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Preface

Satya Ranjan Chakravarty was educated at the Indian Statistical Institute (ISI),
Kolkata. From there, he received a bachelor’s degree in statistics (1976), a master’s
degree in statistics (1977), and a Ph.D. in economics (1981). He subsequently joined
the faculty of ISI, where he taught till his retirement in 2019. His academic career at
ISI was complemented by visiting positions at various universities around the globe,
including the University of British Columbia, the University of Karlsruhe, Bar-Ilan
University, Kagawa University, the Paris School of Economics, the Chinese
University of Hong Kong, Bocconi University, Yokohama National University, and
the University of International Business and Economics, Beijing. He received the
prestigious Mahalanobis Memorial Award of the Indian Econometric Society in 1994.
He currently serves on the editorial boards of the Journal of Economic Inequality, the
Review of Income and Wealth and Social Choice and Welfare.

Issues relating to the measurement of poverty (or, more generally, deprivation)
and inequality constitute abiding themes in Chakravarty’s research oeuvre. In recent
years, his work in these areas has expanded to include the measurement of polar-
ization. His writings on these themes remain seminal and continue to exert a major
influence on current research. Industrial organization and cooperative game theory
are the other broad areas in which he has made important interventions. His
research papers have come out in some of the most prestigious and high-impact
journals in Economics, including Econometrica, Journal of Economic Theory,
International Economic Review, Journal of Development Economics, Social Choice
and Welfare, Canadian Journal of Economics, Games and Economic Behavior,
Economic Theory, Journal of Economic Inequality, Mathematical Social Sciences,
Theory and Decision, Health Economics, and Review of Income and Wealth. He has
also authored a number of books, of which ‘Inequality, Polarization and Poverty’
(Springer, 2009), ‘Inequality, Polarization and Conflict’ (Springer, 2015), and
‘Analyzing Multidimensional Well-Being’ (Wiley, 2017) constitute essential
reading for researchers in these areas.

Chakravarty produced some of his most seminal research work in the 1980s and
1990s. This was a time when basic infrastructural and resource constraints in Indian
academic institutions could, and did, often prove daunting enough to permanently

v



demoralize even the most brilliant and motivated young scholars. Far too many of
his generation did get so demoralized and burnt out, to the extent of ceasing to
produce meaningful research altogether, within a few years of their doctoral
degrees. Many others relocated to institutions outside India in search of a better
work environment. Chakravarty was among a handful of Indian economists of his
generation who not only stayed back, but, somehow, managed to keep producing
research that was globally recognized, despite their debilitating and often
Kafkaesque work environment. The editors of this volume, who were graduate
students in the late ‘90s, remember those times well enough to realize that
Chakravarty’s sheer dogged perseverance set a template for an intellectual and
institutional commitment that they can idolize, but never even attempt to emulate.
One of us became a colleague of Chakravarty in 2004 and the other in 2012. Along
with that privilege, we also acquired an academic role model, a mentor, a great
colleague, and a true elder. “Satya da” was always available to younger colleagues
for encouragement, advice, and support. But equally, he taught us how it was never
beneath one’s dignity to treat even much younger colleagues as equals—to look to
them in turn for advice and support. And most importantly, he taught us never to
compromise our academic judgment, no matter how strong the institutional pres-
sures or how persuasive the extra-academic reasons to do so. Putting together this
volume has been an act of writing up an elaborate, yet entirely inadequate, personal
thank you note from us for him.

This volume is a tribute to Satya Chakravarty, the man as well as his work, from
his students, colleagues, research collaborators, and intellectual admirers with
cognate research interests. It brings together eleven essays, written by altogether
twenty researchers based in eight different countries—Canada, France, India, Israel,
Italy, Luxembourg, the UK, and the USA. The essays cover various issues in the
formal analysis of deprivation, inequality, and polarization. Many of the contri-
butions explicitly build on ideas introduced in the writings of Chakravarty, thereby
attesting to their continuing impact on the research frontier. Others are influenced
broadly by his general research concerns and attest to their continuing relevance.
All contribute to recurrent themes in Chakravarty’s research oeuvre.

The first three papers fall in the area of deprivation analysis. Pattanaik and Xu
study the measurement of multidimensional well-being and deprivation when every
attribute is discretely and ordinally measurable. They axiomatically characterize a
class of measures of social well-being as well as a class of social deprivation
measures. Bossert and D’Ambrosio adapt a class of indices on the measurement of
poverty over time to that of material deprivation and apply their framework to the
analysis of material deprivation within EU countries. Gajdos, Weymark, and Zoli
theorize on the comparative evaluation of social risk distributions, which are
probability distributions over potential sets of fatalities associated with different
public policy options.

The next six papers address different aspects of inequality analysis. Kanbur starts
from the observation that often greater progressivity in income taxation requires a
higher volume of gross redistributive flows across income levels, which may be
costly to manage (administratively or politically). Progressivity is reduced in
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consequence. This problem is aggravated if redistribution across income levels
implies redistribution across sociopolitically salient groups. He develops a theo-
retical framework in which these issues are captured and formally elucidated.
Banerjee examines the problem of obtaining a crisp approximation of a fuzzy
inequality ranking relation over a set of income distributions. Peled and Silber
propose a new definition of pro-middle class growth and, using Israeli data for the
period 1995–2011, argue that Israeli growth was indeed pro-middle class in the
period under examination. Jayadev and Reddy introduce concepts and measures
relating to inequality between identity groups. They proceed to discuss how these
concepts can be deployed to interpret segregation, clustering, and polarization in
societies. Tyagarupananda and Chattopadhyay offer a general measure of inequality
that, in the limit, converges to the Theil index. They discuss the properties of this
measure, along with an empirical illustration using Indian consumer expenditure
survey data. Bhattacharjee and Sarkar use Pearson’s correlation coefficient between
the weight vector and the power profile to measure the similarity between weight
and power in weighted majority voting games and use standard inequality measures
to quantify the inequality in the weight vector as well as in the power profile. They
find that it is possible to choose a value of the winning threshold which maximizes
the similarity score and also minimizes the difference in the inequality scores of the
weight vector and the power profile. They use their methodology to examine the
voting games arising in the decision-making processes of the International
Monetary Fund and the European Union.

The last two papers in the volume relate to the measurement of polarization.
Maharaj and Chattopadhyay derive the general nature of a polarization map and
extend the setup to allow for pooling of two populations. They also present an
empirical illustration of polarization indices using Indian National Sample Survey
data. Motiram and Vakulabharanam introduce a measure of “grayness,” where by
grayness they mean a combination of spatial integration based upon group identity
and income. They consider some desirable properties of a measure of grayness and
develop a measure that satisfies these properties. They also provide an illustration
using data from the Indian city of Hyderabad and from selected American cities.

Collectively, the eleven essays in this volume constitute both a significant
contribution to frontier research on distributive questions and a fitting tribute to the
lifework of one of the foremost global authorities in the area of deprivation and
inequality measurement.

Kolkata, India Indraneel Dasgupta
Manipushpak Mitra
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Measuring Multidimensional Well-Being
and Deprivation with Discrete Ordinal
Data

Prasanta Pattanaik and Yongsheng Xu

Abstract This paper studies the measurement of multidimensional well-being and
deprivation when every attribute is discretely and ordinally measurable. In this con-
text, we propose an axiom, Non-dominance, and use it together with some other
standard axioms from the existing literature to characterize a class of measures of
social well-being and also a class of social deprivation measures.

Keywords Multidimensional well-being and deprivation · Discrete and ordinal
data · Axioms · Non-dominance · Measurement

JEL Classification Numbers D6 · D7 · I3

1 Introduction

One of the difficulties that economists often face in measuring, in a multidimensional
framework, the well-being or deprivation of a group of individuals arises from the
nature of the data relating to the individuals’ achievements along the different dimen-
sions. From an analytical point of view, we have perhaps the most tractable basis
for measuring living standards and deprivation when we have cardinal information
about the individuals’ achievement in terms of the different attributes or dimensions
involved. Sometimes,we dohave such cardinal information for some attributes. Thus,
not only is the consumption of, say, calories cardinally measurable, but the cardinal
information regarding such consumption is also often not too difficult to gather. In
contrast, the quality of housing is much more difficult to measure cardinally, even in
principle, and often we have to fall back on ordinal measurement where the achieve-

P. Pattanaik
Department of Economics, University of California, Riverside, CA 92521, USA
e-mail: prasanta.pattanaik@ucr.edu

Y. Xu (B)
Department of Economics, Georgia State University, Atlanta, GA 30302, USA
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ments may be given as good, poor, very poor, and “no house.” Similar difficulties
also arise in the case of health where one may have to resort to ordinal measurement
in terms of achievement levels such as excellent health, reasonable health, and poor
health. Thus, one can then think of several different types of informational basis
for the measurement of multidimensional well-being or deprivation. First, we have
the case where we have cardinal information for individual achievement in terms of
every attribute. Second, there is the case where we have only ordinal data for every
attribute. Finally, we have the “mixed” case where there is cardinal information for
some of the attributes and only ordinal information for the rest of the attributes. A
large number of contributions have investigated the problem ofmeasuringwell-being
and deprivation of societies when cardinal information is available for all attributes
(see, among others, Atkinson (2003), Bourguignon and Chakravarty (2003, 2009),
Tsui (2002), Alkire et al. (2015)). The second case where the measurement of every
attribute is ordinal and discrete has been studied by several recent contributions
which assume that the ordinal information for every attribute is “binary” in nature
so that, for each attribute, the only two achievement levels are “satisfactory” (1) and
“unsatisfactory” (0); Alkire and Foster (2011), Bossert et al. (2013), and Dhongde
et al. (2016) are a few examples of such contributions. We are not, however, aware
of any contributions which, while remaining within the framework of ordinal data,
go beyond the Spartan framework of the binary 1–0 measurement to permit more
than two achievement levels for attributes. Finally, we are not aware of contributions
dealing with the mixed case where the information for some attributes is cardinal but
the information for the rest of the attributes is ordinal.

The purpose of this paper is to develop measures of living standards and depriva-
tion when the measurement of achievements is ordinal and discrete for all attributes
but is not constrained to be binary in nature so that more than two achievement levels
are permitted for each attribute. The plan of the paper is as follows. In Sect. 2, we
introduce our basic notation and definitions for the measurement of the well-being
of a society or a group of individuals. In Sect. 3, we introduce several properties
and prove a preliminary result. Using the result proved in Sect. 3 and a further prop-
erty named Non-dominance, Sect. 4 presents a measure of a society’s well-being.
Section 5 deals with the measurement of social deprivation. We conclude in Sect. 6.

2 Some Basic Notation and Definitions

Let there be m attributes: f1, . . . , fm , and let M = {1, . . . ,m}. Suppose the mea-
surement of each attribute is ordinal and discrete. For each attribute f j , let Vj denote
the set of discrete and ordinal values which f j can take. For instance, if attribute f j
is health, then Vj may be {excellent health, good health, poor health}. We assume
that, for every j ∈ M , we have an antisymmetric ordering [≥ j ] (“at least as high as,
in terms of f j”) over Vj , with [> j ] denoting the asymmetric factor of [≥ j ]: a higher
value for f j indicates a higher achievement in terms of the attribute f j . For each
attribute f j , we assume that Vj is a finite set.
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As a convention, we shall assume that, for each j ∈ M, the lowest value in Vj is 0
and the highest value in Vj is v∗

j . Let V = V1 × . . .×Vm , and let v∗ = (
v∗
1 , . . . , v

∗
m

)
.

Then, v∗ is the greatest element in V and is to be interpreted as the achievement
vector in which the achievement in every dimension is at the highest level. For any

two vectors v, v′ ∈ V , we shall write v ≥ v′ to mean [
(
v j

[≥ j
]
v′
j for all j ∈ M

]
.

Let the group of individuals under consideration have n individuals; for conve-
nience we shall call the group the society and denote it by N = {1, . . . , n}. For each
i ∈ N , let ai = (

ai1, . . . , ai j , . . . , aim
)
be individual i’s achievement vector. Let

A =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠ : ai ∈ V, i ∈ N

⎫
⎪⎬

⎪⎭

be the set of all n × m matrices such that, for all i ∈ N , ai ∈ V is individual i’s
achievement vector. Each A ∈ A is interpreted as the society’s achievement matrix.

Let denote the zero achievement vector and let O denote the zero achievement
matrix. For all v ∈ V , all i ∈ N , and all A ∈ A, (v; A−i ) will denote the matrix

B =
⎛

⎜
⎝

b1
...

bn

⎞

⎟
⎠ ∈ A such that bi = v and, for all i ′ ∈ N/{i}, bi ′ = ai ′ ; thus, (v; A−i )

is the achievement matrix derived by replacing ai by v in A, other things remaining
the same.

A social well-being measure is a function fromA to [0, 1] with the interpretation
that, for all A, B ∈ A, g(A) ≥ g(B) indicates that the society’s well-being level
under A is at least as high as the society’s well-being level under B, g(A) > g(B)

indicates that the society’s well-being level under A is higher than the society’s well-
being level under B, and g(A) = g(B) indicates that the society’s well-being level
under A is the same as the society’s well-being level under B.

3 A Preliminary Measure of Social Well-Being

We consider the following axioms to be imposed on a social well-being measure, g.

Normalization: For all A =
⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠ ∈ A, if A = O, then g(A) = 0, and if ai = v∗

for all i ∈ N , then g(A) = 1.
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Anonymity: Let σ be a bijection from N to N . Then, for all A =
⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠, B =

⎛

⎜
⎝

b1
...

bn

⎞

⎟
⎠ ∈ A, if [ai = bσ(i) for all i ∈ N ], then g(A) = g(B).

Monotonicity: For all A, B ∈ A, if [ai ≥ bi for all i ∈ N ] and A �= B, then

g(A) > g(B).

Independence: For all A =
⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠, B =

⎛

⎜
⎝

b1
...

bn

⎞

⎟
⎠, A′ =

⎛

⎜
⎝

a′
1
...

a′
n

⎞

⎟
⎠, B ′ =

⎛

⎜
⎝

b′
1
...

b′
n

⎞

⎟
⎠ ∈ A,

and for all i ′ ∈ N , if [(for all i ∈ N\{i ′} : ai = bi and a′
i = b′

i ), and (ai ′ = a′
i ′ and

bi ′ = b′
i ′ )], then g(A) − g(B) = g

(
A′) − g

(
B ′).

Normalization, Anonymity, and Monotonicity are fairly standard axioms used in
the literature on measurement of multidimensional well-being and deprivation. Inde-
pendence is another straightforward axiom used in the literature and stipulates that,
starting with a given achievement matrix, when the achievement vector of one indi-
vidual changes while all other individuals’ achievement vectors remain unchanged,
the resulting change in the society’s well-being is independent of the achievement
vectors of those other individuals. A variant of Independence was proposed in a dif-
ferent context by Chakraborty et al. (2008), and was used in Dhongde et al. (2016)
in the context of measuring multidimensional deprivation with binary data.

The implication of the above axioms is summarized in the following proposition,
Proposition 1.

Proposition 1 Let g be a social well-beingmeasure. Then, g satisfiesNormalization,
Anonymity, Monotonicity, and Independence if and only if:

for some increasing function ρ : V → [0, 1] with , we
have g(A) = 1

n

∑n
i=1 ρ(ai ) for all A ∈ A.

Proof Let g be a well-being measure of the society satisfying Nor-
malization, Anonymity, Monotonicity, and Independence. Let A =⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠be any givenmatrix inA.

For every i ∈ N , let Ai = (ai ;O−i ). Consider . Consider the achieve-
ment matrices, A, B, A1 and O. Then, by Independence, we have

g(A) − g(B) = g
(
A1

) − g(O). (1)

By Normalization, g(O) = 0. We then obtain
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g(A) − g(B) = g
(
A1

) = g(a1;O−1). (2)

Consider , and the achievement matrices B,C, A2 and O. By Inde-
pendence and Normalization, we have

g(B) − g(C) = g
(
A2

) − g(O) = g
(
A2

) = g(a2;O−2). (3)

From (2) and (3), we then have

g(A) − g(C) = g(a1;O−1) + g(a2;O−2). (4)

By repeating the above procedures with C and beyond and from Independence
and Normalization, we can obtain

g(A) − g(an;O−n) = g(a1;O−1) + · · · + g
(
an−1;O−(n−1)

)
. (5)

Then

g(A) = g(a1;O−1) + · · · + g
(
an−1;O−(n−1)

) + g(an;O−n). (6)

For each i ∈ N , let ρi : V → [0, 1] be such that, for all v ∈ V , ρi (v) =
g(v;O−i )/n. Clearly, for each i ∈ N , ρi is a real-valued function. By Monotonicity,
for each i ∈ N , ρi is increasing. By Anonymity, ρ1 = ρ2 = · · · = ρn . Denote each
ρi by ρ. By Normalization, ρ(v∗) = 1. Then,

g(A) = 1

n
[ρ(a1) + · · · + ρ(an)]. (7)

On the other hand, if, for some increasing function ρ : V → [0, 1] with ρ(O) =
0, ρ

(
v∗
1 , . . . , v

∗
m

) = 1, g(A) = 1
n

∑n
i=1 ρ(ai ) for all A ∈ A, then it can be verified

that g satisfies Normalization, Anonymity, Monotonicity, and Independence. �
For each i ∈ N and each achievement vector ai of i , ρ(ai ) figuring in Proposition

1 can be regarded as a measure of i’s well-being when i’s achievement vector is ai .

4 A Specific Class of Measures of Social Well-Being

Using our preliminary measures of social well-being developed in Sect. 3, in this
section, we study a class of measures of social well-being, which have some inter-
esting and attractive features. We note that the measurement of each attribute f j is
ordinal and discrete. Because of its discrete nature, we shall introduce a further prop-
erty, Non-dominance, of the function g, which restricts the form of the individual
well-being measure ρ.
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Consider any
(
a1, . . . , ak

)
, (b1, . . . , bk) ∈ V , where k > 1.1 We say that(

a1, . . . , ak
)
and

(
b1, . . . , bk

)
are achievement-equivalent iff, for every j ∈ M,

there exists a permutation ψ j on the set {1, 2, . . . , k} such that atj = b
ψ j (t)
j for all t ∈

{1, 2, . . . , k}. Further, we say that (a1, . . . , ak) dominates (
b1, . . . , bk

)
iff for all i ∈

N , [g(at ;O−i ) ≥ g
(
bt ;O−i

)
for all t ∈ {1, . . . , k}] and [g(at ;O−i ) > g

(
bt ;O−i

)

for some t ∈ {1, . . . , k}].
Non-dominance. For all k > 1 and all

(
a1, . . . , ak

)
,

(
b1, . . . , bk

) ∈ V k , if
(a1, . . . , ak) and

(
b1, . . . , bk

)
are achievement-equivalent, then neither (a1, . . . , ak)

dominates
(
b1, . . . , bk

)
nor

(
b1, . . . , bk

)
dominates (a1, . . . , ak).

To see the intuition of Non-dominance, consider any
(
a1, . . . , ak

)
,
(
b1, . . . , bk

) ∈
V k (k > 1) such that

(
a1, . . . , ak

)
and

(
b1, . . . , bk

)
are achievement-equivalent.

Since
(
a1, . . . , ak

)
and

(
b1, . . . , bk

)
are achievement-equivalent, it is easy to check

that, for every attribute f j and every value v j which attribute f j can take, the num-
ber of vectors in (a1, . . . , ak), in which v j figures as the value of f j , is the same
as the number of vectors in

(
b1, . . . , bk

)
, in which v j figures as the value of f j .

Intuitively, the “aggregate data” regarding dimensional achievements are the same
for (a1, . . . , ak) and (b1, . . . , bk). Given this, for all i ∈ N , Non-dominance rules
out the possibility of having [g(at ;O−i ) ≥ g

(
bt ;O−i

)
for all t ∈ {1, . . . , k}] and

[g(at ;O−i ) > g
(
bt ;O−i

)
for some t ∈ {1, . . . , k}].

With the help of Non-dominance, we can show that the individual well-being
function ρ figuring in Proposition 1 has a particular structure. This result is presented
in Proposition 2 below.

Proposition 2 Let g be a well-being measure of the society. Then, g satisfies Nor-
malization, Anonymity,Monotonicity, Independence, andNon-dominance if and only
if

for some m positive constants, w1, . . . , wm, with w1 + . . . + wm = 1, there
exists, for each j ∈ M, an increasing function ϕ j : Vj → [0, w j ], with ϕ j (0) = 0

and ϕ j

(
v∗
j

)
= w j , such that, for some increasing function σ : [0, 1]→[0, 1], with

σ(0) = 0 and σ

(
m∑

j=1
w j

)

= 1, we have

g(A) = 1

n

∑n

i=1
σ
(∑m

j=1
ϕ j (ai j )

)
for all A ∈ A. (8)

Proof Let g be a well-being measure of the society satisfying Normalization,
Anonymity, Monotonicity, Independence, and Non-dominance. From Proposition
1, there exists an increasing function ρ : V → [0, 1] with
such that, for all A ∈ A,

1Note that the vectors a1, . . . , ak here are some achievement vectors each of which is possible for an
individual and do not refer to the achievement vectors of any specific individuals in our society, and
similarly for b1, . . . , bk . In particular, k does not bear any relation to n, the number of individuals
in our society.
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g(A) = 1

n

n∑

i=1

ρ(ai ).

In what follows, we shall show that the following holds:
for somem positive constants,w1, . . . , wm , withw1 + . . .+wm = 1, there exists,

for each j ∈ M , an increasing function ϕ j : Vj → [
0, w j

]
, with ϕ j (0) = 0 and

ϕ j

(
v∗
j

)
= w j , such that for all v, v′ ∈ V ,

ρ(v) ≥ ρ
(
v′) ⇔

∑m

j=1
ϕ j (v j ) ≥

∑m

j=1
ϕ j (v

′
j ). (9)

Note that . Let k > 1 and let {a1, . . . , ak} and
{b1, . . . , bk} be two achievement-equivalent collections of individual achievement
vectors. We shall verify that ρ satisfies the following:

if ρ
(
a p

) ≥ ρ
(
bp

)
for all p = 1, . . . , k − 1, then ρ

(
bk

) ≥ ρ
(
ak

)
. (10)

Suppose ρ(a p) ≥ ρ(bp) for all p = 1, . . . , k−1, but not [ρ(
bk

) ≥ ρ
(
ak

)]. Then,
we must have ρ(a p) ≥ ρ(bp) for all p = 1, . . . , k − 1, and ρ

(
bk

)
< ρ

(
ak

)
. Let

r ∈ N . Consider
(
a1;O−r

)
, . . . , g

(
ak;O−r

)
, g

(
b1;O−r

)
, . . . , g

(
bk;O−r

)
. Then,

g
(
a p;O−r

) = 1

n
ρ
(
a p

) ≥ g
(
bp;O−r

) = 1

n
ρ
(
bp

)
, p = 1, . . . , k − 1

and

g
(
ak;O−r

) = 1

n
ρ
(
ak

)
> g

(
bk;O−r

) = 1

n
ρ
(
bk

)
.

This implies that (a1, . . . , ak) dominates (b1, . . . , bk), which contradicts Non-
dominance. Therefore, (10) holds for all achievement-equivalent (a1, . . . , ak),
(b1, . . . , bk) ∈ V k , where k > 1. By Theorem 4.1 of Fishburn (1970), for each
j ∈ M , there exists a function h j : V → [0,∞) such that

for all v, v′ ∈ V, ρ(v) ≥ ρ
(
v′) ⇔

m∑

j=1

h j (v j ) ≥
m∑

j=1

h j (v
′
j ). (11)

Since ρ is increasing, each h j ( j ∈ M) is increasing as well. Then, for each

j ∈ M , h j

(
v∗
j

)
> h j (0) ≥ 0. For each j ∈ M , let w j = h j

(
v∗
j

)
−h j (0)

∑
k∈M(hk(v∗

k )−hk (0))
and

define the function ϕ j as follows: for all v j ∈ Vj ,

ϕ j
(
v j

) = h j
(
v j

) − h j (0)
∑

k∈M
(
hk

(
v∗
k

) − hk(0)
) .
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Then, for each j ∈ M ,w j > 0,ϕ j is increasingwithϕ j (0) = 0 andϕ j

(
v∗
j

)
= w j ,

and ϕ j : Vj → [
0, w j

]
. Note also that w1 + · · · + wm = 1, and for all v, v′ ∈ V ,

ρ(v) ≥ ρ
(
v′) ⇔

∑m

j=1
ϕ j (v j ) ≥

∑m

j=1
ϕ j (v

′
j ).

Thus, we have established (9).
From (9), there exists an increasing function σ : [0, 1]→[0, 1] such that, for all

v ∈ V , ρ(v) = σ
(∑m

j=1 ϕ j (v j )
)
. By Normalization, it follows that σ(0) = 0 and

σ
(∑m

j=1 w j

)
= 1.

To complete the proof of Proposition 2, we note that if the statement (8) holds, then
it can be verified that themeasure g specified in the statement satisfiesNormalization,
Anonymity, Monotonicity, Independence, and Non-dominance. �

The expression
∑m

j=1 ϕ j (ai j ) figuring in (8) can be interpreted as the “nominal

overall achievement” of individual i ; σ
(∑m

j=1 ϕ j (ai j )
)
then has the obvious inter-

pretation as i’s well-being given as a function of i’s overall nominal achievement.
Therefore, Non-dominance restricts the form of the individual well-being measure
ρ to be a positive transformation of the individual’s nominal overall achievement. It
may be noted that this specific form for measures of an individual’s well-being in a
multidimensional framework has been studied by several authors including Bossert
et al. (2013) and Dhongde et al. (2016). In their studies, they consider very different
andmore direct axioms to be imposed on ameasure of an individual’s well-being, and
derive their results. Viewed this way, Non-dominance is a more primitive property
imposed on a well-being measure of the society.

Remark 1 It may be noted that, in Proposition 2, an individual’s well-being measure,
ρ, has an additive representable structure. It is well known that, in a framework
such as ours, where the measurement of each attribute is ordinal and discrete, the
standard independence properties (on an individual’s well-being measure) are not,
in general, sufficient to obtain an additive representable structure of a measure of an
individual’swell-being. In the presence ofNormalization, Anonymity,Monotonicity,
and Independence, however, our Non-dominance implies a stronger independence
property (see (10) in the proof of Proposition 2) of an individual’swell-beingmeasure
that proves to be necessary and sufficient for an additive representable structure of
an individual’s well-being measure.

5 From Achievement to Deprivation

Given an achievementmatrix A ∈ A, in the previous section,we showed that thewell-
being measure g of the society satisfying Normalization, Anonymity, Monotonicity,
Independence, and Non-dominance takes the following form:
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g(A) = 1

n

n∑

i=1

σ

⎛

⎝
m∑

j=1

ϕ j (ai j )

⎞

⎠.

As discussed there, for any individual i with an achievement vector ai ,∑m
j=1 ϕ j (ai j ) can be interpreted as i’s nominal overall achievement, and

σ
(∑m

j=1 ϕ j (ai j )
)
can be interpreted as i’s well-being, or “real overall achievement.”

Let w ∈ (0, 1] be the given and fixed level of nominal overall individual achieve-

ment such that if individual i’s nominal overall achievement,
m∑

j=1
ϕ j (ai j ), falls below

it, then individual i is said to be deprived, and if
∑m

j=1 ϕ j (ai j ) ≥ w, then individual
i is said to be non-deprived.2 This method of classifying deprived and non-deprived
individuals has been discussed in the literature on measurements of multidimen-
sional well-being and deprivation, see, among others, Bourguignon and Chakravarty
(2003), Pattanaik and Xu (2018), and Tsui (2002). Given our discussions on mea-
sures of social well-being in the previous two sections, our approach seems natural
and becomes even more so in our current context of discrete and ordinal data.

For each individual i ∈ N and any achievement matrix A ∈ A, let

di (A) =
{
0 if

∑m
j=1 ϕ j (ai j ) ≥ w

w−∑m
j=1 ϕ j (ai j )

w
if

∑m
j=1 ϕ j (ai j ) < w

di (A) can be interpreted as the normalized overall nominal deprivation of individ-
ual i given the achievement matrix A. It may be noted that, since each attribute can
take discrete values, the possible values that normalized shortfalls of an individual
are discrete as well. Let U = {di (A) : A ∈ A}.

For every achievement matrix A ∈ A, let d(A) =
(d1(A), . . . , di (A), . . . , dn(A)) ∈ Un . We will refer d(A) as a profile of indi-
vidual normalized deprivations associated with the achievement matrix A ∈ A.
Let

D = {d(A) : A ∈ A}.

A deprivation measure of the society is a function h from D to [0, 1] with the
interpretation that, for all A, B ∈ A, h(d(A)) ≥ h(d(B)) indicates that the society’s
deprivation under A is at least as high as the society’s deprivation under B, h(d(A)) >

h(d(B)) indicates that the society’s deprivation under A is higher than the society’s

2It may be noted that we could have used individual i’s well-being (or “real overall achievement”),

σ

(
m∑

j=1
ϕ j (ai j )

)

, and an appropriate well-being benchmark to classify if individual i is deprived

or non-deprived. Given that an individual’s well-being is a positive transformation of her nominal
overall achievement

∑m
j=1 ϕ j (ai j ), the two classificatory methods are equivalent.
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deprivation under B, and h(d(A)) = h(d(B)) indicates that the society’s deprivation
under A is the same as the society’s deprivation under B.

We consider the following axioms to be imposed on a deprivation measure of the
society. Each of these axioms is straightforward, and they are standard axioms used
in the literature.

D-Normalization: For all A ∈ A, if d(A) is the zero vector, then h(d(A)) = 0, and
if d(A) is the 1 vector, then h(d(A)) = 1.

D-Anonymity: Let σ be a bijection from N to N . Then, for all A, B ∈ A, if
[di (A) = dσ(i)(B) for all i ∈ N ], then h(d(A)) = h(d(B)).

D-Monotonicity: For all A, B ∈ A, if [di (A) ≥ di (B) for all i ∈ N and d(A) �=
d(B)], then h(d(A)) > h(d(B)).

D- independence: For all A =
⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠, B =

⎛

⎜
⎝

b1
...

bn

⎞

⎟
⎠, A′ =

⎛

⎜
⎝

a′
1
...

a′
n

⎞

⎟
⎠, B ′ =

⎛

⎜
⎝

b′
1
...

b′
n

⎞

⎟
⎠ ∈

A and all i ′ ∈ N , if [for all i ∈ N\{i ′}, di (A) = di (B) and di
(
A′) = di

(
B ′)], and

[di ′(A) = di ′
(
A′) and di ′(B) = di ′

(
B ′)], then h(A) − h(B) = h

(
A′) − h

(
B ′).

With the help of the above axioms, we can prove the following result.

Proposition 3 Let h be a deprivation measure of the society. Then, h satisfies D-
Normalization, D-Anonymity, D-Monotonicity, and D-Independence if and only if

there exists an increasing function τ : U → [0, 1], with τ(0) = 0, τ (1) = 1, such
that, for all A ∈ A, we have

h(d(A)) = 1

n

∑n

i=1
τ(di (A)). (12)

Proof It can be easily checked that, if a deprivationmeasure h is given by (12), then it
satisfiesD-Normalization,D-Anonymity, D-Monotonicity, andD-Independence.We
omit the proof of the fact that, if a deprivationmeasure h satisfiesD-Normalization,D-
Anonymity, D-Monotonicity, and D-Independence, then (12) holds since that proof
is very similar to the proof that we gave earlier (see the proof of Proposition 1) to
show that, if g satisfiesNormalization, Anonymity,Monotonicity, and Independence,
then, for some increasing function ρ : V → [0, 1] with ,
we have g(A) = 1

n

∑n
i=1 ρ(ai ) for all A ∈ A. �

τ(di (A)), which figures in the social deprivation measure in Proposition 3, can
be interpreted as a measure of the “real” deprivation of individual i . It has a feature
which does not conform to the intuition which underlies many contributions in the
literature. That intuition has two components. The first component is the idea that
for every attribute f j , there is a benchmark level, z j such that an individual has any
deprivation along the dimension f j if and only if her achievement in terms of f j
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falls below z j . The second component is that, for every attribute f j , an increase in
an individual’s achievement in terms of f j can never reduce her overall deprivation
if, to start with, the individual is not deprived in terms of f j , i.e., in measuring an
individual’s deprivation, there cannot be any tradeoff between “overachievement”
(as compared to the relevant benchmark) in one dimension and “underachievement”
(as compared to the appropriate benchmark) in some other dimension. The indi-
vidual deprivation measure τ(di (A)) cannot accommodate this second component:
under this measure of individual deprivation, if, to start with, di (A) is positive, then
an increase in the achievement of individual i along any dimension f j , i’s other
achievements remaining the same, will always reduce i’s deprivation irrespective of
whether i’s initial achievement along f j exceeds, falls short of, or equals the bench-
mark, z j , for f j . It is not, however, clear to us that, from an intuitive point of view,
this feature constitutes a flaw of the individual deprivation measure τ(di (A)) (see
Pattanaik and Xu (2018) for further discussion of the basic issue involved here).

6 Conclusion

In this paper, we have studied measures of social well-being and social deprivation
in a multidimensional framework in which the levels of an individual’s achieve-
ment in terms of each attribute are discrete and ordinal. Though there are a fairly
large number of studies on measures of social well-being and social deprivation in
a multidimensional framework when every attribute is cardinally measurable and a
few studies when every attribute is binarily measurable, there seem to be no stud-
ies for such measures when attributes are ordinally and discretely measurable. This
paper has attempted to fill this gap. Our main contributions are to introduce the
Non-dominance axiom in this context and axiomatically derive a class of measures
of social well-being and a closely linked class of measures of social deprivation.
Another important feature of our study is the way in which we use the measure of
individual well-being to distinguish between deprived and non-deprived individuals.
This approach has brought together the analytical framework for measuring social
well-being and that for measuring social deprivation.

As we note in the Introduction, there seem to be no contributions dealing with the
mixed case where some attributes are cardinally measurable while other attributes
are only ordinally measurable. It would be interesting to study measures of social
well-being and social deprivation for such mixed cases. We leave this for future
research.

Acknowledgements We are grateful to a referee for helpful comments on an earlier version of the
paper.



14 P. Pattanaik and Y. Xu

References

Alkire S, Foster J (2011) Counting and multidimensional poverty measurement. J Public Econ
95:476–487

Alkire S, Foster J, Seth S, Santos M, Roche J, Ballon P (2015) Multidimensional poverty measure-
ment and analysis. Oxford University Press, Oxford

Atkinson AB (2003) Multidimensional deprivation: contrasting social welfare and counting
approaches. J Econ Inequal 1:51–65

Bossert W, Chakravarty SR, D’Ambrosio C (2013) Multidimensional poverty and material depri-
vation with discrete data. Rev Income Wealth 59:29–43

Bourguignon F, Chakravarty SR (2003) Measurement of multidimensional poverty. J Econ Inequal
1:25–49

Bourguignon F, Chakravarty SR (2009) Multidimensional poverty orderings: theory and applica-
tions. In: Basu K, Kanbur R (eds) Arguments for a better world, vol 1. Oxford University Press,
Oxford, pp 337–361

Chakraborty A, Pattanaik PK, Xu Y (2008) On the mean of squared deprivation gaps. Econ Theory
34:181–187

Dhongde S, Y. Li Y, Pattanaik PK, Xu Y (2016) Binary data, hierarchy of attributes, and multidi-
mensional deprivation. J Econ Inequal 14: 363–378

Fishburn PC (1970) Utility theory for decision making. John Wiley & Sons Inc, New York
Pattanaik PK, Xu Y (2018) On measuring multidimensional deprivation, mimeograph. J Econ Lit
56: 657–672

Tsui KY (2002) Multidimensional poverty indices. Soc Choice Welfare 19:69–93



Intertemporal Material Deprivation:
A Proposal and an Application to EU
Countries

Walter Bossert and Conchita D’Ambrosio
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1 Introduction

Material deprivation has been a key indicator of individual well-being within the
EU since 2010. In June of that year, the European Council adopted as part of the
Europe 2020 Strategy the aim to lift at least 20 million people in the EU from the
risk of poverty and exclusion by 2020. Material deprivation is one of the EU Social
Inclusion indicators which are used to monitor national and EU-wide progress in
the achievement of the 2020 target. The Employment, Social Policy, Health and
Consumer Affairs (EPSCO) EU Council of Ministers required improved measures
of material deprivation. This paper contributes to this effort by analyzing the effects
of the inclusion of past experiences in the measurement of current deprivation. The
method followed generalizes the proposal of Bossert et al. (2014). We extend the
class of intertemporal poverty measures of Dutta et al. (2013) to the measurement of
material deprivation. The indices are applied to analyze material deprivation within
EU countries. If we follow the path of material deprivation experienced by each
individual over time, we obtain a picture which differs from that in the annual results
(even though the three intertemporal indices do rank the countries very similarly).
Although the 4-year panel employed here is relatively short, our analysis serves as a
useful illustration for the application of the measures that we propose.

The theoretical work onwhichmaterial deprivationmeasures are grounded comes
from the literature on the measurement of poverty. From a theoretical point of view,
material deprivation is multidimensional poverty. The difference between the two
concepts is due to the aspects of well-being which are included in the empirical
analysis. In particular, a multidimensional poverty measure takes into consideration
all the dimensions of well-being that may be of relevance (including nonmaterial
attributes, such as health status and political participation). In contrast, an index
of material deprivation restricts attention to the functioning failures with respect to
material living conditions. Chakravarty and Chattopadhyay (2018) compare the two
approaches and provide an excellent survey of the proposed measures. According
to EU policy, indices of material deprivation are to be combined with income-based
poverty measures and indicators of low employment. See also Guio (2018) for a
discussion of material deprivation and multidimensional poverty from an empirical
perspective.

The axiomatic literature has proposed many indices of multidimensional poverty
and explored their underlying properties; see, for example, Chakravarty et al. (1998),
Tsui (2002), Bourguignon and Chakravarty (2003), Diez et al. (2008), Alkire and
Foster (2011), and Bossert et al. (2013).

The intertemporal aspect of multidimensional poverty has received a modest
amount of attention up to now—most of the work in this area has been atemporal.
At the same time, many of the contributions in the field of unidimensional poverty
have shown that chronic poverty and persistent periods of poverty are worse, in a
number of ways, for individuals than are sporadic episodes. For surveys of this lit-
erature, see, among others, Rodgers and Rodgers (1993) and Jenkins (2000). These
considerations have provided the impetus for some recent theoretical contributions
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on measuring income poverty over time, such as Calvo and Dercon (2009), Foster
(2009), Hojman and Kast (2009), Hoy and Zheng (2011), Bossert et al. (2012), and
Dutta et al. (2013). See also Hoy et al. (2012), Gradin et al. (2012) and Mendola
and Busetta (2012). We refer the reader to Hoy and Zheng (2018) and Gradin et al.
(2018) for an exhaustive summary of the theoretical and applied literature.

The indices proposed by Foster (2009), Bossert et al. (2012) andDutta et al. (2013)
share a similar structure. Together, they allow different aspects of past experiences
to be brought into the analysis of the phenomenon under consideration. The goal
of the current paper is to propose an application of these latter contributions to the
measurement of poverty over time to material deprivation using the EU-SILC panel
data set, which includes information on different aspects of well-being over time.

The only other papers similar in spirit that we are aware of are Nicholas and Ray
(2012), Bossert et al. (2014), Nicholas et al. (2017), and Alkire et al. (2017). The first
of these proposes generalizations of the contributions of Foster (2009) and Bossert
et al. (2012) and applies the resulting indices to the analysis of multidimensional
deprivation in Australia during the period between 2001 and 2008. The second con-
tribution extends the analysis to aspects of the past considered in Hojman and Kast
(2009) in the measurement of material deprivation among EU countries using the
same dataset as this paper but with a focus on earlier periods. Hojman and Kast’s
(2009) index of poverty dynamics trades off poverty levels and changes (gains and
losses) over time and is consistent with loss aversion. The results in the second paper
based on Hojman and Kast (2009) convey a different picture of material deprivation
within EU countries and tend to favor countries in which individuals experience
improvements in their material deprivation scores. Nicholas et al. (2017) develop a
multidimensional poverty measure that is sensitive to the distribution of deprivations
within individuals, allowing to take into account not only whether the same indi-
viduals are becoming more deprived over time but also whether they are doing so
in the same dimensions. Lastly, Alkire et al. (2017) combine the method proposed
by Foster (2009) with the static index of Alkire and Foster (2011). This is the only
contribution where some of the deprived individuals would not be included in the
measure due to the identification step which will be discussed below.

In this paper, we expand the analysis of intertemporal material deprivation by
including some mitigating effects of affluent periods, that is, of periods in which the
individual is not deprived in any dimension; see Sect. 2 for details.

The measures proposed by Foster (2009) are generalizations of the Foster–Greer–
Thorbecke (1984) class and allow time to play a role. The individual-level Foster
index is the arithmetic mean over time of the per-period Foster–Greer–Thorbecke
indices. In a similar spirit, the corresponding individual intertemporal index of mate-
rial deprivation applied in this paper is the average material deprivation experienced
by the individual over time.

Bossert et al. (2012) take persistence in the state of poverty into account. Their
measure pays attention to the length of individual poverty spells by assigning a
higher poverty weight to situations in which, ceteris paribus, poverty is experienced
in consecutive rather than separated periods. The individual index is calculated as
the weighted average of the individual per-period poverty values where, for each
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period, the weight is given by the length of the spell to which this period belongs.
Similarly, the corresponding individual intertemporal index of material deprivation
is calculated as the weighted average of the individual indices of material deprivation
where, for each period, the weight is given by the length of the spell to which this
period belongs.

Dutta et al. (2013) generalize Bossert et al. (2012) contribution by taking into
account not only the debilitating impact of persistence in the state of poverty but
also the mitigating effect of periods of affluence on subsequent poverty. The class
of the proposed individual measures is a weighted sum over time of per-period
Foster–Greer–Thorbecke indices where the weights reflect the damaging impact of
consecutive periods in poverty and the mitigating effects of affluence periods. In a
similar spirit, the corresponding individual intertemporal index of material depri-
vation is calculated as the weighted average of the individual indices of material
deprivation.

In the multidimensional framework, each person is assigned a vector of several
attributes that represent different dimensions of well-being. For the measurement
of multidimensional poverty, it then becomes necessary to check whether a person
has “minimally acceptable levels” of these attributes; see Sen (1992, p. 139). These
minimally acceptable quantities of the attributes represent their threshold values or
cutoffs that are necessary for an adequate standard of living. Therefore, a person
is treated as deprived or poor in a dimension if the requisite observed level falls
below this cutoff level. In this case, the individual is experiencing a functioning
failure. Material deprivation at the individual level is an increasing function of these
failures.

The identification of the poor in a multivariate framework can be carried out using
different methods. One way of considering a person as poor is if the individual expe-
riences a functioning failure in every dimension; this identifies the poor as those who
are poor in all dimensions. This is known as the intersectionmethod of identification
of the poor. An alternative is the unionmethod where the poor are identified as those
experiencing at least one functioning failure. In between these two extremes lies the
intermediate identification method, which regards a person as poor if she is deprived
in at least m ∈ {1, . . . , M} dimensions, where M is the number of dimensions on
which human well-being is considered to depend. The approach to identification in
the current paper employs the union method. Additional results could be obtained
by adopting other identification strategies, for example, by focusing exclusively on
individuals who are severely materially deprived defined as those deprived for at
least four items (see Eurostat 2012). Alkire et al. (2017) is the only contribution
applying an intermediate identification method in an intertemporal framework. The
same approach is followed by the EU Social protection committee which consid-
ers persistently materially deprived individuals to be those who are deprived in the
current year and in at least 2 out of the preceding 3 years.

The different dimensions of well-being are incorporated using what Atkinson
(2003) refers to as the counting approach. The countingmeasure of individual poverty
consists of the number of dimensions in which a person is poor, that is, the number
of the individual functioning failures. Since some of the dimensions may be more
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important than others, an alternative counting measure can be obtained by assigning
different weights to different dimensions and then summing these weights for the
dimensions in which functioning failure is observed. We follow both suggestions
and produce results for two different weighting schemes: equal weights and Euro-
barometer weights, where the latter reflect EU citizens’ views on the importance
of the dimension of well-being under consideration. For a discussion of weighting
schemes in EU indicators, see Guio et al. (2009). A survey on the use of weights in
multidimensional indices of well-being can be found in Decancq and Lugo (2013).

The remainder of the chapter proceeds as follows. Section 2 contains a description
of the intertemporal indices ofmaterial deprivation.The applicationof thesemeasures
to illustrate the evolution ofmaterial deprivation in the EuropeanUnion using the EU-
SILC dataset appears in Sect. 3. Section 4 provides some brief concluding remarks.

2 Measuring Material Deprivation

Suppose there are N ∈ N \ {1} individuals in a society, M ∈ N \ {1} characteris-
tics (or dimensions of material deprivation) and T ∈ N \ {1} time periods. For each
individual n ∈ {1, . . . , N }, for each time period t ∈ {1, . . . , T }, and for each char-
acteristic m ∈ {1, . . . , M}, we observe a binary variable xntm ∈ {0, 1}. A value of
one indicates that individual n is poor with respect to dimension m in period t ,
and a value of zero identifies a characteristic with respect to which the individual
is not poor in that period. For all n ∈ {1, . . . , N } and for all t ∈ {1, . . . , T }, we let
xnt = (xnt1 , . . . , xntM ) ∈ {0, 1}M . For all n ∈ {1, . . . , N }, we define the deprivation

profile xn = (xn1, . . . , xnT ) ∈ ({0, 1}M)T
. Furthermore, we let x = (x1, . . . , xN ) ∈

(({0, 1}M)T)N
. Let n ∈ {1, . . . , N } and xn ∈ ({0, 1}M)T

. We say that n is deprived

in period t ∈ {1, . . . , T } in xn if and only if there exists m ∈ {1, . . . , M} such that
xntm = 1. That is, in order to be deprived in period t in xn , individual n must be
deprived with respect to at least one dimension in this period. This corresponds to
the union method of identifying the deprived. Thus, individual n is not deprived in
period t in xn if and only if xntm = 0 for all m ∈ {1, . . . , M}.

For each individual n ∈ {1, . . . , N } and each time period t ∈ {1, . . . , T }, individ-
ual n’s material deprivation in t is given by

M∑

m=1

xntm αm,

where αm ∈ R++ is a parameter assigned to dimension m ∈ {1, . . . , M}. In the
applied part of the paper, we examine two different weighting schemes—one with
identical weights for all dimensions, and another with weights that are derived from
the Eurobarometer survey. See Sect. 3 for details.
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A measure of intertemporal material deprivation for individual n ∈ {1, . . . , N } is
a function Dn : ({0, 1}M)T → R+ which assigns a nonnegative individual intertem-
poral material deprivation value to each xn in its domain. A measure of aggre-

gate intertemporal material deprivation is a function D :
(({0, 1}M)T)N → R+

that assigns a nonnegative intertemporal material deprivation value to each x in
its domain.

The first approach analyzed here is inspired by Foster (2009). For each individual
n, intertemporal material deprivation Fn is the average material deprivation experi-
enced throughout the T periods. That is, for all xn ∈ ({0, 1}M)T

,

Fn(xn) = 1

T

T∑

t=1

M∑

m=1

xntm αm .

Aggregate intertemporal material deprivation F is the arithmetic mean of the indi-

vidual intertemporal material deprivation values. Thus, for all x ∈
(({0, 1}M)T)N

,

F(x) = 1

N

N∑

n=1

Fn(xn) = 1

N

1

T

N∑

i=1

T∑

t=1

M∑

m=1

xntm αm .

In order to discuss the adaptation of Bossert et al. (2012) approach to the intertem-
poral setting, some additional definitions are required.

To capture the notion of persistence in a state ofmaterial deprivation, we introduce
functions Pnt : ({0, 1}M)T → {1, . . . , T } for each n ∈ {1, . . . , N } and for each t ∈
{1, . . . , T }. If n is deprived in period t in xn , we let Pnt (xn) be the maximal number
of consecutive periods including t in which n is deprived. Analogously, if n is not
deprived in period t in xn , Pnt (xn) is the maximal number of consecutive periods
including t in which n is not deprived. To illustrate this definition, suppose T = 7
and xn is such that n is deprived in periods one, four, five, and seven. The length of
the first spell of material deprivation is one and, thus, Pn1(xn) = 1. This is followed
by a spell out of deprivation of length two (in periods two and three), which implies
Pn2(xn) = Pn3(xn) = 2. The next two periods are periods with deprivation and we
obtain Pn4(xn) = Pn5(xn) = 2. Period six is a single periodwithout deprivation and,
thus, Pn6(xn) = 1. Finally, there is a one-period spell of material deprivation and we
have Pn7(xn) = 1.

Following Bossert et al. (2012), intertemporal material deprivation BCDn for
individual n ∈ {1, . . . , N } is a weighted mean of the individual material deprivation
values where, for each period t , the weight is given by the length of the spell to which
this period t belongs. Thus, according to this approach, individual intertemporal
material deprivation BCDn is given by
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BCDn(xn) = 1

T

T∑

t=1

Pnt (xn)
M∑

m=1

xntm αm

for all xn ∈ ({0, 1}M)T
. Aggregate intertemporal material deprivation BCD is the

arithmetic mean of the individual intertemporal material deprivation values. Thus,

for all x ∈
(({0, 1}M)T)N

,

BCD(x) = 1

N

N∑

n=1

BCDn(xn) = 1

N

1

T

N∑

i=1

T∑

t=1

Pnt (xn)
M∑

m=1

xntm αm .

To introduce the measures proposed by Dutta et al. (2013), the following defi-
nitions are of use. For a deprivation profile xn , let st be the number of consecutive
non-deprived periods immediately prior to a deprived period t , and let kt be the num-
ber of preceding periods of uninterrupted positive levels of deprivation, up to and
including the deprived period t . Formally,

st =
{
0 if t = 1 or xn(t−1) > 0
t − min{s | s < t and xns = . . . = xn(t−1) = 0} otherwise

and

kt =
{
1 if t = 1 or xn(t−1) = 0
t − min{s − 1 | s < t and xnt

′
> 0 ∀t ′ = s, . . . , t} otherwise.

For example, for T = 4, the deprivation profile xn = (xn1, 0, xn3, xn4) has s1 =
0, k1 = 1, s3 = 1 and k3 = 1, and s4 = 0 and k4 = 2.

Dutta et al. (2013) propose to include the debilitating impact of persistence in
the state of poverty and the mitigating effect of periods of affluence on subsequent
poverty. Their individual measure DRZn is a weighted mean of the individual mate-
rial deprivation values where, for each period, the weight considers the number of
preceding periods of uninterrupted positive levels of deprivation, up to and including
the deprived period t (see also BCDn for an alternative weighing scheme), and the
number of consecutive nonpoor periods immediately prior to a poor period, st . Thus,
according to this approach, individual intertemporal material deprivation DRZn is
given by

DRZn(xn) = 1

T

T∑

t=1

kt
1 + st

M∑

m=1

xntm αm
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for all xn ∈ ({0, 1}M)T
. Again, aggregate intertemporal material deprivation DRZ

is the arithmetic mean of the individual intertemporal material deprivation values.

Thus, for all x ∈
(({0, 1}M)T)N

,

DRZ(x) = 1

N

N∑

n=1

DRZn(xn) = 1

N

1

T

N∑

i=1

T∑

t=1

kt
1 + st

M∑

m=1

xntm αm .

Following Gradin et al. (2012), generalized versions of the indices above could be
computed by applying a general mean in the second aggregation stage as opposed to
the arithmeticmean. This reflects the extent of aversion to inequality of intertemporal
material deprivation across individuals.

3 Data and Results

In this section, we apply the indices defined above to measure material deprivation
over time in the EU. The dataset we use is EU-SILC, which is employed by European
Union member states and the Commission to monitor national and EU progress
towards key objectives for the social inclusion process and the Europe 2020 growth
strategy. We use the version of the data EUSILC LONGITUDINAL UDB 2010,
version-2 ofMarch 2013. Our analysis covers the years from 2007 to 2010 and, since
we are interested in intertemporal material deprivation, we focus on the longitudinal
component of the dataset. The sample is restricted to households who have been
interviewed in each of the four years. The peculiarity of the sample used in this
paper may give rise to differences between results obtained based on the entire
sample. The variables that may be used in the measurement of material deprivation
are available mainly at the household level. A conservative approach is followed
in the sense that the households reporting a missing value are treated in the same
way as those reporting not experiencing the functioning failure. As a result, we
may be underestimating material deprivation, since we are attributing a functioning
failure exclusively to households who explicitly claim to have the failure. The unit of
analysis is the individual, that is, the household failure is attributed to each household
member and the distribution of functioning failures among individuals is examined.
The variables at the basis of themeasures of material deprivation are listed in Table 1.

These variables are grouped according to three domains of quality of life: financial
difficulties, housing conditions and durables, for a total of 12 indicators. These are
the same variables chosen by Fusco et al. (2010). For other EU studies on material
deprivation on different dimensions ofwell-being see, amongothers,Guio (2009) and
Guio et al. (2009). Different dimensions of material deprivation could be applied in
future work focusing exclusively on economic strain variables and excluding durable
goods which are found to be more stable over time.
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Table 1 Material deprivation variables

Financial difficulties

1. Has been in arrears at any time in the last 12 months on:
– mortgage or rent payments (hs010)
– utility bills (hs020)
– hire-purchase installments or other loan payments
(hs030)

2. Cannot afford paying for 1-week annual holiday away
from home (hs040)

3. Cannot afford a meal with meat, chicken, or fish (or
vegetarian equivalent) every other day (hs050)

4. Lacks the capacity to face unexpected required
expenses (hs060)

Durables

5. Cannot afford a telephone (including mobile phone)
(hs070)

6. Cannot afford a color tv (hs080)

7. Cannot afford a computer (hs090)

8 Cannot afford a washing machine (hs100)

9. Cannot afford to have a car (hs110)

Housing conditions

10. Lacks the ability to keep the home adequately warm
(hh050)

Source EU-SILC dataset
N.B. For a selected number of countries in years 2007, 2008, and 2009, variables hs010, hs020,
and hs030 have been replaced by new variables labeled hs011, hs021 and hs031, respectively. The
two sets of variables measure the same dimensions. While hs010, hs020, and hs030 are binary
variables (1-yes, 2-no), variables hs011, hs021, and hs031 take on three values (1-yes, once; 2-yes,
two or more times; 3-no). We recode hs011, hs021, and hs031 as binary and use them in the place
of hs010, hs020, and hs030

Two different weighting schemes are employed. The first consists of identical
weights for all dimensions and the second is given by weights that are constructed
from the views of EU citizens as surveyed in 2007 in the special Eurobarometer
279 on poverty and social exclusion (see TNS Opinion & Social 2007). This latter
weighting method was first proposed by Guio et al. (2009). For each variable, we use
as the weight the percentage of the EU27 citizens answering “absolutely necessary,
no one should have to do without” to the requisite question as expressed by these
instructions: “In the following questions, we would like to understand better what, in
your view, is necessary for people to have what can be considered as an acceptable
or decent standard of living in (OUR COUNTRY). For a person to have a decent
standard of living in (OURCOUNTRY), please tell me how necessary do you think it
is... (if onewants to).” The possible answers also included “necessary,” “desirable but
not necessary,” and “not at all necessary.” See Table 2 for the relevant percentages.

The results of the intertemporal indices are reported in Tables 3 and 4 for the two
weighting schemes. Each table includes the value of the index and the rankings of
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Table 2 Answers in percentages to: “In the following questions, we would like to understand better
what, in your view, is necessary for people to have what can be considered as an acceptable or decent
standard of living in (OUR COUNTRY). For a person to have a decent standard of living in (OUR
COUNTRY), please tell me how necessary do you think it is...(if one wants to)”

EU27 Absolutely
necessary, no one
should have to do
without (%)

Necessary
(%)

Desirable but
not necessary
(%)

Not at all
necessary
(%)

A place to live without a leaking
roof, damp walls, floors, and
foundation

68 28 3 1

To be able to keep one’s home
adequately warm

62 35 3 0

A place to live with its own bath or
shower

63 31 6 0

An indoor flushing toilet for sole
use of the household

69 27 4 0

To be able to pay rent or mortgage
payments on time

62 34 3 0

To be able to pay utility bills
(electricity, water, gas, etc.) on time

68 30 2 0

To be able to repay loans (such as
loans to buy electrical appliances,
furniture, a car or student loans,
etc.) on time

48 40 9 2

Paying for 1 week annual holiday
away from home

15 29 43 13

A meal with meat, chicken or fish
at least once every 2 days

43 37 17 3

To be able to cope with an
unexpected financial expense of X
(NATIONAL CURRENCY)

32 43 21 2

A fixed telephone, landline 18 37 32 13

A mobile phone 12 26 37 25

A color TV 19 36 35 10

A computer 9 21 41 28

A washing machine 48 41 10 1

A car 17 34 36 13

A place to live without too much
noise from neighbors or noise from
the street (traffic, businesses,
factories, etc.)

28 43 27 2

A place to live without too much
pollution or other environmental
problems (such as air pollution,
grime, or rubbish)

42 44 13 1

A place to live without crime,
violence, or vandalism in the area

49 38 12 1
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Table 3 Intertemporal Material Deprivation and Ranking of EUMember States in the years 2007–
2010 with Unitary Weights

Country Foster rank_Foster DRZ rank_DRZ BCD rank_BCD

AT 0.877 7 1.816 7 1.866 7

BE 0.792 6 1.689 6 1.733 6

BG 3.394 20 8.056 20 8.092 20

CY 1.665 14 3.519 13 3.610 13

CZ 1.092 9 2.381 9 2.439 9

EE 1.318 12 2.843 12 2.925 12

ES 0.921 8 1.897 8 1.971 8

FI 0.655 4 1.401 5 1.438 5

HU 2.339 19 5.581 19 5.619 19

IT 1.111 11 2.404 11 2.459 10

LT 1.885 16 4.257 16 4.335 16

LU 0.368 2 0.730 2 0.763 2

LV 2.203 18 5.049 18 5.132 18

NL 0.495 3 1.029 3 1.062 3

PL 1.943 17 4.506 17 4.537 17

PT 1.666 15 3.803 15 3.845 15

SE 0.341 1 0.623 1 0.658 1

SI 1.103 10 2.404 10 2.476 11

SK 1.661 13 3.673 14 3.730 14

UK 0.656 5 1.305 4 1.363 4

the countries (where 1 indicates the country with minimum deprivation). Figures 1
and 2 plot, for each weighting scheme, the rankings of the intertemporal material
deprivation indices. The countries are ordered according to the values of the Fos-
ter index. As a benchmark, we also compute the indices of material deprivation for
each year. These are contained in Table 5 (results with equal weights) and Table
6 (results with Eurobarometer weights), and the ranks are plotted in Figs. 3 and 4
respectively. Figures 5 and 6 compare the rankings of the countries resulting from the
three intertemporal indices with those of yearly material deprivation in 2009 used as
a benchmark for the two weighting schemes. Material deprivation over time is also
compared with standard income poverty results based on the headcount index. The
adopted income poverty line is set to 60% of the national median of the distribu-
tion of yearly equivalized household income using the OECD modified equivalence
scale in order to account for different household size and composition. A note of
caution is necessary with the analysis of income poverty: the results may differ from
those obtained with the same dataset due to the restriction of the sample adopted
in this paper.
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Table 4 Intertemporal Material Deprivation and the Ranking of EU Member States in the years
2007–2010 with Eurobarometer Weights

Country Foster_EU rank_Foster_EU DRZ_EU rank_DRZ_EU BCD_EU rank_BCD_EU

AT 0.490 7 1.070 7 1.101 7

BE 0.506 6 1.055 6 1.082 6

BG 2.966 20 6.772 20 6.804 20

CY 1.253 17 3.030 16 3.108 16

CZ 0.668 8 1.277 9 1.307 8

EE 0.906 12 2.090 12 2.151 12

ES 0.612 9 1.277 8 1.324 9

FI 0.441 4 0.883 5 0.906 5

HU 1.658 19 4.012 19 4.040 19

IT 0.676 10 1.591 10 1.626 10

LT 1.378 15 3.025 15 3.079 15

LU 0.231 2 0.449 2 0.470 2

LV 1.761 18 3.731 18 3.791 18

NL 0.229 3 0.528 3 0.545 3

PL 1.569 16 3.162 17 3.184 17

PT 1.189 14 2.837 14 2.867 14

SE 0.231 1 0.372 1 0.394 1

SI 0.763 11 1.669 11 1.719 11

SK 1.384 13 2.692 13 2.735 13

UK 0.431 5 0.819 4 0.856 4

1
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SE LU NL FI UK BE AT ES CZ SI IT EE SK CY PT LT PL LV HU BG
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r_DRZ

r_BCD

Fig. 1 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Unitary Weights
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Fig. 2 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Eurobarometer Weights

Table 5 Yearly Material Deprivation and Ranking of EU Member States in the years 2007–2010
with Unitary Weights
Country I2007 rank_2007 I2008 rank_2008 I2009 rank_2009 I2010 rank_2010

AT 0.962 7 1.062 8 0.854 6 0.778 6

BE 0.906 6 0.895 6 0.859 7 0.782 7

BG 4.431 20 3.648 20 4.167 20 4.301 20

CY 2.287 16 1.633 13 1.754 14 1.830 15

CZ 1.187 9 1.184 10 1.240 9 1.200 8

EE 1.331 11 1.166 9 1.458 12 1.705 12

ES 1.134 8 1.026 7 1.222 8 1.248 10

FI 0.648 4 0.650 4 0.636 4 0.577 4

HU 2.557 18 2.480 19 2.675 18 2.657 18

IT 1.348 12 1.292 11 1.244 10 1.236 9

LT 2.063 15 1.899 16 1.981 16 2.362 17

LU 0.592 3 0.593 3 0.558 3 0.480 3

LV 2.636 19 2.478 18 2.815 19 3.104 19

NL 0.458 1 0.414 1 0.385 1 0.393 2

PL 2.484 17 2.179 17 2.109 17 2.069 16

PT 1.860 13 1.821 15 1.727 13 1.726 14

SE 0.479 2 0.461 2 0.423 2 0.337 1

SI 1.280 10 1.409 12 1.387 11 1.422 11

SK 2.009 14 1.789 14 1.844 15 1.710 13

UK 0.733 5 0.759 5 0.839 5 0.768 5
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Table 6 Yearly Material Deprivation and Ranking of EU Member States in the years 2007–2010
with Eurobarometer Weights
Country I_Eu2007 rank_Eu2007 I_Eu2008 rank_Eu2008 I_Eu2009 rank_Eu2009 I_Eu2010 rank_Eu2010

AT 0.572 6 0.664 8 0.547 7 0.503 7

BE 0.601 7 0.578 6 0.545 5 0.500 6

BG 3.670 20 3.080 20 3.590 20 3.734 20

CY 1.996 19 1.407 16 1.541 17 1.619 16

CZ 0.669 8 0.648 7 0.695 8 0.668 8

EE 0.954 12 0.859 10 1.106 12 1.320 14

ES 0.780 9 0.705 9 0.869 9 0.895 10

FI 0.422 4 0.436 4 0.433 4 0.397 4

HU 1.848 17 1.815 18 1.985 18 2.005 18

IT 0.944 11 0.904 11 0.871 10 0.868 9

LT 1.468 14 1.336 14 1.482 15 1.703 17

LU 0.381 3 0.367 3 0.354 3 0.300 3

LV 1.925 18 1.852 19 2.140 19 2.409 19

NL 0.251 1 0.220 1 0.206 1 0.210 1

PL 1.803 16 1.544 17 1.518 16 1.498 15

PT 1.402 13 1.364 15 1.303 13 1.302 13

SE 0.293 2 0.301 2 0.273 2 0.219 2

SI 0.909 10 1.014 12 1.012 11 1.043 11

SK 1.487 15 1.311 13 1.385 14 1.278 12

UK 0.471 5 0.485 5 0.545 6 0.494 5

The three intertemporal indices rank the countries very similarly: see Figs. 1 and 2
and Tables 3 and 4. The short length of the panel is not sufficient to distinguish the
different aspects of past experiences of material deprivation. For both weighting
schemes, the least-deprived country is Sweden followed by Luxembourg and the
Netherlands. Finland and the UK swap positions when material deprivation over
time takes into consideration persistence in the state as opposed to an average value.
At the opposite end of the rankings are Bulgaria, Hungary, and Latvia. The order
among relatively highly deprived countries such as Cyprus, Lithuania, Poland, and
Portugal depends on the weighting scheme and index used.
As clearly depicted in Figs. 1 and 2, the rankings of the countries change only little
when the different intertemporal considerations are included. Part of the explanation
for the robustness of these rankings may be that our data covers a relatively small
number of periods, hence the effect of persistence may not be fully captured.

When time is not taken into consideration, in all the years analyzed (but in 2010)
and for both weighting schemes, the Netherlands is the least-deprived country, fol-
lowed by Sweden, Luxembourg, and Finland. See Figs. 3 and 4 and Tables 5 and 6.
At the other end of the rankings, the worst position with respect to yearly material
deprivation is occupied by Bulgaria, for both weighting schemes. Many relevant
changes occur during the years starting from the fifth position onwards especially
when Eurobarometer weights are applied.
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Fig. 3 Changes in the ranking of Yearly Material Deprivation among EU Member States with
Unitary Weights
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Fig. 4 Changes in the ranking of Yearly Material Deprivation among EU Member States with
Eurobarometer Weights

When time is taken into account, the picture that emerges is different. Figures 5
and 6 compare the rankings of the countries with the yearly values for 2010. Accord-
ing to intertemporal material deprivation, the ranking of the least deprived countries
is (for both weighting schemes) given by Sweden, Luxembourg and the Nether-
lands. Focusing only on 2010, the country with the best performance is Sweden for
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Fig. 5 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Unitary Weights versus the ranks of Yearly Material Deprivation in 2010
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Fig. 6 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Eurobarometer Weights versus the ranking of Yearly Material Deprivation in 2010

the situation of equal weights and the Netherlands for Eurobarometer weights. This
indicates that the materially deprived Swedes enjoy more affluent periods and are
less persistently deprived than are the corresponding Dutch. Spain improves by two
positions when intertemporal material deprivation is measured and by one position
for Eurobarometer weights according to the Foster and BCD indices. For some other
countries, we observe a movement of one position in both directions. The Nether-
lands, Italy, and Poland are the countries whose position is the most deteriorated
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Fig. 7 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Unitary Weights versus the ranks of Yearly Income Poverty in 2010
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Fig. 8 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Eurobarometer Weights versus the ranking of Yearly Income Poverty in 2010

when intertemporal considerations are included but these results differ depending on
the weighting schemes and the index.

Figures 7, 8, 9, and 10 and Table 7 contain results for intertemporal material
deprivation and income poverty. In the first two figures, we compare the ranking of
the countrieswith poverty during the last year of analysis, while the comparisonswith
poverty in 2007 are plotted in Figs. 9 and 10. It is apparent that intertemporal material
deprivation is not related to income poverty in any of the 2 years. As recommended by
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Fig. 9 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Unitary Weights versus the ranks of Yearly Income Poverty in 2007
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Fig. 10 Changes in the ranking of Intertemporal Material Deprivation among EU Member States
with Eurobarometer Weights versus the ranking of Yearly Income Poverty in 2007

EU policy makers, indices of material deprivation are to be combined with income-
based poverty measures since the two capture different aspects of individual well-
being.
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Table 7 Yearly Income Poverty and Ranking of EU Member States in the years 2007–2010
Country P_2007 Rank_2007 P_2008 rank_2008 P_2009 rank_2009 P_2010 rank_2010

AT 0.134 9 0.117 6 0.117 8 0.112 7

BE 0.153 10 0.141 10 0.150 10 0.120 9

BG 0.225 20 0.212 18 0.233 19 0.223 20

CY 0.175 12 0.172 12 0.155 12 0.180 16

CZ 0.084 3 0.091 3 0.071 1 0.080 1

EE 0.220 19 0.219 19 0.197 18 0.132 10

ES 0.174 11 0.175 13 0.171 14 0.194 19

FI 0.117 7 0.140 9 0.137 9 0.134 11

HU 0.114 6 0.096 5 0.086 3 0.100 3

IT 0.200 16 0.197 16 0.185 16 0.182 17

LT 0.198 15 0.198 17 0.191 17 0.155 12

LU 0.120 8 0.118 7 0.107 6 0.094 2

LV 0.213 18 0.270 20 0.240 20 0.184 18

NL 0.083 2 0.092 4 0.114 7 0.102 4

PL 0.178 13 0.178 14 0.163 13 0.160 13

PT 0.212 17 0.183 15 0.179 15 0.175 15

SE 0.070 1 0.089 2 0.102 4 0.111 6

SI 0.113 5 0.120 8 0.102 5 0.106 5

SK 0.088 4 0.088 1 0.082 2 0.113 8

UK 0.181 14 0.170 11 0.152 11 0.163 14

4 Concluding Remarks

This paper analyzes the role of intertemporal considerations in material deprivation
and compares EU countries according to this additional information. If we follow the
path of material deprivation experienced by each individual over time, we obtain a
different picture from that given by the yearly results. The contribution of this paper
is mainly of a methodological nature. In addition, it provides some guidance for
thorough empirical analyses of material deprivation. A possible subject for further
research is to extend the results to patterns of deprivation by population subgroups to
better understand the risk factors generating deprivation. Since the measurement of
material deprivation is used by the EUmember states and the European Commission
to monitor national and EU progress in the fight against poverty and social exclu-
sion, the basic results reported here suggest that time cannot be neglected. Countries
should not only be compared according to their yearly results but also on data that
follows individuals over several periods in order to produce a time-sensitive aggre-
gate measure of material deprivation. Intertemporal material deprivation indices can
be thought of as indicators of extreme forms of poverty along the lines of the rec-
ommendations of the Indicators Sub Group of the Social Protection Committee (see
Bradshaw and Mayhew 2011).
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Distributions
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Abstract Social risk equity is concerned with the comparative evaluation of social
risk distributions, which are probability distributions over the potential sets of fatal-
ities. In the approach to the evaluation of social risk equity introduced by Gajdos,
Weymark, and Zoli (Shared destinies and the measurement of social risk equity,
Annals of Operations Research 176:409–424, 2010), the only information about
such a distribution that is used in the evaluation is that contained in a shared destiny
risk matrix whose entry in the kth row and i th column is the probability that person
i dies in a group containing k individuals. Such a matrix is admissible if it satisfies
a set of restrictions implied by its definition. It is feasible if it can be generated by
a social risk distribution. It is shown that admissibility is equivalent to feasibility.
Admissibility is much easier to directly verify than feasibility, so this result provides
a simple way to identify which matrices to consider when the objective is to socially
rank the feasible shared destiny risk matrices.
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1 Introduction

Governments routinely implement policies that affect the risks that a society faces.
For example, barriers are installed to lessen the risk of a terrorist driving a vehicle
into pedestrians, dikes are built to reduce the risk of flooding, and carbon taxes
are imposed to slow down the rise in the temperature of the Earth’s atmosphere so
as to reduce the likelihood of the serious harms that result from climate change.
Policies differ in the degree to which they change the expected aggregate amount of
a harm and how it is distributed across the population. A consequentialist approach
to evaluating the relative desirability of different policies that affect these kinds of
social risks does so by ranking the possible distributions of the resulting harms. If
this ranking, or an index representing it, takes account of the equity of the resulting
distribution of risks, it is a measure of social risk equity.

The measurement of social risk equity has its origins in the work of Keeney
(1980a, b, c). The analysis of social risk equity has been further developed byBroome
(1982), Fishburn (1984), Fishburn and Sarin (1991), Fishburn and Straffin (1989),
Gajdos et al. (2010), Harvey (1985), Keeney and Winkler (1985), and Sarin (1985),
among others. While these analyses apply to any kind of social harm, for the most
part, the harm that they consider is death. Our analysis also applies to any socially
risky situation in which a harmmay affect some, but not necessarily all, of the society
in question but, for concreteness, we, too, suppose that this harm is death.

The set of individuals who die as a result of their exposure to the risk is a fatality
set and a social risk distribution is a probability distribution over all of the possible
fatality sets. Social risk distributions are ranked using a social risk equity preference
ordering. Not all of the information about a social risk distribution may be regarded
as being relevant when determining the social preference relation. For example,
Fishburn and Straffin (1989), Keeney and Winkler (1985), and Sarin (1985) only
take account of the risk profiles for individuals and for fatalities. The former lists the
likelihoods of each person dying, whereas the latter is the probability distribution
over the number of fatalities. These statistics can be computed from a social risk
distribution, but in doing so, some information is lost.

Gajdos et al. (2010) propose also taking into account a concern for shared des-
tinies; specifically, with the number of other individuals with whom someone per-
ishes. Chew and Sagi (2012) describe this concern as being one of ex-post fairness.
For example, for a given probability of there being k fatalities, it might be socially
desirable to have this risk spread more evenly over the individuals. As Example 3
in Gajdos et al. (2010) demonstrates, it is possible for the distribution of how many
people someone dies with to differ in two social risk distributions even though the
risk profiles for individuals and for fatalities are the same in both distributions. As a
consequence, a concern for shared destinies cannot be fully captured if one restricts
attention to the information provided by the likelihoods of each person dying and
the probability distribution over the number of fatalities.1

1There are other dimensions of social risk equity that may be of concern, such as dispersive equity
and catastrophe avoidance. There is a concern for dispersive equity if account is taken of individual
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The distribution of shared destiny risks can be expressed using a shared destiny
risk matrix whose entry in the kth row and i th column is the probability that person
i dies in a group containing k individuals. In the approach developed by Gajdos
et al. (2010), if two social risk distributions result in the same shared destiny risk
matrix, they are regarded as being socially indifferent. Because the risk profiles for
individuals and for fatalities can be computed from the information contained in a
shared destiny risk matrix, their approach to evaluating social risks can take account
of these two risk profiles, not just a concern for shared destinies. In effect, in their
approach to social risk evaluation, ranking social risk distributions is equivalent to
ranking shared destiny risk matrices.

The entries of a social destiny risk matrix are probabilities, and so all lie in the
interval [0, 1]. There are three other independent properties that such a matrix must
necessarily satisfy as a matter of definition: (i) nobody’s probability of dying can
exceed 1, (ii) the probability that there are a positive number of fatalities cannot
exceed 1, and (iii) nobody can have a probability of dying in a group of size k
that exceeds the probability that there are k fatalities. A social destiny risk matrix
that satisfies these properties is said to be admissible. Starting with a social risk
distribution, we can compute the entries in the corresponding shared destiny risk
matrix.A shareddestiny riskmatrix that canbegenerated in thisway froma social risk
distribution is said to be feasible. A feasible shared destiny risk matrix is necessarily
admissible. The question we address is whether there are admissible shared destiny
risk matrices that are not feasible. We show that there are not. Thus, a shared destiny
risk matrix is admissible if and only if it is feasible.

In order to establish this result, we develop an algorithm that shows how to con-
struct a social risk distribution from a shared destiny risk matrix in such a way that
the resulting distribution can be used to generate the matrix. It is easy to determine
if a shared destiny risk matrix is admissible but, as our algorithm makes clear, con-
firming that it is also feasible by finding a social risk distribution that generates it
may be a formidable undertaking. However, if our objective is only to socially rank
the feasible shared destiny risk matrices, our result tells us that this is equivalent to
socially ranking the admissible shared destiny risk matrices. We do not need to know
how to generate these matrices from social risk distributions in order to know that
they are feasible; we only need to know that they are admissible.

In Sect. 2, we introduce the formal framework used in our analysis. The algorithm
employed to determine a social risk distribution that generates a given admissible
shared destiny risk matrix is presented in Sect. 3. We illustrate the operation of this
algorithm in Sect. 4. We prove that a shared destiny risk matrix is admissible if and
only if it is feasible in Sect. 5.

characteristics such as gender, race, or geographic location in addition to the individuals’ exposures
to social risks. See Fishburn and Sarin (1991), for an analysis of the evaluation of social risks that
allows for dispersive equity. Bommier and Zuber (2008), Fishburn (1984), Fishburn and Straffin
(1989), Harvey (1985), and Keeney (1980a) consider social preferences for catastrophe avoidance.
We do not examine dispersive equity or catastrophe avoidance here.
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2 Shared Destiny Risk Matrices

There is a society of n ≥ 2 individuals who face a social risk. Let N = {1, . . . , n} be
the set of these individuals. A fatality set is a subset S ⊆ N consisting of the set of
individuals who expost die as a consequence of the risk that this society faces. There
are 2n possible fatality sets, including ∅ (nobody dies) and N (everybody dies). A
social risk distribution is a probability distribution p on 2n , with p(S) denoting the
ex ante probability that the fatality set is S. We suppose that only this probability
distribution is relevant for the purpose of social risk evaluation. The set of all such
probability distributions is P .

For each k ∈ N , let M(k) ∈ [0, 1]n denote the vector whose i th component
M(k, i) is the ex ante probability that person i will die when there are exactly k
fatalities. A shared destiny risk matrix is an n × n matrix M whose kth row is M(k).
Let n̄(k) be the number of positive entries in M(k). The risk profile for individuals
is the vector α ∈ [0, 1]n , where

α(i) =
n∑

k=1

M(k, i), ∀i ∈ N , (1)

which is the ex ante probability that person i will die. The risk profile for fatalities
is the vector β ∈ [0, 1]n , where

β(k) = 1

k

n∑

i=1

M(k, i), ∀k ∈ N , (2)

which is the ex ante probability that there will be exactly k fatalities. Note that a risk
profile for fatalities does not explicitly specify the probability that nobody dies. The
probability that there are no fatalities is 1 − ∑n

k=1 β(k).
By definition, each of the entries of M is a probability and so must lie in the

interval [0, 1]. Hence, each of the components of α and β must be nonnegative as
they are sums of entries in M . There are three other restrictions on M . They are

α(i) ≤ 1, ∀i ∈ N , (3)

n∑

k=1

β(k) ≤ 1, ∀k ∈ N , (4)

and
M(k, i) ≤ β(k), ∀(k, i) ∈ N 2. (5)

The first of these requirements is that no person can die with a probability greater
than 1. The second is that the probability that there are a positive number of fatalities
cannot exceed 1. The third is that nobody’s probability of dying in a group of size k
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can exceed the probability of there being k fatalities. Of course, it must also be the
case that

β(k) ≤ 1, ∀k ∈ N . (6)

That is, the probability that there are a particular number of fatalities cannot exceed
1. However, (6) follows from (4) because all probabilities are nonnegative. A social
risk equity matrix M is admissible if it satisfies (3), (4), and (5).

It is obvious that M must satisfy (3) and (4), but the necessity of (5) is less so
because there is more than oneway that someone can die with k − 1 other individuals
when k > 1. To seewhy (5) is required, suppose, on the contrary, thatM(k, i) > β(k)
for some i ∈ N . Then, because M(k, i) is the probability that person i perishes
with k − 1 other individuals, it must be the case that

∑
j �=i M(k, j) > (k − 1)β(k)).

Hence,
∑n

i=1 M(k, i) > kβ(k). It then follows that β(k) = 1
k

∑n
i=1 M(k, i) > β(k),

a contradiction.
For each k ∈ N ,T (k) = {S ∈ 2n||S| = k} is the set of subgroups of the society in

which exactly k individuals die. For each (k, i) ∈ N 2,S (k, i) = {S ∈ T (k)|i ∈ S}
is the set of subgroups in which exactly k people die and i is one of them. A shared
destiny riskmatrixM is feasible if there exists a social risk distribution p ∈ P and an
n × n matrix Mp such that M(k, i) = Mp(k, i), where Mp(k, i) = ∑

S∈S (k,i) p(S).
That is, Mp(k, i) is the probability that there are k deaths and i is one of them when
the social risk distribution is p.

3 The Decomposition Algorithm

By construction, for any p ∈ P , Mp is an admissible shared destiny risk matrix. In
other words, any feasible shared destiny risk matrix is admissible. The question then
arises as to whether feasibility imposes any restrictions on M other than that it be
admissible. We show that it does not.

For any admissible shared destiny riskmatrixM , we need to show that there exists
a social risk distribution p ∈ P such that Mp = M . This is done by considering
each value of k separately. For each k ∈ N , we know that the probability of having
this number of fatalities is β(k). We need to distribute this probability among the
subgroups in T (k) (the subgroups for which there are k fatalities) in such a way
that the probability that person i dies in a group of size k is M(k, i). The resulting
probabilities for the subgroups in T (k) are called a probability decomposition. Put
another way, for each i ∈ N , we need to distribute the probability M(k, i) among
the subgroups in S (k, i) (the subgroups containing person i for which there are
k fatalities) in such a way that the amount π S allocated to any S ∈ S (k, i) is the
same for everybody in this group. The value π S is then the probability that the set of
individuals who perish is S.

IfM(k, i) = 0 for all i ∈ N (so n̄(k) = 0), thenβ(k) = 0, sowe assign probability
0 to each S ∈ T (k). If k = n, only N is in T (n), so no decomposition is needed;
N is simply assigned the probability β(n). When β(k) �= 0 and k < n, we construct
an algorithm that produces the requisite probability decomposition. The algorithm



42 T. Gajdos et al.

proceeds through a number of steps, which we denote by t = 0, 1, 2, . . .. We show
that the algorithm terminates in no more than n̄(k) steps. The relevant variables in
each step are distinguished using a superscript whose value is the step number.

The vector M̂(k) is a nonincreasing rearrangement of M(k) if M̂(k, i) ≥
M̂(k, i + 1) for all k = 1, . . . , n − 1. Whenever a vector of probabilities for the
n individuals is rearranged in this way, ties are broken in such a way that the original
order of the individuals is preserved. For example, if n = 3, in the rearrangement
(2, 1, 1) of (1, 2, 1), the first 1 is associated with person 1 and the second 1 with
person 3. Without loss of generality, we suppose that M(k) is initially ranked in
nonincreasing order. We now describe our algorithm.

Probability Decomposition Algorithm. The initial values of the relevant variables are

M0(k) = M̂0(k) = M(k) = M̂(k)

and
β0(k) = β(k).

Step 1. In Step 1, we assign a probability π1 to the first k individuals, which is the
set of individuals with the k highest probabilities in M̂0(k). After π1 is subtracted
from each of the first k components of M̂0(k), we are left with the fatality probability

β1(k) = β0(k) − π1

to distribute among the groups of size k using the probabilities in

M1(k) = M̂0(k) − (π1, . . . , π1, 0, . . . , 0).

Letting ρ0(k, i) denote the rank of individual i in M̂0(k), we define the vector

π1(k) = π1 · (I 01 , I 02 , . . . , I 0n ),

where I 0i = 1 if ρ0(k, i) ≤ k and I 0i = 0 otherwise. Using π1(k), M1(k) can be
equivalently written as

M1(k) = M0(k) − π1(k).

We need to ensure that each of the probabilities in M1(k) is nonnegative. Because
M̂0(k) is a nonincreasing rearrangement of M0(k) and M̂1(k, i) = M̂0(k, i) for i =
k + 1, . . . , n, it must therefore be the case that π1 ≤ M̂0(k, k). We also need to
ensure that none of these probabilities exceeds the fatality probability β1(k) left
to distribute. This condition is satisfied by construction for the first k individuals.
Hence, because M̂0(k) is a nonincreasing rearrangement ofM0(k), in order to satisfy
this condition, it is only necessary that M̂0(k, k + 1) ≤ β1(k) = β0(k) − π1. Both
of these requirements are satisfied by setting
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π1 = min{M̂0(k, k), β0(k) − M̂0(k, k + 1)}.

By (5), M̂0(k, k) ≤ β0(k). Therefore, π1 ≤ β0(k) and, hence, β1(k) ≤ β0(k).
Because β1(k) = 1

k

∑n
i=1 M

1(k, i) and M1(k, i) ≥ 0 for all i ∈ N , β1(k) ≥ 0.

Let S1 denote the first k individuals in M̂0(k). We choose p(S1) to be π1.
If M1(k) = (0, 0, 0, . . . , 0), the algorithm terminates. Otherwise, it proceeds to

the next step.
Step t (t ≥ 2). The operation of the algorithm in this step follows the same basic

logic as in Step 1. The value of π t is chosen by setting

π t = min{M̂t−1(k, k), β t−1(k) − M̂t−1(k, k + 1)}. (7)

Letting ρ t−1(k, i) denote the rank of individual i in M̂t−1(k), we define the vector

π t (k) = π t · (I t−1
1 , I t−1

2 , . . . , I t−1
n ), (8)

where I t−1
i = 1 if ρ t−1(k, i) ≤ k and I t−1

i = 0 otherwise.
We define Mt (k) and β t (k) by setting

Mt (k) = Mt−1(k) − π t (k) (9)

and
β t (k) = β t−1(k) − π t . (10)

Analogous reasoning to that used in Step 1 shows that 0 ≤ β t (k) ≤ β t−1(k).
Let St denote the first k individuals in M̂t−1(k). We choose p(St ) to be π t .
If Mt (k) = (0, 0, 0, . . . , 0), the algorithm terminates. Otherwise, it proceeds to

the next step.
If the algorithm terminates and a group S with k members has not been assigned

a probability by the algorithm, we set p(S) = 0.

4 Examples of the Probability Decomposition Algorithm

The operation of the probability decomposition algorithm is illustrated with three
examples. In each of these examples, it is assumed that M is admissible. In the first
example, the algorithm is applied to the case in which nobody dies with anybody
else.

Example 1 Let k = 1 with M(1, i) > 0 for some i ∈ N . If M is feasible, for each
i ∈ N , we must have p({i}) = M(1, i). We show that the algorithm produces this
result. We first consider the case in which M(1, i) > 0 for all i ∈ N .

In Step 1, person 1 is the highest ranked individual in M̂0(1). Therefore, we have
β0(1) − M̂0(1, 2) = 1

1

∑n
i=1 M̂

0(1, i) − M̂0(1, 2) = ∑n
i �=2 M̂

0(1, i) ≥ M̂0(1, 1). It
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then follows that π1 = M̂0(1, 1) and, hence, p({1}) = M̂0(1, 1) = M(1, 1). We
have π1(1) = (M(1, 1), 0, . . . , 0) and so M0(1) is now replaced with M1(1) =
(0, M0(2), . . . , M0(n)). Because M1(1, 1) = 0, person 1 is never considered again
by the algorithm. There is fatality probability β1(1) = β0(1) − π1 = ∑n

i=1 M(1, i)
− M(1, 1) = ∑n

i=2 M(1, i) left to allocate.
Step 2 uses the vector M̂1(1). Person 2 is the second highest ranked indi-

vidual in M0(1) and so is first ranked in M̂1(1). As in Step 1, π2 = M̂1(1, 1)
and, hence, p({2}) = M̂1(1, 1) = M(1, 2). We have π1(1) = (0, M(1, 2), 0, . . . , 0)
and so M1(1) is replaced with M2(1) = (0, 0, M0(3), . . . , M0(n)) and person
2 is never considered again. There is fatality probability β2(1) = β1(1) − π2 =∑n

i=2 M(1, i) − M(1, 2) = ∑n
i=3 M(1, i) left to allocate.

More generally, person i ∈ N is singled out in Step i and assigned the proba-
bility p({i}) = M(1, i). In Step n, Mn(1) = (0, 0, 0, . . . , 0), and so the algorithm
terminates.

If M(1, i) = 0 for some i ∈ N , then the algorithm proceeds as above but termi-
nates in Step n̄(1) < n, where it is recalled that n̄(1) is the number of individuals
for whom M(1, i) is positive. For any individual i for whom M(1, i) = 0, when the
algorithm terminates, p({i}) is set equal to 0.

In the next two examples, individuals do not die alone. In these examples, all prob-
abilities are expressed in terms of percentages, so, for example, 5 is the probability
0.05.

Example 2 Letn = 7and k = 4.Wesuppose thatM0(4) = M(4) = M̂(4) = M̂0(4)
= (5, 4, 4, 4, 4, 2, 1). Consequently, β0(4) = β(4) = 1

4

∑n
i=1 M(4, i) = 6.

Step1.Wehaveπ1 = min{M̂0(4, 4), β0(4) − M̂0(4, 5)} = 2.Therefore,π1(4) =
(2, 2, 2, 2, 0, 0, 0), M1(4) = M0(4) − π1(4) = (3, 2, 2, 2, 4, 2, 1), and β1(4) =
β0(4) − π1 = 6 − 2 = 4. Hence, p({1, 2, 3, 4}) = π1 = 2.

Step 2. There are four individuals with the third highest probability in M1(4).
Using our tie-breaking rule, individuals 1, 2, 3, and 5 have thefirst four probabilities in
M̂1(4). We thus have M̂1(4) = (4, 3, 2, 2, 2, 2, 1), so π2 = min{M̂1(4, 4), β1(4) −
M̂1(4, 5)} = 2. Therefore, π2(4) = (2, 2, 2, 0, 2, 0, 0), M2(4) = M1(4) − π2(4) =
(1, 0, 0, 2, 2, 2, 1), and β2(4) = β1(4) − π2 = 4 − 2 = 2. Hence, p({1, 2, 3, 5}) =
π2 = 2.

Step 3. There are two individuals with the fourth highest probability in M2(4).
The tie is broken in favor of person 1, so the first four individuals in M̂2(4) are 1,
4, 5, and 6. We have M̂2(4) = (2, 2, 2, 1, 1, 0, 0), so π3 = min{M̂2(4, 4), β2(4) −
M̂2(4, 5)} = 1. Therefore, π3(4) = (1, 0, 0, 1, 1, 1, 0), M3(4) = M2(4) − π3(4) =
(0, 0, 0, 1, 1, 1, 1), and β3(4) = β2(4) − π3 = 2 − 1 = 1. Hence, p({1, 4, 5, 6}) =
π3 = 1.

Step 4. The four individuals with the highest probabilities in M3(4) are 4, 5,
6, and 7. We have M̂3(4) = (1, 1, 1, 1, 0, 0, 0), so π4 = min{M̂3(4, 4), β3(4) −
M̂3(4, 5)} = 1. Therefore, π4(4) = (0, 0, 0, 1, 1, 1, 1), M4(4) = M3(4) − π4(4) =
(0, 0, 0, 0, 0, 0, 0), and β4(4) = β3(4) − π4 = 1 − 1 = 0. Hence, p({4, 5, 6, 7}) =
π4 = 1.
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BecauseM4(4) = (0, 0, 0, 0, 0, 0, 0), the algorithm terminates in Step 4. The four
groups identified in Steps 1–4 are assigned positive probability. For any other set of
individuals S with four members, p(S) = 0. There are n!

k!(n−k)! = 7!
4!3! = 35 possible

groups of this size, so 31 of them are assigned a zero probability.

In Examples 1 and 2, in Step t , π t is set equal to M̂t (k, k). In Example 3, it is
instead sometimes set equal to β t−1(k) − M̂t−1(k, k + 1).

Example 3 Letn = 3and k = 2.Wesuppose thatM0(2) = M(2) = M̂(2) = M̂0(2)
= (7, 5, 4). Consequently, β0(2) = β(2) = 1

2

∑n
i=1 M(2, i) = 8.

Step1.Wehaveπ1 = min{M̂0(2, 2), β0(2) − M̂0(2, 3)} = 4.Therefore,π1(2) =
(4, 4, 0),M1(2) = M0(2) − π1(2) = (3, 1, 4), andβ1(2) = β0(2) − π1 = 8 − 4 =
4. Hence, p({1, 2}) = π1 = 4.

Step 2. The two individuals with the highest probabilities in M1(2) are 1 and 3.
We have M̂1(2) = (4, 3, 1), so π2 = min{M̂1(2, 2), β1(2) − M̂1(2, 3)} = 3. There-
fore, π2(2) = (3, 0, 3), M2(2) = M1(2) − π2(2) = (0, 1, 1), and β2(2) = β1(2) −
π2 = 4 − 3 = 1. Hence, p({1, 3}) = π2 = 3.

Step 3. There only two individuals (2 and 3) left with positive probabilities, and
these probabilities are the same. Hence, this group of individuals must be assigned
the unallocated fatality probability, so p({2, 3}) = 1. We confirm that the algorithm
produces this result. We have M̂2(2) = (1, 1, 0), so π3 = min{M̂2(1, 2), β2(2) −
M̂2(2, 2)} = 1. Therefore, π3(1) = (0, 1, 1), M3(2) = M2(2) − π3(2) = (0, 0, 0),
and β3(2) = β2(2) − π3 = 1 − 1 = 0. Hence, p({2, 3}) = 1, as was to be shown.

The algorithm terminates in Step 3. All subgroups with twomembers are assigned
positive probability.

As these examples illustrate, each step of the algorithm identifies a subgroup with
k members and determines the probability that it is this group that perishes. For each
individual i in this group, this probability must be subtracted from whatever part of
the probability M(k, i) that remains unallocated at the end of the previous step. In
all three of the examples, at the end of the penultimate step of the algorithm, there is
a group of size k whose members all have the same probability left to distribute. In
the next section, we show that this is a general feature of the algorithm. When this
amount has been allocated as the probability of this group perishing together, we
have Mt(k) = (0, . . . , 0), and so the algorithm terminates because, for each i ∈ N ,
the probability M(k, i) that person i dies in a group of size k has been distributed
among each of the groups of size k that include i .

The distribution of the probability in β(k) across the groups with k members need
not be unique. This is the case in Example 2 because there is more than one way to
rearrange the vector of fatality probabilities being considered in a nonincreasing way
in some of the steps. For example, if in Step 2 in this example, with the tie-breaking
rule used in our algorithm, individuals 1, 2, 3, and 5 are regarded as having the four
highest probabilities in M1(4). However, we could have used a tie-breaking rule that
selects individuals 1, 2, 5, and 6 instead, in which case p({(1, 2, 5, 6)}) > 0, which
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is not the case with the tie-breaking rule used in the algorithm. Feasibility of a shared
destiny risk matrix M only requires that there exists a social risk distribution p such
that Mp = M , not that this distribution be unique.

5 The Equivalence of Admissibility and Feasibility

In order to show that an admissible shared destiny risk matrix is feasible, we first
establish a number of lemmas that identify some important properties of the proba-
bility decomposition algorithm. In each of our lemmas, we suppose that k �= n and
that the probability decomposition algorithm is being applied to the kth row M(k) of
an admissible shared destiny risk matrix M for which the probability β(k) that there
are k fatalities is positive.

Lemma 1 shows that in each step of this algorithm, analogues of (2) and the
admissibility restriction in (5) hold.

Lemma 1 In any Step t of the algorithm,

β t (k) = 1

k

n∑

i=1

Mt (k, i) (11)

and
0 ≤ Mt (k, i) ≤ β t (k), ∀i ∈ N . (12)

Proof For any k �= n, at the end of Step t − 1 of the algorithm, from the probability
β(k) that there will be exactly k fatalities, there is still β t−1(k) left to allocate. In
Step t , π t is subtracted from the first k components of M̂t−1(k) and 0 from the other
n − k components. Hence, by (2), (9), and (10), at the end of Step t , the amount from
β(k) left to allocate is (11).

Becauseπ t ≤ M̂t−1(k, k),Mt (k, i) ≥ 0 for all i ∈ N . The argument used to show
that Mt (k, i) ≤ β t (k) for all i ∈ N is the same as the argument used in Sect. 2 to
show that (5) holds but with Mt (k, i) substituting for M(k, i) and β t (k) substituting
for β(k). �

In order for the probability decomposition algorithm to distribute all of the prob-
ability β(k) that there are k fatalities among the subgroups of size k, the algorithm
must terminate in a finite number of steps. Lemma 2 shows that this is the case if the
algorithm reaches a step in which there are k positive entries left to distribute.

Lemma 2 The algorithm terminates in Step t + 1 if there are k positive entries in
Mt (k).

Proof By Lemma 1, (11) and (12) hold. If Mt (k) contains k positive entries, (11)
and (12) imply that they are all equal to β t (k). Thus, the algorithm terminates in the
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next step because π t = β t (k) is subtracted from M̂t(k, i) for each i = 1, . . . , k, and
so Mt+1(k) = (0, . . . , 0). �

There are n̄(k) individuals who have a positive probability of dying in a group of
size k. Lemma 3 shows that the probability decomposition algorithm terminates in a
finite number of steps that does not exceed this value.

Lemma 3 The algorithm terminates in at most n̄(k) steps.

Proof If k = n̄(k), then Lemma 2 applies with t = 0, so the algorithm terminates in
Step 1.

Now, suppose that k < n̄(k). From (7), we know that in Step t of the algorithm,
π t is either M̂t−1(k, k) or β t−1(k) − M̂t−1(k, k + 1), whichever is the smallest. We
consider two cases distinguished by whether the first of these possibilities holds for
all t or not.

Case1. For eachStep t of the algorithm,π t = M̂t−1(k, k). Then, by (7)–(9),Mt (k)
has at least one more 0 entry than Mt−1(k). Thus, Mt (k) has at least n − n̄(k) + t
entries equal to 0 and, hence, has atmost k positive entries in Step n̄(k) − k. It follows
from (11) and (12) (which hold by Lemma 1) that there is no Step t such that the
number of positive entries in Mt (k) is positive but less than k. Therefore, because
the algorithm subtracts a common positive amount of probability from k individuals
in each step, for some t ≤ n̄(k) − k, Mt (k) has exactly k positive entries, which,
by Lemma 2, implies that the algorithm terminates in at most n̄(k) − k + 1 steps.
Because k < n̄(k), this upper bound is at most n̄.

Case 2. In some Step t of the algorithm, π t �= M̂t−1(k, k). Let t∗ be the
first step for which this is the case. By (7), we then have that π t∗ = β t∗−1(k) −
M̂t∗−1(k, k + 1). Let i∗ be the individual for whom ρ t∗−1(k, i∗) = k + 1. That
is, i∗ is the individual for whom Mt∗−1(k, i∗) = M̂t∗−1(k, k + 1). Because π t∗ =
β t∗−1(k) − M̂t∗−1(k, k + 1), by (10), β t∗(k) = M̂t∗−1(k, k + 1). Because Mt∗(k, i∗)
= Mt∗−1(k, i∗), it follows that Mt∗(k, i∗) = β t∗(k).

By (11) and (12), there cannot be more that k entries in Mt (k) which are at least
as large as β t (k). Hence, i∗ must occupy one of the first k ranks in Mt∗(k) and so
i∗’s probability is reduced by π t∗ in Step t∗. By (10), for all t , π t = β t−1(k) − β t (k).
Therefore, Mt∗+1(k, i∗) = β t∗+1(k). Iteratively applying the same reasoning in each
of the subsequent nonterminal steps of the algorithm, we conclude that Mτ (k, i∗) =
βτ (k) for any Step τ for which τ ≥ t∗ which is not a terminal step.

Because there cannot be more that k entries in Mτ (k) which are at least as large
as βτ (k), we now know that for each τ ≥ t∗, i∗ has a rank not exceeding k in Mτ (k).
Hence, in any Step t∗∗ for which t∗∗ > t∗, the individual who occupies rank k + 1
in M̂t∗∗−1(k) is someone, say i∗∗, who is different from i∗. Reasoning as above,
if π t∗∗ �= M̂t∗∗−1(k, k), then Mτ (k, i∗∗) = βτ (k) for any Step τ for which τ ≥ t∗∗
which is not a terminal step. Furthermore, both i∗ and i∗∗ have ranks not exceeding
k in Mτ (k) for any such τ .

By an iterative application of the preceding argument, we conclude that there
can be at most k steps in which π t �= M̂t−1(k, k). Because Mt (k) has at least one
more 0 entry than Mt−1(k) in each Step t for which π t = M̂t−1(k, k), there are at
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most n̄(k) − k − 1 values of t for which (i) π t = M̂t−1(k, k) and (ii) there are at
least k + 1 positive entries in Mt (k). Thus, the algorithm terminates in at most n̄(k)
steps. �

In each step of the algorithm, a group of size k is identified and assigned a prob-
ability. Lemma 4 shows that no group is considered in more than one step of the
algorithm and, therefore, no group is assigned more than one probability.

Lemma 4 No group of individuals with k members is assigned a probability in more
than one step of the algorithm.

Proof We need to show that for all Steps t and t ′ of the algorithm for which t �= t ′,
(I t1, I

t
2, . . . , I

t
n) �= (I t

′
1 , I t

′
2 , . . . , I t

′
n ). On the contrary, suppose that there exist t < t ′

for which (I t1, I
t
2, . . . , I

t
n) = (I t

′
1 , I t

′
2 , . . . , I t

′
n ). Let S be the set of individuals for

whom the value of these indicator functions is 1. Because bothπ t andπ t ′ are positive,
by (7), we must have π t ≥ π t + π t ′ , which is impossible. That is, both π t and π t ′

must be subtracted in the same step from the probabilities of the members of S that
have yet to be allocated when this group is the one being considered. �

With these lemmas in hand, we can now prove our equivalence theorem.

Theorem A shared destiny risk matrix M is admissible if and only it is feasible.

Proof Because a feasible shared destiny risk matrix is necessarily admissible, we
only need to show the reverse implication. Suppose that M is an admissible shared
destiny risk matrix. For each k �= n for which β(k) > 0, Lemmas 3 and 4 imply
that the probability decomposition algorithm assigns a probability p(S) ∈ [0, 1]
to each group S ∈ T (k) (the set of groups with k members) in such a way that∑

S∈T (k) p(S) = β(k). If k �= n and β(k) = 0, we let p(S) = 0 for all S ∈ T (k).
BecauseT (n) = {N }, we set p(N ) = β(n). Finally, we set p(∅) = 1 − ∑n

i=1 β(k).
The function p : 2n → [0, 1] is therefore a social risk distribution. By construc-
tion, the corresponding shared destiny risk matrix Mp is the same as M because
Mp(k, i) = ∑

S∈S (k,i) p(S) = M(k, i) for all (k, i). Hence, M is feasible. �
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On the Volume of Redistribution: Across
Income Levels and Across Groups
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Abstract The optimal income taxation literature focuses on the tradeoff between the
equity gains of higher progressivity versus its greater incentive costs at the individual
level. This paper highlights a neglected aspect of redistribution—greater progressiv-
ity requires a higher volume of gross redistributive flows, across income levels. If
these flows are costly to manage, administratively, or politically, then progressivity
will be lower. Moreover, if redistribution across income levels implies redistribution
across sociopolitically salient groups because of the way in which these groups line
up relative to the income distribution, this can be an added cost in the objective
function and progressivity is further disadvantaged. The paper develops a simple
framework in which these questions can be addressed. Among the many interesting
results is that when the capacity for the volume of redistributive flows, across income
levels or across sociopolitical groups, is reached, an increase in market inequality
can lead to a fall in progressivity in the tax-transfer regime without any change in the
government’s preferences for equity. A focus on the volume of redistribution thus
opens up an important set of theoretical and empirical questions for analysis and for
policy.
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1 Introduction

Why has post-tax and transfer1 inequality increased in many countries around the
world? In simple accounting terms, to get the post-tax distribution we start with
the market distribution of income and superimpose on that the redistribution imple-
mented by the government, to arrive at the distribution of post-tax or “take home”
income. Thus, if post-tax inequality rises, it must be because of the net effect of
change in the inequality of market income and change in progressivity of redistribu-
tion. For example, an often discussed narrative is that while in theUS and theUKboth
changes went in the direction of raising inequality, in Latin America redistribution
overcame increasing market inequality to reduce post-tax inequality.

In the standardMirrleesian model of optimal nonlinear income taxation (Mirrlees
1971), the optimal degree of tax progressivity depends on three key parameters—the
degree of market or “inherent” inequality2; the preference for equality (the gov-
ernment’s inequality aversion); and the strength of incentive effects (captured in the
model by the elasticity of labor supply). It can then be shown in suchMirrleesianmod-
els that, holding fixed government’s inequality aversion and individuals’ incentive
effects, an increase in “inherent” inequality will increase the optimal progressivity
of the tax system, although the net effect on post-tax inequality will be to increase
it (Kanbur and Tuomala 1994). It is now generally agreed that the skill premium in
labor markets is on the rise, the result of skill-biased technical progress,3 and this
is leading to rising market inequality at any given level of progressivity of redistri-
bution. However, in the US and UK at least, it seems as though the tax system has
become less progressive not more, compounding the effects of risingmarket inequal-
ity. This would seem to suggest either that incentive effects have become stronger,
or that the preference for equity has declined, or both.

It can indeed be argued that in the era of globalization incentive effects have
become stronger, certainly for capital and for skilled labor as relocation prospects
have improved for them.However, incentive effectswill not be the focus of this paper.
It could also be argued that the political systemhas been captured by thewealthy,with
the result that the tax system reflects this capture, with lowered inequality aversion in
the government’s objective function. Indeed, there could be a vicious spiral, whereby
rising inequality leads to greater political capture and thence greater inequality still.4

However, this type of mechanism will also not be the primary focus of this paper.
Rather, I wish to highlight the effects of what I call “the volume of redistribution.”

The idea is simple. Redistribution involves taking resources away from some and
giving these resources to others. Both the taking and the giving will have individual-
level incentive effects and these are well modeled in the economics literature. But
the taking and the giving requires administrative and other mechanisms for transfer.
One can visualize these as the “pipes” which take the flow of redistribution from

1Henceforth, we will use “tax” to mean “tax and transfer”.
2It will be recalled that this is the inequality of the Mirrlees “ability” parameter n.
3See, for example, Autor (2014).
4See Stiglitz (2017).



On the Volume of Redistribution: Across Income Levels … 55

one set of incomes to others. These pipes, these mechanisms, do not just exist—they
have to be built. And if the pipes have been laid for an earlier period, they may
not be able to take a greatly increased flow of redistribution, and begin to impose
costs which militate against redistribution. We can think of these mechanisms and
pipes in physical, administrative, terms; but another interpretation is the flexibility
of current political economy, having arrived at a given political equilibrium level of
redistribution, to now adjust to a far greater flow required by new circumstances.
Although I have this at the back of my mind, I will not model the political economy,
preferring at this stage to stay with the physical analogy of pipes and their ability to
withstand the force of greater flow.

Suppose now that individuals differ not only in levels of income but also in
characteristics which define sociopolitically salient groups, such as ethnic groups,
immigrant versus natives, young versus old, regional groupings, and so on. Then,
except in particular special cases, redistribution flows across income levels through
an income tax-transfer system will also imply flows across these groups. If there are
political costs to flows across groups, these have to be further accounted for in the
social objective function and their implications for progressivity need to be worked
out. How should we think about the dependence of costs on the volume of flows
(across income levels or across groups)? The pipes analogy helps. For a given width
of piping, more flow can be accommodated up to capacity with marginal cost of
additional flow. But once this capacity is reached, there is a fixed cost in building
new capacity to take the next level of flow. Such fixed costs, as might be expected,
also affect the levels and patterns of progressivity in response to increasing market
inequality.

The plan of the paper is as follows. Section 2 sets out the basic idea of the volumeof
redistribution and analyzes its dependence on distributional parameters. In particular,
it traces a possible line of linkage between greater inherent inequality leading to the
desire for greater progressivity in the tax and transfer system, but this being blocked
by the inability of the system to handle the higher volume of flows of redistribution
implied by greater progressivity. Section 3 plays out the flows perspective through
the lens of the implications for transfers between politically salient groups such as
ethnic groups, or natives and immigrants. Section 4 concludes with an extended
discussion of the metaphor of the “volume of redistribution” which the model of the
paper tries to set out in a simple and precise way. It argues that the concept opens up
an interesting line of theoretical and empirical research.

2 The Volume of Redistribution

Let the market distribution of income y be represented by its density f(y). Let the tax
(and transfer) function be denoted t(y), and the post-tax income by x

x = y − t(y). (1)
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Note that t(y) will be positive if it is a net tax and negative if it is a net transfer.
The volume of redistribution is simply the aggregate of absolute values of the dif-
ference between x and y, whether positive or negative—the total flow through the
redistribution pipes.

V =
∫

|x − y| f (y)dy =
∫

|t(y)| f (y)dy. (2)

A particular simplification which will prove useful for us is the linear tax and
transfer regime:

t(y) = −a + by. (3)

We have a demogrant of a for every individual and a constant marginal tax rate
of b. Normalizing population size to unity, total tax revenue T is

T = −a + bμ, (4)

where μ is the mean income. Sticking to a pure redistributive role for taxation and
setting T = 0, we get

a = bμ, (5)

which leaves us with one free parameter in the linear tax function. We choose this
to be b, the marginal tax rate, which captures the degree of progressivity of the tax
system.

There is a single switch point of market income, where t changes from negative
to positive. Denoting this by s, it is clear that

s = μ. (6)

Thus, all those with market incomes below the mean receive a net transfer; all
those with incomes above are taxed positively on net to finance those transfers. This
is an obvious feature of a linear tax system with no net revenue requirement. In this
setting, the volume of redistribution, as defined by (2), is given by

V =
∫ ȳ

ȳ
|y − μ| f (y)dy =

∫ μ

ÿ
b(μ − y) f (y)dy +

∫ ȳ

μ

b(y − μ) f (y)dy, (7)

where ü and ū are the minimum and maximum levels of income, respectively. How-
ever, since we have assumed revenue neutrality the two components of the right-hand
side of (5) must be identical. Thus, in the linear case, we have the following expres-
sion for the volume of distribution:
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V = 2b
∫ ȳ

μ

(y − μ) f (y)dy. (8)

Further analytical tractability is provided by the case where f(y) is the uniform
density lying betweenμ +d/2 as maximum andμ − d/2 as the minimum, so that f(y)
= (1/d) and d is a measure of the inequality of market income. In this case, simple
integration of (8) shows that

V = bd/4. (9)

Expression (9) captures in tractable form the relationship between the volume of
redistribution needed when the attempted progressivity is b, and market inequality is
d. We focus on the case where mean is constant, in other words, pure redistribution.
In this linear, uniform, fixed mean case, market inequality measured by the variance
of income is given by

Iy = (1/12)d2, (10)

and final inequality is given by

Ix = (1/12)(1 − b)2d2. (11)

Expressions (9), 10), and (11) provide the links we need between market inequal-
ity, tax progressivity, and volume of redistribution.

Taking d as the proxy for market inequality and b as the proxy for attempted redis-
tribution to achieve the desired post-tax inequality, we see from (11) that an increase
in market inequality requires an increase in progressivity to hold final inequality Ix
constant. But from (9) we see that an increase in progressivity for any given d will
increase the required volume of redistribution. In fact, there is an interaction between
market inequalities in determining the volume of required redistribution:

∂V

∂b
= d/4. (12)

Thus, the higher the degree of market inequality, the greater is the redistribution
volume increase required for a given increase in progressivity.

If there were no other costs, then an inequality averse government would simply
choose to equalize all incomes with a 100% marginal tax rate and a demogrant
equal to mean income. But the key assumption of this paper is that redistribution
volume is not simply available to policy-makers but needs costly construction of
administrative and political infrastructure—the “pipes.” Let the per capita cost of
volume V of redistribution be γV. Then one specification of social welfare combines
mean income, variance of final income, and cost of the volume of redistribution:

W = μ − βIx − γV. (13)
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Substituting from (9) and (11) and maximizing with respect to b gives us an
expression for the optimal degree of progressivity.

b∗ = 1 − (3γ)/(2βd). (14)

From (7), the volume of distributive effort for this level of progressivity is given
by

V∗ = (d/4) − (3/8)(γ/β), (15)

and with this response, final inequality is given by

I∗x = (3/16)γ2/β2. (16)

Final inequality is higher, the higher is the cost of redistribution. Optimal progres-
sivity increases with market inequality but decreases with the costs of redistribution.
In this case, an increase in market inequality leads to just enough increase in pro-
gressivity to leave final inequality unchanged.

Suppose now that the cost of the volume for redistribution is nonlinear, γV2. Then,
the expressions corresponding to (13), (14), (15), and (16) are as follows:

W = μ − βIx − γV2 (17)

b∗ = 1/
[
1 + 3γ/4β

]
, (18)

V∗ = d/
[
4(1 + 3γ/4β)

]
, (19)

I∗x = (1/12)
(
d2

)[
(3γ/4β)/(1 + 3γ/4β)

]2
. (20)

In this case, optimal progressivity is independent of market inequality but
decreases in the cost of redistribution. Final inequality is increasing inmarket inequal-
ity and in the cost of redistribution.

The argument above shows that use of progressivity as ameasure of “redistributive
effort”maybemisleading.Whenmarket inequality increases, evenwith progressivity
unchanged, the volume of distributive effort increases. Indeed, it must do so to keep
progressivity constant. Unchanged redistribution volume will imply a decrease in
progressivity. Thus, in many ways, an appropriate measure of redistributive effort
(within the progressive taxation regime) is in fact the volume of redistribution. From
(18) and (19), it is seen that with rising market inequality the flows through the pipes
have to be greater to maintain progressivity at the optimal level—one has to run
harder to keep still.

This feature, in which the degree of progressivity and volume of redistribution
may not move together whenmarket inequality increases, appears even more sharply
when the cost function for volume of redistribution takes a different form. Up to
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now, we have supposed that the costs of increasing distributive flow are all marginal
costs—a little bit more redistributive effort can be achieved at a little bit more cost.
But what if some of these costs are in the nature of fixed costs? If the increased flow
required is substantial, or crosses a critical threshold, then new investment may be
needed, new pipes need to be installed, for the increased flow.

Let the cost function be γ V f or V ≤ V̂ and F + γ V f or V > V̂ . Then from
(15), as d increases up to

d̂ = 4V̂ − 3γ /2β, (21)

the cost function remains at γ V , and the optimal volume and progressivity are given
by (15) and (14). However, as d crosses the threshold to values higher than d̂, the
fixed cost component F kicks in. If this additional cost was not present, optimal
policy would simply follow along (14) and (15). However, with the additional cost,
the impact on welfare is quite different. To see this more clearly, rewrite the problem
as one of choosing V rather than b, and rewrite the objective function (13) in terms
of V by writing Ix in terms of V using (9):

W = μ − β(1/12)[1 − (4V/d)]2d2 − γV for V ≤ V̂

W = μ − β(1/12)[1 − (4V/d)]2d2 − γV - F for V > V̂ . (22)

Differentiating each portion of this with respect to V and setting equal to zero
gives the solution (15). Now, beginning with d = d̂ and V = V̂ , the corresponding
optimal volume of redistribution, it is clear that the optimal policy when d increases
marginally is to stay at V ≤ V̂ , since the marginal benefits from increasing V are
zero but in doing so the fixed cost F is incurred.

But consider now the implications of the result above that V stays fixed at V̂ as d
increases. From (9), this must mean that b decreases. In other words, the degree of
progressivity of the tax and transfer system as we usually measure it, the marginal tax
rate, falls, and so from (11) inequality of post-tax income rises for two reasons—be-
cause market inequality rises and progressivity falls. As argued in the Introduction,
this is the narrative that has played out in the US and the UK over the past three
decades. Notice, however, that distributive effort as measured by the volume of
redistribution remains constant.

Eventually, as market inequality becomes so high that the gain to the social wel-
fare function from increasing the value of redistribution dominates the fixed (and
marginal) cost of the higher volume beyond the current level. It can be shown that
this level of market inequality is the (higher) solution in d to the quadratic formed
by equating the optimized value of (20) for V > V̂ with its value when V = V̂

μ − β(1/12)
[
1 −

(
4V̂ /d

)]2
d2 − γV̂ = μ + (3/16)

(
γ2/β

) − (γd/4) − F. (23)
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If such a solution exists, denoting it d̃ , we get a further interesting phenomenon.
Progressivity and the volume of redistribution both jump up to the values given by
(14) and (15) for the now higher value of d̃ . We can thus see a cycle emerging, which
is intuitively clear once the fixed costs of adjustment are factored in. Starting with a
given system of pipes for redistribution, as market inequality increases, progressivity
and volume both increase to mitigate the market inequality (in the linear marginal
costs case, post-tax inequality is held constant as in (16)). However, once these pipes
become strained and new pipes have to built, the fixed cost of this keeps the volume
constant, progressivity declining, and compounding the rise in market inequality.
However, once market inequality gets sufficiently high, the fixed cost is worth paying
and there is a big jump in volume and progressivity, and the cycle can start again
from this point onward. Such processes could perhaps explain long cycles and sudden
jumps in tax progressivity and redistributive effort.

3 Group Divisions

The metaphor I have used in motivating the costs of the volume of redistribution is
primarily an “administrative/infrastructure” one. The visualization of flows through
pipes has been useful here. I have also indicated, but not developed, a political econ-
omy metaphor. Starting from the thinking that a “political settlement” is needed
for redistribution of those with market income to those without, the costs of greater
redistribution can be thought of, in a very reduced formway, as the costs of achieving
the new political settlement. Although I have not and will not model this political
economy here, I believe it has considerable political appeal. But the political settle-
ment metaphor also raises another important issue, that of transfers across politically
salient groups.

The rise of far-right Xenophobic parties in Europe and elsewhere is often pred-
icated on the appeal to the notion that some groups, usually ethnic minorities, are
takers from society. In particular, the platform of these political entrepreneurs is
that some long-established ethnic groups, or newly arrived immigrant groups, get
transfers from the existing political settlement. This is not just the argument of dem-
agogues. Albeit in more measured tones, academics like Miller (2016) and Collier
(2013) also argue that greater heterogeneity has the potential to undermine the social
redistributive contract which has characterized the post-war political settlement in
much of Western Europe and to some extent the US. The issue here is not redistribu-
tion from rich to poor, which was or is the current social contract, but redistributing
in favor of certain identifiable groups who are poor.

It should be noted that this perspective on transfers across groups as an impediment
to redistribution is very different from the literaturewhich views group-specific infor-
mation and group—contingent tax and transfer policies as being an advantage. At
least since Akerlof (1978), the idea of “tagging” an individual with easily observable
characteristics and implementing separate tax and transfer schedules for each tag is
seen as overcoming informational disadvantages and providing the policymaker with
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more instruments. The idea has been applied to targeting of anti-poverty transfers
(Kanbur 1987, 2017), and to nonlinear income taxation more generally (Immonen
et al. 1998; Kanbur and Tuomala 2016). But these very same transfers across groups,
whether intentional or not, are seen in the new dispensation as politically problematic
and undermining agreement on redistribution in general.

The simple model developed in the previous section can be used to highlight and
sharpen some of these concerns in a precise way. Let there be two groups in society A
and B. These two “tags” can be found at different points in the income distribution,
but the tags have salience in and of themselves, irrespective of the income of the
individual to whom they attach. Specifically, let us suppose that flows across these
two groups are of political salience and, in effect, impose a cost on attempts to
redistribute income generally. The costs of these cross-group flows G have to be
added to the costs of the flows across income levels, V.

Clearly, for any income tax-transfer regime, the implication for cross-group flows
will depend on how the groups are distributed across the income distribution. To
fix ideas, take the basic model of Sect. 2, suppose that the two groups are of equal
size, and suppose that all those above the mean μ are of group A and all those
below the mean are of group B. Then the cross-group flow G is simply the volume
of redistributive flow V. At the other end, suppose that the groups are to be found
equally at every income level. Then the cross-group flow G is zero. In effect, each
group is representative of the whole society so redistribution can be seen as taking
place within each group and none across groups. This is true even when the groups
are not of equal size, so long as their representation at each income level is the same
as their representation in the whole population. In between, as the representation of
group B below the mean increases relative to its population share, cross-group flow
increases from zero to V.

For simplicity, return to the case of equal group size overall, but let representation
of group B be θ below the mean and (1-θ) above the mean. In other words, at each
income level below the mean, a fraction θ of the population is of group B and at each
income level above the mean, the fraction is (1-θ). We focus on the case where θ ≥
(1/2). In this case, group A is taxed by an amount θ(1/2)V and receives an amount (1-
θ)(1/2)V, so the net flow from this group out is (2θ-1)(1/2)V, whereas the net receipt
for group B is the mirror of this, (1-2θ)(1/2)V. Thus, the sum of the net outflow and
the net inflow in absolute terms is

G = (2θ − 1)V. (24)

This is the offending cross-group flow with political salience and a political cost
for policy-makers.

If we represent the cost of cross-group flow in the usual linear manner with
marginal cost δ, we have a social welfare function analogous to (13)

W = μ − βIx − γV − δG = μ − βIx − [
γ + δ(2θ − 1)

]
V = μ − βIx − γ∗V. (25)
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This is simply the social welfare function in (11) with an augmented marginal
cost of the volume of cross-income flow, denoted by γ*, which is the marginal cost of
volume γ plus the additional term (2θ-1) which comes from the cost of cross-group
flow:

γ∗ = γ + δ(2θ − 1) (26)

All of the previous analysis now goes through with γ replaced by (the higher)
γ*. Thus, from (14), (15), and (16), progressivity and volume are lower, and final
inequality is higher with the cross-group factor added in. Notice that themore heavily
represented is group B in the lower half of the population (the higher is θ), the
higher will be the cost of a unit of flow across income classes, because this will
now involve more flows between politically salient groups, and the lower will be the
progressivity and higher will be the final inequality. Clearly, the gist of the analysis
also goes through when the groups are of unequal size; what will matter then is the
representation of group B individuals in the below mean income population, relative
to their representation in the population as a whole. The key point is that if an ethnic
minority or an immigrant group, say, is concentrated at lower income levels, then this
will reduce progressivity. This matches the analysis of Tabellini (2017, pp. 38–39)
which shows for US jurisdictions, “the inflow of immigrants” led “cities to cut tax
rates and limit redistribution.”

Analogously to the discussion on fixed costs for volume of transfer across income
levels, we can now considerwhat happenswhen a political settlement reaches its limit
in terms of the amount of cross-group transfers it will permit. Let this be denoted Ĝ.
Then, from (24), there is a corresponding critical value for volume of redistribution
across income levels:

V̂ = Ĝ/[2θ − 1]. (27)

Going beyond Ĝ requires a new settlement, which can be represented by a fixed
cost.A similar analysis can thenbe carried out as in (22) and (23)with V̂ givenby (27).
Then beyond a critical value of market inequality d̂, as in (21) but with γ replaced
by γ*, the volume of distribution will stay fixed at (27) and as market inequality
rises, progressivity will decline and final inequality will rise. But these effects are
now coming not from the fixed costs of managing increasing redistribution across
income levels, but from the fixed costs of a new political settlement to manage the
redistribution across politically salient groups to which redistribution across income
levels gives rise as a corollary.

Is (25) the right way to represent political tensions in flows across groups? It is
based on the idea that it is the total flows that matter. But what if per capita flows
matter; in other words, it is the amount given by the typical person and the amount
received by the typical person which matter. In this case, the right correction factor is
not (2θ-1) but (2θ-1)/θ = [2 – (1/θ)]. The same arguments still go through. A higher θ,
i.e., a greater representation of group B among below mean income individuals, still



On the Volume of Redistribution: Across Income Levels … 63

increases the correction factor on γ. However, the correction factor is greater for the
relevant range of 1 > θ > (1/2). Per capita perceptions will lead to greater perceived
cost of redistribution and thus lower progressivity and higher final inequality for any
given degree of market inequality.

4 Conclusion

The optimal income taxation literature focuses on the tradeoff between the equity
gains of higher progressivity versus its greater incentive costs at the individual
level. This paper highlights a neglected aspect of redistribution—greater progres-
sivity requires a higher volume of gross redistributive flows, across income levels. If
these flows are costly to manage, administratively or politically, then progressivity
will be lower. Moreover, if redistribution across income levels implies redistribution
across sociopolitically salient groups because of the way in which these groups line
up relative to the income distribution, this can be an added cost in the objective func-
tion and progressivity is further disadvantaged. When the capacity for the volume of
redistributive flows, across income levels or across sociopolitical groups, is reached,
increase in market inequality can lead to a fall in progressivity in the tax-transfer
regime without any change in the government’s preferences for equity.

The term “capacity of redistribution” has been used in the literature, but in a
different sense to the one used in this paper. Thus, Ravallion (2010, p. 1) defines it as
“the marginal tax rate (MTR) on the ‘rich’—defined as those living in a developing
country who would not be considered poor by rich country standards—that is needed
to provide the revenue for a specific redistribution.” Hoy and Sumner (2016) also
apply the same measure to updated and more extensive data. Kanbur and Mukherjee
(2007, pp 52–53) have a similar perspectivewhen they characterize poverty reduction
failure as “is the extent of poverty relative to the resources available in the society to
eradicate it?” Thus, they all highlight the resources available for redistribution. But
none of these papers focus on the gross flows needed to achieve a given redistribution
and the cost associated with these flows.

How might we think of the costs of the volume of gross flows needed for redistri-
bution across income levels? The easiest interpretation is in terms of administrative
costs. Not surprisingly perhaps, these costs are often highlighted by economists more
oriented to the free market:

Some fraction of each dollar taxedwill always be absorbed inwages and salaries of the admin-
istrative bureaucracy, costs of purchasing, powering, maintaining and replacing equipment,
buildings, etc., and other overhead costs. Only the remainder will actually be received by
the target population in the form of cash or in kind payments…… Using government data,
Woodson (1989, p. 63) calculated that, on average, 70 cents of each dollar budgeted for
government assistance goes not to the poor, but to the members of the welfare bureaucracy
and others serving the poor. Tanner (1996, p. 136 n. 18) cites regional studies supporting
this 70/30 split. (Edwards 2007, pp. 3–4).
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One issue with simply calculating the manpower costs of the “welfare bureaucra-
cy” is to separate out the simple cash shifting function of administration from that
part of the function which provides direct services—the first is more like our costs of
redistribution. Nevertheless, even if the administrative costs were significantly lower
than the 70/30 split, they are not negligible.

In the developing country context, the literature on targeting of transfers for
poverty reduction has often remarked on the administrative costs of “fine targeting.”
Caldes et al. (2006), for example, calculate the cost of making a one-unit transfer
to a beneficiary, the “cost–transfer ratio” for a range of Latin American transfer
programs. They find a wide range, with a low of 4% but a high of 25%, the range
depending on how finely the program attempted to target the poor.

One perspective on the costs of an attempted volume of redistribution is provided
by corruption. The former Indian Prime Minister Rajiv Gandhi is famously said to
have remarked that only 15% of the outlay on the public food distribution system
reached the poor.More formal estimates are provided byOlken (2006) for a particular
program in Indonesia:

I find that corruption is substantial—the central estimate is that at least 18% of the subsidized
rice in the Indonesian program I studywent missing…. The estimates suggest that corruption
in developing countries such as Indonesia may substantially inhibit a government’s ability
to carry out redistributive programs, particularly in rural areas. (Olken 2006, p. 867).

Correspondingly on the taxation side, there is a literature on the “compliance gap”
in tax revenue raising (Keen and Slemrod 2017).

The issue of fixed versus marginal costs of redistributive flows is not addressed
very much in the administrative costs literature, partly because of the lack of suffi-
ciently disaggregated data to allow allocation of costs. Caldes et al. (2006) domention
that some programs have low average costs of transfer because of economies of scale.
But the general idea that managing redistribution can hit capacity constraints, and
creation of new capacity will incur fixed costs before additional redistribution can
be handled, needs deeper empirical investigation.

Another area for deeper investigation, this time theoretical, is the political econ-
omy interpretation of the capacity for redistribution. We need models which can
make precise and test the intuition advanced in this paper that (i) greater redistri-
bution incurs greater political cost even within a given political settlement and (ii)
once that capacity is reached, a new political settlement, with its higher costs, is
needed to increase the capacity for redistribution. The political economy interpreta-
tion is clearly the appropriate one for the costs of cross-group flows introduced in
this paper. There is of course a significant literature on the impact of population het-
erogeneity on economic and distributional outcomes. Alesina et al. (1999) find lower
public spending in more ethnically diverse jurisdictions in the US; Dahlberg et al.
(2012) find negative effects of increase immigration on support for redistribution in
Sweden; and Tabellini (2017) finds that immigrant inflow led US cities to “cut tax
rates and limit redistribution.” From a different perspective, Dasgupta and Kanbur
(2007) advance a theory of why cross-group flows might induce group tensions.
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A central point made in this paper is that redistribution of income across income
levels is also redistribution of income across sociopolitically salient groups when
these groups are spread unrepresentatively across the income distribution. A focus
purely on the costs of flows across income levels—micro-level individual incentive
effects as in the optimum income taxation literature, or macro-level costs of man-
aging and administering gross flows as emphasized in this paper—may prove to be
incomplete and thus misleading. If greater progressivity in taxes and transfers across
income levels also leads to, say, redistribution across natives and immigrants, the
political costs of this will have to be borne in mind by economists in analyzing and
in designing tax and transfer regimes. The framework in this paper provides a start.

A focus on the volume of redistribution, across income levels and across groups,
thus opens up an important set of theoretical and empirical questions for analysis
and for policy.
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Abstract This paper is concerned with inequality ranking of income distributions.
Ranking a pair of distributions in terms of inequality is a difficult exercise excepting
in the special case where one of these Lorenz dominates the other. To get around the
difficulty, the notion of a fuzzy inequality ranking relation (FIRR) has been fruitfully
used in the literature. However, it is natural to ask how, from a given FIRR, we can
derive a crisp approximation that would give us an overall crisp (i.e., non-fuzzy)
judgment regarding the inequality ranking of any pair of distributions. It turns out
that this can be done in many different ways (leading to different crisp judgments)
and, therefore, there arises the question which of these alternative ways is to be
chosen. It is seen that this question is closely linked to the more general one as to
how we can decide which income vectors in any given finite set A of such vectors
can be considered to be least unequal in an overall crisp assessment. In this paper,
we first axiomatically characterize a specific procedure for making this decision. A
particular procedure for obtaining a crisp approximation of an FIRR then follows
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1 Introduction

Measurement of inequality of the distribution of income in an economy is one of the
oldest areas of economic research. Over the years, many important things have been
learnt about the issues that arise in course of this exercise. Cowell (2000), Jenkins
and VanKerm (2009) and Sen (1997) are some of the well-known expositions of
these issues.

In this paper, we shall be concerned with inequality ranking of income distribu-
tions. Given any two such distributions x and y, we shall ask whether one of these is
a less unequal distribution than the other. Similarly, given a set of distributions, we
shall askwhichmember of the set, if any, can be considered to be least unequal. Ques-
tions of this type arise in many contexts and their practical importance constitutes
the motivation behind this paper.

Inequality ranking, however, may turn out to be a difficult exercise in many cases.
In fact, the only ranking principle on which there seems to be wide agreement among
economists is that if two income distributions x and y are such that x Lorenz domi-
nates y (i.e., if the Lorenz curve for x is not anywhere below that for y), then x is to
be considered to be definitely no more unequal than y. However, this does not give
us a complete ranking of all income distributions in terms of inequality. There can
be distributions x and y whose Lorenz curves intersect. In such cases which of the
two distributions are to be considered less unequal is not clear.1

The possibility of intersecting Lorenz curves points toward the fact that in many
situations it is not possible to obtain unambiguous inequality rankings of income
distributions. Indeed, as has long been long recognized in the literature, a degree of
vagueness is inherent in the very notion of inequality ranking (see, especially, Basu
1987, Ok 1996 and Sen 1992, 1997).

The ambiguity inherent in inequality comparisons makes a case for applying
the tools of fuzzy relations for the purpose. Basu (1987) and Ok (1996) are among
the relatively few applications of such relations in this area. Basu (1987) derived
a particular fuzzy inequality ranking relation (FIRR) from a set of necessary and
sufficient conditions.Ok (1996) contained a useful study of the properties of a broader
class of FIRRs.

Following this approach, we shall, in this paper, assume that inequality ranking
relations are fuzzy. However, while the fuzzy relations’ approach is motivated by
the need to recognize the ambiguity that lies at the core of the inequality ranking

1As stated in the text, our primary concern in this paper is with inequality ranking. Therefore, we
do not use inequality indices. However, it may be noted in passing that using an inequality index
for the purpose of obtaining an inequality ranking does not constitute a satisfactory solution of
the problem referred to in the text. While any given inequality index would induce an inequality
ranking, the problem is that there is no uniquely defined inequality index. In fact, there is an infinity
of such indices. A given pair of income distributions may not be ranked in the same way by different
inequality indices. Which specific inequality index is chosen for the purpose of the comparison,
therefore, becomes a crucial question and cannot be settled in principle.Again, however, the problem
would vanish in the special case where there is Lorenz dominance. If x Lorenz dominates y, then
I(x) ≤ I(y) for all inequality indices I (see Foster 1985). The converse is also true.



Fuzzy Inequality Ranking Relations and Their Crisp Approximations 69

exercise, it is, nevertheless, natural to ask whether we can make an overall crisp
(i.e., non-fuzzy) judgment regarding inequality ranking of the income distributions,
i.e., whether there is a crisp ranking that can in some sense be considered to be an
approximation to a given FIRR.

There does not, however, seem tobe anobvious anduniqueprocedure for obtaining
a crisp approximation of an FIRR. Many alternative procedures can (and have been)
suggested. In this paper, we seek to obtain a specific procedure from more basic
considerations.

For this purpose, however, we need a formal definition of what is meant by a crisp
approximation of an FIRR. Formulating such a definition turns out to be a nontrivial
task. In particular, the matter is seen to be closely related to a more general question.
Given a set of income distributions (possibly with more than two members) and
given the fact that inequality ranking is fuzzy, how do we arrive at a crisp judgment
as to which members of the set are least unequal?

We shall first seek an answer to this broader question by imposing conditions on
the procedure of making such judgments. For convenience, however, we shall limit
the scope of our enquiry in some respects. We shall ask how, given an FIRR, R,
on the (infinite) set X of all possible distributions of a fixed total income among a
finite number of individuals and given any finite subset A of X, we can decide which
members of the set A are least unequal in an overall (crisp) assessment.

Any given procedure of making this decision will be called an inequality domi-
nance function (IDF). For any FIRR,R, satisfying some intuitively reasonable consis-
tency conditions,we formulate a definition of the “crisp approximationofRgenerated
by an IDF.” The main part of the paper proposes a specific IDF and characterizes it.
The crisp approximation procedure that follows as a corollary is the one that assigns,
to any R, the crisp approximation generated by this particular IDF. The suggested
crisp approximation procedure is seen to coincide with a procedure that has already
been mentioned in the literature. For any given R, its crisp approximation obtained in
this way is seen to be an ordering (i.e., a reflexive, complete, and transitive relation)
on X.

Section 2 below introduces the notations and some definitions. Section 3 contains
a characterization of the proposed IDF. The suggested crisp approximation proce-
dure follows as an immediate corollary. Section 4 provides some examples of fuzzy
inequality ranking relations. Section 5 concludes the discussion.

2 Notations and Definitions

Consider an economy with n individuals and an amount T of total income that is
distributed among the individuals. Throughout this paper, n and T are kept fixed. An
income vector x is a nonnegative n-vector, whose ith entry xi denotes the amount of

income allocated to the ith individual, i = 1, 2, …, n. Hence,
n∑

i=1
xi = T. The set of

all income vectors is denoted by X.
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For convenience we assume that, for any income vector x, the entries in x are
arranged in nondecreasing order (ties being broken arbitrarily): x1 ≤ x2 ≤ ··· ≤ xn.

We are interested in obtaining a ranking of the income vectors in terms of their
degrees of inequality. For instance, given any two income vectors x and y in X,
we wish to answer the question which of the two vectors represents a less unequal
distribution of the total income. (We do not rule out the possibility that they have the
same degree of inequality, i.e., they are “equally unequal.”) Similarly, given a set A
of income vectors (A ⊆ X), we wish to knowwhich members of A are least unequal.
However, we shall confine ourselves to the case where A is a finite subset of X.

By theweakLorenz dominance relation, denoted byL,wemean the binary relation

on X such that, for all x and y in X, x L y if and only if
k∑

i=1
xi ≥

k∑

i=1
yi for k = 1, 2,

…., n. The strict Lorenz dominance relation is the asymmetric component of L and
will be denoted by LP.

An alternative statement of the relation uses the notion of the Lorenz curve. For
any x in X let

L(x, k/n) =
k∑

i=1

xi/T for all k = 1, 2, . . . , n.

As per the standard Gastwirth (1971) definition of a Lorenz curve, the Lorenz
curve of x is the curve obtained by letting L(x, 0) = 0 and joining adjacent points of
the form (k/n, L(x, k/n)) by line segments. Equivalently, for any given vector x, let
Lx(p) denote the proportion of the total available income going to the bottom (i.e.,
the poorest) p proportion of the population. The Lorenz curve of x is obtained by
plotting Lx(p) against p. Needless to say, p ranges from 0 to 1 and, for any x, Lx(0)
= 0 and Lx(1) = 1.

It is then easily seen that, for any two income vectors x and y in X, x L y if and
only if the Lorenz curve of x is not below that of y for any k = 1, 2, …, n and x LP

y if and only if the Lorenz curve of x is not below that of y for any k and is above it
for at least one k.

In our framework (where T and n are the same for all income distributions), xL y if
and only if [either x is a permutation of y or x is obtained from y by afinite sequence of
progressive income transfers]. (see Hardy, Littlewood, and Polya 1952 and Marshall
and Olkin 1979). Since the order in which the incomes of the individuals are listed
in an income vector should be of no consequence for distributional judgments (i.e.,
if x is a permutation of y, then x and y should be judged to have the same degree of
inequality), this result is the basis for the usual interpretation of Lorenz dominance
in terms of inequality ranking: if x L y, then x can be judged to be unambiguously
no more unequal than y.

The solution to the problem of obtaining unambiguous inequality rankings that the
Lorenz dominance relation provides, however, is obviously partial. This dominance
relation is incomplete. There may exist income vectors x and y that are Lorenz
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incomparable (i.e., that are such that ¬(xL y) and ¬(yL x), i.e., the Lorenz curves
of x and y intersect). Unambiguous inequality rankings are not possible in such
cases.

To deal with such cases, attempts have been made to extend the idea of inequality
ranking using the theory of fuzzy relations. Under this approach, we seek to suggest
a fuzzy inequality ranking relation that would be complete. Recall that, from the
mathematical point of view, a relation can be looked upon as a set. The notion of
fuzzy sets was introduced in mathematics independently by Zadeh (1965) and Klaua
(1965).2 A fuzzy set S is a subset of some universal set U for which there is amapping
fS (say) from U to the closed unit interval [0, 1]. Informally, for any u in U, if fS(u)
= 1, u definitely belongs to S. If fS(u) = 0, it definitely does not belong to S. But
there can be intermediate values of fS(u) indicating “degrees of membership.” This
approach has been fruitfully applied to other areas of economics, especially, to the
theory of choice based on fuzzy preferences.

To introduce this approach in the present context, let R be a fuzzy binary relation
on X (i.e., a mapping from X × X into the closed interval [0, 1] on the real line).
For any x and y in X, we shall interpret R(x, y) as the extent to which it is true that
“x is no more unequal than y.” R(x, y) is 1 if and only if it is definitely true; it is 0
if and only if the statement is definitely false. However, we permit R(x, y) to take
intermediate values between 0 and 1.

In view of the relation (discussed above) between Lorenz dominance and inequal-
ity rankings of income vectors, it seems natural to require that R should respect the
Lorenz dominance criterion.

Definition 2.1 R respects Lorenz dominance if and only if, for all x and y in X, R(x,
y) = 1 if and only if x L y and R(x, y) = 0 if and only if y LP x.

We also desire R to satisfy the fuzzy versions of the usual consistency conditions
(i.e., reflexivity, completeness, and transitivity) on a weak crisp relation. R is called
reflexive if, for all x in X, R(x, x) = 1. It is called complete if, for all x and y in X,
R(x, y) + R(y, x) ≥ 1.

However, there does not seem to be an agreed definition of transitivity of a fuzzy
relation. Many different definitions (all of which are consistent with the notion of
transitivity in crisp theory) have been proposed. A widely used notion in the mathe-
matical theory of fuzzy sets is that of max-min transitivity. R is max-min transitive
if, for all x, y, and z in X, R(x, z)≥min [R(x, y, R(y, z)]. However, it has been shown
that if a fuzzy inequality ranking relation respects Lorenz dominance, it cannot be
max-min transitive (see Ok 1996, Theorem 5.4, p. 523).

In this paper, we shall use the following notion of f-transitivity which seems to
be intuitively fairly transparent. R is f-transitive if, for all x, y, and z in X, [R(x, y)
≥ R(y, x), R(y, z) ≥ R(z, y)] implies R(x, z) ≥ R(z, x).

Max-min transitivity and f-transitivity are independent conditions.A variant of the
condition of f-transitivity is that of strong transitivity due to Kolodziejczyk (1986).

2Klaua’s contribution was published in German. A recent analysis of the contribution in English is
by Gottwald (2010).
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R is strongly transitive if, for all x, y, and z in X, [R(x, y) > R(y, x), and R(y, z) >
R(z, y)] implies R(x, z) > R(z, x). It has been shown that strong transitivity is weaker
than max-min transitivity. Several other definitions of fuzzy transitivity have been
proposed in the literature. For a discussion of a number of these notions and the
implicational relations between them, see Ok (1996).

Definition 2.2 A fuzzy inequality ranking relation (FIRR) is a fuzzy binary relation
on X that respects Lorenz dominance and is reflexive, complete, and f-transitive.

Given an FIRR, R, the fuzzy relations P and J will denote its asymmetric and
symmetric components, respectively. Asymmetry of P is taken to mean that, for all
x and y, P(x, y) +P(y, x) ≤ 1. (This is motivated by crisp theory where P(x, y) and
P(y, x) cannot both be 1 so that the weak inequality is valid there.) Symmetry of J
means that J(x, y) = J(y, x) for all x and y in X. In the present context, for all x and
y, P(x, y) is interpreted to mean the extent to which it is true that x is less unequal
than y; J(x, y) is the extent to which x and y are equally unequal.

However, how to decompose a fuzzy relation R into its asymmetric and symmetric
components is, again, a question on which fuzzy set theorists do not seem to agree.
We shall follow Barrett and Pattanaik (1989) (BP) and assume that, for all reflexive
and complete R and for all x and y in X,

P(x, y) = 1−R(y, x)and J(x, y) = R(x, y) + R(y, x)−1.

Note that this procedure implies that if x and y are distinct members of X and are
such that R(x, y) + R(y, x) = 1, then P(x, y) = R(x, y) and J(x, y) = 0.

For a discussion of other decomposition rules that have been suggested in the
literature and the reasons for which the BP procedure may be considered to be
intuitively more reasonable than some of the others, see Llamazares (2005).

Let A denote the set of all non-empty finite subsets of X and let R be the set of
all FIRRs on X.

Definition 2.3 An inequality dominance function (IDF) is a function D: A × R →
A such that, for all A in A and all R in R, D(A, R) ⊆ A.

For all admissible A and R, D(A, R) is interpreted to be the (crisp) set of those
income vectors in A that are no more unequal than any member of A as judged by
R.

An IDF can be defined in many different ways. We shall be interested in a specific
IDF which we denote by D0.

Definition 2.4 D0 is a mapping from A ×.R into the class of all subsets of X such
that, for all admissible A and R, D0(A, R) = {x ε A: R(x, y) ≥ R(y, x) for all y ε A}.

Lemma D0 is an IDF.

Proof For any admissible A and R, D0(A, R) is, by definition, a subset of X. There-
fore, it suffices to show that, for any such A and R, D0(A, R) is non-empty. For that
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purpose, let A = {x1, x2, ….., xq} for some positive integer q where xi is in X for all
i = 1,2,…,q. Let Q denote the set of integers {1, 2,…, q} If x1 is such that, for all
i in Q, R(x1, xi) ≥ R(xi, x1), the proof ends. If this is not the case, then there exists
i in Q such that R(xi, x1) > R(x1, xi). Since R is reflexive, xi �= x1. Without loss of
generality, let xi = x2. Thus, we have

R
(
x2, x1

)
> R(x1, x2). (i)

If, now, R(x2, xi) ≥ R(xi, x2) for all i in Q, the proof ends. If this is not true,
then, for some i in Q, R(xi, x2) > R(x2, xi). Again, reflexivity of R implies xi �= x2.
Moreover, if xi= x1, then the inequality (i) above is contradicted. Thus, xi is distinct
from both x1 and x2 and we can assume it to be x3 without loss of generality. We
then have

R
(
x3, x2

)
> R

(
x2, x3

)
(ii)

Since R is f-transitive, (i) and (ii) imply

R
(
x3, x1

) ≥ R
(
x1, x3

)
. (iii)

If, now, it is not the case that R(x3, xi) ≥ R(xi, x3) for all i in Q, then, for some
such i, R(xi, x3) > R(x3, xi). Using (ii), (iii), and the reflexivity of R, it is now seen
that xi is distinct from x1, x2, and x3. Let i = 4.

Proceeding in this way, suppose that we reach a member of A which is distinct
from each of the first (q–2) members and, therefore, can be called xq − 1 without loss
of generality and which is such that it is not the case that R(xq – 1, xi) ≥ R(xi, xq – 1)
for all i in Q. Then, it must be the case that R(xq, xq − 1) > R(xq − 1, xq). By repeated
application of the fact that R is f-transitive, it can now be seen that R(xq, xi) ≥ R(xi,
xq) for all i in Q. �

We shall be interested in characterizing the function D0. Given any FIRR, R, we
shall then be able to answer the question which crisp relation on X can be considered
to be a crisp approximation of R.

To state the next definition in this connection, we use the fact that a crisp binary
relation S on X is a fuzzy binary relation such that, for all x and y in X, S(x, y) is
either 0 or 1. We shall write x S y if and only if S(x, y) = 1. Let S be a crisp relation
on X. x S y will be interpreted to mean that x is no more unequal than y. We shall
assume that S is an ordering (although weaker assumptions such as the one that it is
reflexive, complete, and acyclic would also suffice for our purposes). Let S be the
set of all such crisp relations. Let the mapping D*: A × S → A be such that, for all
admissible A and S, D*(A, S) = {x ε A: x S y for all y ε A}. Thus, for any such A
and S, D*(A, S) is the set of those members of A which are no more unequal than
any member of A as per the crisp relation S.
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Definition 2.5 Given any R in R and given any IDF, D, a relation RC in S is called
“the crisp approximation of R generated by D” if and only if, for all A in A,

D ∗ (
A,RC

) = D(A,R).

�

In other words, for RC to be considered to be the crisp approximation of R gen-
erated by D, it is necessary and sufficient that, for all admissible A, the (crisp) set of
members of A that are considered by D to be least unequal as per the fuzzy relation
R is precisely the set of least unequal members of A as per the crisp elation RC.

Since A includes all finite subsets of X and, therefore, all pairs of members of
X, it is easily seen that, for any admissible R and D, the crisp approximation of R
generated by D is unique.

The crisp approximation of R generated by D0 will be denoted by R0. It is seen
that this crisp approximation procedure coincides with a procedure that has already
been suggested in the literature. As per this suggested procedure, for any given R,
its crisp approximation is the crisp relation CR (say) on X defined as follows.

Definition 2.6 For any R in R and for any x and y in X, x CR y if and only if R(x,
y) ≥ R(y, x).

In the literature, CR has been called the “fuzzy dominance” relation generated
by R and we shall use this terminology. Thus, x fuzzy dominates y in terms of R
if and only if the extent to which it is true that x is no more unequal than y (as per
the given R) is not less than the extent to which it is true that y is no more unequal
than x (as per R). As a notion of a crisp approximation of R, the fuzzy dominance
relation CR has intuitive appeal. As Ok (1996, p. 519) observes, “Fuzzy dominance
might be viewed as the originator (or, the best predictor) of actual decisions one has
to reveal in some situations (like when comparing income distributions).” In view of
Definition 2.5 it follows that, for any R in R, R0 = CR.

3 Characterization of D0

Let D be an IDF. Consider the following conditions on D.

Condition 3.1: For all x and y in X and for all R in R, [R(x, y) �= R(y, x)] implies
[D({x, y}, R) �= {x, y}].
Condition 3.2: For all A in A and for R in R, if [{x, y} ⊆ A, x ε D(A, R) and R(y,
x) ≥ R(x, y)], then y ε D(A, R).
Condition 3.3: For all R in R [x εA ⊂ B and x ε D(B, R)] implies x ε D(A, R).

Condition 3.1 states that, for any pair of admissible income vectors x and y, if R(x,
y) �= R(y, x), then the IDF D would not declare both x and y to be the least unequal
members of the finite set {x, y}. Thus, for all x and y in X, and for all admissible
R, [D({x, y}, R) = {x, y}] implies [R(x, y) = R(y, x)]. The converse, however, is
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not necessarily true. Condition 3.2 states that if both x and y are in a finite set A, if
x is declared by D to be a least unequal member of A and if and R(y, x) ≥ R(x, y),
then y also must be considered to be a least unequal member of A. This is similar to
some “congruence” conditions used in revealed preference theory. However, in the
present context, R is a prespecified FIRR (rather than a revealed preference relation).
Condition 3.3 is a familiar “independence” condition. It is a condition of internal
consistency on the IDF, D: it states that any income vector that is declared to be a
least unequal member of a finite set B of vectors as per a relation R in R must also
be considered by R to be a least unequal member in any subset A of B, provided that
it belongs to A.

In the following proposition, we prove that the three conditions stated above are
independent.

Proposition 3.1 Conditions 3.1–3.3 are independent.

Proof For each of the three conditions, we cite the example of an IDF that violates
that particular condition while satisfying the other three.

(i) Violation of Condition 3.1: Consider the IDF, D, for which, for any finite subset
A of X and for any R in R,

D(A,R) ={x εA : R(x, y) ≥ 0.5 for all y εA} if #A ≤ 2 and

={x εA : R(x, y) ≥ R(y, x)for all y εA}otherwise.

D satisfies Conditions 3.2 and 3.3. To check Condition 3.2, suppose that x and y
are in A, x ε D(A, R) and R(y, x) ≥ R(x, y). If #A = 2, i.e., A = {x, y}, then, by
definition of D, R(x, y) ≥ 0.5. Hence, R(y, x) ≥ 0.5 so that y ε D(A, R) as is required
by Condition 3.2. On the other hand, if #A ≥ 3, then [x ε D(A, R)] implies R(x, z)
≥ R(z, x) for all z in A. Since R is f-transitive, we have R(y, z) ≥ R(z, y) for all z in
A. The definition of D for this case, therefore, again implies that y ε D(A, R).

To check Condition 3.3, suppose that x εA ⊆ B for some x in X and some A and
B in A and that x ε D(B, R). To show that x ε D(A, R), note that if A has at least 3
members, then so does B so that we have R(x, y) ≥ R(y, x) for all y in B. Hence, the
same inequality is valid for all y in A, implying the desired conclusion. If #A = 2
and #B ≥ 3, then the same argument again establishes that R(x, y) ≥ R(y, x) for all
y in A. Moreover, since R is complete, R(y, x) ≥ 1 – R(x, y). Thus, R(x, y) ≥ 0.5,
implying that x ε D(A, R).

However, Condition 3.1 is violated. For instance, if a reflexive, complete, and
f-transitive R is such that, for some x and y in X, R(x, y) = 0.7 and R(y, x) = 0.5,
then D({x, y}, R) = {x, y} but R(x, y) �= R(y, x).

(ii) Violation of Condition 3.2: Consider the following IDF. For all R in R and for
all A in A,

If #A ≤ 2, thenD(A,R) = {x εA : R(x, y) ≥ R(y, x)for all y εA} (a)
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If#A ≥ 3, thenD(A,R) = {x εA : R(y, x) ≤ 0.5 for all y εA} (b)

provided that the set on the r.h.s.of (b) is non-empty; otherwise, D(A, R) is as in (a).
It is easily seen that D satisfies Condition 3.1. To prove that it satisfies Condi-

tion 3.3, let x εA ⊂ B for some admissible A and B and let x ε D(B, R). We have to
show that x ε D(A, R). If #B = 2, the conclusion is trivial since A is then a singleton
and since R is reflexive. Hence, let #B ≥ 3.

Consider first the case where we also have #A ≥ 3. Since x ε D(B, R), either R(y,
x) ≤ 0.5 for all y in B or R(x, y) ≥ R(y, x) for all such y. In the former case, since
A ⊂ B, it follows that R(y, x) ≤ 0.5 for y in A so that x ε D(A, R). A similar remark
applies to the latter case.

Suppose now that #A = 2. Note that the completeness of R implies that {x ε A:
R(y, x) ≤ 0.5 for all y ε A}is a subset of {x ε A: R(x, y) ≥ R(y, x) for all y ε A}
irrespective of the cardinality of A. Hence, if x ε D(B, R), then, in both of the cases
referred to in the preceding paragraph, we shall have R(x, y) ≥ R(y, x) for all y ε A.
Hence, x ε D(A, R) by Eq. (a) above.

However, consider the set A = {x, y, z} where x, y, and z are in X. Consider the
R in R whose restriction to A is as follows: R(x, x) = R(y, y) = R(z, z) = 1; R(x,
y) = 0.5 = R(y, x); R(x, z) = 0.6, R(z, x) = 0.5; R(y, z) = 0.7, R(z, y) = 0.6. It is
seen that x ε D(A, R), R(y, x)≥ R(x, y) but y is not in DA, R) since ¬ [R(z, y) ≤ 0.5]
although the set {x εA: R(z, x)≤ 0.5 for all z εA} is non-empty. Thus, Condition 3.2
is violated.

(iii) Violation of Condition 3.3: Let z* in X be such that for all x in A other than
z*, R(x, z*) = 1 and R(z*, x) = 0. Consider the IDF, D, for which, for all A in A,

D(A,R) = {x εA : R(x, y) ≥ R(y, x)for all y εA}if z ∗ is not inA,

=A−{z∗}if z ∗ is inA andA is not a singleton and

=A ifA = {z∗}.

Note that, under this IDF, z* is not considered to be a least unequal member of
any set A in A, whenever A includes any other income vector. Thus, if D({x, y}, R)
= {x, y}, then both x and y are distinct from z*. Hence, the definition of D for this
case implies that R(x, y) = R(y, x). Hence, Condition 3.1 is satisfied.

To show that Condition 3.2 is satisfied, suppose that x and y are in an admissible
A, x ε D(A, R) and R(y, x) ≥ R(x, y). We are to show that y ε D(A, R). If z* is not
in A, then x ε D(A, R) implies that R(x, z) ≥ R(z, y) for all z ε A. Hence, R(y, x)
≥ R(x, y) implies that R(y, z) ≥ R(z, y) for all z ε A since R is f-transitive. Thus, y
ε D(A, R), completing the proof. If z* is in A, then, since A is not a singleton, all
members of A other than z* are in D(A, R). The desired conclusion follows from the
fact that one such member of A is y. To see this, note that since x ε D(A, R), x �= z*.
Therefore, y = z* would imply that R(y, x) = 0 and R(x, y) = 1, contradicting the
hypothesis that R(y, x) ≥ R(x, y). Hence, y �= z*.
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However, consider the set A= {x, y, z*} where x, y, and z* are distinct. Consider
the R in R whose restriction to A is as follows: R(x, x) = R(y, y) = R(z, z) = 1; R(x,
y) = 0.6, R(y, x) = 0.4; R(x, z) = 0.6, R(z, x) = 0.4; R(y, z) = 0.6, R(z, y) = 0.4.
Since D(A, R) = {x, y} but D({x, y}, R) = {x}, Condition 3.3 is violated. �

The following proposition gives a characterization of the IDF given byD0 in terms
of Conditions 3.1–3.3.

Proposition 3.2 D is an IDF satisfying Conditions 3.1–3.3 if and only if D = D0.

Proof Only if:
Suppose that D is an IDF and that it satisfies Conditions 3.1–3.3. If D �= D0, then,

for some admissible A and R, either (i) D(A, R) includes a member y of A such that
R(z, y) > R(y, z) for some z in A or (ii) it excludes a member y of A for which R(y,
z) ≥ R(z, y) for all z in A.

In Case (i), on the one hand, since {y, z} ⊂ A and y ε D(A, R), by Condition 3.3
we have y ε D({y, z}, R). On the other hand, since R(z, y) > R(y, z), we must have
D({y, z}, R) = {z} because, otherwise, D({y, z}, R) is equal to either {y, z} or {y}.
However, if D({y, z}, R) = {y, z}, then by Condition 3.1, R(y, z) = R(z, y) which
contradicts the hypothesis while, if D{y, z}, R)= {y}, then Condition 3.2 is violated
since R(z, y) > R(y, z). Thus, Case (i) is ruled out.

Consider Case (ii) now. By definition of an IDF, z ε D(A, R) for some z in A.
Since {y, z} ⊂ A, and since, in the case under consideration, R(y, z) ≥ R(z, y), by
Condition 3.2, we now have y ε D(A, R) which contradicts the hypothesis.

If:
Let D = D0. For any x and y in X, and for any admissible R, if D({x, y}, R) = {x,

y}, then, by definition of the mapping D0, we have R(x, y) ≥ R(y, x) and R(y, x) ≥
R(x, y) so that R(x, y) = R(y, x), verifying that Condition 3.1 is satisfied. To check
Condition 3.2, let x and y in X, A in A and R in R be such that [{x, y} ⊆ A, x ε D(A,
R) and R({y, x} ≥ R(x, y)]. To show that y ε D(A, R), note that, since D = D0, [x ε

D(A, R)] implies R(x, z) ≥ R(z, x) for all z in A. Together with the hypothesis R(y,
x) ≥ R(x, y) and the fact that R is f-transitive, this implies that R(y, z) ≥ R(z, y) for
all z in A so that we have the desired conclusion. That D satisfies Condition 3.3 is
easily seen. �

Having derived D0 number of conditions on the IDF that seem to be intuitively
acceptable,we shall henceforth focus on this particular IDF. In particular, in obtaining
a crisp approximation of a given R inR, we shall concentrate on the crisp approxima-
tion that is obtained if the IDF, D, from which it is generated satisfies Conditions 3.1,
3.2, and 3.3.

We are now in a position to state the following result.

Corollary to Proposition 3.2: Let D satisfy Conditions 3.1, 3.2, and 3.3. For any R
in R, its crisp approximation generated by D is the crisp relation R0 on X for which,
for all x and y in X, x R0 y if and only if R(x, y) ≥ R(y, x).
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In view of Definitions 2.4 and 2.5 of Sect. 2, the corollary is an immediate conse-
quence of Proposition 3.2. Since R is reflexive, f-transitive, and real-valued, it also
follows that R0 is reflexive, complete, and transitive, i.e., that it is an ordering on X.3

If D = D0 (as it is in the above Corollary), D*(A, RC) = C(A, R) for all A in A
if and only if this equality is valid for all sets A such that #A ≤ 2. However, this is
not true in general. Consider, for instance, the IDF given by the mapping D specified
by Eqs. (a) and (b) in part (ii) of the proof of Proposition 3.1. This is a well-defined
IDF. However, if this mapping D is used for the purpose of generating the crisp
approximation RC of a given R, it is obvious that RC �= R0 although D*(A, R0) =
D(A, R) for all A such that #A is at most 2. The reason is that this equality is not
necessarily valid if A has three or more members.

It may also be noted that, in determining the crisp approximation of a given FIRR,
R, the fuzzy transitivity property of R also plays a crucial role. For instance, if the
condition of f-transitivity of R is replaced by max-min transitivity and if the IDF, D,
in Definition 2.5 is taken to be such that, for all admissible A and R, D(A, R) = {x
ε A: R(x, y) ≥ α for all y ε A} where α is any real number in (0. ½], then the crisp
approximation of any given R would be the crisp relation RC on X such that x RC

y if and only if R(x, y) ≥ α. Max-min transitivity of R would ensure that RC is an
ordering. As has been remarked before, however, in the context of fuzzy inequality
relations that respect Lorenz dominance, max-min transitivity is not an intuitively
reasonable condition on R while f-transitivity is.

4 Examples of FIRRs

So far, we have discussed FIRRs and their crisp approximations in general terms.
We end this paper by suggesting a specific FIRR.We also mention a number of other
FIRRs that are to be found in the literature.

In our framework, one possiblemeasure of the extent towhich xLorenz dominates
y would be a measure of the set {p ε [0, 1]: Lx(p) > Ly(p)}. In the present case, a
natural measure of this type would seem to be length of that portion of the horizontal
axis of the usual Lorenz box diagram over which the Lorenz curve of x lies above

3It may be noted that our identification of “fuzzy dominance” as the crisp approximation rule has
been a consequence of our identification of a specific IDF. Ok (1994) took a different (and, from the
mathematical point of view, a more direct) route in the context of a very similar issue in the theory
of preference relations (I am indebted to Efe Ok for bringing this reference to my attention.). A
decision-maker’s preference relationRon a set of alternativesmaybe fuzzy butwemaywish to know
whether it has a crisp approximation. Interpreting a crisp approximation of a given fuzzy relation
R as a crisp relation which is “nearest” to R, Ok considered metrics (as measures of “nearness”)
on the space of fuzzy relations. Different metrics would identify different crisp relations as being
nearest to a given fuzzy relation. The paper introduced a particular metric and proved that it leads
to the “fuzzy dominance” relation generated by R as the crisp approximation of R. However, while
this is an important proposition, it has not been reported whether its converse is true, i.e., whether it
constitutes a characterization of the fuzzy dominance relation as a crisp approximation procedure.
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that of y. This will be denoted by Nxy. For example, if Lx(p) and Ly(p) intersect at a
point where p = 0.7 and if Lx(p) > Ly(p) for p in (0, 0.7) while Lx(p) < Ly(p) for p
in (0.7, 1), then Nxy = 0.7 and Nyx = 0.3 so that Nxy > Nyx.

Consider now the fuzzy binary relation R on X such that, for all x and y in X,

R(x, y) = 1 if x = y and

=Nxy/
(
Nxy + Nyx

)
otherwise. (4.1)

Since population size and total income are fixed, the Lorenz curves of x and y
cannot coincide if x and y are distinct. It is seen that, for all such x and y, exactly
one of the following three statements is true: (i) x strictly Lorenz dominates y, (ii)
y strictly Lorenz dominates x, and (iii) the Lorenz curves of x and y intersect. In all
of these cases at least one of the two nonnegative numbers Nxy and Nyx is positive
and, therefore, so is their sum. Thus, for all x and y, R(x, y) is well defined and is in
[0, 1]. R is obviously reflexive. It is complete since, for all x and y in X, R(x, y) +
R(y, x) is either 1 or 2. It is also seen that, for all x, y, and z in X, if Nxy ≥ Nyx and
Nyz ≥ Nzy, then Nxz≥ Nzx. Thus, R is f-transitive.

Moreover, if R(x, y) = 1, then either x = y or [x �= y but Nyx = 0]. In the former
case, the Lorenz curves of x and y coincide and in the latter it is seen that x strictly
Lorenz dominates y. In both circumstances, therefore, x weakly Lorenz dominates
y. Conversely, if x weakly Lorenz dominates y then either x = y or [x �= y but Nyx=
0]. Hence, R(x, y) = 1. Similarly, it can be checked that R(x, y) = 0 if and only if
y strictly Lorenz dominates x. Thus, R is a fuzzy binary relation on X that respects
Lorenz dominance and is reflexive, complete, and f-transitive. Hence, it is an FIRR
as per Definition 2.2 of Sect. 2.

The crisp approximation R0 of R is such that, for all x and y in X, x R0 y if and
only if Nxy ≥ Nyx. It is an ordering on X.

A characterization of the specific FIRR, R, specified by (4.1) can be obtained
with the help of a system of axioms similar in form to that used in Basu (1987). In

that paper, for all x and y in X, Exy was defined to be
n∑

j=1
max(

j∑

i=1

(
xi−yi

)
, 0). In the

familiar Lorenz diagram, Exy is the area of the dominance of x over y. Basu ignored
the case where x and y are nondistinct and worked with the strict fuzzy ranking
relation P. Consider a fuzzy relation P on X representing “less unequal than.” Let
R2+ be the nonnegative orthant of the two-dimensional Euclidean space The crucial
assumption in Basu’s approach was that there exists a mapping ϕ from R2+ into
[0, 1] such that, for all x and y in X that are distinct from the perfectly egalitarian
distribution and also distinct from one another,

P(x, y) = ϕ
(
Exy,Eyx

)
. (4.2)
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By combining this condition with three others, the following fuzzy relation P was
characterized4: For all x and y in X with the characteristics mentioned above,

P(x, y) = Exy/(Exy + Eyx).

Basu (1987) also formulated a definition of a “nearest crisp relation” of a given
fuzzy relation and showed that the crisp relation (P*, say) nearest to the fuzzy strict
relation characterized by him is essentially the Gini ordering in the sense that, for all
distinct x and y, x P* y if and only if G(x) < G(y) where G is the Gini index.5

It can be checked that if we replace (4.2) by the condition that for all x and y in
X, if x = y, R(x, y) = 1 and, otherwise,

R(x, y) = f
(
Nxy,Nyx

)
,

then, together with the three other conditions used in Basu (1987) (with the relation P
interpreted as the asymmetric component of R), we would obtain a characterization
of the relation R in (4.1). Note that since, for all x and y in X such that x �= y, R(x,
y) + R(y, x) = 1 so that, as per our rule for defining the asymmetric component of
R (discussed in Sect. 2), P(x, y) = R(x, y) for all such x and y. Since the proof of
this characterization result is exactly analogous to that of Basu’s result, it is omitted.
Ok (1996, p. 523) studied (albeit without characterization) a broader class of fuzzy
relations which includes the relation suggested by Basu as a special case.6

5 Summary and Conclusion

In this paper, we have been concerned with the question how to obtain a crisp approx-
imation of any given fuzzy inequality ranking relation. In seeking to formalize the
notion of a suitable approximation procedure, however, we were naturally led to the
broader question as to how we can decide which income vectors in any finite set A of

4For the proof, Basu did not need to assume that the strict fuzzy ranking relation (or the weak
relation R of which it is the asymmetric component) is f-transitive. He used a very weak transitivity
condition which requires that, for any x, y, and z in X, [R(x, y) = 1 and R(y, z) = 1] implies R(x,
z) = 1. However, it is known that the relation that is characterized is actually f-transitive. See Ok
(1996, pp. 525–526) where it is shown that it also satisfies a different fuzzy transitivity condition
called O-transitivity, a condition proposed in Ovchinnikov (1986).
5This particular feature of the fuzzy relation suggested by Basu (1987) is hardly surprising since the
stated objective of that paper was the fuzzification of what was called the “Gini-Lorenz” framework
of inequality measurement. The crisp approximation of the fuzzy relation suggested in Eq. (4.1) in
the text is not related in this way to the Gini ranking. We do not enter into the question whether
it is analogously related to the (crisp) inequality ranking derived from any other inequality index.
Indeed, since in this paper we are concerned exclusively with inequality rankings, the notion of an
inequality index is not of much relevance here.
6All members of the class are both f-transitive and O-transitive (see Note 4).
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such vectors can be considered to be least unequal in an overall (crisp) assessment,
given that the underlying inequality ranking relation on the set of all income vectors
is fuzzy. We have axiomatically characterized a specific procedure for making this
decision under the assumption that the fuzzy inequality ranking satisfies some intu-
itively appealing consistency conditions. It is seen that our characterization result
leads to a specific crisp approximation procedure which has already been mentioned
in the literature. We have also constructed an illustrative example of a fuzzy inequal-
ity ranking relation that does not seem to have appeared in the literature before and
have compared it with some other known ranking relations.
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On Pro-Middle Class Growth

Osnat Peled and Jacques Silber

1 Introduction

Is economic growth a sufficient condition for reducing poverty or should govern-
ments enact policies that fight poverty? As stressed by Kakwani and Son (2018), in
the 1950s and 1960s development economists believed in the idea of “trickle-down”
which assumes that even if growth is beneficial mainly to the rich, the poor will
ultimately also profit from growth, once the wealthy spend their gains. Moreover, it
was also thought that the rich are those who can generate economic activities, which
will increase the probability for a poor to find an employment. Such a Weltanschau-
ung started, however, to be criticized in the 1970s (e.g., Ahluwalia 1976a,b) when
development economists realized that poverty levels did not really decrease and that
the rate of growth of the incomes of the poor was significantly smaller than that of
the population as a whole. These observations were at the origin of the development
of a vast literature dealing with the concept of pro-poor growth (see, for example,
Deutsch and Silber 2011; Dollar and Kraay 2002; Foster and Szekely 2008; Kakwani
and Pernia 2000; Kakwani and Son 2008; Kraay 2006; Ravallion and Chen 2003;
Son 2004; Son and Kakwani 2008).

There is, however, another strand of the development literature, which stresses
the fact that a sizable middle class is supposed to be an important factor in economic
development (see, for example, Landes 1998). Easterly (2001) thus argued that an
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increase in the income share of the middle class is associated with a rise in the
growth rate. A greater income share of the middle class is also assumed to bring
higher levels of publicly provided health services, and hence better health outcomes.
It is also associated with higher levels of political rights and civil liberties.

Similarly, Birdsall (2007a, b) contends that reforms, which are critical to market-
based economies in the developing world, will not be sustained over long periods if
themiddle class does not grow. For Pressman (2007), a largemiddle class contributes
not only to economic growth but also to social and political stability because, among
other reasons, it helps reducing class warfare.

Loayza et al. (2012) concluded, using a cross-country panel dataset containing
information on 128 countries, that when the size of the middle class grows, there is
generally a more active social policy, governance improves, and corruption is less
frequent. Similar arguments are brought by Bussolo et al. (2014), who believe that
a rise in the size of the middle class in developing countries is likely to improve
transparency, reinforce the fight against corruption efforts, and more generally lead
to a more open society.

Boushey and Hersh (2012) emphasize other impacts of a strong middle class.
They claim that it encourages the development of human capital, and a well-educated
population is the basis for a stable source of demand for goods and services and favors
entrepreneurship, all these effects clearly supporting economic growth.

Actually, as stressed by Bhalla and Kharas (2013, page 6), “the notion of the
‘middle class’ has roots that go backmillennia, originating as a concept in thewritings
of Aristotle, who defined it as owners of property and thus the people best positioned
to rule the state. According to him, they were a moderating force with both the
capability and incentive for sober governance, but through its long history, themiddle
class has been linked to a wide range of concepts from thriftiness to democratic spirit
to unchecked consumerism.” Bhalla and Kharas therefore consider the middle class
as an important driver of the global economy, because they have a significant amount
of time and money at their disposal and, at the difference of rich people, they are
numerous enough to have an impact on world trends.

This prediction is also shared by Birdsall (2013, page 11). She argues that, “per-
haps in a virtuous cycle, recent growth in India, Africa, China and much of Latin
America—whether driven by ‘luck’ (high commodity prices, natural resource wind-
falls), ‘globalization’ (trade, capital and labor movements), good policy (sound
macroeconomic fundamentals, more democratic and accountable governments)
or the intangible benefits of the information revolution or of changing global
norms (consider the Millennium Development Goals) that have put more girls in
school—will be more likely to be sustained and institutionalized, because an inde-
pendent middle class has become big enough and politically powerful enough, to be
a force for good government and equal opportunity growth.”

Lopez-Calva and Ortiz-Juarez (2012) recommend in fact taking a broader view
of the middle class and they emphasize the concept of “middle-class functioning,”
which, according to them, means “being protected from falling into poverty.” The
definition of the middle class is, hence, related to that of vulnerability since, as
argued by Lopez-Calva (2013, page 15), it is economic security “that defines a
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person as middle class. Individuals who are above the poverty line and who have
a low risk of falling into poverty may have characteristics in terms of risk-taking
capabilities, investment decisions, consumption patterns and the like that differ from
the characteristics of those individuals who are just above the poverty line.”

Ferreira et al. (2013) take a similar view and argue that, between 1995 and 2010,
at least forty percent of the households in Latin America moved upward in “socioe-
conomic class.” They stress, however, that generally the poor do not move directly to
the middle class. They rather join a group located between the poor and the middle
class. This group corresponds in fact to the vulnerable class, and it is the largest
class in the region. Ferreira et al. (2013) stress the fact that, although this newmiddle
class differs from one country to the other, one may observe common characteristics.
Those entering the middle class are thus more educated, more likely to live in urban
areas, and work in the formal sector. It appears also that middle-class women tend to
have fewer children and a higher labor force participation rate than women belonging
to the poor or vulnerable groups.

These features of the middle class lead to a broader definition of this group, an
approach taken also by Atkinson and Brandolini (2013) in their study of the middle
class in selected OECD countries. They started by adopting definitions based on
income but they also examined the role of property and wealth, as well as that of the
occupational structure. They argue that classical economists linked class differences
to the extent of control over resources and to the position of individuals in the division
of labor. Economists today centre their analysis on income, an approach criticized
by sociologists who believe that economists ignore the importance of the social
stratification implied by labor market relations.

Looking at OECD and some emerging countries, OECD and the World Bank
(2016, page 2) concluded that, although almost two-thirds of people live in middle-
incomehouseholds inOECDcountries and between one-third and one-half in Emerg-
ing Economies, “middle-class self-identification has fallen significantly in recent
years, much more than income trends would suggest.” There is clearly a positive cor-
relation between the share of the population with “middle incomes,” and that, which
identifies itself (subjectively) as middle class, but there are differences between the
countries. Thus in Northern and Continental European countries, as well as in Italy
and Turkey, the share of the population that identifies itself as “middle class” is higher
than what the income data seem to show, while the opposite is true for Canada, Por-
tugal, and the United Kingdom. The data seem in fact to indicate (see, OECD and the
World Bank 2016, page 7) that “the economic influence of middle-income groups
compared to upper-income groups has been declining and that the cost of typical
middle class goods, services and assets are rising faster than median incomes and
driving some middle income households into debt.”

A somehow similar view is taken by Thewissen et al. (2015, pages 24–25) for
whom in OECD countries “there are countries and sub-periods where the median
stagnated and inequality rose rapidly, but also ones where increasing inequality
accompanied rapid growth in the median and others where the median rose only
modestly while inequality was stable.” These findings led the authors to conclude
that, to improve the living standards of middle-income households, it is not enough
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to promote economic growth, and even not to look at the evolution of both growth
and inequality. There is a need to take a specific look at what happens in the middle
of the income distribution. Such a task implies evidently that there should be a defi-
nition in income terms of the middle class. Various ways of defining the lower and
upper bounds of themiddle class (75–125%, or 60–225%, or 50–150% of themedian
household income; or $10 a day and the 90th percentile of the income distribution)
have been proposed (see, for example, Nissanov et al. 2010, and Nissanov 2017, for
a review of these definitions).

Rather than defining such bounds, Massari et al. (2009) in their analysis of the
Italian income distribution, and Nissanov and Pittau (2016) in their study of the
evolution of the middle class in Russia from 1992 to 2008, applied a nonparametric
tool, the so-called “relative distribution.”

Another interesting approach is the mixture model method (see, McLachlan and
Peel 2000) which is a semi-parametric method, which enables to model unknown
distributional shapes and to represent subpopulations and parameters of their den-
sities without having to define in advance the number and characteristics of these
groups. Pittau et al. (2010) applied this approach to the world distribution (close to
100 countries). They estimated a three-component mixture model, the components
being, respectively, labeled “poor,” “middle,” and “rich.” They found that, while
the gap between the mean relative per capita incomes of the rich and poor group
widened somewhat over time, the “hollowing out” of the middle of the distribution
was largely attributable to the increased concentration of the rich and poor countries
around their respective component means. Nissanov (2017) applied the same tech-
nique to Russian data and concluded that the share of the middle class decreased
between 1992 and 1996 and then increased. While the differences between the poor
and the two other groups (middle class and rich) are clear, when looking at most of
the characteristics, that were examined, the middle class and the rich group differ
mostly for three characteristics: age, education, and work status.

Foster and Wolfson (2010) introduced a simpler approach to the study of the
middle class, in their famous paper, which defined the concept of polarization curves
as well as an index of bipolarization.1 While Foster and Wolfson took a relative
approach to the measurement of bipolarization, Chakravarty et al. (2007) presented
an absolute approach to the measurement of bipolarization that will be the basis of
the analysis of pro-middle-class growth presented in this chapter.2

This chapter is organized as follows. In Sect. 2, starting from the notion of absolute
polarization curves proposed by Chakravarty et al. (2007), we derive the concept
of pro-middle-class growth, which amounts to defining the type of growth, which
reduces absolute bipolarization. Then, in Sect. 3, we present an empirical illustration

1This paper was originally written in 1992 and was widely cited over the years until it was finally
published in 2010.
2The contribution of Satya Chakravarty to the study of polarization goes much beyond this paper.
He has published two books on the topic (Chakravarty 2009, 2015) and to the best of our knowledge
seven articles (Chakravarty and Majumder 2001; Chakravarty et al. 2007, 2010; Chakravarty and
D’Ambrosio 2010; Chakravarty and Maharaj 2011, 2012, 2015).
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based on Israeli data and covering the period 1995–2011. Concluding comments are
given in Sect. 4.

2 Deriving a Measure of Pro-middle-Class Growth

Following earlier work by Foster and Wolfson (2010), Chakravarty et al. (2007)
have stressed the fact that bipolarization indices can be relative or absolute. A rel-
ative index is supposed to remain invariant under equi-proportionate changes in
all incomes, while an absolute index is supposed not to vary under equal absolute
changes in all incomes. The choice between these two approaches to the measure-
ment of bipolarization is, without any doubt, a problem of value judgement, in the
same way as choosing between an absolute and a relative approach to inequality
measurement depends on how one views inequality.

The basic idea of Chakravarty et al. (2007) is to scale up the Foster–Wolfson
(second) bipolarization curve by the median m in order to obtain what they call
an “Absolute Polarization Curve (APC).” Such a curve shows, for any population
proportion, how far the total income enjoyed by that proportion is from the cor-
responding income that it would receive under a hypothetical distribution where
everyone receives the median income.

Assuming that the incomes xi are ranked in nonincreasing order (x1 ≥ · · · ≥
xi ≥ · · · ≥ xn), that n is the size of the population and nm the rank of the median,
the APC ordinate3 corresponding to the population proportion (k/n) is then defined
as

AP

[
x,

(
k

n

)]
= (1/n)

∑
(m − xi ) when xi < m (1)

and as

AP

[
x,

(
k

n

)]
= (1/n)

∑
(xi − m) when xi > m. (2)

It is easy to observe that for a typical income distribution the APC will decrease
monotonically, until the median income is reached, and then increase monotonically.
One may observe that by dividing AP(x; p) by the median m, one obtains the
(second) bipolarization curve proposed by Foster and Wolfson (2010).

Chakravarty et al. (2007) show also that the area under the Absolute Polarization
Curve is an absolute index of polarization. The link between this index and the Foster
and Wolfson (2010) index PFW is quite easy to derive, as will now be shown.

Let us first compute the areaR under theAPC on theR.H.S. of themedian (incomes
higher than the median income). We may note that at the rank nm , the height of the

3Part of the demonstrations that follow is borrowed from Nissanov et al. (2010).
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APC is zero (xnm = m). For simplicity in what follows, we will assume that n is
even.

Using (2) and the usual formulations concerning the areas of a triangle and of a
trapezium, we derive that

R =
(
1

2

)(
1

n

){[(
1

n

)(
xnm−1 − m

)] +
[
2

(
1

n

)(
xnm−1 − m

) +
(
1

n

)(
xnm−2 − m

)]}
+ · · ·

+
(
1

2

)(
1

n

){
2

(
1

n

)[(
xnm−1 − m

) + (
xnm−2 − m

) + · · · + (x2 − m)
] +

(
1

n

)
(x1 − m)

}

(3)

↔ R = (1/n)2
{(

1

2

)
x1 +

(
3

2

)
x2 + · · · +

(
2i − 1

2

)
xi + · · · +

(
2(nm − 1) − 1

2

)
xnm−1

}

− (1/n)2
{(

1

2

)
m +

(
3

2

)
m + · · · +

(
2i − 1

2

)
m + · · · +

(
2(nm − 1) − 1

2

)
m

}
(4)

↔ R = (1/2)

⎡
⎣

n
2∑

i=1

(
2i − 1

n2

)
(xi − m)

⎤
⎦ =

(
1

8

)⎡
⎣

n
2∑

i=1

(2i − 1)(
n2
4

) (xi − m)

⎤
⎦ = μER − m

8
, (5)

where μER refers to the “equally distributed equivalent level of income among the
“rich,” defined, in the case of the Gini index, (see, Berrebi and Silber 1989)” as

μER =
n/2∑
i=1

[
(2i − 1)/

(
n2/4

)]
xi , (6)

while it is easy to check that
∑n/2

i=1(2i − 1)/
(
n2/4

) = 1.
Let us similarly compute the area L under the APC on the L.H.S. of the median

(incomes lower than the median income). Using (1), we derive that

L =
(
1

2

)(
1

n

){[(
1

n

)(
m − xnm+1

)] +
[
2

(
1

n

)(
m − xnm+1

) +
(
1

n

)(
m − xnm+2

)]}
+ · · ·

+
(
1

2

)(
1

n

){
2

(
1

n

)[(
m − xnm+1

) + (
m − xnm+2

) + · · · + (m − xn−1)

]
+

(
1

n

)
(m − xn)

}

(7)

↔ L =
(
1

n

)2{[(
1

2

)
m +

(
3

2

)
m + · · · +

(
(2(n − nm) − 1)

2

)
m

]}

−
(
1

n

)2{[(
1

2

)
xn +

(
3

2

)
xn−1 + · · · +

(
(2(n − nm) − 1)

2

)
xnm+1

]}

↔ L =
(
1

2

) n∑
i=( n

2 )+1

{[
[2(n − i + 1) − 1]

n2

]
(m − xi )

}
=

(
m − μFP

)
8

, (8)

where μFP is a weighted average of the incomes of the “poor” and is defined as

μFP =
n∑

i=( n
2 )+1

[
(2(n − i + 1) − 1)]/(n2/4)]xi , (9)
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while it is easy to verify that

n∑
i=(n/2)+1

[2(n − i + 1) − 1] =
(
n2

4

)
.

Note that the weights defining μFP are such that the further away a “poor” indi-
vidual is from the median income (that is, the “poor” he is), the smaller the weight
given to this “poor.” In other words, μFP gives, for the subpopulation of “poor,” a
higher weight the less “poor” the “poor” is.

Combining (5) and (9), we conclude that the total area A under the APC (on both
the R.H.S. and the L.H.S. of the APC) may be expressed as

A = R + L =
(
1

8

)(
μER − μFP

)
. (10)

Let us now remember that the Foster and Wolfson (2010) is expressed as

PFW = (GB − GW )
( μ

m

)
, (11)

where μ is the arithmetic mean of the distribution.
Remembering the link between theGini index and themean difference, expression

(11) will be written as

PFW =
[(

1

2

)
(�B − �W )/μ

]( μ

m

)
=

(
1

2

)
(�B − �W )/m, (12)

where �B and �W are the between and within groups mean differences.
From Berrebi and Silber (1989), we know that

�B =
(
1

2

)(
μR − μP

)
, (13)

where μR and μP are, respectively, the mean incomes of the “rich” and the “poor,”
and that

�W =
(
1

4

)(
�R + �P

)
, (14)

where �R and �P are, respectively, the mean differences in the populations of the
“rich” and of the “poor.”

Combining (12), (13), and (14), we derive that



90 O. Peled and J. Silber

PFW =
{[(

1

4

)(
μR − μP

)] −
[(

1

8

)(
�R + �P

)]}
/m. (15)

We know, however, that

�R = 2μRGR = 2μR
[(

μR − μER
)
/μR

] = 2
(
μR − μER

)
. (16)

We can similarly write (see also Berrebi and Silber 1989) that

�P = 2μPGP = 2μP
[(

μFP − μP
)
/μP

] = 2
(
μFP − μP

)
. (17)

Combining (15), (16), and (17), we easily derive that

PFW =
[(

1

4

)(
μER − μFP

)]
/m. (18)

Finally, combining (10) and (18), we derive the link between the Foster and
Wolfson index PFW and the area A that lies under the Absolute Polarization Curve
(APC), with

PFW = 2

(
A

m

)
. (19)

Let us now assume that we observe a set of incomes {x1, . . . , xi , . . . , xn} at time
0 and a set of incomes {y1, . . . , yi , . . . , yn} at time 1. Using (18), the change �PFW

in the value of the index PFW between times 0 and 1 will then be written as

�PFW = (
P1
FW − P0

FW

) =
(
1

4

)[(
(yER − yFP

my

)
−

(
x ER − x FP

mx

)]
, (20)

where P1
FW , P0

FW , yER, x ER, yFP , x FP ,my , andmx refer, respectively, to the Foster
and Wolfson indices, the “equally distributed equivalent level of income among the
‘rich’ μER , the weighted average μFP of the incomes of the ‘poor’ and the median
incomes at times 1 and 0.”

Combining (6), (9), and (20), we derive that

�PFW =
(
1

4

)⎧⎨
⎩

⎡
⎣ n/2∑

i=1

(
2i − 1

n2/4

)(
yi
my

)⎤
⎦ −

⎡
⎣ n∑
i=( n

2 )+1

(
[2(n − i + 1) − 1]

n2/4

)(
yi
my

)⎤
⎦

⎫⎬
⎭

−
(
1

4

)⎧⎨
⎩

⎡
⎣ n/2∑

i=1

(
2i − 1

n2/4

)(
xi
mx

)⎤
⎦ −

⎡
⎣ n∑
i=( n

2 )+1

(
[2(n − i + 1) − 1]

n2/4

)(
xi
mx

)⎤
⎦

⎫⎬
⎭

↔ �PFW =
⎧⎨
⎩

n
2∑

i=1

(
(2i − 1)

n

)[(
yi

nmy

)
−

(
xi

nmx

)]⎫⎬
⎭
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−
⎧⎨
⎩

n∑
i=( n

2 )+1

(
2(n − i + 1) − 1

n

)[(
yi

nmy

)
−

(
xi

nmx

)]⎫⎬
⎭. (21)

Let us now define the shares wi and si as wi = yi
nmy

and si = xi
nmx

.
We may then rewrite (21) as

�PFW =
⎧⎨
⎩

⎡
⎣

n
2∑

i=1

(
(2i − 1)

n

)
{[wi ] − [si ]}

⎤
⎦

⎫⎬
⎭

−
⎧⎨
⎩

⎡
⎣ n∑

i=( n
2 )+1

(
2(n − i + 1) − 1

n

)
{[wi ] − [si ]}

⎤
⎦

⎫⎬
⎭. (22)

In what follows we will use the following definitions:

�m = my − mx (23)

ηi = yi − xi
xi

= �xi
xi

(24)

η̄ = �m

mx
(25)

wi =
(

xi + �xi
n(mx + �m)

)
. (26)

We then derive that

wi − si =
(
xi nmx + �xi nmx − (xi nmx + xi n�m

nmx (n(mx + �m))

)
=

(
�xi nmx − xi n�m

nmx (n(mx + �m))

)

↔ wi − si =
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xi
nmx

)(
�xi
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)(
1

(mx + �m)/mx

)
−

[(
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nmx

)(
�m/mx
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)]]

↔ wi − si = siηi
1

1 + η̄
− si

η̄

1 + η̄
= si

ηi − η̄

1 + η̄
, (27)

so that

�PFW =
⎡
⎣

n
2∑

i=1

(
(2i − 1)

n

){
si

ηi − η̄

1 + η̄

}⎤
⎦ −

⎡
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i=( n

2 )+1

(
2(n − i + 1) − 1

n

){
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1 + η̄

}⎤
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(28)

Note, however, that

n/2∑
i=1

(
2i − 1

n

)
si =

n/2∑
i=1

(
2i − 1

n

)(
xi

nmx

)
=

n/2∑
i=1

(
2i − 1

n2

)(
xi
mx

)
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↔
n/2∑
i=1

(
2i − 1

n

)
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1

4

) n/2∑
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2i − 1

n2/4

)
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1
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(
1

4

)(
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)
(29)

and that
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)
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(30)

Combining (28), (29), and (30), we derive that

�PFW =
⎧⎨
⎩

⎡
⎣(

1

4

)(
xER

mx

) n/2∑
i=1

(λi )
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(31)

where

λi =
[(

2i−1
n

)
si

]
[∑ n

2
i=1

(
2i−1
n

)
si

] =
[(

2i − 1

n

)
si

]
/

[(
1

4

)(
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mx
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(32)

with
∑n/2

i=1 λi = 1
and

vi =
[2(n−i+1)−1]

n si∑n
i=( n

2 )+1
[2(n−i+1)−1]

n si
=

[2(n−i+1)−1]
n si(

1
4

)( xFP
mx

) (33)

with
n∑

i=( n
2 )+1

vi = 1.

Let us now define ηER and ηFP as

ηER =
n/2∑
i=1

λiηi (34)

ηFP =
n∑

i=( n
2 )+1

viηi . (35)

Combining expressions (31)–(35), we then end up with
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�PFW =
(
1

4

){[(
xER

mx

)
(ηER − η̄)

1 + η̄

]
+

[(
xFP

mx

)
(η̄ − ηFP)

1 + η̄

]}
. (36)

We therefore can state that a sufficient condition for growth to be pro-middle class
(that is, for polarization to decrease) is that the growth rate of the median income
of the whole population is higher than the weighted average of the growth rates of
the rich and smaller than the weighted average of the growth rates of the poor. The
intuition of this proposition is indeed very simple. It simply says that when the rich
get closer to the median income (because their growth rate is smaller than that of the
median income) and when the poor get closer to the median income (because their
growth rate is higher than that of the median income), polarization will decrease and
the middle class will become more important.

3 An Empirical Illustration

3.1 The Database

Our database is a set of income surveys conducted by Israel’s Central Bureau of
Statistics for the years 1995–2011.4 During this period, significant changes inwelfare
and tax policies took place, aswell asmajor changes in participation and employment
patterns.

We have data on several income types, for households and individuals: for house-
holds, we consider the household’s income from salaried work, economic income
(including work income, pensions and capital income, and excluding allowances and
transfers) household total income and net disposable income. We also consider the
household total and net equivalized income (adjusted for family size according to
the Israeli/OECD equivalence scale.5) Other income sources, such as allowances or
capital income were either too volatile or were only available for a small part of the
sample and hence were not taken into account. For individuals, we consider income
from salaried work (wage) and wage per hour worked. Individuals who did not work
or did not receive a wage were excluded from the database. All the incomes were
expressed at 2011 prices.

4Until 2011, labor force surveys were conducted every quarter. Every individual/household was
asked to answer the questions in this survey during two consecutive quarters. There was then an
interruption of two quarters and then again the individual/household was asked to answer the labor
force survey questionnaire during two additional quarters. During the last quarter, the individ-
ual/household was also asked to fill a questionnaire on his/her income (the income survey). But this
practice has been interrupted in 2011 because of a major change in the labor force survey.
5The Israeli equivalence scale assigns the value 1.25 to the first household member, 0.75 to the
second, 0.65 to the third, 0.55 to the fourth and fifth members, 0.50 to the sixth and seventh, 0.45 to
the eighth, and 0.40 to each additional member. The most recent OECD equivalence scale amounts
to dividing the household income by the square root of household size.
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Fig. 1 Absolute bipolarization index for selected income types during the period 1995–2011.
Source Income surveys, Central Bureau of Statistics

Each income survey includes data on approximately 32,000–35,000 individu-
als and 13,000–15,000 households6. Since our method requires a fixed number of
observations, we divided the sample into 1,000 groups with similar sample weights,
according to the relevant income-type variable.

3.2 The Results

At the beginning of the period (1995–2000), absolute polarization increased for all
income types. Divergence started in the following periods, as shown in Fig. 1. While
the absolute polarization of household wage, economic and total household income
had the same patterns of change, the absolute polarization of individual income from
salaried work decreased and the polarization of net household income continued
its upward trend almost unimpededly. These conflicting trends reflect some major
developments in labormarket participation and changes in policy, aswill be explained
below.

Table 1a–d presents some descriptive statistics for various income types, at four
points in time.As expected, householdwage and economic incomeare themost polar-
ized sources of income, as assortativemating exacerbates household income inequal-

6The coverage of the income surveys increased in 1997 so that the number of observations almost
doubled. The survey for 1995 includes data for about 17,000 individuals and 7,000 households.
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ity and bipolarization. Allowances and progressive taxes work to lower inequality
and thus to narrow the spread around the median and reduce bipolarization. Hence,
net income is the least polarized. The equivalence scale of the OECD assumes higher
economies of scale in comparison with the Israeli equivalence scale, and thus the
mean and median of equivalized income are higher when computed according to
the OECD scale, as is the absolute polarization index (see, Table 1). There is, how-
ever, no significant difference as far as the Foster–Wolfson bipolarization index is
concerned. When we compute the Gini index, it is somehow higher when using the
Israeli equivalence scales.

During the period 1995–2011, significant changes in participation patterns and
social policy took place. Following an increase in social welfare spending, that took
place during the last two decades of the twentieth century, a major budgetary cut
took place in 2003. Social welfare payments were reduced, and eligibility criteria
became stricter. In parallel, there was a decrease in income tax rates for the middle-
and top-income brackets. As a result, the contribution of the government’s direct
intervention to reduce income inequality and polarization decreased. In addition, the
change in policy, togetherwith renewed economic growth, led to a significant increase
in the participation and employment rates of population subgroups that previously
were under-represented in the labor market, such as the ultraorthodox Jews and
Arab women. The higher labor force participation and employment rates led to an
increase in wage and market incomes for the lower social strata of the population,
and therefore to a reduction in the degree of inequality and relative bipolarization of
these incomes. This appears clearly in Table 1c, d, when comparing the Gini indices
in 2005 and 2011 of income from salaried work, of individual wage per hour worked
and of household wage income. Since the tax reduction was concentrated on the
middle- and top-income brackets, it offset the impact of higher participation, leading
to the following combined effect of these changes: despite the significant decrease
in labor income bipolarization, the bipolarization of net incomes increased.

The development of absolute bipolarization was somewhat different from that
of relative bipolarization, since it also reflects changes in the median income. For
example, the economic downturn between 2000 and 2003 was reflected in a decrease
in median incomes (in real terms) and thus, in a decline of absolute polarization.
The economic recovery in 2004–2007 led to an increase in median incomes, which
intensified the increase in polarization. The increase in absolute polarization during
this period was thus more pronounced than the increase in relative polarization.

Figures 2 and 3 show the evolution over time of the different types of income.
It appears that while the increase in wage income affected mainly the bottom of

the income distribution, the change in net household income, was more uniform.
Most of the change in wage income occurred at the beginning of the period, while
the change in total and net income was more evenly spread over the whole period.
Table 2 presents the distributional changes of various income types during selected
time periods.

As mentioned before, a sufficient condition for growth to be pro-middle class
is that the growth rate of the median income is higher than a weighted average
of the growth rates of the rich and smaller than a weighted average of the growth
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Table 2 Distributional changes of various income types during selected time periods

η̄ ηER (ηER−η̄)
1+η̄

ηER (ηER−η̄)
1+η̄

�PFW

Percent change Percentage points
difference

Individual income from salaried work (wage)

1995–1997 5.1 7.2 2.0 5.7 −0.6 0.6

1997–2001 10.8 11.5 0.7 12.1 −1.2 0.0

2001–2005 −4.5 −5.2 −0.7 −3.3 −1.3 −0.5

2005–2007 5.3 4.3 −0.9 4.9 0.3 −0.3

2007–2011 −3.8 −4.4 −0.6 −3.4 −0.5 −0.3

1995–2011 12.5 13.1 0.5 16.2 −3.2 −0.4

Total household income

1995–1997 8.7 10.0 1.2 8.4 0.3 0.5

1997–2001 12.0 12.4 0.3 13.4 −1.2 −0.1

2001–2005 −3.9 −3.4 0.5 −4.1 0.2 0.2

2005–2007 9.0 7.5 −1.3 8.9 0.1 −0.5

2007–2011 2.2 0.3 −1.9 2.4 −0.2 −0.8

1995–2011 30.4 28.8 −1.2 31.5 −0.9 −0.6

Net household income

1995–1997 8.7 10.0 1.2 8.4 0.3 0.5

1997–2001 12.0 12.4 0.3 13.4 −1.2 −0.1

2001–2005 −3.9 −3.4 0.5 −4.1 0.2 0.2

2005–2007 9.0 7.5 −1.3 8.9 0.1 −0.5

2007–2011 2.2 0.3 −1.9 2.4 −0.2 −0.8

1995–2011 30.4 28.8 −1.2 31.5 −0.9 −0.6

Net equivalized household income (OECD equivalence scale)

1995–1997 8.7 10.0 1.2 8.4 0.3 0.5

1997–2001 12.0 12.4 0.3 13.4 −1.2 −0.1

2001–2005 −3.9 −3.4 0.5 −4.1 0.2 0.2

2005–2007 9.0 7.5 −1.3 8.9 0.1 −0.5

2007–2011 2.2 0.3 −1.9 2.4 −0.2 −0.8

1995–2011 30.4 28.8 −1.2 31.5 −0.9 −0.6
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Fig. 2 Change in Individual income from salaried work (wage)

rates of the poor. Looking at what happened to wage income at the beginning of
the period (1995–1997 and 1997–2001), it appears that the lowest growth rate was
around the middle of the income distribution and the further away an individual was
from the middle, the higher his/her growth rate was. In other words, the “poorer”
and the richer enjoyed a larger increase in their incomes. We can then conclude that
ηER > η̄, since the higher the income, the higher the weight assigned to its growth
rate. For the “poor,” however, the picture is less clear. On one hand, the growth rate
was higher, the lower the income. On the other hand, the lower the income, the lower
the weight assigned to this income. The combination of these two contradictory
effects indicates that ηFP > η̄, that is, the weighted average of the growth rates of
the “poor” was higher than the growth rate of the median income. Since both ηER

and ηFP were higher than η̄, they influenced polarization in opposite directions and
thus the change in polarization was relatively small. In the following periods (2001
and afterward), ηER was lower than η̄ and ηFP was higher or similar to η̄, leading to
a decrease in polarization.

The weighted average of the growth rates of total household income for the rich,
ηER , was higher than η̄ at the beginning of the period (1995–2005), but by the end
of the period (2005–2011) it was significantly lower. However, changes in income
tax policies, in favor of middle and high incomes, offset much of these differences:
ηER for net household income was smaller than η̄ at the beginning of the period
(1995–2001) and higher than η̄ the following period (2001–2007). Between 2007
and 2011, ηER was slightly lower than η̄, but this gap between ηER and η̄ was much
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Fig. 3 a Change in total household income, b Change in net household income
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Fig. 4 Change in equivalized net income

smaller than the gap between ηER and η̄ for total household income during this
same period. As far as the “poor” are concerned, ηFP was higher than η̄ for total
household income during the period 1997–2001, and similar to η̄ in all the other
periods. Conversely, for net household income, ηFP was significantly lower than η̄

at the beginning of the period (1995–1997 and 2001–2005) and at the end of the
period (2007–2011). The periods in which ηFP was higher than η̄ were the years
1997–2001 (mostly as a consequence of an increase in the minimum wage) and the
years 2005–2007 (because of an increased participation in the labor force). Thus,
over the whole period, the weighted growth rate of the poor’s income was lower than
the growth rate of the median income. As a result of these different developments,
polarization in total household income followed a downward trend starting in 1997,
while the polarization of net household income continually increased.

Focusing on specific population subgroups, we should remember that in Israel,
larger households are more common in the lower social strata of the population
because two population subgroups, the Muslim Arabs and the ultraorthodox Jews,
tend to have larger households. Moreover, these two population subgroups have also
lower labor force participation rates. These two factors clearly lead to lower incomes.
In addition, larger households were more affected by policy changes, since a bigger
share of their income came from various allowances. Moreover, the cut in allowances
pushed some of the larger households into lower quantiles of the income distribution.
Thus, the increase in equivalized income (both net and total income)was significantly
lower in the strata located at the bottom of the income distribution (see, Fig. 4).
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Table 3 Distributional changes during the period 1995–2011 by selected income types

Income type η̄ ηER (ηER−η̄)
1+η̄

ηER (ηER−η̄)
1+η̄

�PFW

Percent change Percentage points
difference

Individual income from
salaried work (wage)

12.5 13.1 0.5 16.2 −3.2 −0.4

Individual wage per
hour worked

15.0 15.1 0.1 19.6 −3.9 −0.7

Household wage
income

5.8 12.0 5.8 11.9 −5.7 1.9

Household economic
income (wages, capital
income, and pensions)

35.9 30.8 −3.7 47.0 −8.2 −2.7

Total household income 30.4 28.8 −1.2 31.5 −0.9 −0.6

Total equivalized
household income
(Israeli equivalence
scale)

37.1 35.2 −1.4 33.6 2.6 −0.0

Total equivalized
household income
(OECD equivalence
scale)

36.3 33.7 −2.0 33.2 2.3 −0.3

Net household income 33.2 34.8 1.2 31.8 1.1 0.6

Net equivalized
household income
(Israeli equivalence
scale)

40.6 40.9 0.2 34.4 4.4 0.9

Net equivalized
household income
(OECD equivalence
scale)

39.1 39.6 0.3 33.7 3.9 0.8

Table 3 summarizes now the distributional change of different types of incomes
for the whole period 1995–2011.

Over the whole period, the degree of bipolarization of net income increased while
the bipolarization of market incomes (household economic income) decreased. This
result reflects the rapid growthofwage incomeat the lower part of the distribution, due
to increased labor force participation, and to some extent to the effect of an increase
in theminimumwage (ηFP > η̄ for individual income from salariedwork, individual
wage per hour worked, household wage income, household economic income, and
total household income). However, this relatively rapid increase in market income
was offset by the decrease in allowances so that the growth rate of the total income at
the lower end of the distribution was similar or even lower than the growth of median
income (ηFP < η̄ for net household income and net equivalized household income).
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For the “rich” (households whose income is higher than the median income), we
observe that ηER > η̄ for individual income from salaried work, individual wage per
hour worked and householdwage income, net household income, and net equivalized
income. This in itself would lead, ceteris paribus, to an increase in bipolarization of
incomes, but ηER < η̄ for household economic income, total household income, and
total equivalized income. The net result of these changes in the income of the “rich”
and the “poor” is that the overall degree of bipolarization decreased for individual
income from salaried work, individual wage per hour worked, household economic
income (the biggest decrease in percentage terms), total household income, and
total equivalized income, but increased for net income and net equivalized income.
As mentioned before, the increase in the bipolarization of net income reflects the
combined effect of developments in labor force participation and welfare policy,
which affected mainly the lower strata, together with the effect of a major change in
income tax that affected mainly the upper–middle incomes.

Absolute bipolarization curves (APCs) are presented in Fig. 5 and emphasize the
differences in the evolution over time of the distribution of market and net income.
The APC of wage income increased slightly below the median. In other words, the
absolute change in the wage income of the “poor” (in real terms) was almost the
same as the absolute change in the median income. Hence, the left part of the APC
did not change significantly. The increase of the APC above the median was more
pronounced, but it occurred at the beginning of the period and did not change much
afterward. The APC of net equivalized income gives a completely different picture,
with a continuous increase of the APC. Net income on both sides of the median
moved further apart from the median, in real absolute terms.

4 Concluding Comments

Following a vast literature on pro-poor growth, this chapter proposed a definition of
pro-middle-class growth that was derived from the concepts of absolute polarization
indices and curves introduced by Chakravarty et al. (2007). It appears that a suffi-
cient condition for growth to be pro-middle class is for the growth rate of the median
income of the whole population, to be higher than that of the weighted average of the
growth rates of the “rich,” and smaller than the weighted average growth rate of the
“poor,” the “rich,” and the “poor” being, respectively, those with an income higher
and lower than the median income. An empirical illustration based on Israeli data
for the period 1995–2011 showed that growth was pro-middle class when looking at
individual income from salaried work, individual wage per hour worked, household
economic income, total household income, and total equivalized income. But bipo-
larization increased for net income and net equivalized income, as a consequence of
the combined effect of developments in labor force participation, welfare policy, and
major changes in income tax rates.
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Fig. 5 Absolute bipolarization curves
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ity captures the extent to which an attribute is shared between members of distinct
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groups. The concepts can be used to interpret segregation, clustering, and polarization
in societies.
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1 Introduction

For Satya Chakravarty, whose contributions to scholarship and justice we honor here,
the salience of group-based membership for evaluating social outcomes is clear. His
remarks, along with those of Amartya Sen above, suggest that the interpersonal
differences in advantages can be of greater concern when associated systematically
with membership of groups. This can be true for two reasons. First, the avoidance
of systematically arising intergroup differences may be of intrinsic importance from
the perspectives of justice and fairness in the distribution of goods and opportunities.
Second, the fact that there exist distinct groups in society and that these groups exhibit
intergroup differences may have instrumental significance from the standpoint of
their impact on social goods such as peace, stability, or economic growth

The concern with the intrinsic significance of intergroup differences has centered
on the degree to which “morally irrelevant” characteristics of a person (such as
belonging to a given race, sex, caste, or other groups as a result of birth) should be
permitted to determine her or his life chances.1 Such a motivation is distinct from
one based on the idea that social goods or “bads” may be generated by intergroup
differences in economic and social achievements, and that intergroup differences
may be relevant for that reason. A body of literature in economics and other social
sciences has explored this instrumental concern.2 Both concerns have led to the
development of a growing literature that has identified and empirically examined
such concepts as “horizontal inequality”, segregation, polarization, and related ideas
about differences between groups

That a multitude of concepts concerning intergroup difference has been proposed
is not entirely surprising because such differences can be understood as arising in
more than one way. For example, studies on segregation focus on the degree to which
members of different groups share a location, occupation, or other attribute while
studies on horizontal inequality focus on the extent of difference in the income or
other achievements of separate groups. In both cases, however, the subject of interest
is the degree of unevenness or inequality in the possession of attributes between
groups. The goal of our paper is to elucidate some distinct ways in which intergroup
differences can be conceived, which encompass but are not restricted to the concerns
of these existing approaches.

A common underlying concern in analyses of intergroup differences is the degree
to which distinct groups are systematically over- or under-represented in their pos-
session of various attributes (levels of income or health, club membership, political
office, etc.). In this paper, we introduce the concept of Representational Inequality

1For a review of these debates, see, e.g., Roemer (1996), and Sen (1992). Arguments that societies
should be organized so as to limit the consequences of being born into a particular position as
such include those of “luck egalitarians” such as Arneson (1989), Cohen (1989), Dworkin (2000),
Rawls (1971) and Roemer (1996). Egalitarians of other kinds (e.g., those concerned with relational
equality, such as Anderson 1999) may come to similar conclusions for different reasons.
2For some examples, see, e.g., Stewart (2001), Alesina et al (2003), Alesina and La Ferrara (2000,
2002), Montalvo and Reynal Querol (2005), Miguel and Gugerty (2005), and Østby (2008).
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(RI) as a way to capture this concern. This concept describes the extent to which a
given attribute (for instance, a level of income or health, or right or left-handedness)
is shared by members of distinct groups. It can be used to measure the degree of
“segregation” of distinct identity groups in the attribute space.3

When individuals can be ordinally ranked in relation to an attribute (such as
income or health but not right- or left-handedness), we may be interested not only in
how segregated or separated each identity group is in terms of their achievements, but
in some measure of their relative positions in the ranking. Sequence Inequality (SI),
understood as the degree to which members of one group are placed higher in a given
hierarchy than those from another, captures this concern. Such a concept provides an
intuitive framework for understanding the degree of “clustering” of various identity
groups in distinct sections of a hierarchy.4

When individuals’ level of achievement can also be cardinally identified for an
attribute (as for income but not for right- or left-handedness), the distance between
groups’ attribute levels may be of interest. We may identify a distinction between
two different concepts, which we term, respectively, Group Inequality Comparison
(I) and Group Inequality Comparison (II) and abbreviate as GIC (I) and GIC (II).
The concept of Group Inequality Comparison (I) involves a comparison of counter-
factuals. Specifically, it is derived by comparing the inequality arising in a society
in which all of the members of a group are assigned a representative income for that
group and the total interpersonal inequality in a society. This concept is concerned
with identifying the extent to which between-group inequality “accounts for” overall
inequality in society. Group Inequality Comparison (II) by contrast measures only
the inequality arising in the first situation, i.e., that in a society in which all the
members of a group are assigned a representative income for that group. This latter
concept is concerned with the absolute magnitude of the inequality generated by
between-group inequality.

Our purpose in this paper is twofold. We seek not only to clarify the concepts
described above and thus to recognize the complexities of intergroup differences but
also to show that combining these concepts canbehelpful in characterizing intergroup
differences taken as a whole. “Polarization”,5 understood to involve the collection of
like elements and the separation of such collections of like elements fromone another,
can be fruitfully described as involving the simultaneous presence of between-group
differences of different kinds. The combination of Representational Inequality with
Sequence Inequality alone provides a measure of what might be termed “Ordinal
Polarization.” Combining Group Inequality Comparison (of either type I or type II)

3Segregation is defined by the Oxford English Dictionary, inter alia, as “The separation of a portion
of portions of a collective or complex unity from the rest; the isolation of particular constituents of
a compound or mixture.”
4A cluster is defined by the Oxford English Dictionary, inter alia, as “A collection of things of the
same kind…growing closely together; a bunch… a number of persons, animals, or things gathered
or situated close together; an assemblage, group, swarm, crowd.”
5The Oxford English Dictionary defines the verb “polarize” as “To accentuate a division within (a
group, system, etc.); to separate into two (or occas. several) opposing groups, extremes of opinion,
etc.”



112 A. Jayadev and S. G. Reddy

with these other two indices can provide a richer index of Polarization applicable to
the case in which the attribute is cardinally measurable as well.Our purpose is not to
provide a unique characterization of a single measure of polarization, but rather to
show that a broad class of measures of polarization can be derived from a simple set
of unexceptionable axioms concerning different types of between-group differences
and their combination.

The concept of polarization that we employ here is distinct from that developed in
the preponderance of the existing literature in that it draws on information about the
identity groups to which those who possess distinct attributes belong. In contrast, the
existing frameworks generally employ a “collapsed” framework in which the level
of the attribute (typically income) defines the identity group (Esteban and Ray 1994;
Duclos et al. 2004). In these frameworks, polarization of an income distribution is
understood to involve “identification” between individuals possessing a certain level
of income and “alienation” between those individuals and others possessing different
incomes. In our framework, in contrast, polarization of an income distribution is
understood to involve segregation of individuals belonging to distinct identity groups
at certain levels of income and the separation of these groupings of individuals in
the income space from other groupings of individuals possessing distinct identities.

2 Part I: Concepts of Group Inequality

One approach to evaluating intergroup differences is to construct ameasure of overall
group advantage or disadvantage for each group prior to assessing the differences
in these overall measures.6 Although there can be advantages to such an approach,
it can obscure the diverse aspects of intergroup difference (by reducing intergroup
differences to inequalities in a single dimension). We accordingly explicitly identify
here three distinct concepts of intergroup difference, and a fourth which builds upon
them.

2.1 Representational Inequality

We define a situation of representational inequality as occurring when, for some
attribute and some identity group, the proportion of the group possessing the attribute
is either greater or less than the proportion of the group in the overall population. To
provide some graphical intuition for this idea, consider the distribution of income
among different groups in a society that consists of 50 percent whites and 50 percent
blacks. Figure 1 depicts the situation in which there is no representational inequality.
The location of each bar on the horizontal axis represents an income level ordered
from lowest to highest and the proportion of persons possessing that income of either

6See Jayaraj and Subramanian (2006) for an example of such an approach.
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group is represented through shading. At all levels of income, blacks and whites are
represented in equal proportion to their share of the population as a whole (i.e.,
one half each). Any deviation from such equiproportionality leads to a situation of
representational inequality. Such a situation is depicted in Fig. 2, in which at certain
levels of income blacks or whites comprise a larger or smaller proportion of the
individuals possessing that level of income than they do in the population.

While the situation depicted in Fig. 2 is one of the representational inequalities,
both groups are represented at all the incomes. In contrast, Fig. 3 depicts a situation
in which at each level of income there is complete segregation, in the sense that at
each level of income there is one and only one identity group represented. It may be
noted that although this is a situation of complete segregation, the incomes at which
whites and blacks appear are evenly interspersed. We depict this example to make
sharp the distinction between segregation and clustering as we use the terms. The
former refers to a situation in which those possessing a specific attribute (in this case
an income level) belong disproportionately to a group. The latter refers to a situation
in which the attributes disproportionately possessed by members of a group are sited
together in a certain part of an attribute hierarchy (in this case the income spectrum).

The concept of representational inequality clearly need not be restricted to a
scenario in which the attribute is cardinally orderable. Thus, for example, we can
apply the principle in an equally straightforward manner to unordered attributes such
as location of residence, or membership in distinct clubs or legislatures. If instead
of income brackets, each bar referred to a distinct legislature in a federal country,
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Fig. 1 Zero representational inequality
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Fig. 2 Nonzero representational inequality
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Fig. 4 Polarization

the figures we have discussed here would depict the degree of inequality in political
representation.

2.2 Sequence Inequality

The distinction between “complete segregation” and “complete clustering” can be
seen by comparing Figs. 3 and 4. Figure 4 depicts the situation that results from a
transfer of incomes such that all the whites move to the richer half of society while
all the blacks move to the poorer half of society. This situation is one in which each
subgroup is concentrated in a different part of the incomedistribution. Such a situation
can plausibly be described as one of “complete clustering” of groups.7 In both cases,
there is complete segregation and thusmaximal representational inequality.However,
in Fig. 3, whether an individual is black or white provides very little information on
his or her rank in society. By contrast, in Fig. 4, whether an individual is black or
white provides a great deal of information. One simple way to capture the distinction
between Figs. 3and 4 is through the concept of sequence inequality, which together
with representational inequality captures the clustering of the income distribution.
This concept is linked to the position in the overall societal ranking possessed by
individuals belonging to distinct groups in the hierarchy.

An individual (weakly) rank dominates another if that individual is ranked equal
to or higher than the other in the possession of the attribute. For any population

7Massey and Denton (1988) refer to equivalent concepts.
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partitioned into given identity groups, there are a fixed number of between-group
pair-wise comparisons between individuals from different identity groups. The share
of the total number of such between-group pair-wise comparisons involving a given
group in which amember of the group rank dominates amember of some other group
is called its level of group rank dominance. Group rank dominance is an indicator of
the position the group occupies in the ordinal hierarchy of attribute levels. Another
way to understand the difference between Figs. 3 and 4 is simply that the average
rank of the whites and the blacks is different. This is clearly a necessary condition for
distinct groups to be clustered in different parts of the attribute space. We establish
in Appendix One that a monotonic relationship exists between the concepts of group
rank dominance and of average rank. Both could be seen to be indicators of the
placement of groups in the attribute hierarchy (in the extreme complete clustering of
groups) and will thus be referred to as indicators of a group’s rank sequence position.

The level of inequality in different groups’ rank sequence position (whether as
measured by group rank dominance or by average rank) indicates the extent to which
a population is clustered. We refer to this concept of inequality as Sequence Inequal-
ity (SI). Some reflection will suffice to show that this is an unambiguous criterion
even when group sizes differ. In any situation sequence, inequality is minimal when
the groups are evenly interspersed or symmetrically placed around the median mem-
ber(s).

It is clear from this discussion that while Figs. 3and 4 depict two groups with
equal representational inequality, the two groups possess different levels of group
rank dominance and average rank. In Fig. 4, whites have 100% of the available
instances of rank domination and higher average rank.

While sequence inequality and representational inequality are related, they are
also distinct concepts. A simple example which makes this distinction transparent
is provided in Figs. 5 and 6. In Fig. 5, both groups possess the same level of group
rank dominance and average rank. The black group has two of the possible four
instances of rank domination as does the white group, and their average rank is the
same. Thus, there is no sequence inequality between the groups. In the second, both
groups again share equally in levels of group rank domination (both have two of the
potential four instances once again) and have the same average rank. The situation
once again is one in which there is no sequence inequality. However, in the first case,
there is complete representational inequality and in the second case there is zero
representational inequality. In neither case is group membership always associated
with higher rank, yet the cases differ in the degree to which income levels are shared
by members of distinct groups.

2.3 Group Inequality Comparison

Figure 4depicts a situation of maximal representational inequality and maximal
sequence inequality. It could perhaps be thought of as a situation of polarization in
the sense that each group is concentrated at a given pole of the income distribution.
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Fig. 5 Perfect sequence equality with perfect representational equality
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Fig. 6 Perfect sequence equality with complete segregation
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However, this is true only in an ordinal sense. Both the situations depicted in Figs. 4
and 7 are identical from the standpoints of representational inequality and sequence
inequality since neither concept takes note of cardinal information, which alone
accounts for the difference between the two situations described. To take account of
cardinal information (for instance, concerning the distance between distinct clusters),
it is necessary to introduce an additional concept.

A common way to account for such information is to take note of the distance
between the means of distinct subpopulations, for example, by using measures
of inequality between group means. This indeed is the conception behind Group
Inequality Comparison (II).However, such an approach ignores relevant informa-
tion on within-group inequality. Consider a two-group society in which all members
of each group originally, respectively, possess the mean incomes of their groups.
Suppose that both groups experience within-group transfers leading to intragroup
inequality. The extent of inequality in the society must be judged to have increased
if the measure of inequality employed obeys the Pigou–Dalton Transfer Principle
(ensuring that such transfers between persons are deemed to increase overall inequal-
ity). However, between-group inequality (understood in terms of inequality between
mean incomes of groups) is unchanged. Between-group inequality must be deemed
to have become relatively less substantial in comparison with total interpersonal
inequality.

An approach to intergroup inequalities which is based on between-group inequali-
ties in isolation rather than on the contribution of between-group inequality to overall
interpersonal inequality (i.e., Group Inequality Comparison (II)) will fail to contrast
situations that might be distinguished. Consider Fig. 8 which depicts a two-group
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Fig. 7 Polarization
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society in which all members of each group originally possess mean income A and
B, respectively. Both groups now experience within-group transfers which increase
inequality and their distributions are now depicted by densities A’ and B’, respec-
tively. Assume further that the transfers are such that the span between the means is
D and the span between the richest and poorest members of each group is alsoD.We
might plausibly consider intergroup differences to have become less significant after
the transfer since no member of the richer group is further away from some member
of the poorer group than before the transfer, and all but the very richest member of
the richer group is closer to some member of the poorer group.

On the other hand, Group Inequality Comparison (I) can have the disadvantage
of ignoring information relevant for understanding the extent to which intergroup
differences generate overall inequality. To see this, consider what would happen
if in Fig. 8, the original populations A and B were made arbitrarily closer to each
otherwhilemaintaining their separation. According toGroup Inequality Comparison
(I),there would be no difference between the two situations. If we employed instead
the concept of Group Inequality Comparison (I) the degree to which between-group
differences generate inequality will have fallen. There are potentially good reasons
to choose either approach.

Group Inequality Comparison need not be measured, of course, in terms of dif-
ferences in means and could potentially be understood in other ways—for instance,
in terms of differences in medians, generalized means, or other measures of central
tendency. Indeed, still other ways of viewing group differences can be envisioned,
for example, involving comparison of higher moments of the group-specific distribu-
tions of incomes, examination of the extent of “non-overlap” between distributions,
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Fig. 8 Group inequality contribution versus inequality between means
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etc. For a wide-ranging discussion of methods of defining group separation, see
Anderson (2004, 2005). We limit our further discussions of the concept, however, to
the case where it is measuring mean differences, for expositional simplicity.

2.4 Combining Concepts: Polarization

We have introduced above three concepts relating to intergroup inequalities: repre-
sentational inequality, sequence inequality, and group inequality comparison. How
are these concepts related to polarization? Polarization is a concept which has been
used inmanyways in the literature, for example, tomean the absence of “middleness”
in a distribution (Wolfson 1994), the distance between the average achievements of
groups (Østby, 2008) and the presence of distinct sizable groupings in the income
distribution (Esteban and Ray, 1994). Many of these approaches do not explicitly
rely on the identification of individuals by identity groups (understood as being dis-
tinct from attributes). A contrasting approach understands the level of polarization
of a distribution in terms of the extent of intergroup differences in the possession of
an attribute. If polarization is defined in this way, it becomes clear that each one of
the concepts of intergroup inequality defined above is itself a measure of polariza-
tion. However, taken individually each may prove to be an unsatisfactory measure
of polarization, because of the information to which each is individually indifferent.
Thus, the relative ranking of the situations depicted in Figs. 3, 4 and 7 according to
the extent of polarization depends on the expansiveness of the approach used. All
the figures depict maximal polarization as judged according to RI, whereas Figs. 4
and 7 depict maximal polarization according to both RI and SI, and Fig. 7 depicts
more polarization than does Fig. 4 according to GIC (taking the figures to possess
the same income scale on the horizontal axis).

The fact that our judgments regarding the polarization of society may depend
on more than one concept suggests the value of combining measures of intergroup
differences to construct orderings of social situations according to the extent of
their polarization. Such orderings can be partial and based on dominance of the
vectors (two-tuples or three-tuples) defined by the individual measures of intergroup
differences, or can be complete if based on some method of aggregation of these
measures.

This said, orderings based on combining only a pair of the concepts we have
defined (and not all three) will be indifferent to some important considerations that
may be deemed relevant in any assessment of polarization.We have already seen that
in the two-group case, combining representational inequality and sequence inequal-
ity will be sufficient to give us a measure of ordinal polarization. Such a combination
however will be indifferent to cardinality and will be unable to distinguish, for exam-
ple, between the situations depicted in Figs. 4 and 8, respectively.

Ameasure combining sequence inequality and group inequality comparison is not
indifferent to cardinal information on the achievements of individuals but it is indif-
ferent to the degree of clustering of identity groups in any specific income bracket. To
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see this, consider Figs. 5 and 6 again. Let us assume that, by construction, the mean
income of both blacks and whites is the same in both groups in both situations. If this
is the case, the index of group inequality comparison is the same in both figures (i.e.,
zero) and sequence inequality is the same, but representational inequality is different.
We may argue that in Fig. 5 there is no clustering of identity groups in distinct parts
of the income spectrum, as there is no representational inequality. In Fig. 6, however,
blacks are clustered at the top and bottom ends of the income spectrum, and indeed
there is complete segregation between the two groups. Note further that we could
increase the distance between the blacks at the ends and the whites in the middle,
keeping the means of both groups the same (so that the blacks at each end are very
distant from the whites at the center) and yet record the same level of polarization
defined according to such a measure.

Finally, combining representational inequality and group inequality comparison
(I) alone leads to an approach that is indifferent to the sequencing of individuals from
distinct identity groups in the income spectrum. Consider the distinction between
Fig. 9a and b. Both depict cases of complete segregation. However, in Fig. 9b, some
population of blacks has been moved to a higher income than all the whites, thereby
increasing within-group inequality for the blacks and total interpersonal inequality.
We can further imagine that everywhite has been given a higher income in such away
that within-group inequality among whites is unchanged and the ratio of between-
group inequality to total inequality (which would otherwise have fallen) is restored
to its level prior to the initial movement of blacks. In other words, the index of group
inequality comparison (I) remains the same by construction, as does representational
inequality. However, the sequencing of blacks and whites in the income distribution
(and thus sequence inequality) is different. An analogous argument can be made for
group inequality comparison (II) by moving the blacks and whites to keep mean
incomes of the groups the same.

Any approach to polarization based on a pair of the group inequality concepts
we have defined will capture certain judgments about social situations and neglect
others. Only by combining all three concepts can an approach to polarization which
takes account of the considerations reflected in each of the concepts be constructed.

A variant of group inequality comparison (I) has been proposed as a stand-alone
measure of polarization (Zhang and Kanbur, 2001). However, such a measure, while
attractive in its simplicity can violate some intuitions. Consider Fig. 10 in which
two completely segregated and clustered groups A and B experience within-group
progressive transfers which reduce within-group inequality. Further, suppose that
they also experience a reduction of between-group inequality through progressive
transfers between the members of the two groups in such a way that the ratio of
between-group inequality to overall inequality remains unchanged and the groups
(whosedensities are nowdepictedbyA’ andB’) overlap. Ifweutilize group inequality
comparison (I) alone as our measure of polarization, a social configuration with A
and B is viewed as being exactly as polarized as a situation with A’ and B’, which
seems to conflict with our intuitions. If we, however, combine it with some measure
of sequence inequality and/or representational inequality (both of which are lower
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Fig. 9 a Maximal representational inequality, maximal sequential inequality with a fixed group
inequality contribution, b maximal representational inequality, reduced sequential inequality with
a fixed group inequality contribution
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Fig. 10 Group inequality contribution alone is an incomplete measure of polarization

when the groups overlap), the first situation is unambiguously more polarized than
the second.

It should be noted that the regressive transfers considered above led to a decrease
in the index of group inequality comparison (I), and therefore their impact was in the
opposite direction from that whichwould normally be expected of an inequalitymea-
sure (i.e., to obey the Pigou–Dalton principle of responding to a regressive transfer
with an increase in measured inequality). It follows that any measure of polarization
which increases when the index of group inequality comparison (I) increases would
similarly potentially violate the Pigou–Dalton principle.8

3 Part II: From Concepts to Measures

3.1 Formalizing Concepts

Our purpose in this section is to formalize the concepts relating to group differences
which we have introduced above and develop measures of them.9

8This view corresponds to the findings of Esteban and Ray (1994) among others that polarization
and inequality are distinct concepts and that measures of polarization need not therefore be expected
to obey the Pigou–Dalton principle.
9These measures can be readily implemented using a Stata module that we have developed. For an
example involving actual data, see Reddy and Jayadev (2011).
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We begin by supposing a “social configuration” (ζ ) in which there is a population,
S0, of individuals {i} of size N partitioned10 into K distinct identity groups (S1,
S2….SK ). The individuals possess an attribute (let us say y), drawn from an attribute
set, Y. The attributes are not necessarily ordered. For example, the attribute may be a
level of income (ordered and cardinally measured), a quality of health (ordered but
not cardinallymeasured), or a club towhich a personmay belong (distinguished from
one another, but not ordered).We employ a superscript to distinguish the information
associated with distinct social configurations. For simplicity, we assume (although
nothing depends on this other than notation) that the number of elements, l, in the
set Y is finite.

More specifically, the individuals {i} each belong to a distinct identity group
SJ ⊆ S0 (J �= 0) so that

∀i ∈ S0, i ∈ SJ for some J (J �= 0), with

SJ
⋂

SM = φ ∀J, M ∈ (1, . . . K )s.t J �= M and
K⋃

J=1

SJ = S0.

Our assumptions imply there are at least two identity groups which are each
smaller than the population as a whole and non-empty. Let the number of persons in
group J be denoted by nJ . The proportion of persons of a group J in the society is
defined by

θJ = nJ

N
for [J ∈ (0, . . . K )].

Each individual i has attribute yi . The same attribute may be shared by more than
one individual.

Define the membership function for group Jby MJ (y) = #{i ∈ SJ |yi = y},
for [J ∈ (0, . . . K )]. Moreover, define the complementary membership function
for group J by M−

J (y) = #{i /∈ SJ |yi = y}. In other words, the membership
function specifies the number of persons in group J who possess attribute ywhile the
complementary membership function specifies the number of persons not in group
J who possess attribute y.

10We do not consider currently the case of societies in which individuals belong to more than
one identity group simultaneously and in which the identity groups do not form a partition of the
society into mutually exclusive categories. Generally, a “maximal” partition of a society, generating
a mutually exclusive and exhaustive set of groups, can be constructed by generating the Cartesian
product of all of the identity groups in the society. This approach may not be deemed appropriate,
however, in every situation. For example, a mixed-race group in a society otherwise divided into
two races may be deemed to belong to both of the races rather than to neither, generating a different
characterization of intergroup differences.
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Fig. 11 The representational inequality Lorenz curve

3.2 Representational Inequality

A simpleway to capture the degree towhich each identity group is disproportionately
represented among those who share a given attribute would be to describe the ratio
of the number of the persons possessing a given attribute who belong to each group,
J, to their overall number in society for any given attribute (y): MJ (y)

M0(y)
= FJ (y). In

other words, FJ (y) refers to the proportion of persons who possess a given attribute
who belong to group J. This information can be captured in what we call the Repre-
sentational Inequality (RI) Lorenz curve (Fig. 11). As we shall see, this framework
allows for a simple way of presenting information concerning these proportions and
for analyzing this information using familiar tools.11

To construct theRI Lorenz Curve for each group, J, we first create a rank ordering,
RJ , such that

FJ (y1J ) ≤ FJ (y2J ) ≤ . . . FJ (ylJ ),

11In spirit, this approach is similar to that adopted byDuncan andDuncan (1955) and later, inter alia,
by Silber (1989, 1991, 1992), and Hutchens (1991, 2004). Other references include Flückiger and
Silber (1994). Boisso et al., (1994), and Reardon and Firebaugh, (2002). Silber notes that various
information structures (for example, involving the frequencies with which distinct groups possess
an attribute such asmembership in an occupation) can be analyzed using “measures of dissimilarity”
which are analogous tomeasures of inequality.Our approach builds upon this insight but differs from
all of the authors above in explicitly going beyond the two-group case and aggregating information
derived from the concentration curves of different groups.
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where FJ (y1J ) ≤ FJ (y2J ) ≤ . . . FJ (ylJ ) reflects the ordering of the attributes accord-
ing to the proportion of the population in the attributes belonging to group J.The
ordering starts from the attribute for which the proportion of the population consist-
ing of members of group J is the lowest and proceeds to the attribute for which the
proportion of the population consisting of members of group is the highest.

Clearly, in the case in which the attribute can itself be ordered (e.g., income), the
sequence in which the yiJ appear in the ordering RJ will not necessarily be from
lowest to highest.
Define:

αJ (t) =
t∑

i=1
M−

J (yiJ )

N−nJ
and βJ (t) =

t∑
i=1

MJ (yiJ )

nJ
, where [t ∈ (0, . . . l)] and αJ (0) ≡

0 andβJ (0) ≡ 0.
The RI Lorenz Curve for group J,L J

∧

, can be defined by the following rule, which
creates a piecewise linear curve:

When x = αJ (t), for integer values [t ∈ (0, . . . l)], then L̂ J (x) = βJ (t) and,
when x is such that αJ (t) < x < αJ (t + 1), [t ≤ (l − 1)], then

L J

∧

(x) = L J

∧

(αJ (t))λ + L J

∧

(αJ (t + 1))(1 − λ), where λ = x−αJ (t))
αJ (t+1)−αJ (t)

.

In using this definition, we follow the procedure described by Shorrocks (1983),
p. 5.

This gives rise to a curve as shown in Fig. 11. By construction, the RI Lorenz
curve must, in the familiar way, begin at (0,0) and end at (1,1), as well as slope
upward, with the slope increasing as one moves to the right, since each addition to
the total cumulative population of others is associated with an addition of a larger
proportion of group J. Note that the 45-degree line here has the interpretation of
being the line of equiproportionate representation (analogous to the line of perfect
equality in the case of an ordinary Lorenz curve). That is, all along this line, the
members of identity group J are represented at every attribute in the same proportion
as they are represented in the population.

Any deviation from the line of equiproportionality represents a situation in which
members of the group are disproportionately represented in the possession of certain
attributes, leading them tobe “over-represented” in the possessionof certain attributes
and “under-represented” in the possession of others. The RI Lorenz curve therefore
contains information on the extent of segregation of a population in relation to the
attributes possessed. Having defined it, we can draw on the analogy between the RI
Lorenz curve and the ordinary Lorenz curve to suggest further useful concepts.

Consider for instance what might correspond to the familiar idea of a progressive
transfer. Just as a progressive transfer in an income distribution involves a transfer
from a person with higher income to a person with lower income, in the context of
representational inequality, a progressive transfer could be defined as a transfer of a
person from the set of persons who possess an attribute in which his or her identity
group is represented more to one in which it is represented less. However, since
we are dealing with proportions of identity groups possessing different attributes,
a transfer of a single person will change the overall population that possesses each
attribute involved, affecting the “denominator” used to assess population proportions
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for the groups possessing these attributes. We overcome this problem and maintain
an unchanged denominator by instead employing the concept of a “balanced bilateral
population transfer”12:

Definition Balanced Bilateral Population Transfers
Suppose ∃(yi , y j ) ∈ Y and SP, SQ such that

FP(yi ) > FP(y j ) and FQ(yi ) < FQ(y j )

with P �=Q and i �=j.

Then, a progressive (regressive) balanced bilateral population transfer is one inwhich
population mass� (i.e., some number of persons; we abstract from integer problems
here) of group P is shifted from yi to yj and equal population mass � of group Q
is shifted from yj to yi, thereby lowering (raising) FP(yi ) and FQ(y j ) while raising
(lowering) FP(y j ) and FQ(yi ).

A balanced bilateral progressive population transfer results in two upward shifts
in the RI Lorenz curves for the identity groups (and corresponding downward shifts
for regressive transfers). An example of the latter is provided in Fig. 12a and b. TheRI
Lorenz curve that results from a progressive (regressive) balanced population transfer
dominates (is dominated by) the RI Lorenz curve that preceded the transfer.13 We
note further that:

Lemma 1 There exists a pair of identity groups and a pair of attributes (yi,yj) for
which a progressive balanced bilateral population transfer can take place if all
groups are not equiproportionately represented in the possession of every attribute.

Proof: See Appendix Three
An RI Lorenz curve L

∧

(x) weakly dominates an RI Lorenz curve L ′
∧

(x) if and only
if L

∧

(x) ≥ L ′
∧

(x) for all x ∈ [0, 1]. An implication of this framework is that any
Lorenz consistent measure of inequality, for which inequality never decreases when
L
∧

(x) is replaced by L(x), i.e., all income inequality measures used in practice can
also be applied to measure representational inequality. It is also well known in the
literature on income distribution that it is possible to shift from an income distribu-
tion that possesses a Lorenz curve L(x) to another that possesses the Lorenz curve
L ′(x) where L(x) ≤ L ′(x) if and only if there exists a corresponding sequence of

12This concept of a balanced bilateral population transfer is related to that of a “disequalizingmove-
ment” between groups used by Hutchens (2004) in his discussion of a two-group case. However, the
latter concept is insufficient in a multigroup case and necessitates the use of the alternative concept
which we develop and employ. The concept is also intimately related to the idea of a “marginal
preserving swap” which has appeared in the statistical literature (see, for example, Tchen, 1980,
Schweizer and Wolff, 1981, and Bartolucci et al., 2001). However, to the best of our knowledge,
no one has shown that in the absence of perfect representational equality, there always exists the
possibility of achieving a balanced bilateral transfer (as we do in Appendix two) and that this can
be given a natural interpretation in terms of Lorenz curves.
13For the relevant reasoning, see Shorrocks (1983).
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Fig. 12 a Balanced bilateral transfer, b balanced bilateral transfer



Inequalities and Identities 129

Table 1 Correspondences between conventional inequality and representational inequality con-
cepts

Conventional inequality concept Representational inequality concept

Inequality Over- or under-representation

Pigou–Dalton transfers Balanced bilateral population transfers

(First-order) Lorenz dominance (First-order) RI Lorenz dominance

progressive transfers. Equivalently, in our case, it is possible to shift from a situation
for which each group possesses a Lorenz curve L J (x) to another in which each group
possesses a Lorenz curve L ′

J (x), where L J (x) ≤ L ′
J (x) if and only if there exists a

corresponding sequence of balanced bilateral progressive population transfers. For
this reason, a balanced bilateral progressive population transfer can be deemed to
decrease overall representational inequality.

The consequence is a striking parallel between inequality measures in the income
space and inequality measures in the representation space. Table 1 provides a map
of the isomorphism between corresponding concepts introduced so far.14

Suppose that we apply Lorenz consistent inequality measure Î (L̂ J (x) to assess
representational inequality for group J and denote the resulting vector of measured

inequality for all groups in the society by ¯̂I and its individual components by ¯̂IJ =
Î (L̂ J (x)), J ∈ (1, . . . K ). Then, an overall measure of representational inequality

in the society is given by RI = f ( ¯̂I, . . .),where f (0̄) = 0, f (1̄) = 1, and ∂ f

∂
¯̂IJ

≥
0 for all J ∈ (1, . . . K ). One simple version of such an aggregation function, f, is
the mean of the group-specific representational inequality measures. It may seem
attractive for a measure of overall representational inequality to take into account
subgroup sizes and respond to unequally sized groups differently. Indeed, it will be
argued below that there can be sound reason for such weighting. We may define
a population-weighted overall representational inequality measure of the following
form:

RI = 1

K

K∑

J=1

(θJ )
(
Î (L̂ J (x))

)
,

where θJ refers to the population weight of subgroup J.
Such ameasure can be offered some justification through axiomatic underpinnings

which we consider in the next section.

14The concepts of the generalized Lorenz curve and dominance of generalized Lorenz curves do not
possess straightforward and interpretatively useful analogs in the area of representational inequality
since the concept of an income mean does not possess a straightforward analog in this realm.
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3.3 Sequence Inequality

As noted in the discussion of the previous section, representational inequality is a
measure of group differences which is indifferent to the ordering of attributes as well
as to their cardinal properties. To operationalize our concept of sequence inequality,
therefore, we now assume that the attributes can be ordered.15

Considering first the concept of group rank dominance, we define a pair-wise
individual rank domination function,δi j , for a given pair of individuals i and j as
follows: δi j = 0 if yi < y jand δi j = 1 if yi ≥ y j . We can now define the group rank

domination quotient for group J as follows:τJ =
∑
i∈K

∑
j∈(J �=K )

δi j

n J (N−nJ )
. It can be seen that

τJ possesses the interpretation of the proportion of possible instances of pair-wise
domination involving members of group J and members of other groups in which
such domination actually occurs. It is evident that this quotient varies between a
minimum of 0 and a maximum of 1 for any group. The size of the group plays no
direct role in determining the value of the group rank domination quotient. Rather,
it is the placement of members of the group relative to members of other groups that
determine the quotient. Sequence inequality could be treated simply as the measured
inequality in τJ across groups. It is common for individuals from a given group to
express pride or shame at the achievements or failures of other members from that
group. Such a psychological interpretation can provide justification for treating the
group rank domination quotient as defining the experience of everyone in that group
and measure inequality across all individuals in possession of that experience.16

A seemingly puzzling asymmetry is implied by our approach to sequence inequal-
ity. Consider two populations, consisting of one white individual and ten black indi-
viduals each. In the first population, the individuals are ordered in the income space
from lowest to highest as (w, b, b, b,….b), and in the second, the individuals are
ordered from lowest to highest as (b, b, b, b…..w). In the first instance, all 10 black
members possess a domination quotient of 1, while the white individual possesses
a domination quotient of zero. The inequality in domination quotient is therefore
inequality in a population having scores (0, 1,1,1,1….1). In the second case, all 10
black members possess a domination quotient of 0, while the white individual pos-
sesses a domination quotient of 1. The inequality in domination quotients is therefore
the inequality in a population having scores (0,0,0,0,0….1). More sequence inequal-
ity will be recorded in the first case than in the second, even though all that has been
done is to change the placement of the white from being at the bottom to being at the
top of the income spectrum. While this may initially appear puzzling, it is perhaps
appropriate to treat these cases asymmetrically. By the psychological interpretation,

15There is a small nascent literature on the measurement of ordinal inequality. Some key references
include Allison and Foster (2004), Reardon (2008) and Abul Naga and Yalcin (2009).
16One way to interpret sequence inequalities is in terms of an analogy to a society wherein each
group practices radical egalitarianism. In such a society, an even distribution of each group’s share of
the social assets, in this case instances of rank domination, results among the individuals belonging
to the group.
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in the first instance, most people in society do not experience a relative deprivation.
By contrast, in the second, most do.

As we noted above, the average rank of a group (call it ωJ , J ∈ (1, . . . K )) is
also an indicator of group rank sequence position. In fact, it is linked in a direct
and monotonic fashion to group rank dominance. It is easily shown that the relation
between them, for a perfectly segregated population is

τJ = ωJ − (nJ + 1)/2

N − nJ
.

In the case of populations which are not perfectly segregated, appropriate changes
to the definition of a rank maintain this relationship (see Appendix Two):

The inequality in group rank sequence position across groups can be assessed
either in terms of the inequality of group rank dominance quotients or that of average
group ranks.17 In either case, if a member of a group (the “beneficiary”) exchanges
his or her attribute with another person in a different group who has a higher level
of the attribute, then the indicator of group rank sequence position is increased for
the group to which the beneficiary belongs and is decreased for the other group. We
assume henceforth in this section that we are specializing to the case of group rank
dominance quotients, although the concepts we present can equally be applied to
average ranks.

The group rank dominance quotients achieved by members of distinct groups
can be captured by what we call the Group Rank Dominance (GRD) Lorenz curve.
The GRD Lorenz curve relates the cumulative proportion of the total of the group
rank domination quotients to the cumulative population of groups, when the iden-
tity groups are ordered from lowest group rank domination quotient to highest. It
captures the degree of inequality in group rank domination quotients. Any symmet-
ric arrangement of identity groups in the attribute space (i.e., one in which for any
instance in which a member of a given group rank dominates a member of another
group, a distinct pair can be found in which the opposite is true) is one of the perfect
equalities in group rank domination quotients, and will give rise to a GRD Lorenz
curve which is on the 45-degree line.

We can now define coordinates of the GRD Lorenz curve associated with each
group added as follows:

α(t) =
t∑

J=1
nJ

N and β(t) =
t∑

J=1
τJ

K∑
J=1

τJ

, where [t ∈ (0, . . . K )] and α(0) ≡ 0 andβ(0) ≡

0.
We can now define the GRD Lorenz curve as a whole, LGRD

∧

, as follows.

17For a given group, although the ordinal ranking of social configurations according to the group’s
rank sequence position does not depend on the choice between these indicators (or indeed any other
monotonic transformation thereof) the cardinal level of the indicator does depend on it. As a result,
the choice of indicator can be consequential for determining the measured sequence inequality.
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Fig. 13 The rank dominance Lorenz curve

When x = α(t), for integer values [t ∈ (0, . . . K )], then LGRD
∧

(x) = β(t)and,
when x is such that α(t) < x < α(t + 1), t ≤ (K − 1), then

LGRD
∧

(x) = LGRD
∧

(α(t))λ+ LGRD
∧

(α(t+1))(1−λ),where λ = x−α(t))
α(t+1)−α(t) .

An example of such a curve is shown in Fig. 13. Since the Lorenz curve is defined
for sequence inequality analogously to income inequality,with incomecorresponding
to the group rank domination quotient of the groups to which individuals belong,
the properties of the GRD Lorenz curve are analogous to those of the ordinary
Lorenz curves. Once again, therefore, any Lorenz consistent measure of inequality
will suffice to capture the level of sequence inequality.

3.4 Group Inequality Comparison

Group Inequality Comparison (I) refers to the degree to which between-group
inequalities contribute to overall inequality. Typically, measures which are “addi-
tively separable” (such as members of the generalized entropy class) have been uti-
lized for this purpose (see, for example, Shorrocks 1980, Foster and Shneyerov 1999
and Zhang and Kanbur 2001), although such a restriction is not required. In particu-
lar, if the between-group inequality is defined as the inequality that arises when every
member of the population is assigned a representative level of an attribute (mean,
generalized mean, median, or other measures of central tendency) of the group to
which they belong, then the ratio of between-group inequality to total interpersonal
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inequality can serve as an index of Group Inequality Comparison (I). This measure
has the advantage of always lying between zero and one and responding in an appro-
priate way to intragroup transfers.More generally, any indicator that the distributions
associated with different groups are different can potentially serve as a measure of
Group Inequality Comparison.

3.5 Polarization

Polarization as we have defined it above aggregates the three concepts concerning
group differences which we have defined. The range of polarization measures which
could be used is very wide indeed since any such measure could involve any form
of aggregation of a three-tuple (RI,SI, and GIC), and in turn each element of this
three-tuple could be defined in various ways. Further, any measure of polarization
which is positively responsive to all three will only bemaximized in a situationwhere
all three are maximized.

An empirical examination which involves these four concepts can, as we have
noted, be achieved using almost any common measure of inequality. The choice
will naturally bring in additional implications and properties. Given this flexibility,
an analyst can choose which measure to utilize to satisfy the additional properties
thought important. Thus, for example, a researcher who wishes to treat sequence
inequality as being decreased more in a situation where an exchange of ranks hap-
pens between members of different groups, each of whom has lower ranks to begin
with, can choose an inequality measure which shows the required form of transfer
sensitivity (e.g., a generalized entropy index with appropriately chosen parameters).
Whether the measure of polarization can be normalized in a specific way will also
depend on the choice of the underlying measures of inequality.

4 Part III: Axiomatic Framework

We define below some requirements that may reasonably be imposed on measures
of each of the concepts defined above, considering each of them in turn. We also
identify some classes of measures which satisfy these requirements.

4.1 Axioms (Representational Inequality)

We begin by suggesting some requirements whichmay be imposed on an overall rep-
resentational inequalitymeasureRI when it is viewed as a function of the information
in a social configuration ζ z. We write RI = RI(ζ ) to reflect this dependence.
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Axiom (RI1): Lorenz Consistency

Let (ζ 1, ζ 2) refer to two different social configurations and (I,J) refer to two different
identity groups. If (ζ 1, ζ 2) are such that L̂1

I ≥ L̂2
I , L̂

1
J ≥ L̂2

J , and L̂1
H = L̂2

H ,∀H �=
I, J, H ∈ (1, . . . K ), then RI(ζ 1) ≤ RI( ζ 2).

In other words, all else remaining equal, a social configuration which is at least
as segregated according to the criterion of Lorenz dominance of representational
inequality Lorenz curves is onewhich is at least as representational unequal. Itmay be
noted that just as there is an equivalence between Lorenz consistency of an inequality
measure and that measure’s respect for the Pigou–Dalton Transfer Principle, there is
an equivalence between Lorenz consistency of a representational inequality measure
as defined here and the requirement that the representational inequality measure
respond to a progressive balanced bilateral transfer by registering a decrease.
Axiom (RI2): Within-Group Anonymity

If yi j represents the attribute of person i (i ∈ (1, . . . nJ )) belonging to group J
((J ∈ (1, . . . K ))J and
if (ζ 1, ζ 2) are such that y1i J = y2πJ (i)J

∀(i), where πJ is a permutation operator applied
to (1, . . . nJ )), then RI(ζ 1) = RI(ζ 2).

In other words, a measure of overall representational inequality is invariant to
permutations of the attributes assigned to individuals within an identity group.

Axiom (RI3): Group Identity Anonymity

If yi j represents the attribute of person i (i ∈ (1, . . . nJ )) belonging to group J
((J ∈ (1, . . . K )) and if (ζ 1, ζ 2) are such that y1i J = y2iπ(J ) and n1J = n2iπ(J ),
∀(i),where π is a permutation operator applied to (1, . . . K ), then RI(ζ 1) = RI(ζ 2).

In other words, a measure of overall representational inequality is invariant to
permutations of the group identities with which distinct sets of individual attributes
are associated. This axiom incorporates the idea that all the information relevant to
assessing representational inequality is taken into account by noting the partition
of the society into groups and the attributes of the members of these groups. The
axiomembodies the idea that there is no need to take independent account of any other
features of groups. This approach disallows the incorporation of judgments that group
identities are additionally relevant (e.g., because of past histories or present injustices
not already reflected in the information described by the social configuration).18

Axiom (RI4): Minimal Representational Inequality

Let L̂ E be the RI Lorenz curve corresponding to even representation (i.e., the line of
equiproportionate representation). If L̂ J = L̂ E ∀J ∈ (1, . . . K ), then RI =0.

In other words, minimal overall representational inequality is achieved when all
identity groups are represented in the same proportion as their share of the population
for all attributes, and has measure zero.

18See Loury, (2004) for an extensive discussion on the merits of the anonymity axiom as applied
to groups.
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Axiom (RI5): Maximal Representational Inequality

The maximum level of Representational Inequality is 1.

This is a normalization axiom which may be imposed for interpretative convenience.
It may be dispensed with if it is desired to employ an unbounded inequality measure
(such as a measure of the additively decomposable generalized entropy class).

Axiom (RI6): Positive Population Share Responsiveness of Overall Representational
Inequality

Suppose that a measure of overall representational inequality is a function of the

vector of measures of representational inequality of groups, ¯̂I . Suppose further that
the population share for group J is increased and that for group H is decreased, and
the set of measures of representational inequality of groups remains unchanged as

do the population shares for any remaining groups. Suppose further that Î J > Î H ,
i.e., that the group-specific representational inequality of group J is greater than that
of group H. Then, the measure of overall representational inequality must increase.

This axiom can be motivated in different ways. We might, for example, believe
that a group which is very small in the population but which is highly unequally
represented simply because it is a small group in a society where there is unequal
representation should not affect overall representational inequality in the same man-
ner as a group which is much larger.

Wemay note that themeasure of overall representational inequality defined above,

RI = 1
K

K∑
J=1

(θJ )
(
Î (L̂ J (x))

)
, satisfies these axioms if the measure used to assess

representational inequality for each group, Î , is Lorenz consistent, which will be the
case if it has the form of any standard inequality measure, for example, the Gini
coefficient.

From another perspective, it may not be appropriate disproportionately to disvalue
the unequal representation of smaller groups. If one is interested in the experience
of groups as opposed to the experience of individuals within groups, it should make
no difference whether the group is small or large. Following this intuition, there is
no reason to promote a population-weighted overall measure and one should instead
adopt a measure which weights every group equally. This alternative may seem
especially compelling if one views polarization as an attribute of the society as
opposed to the individuals who belong to it. Such a measure can satisfy all the other
axioms.

4.2 Axioms (Sequence Inequality)

In what follows, we shall use γJ to refer to the indicator of group rank sequence
position (which may be either the group rank domination quotient or the average
rank) of group J. Let SI refer to the measure of overall sequence inequality. Some
reasonable axioms are as follows:
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Axiom (SI1): Lorenz Consistency

Let (ζ 1, ζ 2) refer to two different social configurations and (I,J) refer to two different
identity groups. Further, let L̂ refers to the Lorenz curve describing inequality across
groups in the indicator of group rank sequence position, γ J . If (ζ 1, ζ 2) are such that
L̂1≥L̂2, then SI(ζ 1) ≤ SI( ζ 2).

Axiom (SI2): Within-Group Anonymity

If yi j represents the attribute of person i (i ∈ (1, . . . nJ )) belonging to group J
((J ∈ (1, . . . K )) and
If (ζ 1, ζ 2) are such that y1i J = y2πJ (i)J

∀(i), where πJ is a permutation operator applied
to (1, . . . nJ )), then SI(ζ 1) = SI(ζ 2).

Axiom (SI3): Group Identity Anonymity

If yi j represents the attribute of person i (i ∈ (1, . . . nJ )) belonging to group J
((J ∈ (1, . . . K )) and if (ζ 1, ζ 2) are such that y1i J = y2iπ(J ) and n1J = n2iπ(J ),
∀(i),where π is a permutation operator applied to (1, . . . K ), then SI(ζ 1) = SI(ζ 2).

Axiom (SI4): Sequence Inequality Limits

Let L̂ E be the Lorenz curve (describing inequality in the indicator of group rank
sequence position, γJ ) that corresponds to even group rank sequence position (i.e.,
the case in which γJ is the same for all groups). If L̂ = L̂ E , then SI = 0.

Axiom (SI5): Maximal Sequence Inequality
The maximum level of sequence inequality is 1. As with Axiom RI5 above, this is a
normalization axiom which may be imposed for interpretative convenience. It may
be dispensed with if it is desired to employ an unbounded inequality measure (such
as a measure of the additively decomposable generalized entropy class).

4.3 Axioms (Group Inequality Comparison)

Some reasonable axiomsmay be as follows, if members of each group, j, are assigned
a representative income, μ j , and possesses an individual income, yi j .

Axiom (GIC1): Between-Group Synthetic Population Lorenz Consistency

Let (ζ 1, ζ 2) refer to two different social configurations. Assume that a synthetic
population is constituted in which every member of a group, j,is assigned the same
representative income for its group, μ j . Consider the Lorenz curve, L̃1, L̃2, for the
resulting synthetic population in each social configuration. If (ζ 1, ζ 2) are such that
L̃1 ≥ L̃2 and L1 = L2(i.e., the overall Lorenz curves for the actual population
remain unchanged), then GIC(ζ 1) ≤ GIC(ζ 2).

This axiom states that between-group regressive transfers which do not change
the overall interpersonal distribution must have an appropriate directional effect
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(nondecreasing) on the measure of GIC. Thus, for example, an exchange of incomes
between individuals of different incomes belonging to two different groups that
results in an increase in inequality in the synthetic population must increase the
measure of GIC.

Axiom (GIC2): Within-Group Anonymity

If yi j represents the attribute of person i (i ∈ (1, . . . nJ )) belonging to group J
((J ∈ (1, . . . K )) and
if (ζ 1, ζ 2) are such that y1i J = y2πJ (i)J

∀(i), where πJ is a permutation operator applied
to (1, . . . nJ )), then GIC(ζ 1) = GIC(ζ 2).

Axiom (GIC3): Group Identity Anonymity

If yi j represents the attribute of person i (i ∈ (1, . . . nJ )) belonging to group J
((J ∈ (1, . . . K )) and if (ζ 1, ζ 2) are such that y1i J = y2iπ(J ) and n1J = n2π(J ), ∀(i, J ),
where π is a permutation operator applied to (1, . . . K ), then GIC(ζ 1) = GIC(ζ 2).

Axiom (GIC4):Within-Group Lorenz Consistency

Let (ζ 1, ζ 2) refer to two different social configurations. Further, let L̂1
i and L̂2

i refer
to the Lorenz curves describing inequality within each group, i , in the respective
social configurations. If (ζ 1, ζ 2) are such that L̂1

i ≥ L̂2
i , but μ

1
i = μ2

i , then GIC((ζ
1)

≥ GIC((ζ 2).

This axiom states that within-group (weakly) regressive transfers of income must
have an appropriate directional effect (nonincreasing) on themeasure ofGIC, holding
the representative incomes of groups constant. Clearly, sinceGroup Inequality Com-
parison (II)does not rely on any information about within-group inequality, imposing
this axiom will exclude its use.

It may be readily checked that a measure of GIC of the form B/T, where B
represents the inequality measure for the synthetic population in which each member
of the society is assigned the representative income of its group and T represents
the total interpersonal inequality of the society, which satisfies all the axioms above.
Such a measure would capture the concept of Group Inequality Comparison (I). In
contrast, employing B alone as the measure of GIC would capture the concept of
Group Inequality Comparison (II). Such a measure would satisfy Axioms (GIC1) −
(GIC3) alone.

4.4 Axioms (Polarization)

We have proposed above to define polarization as a function of the other concepts
of group difference we have defined. In a working version of this paper (Reddy and
Jayadev, 2011), we provide conditions that yield a simple example of a polarization
measure that permits the underlying inequality measure used to calculate RI and SI
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to be chosen flexibly as long as it is bounded and normalized to vary between zero
and one19

P = (RI )(SI )(GIC).

It can be shown that it is the uniquemeasurewhich satisfies the required conditions
and is of the CES functional form. The measure is used to characterize group-based
differences in various societies in Jayadev and Reddy (2011).

It is interesting to note that the circumstances in which this measure of polariza-
tion is maximized are different from those identified in Duclos, Esteban, and Ray
(2004), in which this happens when there are two equal sized groups. The measure
of polarization identified here can be maximized regardless of the number of groups,
and to approach its maximum it is required that the poorer group be as large as pos-
sible relative to the richer groups, that there is complete segregation and that there is
no within-group inequality (Fig. 14).

5 Part IV: Conclusion

This paper has sought to clarify how onemay assess social situations according to the
extent to which attributes are disproportionately possessed by different social groups.
The measures we have developed capture the various ways in which experiences of
members of distinct groups may differ. Thus, social situations can differ in the extent
towhichmembers of a group share experiences withmembers of other groups (repre-
sentational inequality), experience the same or different relative positions (sequence
inequality) and experience differences in the extent to which interpersonal inequali-
ties are accounted for by intergroup differences (group inequality comparison). These
concepts are distinct but complexly interrelated. They each integrate empirical obser-
vations and evaluative judgments. Judgments concerning the relative importance to
be attached to different aspects of intergroup difference are also involved when they
are combined (for example, to form a measure of polarization).20 These measures
have an intuitive appeal and can have widespread application in social science.

There appear to deep-seated tendencies for societies to exhibit segregation, cluster-
ing, and polarization of identity groups. This observation has important implications
for both empirical investigations of societies and for social evaluation. We hope that,
given Satya Chakravarty’s lifelong concern with the assessment of social inequali-
ties, he and others may find the concepts and measures that we have discussed to be
useful.

19The requirement that RI and SI are bounded and normalized to vary between zero and one
excludes certain inequality measures, such as the additively decomposable members of the gener-
alized entropy class.
20The concepts we have discussed can be understood as “thick ethical concepts,” on which see, e.g.,
Putnam (2004).
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Fig. 14 a Very high polarization with GIC (l), b Very high polarization with GIC (lI)
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Appendix 1 (Rank Domination Quotient and Average Rank)

As we noted above, the average rank of a group (call it ωJ , J ∈ (1, . . . K )) is also an
indicator of group rank sequenceposition. In fact, it is linked in a direct andmonotonic
fashion to group rank dominance. As before, we understand rank as referring to the
position in which an individual appears when incomes are sequenced from lowest
to highest (the ascending order of values). When individuals from the same group
share an income, we shall assign them a rank equal to the average position in which
an individual appears when incomes are sequenced from lowest to highest. We shall
consider subsequently the rule to be applied in assigning ranks when individuals
from different groups share an income.

Consider at the outset, for simplicity, a perfectly segregated population in which
there is no more than one individual in each income bracket. In such a population,
the total number of instances of pair-wise rank domination that members of group
J enjoy vis-à-vis others can be understood as a function of the ranks of members
of group J in the population. The lowest ranked member of group J, having rank r1
dominates (r1 − 1) persons belonging to other groups. The second lowest ranked
member of group J, having rank r2 dominates (r2 − 2) persons belonging to other
groups (i.e., (r2 − 1) persons belonging to all groups−1 person belonging to the same
group)). Extending this logic, the total number of instances of pair-wise domination
by members of group J is

nJ∑

i=1

(ri − i).

The rank domination quotient correspondingly is

τJ =

nJ∑
i=1

(ri − i)

N − nJ

from which it follows that:

τJ = ωJ − (nJ + 1)/2

N − nJ
.
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It is easy to see that this formula also applies in the case inwhich theremay bemore
than one person in an income bracket but all persons who share an income bracket
are always from the same group. In contrast, in the most general case of populations
in which there may exist some income brackets which contain members of distinct
groups there can be ties in the income ranks assigned to members of different groups,
which will imply that this formula will no longer hold exactly unless the ranks are
assigned appropriately to individuals in the same income bracket. Specifically, if
strict domination is the concept that is employed then this relationship will hold
exactly if individuals in the same income bracket are assigned a rank equal to the
lowest of their positions in the ascending order of values. Correspondingly, if weak
domination is the concept that is employed, then this relationship will hold exactly
if each individual in the income bracket is assigned a value equal to the sum of the
lowest of the positions of the individuals sharing the income bracket (in the ascending
order of values) and the number of individuals from other groups with whom they
share the income bracket.

The correspondence we have derived between τJ and ωJ holds also in the case of
continuous distributions, as can be shown through limit properties. In this case, the
average rank of members of a group, J, is defined by

ωJ = N
∫

F(x)gJ (x)dx

and the rank domination quotient for the group is defined by

τJ =
∫

(F(x) − θJ gJ (x))dx,

where F(x) is the cumulative distribution function for incomes of the entire popula-
tion, gJ (x) is the density function for incomes of members of the group, J, and the
integrals are calculated over the domain of all possible incomes.

Appendix 2 (Proof of Lemma 1)

Without loss of generality, we shall assume that the attributes can be understood as
income levels. Let A refer to a matrix of size K by n with K identity groups and n
income levels. Each element in the matrix ai j ∈ {0, 1, 2},∀(i, j). We say that the
ith identity group is “under-represented” at the jth income level if the proportion of
persons from group i at income j is less than the proportion of persons of group i
in the population as a whole. We denote the statement that the ith identity group
is “under-represented” at the jth income level by ai j = 0. We say further that the
ith identity group is “over-represented” if the proportion of persons from group i at
income j is greater than the proportion of persons of group i in the population as a
whole. We denote the statement that the ith identity group is “over-represented” at
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the jth income level by ai j = 1. If the ith identity group is represented at the jth
income level in the same proportion as it is represented in the population as a whole,
then we say that it is “equiproportionally represented” and we denote this by ai j = 2.

Thus, A is a matrix in which every element is 0,1, or 2. We may further note that
if any row or any column contains a zero, then it must contain a one and vice versa.
This requirement captures the necessity that if an identity group is over-represented
at an income level, it must be under-represented at another income level and that if a
group is over-represented at an income level, then another group is under-represented
at that same income level.

A balanced bilateral transfer is always possible if an identity group is represented
to a greater extent at one income level (call it y1) than it is at another (call it y2)
and another identity group is represented to a lesser extent at y1 than it is at y2. This
condition is satisfied as long as it is possible to identify two rows (i and j) and two

columns (l and m) of the matrix A such that they form a matrix A∼ =
(
ail aim
a jl a jm

)

which is of one of the following forms, or which can be constructed from one of the
following forms by permuting either their rows or their columns:

(
1 0
0 1

)
,

(
2 0
0 2

)
,

(
1 2
2 1

)
,

(
1 0
2 1

)
,

(
0 2
1 0

)
.

The lemma is therefore equivalent to the statement that there exists a matrix A~

for any matrix Awhich contains at least a single one or zero. Suppose that the lemma
is false. Then, it is possible to construct an A such that there is no A~ associated with
it.

We now try to construct such a matrix A. Without loss of generality, consider the
case in whichA contains at least one zero (i.e., an identity group is under-represented
at a particular level of income). We can present this as occurring at the top left corner
(a11) of the matrix, without loss of generality, as given below:

A =
⎛

⎜⎝
0 . . . a1n
...

. . .
...

ak1 · · · akn

⎞

⎟⎠.

This however means that there must be at least one level of income in the first
column and in the first row in which there is over-representation of an identity group.
Without loss of generality, let us say that this occurs at a12 and a21, respectively, so
that

A =

⎛

⎜⎜⎜⎜⎝

0 1 . . . a1n
1 a22 · · · a2n
... · · · . . .

ak1

⎞

⎟⎟⎟⎟⎠
.
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Now, if a22 = 0 or 2, then A~ exists. If a22 �= 0 or 2, then a22 = 1. That is

A =

⎛

⎜⎜⎜⎜⎝

0 1 . . . a1n
1 1 · · · a2n
... · · · . . .

ak1

⎞

⎟⎟⎟⎟⎠
.

Consider row 2 and column 2 now. Since for the already fixed elements, there is
over-representation, there must be elements in row 2 and in column 2, respectively,
that have value zero (reflecting under-representation). Without loss of generality, let
these occur at a23 and a32, respectively, so that

A =

⎛

⎜⎜⎜⎜⎝

0 1 a13 . . .

1 1 0 . . . . . .

a31 0 a33 . . .

...

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0 1 0 . . . . . .

1 1 0 . . . . . .

0 0 0 . . . . . .

...

⎞

⎟⎟⎟⎟⎠
.

But this in turn fixes a13, a31, and a33 to be 0 since if any of these are 1 or 2,
we can construct matrix A~. This in turn implies that there exist elements elsewhere
in row 3 and column 3 with value 1 (indicating over-representation), which we can
place without loss of generality at a34 and a43, respectively. It can readily be seen
that this in turn fixes a41, a42, a44, a24, and a14 to be 1 since if any of these are 0 or
2, we can construct matrix A~. Thus we may construct a matrix A such that aij = aji
= 0, if i is odd and j ≤ i and aij =1 otherwise.

Let us now consider the matrix where the row (k − 1) is odd. This means that A
has the following form:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

... a1n

· · · 1 1 0 1 0
...

· · · 0 0 0 1 0
...

· · · 1 1 1 1 0
...

· · · 0 0 0 0 0
...

ak1 · · · · · · · · · · · · akn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This in turn implies that ak − 1,n = 1 and ak,n − 1 = 1. It may be verified that for
A~ not to exist all elements in row k and in column n must equal 1. However, this
violates the requirements on a matrix A.

Consider now the matrix where the row (k − 1) is even. This means that A has
the following form:



144 A. Jayadev and S. G. Reddy

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

... a1n

· · · 0 0 1 0 1
...

· · · 1 1 1 0 1
...

· · · 0 0 0 0 1
...

· · · 1 1 1 1 1
...

ak1 · · · · · · · · · · · · akn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This in turn implies that ak − 1,n = 0 and ak,n − 1 = 0. It may be verified that for
A~ not to exist all elements in row k and in column n must equal 0. However, this
violates the requirements on a matrix A.

Thus, it is not possible to construct a matrix A such that A~ does not exist.
A~ must exist, thereby proving the lemma.
QED
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A Generalization of the Theil Measure
of Inequality

Swami Tyagarupananda and Nachiketa Chattopadhyay

Abstract A general measure of inequality which, in the limit, converges to the
Theil measure is developed, based on the Generalized Entropy of Degree α (Aczel
and Daroczy 1975). The properties of the measure are discussed with an empirical
illustration using Indian Consumer Expenditure Survey data.

Keywords Information · Inequality · Entropy

1 Introduction

Information measures have been used in economics to measure inequality and con-
centration. The Shannon measure of information has been widely used in inequality
literature. This has generated the Theil measure of inequality (see Theil 1967 and
Sen 1973). In this paper, we provide a general measure of inequality which, in the
limit, converges to the Theil measure. This is based on the Generalized Entropy of
degree α (see Aczel and Daroczy 1975).

We discuss the information measures and some of their properties in Sect. 2. In
Sect. 3 the corresponding inequality measures are derived, while their properties are
analyzed in Sect. 4. An empirical illustration using NSS data is presented in Sect. 5.
Section6 concludes the paper.
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2 Information Theory Results

The results presented in this section are taken from Aczel and Daroczy (1975). The
Shannon Entropy of an experiment with outcomes A1, A2, . . . , Am of probabilities
p1, p2, . . . , pm is

S(P) = S(p1, p2, . . . , pm) = −
m∑

i=1

pi log pi , p ∈ Tm, (1)

where Tm is the set such that p ∈ Tm implies
∑m

i=1 pi = 1, pi ≥ 0, for all i .
The Shannon Entropymeasure satisfies a number of algebraic properties of which

we note the following.

Strong Additivity:

S(p1q11, p1q12, . . . , pmqm1, . . . , pmqmn) = S(p1, p2 . . . , pm) +
m∑

i=1

pi S(qi1, qi2 . . . , qin),

(2)
where, p ∈ Tm , qi ∈ T n

The vector qi = (qi1, qi2 . . . , qin) gives the conditional probability of n mutually
exclusive and exhaustive events, given that the event Ai has occurred. The probability
of occurrence of the event Ai is Pi . The property (2) thus has a simple interpretation,
the combined entropy of mn compound events is equal to the entropy of the m
events A1, A2, . . . , Am added to a weighted sum of the entropy of the conditional
probabilities (qi1, qi2 . . . , qin), the weight being equal to the probability of event Ai .

Maximality:
The maximum value of the Shannon Entropy measure is obtained when p1 = p2 =
· · · = pn = 1/n. In this case,

maxS = Max(−
n∑

k=1

pk log pk) = log n. (3)

The Shannon Entropy function has been generalized to a much wider class, the
Generalized Entropy of Degree α. This class, too, has a number of properties corre-
sponding to the properties of the ShannonEntropy function. TheGeneralizedEntropy
of Degree α is given by

Gα = 1

21−α − 1
(

n∑

k=1

pα
k − 1), α �= 1, α ≥ 0

= −
n∑

k=1

pk log pk = S, α = 1. (4)
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Thus, in the limit as α → 1, the Generalized Entropy class converges to the
ShannonMeasure of Information. The measure in (4) satisfies the property of Strong
Additivity of Degree α. It can be verified that

Gα(p1q11, . . . , p1q1n, p2q21, . . . , pmqm1, . . . , pmqmn)

= Gα(p1, p2, . . . , pm) +
m∑

i=1

pα
i Gα(qi1, qi2 . . . , qin). (5)

This condition is a generalization of the condition of Strong Additivity [Eq. (2)]
which the Shannon Entropy Measure satisfies. The vector (qi1, qi2 . . . , qin) again
gives the conditional probability of n mutually exclusive and exhaustive events,
given that the event Ai has occurred. As earlier, the probability of occurrence of
the event Ai is pi . The combined entropy of mn compound events is equal to the
entropy of the m events A1, A2, . . . , Am added to a weighted sum of the entropy
of the conditional probabilities (qi1, qi2 . . . , qin), the weight being equal to pα

i . As
α → 1 and the Generalized Entropy class tends to the Shannon Entropy Function
which satisfies Eq. (2), the condition of Strong Additivity. For Maximal, note that
the index Gα , again, is maximum when pi = 1/n for all i . Thus,

maxGα = n1−α − 1

21−α − 1
, α �= 1, α > 0

= log n, α = 1. (6)

As α → 1, the maximal value of Gα coincides with that of S.

3 Inequality Measures

3.1 Theil Measure

Let si be the share of the i th person in the income profile Y = (y1, y2, . . . , yn).
So si = Yi

nμ
, where μ is the mean income of Y . If we substitute the probabilities in

the Shannon Entropy Function by the shares of incomes (both the probabilities and
shares add up to unity), we have the Shannon Entropy for the profile Y

S = −
n∑

i=1

yi
nμ

log
yi
nμ

= log n −
n∑

i=1

yi
nμ

log
yi
μ

(7)

= log n −
n∑

i=1

si log nsi

= log n − T,
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where

T =
n∑

i=1

si log nsi

=
n∑

i=1

yi
nμ

log
yi
μ

(8)

is the Theil Measure of Inequality. From (7), it is seen that the Theil Measure is equal
to the maximal value of the ShannonMeasure less the value of the ShannonMeasure
for the income profile Y . We approximate the probabilities pi by the income shares
si = yi

nμ
. Theil (1967) and Sen (1973) argue that the value of S can be regarded

as a measure of equality. By subtracting the actual equality from the maximum
equality, we get themeasure of inequality, T , introduced by Theil. The TheilMeasure
T achieves its maximum value when all the income is monopolized by a single
person whose income becomes nμ. The rest have 0 incomes. In this case, T = log n
(assuming 0 log 0 = 0). The measure T achieves its maximum when the measure of
equality S becomes 0 in value.

3.2 The Inequality Measure IG

Now, we derive the class of inequality measures obtainable from the Generalized
Entropy of Degree α. Putting si = yi

nμ
, the share of the i th person in place of the

probabilities in (4), we have for the income vector Y

Gα(Y ) = 1

21−α − 1
(

n∑

i=1

(
yi
nμ

)α − 1)

= 1

21−α − 1
(
1

nα

n∑

i=1

((
yi
μ

)α − 1) + n1−α − 1) (9)

= n1−α − 1

21−α − 1
− 1

nα(1 − 21−α)

n∑

i=1

((
yi
μ

)α − 1), α �= 1, α ≥ 0

= −
n∑

i=1

yi
nμ

log
yi
nμ

, α = 1.

The inequality measures derived from the Generalized Entropy of Degree α, in line
with the derivation of the Theil Measure in (8) is given by

IG = 1

nα(1 − 21−α)
(

n∑

i=1

(
yi
μ

)α − 1)

=
∑n

i=1 sα
i − n1−α

1 − 21−α
. (10)
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From (9), we have

IG = n1−α − 1

21−α − 1
− Gα.

If Gα is again interpreted as a measure of equality, IG is obtained by subtracting
the actual equality from the maximum equality. The value of IG is n1−α−1

21−α−1 when all
incomes accrue to a single person. In this case, the measure of equality Gα has the
value 0. At the other extreme, when the incomes of all persons are equal to the mean
of the profile the inequality measure IG has the value 0. Again,

limα→1 max IG = limα→1
n1−α − 1

21−α − 1
= log n

and limα→1 IG = limα→1
1

nα(1 − 21−α)

n∑

i=1

((
yi
μ

)α − 1) (11)

=
n∑

i=1

yi
nμ

log
yi
μ

= T .

(We use L Hospital s rule in evaluating both the limits) Thus, IG contains the Theil
index as a particular case and obviously themaximumvalue of the inequalitymeasure
IG tends to the maximum of the Theil Measure as α → 1.

4 Decomposability Properties

Theil noted that his index satisfies a useful decomposability property. To explain
this, let there be m disjoint groups of incomes where the number of members in the
i th group is ni . So, if Y stands for the vector of incomes of all the m groups taken
together, we have

Y = (Y 1, Y 2, . . . , Ym ) = [(y11, y12, . . . , y1n1 ), (y21, y22, . . . , y2n2 ), . . . , (ym1, ym2, . . . , ymnm )].

The Theil Measure of Inequality for Y is given by

T =
m∑

i=1

ni∑

j=1

si j log (nsi j ), (12)
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wheren = ∑m
i=1 ni . Let yi0 = ∑ni

j=1 yi j and y0 = ∑m
k=1 yi0 = ∑m

i=1

∑ni
j=1 yi j . Then,

si j = yi j
y0

= yi j
yi0

.
yi0
y0

= s∗
i j .si0 (say). So, from (12), we have

T =
m∑

i=1

ni∑

j=1

(s∗
i j si0) log (nsi j ) =

m∑

i=1

ni∑

j=1

(s∗
i j si0)log (ni

m

ni
si0.s

∗
i j )

=
m∑

i=1

yi0
y0

T (Y i ) +
m∑

i=1

niμi

nμ
log

μi

μ
(13)

=
m∑

i=1

yi0
y0

T (Y i ) + T (μ11
n1 , μ21

n2 , . . . , μm1
nm ).

This additive decomposability property of the Theil index (with same number of
members in each group) corresponds to the strongAdditivity property of the Shannon
Entropy Index of Information [Eq. (2)].

Turning now to the decomposability of the Generalized-Entropy-based index of
inequality IG , we have, from (10)

IG(Y ) = IG[(y11, y12, . . . , y1n1), (y21, y22, . . . , y2n2), . . . , (ym1, ym2, . . . , ymnm )]

= 1

1 − 21−α
[

m∑

i=1

ni∑

j=1

sα
i j − n1−α],where n =

m∑

i=1

ni

= 1

1 − 21−α
[

m∑

i=1

sα
i0

ni∑

j=1

s∗α
i j − n1−α] as si j = s∗

i j si0 (14)

= 1

1 − 21−α
[

m∑

i=1

sα
i0(

ni∑

j=1

s∗α
i j − n1−α

i ) − n1−α +
m∑

i=1

sα
i0n

1−α
i ].

On simplification, this gives

IG(Y ) =
m∑

i=1

(
yi0
y0

)α IG(Y i ) + IG(μ11
n1 , μ21

n2 , . . . , μm1
nm ). (15)

The weights to IG(Y i ), in general, do not add up to 1 (except in the limiting case).
Just as the Strong Additivity property of the Shannon Entropy Index generated the
additive decomposability property of the Theil index as given in (14), the property of
Strong Additivity of Degree α of the Entropy Index class Gα generates the additive
decomposability property (15) of IG with same number of members in each group.
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4.1 Social Welfare Interpretation of IG

We now define the social welfare function associated with IG as

WG = μ(max IG − IG) = μGα, (16)

whereGα is the Generalized Entropy of Degree α. Clearly,WG corresponds to IG in a
negativemonotonicway. That is, for a given population size n and givenmean income
μ, WG will rank income distributions in exactly the same way as the negative of IG .
SinceGα is homogeneous of degree 0,WG is linearly homogeneous.WG also satisfies
continuity and strict S-concavity (hence symmetry). When efficiency considerations
are absent (that is, μ is fixed), an increase in IG is equivalent to a reduction in social
welfare. On the other hand, an equiproportionate increase in all incomes does not
alter inequality but increases the mean income μ leading to an increase inWG . Thus,
the society now moves to a Pareto superior state. The parameter α reflects different
perceptions of inequality (social welfare). A transfer of income from a poor person i
to a richer person j increases (decreases) IG (WG) by a larger amount the higher is α.

5 Empirical Illustration

We use National Sample Survey data of Consumer Expenditure to analyze changes
in inequality in Monthly Per Capita Expenditure (MPCE) across states of India for
the time period 1993–94 to 2014–15. The specific rounds of survey considered are
50, 55, 61, 66, 68, and 72 with respective years as 1993–94, 1999–2000, 2004–
2005, 2009–10, 2011–12, and 2014–15. The computations are carried for the sectors
rural, urban, and rural–urban combined. It may be noted that MPCE is taken as
an approximation of Monthly Per Capita Income (MPCI) in absence of reliable
income data. Obviously, the inequality in the savings pattern and its correlations with
consumption expenditure have definitive influence on inequality of income. Tables1,
2, and 3 present the inequality of MPCE for the three sectors, rural–urban combined,
rural, and urban in terms of the Theil index (α = 1). The values are sorted by the
level of inequality of the most current round (72) in the year 2014–15. Note that for
α = 1, the index is population replication invariant, and hence is comparable across
state having different population sizes. An useful comparison of inequality can also
be based on the ranks of the states across rounds which are presented in Tables4,
5, and 6. We have also observed that the inequalities as well as ranks generally
differ for the choice of α. Further, for α �= 1, the indexes are not comparable across
populations differing in sizes being not satisfying population principle. Hence, they
are not reported here. However, our computation shows that the functional form
of the index and the corresponding perspective on inequality are crucial in judging
inequality across groups within a population.
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Table 1 All India and state inequality (Theil index) in MPCE (rural–urban combined across NSS
rounds)

NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

All India 0.247 0.239 0.278 0.329 0.296 0.202

Lakshadweep 0.149 0.150 0.120 0.268 0.181 0.067

Nagaland 0.066 0.099 0.118 0.081 0.085 0.077

Goa 0.167 0.167 0.197 0.115 0.179 0.094

Meghalaya 0.244 0.102 0.132 0.101 0.109 0.096

Bihar 0.145 0.139 0.128 0.134 0.105 0.102

Assam 0.110 0.136 0.137 0.169 0.173 0.107

Uttaranchal 0.190 0.552 0.213 0.109

Manipur 0.047 0.103 0.051 0.068 0.080 0.111

Sikkim 0.137 0.139 0.186 0.196 0.124 0.113

Pondicheri 0.180 0.164 0.260 0.801 0.142 0.114

Himachal Pradesh 0.401 0.169 0.201 0.233 0.223 0.117

Tripura 0.126 0.113 0.172 0.134 0.138 0.119

Kerala 0.259 0.195 0.287 0.340 0.353 0.134

Jammu and Kashmir 0.179 0.098 0.132 0.157 0.165 0.148

Andaman and Nicober 0.274 0.140 0.304 0.342 0.272 0.151

Chandigarh 0.404 0.199 0.226 0.265 0.266 0.154

Gujrat 0.165 0.173 0.241 0.239 0.189 0.157

Dadra and Nagar Haveli 0.184 0.232 0.321 0.159 0.283 0.157

Daman and Diu 0.121 0.098 0.244 0.135 0.054 0.158

Jharkhand 0.207 0.194 0.235 0.167

Delhi 0.319 0.187 0.194 0.228 0.248 0.167

Punjab 0.171 0.143 0.227 0.242 0.203 0.168

Tamil Nadu 0.283 0.412 0.296 0.244 0.226 0.170

Rajasthan 0.187 0.149 0.187 0.186 0.196 0.171

Andhra Pradesh 0.207 0.192 0.272 0.266 0.198 0.172

Uttar Pradesh 0.196 0.184 0.204 0.410 0.281 0.173

Orissa 0.185 0.166 0.220 0.266 0.203 0.175

Chhattisgarh 0.273 0.210 0.277 0.186

Madhya Pradesh 0.272 0.204 0.267 0.315 0.293 0.187

West Bengal 0.237 0.241 0.261 0.259 0.291 0.188

Mizoram 0.080 0.117 0.108 0.118 0.151 0.189

Haryana 0.209 0.137 0.278 0.204 0.238 0.194

Karnataka 0.206 0.220 0.314 0.372 0.368 0.197

Telangana 0.213

Arunachal Pradesh 0.209 0.238 0.128 0.182 0.226 0.224

Maharastra 0.293 0.271 0.299 0.332 0.317 0.246
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Table 2 All India and state inequality (Theil index) in MPCE (rural) across NSS rounds)

NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

All India 0.184 0.147 0.182 0.211 0.186 0.149

Daman and Diu 0.134 0.094 0.247 0.138 0.04 0.067

Nagaland 0.047 0.072 0.09 0.067 0.066 0.07

Meghalaya 0.256 0.053 0.054 0.07 0.063 0.075

Lakshadweep 0.124 0.115 0.12 0.351 0.161 0.085

Bihar 0.103 0.089 0.071 0.088 0.08 0.085

Assam 0.058 0.076 0.066 0.088 0.097 0.09

Goa 0.157 0.152 0.16 0.106 0.151 0.092

Tripura 0.106 0.065 0.091 0.078 0.091 0.096

Sikkim 0.118 0.122 0.169 0.205 0.086 0.097

Uttaranchal 0.127 0.586 0.138 0.1

Delhi 0.135 0.061 0.151 0.073 0.087 0.106

Himachal Pradesh 0.193 0.134 0.192 0.205 0.172 0.108

Gujrat 0.119 0.111 0.164 0.191 0.138 0.11

Kerala 0.199 0.186 0.259 0.3 0.355 0.111

Jharkhand 0.087 0.079 0.109 0.112

Telangana 0.112

Dadra and Nagar Haveli 0.155 0.214 0.291 0.094 0.23 0.113

Manipur 0.045 0.067 0.047 0.057 0.081 0.114

Pondicheri 0.168 0.121 0.258 0.122 0.136 0.116

Jammu and Kashmir 0.16 0.081 0.118 0.103 0.14 0.117

Karnataka 0.146 0.123 0.192 0.113 0.153 0.12

Andaman and Nicober 0.138 0.126 0.219 0.439 0.191 0.122

Andhra Pradesh 0.189 0.127 0.153 0.207 0.125 0.126

Chandigarh 0.105 0.117 0.082 0.167 0.121 0.128

Punjab 0.177 0.125 0.16 0.23 0.155 0.13

West Bengal 0.195 0.126 0.154 0.104 0.111 0.132

Uttar Pradesh 0.164 0.133 0.132 0.12 0.146 0.133

Tamil Nadu 0.202 0.175 0.184 0.157 0.163 0.138

Chhattisgarh 0.15 0.115 0.118 0.14

Haryana 0.226 0.112 0.291 0.138 0.122 0.144

Orissa 0.131 0.118 0.144 0.136 0.115 0.145

Madhya Pradesh 0.196 0.122 0.139 0.151 0.169 0.146

Rajasthan 0.175 0.098 0.097 0.093 0.111 0.147

Mizoram 0.066 0.098 0.076 0.074 0.105 0.153

Maharastra 0.206 0.15 0.168 0.117 0.184 0.174

Arunachal Pradesh 0.204 0.248 0.129 0.179 0.221 0.242
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Table 3 All India and state inequality (Theil index) in MPCE (urban) across NSS rounds

NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

All India 0.257 0.262 0.265 0.320 0.282 0.196

Lakshadweep 0.175 0.168 0.111 0.181 0.201 0.061

Nagaland 0.089 0.099 0.110 0.090 0.087 0.086

Goa 0.168 0.162 0.236 0.108 0.193 0.094

Manipur 0.048 0.161 0.053 0.087 0.077 0.101

Uttaranchal 0.206 0.186 0.255 0.102

Pondicheri 0.177 0.165 0.237 0.871 0.136 0.109

Dadra and Nagar Haveli 0.180 0.112 0.162 0.114 0.193 0.113

Sikkim 0.121 0.115 0.160 0.090 0.085 0.120

Meghalaya 0.115 0.094 0.173 0.104 0.092 0.128

Gujrat 0.170 0.173 0.217 0.193 0.153 0.143

Bihar 0.188 0.211 0.221 0.219 0.166 0.146

Tripura 0.156 0.153 0.207 0.154 0.148 0.149

Tamil Nadu 0.323 0.530 0.269 0.231 0.215 0.150

Kerala 0.360 0.192 0.315 0.392 0.323 0.154

Chandigarh 0.402 0.201 0.216 0.266 0.273 0.154

Himachal Pradesh 0.772 0.176 0.140 0.258 0.225 0.156

Mizoram 0.067 0.106 0.097 0.098 0.116 0.157

Arunachal Pradesh 0.151 0.148 0.113 0.172 0.189 0.157

Assam 0.153 0.156 0.180 0.249 0.230 0.158

Orissa 0.191 0.183 0.256 0.337 0.219 0.159

Daman and Diu 0.102 0.102 0.236 0.131 0.093 0.160

Andaman and Nicober 0.346 0.132 0.307 0.206 0.272 0.161

Delhi 0.339 0.196 0.192 0.231 0.257 0.167

Rajasthan 0.174 0.192 0.247 0.249 0.239 0.169

Jammu and Kashmir 0.154 0.104 0.120 0.238 0.170 0.171

Chhattisgarh 0.304 0.235 0.348 0.178

Andhra Pradesh 0.197 0.196 0.317 0.234 0.205 0.179

Karnataka 0.206 0.214 0.275 0.348 0.366 0.183

Telangana 0.184

Uttar Pradesh 0.218 0.226 0.249 0.582 0.358 0.195

West Bengal 0.194 0.278 0.249 0.278 0.302 0.198

Madhya Pradesh 0.307 0.240 0.305 0.345 0.335 0.202

Maharastra 0.243 0.242 0.256 0.307 0.278 0.210

Punjab 0.145 0.151 0.249 0.233 0.233 0.212

Jharkhand 0.194 0.229 0.230 0.218

Haryana 0.156 0.147 0.230 0.246 0.275 0.237
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Table 4 Rural–urban combined Theil inequality for states by ranks

NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

Lakshadweep 9 15 4 27 13 1

Nagaland 2 3 3 2 3 2

Goa 11 18 15 4 12 3

Meghalaya 24 4 8 3 5 4

Bihar 8 10 6 7 4 5

Assam 4 8 9 11 11 6

Uttaranchal 13 34 19 7

Manipur 1 5 1 1 2 8

Sikkim 7 11 11 15 6 9

Pondicheri 14 16 24 35 8 10

Himachal Pradesh 31 19 16 19 20 11

Tripura 6 6 10 6 7 12

Kerala 25 24 30 30 34 13

Jammu and Kashmir 13 1 7 9 10 14

Andaman and Nicober 27 12 33 31 27 15

Chandigarh 32 25 20 24 26 16

Gujrat 10 20 22 20 14 17

Dadra and Nagar Haveli 15 28 35 10 30 18

Daman and Diu 5 2 23 8 1 19

Jharkhand 18 14 23 20

Delhi 30 22 14 18 25 21

Punjab 12 13 21 21 18 22

Tamil Nadu 28 32 31 22 22 23

Rajasthan 17 14 12 13 15 24

Andhra Pradesh 20 23 27 26 16 25

Uttar Pradesh 18 21 17 33 29 26

Orissa 16 17 19 25 17 27

Chhattisgarh 28 17 28 28

Madhya Pradesh 26 26 26 28 32 29

West Bengal 23 30 25 23 31 30

Mizoram 3 7 2 5 9 31

Haryana 21 9 29 16 24 32

Karnataka 19 27 34 32 35 33

Telangana 34

Arunachal Pradesh 22 29 5 12 21 35

Maharastra 29 31 32 29 33 36
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Table 5 Rural Theil inequality for states by ranks

NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

Daman and Diu 12 9 31 21 1 1

Nagaland 2 5 8 2 3 2

Meghalaya 32 1 2 3 2 3

Lakshadweep 10 14 12 33 27 4

Bihar 5 8 4 8 4 5

Assam 3 6 3 9 9 6

Goa 17 28 23 14 24 7

Tripura 7 3 9 6 8 8

Sikkim 8 18 26 29 6 9

Uttaranchal 13 35 20 10

Delhi 13 2 19 4 7 11

Himachal Pradesh 24 26 28 28 30 12

Gujrat 9 12 24 27 21 13

Kerala 27 30 33 32 35 14

Jharkhand 7 7 11 15

Telangana 16

Dadra and Nagar Haveli 16 31 35 11 34 17

Manipur 1 4 1 1 5 18

Pondicheri 20 17 32 19 19 19

Jammu and Kashmir 18 7 11 12 22 20

Karnataka 15 20 29 15 25 21

Andaman and Nicober 14 22 30 34 32 22

Andhra Pradesh 23 24 20 30 18 23

Chandigarh 6 15 6 25 16 24

Punjab 22 21 22 31 26 25

West Bengal 25 23 21 13 12 26

Uttar Pradesh 19 25 15 18 23 27

Tamil Nadu 28 29 27 24 28 28

Chhattisgarh 18 16 15 29

Haryana 31 13 34 22 17 30

Orissa 11 16 17 20 14 31

Madhya Pradesh 26 19 16 23 29 32

Rajasthan 21 10 10 10 13 33

Mizoram 4 11 5 5 10 34

Maharastra 30 27 25 17 31 35

Arunachal Pradesh 29 32 14 26 33 36
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Table 6 Urban Theil inequality for states by ranks

NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

Lakshadweep 16 17 4 11 15 1

Nagaland 3 2 3 3 3 2

Goa 13 15 20 6 14 3

Manipur 1 14 1 1 1 4

Uttaranchal 14 12 24 5

Pondicheri 17 16 22 35 7 6

Dadra and Nagar Haveli 18 6 9 7 13 7

Sikkim 6 7 8 2 2 8

Meghalaya 5 1 10 5 4 9

Gujrat 14 18 17 13 9 10

Bihar 19 26 18 15 10 11

Tripura 12 12 15 9 8 12

Tamil Nadu 27 32 29 17 17 13

Kerala 30 22 34 33 31 14

Chandigarh 31 25 16 27 27 15

Himachal Pradesh 32 19 7 26 19 16

Mizoram 2 5 2 4 6 17

Arunachal Pradesh 8 10 5 10 12 18

Assam 9 13 11 24 20 19

Orissa 20 20 28 30 18 20

Daman and Diu 4 3 21 8 5 21

Andaman and Nicober 29 8 33 14 26 22

Delhi 28 23 12 18 25 23

Rajasthan 15 21 23 25 23 24

Jammu and Kashmir 10 4 6 22 11 25

Chhattisgarh 31 21 33 26

Andhra Pradesh 22 24 35 20 16 27

Karnataka 23 27 30 32 35 28

Telangana 29

Uttar Pradesh 24 28 25 34 34 30

West Bengal 21 31 26 28 30 31

Madhya Pradesh 26 29 32 31 32 32

Maharastra 25 30 27 29 29 33

Punjab 7 11 24 19 22 34

Jharkhand 13 16 21 35

Haryana 11 9 19 23 28 36
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6 Conclusion

We have introduced a generalization of the Theil index of inequality, the index IG .
No characterization, however, has been attempted. We have simply explored the
relationships between the inequality and information measures and studied some of
their properties. Information-theory-based characterization of inequality measures
are rare, Fosters (1983) article being one exception. Lasso de la Vega et. al. (2013)
characterized the Theil inequality ordering, which in our case falls under α = 1. We
have already noted that forα �= 1, IG does not satisfy the principle of population (PP),
though in the particular case ofα = 1 it doesmeet this property.Consequently,α �= 1,
IG is not a member of the (Shorrocks 1980) class of indices since the latter fulfills
the Principle of Population (PP). This may explain the absence of characterization
of the general class of indexes introduced in this article.
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Abstract In a weighted majority voting game, the weights of the players are deter-
mined based on some socioeconomic parameter. A number of measures have been
proposed to measure the voting powers of the different players. A basic question in
this area is to what extent does the variation in the voting powers reflect the variation
in the weights? The voting powers depend on the winning threshold. So, a second
question is what is the appropriate value of the winning threshold? In this work, we
propose two simple ideas to address these and related questions in a quantifiable
manner. The first idea is to use Pearson’s Correlation Coefficient between the weight
vector and the power profile tomeasure the similarity betweenweight and power. The
second idea is to use standard inequality measures to quantify the inequality in the
weight vector as well as in the power profile. These two ideas answer the first ques-
tion. Both the weight–power similarity and inequality scores of voting power profiles
depend on the value of the winning threshold. For situations of practical interest, it
turns out that it is possible to choose a value of the winning threshold which maxi-
mizes the similarity score and also minimizes the difference in the inequality scores
of the weight vector and the power profile. This provides an answer to the second
question. Using the above formalization, we are able to quantitatively argue that it is
sufficient to consider only the vector of swings for the players as the power measure.
We apply our methodology to the voting games arising in the decision-making pro-
cesses of the International Monetary Fund (IMF) and the European Union (EU). In
the case of IMF, we provide quantitative evidence that the actual winning threshold
that is currently used is suboptimal and instead proposes a winning threshold which
has a firm analytical backing. On the other hand, in the case of EU, we provide
quantitative evidence that the presently used threshold is very close to the optimal.
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1 Introduction

Voting is arguably the most important aspect of decision-making in a democratic
setup. A committee settles an issue by accepting or rejecting some resolution related
to the issue. While unanimity or consensus is desirable, this may not always be
possible due to the conflicting interests of the different committee members. In such
a situation, a voting procedure among the members is used to either accept or reject
a resolution. A resolution is accepted or passed, if a certain number of persons vote
in its favor, else it fails and is rejected.

In its basic form, each committee member has a single vote. Many scenarios of
practical interest, on the other hand, assignweights to the committeemembers. These
weights need not be the same for all the members. In the context of weighted voting,
a resolution is accepted, if the sum total of the weights of the members who vote in
its favor cross a previously decided upon threshold. A common example of weighted
voting is a company boardroom, where the members have weights in proportion to
the shares that they hold in the company. Important examples of weighted voting
in the context of public policy are the European Union (EU) and the International
Monetary Fund (IMF).

Voting procedures have been formally studied in the game theory literature under
the name of voting games. Due to its real-life importance, weighted majority voting
games have received a lot of attention. In the literature on voting games, the members
are called players. One of the basic questions is how much influence does a player
have in determining the outcome of a voting procedure? In other words, what is the
power of a player in a voting game? In quantitative terms, it is desirable to measure
the power of a player in a voting game by assigning a nonnegative real number to
the player. A power measure assigns such a number to each player in the game. This
leads to the basic question of what constitutes a good measure of power of a player
in a voting game. The literature contains a number of power measures. Each one
of these measures aims to capture certain aspects of the informal notion of power
in a voting game. We refer to Felsenthal and Machover (1998) for a comprehensive
discussion to voting games and the various power measures. An introduction to the
area can be found in Chakravarty et al. (2015).

Consider the setting of weighted majority voting games. For any such game, the
players are assigned weights based on socioeconomic parameters. As a result, there
is a variation in the weights of the players. Further, given any power measure, we
obtain a variation in the powers of the different players. It is well known that the
variation in the voting powers does not necessarily reflect the variation in theweights.
In this context, the following three questions can be formulated:
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1. To what extent does the variation in the voting powers reflect the variation in the
weights?

2. Is the inequality present in the weights preserved in the voting powers?
3. How does the value of the winning threshold (i.e., the threshold which is required

to be crossed for a motion to be passed) affect the above two questions?

This work addresses the above questions. The questions posed are not merely
theoretical. Similar questions have been posed in Leech (2002b) in the context of
measurement of voting power in IMF. For example, the following text fragments
appear in Leech (2002b):

... weighted voting raises the important question of whether the resulting inequality of power
over actual decisions is precisely what was intended for the relationship between power and
contribution.

How does the voting power of individual countries compare with their nominal votes? To
what extent is the degree of inequality in the distribution of votes reflected in the distribution
of voting power?

Different types of decisions use different decision rules, some requiring a special superma-
jority. What effect do different decision rules have on the distribution of power and also on
the power of the voting body itself to act?

The work Leech (2002b) makes a qualitative analysis of the above issues. Our work
allows a quantitative analysis of these issues. In more detail, our work makes the
following contributions.

Measurement of Similarity Between Weights and Voting Powers. We propose the use
of Pearson’s correlation coefficient as a measure of similarity between the weight
vector of the players and the vector of voting powers of the players.

Measurement of Inequality in Weights and Voting Powers. There is a large literature
on themeasurement of inequality in a vector of values obtained frommeasurement of
various social parameters. A survey on measurement of inequality appears in Cowell
(2016). The variation of the values in such a vector is captured by an inequality index.
A number of inequality indices have been proposed in the literature. We propose the
use of such inequality indices to measure the inequality in the weights and also in the
voting powers. This allows the comparison of the inequality present in the weights
to that present in the voting powers.

Winning Threshold as a Controllable Parameter. Our formalizations of both the
similarity between the weights and the voting powers as well as the measurement of
inequality in the voting powers have thewinning threshold as a parameter. By varying
this parameter, both the weight–power similarity and the voting power inequality can
be controlled. So, given a vector of weights, the winning threshold can be set to a
certain value to maximize the weight–power similarity or to minimize the difference
between the inequality in the weights and the inequality in the voting powers.

In this context, we would like to discuss the broader issue of designing games
to achieve certain desirable power profiles. This is often called the inverse problem
for voting games. Usually, the goal is to determine a set of weights which result in
the target powers. For example, in the context of the IMF voting game, an iterative
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algorithm to determine weights has been proposed in Leech (2002b). There is one
major drawback of this approach. Asmentioned earlier, in aweightedmajority voting
game, the weights often represent a socioeconomic parameter. When the weights are
artificially obtained (say, using an iterative algorithm), their interpretation in the
socioeconomic context is lost. It then becomes hard to provide a natural justification
of the weights.

Our approach of having thewinning threshold as a controllable parameter provides
an alternative method of designing games. For the complete specification of a game,
both the weights and the winning threshold need to be specified. In our approach,
the weights do not change, and hence they retain their original interpretation arising
from the background socioeconomic application.Weonly suggest tuning thewinning
threshold so that the resulting power profile is “imbued” with the intuitive natural
justification of the weights. Games designed using such an approach can be much
better explained to the general public than games where the weights are artificially
obtained.

Detailed Study.We consider seven different voting powermeasures and two different
inequality indices.We show that the scaling invariance property of an inequalitymea-
sure as well as that of the Pearson’s correlation coefficient divides the voting power
measures into three groups. The non-normalized Banzhaf measure, the normalized
Banzhaf index, and the two Coleman measures fall into one group; the public good
measure and public good index defined by Holler fall into a second group, and the
Deegan–Packel measure is in the third group. We show that any two power measures
in the same group have the same behavior with respect to both the similarity index
and the inequality index. This brings down the complexity of the analysis.

There has been a lot of discussion in the literature on the comparative suitabilities
of the Banzhaf and the Coleman indices Banzhaf (1965), Brink and Laan (1998),
Coleman (1971), Dubey and Shapley (1979), Laruelle andValenciano (2001), Lehrer
(1998), Laruelle and Valenciano (2011), Barua et al. (2009). This discussion has
both been qualitative and also formal in the sense of axiomatically deriving the
indices Brink and Laan (1998), Lehrer (1998). Our work provides a new perspective
to this discussion. The stand-alone values of the powers of the players as measured
by any power measure are perhaps not of much interest by themselves. It is only
in a relative sense that they acquire relevance. There are two ways to consider this
relative sense, in comparison to theweights and in comparison among themselves.We
propose to quantify the relative notion in comparison to theweights by the correlation
between the weight vector and the power profile and to quantify the relative values
of the powers among themselves by an appropriate inequality score. Under both of
these quantifications, we prove that the Banzhaf and the Coleman power measures
turn out to be the same. Based on this result, we put forward the suggestion that there
is perhaps no essential difference between these power measures. It is sufficient to
consider only the swings for the different players as was originally proposed by
Banzhaf (and sometimes called the raw Banzhaf measure). While this may sound a
bit radical, our analysis based on correlation and inequality does not leave scope for
any other considerations. It is of course possible that there is some other quantifiable
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ways of distinguishing between the relative spreads of the Banzhaf and the Coleman
measures. This can be a possible future research question.

The literature contains a number of voting power measures which have been pro-
posed as fundamentally different from the swing-based Banzhaf measure. Intuitive
arguments have been forwarded as to why these measures are appropriate for cer-
tain applications. In our opinion, a basic requirement for any power measure is to
reflect the “content” of weights. In addition to the Banzhaf measure, we have also
considered the Holler measures and the Deegan–Packel measure. Our simulation
experiments as well as computations with real-life data show that the “content” of
the weights is best captured by the Banzhaf measure and neither the Holler measure
nor the Deegan–Packel measure is good indicators of this “content”. Based on this
evidence, we put forward the suggestion that it is sufficient to consider the swings
as the only measure of power in voting games.

Applications. IMF decision-making procedures have been modeled as voting games
Leech (2002b). Decision-making in the EU has also been discussed in the context of
voting games Leech (2002a).

The notions of similarity between the variations in the weights and the voting
powers as well as the relation between the inequality in the weights and that in
the voting powers have been informally discussed. Our proposals for measuring
weight–power similarity and the voting power inequality formalizes this intuition.
We compute the various measures for the IMF game and (a simplified version of) the
EU voting game and suggest that the winning threshold can be used as a parameter
in achieving target values of similarity or inequality.

In both the IMF and the EU voting games, there is a “natural” justification for
assigning weights to the different players. In the context of IMF, the weights reflect
the proportion of financial contribution made by the different countries, while in
the case of EU, the weights reflect the population of the different countries. This is
reasonable, since the IMF is a financial organization, while the EU is essentially a
political organization. In both cases, however, the choice of the winning threshold is
not backed by any quantifiable parameter.

Our work provides methods for choosing a winning threshold which has a quan-
tifiable justification. There are two options. In the first option, one should choose a
value of the winning threshold which maximizes the correlation between the weight
vector and an appropriate power profile. In the second option, one should choose a
value of the winning threshold which yields an inequality score for an appropriate
power profile which is closest to the inequality score of the weight vector. In both the
cases of IMF and EU, both the options lead to similar values of the winning thresh-
old. Based on this analysis, we put forward the suggestion that the voting rule for
IMF should be modified to reflect the optimal value of the winning threshold. In the
case of EU, our results provide evidence that the presently used winning threshold
is close to the optimal value.

Previous and Related Works

The Shapley–Shubik power index was introduced in Shapley (1953), Shapley and
Shubik (1954), Banzhaf index was introduced in Banzhaf (1965) while Coleman



166 S. Bhattacherjee and P. Sarkar

indices were introduced in Coleman (1971). Later work by Holler (1982) and
Holler and Packel (1983) introduced the public good measure/index. Deegan and
Packel introduced another power measure in Deegan and Packel (1978). There are
other known measures/indices and we refer to Felsenthal and Machover (1998),
Chakravarty et al. (2015) for further details.

The first work to address the problem of inequality in voting games is Einy and
Peleg (1991). They provided an axiomatic deduction of an inequality index for the
Shapley–Shubik power measure. A more general axiomatic treatment of inequality
for power measures appears in a paper by Laruelle and Valenciano (2004). This work
postulates axioms and deduces an inequality measure for a class of power indices
which includes the Banzhaf index. A more recent work by Weber (2016) suggests
the use of the Coefficient of Variation as an inequality index for measuring inequality
arising from the Banzhaf index. Later, we provide a more detailed discussion of the
relationship of these prior works to our contribution.

2 Preliminaries

2.1 Voting Games

We provide some standard definitions arising in the context of voting games. For
details, the reader may consult Felsenthal and Machover (1998), Chakravarty et al.
(2015). In the following, the cardinality of a finite set S will be denoted by #S and
the absolute value of a real number x will be denoted by |x |.

Let N = {A1, A2, . . . , An} be a set of n players. A subset of N is called a voting
coalition. The set of all voting coalitions is denoted by 2N . A voting game G is given
by its characteristic function ̂G : 2N → {0, 1}, where a winning coalition is assigned
the value 1 and a losing coalition is assigned the value 0. Below, we recall some basic
notions about voting games:

1. For any S ⊆ N and player Ai ∈ N , Ai is said to be a swing in S if Ai ∈ S,
̂G(S) = 1 but ̂G(S \ {Ai }) = 0.

2. For a voting game G, the number of swings for Ai will be denoted by mG(Ai ).
3. A player Ai ∈ N is called a dummy player if Ai is not a swing in any coalition,

i.e., if mG(Ai ) = 0.
4. For a voting game G, the set of all winning coalitions will be denoted by W (G)

and the set of all losing coalitions will be denoted by L(G).
5. A coalition S ⊆ N is called a minimal winning coalition if ̂G(S) = 1 and there

is no T ⊂ S for which ̂G(T ) = 1.
6. The set of all minimal winning coalitions in G will be denoted by MW(G) and

the set of minimal winning coalitions containing the player Ai will be denoted as
MWG(Ai ).

7. A voting gameG is said to be proper if for any coalition S ⊆ N , ̂G(S) = 1 implies
that ̂G(N \ S) = 0. In other words, in a proper game, it is not allowed for both S
and its complement to be winning.
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Definition 1 Consider a triplet (N ,w, q), where N = {A1, . . . , An} is a set of play-
ers; w = (w1, w2, . . . , wn) is a vector of nonnegative weights with wi being the
weight of Ai ; and q is a real number in (0, 1). Letω = ∑n

i=1 wi . The triplet (N ,w, q)
defines a weighted majority voting game G given by its characteristic function
̂G : 2N → {0, 1} in the following manner. Let wS = ∑

Ai∈S wi denote the sum of
the weights of all the players in the coalition S ⊆ N . Then

̂G(S) =
{

1 if wS/ω ≥ q,

0 otherwise.

We will write G = (N ,w, q) to denote the weighted majority voting game arising
from the triplet (N ,w, q).

For a weighted majority voting game G = (N ,w, q) to be proper, it is necessary
that q > 0.5. For the technical analysis of weighted majority voting games, we do
not restrict to proper games. When considering applications, as is conventional, one
should consider only proper games.

2.2 Voting Power

The notion of power is an important concept in a voting system. A power measure
captures the capability of a player to influence the outcome of a vote.

Given a game G on a set of players N and a player Ai in N , a power measure P
associates a nonnegative real number vi = PG(Ai ) to the player Ai . The number vi
captures the power that Ai has in the game G. If

∑

Ai∈G PG(Ai ) = 1 for all games
G, then P is called a power index. In other words, for a power index, the powers of
the individual players sum to 1.

A widely studied index of voting power is the Shapley–Shubik index. This index,
however, is defined for a voting game where the order in which the players cast their
votes is important. In our applicationof votingpower to the votinggames arising in the
IMF and EU decision-making processes, the order of casting votes is not important.
So, we do not consider the Shapley–Shubik index in this work. Below, we provide
the definitions of some of the previously proposed power measures. See Felsenthal
and Machover (1998), Chakravarty et al. (2015) for further details.

Banzhaf Power Measures. The raw Banzhaf power measure BRG(Ai ) for a player
Ai in the game G is defined as the number of distinct coalitions in which Ai is a
swing. Hence,

BRG(Ai ) = mG(Ai ).

The non-normalized Banzhaf power measure BZNG(Ai ) is defined as follows:

BZNG(Ai ) = BRG(Ai )

2n−1
= mG(Ai )

2n−1
.
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The Banzhaf normalized power index BZG(Ai ) is defined as follows:

BZG(Ai ) = BRG(Ai )
∑n

j=1 BRG(A j )
= mG(Ai )

∑n
j=1 mG(A j )

.

Coleman Power Measures. The Coleman preventive power measure CPG(Ai ) for a
player Ai in the gameG is a measure of its ability to stop a coalition S from achieving
wS ≥ q. It is defined as follows:

CPG(Ai ) = mG(Ai )

#W (G)
.

The Coleman initiative power measure CIG(Ai ) for a player Ai in the game G is
a measure of its ability to turn an otherwise losing coalition S with wS < q into a
winning coalition with wS∪{Ai } ≥ q. It is defined as follows:

CIG(Ai ) = mG(Ai )

#L(G)
= mG(Ai )

2n − #W (G)
= CPG(Ai )

2n
#W (G)

− 1
.

Holler Public Good Index. Holler proposed the public good index PGIAi (G) as
follows:

PGIAi (G) = #MWG(Ai )
∑

A j∈N #MWG(A j )
.

The non-normalized version ofPGIAi (G) is called the absolute public goodmeasure.
It is defined as

PGMAi (G) = #MWG(Ai )

#MW(G)
.

Deegan–Packel Power Measure. The Deegan–Packel power measure DPG(Ai ) for
a player Ai in the game G is defined to be

DPG(Ai ) = 1

#MW(G)

∑

S∈MWG (Ai )

1

#S
.

Power Profile. Suppose P is a measure of voting power. Then, P assigns a nonneg-
ative real number to each of the n players in the game. So, P is given by a vector of
nonnegative real numbers. This vector is called the P-power profile of the game.

Computing Voting Powers. A weighted majority voting gameG = (N ,w, q) is com-
pletely specified by the set of players N , a weight vectorw, and the threshold q. Given
this data, it is of interest to be able to compute the P-power profile for any power
measure P . There are known dynamic-programming-based algorithms for comput-
ing the values of the different voting power indices. We refer to Matsui and Matsui
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(2000), Chakravarty et al. (2015) for an introduction to algorithms for computing
voting powers. In our work, we have implemented the algorithms for computing the
P-power profiles where P is any of the power measures defined above.

There is a large literature on voting powers. The various indices mentioned above
have been introduced to model certain aspects of voting games which are not ade-
quately covered by the other indices. There have been axiomatic characterizations of
these indices. A detailed discussion of the relevant literature is not really within the
focus of the presentwork. Instead,we refer to the highly respectedmonographFelsen-
thal andMachover (1998) and the more recent textbook Chakravarty et al. (2015) for
such details.Our concern in this work is how to quantify the efficacy of any particular
voting power measure that one may choose for a particular application.

2.3 Pearson’s Correlation Coefficient

Given vectors w = (w1, . . . , wn) and v = (v1, . . . , vn), Pearson’s correlation coef-
ficient is the standard measure of linear correlation between these two vectors. It is
defined as follows:

PCC(w, v) =
⎧

⎨

⎩

0 if w1 = · · · = wn or v1 = · · · = vn;
∑n

i=1(wi−μw)(vi−μv)
√

∑n
i=1(wi−μw)2

√

∑n
i=1(vi−μv)2

otherwise. (1)

Here, μw and μv are the means of w and v, respectively.
From (1), it follows that for any two positive real numbers γ and δ,

PCC(w, v) = PCC(γw, δv). (2)

The relation captured in (2) can be considered to be a scale invariance property of
the Pearson’s correlation coefficient.

2.4 Inequality Indices

The notion of inequality has been considered for social parameters including income,
skills, education, health, and wealth Cowell (2016). There are several methods for
measuring inequality. At a basic level, the idea of an inequality index I is the fol-
lowing. Given a vector a whose components are real numbers, I(a) produces a
nonnegative real number r . In other words, the index I assigns an inequality score of
r to the vector a. There is a large literature on inequality indices including the mea-
surement of multidimensional inequality Chakravarty and Lugo (2016), Chakravarty
(2017). In this work, wewill consider only basic inequality indices. Some of themost
commonly used inequality indices are mentioned below.
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Given a vector a of real numbers, let μa and σa denote the mean and standard
deviation of a. In the definition of the inequality indices below, we will assume that
the entries of a are nonnegative and μa is positive.

Gini Index. The value of the Gini index of a vector a = (a1, . . . , an) is given by

GI(a) =
∑n

i=1

∑n
j=1|ai − a j |

2n
∑n

i=1 ai
. (3)

Coefficient of Variation. For a vector a = (a1, . . . , an), the Coefficient of Variation
is computed as the ratio of the standard deviation σa to the mean μa of a.

CoV(a) = σa

μa
=

√

1
n

∑n
i=1 a

2
i − (

1
n

∑n
i=1 ai

)2

1
n

∑n
i=1 ai

. (4)

Generalized Entropy Index. The generalized entropy index is a measure of inequality
based on information theory. For a real number α, the generalized entropy index
GEIα(a) is defined in the following manner:

GEIα(a) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
α(α−1)

(

1
n

∑

Ai∈N
(

ai
μa

)α − 1
)

if α �= 0, 1;
1
n

∑

Ai∈N ,ai>0

(

ai
μ+
a

)

ln
(

ai
μ+
a

)

if α = 1;
− 1

n

∑

Ai∈N ,ai>0 ln
(

ai
μ+
a

)

if α = 0.

(5)

Here, ln denotes the natural logarithm andμ+
a denotes themean of the positive entries

in a. Also, note that for α = 0, 1 the sum is over positive values of ai as otherwise
the ln function gets applied to 0. In other words, for α = 0 and 1, the computation
of inequality considers only the positive entries of a. GEI1 is called the Theil Index
and GEI2 is half the square of CoV.

Remark For application to the context of voting powers, a power of zero implies
that the player is a dummy. If GEI0 or GEI1 is used to measure inequality, then
such dummy players will get ignored. As a result, the inequality in the power profile
will not be adequately captured by these two measures. Due to this reason, GEI0
and GEI1 are not suitable for measuring inequality in voting powers. GEI2 is half
the square of CoV and will essentially spread out the value of CoV. The relevance
of GEIk for k > 2 to the context of voting power is not clear. So, though we have
computed, we do not report the values of GEI in this work.

Computing Inequality Indices. It is quite routine to implement an algorithm, which
given a vector of nonnegative quantities computes the values of the various inequality
indices. In our work, we have implemented algorithms to compute the Gini index
and the Coefficient of Variation.
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Desirable Properties of an Inequality Index. A few basic and natural properties have
been postulated which any reasonable inequality measure should satisfy. Below, we
mention these properties. See Cowell (2016) for more details. Let I be a postulated
inequality index and a = (a1, . . . , an) be a vector of nonnegative real numbers.

Let π be a bijection from {1, . . . , n} to itself, i.e., π is a permutation of {1, . . . , n}.
Define aπ to be the vector (aπ(1), . . . , aπ(n)), i.e., aπ is a reordering of the compo-
nents of a.

Anonymity (ANON): I is said to satisfy anonymity if I(a) = I(aπ) for all permuta-
tions π of {1, . . . , n}. Anonymity captures the property that inequality depends only
on the (multi-)set of values {a1, . . . , an}. Information related to ordering or labeling
of these values using names are irrelevant for the measurement of inequality.

Egalitarian Principle (EP): I is said to satisfy the egalitarian principle if I(a) = 0
for all a such that a1 = · · · = an . EP captures the property that the inequality is the
minimum possible when all components of the vector a have the same value.

Scale Invariance (ScI). I is said to satisfy scale invariance if I(a) = I(γa) for all
real γ > 0. The idea behind scale invariance is that if all the values are scaled by the
same factor then the inequality remains unchanged.

Let a[k] denote the vector
⎛

⎝a1, . . . , a1
︸ ︷︷ ︸

k

, a2, . . . , a2
︸ ︷︷ ︸

k

. . . , an, . . . , an
︸ ︷︷ ︸

k

⎞

⎠ .

Population Principle (PP). I is said to satisfy the population principle if I(a) =
I(a[k]) for any integer k ≥ 1. The vector a[k] contains k copies of each of the values
a1, . . . , an . PP says that the inequality in such a vector remains the same as in the
original vector, i.e., by replicating each of the components of the original vector the
same number of times does not change the inequality.

For 1 ≤ i < j ≤ n, let ai, j,δ be the vector

(a1, . . . , ai−1, ai + δ, . . . , a j − δ, a j+1, . . . , an).

Transfer Principle (TP). I is said to satisfy the transfer principle if I(a) ≥ I(ai, j,δ)
for any 1 ≤ i < j ≤ n and δ > 0 such that ai < a j and ai + δ ≤ a j − δ. The transfer
principle says that if δ units are transferred from a richer person to a poorer person
without changing their relative ordering, then inequality cannot increase.

Suppose a1, . . . , ak are vectors of dimensions n1, . . . , nk , respectively, with non-
negative real entries. Let μi be the mean of ai and define µ = (μ1, . . . ,μk). Let a be
the vector formed by concatenating the vectors a1, . . . , ak .

Decomposability (Decom). I is said to satisfy decomposability if

I(a) =
k

∑

i=1

niI(ai ) + I(µ).
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Decomposability captures the following idea. The vector a is divided into k groups
and inequality is measured for each of the groups. Further, the mean of each group
is computed and inequality is computed for the vector composing of the means. The
inequality for each group is “within-group inequality’, whereas the inequality in the
vector of means is some kind of “across group inequality”. The index I satisfies
decomposability if the overall inequality in the vector can be decomposed into a sum
of “within-group inequality” and “across group inequality”.

The Gini Index, the Coefficient of Variation, and the Generalized Entropy Indices
satisfy ANON, EP, ScI, PP, and TP. It has been shown Shorrocks (1980) that any
index which satisfies ANON, ScI, PP, TP, and Decom must necessarily have the
form of a generalized entropy index for some value of α.

ANON, EP, ScI, and TP are natural properties that any inequality index should
satisfy irrespective of the domain to which it is applied. PP becomes relevant in
the context of variable population size. For voting games, the players constitute the
population which is fixed. So, the application of PP to voting games is vacuous. On
the other hand, it is not clear that Decom is necessarily a desirable property for all
applications of inequality. In particular, it is not clear that Decom is relevant in the
context of voting powers which is the focus of the present work.

3 Weight–Power Similarity

Let P be a measure of voting power. Suppose this is applied to a weighted majority
voting game G = (N ,w, q). Let v be the resulting power profile. It is of interest to
know how similar the power profile vector v is to the weight vector w. Note that the
power profile vector v depends on the winning threshold q. Based on the Pearson’s
correlation coefficient, we define the similarity index P-SIw(q) as follows:

P-SIw(q) = PCC(w, v), (6)

where v is the power profile vector generated by the voting power measureP applied
to the weighted majority voting game G = (N ,w, q).

So, for a fixed q, P-SIw(q)measures the similarity of the power profile vector to
the weight vector by the correlation between these two vectors. Note that P-SIw(q)
is a function of q. As, q changes, the power profile vector v will also change, though
the weight vector w will not change. So, with change in q, the correlation between
w and v changes. By varying q, it is possible to study the change in the correlation
between w and v.

Theorem 1 Let G = (N ,w, q) be a weighted majority voting game such that 0 <

#W (G) < 2n. Then, for any q ∈ (0, 1) the following holds:

1. BZN-SIw(q) = BZ-SIw(q) = CP-SIw(q) = CI-SIw(q).
2. PGI-SIw(q) = PGM-SIw(q).
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Proof Let v = (mG(A1), . . . ,mG(An)) be the vector of swings for the players
A1, . . . , An in the game G. Suppose v1, v2, v3, and v4 are the power profiles for
G corresponding to BZN, BZ, CP, and CI, respectively. Then

v = α1v1 = α2v2 = α3v3 = α4v4,

where

α1 = 2n−1, α2 =
∑

j∈N
mG(A j ), α3 = #W (G) and α4 = #L(G).

InG, the values 2n ,
∑

j∈N mG(A j ), #W (G), and #L(G) are fixed. So,α1,α2,α3, and
α4 are constants. Further, since 0 < #W (G) < 2n , it follows that 0 < #L(G) < 2n

and so
∑

j∈N mG(A j ) > 0. This in particular means that α2,α3,α4 > 0 and clearly
α1 > 0. So, using (2), we have

BZN-SIw(q) = PCC(w, v1) = PCC(w, v/α1) = PCC(w, v).

In a similar manner, it follows that BZ-SIw(q)= PCC(w, v),
CP-SIw(q)= PCC(w, v), and CI-SIw(q)= PCC(w, v).

The argument for PGI-SIw(q)= PGM-SIw(q) is similar. 
�
From the viewpoint of weight–power similarity, Theorem 1 shows that it is suffi-

cient to consider only BZ-SIw(q), PGI-SIw(q), and DP-SIw(q).

4 Measuring Inequality of Voting Powers

LetG = (N ,w, q)be aweightedmajority voting game.Theweights of all the players
are not equal. In fact, in several important practical situations, the voting game is
designed in a manner such that the weights are indeed unequal. The inequality in the
weights can be captured by applying an appropriate inequality measure. Suppose I
is an inequality measure. Then, I(w) is the inequality present in the weights.

Let P be a measure of voting power. Suppose P is applied to G to obtain the
power profile vector v. Then, v is a vector consisting of nonnegative real numbers.
The inequality in the vector v can be measured by the inequality index I as I(v). The
value of I(v) depends on the winning threshold q, whereas the value of I(w) does
not depend on q. So, by varying q, it is possible to vary I(v)with the goal of making
it as close to I(w) as possible. Then, one can say that the inequality present in the
weights is more or less reflected in the inequality that arises in the voting powers.

Given a weighted majority voting game G = (N ,w, q), we define the weight
inequality of G with respect to an inequality measure I as

I-WI(w) = I(w). (7)
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We consider two different options for I, namely,GI and CoV. This gives rise to two
different measures of weight inequality, which are GI-WI and CoV-WI.

Given a weighted majority voting game G = (N ,w, q), a voting power measure
P , and an inequality measure I, the power inequality of P as determined by I is
denoted by (P, I)-PIw(q) and is defined in the following manner:

(P, I)-PIw(q) = I(v), (8)

where v is the power profile vector generated by the power measure P applied to the
weighted majority voting game G = (N ,w, q).

We have considered seven options for P , namely, BZN, BZ, CP, CI, PGI, PGM,
and DP. The following results show that under a simple and reasonable condition
on an inequality measure I, it is sufficient to consider only three of these.

Theorem 2 Let I be an inequality index satisfying scale invariance. Let G =
(N ,w, q) be a weighted majority voting game such that 0 < #W (G) < 2n. Then,
for any q ∈ (0, 1), the following holds:

1. (BZ, I)-PIw(q) = (BZ, I)-PIw(q) = (CP, I)-PIw(q) = (CI, I)-PIw(q).
2. (PGI, I)-PIw(q) = (PGM, I)-PIw(q).
Proof As in the proof of Theorem 1, let v = (mG(A1), . . . ,mG(An)) be the vector
of swings and v1, v2, v3, and v4 be the power profiles corresponding to BZN, BZ,
CP, and CI, respectively, so that

v = α1v1 = α2v2 = α3v3 = α4v4, (9)

whereα1,α2,α3, andα4 are the positive constants defined in the proof of Theorem 1.
Using the scale invariance of I, we have

(BZN, I)-PIw(q) = I(v1) = I(v/α1) = I(v).

In a similar manner, it follows that (BZ, I)-PIw(q)= I(v) (CP, I)-PIw(q)= I(v)
and (CI, I)-PIw(q)= I(v).

The argument for (PGI, I)-PIw(q)= (PGM, I)-PIw(q) is similar. 
�
The Gini Index, the Coefficient of Variation, and the Generalized Entropy Index

satisfy the scale invariance property. Based on Theorem 2, if I is any of these indices,
then from the viewpoint of power inequality, it is sufficient to consider (BZ, I)-
PIw(q), (PGI, I)-PIw(q), and (DP, I)-PIw(q). For I, we will consider the Gini
Index and the Coefficient of Variation. This means that we need to consider six
possibilities.

Remark Theorem 2 has been stated for weighted majority voting games. The crux of
the argument is based on (9). This relation does require G to be a weighted majority
voting game. So, it is possible to rewrite the proof to show that for general voting
games (which are not necessarily weighted majority voting games), the inequalities
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of the different Banzhaf power profiles and the Coleman power profiles are all equal
and also the inequality of the Holler public good index is equal to that of the Holler
public good measure.

Comparison to Previous Works. The work Einy and Peleg (1991) on inequality in
voting system is concerned with measuring inequality arising in the Shapley–Shubik
power index. Since we do not consider this index in our work, we do not comment
any further on the work in Einy and Peleg (1991). Instead, we simply remark that
our approach can also be applied to the Shapley–Shubik power index.

Laruelle and Valenciano (2004) axiomatically derive an inequality index for a
class of power indices which includes the normalized Banzhaf index. We note the
following points about the work in Laruelle and Valenciano (2004):

1. The approach works only for an index, i.e., the sum of the powers must sum to
one. So, for example, it cannot be applied to measure inequality arising in either
of the Coleman power measures.

2. The notion of power considered in the work is based on swings. So, the power
measures given by PGI, PGM, and DP are not covered by their work.

3. Among the axioms, ANON and EP are assumed and it is shown that the obtained
measure satisfiesScI.On theother hand,PP andTP are notmentioned in thepaper
and it is not clear whether these two properties hold for the obtained measure.

4. Justification for one of the axioms (namely, Constant Sensitivity toNull Players) is
not clear. In the discussion leading up to this axiom, the authors remark: “Thus, at
this point any further step is questionable, though necessary to specify an index.”

In view of the above, we feel that it might be preferable to study the behavior of
standard inequality indices on both power measures and power indices rather than
relying on an axiomatically derived inequality index where at least one of the axioms
does not necessarily have a natural justification.

Weber (2016) considered the application1 of the Coefficient of Variation to the
measurement of inequality for essentially the normalized Banzhaf index. In contrast,
we consider all the standard inequality indices and a much larger class of power mea-
sures/indices. Even for the Coefficient of Variation, the result that the scale invariance
property implies that all the swing-based measures have the same inequality is not
present in Weber (2016).

5 Variation of Similarity and Inequality with Winning
Threshold

We have conducted some experiments to understand the dependence of the similarity
and inequality indices of power profiles on the winning threshold.

1The author remarks: “To the best of my knowledge, I am the first to propose ameasure of inequality
of voting systems that can be used across different constituencies.” This is an oversight since the
work by Laruelle and Valenciano Laruelle and Valenciano (2004) is much earlier.
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In the first experiment, N was taken to be {A1, . . . , A30} and one hundred weight
vectors were generated where the individual weights were chosen to be integers
independently and uniformly in the range [1, . . . , 100]. For each of the 100 weight
vectors w, the value of the winning threshold q was varied from 0.01 to 0.99 in
steps of 0.01. For the game defined by the triplet (N ,w, q), the power profiles
for the different power measures were computed. From this, the similarity indices
BZ-SIw(q), PGI-SIw(q), and DP-SIw(q) were computed and the inequality indices
I-WI(w), (BZN, I)-PIw(q), (PGI, I)-PIw(q), and (DP, I)-PIw(q) were computed
where I was taken to beGI andCoV. All the obtained results show a definite pattern.

A second experiment was conducted with n = 30 and nonrandom weights. In
particular, two distinct values of weights were used, namely, n1 of the weights were
taken to be 100 and n2 of theweights were taken to be 1with n1 + n2 = 30. The value
of q was varied as mentioned above and the corresponding similarity and inequality
indices were computed. In this case, no definite pattern was observed and there was
a rich variation in the behavior.

To further explain the above experiments, we report three particular cases with
n = 30.

Case-I: A randomweight vector. The actual value ofw (after sorting into descend-
ing order) came out to be

{93, 92, 90, 86, 86, 83, 82, 77, 72, 68, 67, 67, 63, 62, 62, 59,
49, 40, 36, 35, 35, 30, 29, 27, 26, 26, 23, 21, 15, 11}.

The plots of similarity, Gini Index, and the Coefficient of Variation are shown in
Figs. 1, 2, and 3, respectively.

Case-II: 15 of the weights were taken to be 100 and the other 15 of the weights
were taken to be 1. The plots of similarity, Gini Index and the Coefficient of
Variation are shown in Figs. 4, 5 and 6 respectively.

Fig. 1 Similarity indices for
Case-I
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Fig. 2 Gini index for Case-I

Fig. 3 Coefficient of
variation for Case-I

Fig. 4 Similarity indices for
Case-II
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Fig. 5 Gini index for
Case-II

Fig. 6 Coefficient of
variation for Case-II

Fig. 7 Similarity indices for
Case-III
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Fig. 8 Gini index for
Case-III

Fig. 9 Coefficient of
variation for Case-III

Case-III: 29 of the weights were taken to be 100 and the other weight was taken
to be 1. The plots of similarity, Gini Index, and the Coefficient of Variation are
shown in Figs. 7, 8, and 9, respectively.

Based on the plots, we make the following observations:

1. For the random case, compared to the Holler index and the Deegan–Packel mea-
sure, the Banzhaf index is a much better marker of similarity to the weight vector
and it is also much better at capturing the inequality present in the weights. For
the two nonrandom cases, there is not much difference between the three power
measures.

2. For Case-II, there are sharp spikes in the similarity and inequality plots. These
correspond to choices of q for which the lowweight players achieve power similar
to the high weight players.
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3. For Case-III, there is one player with low weight. Apart from a small range of q
where this player gains significant power, for other values of q this player becomes
a dummy. The inequality indices, however, do not reflect this. The inequality
scores are generally quite low indicating that there is small inequality in the
system. This is a feature of the inequality indices which are not sensitive to low
scores of a small number of players.

6 Applications

6.1 IMF Voting Games

The IMF has two decision-making bodies, namely, the Board of Governors (BoG)
and the Executive Board (EB).

A total of 189 member countries make up the BoG. Each country has a specified
voting share. The voting share or weight of a country is calculated as the sum of
a basic weight plus an amount which is proportional to the special drawing rights
of the country. The EB consists of 24 Executive Directors (EDs) representing all
the 189 member countries. Eight of these directors are nominated by eight member
countries while each of the other directors is elected by a group of countries. Each
ED has a voting weight which is the sum of the voting weights of the countries that
he or she represents.

The BoG is the highest decision-making body of the IMF and is officially respon-
sible for all major decisions. In practice, however, the BoG has delegated most of its
powers to the EB.2 Accordingly, in this work, we will consider only the voting game
arising from the EB weights.

Actual weights of the members of the EB are available from the IMF website.3

These weights range from the minimum of 80157 to the maximum of 831407. Since
these values are rather large, for the purposes of computation of voting powers, we
have divided these voting weights by 1000 and then rounded to the nearest integer.
While this is an approximation, it does not significantly affect the voting powers. In
particular, we have checked that no two members with originally unequal weights
get the same weight after this rounding off process. The actual weight vector that
has been used to compute the voting powers is the following:

wimf = {831, 310, 306, 273, 268, 267, 219, 208, 203, 203, 196, 170,
165, 162, 155, 154, 150, 149, 138, 131, 111, 101, 82, 80}.

The rules specify several winning thresholds.4 We mention these below:

2https://en.wikipedia.org/wiki/International_Monetary_Fund.
3https://www.imf.org/external/np/sec/memdir/eds.aspx.
4https://www.imf.org/external/pubs/ft/aa/index.htm.

https://en.wikipedia.org/wiki/International_Monetary_Fund
https://www.imf.org/external/np/sec/memdir/eds.aspx
https://www.imf.org/external/pubs/ft/aa/index.htm
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Except as otherwise specifically provided, all decisions of the Fund shall be made by a
majority of the votes cast.

The Fund, by a seventy percent majority of the total voting power, may decide at any time
to distribute any part of the general reserve.

The Fund may use a member’s currency held in the Investment Account for investment as it
may determine, in accordance with rules and regulations adopted by the Fund by a seventy
percent majority of the total voting power.

An eighty-five percent majority of the total voting power shall be required for any change
in quotas.

So, three possible values of q are used: q = 0.5, q = 0.7, and q = 0.85.
We have computed the similarity and inequality indices for the IMF EB voting

game with q varying from 0.01 to 0.99 in steps of 0.01. The plots of BZ-SIwimf(q),
PGI-SIwimf(q), andDP-SIwimf(q) are shown inFig. 10; the plots of (BZ,GI)-PIwimf(q),
(PGI,GI)-PIwimf(q), and (DP,GI)-PIwimf(q) are shown in Fig. 11; and the plots of

Fig. 10 Similarity indices
for IMF-EB weights

Fig. 11 Gini index for
IMF-EB weights
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(BZ,CoV)-PIwimf(q), (PGI,CoV)-PIwimf(q), and (DP,CoV)-PIwimf(q) are shown in
Fig. 12. The actual values of these indices for the range [0.5, 0.65] along with the
values for q = 0.70 and q = 0.85 are shown in Tables 1 and 2. Based on these data,
we have the following observations:

Fig. 12 Coefficient of
variation for IMF-EB
weights

Table 1 IMF-EB similarity indices

q BZ-SIwimf (q) PGI-SIwimf (q) DP-SIwimf (q)

0.50 0.9938690 0.7743330 0.9330398

0.51 0.9939952 0.8965981 0.9531445

0.52 0.9943706 0.9363455 0.9618091

0.53 0.9949599 0.9522328 0.9669979

0.54 0.9957522 0.9600696 0.9708993

0.55 0.9966513 0.9649342 0.9740920

0.56 0.9975953 0.9688469 0.9771681

0.57 0.9985210 0.9730949 0.9806975

0.58 0.9992881 0.9769905 0.9839294

0.59 0.9998168 0.9806887 0.9869004

0.60 0.9999911 0.9846956 0.9899614

0.61 0.9996918 0.9882609 0.9924378

0.62 0.9988216 0.9912144 0.9942195

0.63 0.9972257 0.9936152 0.9953372

0.64 0.9948817 0.9951439 0.9954396

0.65 0.9916875 0.9956169 0.9945365

0.70 0.9609858 0.9788570 0.9715726

0.85 0.7634234 0.7787653 0.7721551
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Table 2 Inequality as measured by GI and CoV in the IMF Game. In the table,
f1(q) = (BZ,GI)-PIwimf (q), f2(q) = (PGI,GI)-PIwimf (q), f3(q) = (DP,GI)-PIwimf (q), g1(q) =
(BZ,CoV)-PIwimf (q), g2(q) = (PGI,CoV)-PIwimf (q), g3(q) = (DP,CoV)-PIwimf (q). Note GI-
WI(wimf) = 0.285042 and CoV-WI(wimf) = 0.689527

q f1(q) f2(q) f3(q) g1(q) g2(q) g3(q)

0.50 0.316535 0.013684 0.023564 0.859515 0.033982 0.061049

0.51 0.316212 0.017718 0.027366 0.857502 0.046205 0.074206

0.52 0.315214 0.021654 0.031084 0.851387 0.059712 0.086957

0.53 0.313531 0.025291 0.034457 0.841354 0.072727 0.098447

0.54 0.311215 0.028989 0.037852 0.827460 0.085147 0.108920

0.55 0.308401 0.032545 0.041122 0.810689 0.096331 0.118073

0.56 0.305067 0.035747 0.044020 0.791192 0.105924 0.125614

0.57 0.301236 0.038982 0.046930 0.769085 0.114385 0.132059

0.58 0.297133 0.042029 0.049670 0.745825 0.121321 0.137161

0.59 0.292743 0.044794 0.052123 0.721395 0.126885 0.141047

0.60 0.288019 0.047504 0.054517 0.695812 0.131366 0.144021

0.61 0.283235 0.050075 0.056795 0.670527 0.134712 0.131366

0.62 0.278285 0.052419 0.058857 0.645342 0.137090 0.147386

0.63 0.273201 0.054555 0.060691 0.620092 0.138635 0.147978

0.64 0.268155 0.056714 0.062592 0.596040 0.139694 0.148302

0.65 0.263088 0.058572 0.064200 0.572826 0.140068 0.148049

0.66 0.257927 0.060254 0.065613 0.550134 0.139974 0.147422

0.67 0.252875 0.061895 0.067025 0.528952 0.139751 0.146796

0.68 0.247854 0.063419 0.068331 0.508843 0.139248 0.145961

0.69 0.242726 0.064596 0.069269 0.489429 0.138348 0.144745

0.70 0.237753 0.065816 0.070276 0.471442 0.137616 0.143776

0.85 0.158497 0.066284 0.068153 0.278829 0.116985 0.120198

1. The Holler and the Deegan–Packel indices are not good indicators of either the
similarity to or the inequality present in the weights. So, we focus only on the
Banzhaf index.

2. The following holds for the Banzhaf index:

– The plots of the two inequality indices have bell curve shapes. To a lesser
extent, the same is also true of the similarity index.

– The maximum similarity is achieved for q = 0.60.
– For theGini Index, the inequality in the power profile is closest to the inequality
in the weights for q = 0.61.

– For the Coefficient of Variation, the inequality in the power profile is closest
to the inequality in the weights for q = 0.60.

From Tables 1 and 2, we note that in comparison to q = 0.60, the choices q = 0.50,
q = 0.70, and q = 0.85 are suboptimal.
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Table 3 Voting powers of the players under various power measures for the IMF-EB game with
q = 0.60. Instead of the players, the voting powers are shown against the weights of the players

Wts BZN BZ CP CI PGI PGM DP

831 0.4033509 0.1661335 0.8949349 0.2603447 0.0662802 0.8888586 0.0682873

310 0.1508728 0.0621420 0.3347491 0.0973816 0.0435712 0.5843174 0.0442821

306 0.1488262 0.0612990 0.3302082 0.0960606 0.0434846 0.5831563 0.0441693

273 0.1322311 0.0544638 0.2933878 0.0853492 0.0427837 0.5737562 0.0432420

268 0.1297327 0.0534347 0.2878445 0.0837366 0.0426849 0.5724312 0.0431133

267 0.1292485 0.0532353 0.2867701 0.0834240 0.0426597 0.5720929 0.0430820

219 0.1055294 0.0434658 0.2341434 0.0681144 0.0416246 0.5582125 0.0417465

208 0.1001409 0.0412464 0.2221877 0.0646364 0.0414027 0.5552361 0.0414634

203 0.0976979 0.0402401 0.2167671 0.0630595 0.0413069 0.5539514 0.0413394

203 0.0976979 0.0402401 0.2167671 0.0630595 0.0413069 0.5539514 0.0413394

196 0.0942787 0.0388318 0.2091809 0.0608526 0.0411606 0.5519899 0.0411522

170 0.0816418 0.0336269 0.1811427 0.0526961 0.0406361 0.5449551 0.0404690

165 0.0792183 0.0326287 0.1757655 0.0511318 0.0405488 0.5437851 0.0403568

162 0.0777606 0.0320283 0.1725313 0.0501909 0.0404977 0.5430995 0.0402881

155 0.0743695 0.0306316 0.1650074 0.0480022 0.0403450 0.5410517 0.0400980

154 0.0738934 0.0304355 0.1639510 0.0476948 0.0403227 0.5407521 0.0400702

150 0.0719494 0.0296347 0.1596377 0.0464400 0.0402490 0.5397639 0.0399749

149 0.0714759 0.0294397 0.1585871 0.0461344 0.0402247 0.5394390 0.0399449

138 0.0661672 0.0272532 0.1468086 0.0427079 0.0399681 0.5359976 0.0396272

131 0.0627846 0.0258599 0.1393032 0.0405246 0.0397938 0.5336591 0.0394117

111 0.0531555 0.0218939 0.1179389 0.0343095 0.0389966 0.5229683 0.0384651

101 0.0483502 0.0199146 0.1072770 0.0312079 0.0383484 0.5142761 0.0377462

82 0.0392314 0.0161588 0.0870447 0.0253221 0.0361261 0.4844734 0.0353936

80 0.0382680 0.0157619 0.0849071 0.0247002 0.0356770 0.4784506 0.0349375

Based on the above analysis, we put forward the suggestion that the winning
threshold of q = 0.60 be seriously considered for any future possible change in
voting rule. For q = 0.60, the actual values of the different power measures are
shown in Table 3.

6.2 EU Voting Games

Until Brexit is effective, the European Union Council has 28 members. It votes on
different types of matters in three different ways.5 The first is the unanimity voting
where all members have to vote in favor or against for the motion to be passed or

5http://www.consilium.europa.eu/en/council-eu/voting-system/.

http://www.consilium.europa.eu/en/council-eu/voting-system/
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Table 4 Population percentages of the countries in the European Union

Country Pop (%) weu

Germany 16.06 1606

France 13.05 1305

United Kingdom 12.79 1279

Italy 12.00 1200

Spain 9.09 909

Poland 7.43 743

Romania 3.87 387

Netherlands 3.37 337

Belgium 2.21 221

Greece 2.11 211

Czech Republic 2.04 204

Portugal 2.02 202

Sweden 1.96 196

Hungary 1.92 192

Austria 1.71 172

Bulgaria 1.40 140

Denmark 1.12 112

Finland 1.07 107

Slovakia 1.06 106

Ireland 0.91 91

Croatia 0.82 82

Lithuania 0.57 57

Slovenia 0.40 40

Latvia 0.39 39

Estonia 0.26 26

Cyprus 0.17 17

Luxembourg 0.11 11

Malta 0.09 9

dismissed. In nonlegislative issues, a simple majority voting is done where at least
15 out of the 28 members have to vote in favor. For most (80%) of the issues that
are voted upon in the EU Council, the “qualified majority” method is used. This is
stated as follows6:

A qualified majority needs 55% of member states, representing at least 65% of the EU
population.

It is the qualified majority voting rule that we consider in the context of weighted
majority voting games. The population percentages of the individual countries are

6http://www.consilium.europa.eu/en/council-eu/voting-system/qualified-majority/.

http://www.consilium.europa.eu/en/council-eu/voting-system/qualified-majority/
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Fig. 13 Similarity indices
for EU weights

Fig. 14 Gini index for EU
weights

available7 and are reproduced in Table 4. These percentages are the weights of the
individual countries. For computation of the voting powers, the percentage values are
multiplied by 100 to convert these into integers which are then used as the weights.
This scaling does not affect the decision-making process.

In the qualified majority voting, the passing rule is a joint condition, one on the
number of member states which are involved and the other on the population percent-
age. While analyzing the joint condition would be more accurate, for the purpose of
this work, we have worked with the simpler setting where only the winning condition
on the population percentage is considered. This leads to a weighted majority voting
game where the weight vector weu is specified in Table 4 and the winning threshold
is q = 0.65.

7http://www.consilium.europa.eu/en/council-eu/voting-system/voting-calculator/.

http://www.consilium.europa.eu/en/council-eu/voting-system/voting-calculator/
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Fig. 15 Coefficient of
variation for EU weights

Table 5 EU game similarity indices

q BZ-SIweu (q) PGI-SIweu (q) DP-SIweu (q)

0.50 0.9988826 0.3320853 0.5051382

0.51 0.9989581 0.4181647 0.5640333

0.52 0.9991501 0.4929785 0.6151950

0.53 0.9993725 0.5596608 0.6631804

0.54 0.9995411 0.6230357 0.7099130

0.55 0.9996231 0.6830571 0.7540455

0.56 0.9996430 0.7350513 0.7910700

0.57 0.9996501 0.7765455 0.8199512

0.58 0.9996763 0.8063575 0.8409968

0.59 0.9997123 0.8289370 0.8576475

0.60 0.9997249 0.8477416 0.8722319

0.61 0.9996959 0.8642583 0.8846472

0.62 0.9996486 0.8777664 0.8944232

0.63 0.9996354 0.8870017 0.9006101

0.64 0.9996914 0.8932824 0.9048869

0.65 0.9997886 0.8976327 0.9086210

0.66 0.9998332 0.9039397 0.9150038

0.67 0.9997214 0.9135211 0.9242301

0.68 0.9994175 0.9258465 0.9351369

0.69 0.9989968 0.9381400 0.9448867

0.70 0.9986065 0.9465521 0.9507084
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Table 6 Inequality as measured by GI and CoV in the EU Game. In the table
h1(q) = (BZ,GI)-PIweu (q), h2(q) = (PGI,GI)-PIweu (q), h3(q) = (DP,GI)-PIweu (q), k1(q) =
(BZ,CoV)-PIweu (q), k2(q) = (PGI,CoV)-PIweu (q), k3(q) = (DP,CoV)-PIweu (q). Note GI-
WI(weu) = 0.605671 and CoV-WI(weu) = 1.272825

q h1(q) h2(q) h3(q) k1(q) k2(q) k3(q)

0.50 0.614849 0.033960 0.046614 1.309745 0.091907 0.107286

0.51 0.614993 0.039425 0.051749 1.309901 0.095374 0.112346

0.52 0.615391 0.044681 0.056573 1.310338 0.100199 0.118139

0.53 0.615945 0.049083 0.060556 1.310962 0.105176 0.123691

0.54 0.616483 0.052608 0.063782 1.311545 0.109910 0.128951

0.55 0.616834 0.055576 0.067481 1.311731 0.114808 0.134668

0.56 0.616822 0.059365 0.071789 1.311070 0.120243 0.140936

0.57 0.616302 0.063896 0.076268 1.309147 0.126922 0.148409

0.58 0.615243 0.068081 0.080370 1.305796 0.134171 0.156036

0.59 0.613694 0.072437 0.084545 1.301119 0.142004 0.163861

0.60 0.611813 0.076339 0.088256 1.295536 0.149118 0.170797

0.61 0.609851 0.079853 0.091521 1.289678 0.155445 0.176837

0.62 0.608078 0.083431 0.094969 1.284198 0.161705 0.183060

0.63 0.606708 0.086467 0.097851 1.279626 0.167582 0.188834

0.64 0.605893 0.089760 0.101116 1.276296 0.174214 0.195451

0.65 0.605616 0.093045 0.104334 1.274202 0.181046 0.202085

0.66 0.605689 0.096528 0.107787 1.272960 0.188107 0.209023

0.67 0.605797 0.100171 0.111427 1.271778 0.195381 0.216243

0.68 0.605497 0.103949 0.115322 1.269457 0.202594 0.223577

0.69 0.604333 0.107898 0.119249 1.264638 0.210268 0.231500

0.70 0.601994 0.111935 0.123198 1.256239 0.218490 0.239777

For the weight vector weu given in Table 4, we have computed the similarity and
inequality indices with q varying from 0.01 to 0.99 in steps of 0.01. The plots of BZ-
SIweu(q),PGI-SIweu(q), andDP-SIweu(q) are shown in Fig. 13; the plots of (BZ,GI)-
PIweu(q), (PGI,GI)-PIweu(q), and (DP,GI)-PIweu(q) are shown in Fig. 14; and the
plots of (BZ,CoV)-PIweu(q), (PGI,CoV)-PIweu(q), and (DP,CoV)-PIweu(q) are
shown in Fig. 15. The actual values of these indices for the range [0.5, 0.7] are
shown in Tables 5 and 6.

Based on these data, we have the following observations:

1. As in the case of the IMF-EB voting game, the Holler and the Deegan–Packel
indices are not good indicators of either the similarity to or the inequality present
in the weights. So, again we focus only on the Banzhaf index.

2. The following holds for the Banzhaf index:

– The plots of the two inequality indices as well as the similarity index have a
somewhat bell-shaped nature.
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Table 7 Votingpowers of the players under various powermeasures for theEUgamewithq = 0.66.
Instead of the players, the voting powers are shown against the weights of the players

Wts BZN BZ CP CI PGI PGM DP

1606 0.2459032 0.1582166 0.7950917 0.1454426 0.0537148 0.8173260 0.0554496

1305 0.2044021 0.1315144 0.6609039 0.1208962 0.0479912 0.7302363 0.0496147

1279 0.2003657 0.1289173 0.6478528 0.1185089 0.0475521 0.7235548 0.0491300

1200 0.1881286 0.1210439 0.6082861 0.1112711 0.0463214 0.7048273 0.0477734

909 0.1444251 0.0929245 0.4669771 0.0854221 0.0410962 0.6253212 0.0423199

743 0.1115583 0.0717777 0.3607073 0.0659826 0.0368236 0.5603092 0.0372597

387 0.0600651 0.0386465 0.1942116 0.0355263 0.0379704 0.5777581 0.0380942

337 0.0523199 0.0336631 0.1691686 0.0309453 0.0371804 0.5657380 0.0372361

221 0.0343284 0.0220872 0.1109957 0.0203039 0.0355657 0.5411688 0.0354550

211 0.0327751 0.0210878 0.1059733 0.0193852 0.0354097 0.5387953 0.0352811

204 0.0316896 0.0203894 0.1024638 0.0187432 0.0353493 0.5378758 0.0352135

202 0.0313774 0.0201886 0.1014543 0.0185586 0.0353118 0.5373050 0.0351703

196 0.0304473 0.0195901 0.0984469 0.0180085 0.0352300 0.5360610 0.0350762

192 0.0298266 0.0191907 0.0964398 0.0176413 0.0352006 0.5356133 0.0350399

171 0.0265634 0.0170911 0.0858887 0.0157112 0.0349022 0.5310729 0.0347002

140 0.0217525 0.0139958 0.0703336 0.0128658 0.0345472 0.5256718 0.0343204

112 0.0173997 0.0111951 0.0562592 0.0102913 0.0341762 0.5200262 0.0338917

107 0.0166246 0.0106964 0.0537533 0.0098328 0.0341039 0.5189262 0.0338115

106 0.0164687 0.0105961 0.0532489 0.0097406 0.0341017 0.5188932 0.0338069

91 0.0141386 0.0090969 0.0457151 0.0083625 0.0338729 0.5154111 0.0335409

82 0.0127383 0.0081959 0.0411873 0.0075342 0.0336632 0.5122204 0.0332955

57 0.0088505 0.0056945 0.0286168 0.0052347 0.0329459 0.5013056 0.0324475

40 0.0062171 0.0040002 0.0201021 0.0036772 0.0321913 0.4898234 0.0315918

39 0.0060615 0.0039000 0.0195989 0.0035851 0.0321094 0.4885777 0.0314986

26 0.0040399 0.0025993 0.0130624 0.0023894 0.0300802 0.4577017 0.0292896

17 0.0026410 0.0016992 0.0085393 0.0015621 0.0273734 0.4165147 0.0264409

11 0.0017116 0.0011013 0.0055342 0.0010123 0.0238031 0.3621886 0.0228048

9 0.0013991 0.0009002 0.0045238 0.0008275 0.0214120 0.3258058 0.0204462

– The maximum similarity is achieved for q = 0.66.
– For theGini Index, the inequality in the power profile is closest to the inequality
in the weights for q = 0.66.

– For the Coefficient of Variation, the inequality in the power profile is closest
to the inequality in the weights for q = 0.66.

So, the value of q = 0.66 is the best in terms of similarity and also for inequality
measured by either the Gini Index or the Coefficient of Variation.
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The value of q actually used in the EU voting games is q = 0.65. The corresponding
similarity value and the values for Gini Index and Coefficient of Variation are shown
in Tables 1 and 2, respectively. These values show that in comparison to q = 0.66,
the choice q = 0.65 is suboptimal but, very close. For q = 0.66, the actual values of
the different power measures are shown in Table 7.

Unlike the case of the IMF voting game, our analysis shows that for the weighted
majority game arising in the context of EU, the winning threshold is very close to
the optimal value. So, our analysis provides some quantitative backing to the actual
winning threshold used in the EU game.

7 Conclusion

In this paper, we have addressed the problem of quantifying whether a power profile
adequately captures the natural variation in the weights of a weighted majority vot-
ing game. Ideas based on Pearson’s correlation coefficient and standard inequality
measures such as the Gini Index and the Coefficient of Variation have been used in
the formalization. These ideas have been applied to the voting games arising in the
context of the IMF and the EU. We provide concrete quantitative evidence that the
actual winning threshold used in the IMF games is suboptimal and instead propose
a new value of the winning threshold which has firm theoretical justification. In the
case of the EU game, the actual value of the winning threshold used is close to the
optimal value. So, in this case, our analysis provides some quantitative backing to
the value of the winning threshold that is actually used.
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Reduced Form Polarization Index:
Alternative Formulations and Extensions

Bhargav Maharaj and Nachiketa Chattopadhyay

Abstract In the literature on polarization, an increasing map of the between-group
expression and a decreasing map of the within-group expression with respect to a
population subgroup-decomposable inequality index is known as an abbreviated or
reduced formmonotonic polarization index. The between-group expression is said to
represent the alienation characteristic of polarization and the within-group expres-
sion negatively reflects the identification characteristic. Chakravarty and Maharaj
(2011) developed an ordering for ranking alternative distributions of income based
on such type of polarization indices. They also characterized several polarization
indices of the said type using axioms which are easily comprehensible and intu-
itive. In this paper, we consider some alternative formulations of the axioms used in
Chakravarty and Maharaj (2011) from a more primitive standpoint. A general nature
of a polarization map is derived and the setup is extended to consider pooling of two
populations. An empirical illustration of polarization indices using Indian National
Sample Survey data is presented.

Keywords Reduced form polarization · Ordering · Axioms · Characterization ·
NSS

The authors thank Hitesh Tripathi for computational assistance.

B. Maharaj
Ramakrishna Mission Vidyamandira, Belur Math, Howrah, West Bengal, India
e-mail: ekachittananda@gmail.com

N. Chattopadhyay (B)
Sampling and Official Statistics Unit, Indian Statistical Institute, 203, B. T. Road,
Kolkata 700 108, India
e-mail: nachiketa@isical.ac.in

© Springer Nature Singapore Pte Ltd. 2019
I. Dasgupta and M. Mitra (eds.), Deprivation, Inequality and Polarization,
Economic Studies in Inequality, Social Exclusion and Well-Being,
https://doi.org/10.1007/978-981-13-7944-4_10

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7944-4_10&domain=pdf
mailto:ekachittananda@gmail.com
mailto:nachiketa@isical.ac.in
https://doi.org/10.1007/978-981-13-7944-4_10


196 B. Maharaj and N. Chattopadhyay

1 Introduction

The measurement of polarization has gained considerable significance due to its
usability in analysis of the evolution of income distributions, growth, conflicts, and
many other contemporary issues. Generally, polarization means a clustering (sub-
grouping) of incomes around some local values called “poles” in the data, where the
persons belonging to the same cluster possess a feeling of identification or solidarity
among them and share a feeling of alienation or enmity against persons in a different
cluster or subgroups (see Esteban and Ray, 1994 for details). Hence, persons in the
same cluster identify themselves with the members of the cluster in terms of income
but in terms of the same income variable they have a feeling of distance from per-
sons of the other clusters. Clearly, an increase in the identification is synonymous
with increase in homogeneity, or more precisely equality within a cluster or sub-
group. On the other hand, an increased alienation generally gives rise to an increased
heterogeneity or inequality between subgroups. Thus, both the expressions iden-
tification and alienation are positively related to polarization. Expanding on these
ideas, Esteban and Ray (1994) developed an axiomatic characterization of an index
of polarization in a quasi-additive framework. Following them, Zhang and Kanbur
(2001) came up with an index of polarization incorporating the concept related to
the identification and alienation components. Rodriguez and Salas (2003) consid-
ered a similar approach and bi-partitioned the population in terms of the median and
proposed a bi-polarization index which turned out to be the difference between the
between-group andwithin-group components of theDonaldson andWeymark (1980)
S-Gini index of inequality (see also Silber et al. 2007). Such indices, now described
as a reduced form polarization index in the literature, can be used to characterize the
trade-off between the alienation and identification characteristics of polarization.

Chakravarty and Maharaj (2011) makes some analytical and rigorous investiga-
tion using the idea that polarization is related to Between-Group Inequality (BI)
and Within-Group Inequality (WI) in increasing and decreasing ways, respectively.
They define an ordering that makes one distribution more or less polarized than
another unequivocally and derive the corresponding necessary and sufficient condi-
tions. They also characterize several polarization indices, including a generalization
of the Rodriguez-Salas form and the structure of a normalized ratio form index is
shown to parallel that of the Zhang–Kanbur index. The axioms are shown to be
independent too.

In this paper, we extend the work of Chakravarty and Maharaj (2011) in several
directions. First, we have a relook at the characterization result and suggest alterna-
tive axioms which preserve the characterization and which seems more primitive in
nature. This is given in Sect. 3. We derive a necessary and sufficient condition for
a mapping to be considered as a reduced form polarization index in Sect. 4. Next,
we present some results in Sect. 5 on polarization index based on two independent
populations. The next section illustrates several polarization indices using Indian
National Sample Survey data for the period 1999–2015. Finally, Sect. 7 concludes
the paper.
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2 Some Definition and Existing Results

As already stated, this paper is an extension of the work of Chakravarty and Maharaj
(2011). Hence, in order to recognizing this aspect and ease of understanding, we
retain the notation and basic definitions used in that paper as far as practicable.
For a population of size n, the vector x = (x1, . . . , xn) represents the distribution
of income, where each xi is assumed to be drawn from the nondegenerate interval
[ν,∞) in the positive part R1++ of the real line R1. Here, xi stands for the income
of i-th person of the population, i = 1, . . . , n. For any i , xi ∈ [ν,∞), and so, x ∈
Dn = [ν,∞)n , the n-fold Cartesian product of [ν,∞). The set of all possible income
distributions is D = ∪n∈N Dn , where N is the set of natural numbers. For all n ∈ N ,
for all x = (x1, . . . , xn) ∈ Dn , the mean of x is denoted by λ(x) (or simply by λ).
For all n ∈ N , 1n denotes the n-coordinated vector of ones. The nonnegative orthant
of the n-dimensional Euclidean space Rn is denoted by Rn+. An inequality index is
a function I : D → R1+.

As argued by Chakravarty and Maharaj (2011), the most relevant inequality
indices in the context of polarization are the Theil mean logarithmic deviation index
IML and the variance IV . These two indices share a very useful property of sub-
group decomposability (see Shorrocks 1980; Foster 1985 and Chakravarty 2009a for
details) for inequality indices and are invariant to relative and absolute changes in
incomes, respectively. The axiomatic analysis of polarization indices by Chakravarty
and Maharaj (2011) is therefore based on these two inequality indices. Formally, the
indices are given by

IML(x) = 1

n

n∑

i=1

log
λ

xi
(1)

and

IV (x) = 1

n

n∑

i=1

x2i − λ2. (2)

As already indicated, a polarization index is taken as a real-valued map of income
distributions of arbitrary number of clusters (subgroups) of a population, the clusters
being formed with respect to homogeneity of some characteristic. Formally,

Definition 1 Any continuous function P : � → R1, where, � = ∪k∈�(�ni∈�,1≤i≤k

Dni ) and � = N\{1} is said to be defined as a polarization index.
P(x) indicates the level of polarization associated with the vector x for any x =

(x1, . . . , xk) ∈ �,k ∈ �.
Next, we describe a reduced form index formally.

Definition 2 A polarization index P is called abbreviated or reduced form if for all
x = (x1, . . . , xk) ∈ �, k ∈ �, P(x) can be expressed as P(x) = f (BI (x),W I (x)),
where BI (W I ) is the between-group inequality (within-group inequality) with
respect to I , I = IML or IV is arbitrary and the real-valued map f defined on R2+ is
continuous.
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The function f considered above is known as the characteristic function. Further,
the polarization index defined above will be called a relative or an absolute index
according as the inequality index used is IML or IV .

Definition 2 is consistent with the existing literature where there are economic
indicators summarizing the entire distribution in terms of two or more characteristics
or parameters of the distribution. For instance, a reduced form welfare function cap-
tures social welfare as an increasing map of mean income (the efficiency parameter)
and a decreasing map of inequality (the equity parameter) (For details, see Ebert
1987; Amiel and Cowell 2003 and Chakravarty 2009a, b).

Note that the concepts identification and alienation are regarded as intrinsic to the
characteristic of polarization. For proper reflection of this, we further assume that
the mapping is monotonic, that is, it is increasing in BI and decreasing in W I . A
polarization index with this additional property is said to be feasible. Formally, we
have,

Definition 3 A feasible polarization index is a reduced form polarization index
P(x) = f (BI (x),W I (x)), where I = IML or IV , where x = (x1, . . . , xk) ∈ �, k ∈
� are arbitrary and the real-valuedmapping f defined on R2+ is continuous, increasing
in BI and decreasing in W I .

Chakravarty and Maharaj (2011) postulate some axioms to characterize a class
of feasible polarization indices. In other words, a set of necessary and sufficient
conditions for identifying an index uniquely is developed. Such an exercise helps
in understanding the underlying polarization index in an intuitive manner. Thus,
characterization of an index focuses on the underlying implicit value judgments in
an explicit way. We have, therefore,

Axiom 1 (A1): Incremental Effect on BI: For all x = (x1, . . . , xk) ∈ �, k ∈ �, and
for any nonnegative α, f (BI (x) + α,W I (x)) − f (BI (x),W I (x)) = ψ(BI (x),
W I (x)) g(α) for some continuous functions ψ : R2+ → R1+ and g : R1+ → R1+,
where ψ is nondecreasing in its first argument, g is increasing, g(0) = 0 and
I = IML or IV .

Axiom2 (A2): Incremental Effect onWI: For all x = (x1, . . . , xk) ∈ �, k ∈ �, and
for any nonnegative β, f (BI (x),W I (x) + β) − f (BI (x),W I (x)) = φ(BI (x),
W I (x)) h(β) for some continuous functions φ : R2+ → R1+ and h : R1+ → R1+,
where φ is nondecreasing in its second argument, h is increasing, h(0) = 0 and
I = IML or IV .

Axiom 3 (A3): Normalization: For arbitrary k ∈ �, if x = (x1, . . . , xk) ∈ � is of
the form xi = c 1ni , where ni ∈ � for all 1 ≤ i ≤ k and c > 0 is a scalar, then for
any I = IML or IV , f (BI (x),W I (x)) = 0. Since for a perfectly equal distribution
x , BI (x) = W I (x)) = 0, we may restate axiom A3 as f (0, 0) = 0.

The idea behind Axiom 1 (2) is as follows.
The increase in polarization resulting from a higher value of BI (W I ) by the

amount α(β) is assumed to be proportional to an increasing transform of α(β).
This means that the increase can be decomposed into two continuous factors, one a
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nonnegative map of α(β) alone and the other a nonnegative-valued map of BI and
W I , which is nondecreasing in BI (W I ). Consequently, given differentiability of the
function f (g), the polarization index becomes convex (concave) in BI (W I ). The
functions f and g are interpreted, respectively, by Chakravarty and Maharaj (2011)
as alienation and identification sensitivity functions (see Chakravarty and Maharaj
(2011) for details).

In order to explain the alternative formulations and extensions developed in the
later sections, we quote the following theorem.

Theorem 1 Chakravarty and Maharaj (2011): Assume that the characteristic func-
tion is continuously differentiable. Assume also that the right partial derivative of
the characteristic function at zero with respect to each argument exists and is pos-
itive for the first argument and negative for the second argument. Then, a feasible
polarization index P : � → R1 with such a characteristic function satisfies axioms
A1, A2, and A3 if and only if it is of one of the following forms for some arbitrary
positive constants c1 and c2:

(i) P1(x) = c1BI (x) − c2W I (x),
(ii) P2(x) = c1

log a a
BI (x)−1 − c2W I (x), a > 1,

(iii) P3(x) = (aBI (x)−1)( c1
log a + ρW I (x)) − c2W I (x), 0 < a < 1,−c2 ≤ ρ ≤ 0,

(iv) P4(x) = c1BI (x) − c2
log b b

W I (x)−1, b > 1,

(v) P5(x) = c1BI (x) − bW I (x)−1( c2
log b + σBI (x)), 0 < b < 1,−c1 ≤ σ ≤ 0,

(vi) P6(x) = c1
log a a

BI (x)−1 − c2
log b b

W I (x)−1, a > 1, b > 1,

(vii) P7(x) = c1
log a a

BI (x)−1 − c2
log b b

W I (x)−1 + ηaBI (x)−1)bW I (x)−1, a > 1, 0 < b <

1, 0 ≤ ηlogb ≤ 0,
(viii) P8(x) = c1

log a a
BI (x)−1 − c2

log b b
W I (x)−1 + ηaBI (x)−1)bW I (x)−1, 0 < a < 1,

b > 1,−c2 ≤ ηlog b ≤ 0,
(ix) P9(x) = c1

log a a
BI (x)−1 − c2

log b b
W I (x)−1 + ηaBI (x)−1)bW I (x)−1, 0 < a,

c1
log a ≤ η ≤ − c2

log b ,

where x = (x1, . . . , xk) ∈ �, k ∈ � and I = IML or IV are arbitrary.

3 Alternative Formulation of Axiom 1 and Axiom 2

The essential behavior underlying the Axioms 1 and 2 is that there is a threshold
level/ tolerance limit of polarization exceeding which a society becomes turbulent.
In this case, a small increment in alienation/identification is likely to escalate tension
to a degree, which may generate conflict, as characterized by higher polarization.
Also, the tolerance limit, in general, will vary from society to society. In particular,
for a highly peaceful society, it is expected to be quite low. Further, it could well
be the case that the net increment in polarization will not be lower for a society
characterized by a higher level of conflict/ polarization. These considerations lead to
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the assumption that the change in polarization is nondecreasingly related to alienation
and identification over the entire domain.

As an alternative formulation to A1 which is in line with the above discussion and
also has some generality, we assume,

Assumption 1 (AS1): The increment in polarization resulting froman increase in BI
by the amountα and keepingW I constant is nondecreasing in BI and is proportional
to an increasing transform of α.

To get to the difference between A1 and AS1, let I = IML or IV and let f be
the characteristic function of a feasible polarization index P : � → R1. Then, AS1
says that for any nonnegativeα, the polarization difference f (BI (x) + α,W I (x)) −
f (BI (x),W I (x)) is proportional to g(α) for some increasing function g : R1+ →
R1+. Notice that the constant of proportionality will invariably depend on the initial
distribution x = (x1, . . . , xk) ∈ �, where k ∈ �. Consequently, we can formally
express AS1 as

AS1:
f (BI (x) + α,W I (x)) − f (BI (x),W I (x)) = π(x) g(α) (3)

for all x ∈ � and some continuous function π : D → R1.
Note thatwhile inA1 the incremental effect on polarizationwas explicitly depend-

ing on the levels of alienation and identification in a society captured through BI and
W I , in AS1, we generalize this by requiring the effect to be dependent on the ini-
tial distribution x = (x1, . . . , xk) itself. Hence, it is a weaker requirement. We now
show that AS1 implies A1 for a general class of nontrivial distributions. It may be
noted that the alienation and identification levels are both crucial factors determining
polarization, and hence the most relevant distributions for polarization measures are
those where the alienation and identification, represented by BI and W I , respec-
tively, are nonzero. We may call such distributions a nontrivial class of distributions
in the context of polarization. Formally, a nontrivial class of distributions, denoted
as ϒ , is given by ϒ = {x = (x1, . . . , xk) ∈ �, k ∈ �, BI (x) �= 0,W I (x) �= 0}
Result 1: If x ∈ ϒ , Assumption 1 implies Axiom 1.

Proof If there is no change in BI , there will be no change in the value of the
polarization index (assuming that W I remains unaltered). Putting α = 0 in (3), we
get, π(x) g(0) = 0 for all x ∈ �. This implies that g(0) = 0, for otherwise,π(x) = 0,
which, when substituted in (3), will lead to a violation of increasingness of f in its
first argument. So, by increasingness of g, it follows that g(α) > 0 for all α > 0.

Next, since (3) holds for all α ≥ 0, replacing α by BI (x) (where BI (x) �= 0), we
get, f (2 BI (x),W I (x)) − f (BI (x),W I (x)) = π(x) g(BI (x)), from which it fol-
lows that π(x) = ( f (2 BI (x),W I (x)) − f (BI (x),W I (x)))/g(BI (x)) = ψ(BI
(x),W I (x)) [note that BI (x) �= 0 implies g(BI (x)) �= 0] for some continuous func-
tion ψ : R2+ → R1. Substituting in (3), we get,

f (BI (x) + α,W I (x)) − f (BI (x),W I (x)) = ψ(BI (x),W I (x)) g(α). (4)
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But f is increasing in its first argument, and so by g(α) ≥ 0, we have ψ(BI (x),
W I (x)) ≥ 0 for all x ∈ �. Finally, note that the difference f (BI (x) + α,W I (x)) −
f (BI (x),W I (x)) should be nondecreasing in BI . So, we require that ψ is nonde-
creasing in its first argument which completes the proof.

Again, as an alternative formulation to A2which is similar to the discussion above
except that it is concerned with the changes in W I , we assume,

Assumption 2 (AS2): The increment in polarization resulting from an increase in
W I by the amount β and keeping BI constant is nonincreasing in W I and is pro-
portional to an increasing transform of β. More formally, we have

AS2:
f (BI (x),W I (x) + β) − f (BI (x),W I (x)) = χ(x) h(β) (5)

for all x ∈ � and some continuous function χ : D → R1.

It is easy to observe that AS2 is weaker than A2. Using a similar logic as in
Result 1, we can have

Result 2: If x ∈ ϒ , Assumption 2 implies Axiom 2.
Thus, the Theorem 1 in Chakravarty and Maharaj (2011) can be restated in terms

of the set ofweaker conditionsAS1,AS2, andA3 for a very general class of nontrivial
distributions.

4 General Nature of a Reduced form Polarization Map

Proposition 1 Let n = (n1, . . . , nk) ∈ Nk, k ∈ � and let D0 = (�k
i=1D

ni ) ∪
(∪k

i=1D
ni ). A necessary and sufficient condition for an arbitrary map P : D0 → R

to be a reduced form polarization index with respect to some (not predetermined)
subgroup-decomposable inequality index I : D0 → R1+ is that there exists a map
f0 : R2+ → R1 which is increasing in its first argument and decreasing in the sec-
ond, satisfying the following relation:

P(x) = f0(P(λ(n)),

k∑

i=1

wi (n,λ)g(xi )) for all x ∈ D0, (6)

where λ = (λ1, . . . ,λk), λ
(n) = (λ11n1 , . . . ,λk1nk ), wi (n,λ) are weights and

g : (∪k
i=1D

ni ) → R1+ vanishes for the perfectly equal distribution.

Proof Suppose P is a reduced form polarization index on D0. Then, there is some
subgroup-decomposable inequality index I : D0 → R1+ and a map f : R2+ → R1,
which is increasing in its first argument and decreasing in the second, such that

P(x) = f (I (λ(n)),

k∑

i=1

wi (n,λ)I (xi )) (7)
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for all x ∈ D0. In particular, P(λ(n)) = f (I (λ(n), 0) = f1(I (λ
(n)), where f1 : R1+ →

R1 is continuous and strictly increasing. This implies that I (λ(n)) = f −1
1 (P(λ(n))) =

f2(P(λ(n))), say with f −1
1 = f2. Note then that f2 is strictly increasing. Substituting

in (7), we get,

P(x) = f ( f2(P(λ(n)),

k∑

i=1

wi (n,λ)I (xi )). (8)

Define f0 : R2+ → R1 by f0(s, t) = f ( f2(s), t) for (s, t) ∈ R2+. Then, f0 is increas-
ing in its first argument and decreasing in the second.
So, (8) yields: P(x) = f0(P(λ(n)),

∑k
i=1 wi (n,λ)g(xi ))with g = I , for all x ∈ D0.

This proves our claim.
Conversely, if P satisfies (6), then define I : D0 → R1+ by I (x) = P(λ(n)) +∑k
i=1 wi (n,λ)g(xi )) if x ∈ �k

i=1D
ni and I (x) = g(x) if x ∈ ∪k

i=1D
ni .

Then, I (λ(n)) = P(λ(n)). Consequently, I (x) = I (λ(n)) + ∑k
i=1 wi (n,λ)I (xi ))

for all x ∈ �k
i=1D

ni , which means I is subgroup decomposable on D0.

5 Polarization of Combined Populations

Given a polarization index and two independent populations, it is, in general, not
easy to predict anything regarding the effect of combination of the two populations.
However, in case of a reduced form polarization index P(x) = f (BI (x),W I (x)
( f being the characteristic function), which is, by definition, increasing in BI and
decreasing in W I , if we assume further convexity in BI and concavity in W I ,
then it is possible to furnish bounds(s) (upper/lower) of the polarization for the
combined population in some special situations, like having two populations with
equal number of groups andwhich are identical in respective sizes. Thus,we have x =
(x1, . . . , xk), y = (y1, . . . , yk) ∈ �k

i=1D
ni two income distributions with respective

groupmean vectors (λ11n1 , . . . ,λk1nk ) and (μ11n1 , . . . ,μk1nk ). Further, let the mean
of x(y) be, respectively, denoted as λ(μ). We want to study the polarization of the
population obtained by combining x and y.

We consider the following two methods of combining the population groups in
the pooled population:

(a) The group-structures remain unaffected and the new population, which is a
simple union of the previous ones, comprises 2k subgroups.

(b) Groups with equal sizes are fused together and the new population has the
same number (k) of subgroups with sizes 2ni .

Proposition 2 Consider a situation as in (a) above. Let w = (x1, . . . , xk; y1, . . . ,
yk) ∈ �k

i=1D
ni �k

i=1D
ni be the population obtained by combining x and y, and P be

a Reduced formPolarization index with respect to an inequality index I = IML or IV .
Assume that P is convex in B I and concave in W I .
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(i) If f (BI (y),W I (x)) ≥ 0, then P(w) ≥ 1
2min{P(x), P(y)}.

(ii) If the mean vectors of x and y are identical, that is, λ = μ, then P(w) ≥
1
2 (P(x) + P(y)).

Proof (i) By subgroup decomposability of I used in P , we have BI (w) =
I (λ11n1 , . . . ,λk1nk ;μ11n1 , . . . ,μk1nk ) = I (λ1n,μ1n) + 1

2 (BI (x) + BI (y)) ≥ 1
2

(BI (x) + BI (y)). Also,W I (w)=∑k
i=1

ni
2n (I (x

i ) + I (yi ))= 1
2 (W I (x) + W I (y)).

Suppose BI (x) ≥ BI (y). Then, by increasingness of f in its first argument, we
have, P(w) = f (BI (w),W I (w)) ≥ f ( 12 (BI (x) + BI (y)), 1

2 (W I (x) + W I (y))
≥ f (BI (y), 1

2 (W I (x) + W I (y))) ≥ 1
2 ( f (BI (y),W I (x)) + f (BI (y),W I (y))),

the inequality being a result of concavity of f in the second argument. Hence, using
the assumption that, f (BI (y),W I (x)) ≥ 0, we have, P(w) ≥ 1

2 f (BI (y),W I (y))
= 1

2 P(y). Similarly, if BI (y) ≥ BI (x), then P(w) ≥ 1
2 P(x). Combining the two

observations, we get P(w) ≥ 1
2min{P(x), P(y)}.

(ii) Next, if x and y have the same mean vector, we have BI (x) = BI (y) = B,
say. Then, BI (w) = B, by population replication invariance of I. Hence, P(w) =
f (BI (w),W I (w)) = f (B, 1

2 (W I (x) + W I (y))) ≥ 1
2 ( f (B,W I (x)) + f (B,

W I (y))) = 1
2 (P(x) + P(y)), by concavity of f in the second argument.

Proposition 3 Consider a situation as in (b) above. Let P be a Reduced form Polar-
ization index with respect to IV . Further, assume that (i) I (xi ) = I (yi ) for each i
and (ii)

∑k
i=1 niλiμi ≤ nλμ. If z = (z1, . . . , zk) ∈ �k

i=1D
2ni , where zi = (xi , yi )

for 1 ≤ i ≤ k, be obtained by combining x with y and clubbing together the groups
of same size, then P(z) ≤ 1

2 (P(x) + P(y)).

Proof Observe that mean of z is 1
2 (λ + μ) and W I (x) = W I (y) = W , say. Also,

I (zi ) = I (xi , yi ) ≥ 1
2ni

(ni I (xi ) + ni I (yi )) = 1
2 (I (x

i ) + I (yi )) so that W I (z) =
∑k

i=1
ni
n I (z

i ) ≥ 1
2 (W I (x) + W I (y)) = W . Further, BI (x) = ∑k

i=1 ni (λi − λ)2 =
V1 and BI (y) = ∑k

i=1 ni (μi − μ)2 = V2, say.
Then, BI (z) = ∑k

i=1 2ni (
λi+μi

2 − λ+μ
2 )2 = 1

2

∑k
i=1 ni (λi − λ)2 + 1

2

∑k
i=1 ni

(μi − μ)2 + 1
2

∑k
i=1 ni (λi − λ)(μi − μ) = 1

2 (V1 + V2) + 1
2 (

∑k
i=1 niλiμi − nλμ)

≤ 1
2 (V1 + V2), by assumption (ii). Consequently, P(z) = f (BI (z),W I (z)) ≤ f ( 12

(V1 + V2),W ), by monotonicity of f in both the arguments. So, convexity of f in
the first argument yields.

P(z) ≤ 1
2 ( f (V1,W ) + f (V2,W )) = 1

2 (P(x) + P(y)).

6 An Empirical Illustration

We use National Sample Survey data of Consumer Expenditure to analyze changes
in polarization as captured through Monthly Per Capita Expenditure (MPCE) across
states and union territories of India for the time period 1993–94 to 2014–15.
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The specific rounds of survey considered are 50, 55, 61, 66, 68, and 72 with respec-
tive years as 1993–94, 1999–2000, 2004–2005, 2009–10, 2011–12, and 2014–15.
The computations are carried out separately for the rural and urban sectors. We have
considered the grouping of the population in the following three classes: the low-
est 30%, the middle 40%, and the top 30%, where the observations are arranged in
the increasing order. The choice of the lower 30% is in line with the current poverty
headcount in India and this class may be considered as a representation of the “poor”.
The other two classes analogously may be termed as “middle class” and the “rich”,
respectively. Obviously, the polarization index will depend on the grouping. Also,
the unit of observation is the households and MPCE is the representative monthly
expenditure taking the household size into consideration. It may be noted that MPCE
is taken as an approximation of Monthly Per Capita Income (MPCI) in absence of
reliable income data. Obviously, the inequality in the savings pattern and its cor-
relations with consumption expenditure have definitive influence on inequality of
income and hence on the polarization indices based on such inequalities.

Since the polarization indices considered here are based on BI andW I which have
definitive interpretations,wefirst present these values inTables 1 and2, in terms of the
inequality index IML for rural andurban sectors. It is observed (Table 1) that except for
some few states and territories, the between-group inequalities are higher for urban
than rural implying a higher level of alienation of the three classes in urban areas.
However,with a lesser degree, the same is true for thewithin-group inequalities (Table
2) with the urban sectors of different states and territories displaying a higher level
of within-group inequality. That is, the three classes in the rural sector have a higher
level of identification than the corresponding classes in the urban sector. This further
implies for polarization, things may turn out differently which we explore in Table
3, where, the simple difference form polarization index is shown for rural and urban
sectors. We find that here the situation more or less resembles the scenario observed
in the case of between-group inequalities. All the indices are positive implying a
higher level of alienation than identification across the states and the sectors.

However, in all the three cases, we get quite different states or territories which
show higher values for the rural sector across various rounds. To look into this
more precisely, we have a table (Table 4), where we have presented the polarization
ranks for both the sectors. The ranks are sorted by the level of the rural polarization
of the most current round (72) in the year 2014–15, from lower to higher value
of polarization. In terms of these ranks, we find that there has been considerable
changes in the polarization levels of rural and urban Indian states across time. The
general feature remains the same if we use the variance inequality measure, which
is, therefore, not reported here.
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Table 1 Between-Group Inequality (by IML ) of MPCE: Rural and Urban
NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban

All India 0.110 0.168 0.097 0.165 0.111 0.190 0.119 0.215 0.116 0.197 0.117 0.157

Andhra Pradesh 0.108 0.145 0.082 0.146 0.102 0.206 0.126 0.187 0.087 0.144 0.103 0.157

Arunachal
Pradesh

0.143 0.114 0.144 0.105 0.095 0.086 0.134 0.130 0.173 0.151 0.197 0.130

Assam 0.043 0.120 0.055 0.128 0.049 0.144 0.066 0.188 0.062 0.175 0.069 0.125

Bihar 0.070 0.141 0.061 0.158 0.052 0.178 0.065 0.167 0.058 0.128 0.067 0.113

Goa 0.119 0.124 0.117 0.113 0.127 0.160 0.077 0.075 0.110 0.120 0.074 0.065

Gujrat 0.078 0.112 0.079 0.120 0.107 0.147 0.099 0.139 0.089 0.104 0.092 0.115

Haryana 0.134 0.122 0.083 0.114 0.158 0.164 0.106 0.183 0.089 0.208 0.110 0.173

Himachal
Pradesh

0.119 0.297 0.095 0.121 0.122 0.096 0.127 0.164 0.113 0.156 0.092 0.138

Jammu &
Kashmir

0.079 0.118 0.052 0.073 0.070 0.084 0.065 0.131 0.085 0.131 0.095 0.151

Karnataka 0.096 0.153 0.083 0.154 0.098 0.205 0.075 0.218 0.093 0.261 0.097 0.155

Kerala 0.120 0.178 0.117 0.148 0.164 0.215 0.175 0.240 0.188 0.224 0.093 0.111

Madhya Pradesh 0.102 0.162 0.083 0.150 0.089 0.208 0.103 0.241 0.104 0.224 0.119 0.169

Maharastra 0.126 0.178 0.100 0.167 0.112 0.190 0.081 0.212 0.101 0.189 0.136 0.167

Manipur 0.032 0.036 0.049 0.062 0.030 0.039 0.035 0.058 0.054 0.056 0.075 0.070

Meghalaya 0.081 0.091 0.034 0.072 0.035 0.124 0.046 0.084 0.045 0.072 0.061 0.106

Mizoram 0.046 0.048 0.062 0.073 0.052 0.076 0.054 0.077 0.077 0.086 0.127 0.132

Nagaland 0.036 0.067 0.054 0.076 0.059 0.077 0.045 0.073 0.050 0.072 0.058 0.068

Orissa 0.085 0.147 0.083 0.130 0.095 0.184 0.090 0.236 0.079 0.166 0.099 0.139

Punjab 0.103 0.105 0.082 0.109 0.105 0.163 0.124 0.175 0.104 0.144 0.098 0.177

Rajasthan 0.095 0.129 0.067 0.130 0.067 0.167 0.063 0.169 0.074 0.173 0.120 0.145

Sikkim 0.083 0.091 0.083 0.090 0.109 0.127 0.140 0.064 0.062 0.068 0.082 0.098

Tamil Nadu 0.121 0.190 0.103 0.191 0.108 0.196 0.100 0.163 0.108 0.156 0.109 0.121

Tripura 0.079 0.119 0.049 0.124 0.062 0.147 0.054 0.121 0.063 0.121 0.075 0.114

Uttar Pradesh 0.111 0.157 0.089 0.164 0.087 0.168 0.079 0.347 0.091 0.247 0.102 0.143

West Bengal 0.084 0.145 0.070 0.155 0.089 0.181 0.066 0.202 0.076 0.205 0.101 0.155

Andaman &
Nicober

0.110 0.198 0.093 0.088 0.128 0.166 0.156 0.126 0.137 0.173 0.096 0.139

Chandigarh 0.086 0.290 0.099 0.158 0.067 0.196 0.099 0.205 0.087 0.211 0.135 0.122

Dadra &
Nagar Haveli

0.112 0.146 0.132 0.096 0.265 0.127 0.069 0.081 0.184 0.165 0.090 0.097

Daman & Diu 0.103 0.067 0.076 0.086 0.186 0.158 0.125 0.110 0.035 0.084 0.051 0.173

Delhi 0.113 0.178 0.045 0.151 0.110 0.153 0.064 0.174 0.083 0.179 0.104 0.130

Lakshadweep 0.104 0.114 0.086 0.119 0.085 0.089 0.222 0.137 0.129 0.149 0.080 0.052

Pondicheri 0.114 0.124 0.100 0.123 0.158 0.165 0.078 0.306 0.095 0.094 0.105 0.097

Uttaranchal 0.084 0.146 0.539 0.146 0.091 0.176 0.086 0.087

Jharkhand 0.061 0.154 0.063 0.176 0.069 0.174 0.079 0.190

Chhattisgarh 0.090 0.211 0.075 0.167 0.080 0.237 0.113 0.145

Telangana 0.091 0.164

No of States with
Higher Rural BI

3 4 3 7 3 5
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Table 2 Within-Group Inequality (by IML ) of MPCE: Rural and Urban
NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban

All India 0.039 0.051 0.031 0.047 0.039 0.049 0.045 0.059 0.038 0.053 0.037 0.048

Andhra Pradesh 0.042 0.037 0.032 0.034 0.039 0.066 0.046 0.041 0.026 0.041 0.039 0.047

Arunachal
Pradesh

0.037 0.031 0.051 0.061 0.025 0.024 0.032 0.035 0.036 0.039 0.071 0.038

Assam 0.012 0.025 0.017 0.027 0.015 0.030 0.016 0.046 0.021 0.040 0.026 0.034

Bihar 0.023 0.034 0.020 0.037 0.014 0.036 0.018 0.036 0.016 0.029 0.022 0.035

Goa 0.032 0.037 0.026 0.034 0.027 0.045 0.022 0.027 0.030 0.045 0.026 0.032

Gujrat 0.025 0.035 0.024 0.034 0.035 0.042 0.041 0.038 0.029 0.033 0.028 0.046

Haryana 0.045 0.027 0.023 0.031 0.067 0.045 0.026 0.043 0.024 0.048 0.032 0.054

Himachal
Pradesh

0.040 0.122 0.026 0.036 0.038 0.030 0.041 0.054 0.033 0.048 0.025 0.028

Jammu &
Kashmir

0.033 0.026 0.019 0.021 0.027 0.025 0.025 0.048 0.032 0.030 0.028 0.039

Karnataka 0.030 0.038 0.027 0.041 0.047 0.051 0.024 0.068 0.033 0.062 0.033 0.045

Kerala 0.042 0.065 0.038 0.035 0.054 0.059 0.059 0.074 0.071 0.058 0.027 0.038

Madhya Pradesh 0.039 0.060 0.026 0.048 0.030 0.052 0.031 0.062 0.036 0.059 0.034 0.052

Maharastra 0.046 0.047 0.033 0.047 0.037 0.048 0.023 0.058 0.044 0.053 0.042 0.049

Manipur 0.010 0.010 0.014 0.039 0.011 0.011 0.014 0.019 0.017 0.016 0.040 0.032

Meghalaya 0.050 0.019 0.013 0.016 0.013 0.033 0.016 0.019 0.014 0.019 0.018 0.035

Mizoram 0.015 0.014 0.023 0.023 0.018 0.017 0.014 0.020 0.022 0.021 0.037 0.036

Nagaland 0.010 0.018 0.014 0.019 0.020 0.023 0.016 0.013 0.015 0.014 0.014 0.017

Orissa 0.029 0.033 0.025 0.035 0.030 0.046 0.031 0.059 0.023 0.038 0.036 0.036

Punjab 0.037 0.029 0.025 0.029 0.031 0.048 0.047 0.042 0.030 0.049 0.033 0.046

Rajasthan 0.035 0.032 0.022 0.036 0.020 0.049 0.020 0.047 0.026 0.043 0.037 0.038

Sikkim 0.023 0.023 0.025 0.025 0.033 0.031 0.036 0.024 0.016 0.016 0.026 0.025

Tamil Nadu 0.047 0.100 0.038 0.086 0.040 0.048 0.035 0.042 0.032 0.039 0.037 0.035

Tripura 0.022 0.029 0.014 0.024 0.020 0.038 0.017 0.027 0.018 0.025 0.028 0.039

Uttar Pradesh 0.032 0.040 0.027 0.040 0.027 0.047 0.025 0.109 0.032 0.061 0.033 0.048

West Bengal 0.039 0.037 0.026 0.048 0.035 0.046 0.024 0.049 0.023 0.056 0.034 0.049

Andaman &
Nicober

0.023 0.074 0.022 0.029 0.046 0.057 0.106 0.044 0.033 0.048 0.025 0.028

Chandigarh 0.018 0.072 0.027 0.041 0.018 0.035 0.049 0.060 0.026 0.052 0.022 0.047

Dadra & Nagar
Haveli

0.030 0.034 0.045 0.024 0.054 0.049 0.018 0.023 0.029 0.026 0.023 0.036

Daman & Diu 0.027 0.022 0.018 0.016 0.036 0.042 0.019 0.021 0.006 0.015 0.016 0.023

Delhi 0.026 0.061 0.014 0.037 0.028 0.032 0.014 0.042 0.016 0.051 0.013 0.037

Lakshadweep 0.017 0.036 0.021 0.031 0.022 0.034 0.067 0.030 0.024 0.040 0.025 0.023

Pondicheri 0.031 0.037 0.021 0.036 0.049 0.042 0.026 0.163 0.037 0.030 0.023 0.032

Uttaranchal 0.027 0.039 0.062 0.032 0.028 0.047 0.025 0.029

Jharkhand 0.018 0.036 0.015 0.041 0.024 0.042 0.028 0.041

Chhattisgarh 0.034 0.055 0.024 0.048 0.024 0.065 0.034 0.047

Telangana 0.027 0.052

No of States with
Higher Rural WI

9 3 8 7 7 6
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Table 3 Difference Form Polarization Index (by IML ) of MPCE: Rural and Urban
NSS round 50 55 61 66 68 72

Year 1993–94 1999–2000 2004–05 2009–10 2011–12 2014–15

Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban

All India 0.071 0.117 0.067 0.118 0.072 0.141 0.074 0.156 0.078 0.144 0.080 0.109

Andhra Pradesh 0.066 0.108 0.050 0.112 0.063 0.139 0.080 0.147 0.061 0.103 0.064 0.110

Arunachal
Pradesh

0.107 0.082 0.093 0.044 0.069 0.062 0.102 0.094 0.136 0.113 0.126 0.091

Assam 0.030 0.094 0.038 0.101 0.034 0.115 0.051 0.142 0.041 0.135 0.044 0.091

Bihar 0.046 0.107 0.041 0.121 0.039 0.142 0.048 0.131 0.042 0.100 0.045 0.079

Goa 0.087 0.087 0.091 0.079 0.099 0.115 0.055 0.047 0.081 0.075 0.048 0.034

Gujrat 0.052 0.077 0.056 0.087 0.072 0.105 0.058 0.100 0.060 0.070 0.064 0.069

Haryana 0.089 0.095 0.060 0.083 0.091 0.119 0.080 0.140 0.066 0.160 0.078 0.119

Himachal Pradesh 0.079 0.175 0.070 0.085 0.084 0.066 0.086 0.110 0.080 0.108 0.066 0.110

Jammu &
Kashmir

0.046 0.091 0.032 0.052 0.043 0.059 0.040 0.083 0.053 0.101 0.067 0.112

Karnataka 0.066 0.116 0.056 0.113 0.052 0.155 0.052 0.150 0.060 0.199 0.064 0.109

Kerala 0.079 0.114 0.079 0.113 0.110 0.156 0.116 0.166 0.117 0.166 0.065 0.073

Madhya Pradesh 0.063 0.102 0.056 0.102 0.059 0.156 0.072 0.179 0.069 0.165 0.086 0.118

Maharastra 0.080 0.131 0.067 0.120 0.075 0.142 0.058 0.154 0.057 0.136 0.093 0.118

Manipur 0.022 0.026 0.035 0.023 0.019 0.028 0.021 0.039 0.037 0.039 0.036 0.038

Meghalaya 0.031 0.072 0.022 0.056 0.022 0.090 0.029 0.065 0.031 0.053 0.043 0.071

Mizoram 0.031 0.034 0.038 0.050 0.034 0.059 0.040 0.056 0.055 0.065 0.090 0.096

Nagaland 0.026 0.049 0.039 0.058 0.039 0.055 0.029 0.059 0.035 0.058 0.044 0.051

Orissa 0.056 0.115 0.059 0.095 0.065 0.138 0.060 0.177 0.056 0.128 0.063 0.103

Punjab 0.065 0.077 0.057 0.081 0.074 0.115 0.077 0.133 0.073 0.095 0.064 0.130

Rajasthan 0.061 0.097 0.045 0.094 0.047 0.119 0.043 0.122 0.048 0.130 0.083 0.107

Sikkim 0.060 0.068 0.059 0.065 0.077 0.096 0.104 0.040 0.046 0.053 0.055 0.073

Tamil Nadu 0.074 0.090 0.065 0.105 0.068 0.147 0.065 0.122 0.076 0.117 0.072 0.086

Tripura 0.057 0.090 0.035 0.100 0.042 0.110 0.037 0.093 0.045 0.096 0.047 0.075

Uttar Pradesh 0.079 0.116 0.061 0.124 0.060 0.120 0.054 0.238 0.059 0.186 0.069 0.095

West Bengal 0.046 0.108 0.044 0.107 0.053 0.135 0.042 0.153 0.053 0.149 0.067 0.106

Andaman &
Nicober

0.087 0.124 0.071 0.059 0.083 0.109 0.050 0.082 0.103 0.125 0.071 0.111

Chandigarh 0.068 0.218 0.072 0.118 0.049 0.160 0.050 0.145 0.061 0.159 0.113 0.074

Dadra &
Nagar Haveli

0.081 0.112 0.087 0.072 0.211 0.079 0.051 0.058 0.155 0.139 0.067 0.061

Daman & Diu 0.076 0.046 0.059 0.070 0.150 0.116 0.106 0.089 0.029 0.069 0.035 0.151

Delhi 0.087 0.117 0.031 0.114 0.082 0.121 0.050 0.132 0.067 0.128 0.091 0.094

Lakshadweep 0.086 0.078 0.065 0.088 0.063 0.055 0.155 0.106 0.105 0.109 0.055 0.029

Pondicheri 0.083 0.088 0.079 0.086 0.110 0.123 0.052 0.143 0.058 0.064 0.082 0.065

Uttaranchal 0.057 0.107 0.478 0.114 0.063 0.129 0.062 0.059

Jharkhand 0.042 0.118 0.048 0.135 0.045 0.131 0.051 0.149

Chhattisgarh 0.055 0.156 0.051 0.118 0.056 0.173 0.079 0.099

Telangana 0.064 0.112

No of States with
Higher Rural
Polarization

3 5 5 2 4 7
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Table 4 Polarization Ranks (by IML ) of MPCE: Rural and Urban
NSS round 50 55 61 66 68 72 50 55 61 66 68 72

Year 1993–
94

1999–
2000

2004–
05

2009–
10

2011–
12

2014–
15

1993–
94

1999–
2000

2004–
05

2009–
10

2011–
12

2014–
15

RURAL URBAN

Daman & Diu 20 19 34 32 1 1 3 9 18 10 7 36

Manipur 1 5 1 1 4 2 1 1 1 1 1 3

Meghalaya 5 1 2 3 2 3 6 5 9 7 3 9

Assam 3 6 4 14 5 4 16 21 15 25 25 16

Nagaland 2 8 6 2 3 5 4 6 2 6 4 4

Bihar 7 9 5 10 6 6 20 31 29 20 12 14

Tripura 11 4 7 4 7 7 13 20 14 11 11 13

Goa 29 31 31 20 30 8 11 11 17 3 9 2

Jharkhand 8 9 8 9 19 23 24 35

Lakshadweep 27 22 19 34 32 10 9 17 3 14 16 1

Sikkim 12 17 26 31 9 11 5 8 10 2 2 11

Uttaranchal 15 35 23 12 12 16 22 5

Orissa 10 18 20 23 15 13 25 19 26 33 20 22

Andhra
Pradesh

16 12 18 27 21 14 21 25 27 28 14 26

Punjab 15 16 24 26 27 15 7 12 16 22 10 34

Karnataka 17 13 12 18 19 16 26 26 31 29 35 25

Telangana 17 29

Gujrat 9 14 23 22 20 18 8 16 11 13 8 8

Kerala 21 28 32 33 33 19 24 27 33 32 32 10

Himachal
Pradesh

23 25 29 29 29 20 31 14 7 15 15 27

Jammu &
Kashmir

8 3 9 6 12 21 15 4 5 9 13 30

Dadra &
Nagar Haveli

25 30 35 16 35 22 23 10 8 5 27 6

West Bengal 6 10 13 7 11 23 22 24 25 30 28 23

Uttar Pradesh 22 21 17 19 18 24 27 32 22 35 34 19

Andaman &
Nicober

30 26 28 13 31 25 29 7 13 8 19 28

Tamil Nadu 19 23 21 24 28 26 14 23 30 18 18 15

Haryana 31 20 30 28 24 27 17 13 20 24 30 33

Chhattisgarh 14 15 14 28 32 17 33 21

Pondicheri 26 29 33 17 17 29 12 15 24 26 5 7

Rajasthan 13 11 10 8 10 30 18 18 21 19 23 24

Madhya
Pradesh

14 15 16 25 26 31 19 22 34 34 31 31

Mizoram 4 7 3 5 13 32 2 3 4 4 6 20

Delhi 28 2 27 11 25 33 28 28 23 21 21 18

Maharastra 24 24 25 21 16 34 30 30 28 31 26 32

Chandigarh 18 27 11 12 22 35 32 29 35 27 29 12

Arunachal
Pradesh

32 32 22 30 34 36 10 2 6 12 17 17
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7 Concluding Remarks

Polarization is concerned with clustering of incomes in subgroups of a population,
where the partitioning of the population into subgroups is done in an unambiguous
way. A reduced form polarization index is one which abbreviates an income dis-
tribution in terms of alienation and identification components of polarization. The
between-group term of a subgroup-decomposable inequality index is taken as an
indicator of alienation, whereas within-group inequality is regarded as an inverse
indicator of identification. Alternative sets of independent axioms have been pro-
posed for polarization indices characterized by Chakravarty and Maharaj (2011).
The approach is extended to get a necessary and sufficient condition for polarization
mapping and to analyze polarization for combined population. An empirical illus-
tration using Indian National Sample Survey data over several rounds is presented.
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On the Measurement of “Grayness”
of Cities
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Abstract We consider a situation where individuals belonging to multiple groups
inhabit a space that can be divided into smaller distinguishable units, a feature char-
acterizing many cities in the world. When data on an economic attribute (in our
case, income) is available, we conceptualize a phenomenon that we refer to as
“Grayness”—a combination of spatial integration based upon group-identity and
income. Grayness is high when cities display a high degree of spatial coexistence
in terms of both identity and income. We lay down some desirable properties of a
measure of Grayness and develop a simple and intuitive index that satisfies them.We
provide an illustration by using data from the Indian city of Hyderabad, and selected
American cities.
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1 Introduction

It is being increasingly acknowledged that the world is predominantly urban and
urbanization will continue into the foreseeable future (Davis 2007; UN 2015). This
paper is therefore concernedwith cities, in particular, group-based (“horizontal”) dis-
parities within cities.1 Many cities in the world are characterized by severe disparities
among groups. The particular facet of group-based disparity that we are interested
in can be illustrated by the following examples. Blacks and Whites live in Ameri-
can cities which have distinct neighborhoods or administrative divisions. Similarly,
different caste groups live in Indian cities which can be divided into several wards.
Across the world, different ethnic groups inhabit urban areas, which are character-
ized by some form of spatial division. What is common to all these examples is the
presence of identity groups in an urban context with spatial heterogeneity. Apart from
this, we may have information available on an economic attribute of individuals and
groups, e.g., incomes or wages. Cities could display various degrees of spatial coex-
istence (or lack of it) in terms of this attribute, e.g., the rich and poor in a city could
live together in the same neighborhood or live completely apart. Combining spatial
integration on income and non-income dimensions reveals certain interesting fea-
tures and dynamics of cities. For example, irrespective of their ethnic identities, if the
rich are separating themselves into “enclaves” or “gated-communities”, whereas the
poor are being pushed into “slums”, then this can be understood as a process where
spatial integration is low in terms of income, but not so in terms of ethnic iden-
tity. Such a phenomenon is being witnessed in India after economic reforms were
initiated in the early 1990s, and such “neoliberal” cities can be distinguished from
“mixed” cities that prevailed earlier.2 Essentially, we are interested in a phenomenon
that is a combination (or intersection) of spatial integration based upon identity and
income (or some other economic attributes). We refer to this phenomenon as “Gray-
ness”. Grayness is high when cities display a high degree of spatial coexistence of
both identity group and economic groups. When Grayness is negligibly small, cities
become “stark”.

Our focus on space is inspired by the recent recognition in social sciences and
humanities of the importance of explicit considerations of space. Scholars have
argued that such a “spatial turn” and the idea of “spatial justice” have conferred
both theoretical and practical advantages, e.g., the discourse on the “right to the
city” which has assumed political salience today (Soja 2009; Harvey 2013). One of
the important ideas in this literature is that space and society are intricately linked
(“sociospatial dialectics”). Space is not an inert given, and individuals and groups
shape it, even as it influences them. Our attempt is to bring these ideas to bear on
the literature in welfare economics. While the above body of knowledge has seen

1Following Stewart (2002), it has become customary to distinguish between interpersonal (“verti-
cal”) and group-based (“horizontal”) disparities.
2On poverty and rising inequality in urban India since economic reforms, see Vakulabharanam and
Motiram (2012).
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contributions mostly from noneconomists, economists have also recognized that
spatial location confers both advantages and disadvantages (see, e.g., Reardon 2017;
Chetty et al. 2016) and spatial patterns influence outcomes like crime (e.g., see the
Lewis Mumford lecture of Sen 2017).

In light of the above, we consider an abstract city that is comprised of multiple
spatial units. The population of the city, and in each spatial unit is divided into sev-
eral groups. Apart from his/her group-identity, we have information on an economic
attribute (income) of an individual. We lay down the desirable properties of a “Gray-
ness Index” and develop a simple and intuitive index which satisfies these properties.
To the best of our knowledge, our paper is the first one that focuses explicitly on
space and explores the interaction of spatial integration of different kinds. In doing
so, it differs in spirit from the literature on spatial (residential) segregation, and adds
to it. The consideration of spatial integration on different dimensions simultaneously
captures an important social phenomenon that cannot be reduced to considering spa-
tial integration on these dimensions separately and then bringing them together. The
interaction among these dimensions will be lost. We will discuss this further in the
next section. The paper draws upon existing literature by conceptualizing the Gray-
ness index as a function of two components—identity group and income—these are
in turn indices of spatial integration (and inverse of spatial segregation). To keep the
exposition brief, we do not present a survey of the literature on segregation, but refer
interested readers toChakravarty (2009) and Silber et al. (2009). Themost commonly
used index of segregation is the Duncan–Duncan dissimilarity index, which is useful
when there are only two groups. In our case, there can be multiple groups, so we
draw upon Reardon and Firebaugh (2002) Since income is a continuous variable, we
draw upon Kim and Jargowsky (2009), who demonstrate how the Gini Index can be
used for segregation for both continuous and binary variables.3

Urbanization in recent times has been driven by growth of cities in developing
countries (Davis 2007). Projecting into the future, the United Nations estimates that
several of the largest cities in the world will be located in the global South.4 We
therefore implement our index on an Indian city viz. Hyderabad. We show that the
Grayness index of Hyderabad is high, e.g., as compared to selected American cities.
We hypothesize that this maybe an important characteristic of Indian cities vis-a-vis
cities in the developed world.

The remaining portion of the paper is divided into two sections. The next section
develops the index and presents an illustration from the Indian city of Hyderabad
and some American cities. The third section concludes with a discussion.

3Also, see Reardon (2009) and Hutchins (2009). Reardon (2009) develops indices of segregation
with multiple groups, when one of the dimensions (e.g., occupation, education) can be ordered.
Hutchins (2009) develops an “augmented index” of gender-based occupational segregation where
occupations can be ranked in terms of a scalar variable (e.g., average wage).
4The top ten urban agglomerations in 2030 are expected to be: Tokyo, Delhi, Shanghai, Beijing,
Mumbai, Mexico City, Cairo, São Paulo, Osaka, and New York-Newark (UN 2015).
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2 Grayness: Theory and Illustration

2.1 An Index to Measure Grayness

Consider a city which is divided into N (> 1) spatial units, which we index by
m and n. G(> 1) groups live in the city, and we index these groups by g. Let
the shares of group g in spatial unit m, and in the city be denoted by pmg and pcg,
respectively. If pmg is less (more) than pcg , then group g is considered to be under-
represented (over-represented) in the spatial unit m. Let Pm = (pm1 , pm2 , . . . , pmG)

denote the vector of group shares in spatial unit m. Let P = (P1, P2, . . . , PN )

denote a vector that captures the spatial distribution of group shares for the entire
city. Let Pc = (pc1, p

c
2, . . . , p

c
G) denote the vector of city shares. Let Ym

g denote
the income distribution of group g = 1, . . . ,G in spatial unit m = 1, . . . , N . We
could consider the income distribution for either individuals or households. Let
I = ((Y 1

1 ,Y 1
2 , . . . ,Y 1

G), . . . , (Y N
1 ,Y N

2 , . . . ,Y N
G )) denote the vector of income distri-

butions for the entire city. Let S = (T, s1, . . . , sN ) where T (> 0) denotes the total
population of the city, and sm,m = 1, . . . , N denotes the fraction of the population
of the city that resides in the spatial unit m. We conceptualize the Grayness Index
(GI ) as a function, GI : (P, Pc, S, I ) → [0, 1] that combines spatial integration on
identity groups and income.

Formally, we can think of GI as a function ( f ) of a “Group Component (GC)”
and an “Income Component (IC)” where these two components measure spatial
integration on identity groups and income, respectively.Wewill discuss the properties
of GC and IC later. It suffices here to point out that since they are measures of
spatial integration, they lie in [0, 1]. We propose that GI satisfies the following
properties/axioms in terms of its components:

(A1) Minimum Grayness

GI is at its minimum value of zero if and only if GC and IC are both at their
minimum values of zero, i.e., there is complete lack of spatial integration in terms
of both group-identity and income.

(A2) Maximum Grayness

GI is at its maximum value of one if and only if GC and IC are both at their
maximum values of one, i.e., there is complete spatial integration in terms of both
group-identity and income.

(A3) Monotonicity: Grayness as an Increasing Function of Spatial Integration

GI increases (decreases) if spatial integration increases (decreases) either among
identity groups or on the income dimension, i.e., ∂GI

∂GC > 0 and ∂GI
∂ IC > 0.

The above axioms are straightforward. (A3) considers the impact on Grayness of
spatial integration on one dimension. How do we consider the impact on Grayness
of spatial integration on multiple dimensions and how does this compare with the
situation depicted in (A3)? A simple example can be used to explore this question.
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Let us imagine three cases: (1) GC = 0.8, IC = 0, (2) GC = 0, IC = 0.8, and
(3) GC = 0.4, IC = 0.4. In Cases (1) and (2), there is complete lack of spatial
integration on one dimension and high spatial integration on the other, whereas in
Case (3), there is modest spatial integration on both dimensions. Starting from a
situation where there is complete lack of spatial integration on both dimensions
(GC = 0 and IC = 0), we can imagine three different processes: A, B, and C , that
can result inCases (1), (2), and (3), respectively. A is a process that increases cohesion
among identity groups while preserving income-based/class-based exclusions and
prejudices. B is a process similar to A, except that the roles of identity groups and
income are interchanged. C is a process that promotes cohesion on both identity
group and income dimensions, albeit in a modest manner. We believe that a city can
be considered to bemore spatially integrated in Case (3) as compared toCases (1) and
(2). In other words, process C contributes more to spatial integration and Grayness
compared to processes A and B. Essentially, for a given “total spatial integration”
(GC + IC), we consider a city to be more spatially integrated if the “mix” of spatial
integration on multiple dimensions is better. This idea is analogous to the preference
for variety in international trade undermonopolistic competition (see, e.g., Grossman
1992). The axiom below captures this idea more formally.

(A4) Preference for Mix of Spatial Integration on Multiple Dimensions

For a given total spatial integration (GC + IC), consider a process that increases
spatial integration on the dimension that has lower integration (say by δ > 0) and
decreases spatial integration on the other dimension by an equal amount (i.e., by δ).
Such a process will result in a better mix of spatial integration on the two dimensions,
and thereby increases GI .

Note the similaritywith the ideas of “mean-preserving spread” and “Dalton–Pigou
transfer principle” in the measurement of risk and inequality, respectively, (see, e.g.,
Chakravarty (2009) for a discussion). In a way, we are applying these ideas to GC
and IC . Finally, we would like to consider the interaction of the two components
explicitly. It is reasonable to argue that the phenomenon of interest to us should
depend upon the interaction of the two components, and not just upon “pure” spatial
integration among either identity groups or on income. This is formalized in the
axiom below:

(A5) Interaction: GI Depends upon Interaction of GC and IC, i.e., ∂2GI
∂GC∂ IC �= 0

We can consider several functional forms for f , although some simple ones like the
arithmetic mean or geometric mean of GC and IC are ruled out because they violate
one or more of the above axioms. Interestingly, a “Mean-Variance” form satisfies the
above axioms, and we propose it as follows:

GI = α
(GC + IC)

2
− β[ (GC2 + IC2)

2
− (

GC + IC

2
)2]. (1)

Note that the first term (GC+IC)

2 is the mean spatial integration (i.e., average of GC

and IC) and the second term [ (GC2+IC2)

2 − (GC+IC
2 )2] is the variance between the two
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components of spatial integration (GC and IC).Aswe show in the proposition below,
when α = 1 and 0 < β < 1, GI satisfies the axioms (A1) − (A5). An interesting
result concerns the decomposition properties of GI . We can show that

GI = f (GC, IC) = α
GC

2
− β[GC2

2
− (

GC

2
)2] + α

IC

2
− β[ IC

2

2
− (

IC

2
)2] + β

GC ∗ IC

2
(2)

= f (GC, 0) + f (0, IC) + β
GC ∗ IC

2
(3)

f (GC, 0) and f (0, IC) represent pure spatial integration, in terms of identity groups
and income, respectively. Hence, we can see that GI can be decomposed into three
parts, representing pure spatial integration in terms of identity groups, pure spatial
integration in terms of income, and interaction between spatial integration on identity
groups and income. The parameter β captures the strength of interaction between the
two components (we will see this more clearly below) and the impact of interaction
will vanish if β = 0.

Proposition 1 If α = 1 and 0 < β < 1, then GI satisfies (A1) − (A5).

Proof It is easy to establish that GI satisfies (A1). If GC = IC = 1, then GI = α.
Hence, if α = 1, then GI satisfies (A2). ∂GI

∂GC = 1
2 − β (GC−IC)

2 . Since the maximum
value that (GC − IC) can take is 1, the condition β < 1 ensures that ∂GI

∂GC > 0.
On similar lines, we can show that it ensures that ∂GI

∂ IC > 0. As long as β > 0, the
process referred to in (A4) reduces the variance between GC and IC , and thereby
increases GI . Hence, if β > 0, GI satisfies (A4). From Eq. (4), we can see that

∂2GI
∂GC∂ IC = β

2 �= 0. Hence, GI satisfies (A5). �

Note that, in general, (i.e., given that GC ∈ [0, 1] and IC ∈ [0, 1]), β needs to
be less than one. But, for particular values of GC and IC , we can work with higher
values of β. For example, for modest values of GC and IC (less than 0.5), we can
use values of β in excess of 1, but less than 2. Having characterized GI , we will now
move to its components, GC and IC . Let Ginia denote the Gini Index of average
incomes of spatial units and Ginit denote the Gini Index for the income distribution
in the city. Spatial integration on income can be considered as the inverse of income-
based spatial segregation. Income is a continuous variable, and we can draw upon the
literature on segregation for continuous variables. In particular, Kim and Jargowsky
(2009) demonstrate that the ratio Ginia/Ginit can be considered as an index of
segregation which lies in [0, 1]. Following this, we can characterize IC as

IC = 1 − Ginia
Ginit

. (4)

Note that IC lies in [0, 1]. It takes themaximumvalue of 1when the city is completely
spatially integrated in terms of income, i.e., all the spatial units have identical average
incomes. It takes the minimum value of zero when the city is completely spatially
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segregated (or atomized) in terms of income, i.e., each spatial unit comprises just
one individual or household.

Since we have characterized IC using the Gini Index, it would be advantageous
to consider a Gini-based characterization for GC too. As in the case of IC , we can
consider spatial integration among identity groups as the opposite of group-based
spatial segregation. Since the number of groups can be greater than two, we draw
upon the literature onmultigroup segregation indices. Reardon and Firebaugh (2002)
present a comprehensive overview of this issue, including the various notions of
segregation. Theydemonstrate howan indexof segregation basedupon theGini Index
can be constructed by comparing the group proportions across all organizational (in
our case, spatial) units, and for all groups. Following them, we characterize GC as

GC = 1 − �G
g=1 p

c
g�

N
m=1�

N
n=1s

msn|pmg /pcg − png/p
c
g|

2�G
g=1 p

c
g(1 − pcg)

. (5)

As in the case of IC , GC lies in [0, 1]. It takes the maximum value of 1 if the city
is completely spatially integrated in terms of the identity group, i.e., for each group,
its share in every spatial unit is the same as its city share. It takes the minimum value
of zero if the city is completely segregated in terms of the identity group, i.e., each
spatial unit comprises just one group.

The above formulation of GI attaches equal weightage to the two different kinds
of spatial integration, i.e., to GC and IC . It is easy to see that this is not necessary,
and we could privilege one kind of spatial integration over another. Let wg and
wi denote the weights on GC and IC , respectively, where (wg + wi ) = 1. In the
analysis above, we have considered wg = wi = 0.5. A general formulation would
be as follows:

GI = (wgGC + wi IC) − β[(wgGC2 + wi IC
2) − (wgGC + wi IC)2]. (6)

Before moving on to the illustration of GI , it is worthwhile to point out that the
index can be extended to spatial integration on more than two dimensions. This can
be done by simply considering a mean-variance form for the multiple components.
For example, if there are three dimensions (say race, religion, and income) for which
the components are GC1, GC2, and IC , then the index can be expressed as

GI = GC1 + GC2 + IC

3
− β[GC2

1 + GC2
2 + IC2

3
− (

GC1 + GC2 + IC

3
)2].

(7)

2.2 An Illustration of Grayness

Wewill now illustrate the above analysis by considering the cases of Hyderabad city
in India and some American cities. The data for Hyderabad comes from a spatially
representative household survey conducted by us during 2015–17. The survey is
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described in detail in Motiram and Vakulabharanam (2017), and we briefly discuss
the relevant features here. The survey focuses on the completely urban part of Hyder-
abad city (viz., the district of Hyderabad). The methodology is a multistage stratified
one which draws upon the latest (2011) decennial Indian Census. The survey com-
prises 1000 households which are spread across 100 Enumeration Blocks (EBs)—10
households in each EB. To ensure spatial representation, the 16 subdistricts of Hyder-
abad are treated as strata and the EBs are spread across them. For the computation of
the Grayness Index, we consider census wards as the spatial units. The Census ward
is a larger area compared to the EB, but is smaller than the subdistrict. We divide
the population of Hyderabad into two groups based upon their caste status: Dalits
(Scheduled Castes and Tribes) and Non-Dalits. We could use household per-capita
income (total monthly household income/household size) or household income. The
former is defined at the individual level, whereas the latter is defined at the household
level. Since the literature on US income inequality that draws upon census data has
largely used the household as the unit of analysis, we focus on the former. The rank-
ing of groups in terms of household income is as expected: Dalits—Rs. 20,613.62,
and Non-Dalits—Rs. 23,400.71.5 This difference would be much starker in other
Indian cities since Hyderabad has a substantially larger proportion of Muslims, who
are mostly included under Non-Dalits, and whose economic status in urban India is
quite low.

We present estimates for two American cities: Chicago (Chicago–Naperville–
Elgin IL-IN-WI Metropolitan Statistical Area) and New York (New York–Newark–
Jersey City-NY-NJ-PA Metropolitan Statistical Area).6 We use census tracts as the
spatial units and use the American Consumer Survey 2016, 5-year estimates (i.e.,
2012–16) from the Factfinder site of US Census Bureau.7 Analogous to the analysis
from Hyderabad, we consider two racial groups: Black or African American alone
and White alone, Black or African American alone, and Others. On the average,
the household incomes of Blacks are considerably lower than those of Whites, e.g.,
for New York city the average annual household incomes in 2016 inflation-adjusted
dollars are $24,103 and $45,952 for Blacks and Whites, respectively (Table S1902,
U.S Census Bureau).

In Table 1, we present the estimates of GI and its components for various values
of β.8 As we discussed above, given the particular estimates for GC and IC , we can
experiment with values of β that are greater than 1. The estimates forGC are slightly
higher for Hyderabad as compared to the American cities. This reflects the fact that
Dalit and Non-Dalit spatial integration in Hyderabad is much better than race-based

5The corresponding figures for per-capita income are also on expected lines: Dalits—Rs. 4,858.43,
and Non-Dalits—Rs. 5,534.04.
6We have also conducted analysis for several other American cities, and they turn out to have a
smaller Grayness index than Hyderabad, i.e., our main finding is not altered if we include some
more American cities.
7https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.
8For the computation of GC , we use “seg”, the module in Stata that computes various segregation
indices with multiple groups.

https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
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Table 1 Estimates of grayness index and its components

β City D GC IC Mean Variance GI

0.95 Hyderabad 0.5327 0.3154 0.3854 0.3504 0.0012 0.3492

Chicago (B-W) 0.7256 0.1249 0.4443 0.2846 0.0255 0.2604

Chicago (B-O) 0.7105 0.1395 0.4443 0.2919 0.0232 0.2698

New York (B-W) 0.7059 0.1446 0.4727 0.3087 0.0269 0.2831

New York (B-O) 0.6349 0.2023 0.4727 0.3375 0.0183 0.3201

1.0 Hyderabad 0.5327 0.3154 0.3854 0.3504 0,0012 0.3492

Chicago (B-W) 0.7256 0.1249 0.4443 0.2846 0.0255 0.2591

Chicago (B-O) 0.7105 0.1395 0.4443 0.2919 0.0232 0.2687

New York (B-W) 0.7059 0.1446 0.4727 0.3087 0.0269 0.2817

New York (B-O) 0.6349 0.2023 0.4727 0.3375 0.0183 0.3192

1.5 Hyderabad 0.5327 0.3154 0.3854 0.3504 0.0012 0.3485

Chicago (B-W) 0.7256 0.1249 0.4443 0.2846 0.0255 0.2464

Chicago (B-O) 0.7105 0.1395 0.4443 0.2919 0.0232 0.2571

New York (B-W) 0.7059 0.1446 0.4727 0.3087 0.0269 0.2683

New York (B-O) 0.6349 0.2023 0.4727 0.3375 0.0183 0.3101

NoteAuthors’ computations using household survey data for Hyderabad and American Community
Survey (ACS) 2016, 5-year estimates. For IC , estimates of Gini are from table B19083, US Census
Bureau. D: Duncan–Duncan Dissimilarity index, B-W: Black-White, B-O: Black-Others

spatial integration inAmerican cities. To shed further light on this, we also present the
Duncan–Duncan dissimilarity index, which confirms this observation. The estimates
of IC for Hyderabad are slightly lower compared to the same for American cities.
However, this is more than compensated by higher GC in Hyderabad and the lower
variance component. Consequently, the Grayness Index GI for Hyderabad is higher.
Note that as the value of β rises, the importance of the variance component increases
and the value of the Grayness Index falls.

3 Discussion and Conclusions

Recent scholarship in several social sciences has emphasized the centrality of space
and the need to incorporate spatial considerations explicitly. In the above analy-
sis, we have taken this idea seriously and considered a feature that characterizes
many cities. We examine the existence of identity groups in cities that are internally
spatially heterogeneous by considering a phenomenon (“Grayness”) that is a com-
bination of spatial integration based upon identity and income. We develop an index
of “Grayness” that satisfies several desirable properties. We illustrate this index by
applying it to the Indian city of Hyderabad and some American cities.

The spatial units or identity groups in a city could be ordered on some attribute
(e.g., average income, educational opportunities) and this ordering can be explicitly
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incorporated in the analysis. While we have not addressed this, it can be taken up in
future research. Also, we have focused on measurement issues only, but it would be
quite fascinating to examine the interrelationship between Grayness and outcomes
and the mechanisms through which these relationships work.
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