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Abstract. The noise of GNSS navigation and positioning system is non-priori,
while the optimal estimation of standard Kalman filter requires the establishment
of accurate system model and observation model, which leads to the low
accuracy of Kalman filter. Neural network has strong ability of denoising,
learning, self-adapting and complex mapping. In order to improve the filtering
accuracy, this paper proposes an algorithm to compensate the error of the
dynamic model by using the neural network, and corrects the error of the
dynamic model by using the RBF neural network in the filtering estimation part,
which inhibits the contribution of the abnormal disturbance of the dynamic
model to the navigation solution. The experimental results show that the algo-
rithm can not only eliminate the positioning deviation in all directions, but also
reduce the standard deviation in X, Y and Z directions by about 70%, 60% and
60% respectively, compared with the standard Kalman filter.
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1 Introduction

The Global Navigation Satellite System (GNSS) is constantly developing and its
applications have penetrated into every aspect of our daily life. As navigation terminals
are applied in more and more fields, the receiving environment they need to face is
becoming more and more complex, such as the high-occlusion environment of cities,
mountains and canyons, as well as the high-dynamic environment of airborne and
projectile loads [1]. The Kalman filter algorithm is a typical algorithm for filtering in
satellite navigation information processing. It uses the motion model and the obser-
vation model to obtain the state estimation of the carrier [2]. However, it needs lin-
earization of the positioning equation, which may introduce errors. At the same time,
the Kalman filter requests the prior information of the state model and the observation
model to achieve the optimal estimation. There are many empirical models used in
practice, and the model cannot be completely matched [3]. In a complex environment,
abnormal observation errors can cause problems such as unstable filtering results and
poor precision. In view of the application of Kalman filter in the actual process,
algorithms such as extended Kalman filter and unscented Kalman filter have been
proposed, but they may not really adapt to navigation and positioning in difficult
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environments [4]. The neural network has strong intelligent processing capabilities
such as denoising, learning, adaptive, and complex mapping [5]. In order to improve
the filtering precision, an algorithm for compensating the dynamic model error by the
neural network is proposed. The error of the dynamic model is corrected by the RBF
neural network in the filter estimation part, which suppresses the contribution of the
dynamic model abnormal disturbance to the navigation solution effectively.

2 Standard Kalman Filter Algorithm

Assuming that the state equations and observation equations of the system are known,
and they are as follows

Xk ¼ Uk;k�1Xk�1 þWk ð1:1Þ

Lk ¼ AkXk þ ek ð1:2Þ

Wherein, the subscript k represents the time. Xk is the state vector. Uk is the
coefficient matrix. Wk is the Gaussian white noise process error vector. Lk is the
observation vector. ek is the observed noise vector.

The standard Kalman filter algorithm is as follows.
The prediction state vector �Xk and the prediction state covariance matrix R�Xk

are

obtained by using the state estimation vector X̂k�1 at time k − 1, the state estimation
vector covariance matrix RX̂k�1

, and the state transition matrix Uk;k�1.

�Xk ¼ Uk;k�1X̂k�1 ð1:3Þ

R�Xk
¼ Uk;k�1RX̂k�1

UT
k;k�1 þRWk ð1:4Þ

The innovation vector �Vk and the innovation vector covariance matrix R�Vk
are

calculated using the prediction state vector �Xk, the current observation vector Lk, and
the observation design matrix Ak .

�Vk ¼ Ak �Xk � Lk ð1:5Þ

R�Vk
¼ AkR�Xk

AT
k þRk ð1:6Þ

Then, the gain matrix is calculated.

Kk ¼ Uk;k�1AkR
�1
�Vk

ð1:7Þ

Finally, the current state estimate is obtained and a new state estimation vector
covariance matrix is calculated.
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X̂k ¼ �Xk � Kk �Vk ð1:8Þ

RX̂k
¼ I � KkAkð ÞR�Xk�1

I � AT
kK

T
k

� �þKkRkKT
k ð1:9Þ

3 Error Compensation Algorithms for Dynamic Models
Based on Neural Networks

3.1 Algorithm Principle

According to Eqs. (1.5) and (1.8), the standard Kalman filter solution can be rewritten as

X̂k ¼ �Xk � Kk Ak �Xk � Lkð Þ ð1:10Þ

It is assumed that the state prediction vector �Xk of the dynamic model can obtain
the true value Xk of the state vector of the maneuver carrier at time k after error
compensation. Define the error compensation vector as DEr.

Xk ¼ �Xk þDErð Þ � Kk Ak �Xk þDErð Þ � Lkð Þ
¼ IþKkAkð ÞDEr� Kk �Vk þ �Xk

ð1:11Þ

By Eq. (1.11), the relationship between the error compensation vector DEr and the
product Kk �Vk between the Kalman filter gain and the innovation vector can be con-
sidered as a nonlinear mapping of multidimensional input and output.

DEr ¼ F Kk �Vkð Þ ð1:12Þ

Therefore, the neural network method can be used to approximate the nonlinear
mapping F by training, and the relationship between Kk �Vk and DEr can be learned.

In the network prediction phase, the error compensation vector is predicted and the
dynamic model is compensated. As shown in Fig. 1.

The innovation vector �Vk can also be called the prediction residual vector, which
reflects the dynamic model error mainly. The Kalman filter gain Kk is determined by
the state estimation vector covariance matrix, the observation design matrix, and the
observation vector weight matrix. When the observation is reliable and the system

Neural Network

Fig. 1. Compensation flow of neural network dynamics model.
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dynamics model is abnormal, the state estimation vector covariance matrix may bring
the dynamic model error accordingly. Therefore, the Kalman filter gain and the
innovation vector are both the source of the dynamic model error and the influencing
factors, which explains the rationality of the algorithm in the physical sense.

The algorithm block diagram is shown in Fig. 2.

In practical applications, the Kalman filter gain Kk, the innovation vector �Vk and
the error compensation vector DEr can be collected for offline training according to the
carrier’s starting motion for a certain length of time. After training, the neural network
can be used to correct the dynamic model prediction information �Xk .

3.2 Simulation Analysis

The simulation time lasted for 2000 s. Assume that the carrier only moves in a uniform
circular motion on the X-Y plane, and remains stationary in the Z direction(vz = 0,
az = 0). Carrier reference track is known. The X-direction track is shown in Fig. 3.
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Fig. 2. Compensation algorithms of neural network dynamics model.
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Fig. 3. Reference trajectory of the X-direction.
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Assume that the receiver clock error model is a discrete-time first-order Markov
model. The GPS precise ephemeris interpolation on April 1, 2007 was used to obtain the
position of the satellite, and the distance between the carrier and the satellite was gen-
erated. The simulated clock error and the observed pseudorange noise were added. Set
the standard deviation of the observed pseudorange noise to the typical value rUERE ¼
5:3m of the equivalent distance error of the GPS standard positioning service user.

The network input during training is the corresponding Kk �Vk of each epoch. The
reference output is the dynamic model error DEr calculated by using the true value of
the motion state of the carrier. Filter convergence time is 10 s. Train with data from
11 s to 1100 s. The post-990 s data is solved by positioning, and the Kk �Vk corre-
sponding to the epoch is input by the trained network to obtain the dynamic model
error prediction value DEr, which is taken into Eq. 1.11, and the motion state pre-
diction of the carrier after the dynamic model compensation is obtained. The value is
used as the result of the positioning. RBF neural network has the characteristics of
simple structure, simple training, fast learning convergence and unique optimal
approximation. Here RBF neural network is used. The maximum number of neurons is
set to 1000. The mean square error goal is set to 0.1. The expansion speed of the radial
basis function is set to 1. The positioning result is compared with the standard Kalman
filter (Figs. 4 and 5).
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Fig. 4. Standard Kalman filter.
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Fig. 5. Error compensation algorithm for dynamic model based on neural network.
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Only the coordinate difference of the X-axis component is plotted in the figures of
this paper, and the coordinate difference of the Y-axis and Z-axis components is similar
to the X-axis component. The root mean square error statistics of each filtered output
are listed in Table 1.

It can be seen from the comparison that the neural network-based dynamic model
compensation algorithm can effectively suppress the influence of the kinetic model
anomaly, and the root mean square error in the horizontal and vertical directions is
reduced by about 70%.

4 Measured Data Analysis

4.1 Dynamic Sports Car Measured Data Acquisition

The on-board GPS observation data collected at Songya Lake Park in Changsha City
on September 19, 2018 was selected to verify the filtering algorithm proposed in this
chapter. The positioning results obtained by the RTK system are used as reference. In
Fig. 6, the receiver antenna is placed on the roof of the car during data acquisition. The
sports car runs around the Songya Lake Park, and the sports car route is shown in
Fig. 7.

Table 1. Statistical results of root mean square error.

Filtering algorithm RMSE/m
X Y Z Radial

Standard Kalman filter 6.142 4.432 3.065 8.171
Error compensation algorithm
for dynamic model based on neural network

1.980 1.382 1.219 2.705

Fig. 6. Antenna placement diagram for sports car experiment.
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Each epoch is separated by 1 s. The number of visible satellites (cutoff angle) and
GDOP values during the acquisition time are shown in Figs. 8 and 9, respectively.

Fig. 7. Trajectory diagram of sports car experiment.
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Fig. 8. Visible satellite number diagram.
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Fig. 9. Error compensation algorithm for dynamic model based on neural network.

346 C. Li et al.



4.2 Experimental Results and Analysis

The sports car data has a total of 1787 epochs. In order to fully adapt to the envi-
ronment and obtain the initial value of each connection weight, the sample of the first
1200 s epoch is taken as the network training sample, and the initial weight of the
network is assigned. The data of the last 587 epochs is used as prediction data. The
results of the standard Kalman filter and the neural network-based observation error
compensation filter algorithm are shown in Figs. 10 and 11.
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Fig. 10. Standard Kalman filter.
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Fig. 11. Standard Kalman filter.
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The statistical results of each filtered output are shown in the following Table 2.

It can be known from the above results that there are some uncertain factors in the
observation information and dynamic model information. Standard Kalman filter
solution is not ideal. The dynamic model compensation algorithm based on neural
network can effectively suppress the model error. Its filtering performance is greatly
improved compared with the standard Kalman filter. The root mean square error in X,
Y and Z directions is reduced by about 85%, 95% and 90% respectively. Through
training and learning, the positioning deviation in all directions is eliminated in the
positioning prediction (see Table 3). And in terms of error standard deviation in all
directions, the algorithm reduces the X, Y and Z directions by about 70%, 60% and
60% respectively, compared to the standard Kalman filter. However, a burr appears
between 300 s and 400 s in the prediction phase, which is due to the large GDOP value
of the satellite and the mutation of GDOP value during this period. The learning sample
does not contain similar conditions, resulting in no effective elimination of abnormal
errors in the prediction phase.

5 Conclusion

Based on the standard Kalman filter algorithm and the RBF neural network, a dynamic
model compensation algorithm based on neural network is proposed in this paper. By
using the nonlinear mapping approximation ability of the RBF neural network, the
relationship between the product of the Kalman filter gain and the new interest and the
dynamic model error is learned, and the dynamic model error is compensated in the
prediction phase. Simulation and experimental results show that the proposed algorithm
can improve the positioning accuracy of standard Kalman filter effectively.

Table 2. Statistical results of root mean square error.

Filtering algorithm RMSE/m
X Y Z Radial

Standard Kalman filter 1.177 2.710 1.579 3.350
Error compensation algorithm for
dynamic model based on neural network

0.186 0.175 0.172 0.307

Table 3. Mean and standard deviation of errors.

Filtering algorithm Mean/m Standard deviation/m
X Y Z X Y Z

Standard Kalman filter 0.852 −2.551 1.302 0.559 0.408 0.465
Error compensation algorithm
for dynamic model based on
neural network

−0.001 0.002 0.001 0.175 0.163 0.193
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