.8846472

0.62 0.9996486 0.8777664 0.8944232

0.63 0.9996354 0.8870017 0.9006101

0.64 0.9996914 0.8932824 0.9048869

0.65 0.9997886 0.8976327 0.9086210

0.66 0.9998332 0.9039397 0.9150038

0.67 0.9997214 0.9135211 0.9242301

0.68 0.9994175 0.9258465 0.9351369

0.69 0.9989968 0.9381400 0.9448867

0.70 0.9986065 0.9465521 0.9507084
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Table 6 Inequality as measured by GI and CoV in the EU Game. In the table
h1(q) = (BZ,GI)-PIweu (q), h2(q) = (PGI,GI)-PIweu (q), h3(q) = (DP,GI)-PIweu (q), k1(q) =
(BZ,CoV)-PIweu (q), k2(q) = (PGI,CoV)-PIweu (q), k3(q) = (DP,CoV)-PIweu (q). Note GI-
WI(weu) = 0.605671 and CoV-WI(weu) = 1.272825

q h1(q) h2(q) h3(q) k1(q) k2(q) k3(q)

0.50 0.614849 0.033960 0.046614 1.309745 0.091907 0.107286

0.51 0.614993 0.039425 0.051749 1.309901 0.095374 0.112346

0.52 0.615391 0.044681 0.056573 1.310338 0.100199 0.118139

0.53 0.615945 0.049083 0.060556 1.310962 0.105176 0.123691

0.54 0.616483 0.052608 0.063782 1.311545 0.109910 0.128951

0.55 0.616834 0.055576 0.067481 1.311731 0.114808 0.134668

0.56 0.616822 0.059365 0.071789 1.311070 0.120243 0.140936

0.57 0.616302 0.063896 0.076268 1.309147 0.126922 0.148409

0.58 0.615243 0.068081 0.080370 1.305796 0.134171 0.156036

0.59 0.613694 0.072437 0.084545 1.301119 0.142004 0.163861

0.60 0.611813 0.076339 0.088256 1.295536 0.149118 0.170797

0.61 0.609851 0.079853 0.091521 1.289678 0.155445 0.176837

0.62 0.608078 0.083431 0.094969 1.284198 0.161705 0.183060

0.63 0.606708 0.086467 0.097851 1.279626 0.167582 0.188834

0.64 0.605893 0.089760 0.101116 1.276296 0.174214 0.195451

0.65 0.605616 0.093045 0.104334 1.274202 0.181046 0.202085

0.66 0.605689 0.096528 0.107787 1.272960 0.188107 0.209023

0.67 0.605797 0.100171 0.111427 1.271778 0.195381 0.216243

0.68 0.605497 0.103949 0.115322 1.269457 0.202594 0.223577

0.69 0.604333 0.107898 0.119249 1.264638 0.210268 0.231500

0.70 0.601994 0.111935 0.123198 1.256239 0.218490 0.239777

For the weight vector weu given in Table 4, we have computed the similarity and
inequality indices with q varying from 0.01 to 0.99 in steps of 0.01. The plots of BZ-
SIweu(q),PGI-SIweu(q), andDP-SIweu(q) are shown in Fig. 13; the plots of (BZ,GI)-
PIweu(q), (PGI,GI)-PIweu(q), and (DP,GI)-PIweu(q) are shown in Fig. 14; and the
plots of (BZ,CoV)-PIweu(q), (PGI,CoV)-PIweu(q), and (DP,CoV)-PIweu(q) are
shown in Fig. 15. The actual values of these indices for the range [0.5, 0.7] are
shown in Tables 5 and 6.

Based on these data, we have the following observations:

1. As in the case of the IMF-EB voting game, the Holler and the Deegan–Packel
indices are not good indicators of either the similarity to or the inequality present
in the weights. So, again we focus only on the Banzhaf index.

2. The following holds for the Banzhaf index:

– The plots of the two inequality indices as well as the similarity index have a
somewhat bell-shaped nature.
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Table 7 Votingpowers of the players under various powermeasures for theEUgamewithq = 0.66.
Instead of the players, the voting powers are shown against the weights of the players

Wts BZN BZ CP CI PGI PGM DP

1606 0.2459032 0.1582166 0.7950917 0.1454426 0.0537148 0.8173260 0.0554496

1305 0.2044021 0.1315144 0.6609039 0.1208962 0.0479912 0.7302363 0.0496147

1279 0.2003657 0.1289173 0.6478528 0.1185089 0.0475521 0.7235548 0.0491300

1200 0.1881286 0.1210439 0.6082861 0.1112711 0.0463214 0.7048273 0.0477734

909 0.1444251 0.0929245 0.4669771 0.0854221 0.0410962 0.6253212 0.0423199

743 0.1115583 0.0717777 0.3607073 0.0659826 0.0368236 0.5603092 0.0372597

387 0.0600651 0.0386465 0.1942116 0.0355263 0.0379704 0.5777581 0.0380942

337 0.0523199 0.0336631 0.1691686 0.0309453 0.0371804 0.5657380 0.0372361

221 0.0343284 0.0220872 0.1109957 0.0203039 0.0355657 0.5411688 0.0354550

211 0.0327751 0.0210878 0.1059733 0.0193852 0.0354097 0.5387953 0.0352811

204 0.0316896 0.0203894 0.1024638 0.0187432 0.0353493 0.5378758 0.0352135

202 0.0313774 0.0201886 0.1014543 0.0185586 0.0353118 0.5373050 0.0351703

196 0.0304473 0.0195901 0.0984469 0.0180085 0.0352300 0.5360610 0.0350762

192 0.0298266 0.0191907 0.0964398 0.0176413 0.0352006 0.5356133 0.0350399

171 0.0265634 0.0170911 0.0858887 0.0157112 0.0349022 0.5310729 0.0347002

140 0.0217525 0.0139958 0.0703336 0.0128658 0.0345472 0.5256718 0.0343204

112 0.0173997 0.0111951 0.0562592 0.0102913 0.0341762 0.5200262 0.0338917

107 0.0166246 0.0106964 0.0537533 0.0098328 0.0341039 0.5189262 0.0338115

106 0.0164687 0.0105961 0.0532489 0.0097406 0.0341017 0.5188932 0.0338069

91 0.0141386 0.0090969 0.0457151 0.0083625 0.0338729 0.5154111 0.0335409

82 0.0127383 0.0081959 0.0411873 0.0075342 0.0336632 0.5122204 0.0332955

57 0.0088505 0.0056945 0.0286168 0.0052347 0.0329459 0.5013056 0.0324475

40 0.0062171 0.0040002 0.0201021 0.0036772 0.0321913 0.4898234 0.0315918

39 0.0060615 0.0039000 0.0195989 0.0035851 0.0321094 0.4885777 0.0314986

26 0.0040399 0.0025993 0.0130624 0.0023894 0.0300802 0.4577017 0.0292896

17 0.0026410 0.0016992 0.0085393 0.0015621 0.0273734 0.4165147 0.0264409

11 0.0017116 0.0011013 0.0055342 0.0010123 0.0238031 0.3621886 0.0228048

9 0.0013991 0.0009002 0.0045238 0.0008275 0.0214120 0.3258058 0.0204462

– The maximum similarity is achieved for q = 0.66.
– For theGini Index, the inequality in the power profile is closest to the inequality
in the weights for q = 0.66.

– For the Coefficient of Variation, the inequality in the power profile is closest
to the inequality in the weights for q = 0.66.

So, the value of q = 0.66 is the best in terms of similarity and also for inequality
measured by either the Gini Index or the Coefficient of Variation.
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The value of q actually used in the EU voting games is q = 0.65. The corresponding
similarity value and the values for Gini Index and Coefficient of Variation are shown
in Tables 1 and 2, respectively. These values show that in comparison to q = 0.66,
the choice q = 0.65 is suboptimal but, very close. For q = 0.66, the actual values of
the different power measures are shown in Table 7.

Unlike the case of the IMF voting game, our analysis shows that for the weighted
majority game arising in the context of EU, the winning threshold is very close to
the optimal value. So, our analysis provides some quantitative backing to the actual
winning threshold used in the EU game.

7 Conclusion

In this paper, we have addressed the problem of quantifying whether a power profile
adequately captures the natural variation in the weights of a weighted majority vot-
ing game. Ideas based on Pearson’s correlation coefficient and standard inequality
measures such as the Gini Index and the Coefficient of Variation have been used in
the formalization. These ideas have been applied to the voting games arising in the
context of the IMF and the EU. We provide concrete quantitative evidence that the
actual winning threshold used in the IMF games is suboptimal and instead propose
a new value of the winning threshold which has firm theoretical justification. In the
case of the EU game, the actual value of the winning threshold used is close to the
optimal value. So, in this case, our analysis provides some quantitative backing to
the value of the winning threshold that is actually used.
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