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Abstract This paper presents the free vibration analysis of orthotropic rectangular
plates with line surface cracks under thermal conditions. The classical plate theory
is employed to derive the governing equation of cracked plates, in which the sur-
face cracks located at the plate center are formulated based on a line-spring model.
It is assumed that a thermal load is uniformly distributed on the plates throughout
its volume, and thus the moments of the plates resulted by the thermal effect are
neglected. The deduced governing equation is solved by the discrete singular con-
volution (DSC) method with the Shannon’s delta kernel. The DSC technique is a
relatively new method for vibration analysis of plates. It not only possesses flex-
ibility in handling complex geometries and boundary conditions, and also holds a
high-level of accuracy. In this study, the treatment for orthotropic cracked plates with
various combinations of boundary conditions, namely, simply supported, clamped
and free edges is studied. The results are compared with the existing solutions to
verify the correctness and reliability. Some first-known results are also presented.
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1 Introduction

Composite materials have long been widely used in aerospace, mechanical and civil
engineering due to its features of high strength-to-weight and stiffness-to-weight
ratios [2]. Such materials can be generally modeled as orthotropic plates by utiliz-
ing anisotropic materials and altering the isotropic properties along perpendicular
directions in manufacturing processes [21]. In thermal environment, the presence of
cracks can accelerate the change of material properties, inducing the loss of stability
and reliability. Hence, the understanding of dynamic response of orthotropic plates
subject to both cracking and thermal effects is crucial for engineers and researchers.

In the past, various plate theories have beenwell established for structural analysis
[9, 10, 13]. To study the influence of cracks on the dynamic responses of plates, Rice
and Levy [14] proposed a ling-spring model (LSM) based on the classical Kirch-
hoff plate theory, where the part-through crack located at the center of rectangular
plates can be represented by a line-spring. Recently, Israr et al. [3] and Joshi et al.
[5] extended their works and developed analytical models for vibration analysis of
cracked isotropic and orthotropic plates, respectively. However, only a few number
of articles have been published on the dynamic analysis of cracked plates subject to
thermal conditions. Natarajan et al. [11] analyzed the cracked functionally graded
plates under various parameters, such as crack length and temperature variation. In
addition, Joshi et al. [6] proposed an analytical model to study the vibration charac-
teristics of heated and cracked thin orthotropic plates.

The prime objective of this work is to present accurate solutions for the predic-
tion of structural responses of cracked plates in thermal environment by using the
discrete singular convolution (DSC) method. The DSC method emerges as an effi-
cient numerical method that was firstly proposed by Wei [17]. It is regarded as a
local method with good flexibility for dealing complex geometries and boundary
conditions, but also it holds a high level of accuracy [12, 19, 20]. To go beyond
the restriction of the original DSC technique, the incorporation of the Taylor series
expansion method was proposed for the treatment of structural elements with free
edges [15, 16]. Although the DSC method has been further explored for solving a
variety of plate problems [1, 7], it is still a lack of applications on the analysis of
cracked plates. This study firstly attempts to apply this method to fill this knowledge
gap. The obtained solutions herein are compared with those from the open litera-
ture to validate the accuracy and reliability. Some accurate benchmark solutions are
also presented. In addition, this paper aims to share and introduce this work to other
participants of the 25th Australasian Conference on Mechanics of Structures and
Materials with common research interests. A comprehensive investigation for this
research, including thermal buckling analysis, vibration mode shapes and special
restrained manner of simply-supported conditions, can be referred to the authors’
recent work [8].
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2 Theoretical Formulation

2.1 Governing Equation

The governing equation of rectangular orthotropic plates subject to both crack and
thermal effects has been rigorously treated by Joshi et al. [6]. Figure 1 shows the
geometry and coordinate system of an orthotropic plate, wherein two linear surface
cracks with lengths 2a and 2b are parallel to the x-axis and y-axis, respectively. The
plate has a uniform thickness h that is sufficiently thin when comparing to its in-plane
dimensions (i.e., length L1 and width L2).

According to the classical plate theory, the governing equation of orthotropic
rectangular plates with a surface crack (along the x-axis) in thermal environment is
expressed as [6]

Dx
∂4w

∂x4
+ 2Bo

∂4w

∂x2∂y2
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∂4w

∂y4

= −ρh
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∂2w
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where Bo = Dxvy + Gxyh3/6, Dx = Exh3/[12(1 − vxvy)] and Dy = Eyh3/[12(1 −
vxvy)] are the flexural rigidities with Young’s modulus (Ex, Ey), Poisson’s ratio (vx,
vy) and shear modulus (Gxy); NT

x and NT
y are the in-plane forces per unit length due

to the thermal effect; MT
x and MT

y are the moments induced by heating loads; N̄y

and M̄y represent the in-plane force and moment resulted by the presence of cracks,
respectively; and Pz denotes the transverse load per unit area acting on the plate
surface.

Fig. 1 Geometry and coordinate system of an orthotropic plate with surface part-through cracks
subject to thermal loads
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2.2 Formulation of Crack Terms

Using the LSM, we transform the cracked plate into a two-dimensional problem.
The uniformly distributed tensile stress and the bending stress at the far edges of the
plate are written as [14]

σrs = Nrs

h
= 1

h

h/2∫

−h/2

τrs(x, y, z)dz and

mrs = 6

h
Mrs = 6

h2

h/2∫

−h/2

zτrs(x, y, z)dz (2)

where τ rs(x, y, z) is the stress state, r and s are intermediate variables, Nrs and Mrs

are, respectively, the force and moment per unit length in the direction perpendicular
to the crack length at the edges of the plate. The crack is represented as a continuous
line-spring with compliance, and these compliance coefficients are used to raise the
relationship between the tensile stress and the bending stress at the far sides of the
plate and the crack location as follows

σ̄rs =
[

2a

(6αo
tb + αo

tt)(1 − v2)h + 2a

]
σrs and

m̄rs =
[

2a

3(αo
bt/6 + αo

bb)(3 + v)(1 − v)h + 2a

]
mrs (3)

where αo
bb, α

o
tt, α

o
bt(= αo

bt) denote the non-dimensional bending compliance, stretch-
ing compliance and stretching-bending compliance, respectively. Their values
depend on the ratio ζ = d/h (where d is the crack depth and h is the plate thickness)
in the range of 0.1–0.7 [14]. The tensile force and the moment caused by a crack
along the x-axis can be expressed as

N̄y ≡ −N̄rs = −
[
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(6αo
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tt)(1 − v2x )h + 2a

]
Nrs (4)
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where the negative signs are due to the reductionof the overall stiffness fromdamages.
The bending stress at the far sides of the plate is given by

Mrs = −Dy

(
∂2w
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)
(6)
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2.3 Thermal Effect

In this work, the uniformly distributed heating load is considered. The in-plane shear
force is then vanished and only the membrane force is considered. The thermal stress
parameters are defined as

σ T
x = ExT (z)

1 − vxvy
(αx + αyvy), σ

T
y = EyT (z)

1 − vxvy
(αy + αxvx), τ

T
xy = 0 (7)

where αx and αy are the coefficients of thermal expansion in the x- and y-directions,
respectively. The variation of temperature at the plate is assumed as T (z) = �T. The
in-plane forces and the moments caused by the thermal effect can be written as

NT
x = Exh�T (αx + αyvy)

1 − vxvy
,NT

y = Eyh�T (αy + αxvx)

1 − vxvy
,MT

x = MT
y = 0 (8)

Making use of theLSM, only themembrane force due to the change of temperature
is considered (i.e., NT = Nrs). For generality and simplicity, the dimensionless
parameters are defined as

X = x

L1
,Y = y

L2
,W = w

L1
, λ = L1

L2
,
 = ωL21

√
ρh

Dx
(9)

where ω is a circular frequency. Using Eq. (9) and substituting the crack terms and
thermal terms stated above into the governing Eq. (1), we have
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where A = 2a
3(αo

bt/6+αo
bb)(3+vx)(1−vx)h+2a and B = 2a

(6αo
tb+αo

tt)(1−v2x )h+2a . For a free vibration
analysis, we assume Pz = 0 in Eq. (10).

It is known that the fundamental frequency of an intact plate is zero at the critical
buckling temperature [6]. This can also be applied to cracked plates. By substituting
the general solution w(x, y) = Wmn sin(mπx/L1) sin(nπy/L2) to Eq. (10), the critical
buckling temperature becomes
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Tcr = h2π2

12L21

[
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wherem and n are the number of half sine waves in both directions. Equation (11) can
be reduced to the model proposed by Jones [4] for plates without cracks. To satisfy
the material properties, the minimum critical buckling temperature can be obtained
by setting m = n = 1.

3 Solution Procedure

3.1 DSC Algorithm

Following theDSCalgorithm, aweighted linear combination of the function values at
uniformly distributed points (2M +1) is employed to approximate the nth derivatives
of a function f (x). It can be discretized as

f (n)(xi) =
M∑

k=−M

δ
(n)
α,�f (xk) (12)

where � is a grid spacing, δα,� is a delta kernel of the Dirichlet type. In this work,
the regularized Shannon’s delta kernel (RSK) [17] is employed as

δα,�(x − xk) = sin[(π/�)(x − xk)]
(π/�)(x − xk)

exp

[
− (x − xk)2

2σ 2

]
(13)

where σ is a controllable parameter to determine the effective computational band-
width. To formulate the governing equation in terms of the DSC method, a column
vector W is introduced

W = (W0,0, . . . ,W0,NY ,W1,0, . . . ,WNX ,NY )
T (14)

where each element denotes the transverse displacement of an arbitrary point in the
orthotropic plate. A differential matrix Dn

q(q = X, Y; n = 1, 2, …) with the elements
is given by

[Dn
q]i,j =

[(
d

dq

)n

δ
(n)
α,�(q − qj)

]
q=qi

= Cn
m, i, j = 0, 1, . . . ,Nq (15)

where m = (qi − qj)/�. The matrix D is distributed to i − j = m = −M, …, 0, …,
M. After that, the governing equation for cracked orthotropic plate can be written as
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where Iq is the (Nq + 1)× (Nq + 1) unit matrix and⊗ denotes the tensional product.

3.2 Boundary Conditions

For the treatment of rectangular plates with simply supported and clamped bound-
aries, the anti-symmetric and symmetric extension methods can be applied, respec-
tively [7, 18, 19]. As the primitive version of the DSC method is limited by dealing
with the vibration of plates with free edges, a new scheme that incorporates the DSC
method with the Taylor series expansion technique was reported to overcome this
issue [8, 15, 16]. Hence, the imposition of boundary constraints is different for the
following three general supporting conditions:

Simply supported edges (S):wx = Mx = 0 andwy = My = 0 (17)

Clamped edges (C):wx = ∂w

∂x
= 0 andwy = ∂w

∂y
= 0 (18)

Free edges (F):Qx = Mx = 0, andR = 0 (19)

where wi (i = x, y) are the transverse displacements, Mi (i = x, y) are the bending
moments, Qi (i = x, y) are the shear forces and R is the corner force.

Consider the above boundary conditions, the governing equation of cracked
orthotropic plates can be expressed in a compact form as

[
KII KIA

KAI KAA

]{
WI

WA

}
= 
2

[
I 0
0 0

]{
WI

WA

}
(20)

where WI and WA denote the transverse displacements of the inner points and the
additional degree-of-freedom (DOF) points, respectively. If the boundary is a simply
supported or a clamped edge, the corresponding elements are set to zero in WA. By
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properly rearranging the displacement vectors, Eq. (20) can be further simplified by
vanishing the vector WA as

[K̄]W I = 
2WI (21)

which can be solved by a standard eigenvalue solver.

4 Analysis Results and Discussion

In this study, the material properties and fundamental frequencies of orthotropic
plates are presented in Tables 1, 2 and 3 [8]. The natural frequencies are expressed
in terms of a non-dimensional form as 
 = ωL21

√
ρh/D. The uniform rise in tem-

perature is expressed as a non-dimensional variation of temperature T* = �T /Tcr ,
where Tcr is critical buckling temperature. In all cases, the value of ζ = d/h in the
LSM is assumed to 0.6. The number of grid points and the half bandwidth used in
the DSC algorithm are N = 32 and M = 25, respectively.

Table 2 presents the fundamental frequency of SSSS orthotropic plates for var-
ious crack length ratios under the thermal condition of T* = 0. The results of the
DSC method are very close to the existing results from the Galerkin’s method [6].
In Table 3, a higher variation of temperature reduces the natural frequency of the
orthotropic plate intensively. It is found that the analysis results obtained by the DSC
method show good agreement with those from the publication. In Fig. 2, the varia-
tion of natural frequencies of the rectangular orthotropic plates with free edges (i.e.,
FFFF and CSFF cases) due to the crack effect is first studied. A reduction of the

Table 1 Properties of an orthotropic rectangular plate [8]

vx vy ρ (kg/m3) Ex
(GPa)

Ey
(GPa)

Gxy (GPa) αx (/°C) αy (/°C)

0.23 0.0208 2000 208 19.8 5.7 7.1×10−6 2.3×10−5

Table 2 Fundamental frequencies for cracked SSSS orthotropic plates (h = 0.01 m)

Crack length ratio
(2a/L1)

Aspect ratio (λ = 1) Aspect ratio (λ = 2)

DSC method [8] Joshi et al. [6] DSC method [8] Joshi et al. [6]

0 10.998 10.99 17.256 17.25

0.20 10.685 10.66 14.296 14.11

0.40 10.611 10.59 13.518 13.37

0.60 10.578 10.56 13.157 13.04

0.80 10.559 10.54 12.948 12.85

1.00 10.547 10.53 12.812 12.73
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Table 3 Fundamental frequencies for cracked SSSS orthotropic plates in thermal environment (L1
= L2 = 1 m, h = 0.01 m)

Temperature
variation (T*)

Crack length ratio (2a/L1 = 0) Crack length ratio (2b/L2 = 0.02)

DSC method [8] Joshi et al. [6] DSC method [8] Joshi et al. [6]

0 10.998 10.998 10.430 10.352

0.2 9.8367 9.8366 9.3653 9.3064

0.4 8.5188 8.5188 8.1626 8.1278

0.6 6.9556 6.9556 6.7489 6.7459

0.8 4.9184 4.9184 4.9465 4.9956

0.9 3.4778 3.4778 3.7320 3.8316
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Fig. 2 Effect of crack length on fundamental frequencies: a FFFF plate; b CSFF plate

fundamental frequency is observed as the crack length increases for different aspect
ratios, λ = 1, 1.5 and 2.

5 Conclusions

This work presents the free vibration analysis of orthotropic plates under both crack
and thermal effects. The surface cracks on orthotropic plates are simulated using the
line-spring model, and the temperature heating load is considered as a uniformly
distributed effect. Based on the mathematical model, the DSCmethod is first applied
to address this problem. By incorporating with the Taylor series expansion approach,
the limitation of the DSCmethod for the treatment of plate problems with free edges
has been overcome. The effects of boundary condition, aspect ratio, crack length and
thermal load on the dynamic responses of orthotropic plates are considered herein.
The analysis results indicate that the presented scheme can achieve a high level of
reliability and accuracy. As the temperature rises and the crack length increases, the
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vibration frequency of the plates would decrease. This is mainly due to the change
of material properties under these effects.
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