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Abstract
The sustainable plant disease management includes the use of beneficial microbes 
for the effective and sustained production of crop/plants. Numerous species of 
soil bacteria/rhizobacteria and fungi exist in the rhizosphere of plants which can 
counteract the pathogenic organisms and stimulate plant growth through direct/
indirect mode of action. The plant growth-promoting rhizobacteria (PGPRs), 
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viz., Pseudomonas, Bacillus, and Streptomyces, have been well exploited by sci-
entists for the management of plant diseases in economically important agricul-
tural and horticultural crops. In nature, interactions between the pathogenic and 
beneficial microbes take place which decides the existence of the pathogen in the 
rhizosphere region. Interaction of PGPR with pathogens in the rhizosphere may 
lead to an expression of innate immune response of defense genes in the plants 
which can counter the pathogen infection. This review helps in understanding the 
dynamics and existence of PGPR in the soil, their role in disease management, 
and their interaction with the pathogens which explore the possibility of identify-
ing new proteins/genes in host-pathogen interaction. In addition, commercial 
production of bioagents with the suitable carrier material and delivery system 
play a major role in managing plant diseases under field conditions. The explora-
tion for PGPR and study of their modes of action are escalating at a rapid pace, 
as efforts are made to exploit them commercially as bioinoculants.

Keywords
Antibiosis · Bacillus sp. · Competition · Induced systemic resistance · Lytic 
enzymes · Pseudomonas sp.

8.1	 �Introduction

Sustainable agriculture practices involves soil health maintanence, usage of mini-
mal water, and minimize the pollution level in the environment which subsequently 
increases the food grain production in the country. During the cultivation of crops, 
biotic stress caused by plant pathogens is a major concern which incurs huge eco-
nomical loss to the farmers. Various agrochemicals are being utilized by the farmers 
for the management of the diseases caused by plant pathogens. However, their use 
is increasingly restricted due to public concerns over toxic residues, development of 
resistance in the pathogens, and increased expenditure for plant protection. 
Exploitation of microbe-based management will be an alternative approach to con-
trol this disease. In nature, soil harbors numerous beneficial microorganisms with 
potential genes for governing resistance and promoting plant growth which can be 
well exploited for managing the plant diseases. The PGPR is currently applied in an 
extensive array of agri- and horticultural production systems in the form of bioin-
oculants in a variety of economically significant plants including cereals, millets, 
pulses, oilseeds, fiber crops, sugar crops, fruits, vegetables, medicinal crops, spices, 
condiments, ornaments, fodder, and cash crops for augmenting their growth and 
productivity. Free-living, nonpathogenic, root-colonizing bacteria have been stud-
ied for the past century as possible inoculants for increasing plant productivity 
(Kloepper et al. 1992).

In the last few decades, a large array of bacteria including species of Alcaligenes, 
Aeromonas, Azotobacter, Arthrobacter, Azoarcus, Azospirillum, Acinetobacter, 
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Agrobacterium, Aneurinibacillus, Bacillus, Beijerinckia, Burkholderia, 
Gluconacetobacter, Gluconobacter, Herbaspirillum, Paenibacillus, Pseudomonas, 
Rhizobium, Rhodococcus, Saccharothrix, Serratia, Thiobacillus, and Variovorax 
are considered as important PGPR (Dobbelaere et  al. 2003; Crepin et  al. 2012; 
Annapurna et al. 2013). These effective rhizobacteria are used in sustainable agri-
culture as biofertilizers and biocontrol agents (Babalola 2010). Several studies have 
depicted proteobacteria especially bacteria from family Pseudomonadaceae or 
Burkholderiaceae as dominant members of rhizosphere microflora in field condi-
tions (Peiffer et al. 2013).

Rhizobacteria can survive in soil or seed, multiply in the spermosphere in 
response to seed exudates, get attached to the root surface (Suslow 1980), and later 
become endophytic by colonizing in root cortex region. They are sporadically dis-
persed along roots and are distributed in a lognormal pattern in the rhizosphere 
(Bahme and Schroth 1987). Various PGPR strains screened under laboratory, green-
house, and field conditions against phytopathogens have been commercialized. The 
commercially utilized efficient PGPR strains include species of Agrobacterium, 
Azospirillum, Azotobacter, Bacillus, Burkholderia, Delftia, Paenibacillus, Pantoea, 
Pseudomonas, Rhizobium, and Serratia (Glick 2012). Although various strains of 
PGPR have been isolated, there is a gap in identification of efficient crop-specific 
strain with good colonizing ability possessing antagonistic and growth-promoting 
genes. Also, the type of formulation used for mass multiplication of these biocontrol 
agents is more important which will help to establish itself in the field for a consid-
erable period of time.

The molecular markers, of late, can be utilized for identification and screening of 
the efficient strain in a short span of time. Besides, understanding the mode of action 
of PGPR through genomic and proteomic approaches will help in depicting its role 
in plant disease management. With this background, this review will address the 
major PGPR strains utilized in agricultural and horticultural crops for plant disease 
management, highlight the various mode of action exhibited by these beneficial 
bacteria against soilborne diseases, and also discuss on the various bioformulations 
used for the management of plant diseases which will pay a way for sustainable 
agriculture.

8.2	 �PGPR in Plant Disease Management

PGPRs are the distinct group of microbes that suppress the deleterious pathogens in 
crop plants. The genera normally used as biocontrol agents are Agrobacterium, 
Bacillus, Burkholderia, Pseudomonas, Streptomyces, etc. Among the diversity of 
PGPR, Pseudomonas and Bacillus spp. have a wide distribution and are the exten-
sively studied genera for PGPR as a biocontrol. In particular, the soilborne fluores-
cent pseudomonads have received particular interest due to its excellent 
root-colonizing abilities and their capacity to produce a wide range of antifungal 
metabolites (Olivain et al. 2004). These organisms combat the plant disease by com-
petition, enzymatic lysis, production of antibiotics, hydrogen cyanide, siderophores, 
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induced systemic resistance (ISR), or any other mechanisms. The rhizosphere soil 
is an active site with complex interactions between the root and the associated 
PGPR (Sylvia et  al. 1998). At this point, the PGPR enhances plant growth and 
development by direct and/or indirect mechanisms. Direct mechanisms elicit growth 
promotion by biological nitrogen fixation (BNF), production of hormones such as 
indole-3-acetic acid (IAA), gibberellic acid (GA3), cytokinin and phosphate, potas-
sium and zinc solubilization or mobilization (Idris et al. 2008), production of sid-
erophores for sequestering of iron (Fe) from the soil and supply it to the plants and 
synthesis of hydrogen cyanide, etc. (Keel and Defago 1997). Some strains improve 
the innate ability to tolerate the stresses like acidity, salinity, drought, etc., besides 
production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme to 
lower the ethylene synthesis and synthesis of fungal cell wall lytic enzymes.

Secondly, indirect mechanisms include suppression of harmful/deleterious rhi-
zosphere microbes through induced systemic resistance (ISR), which are normally 
recognized as having a role in biocontrol (Dobbelaere et al. 2003). Induced systemic 
resistance is based on the activation of plant defense mechanisms by rhizobacterial 
strains and is considered natural, eco-friendly, and safe besides providing resistance 
against a broad spectrum of pathogens (Sticher et al. 1997). The rhizobacteria need 
to colonize the roots to a sufficient level for induction of resistance in the host. For 
example, in radish, a minimal number of 105 colony-forming units (cfu) per g root 
of bacteria is required to induce resistance in the host (Raaijmakers et al. 1995). 
Colonization of plants by biocontrol agents induces cell wall modifications, viz., 
deposition of callose, pectin, cellulose, and phenolic compounds leading to the for-
mation of a structural barrier at the site of potential attack by phytopathogens 
(Benhamou et al. 2000). Defense reaction occurs due to accumulation of PR pro-
teins (chitinase, β-1,3-glucanase), phenylalanine ammonia lyase, peroxidase, phe-
nolics, callose, lignin, and phytoalexins (Harish et al. 2009b).

The successful establishment of an introduced PGPR depends on its compatibil-
ity/establishment with the crop and also on its interaction with indigenous micro-
flora. An ideal PGPR should be rhizosphere competent, enhance plant growth, be 
easy to mass multiply, possess broad spectrum of action, have consistent biological 
control activity, be safe to the environment, and be compatible with other rhizobac-
teria (Nakkeeran et al. 2005; Barea, 2015). Therefore, identification of a functional 
PGPR strain possessing the growth-promoting and broad-spectrum biocontrol 
activity is an ever-challenging one. Utilization of molecular tools to identify the 
antibiotic biosynthetic genes, quorum quenching/sensing genes, and growth-
promoting genes in PGPR will pay way for the selection of efficient microbes in a 
short span of time (Fig. 8.1). Besides, updating the knowledge on the utilization of 
PGPR for plant disease management is the need of the day. This review, therefore, 
will focus on some novel and highly utilized PGPR in disease management with 
special reference to the genera Pseudomonas and Bacillus.

Various research groups throughout the world have utilized PGPR strains that 
were found to be successful in combating the major diseases of field and horticul-
tural crops (Kloepper and Schroth 1978) through direct/indirect mode of action 
along with plant growth promotion activity (Tables 8.1 and 8.2). The enhancement 
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of plant growth by PGPR indicates their potential as biofertilizers and biocontrol 
agents in the field of agriculture (Kloepper and Adesemaye 2009).

8.3	 �Plant Growth Promotion (PGP) Activities

The studies on the mechanism of growth promotion indicated that PGPR promotes 
plant growth directly by the production of plant growth regulators (PGR) or indi-
rectly by stimulating nutrient uptake, by producing siderophores or antibiotics to 
protect plants from soilborne pathogens or deleterious rhizosphere organisms 
(Kavino et al. 2010). Barea et al. (2005) reported phosphate-solubilizing bacteria 
(PSB) positive for IAA, GA3, and cytokinin production. Several isolates of 
Pseudomonas produced auxin or cytokinin and gibberellin.

Fluorescent pseudomonads increased the plant growth of rice and cotton by 
~27% and 40%, respectively, when the bacteria were applied to the seed (Sakthivel 
and Gnanamanickam 1987). Seeds treated with fluorescent pseudomonads resulted 
in increased number of tillers and grain yield in addition to control of sheath blight 
disease in rice (Mew and Rosales 1992). An increase in germination of ~30 to 60% 
in maize by plant growth-promoting strains of P. aeruginosa strain 7NSK2 and P. 
fluorescens ANP15 was observed by Hofte et al. (1991). Fluorescent Pseudomonas 
strains improved vegetative sett germination, plant height, cane diameter, brix val-
ues, and cane weight in sugarcane (Viswanathan and Samiyappan 1999). Indirect 

Fig. 8.1  Proposed model for PGPR-mediated plant growth promotion and disease management
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Table 8.1  Plant growth-promoting rhizobacteria in field crop diseases management

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Rice Magnaporthe 
grisea

Pseudomonas 
fluorescens, Bacillus 
polymyxa, P. fluorescens

Gnanamanickam and Mew 
(1992), Vidhyasekaran et al. 
(1997), and Karpagavalli et al. 
(2002)

Pyricularia oryzae P. fluorescens, Bacillus 
sp., Streptomyces 
sindeneusis, Bacillus 
amyloliquefaciens, 
Bacillus subtilis, Bacillus 
megaterium, Bacillus 
pumilus, Paenibacillus 
kribbensis, Pseudomonas 
aeruginosa, 
Pseudomonas putida

Krishnamurthy and 
Gnanamanickam (1998), 
Vidhyasekaran and 
Muthamilan (1999), 
Nandakumar et al. (2001), 
Kanajanamaneesathian et al. 
(2007), Yang et al. (2009), 
Zarandi et al. (2009), Guo and 
Liao (2014), Srivastava et al. 
(2016), and Rais et al. (2017)

Rhizoctonia solani P. fluorescens, B. subtilis Rabindran and Vidhyasekaran 
(1996) and Kumar et al. (2012)

Sarocladium 
oryzae

P. fluorescens, P. 
aeruginosa

Sakthivel and Gnanamanickam 
(1987) and Sunish kumar et al. 
(2005)

Xanthomonas 
oryzae pv. oryzae

P. fluorescens, P. 
aeruginosa, B. subtilis, 
Lysobacter antibioticus, 
Bacillus lentus, Bacillus 
cereus, Bacillus circulans

Vidhyasekaran et al. (2001). 
Velusamy and Gnanamanickam 
(2003), Ji et al. (2008), and 
Yasmin et al. (2016)

Wheat Tilletia laevis P. fluorescens McManus et al. (1993)
Helminthosporium 
sativum

P. fluorescens Ping et al. (1999)

Gaeumannomyces 
graminis var. tritici

P. fluorescens, 
Pseudomonas 
chlororaphis

Pierson and Thomashow 
(1992) and Mazzola et al. 
(2004)

Microdochium 
nivale

Pseudomonas 
brassicacearum

Levenfors et al. (2008)

Septoria tritici P. aeruginosa Flaishman et al. (1990)
Fusarium 
culmorum

P. fluorescens Khan and Doohan (2009)

Fusarium 
graminearum

Lysobacter enzymogenes Jochum et al. (2006)

Mycosphaerella 
graminicola

B. megaterium Kildea et al. (2008)

Barley Pythium ultimum P. fluorescens Gutterson et al. (1986)
F. culmorum P. fluorescens Khan and Doohan (2009)
Pyrenophora teres P. fluorescens Khan et al. (2010)

Maize P. ultimum, 
Pseudomonas 
arrhenomanes

Burkholderia cepacia Mao et al. (1998)

P. ultimum P. fluorescens Callan et al. (1990)

(continued)
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Table 8.1  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Peronosclerospora 
sorghi

B. subtilis, P. fluorescens Sadoma et al. (2011)

Fusarium 
verticillioides

P. fluorescens, B. 
amyloliquefaciens

Nayaka et al. (2009) and 
Pereira et al. (2010)

F. culmorum P. fluorescens Khan and Doohan (2009)
Helminthosporium 
maydis

B. subtilis, B. cereus Lu et al. (2006) and Yun-feng 
et al. (2012)

Erwinia carotovora Bacillus thuringiensis Dong et al. (2004)
Stenocarpella 
maydis

B. subtilis, P. fluorescens, 
Pantoea agglomerans

Petatan-Sagahon et al. (2011)

R. solani B. subtilis Muis and Quimiob (2006)
Fusarium 
moniliforme

Bacillus sp., 
Pseudomonas sp.

Pal et al. (2001)

Sorghum P. ultimum P. fluorescens Idris et al. (2008)
Macrophomina 
phaseolina

P. chlororaphis Das et al. (2008)

Sclerospora 
graminicola

B. pumilus, B. subtilis Raj et al. (2003)

Erwinia carotovora 
subsp. atroseptica

P. chlororaphis Das et al. (2008)

Pearl 
millet

Sclerospora 
graminicola

P. fluorescens Umesha et al. (1998)

Ragi P. grisea P. fluorescens Vanitha (1998)
Foxtail 
millet

M. grisea P. fluorescens Karthikeyan and 
Gnanamanickam (2008)

Pigeon 
pea

Macrophomina 
phaseolina

P. fluorescens Siddiqui et al. (1998)

Fusarium udum Bacillus licheniformis Singh et al. (2002)
Chickpea P. ultimum B. pumilus, Streptomyces 

lydicus, Streptomyces 
griseoviridis

Leisso et al. (2009)

F. oxysporum f. sp. 
ciceri

P. aeruginosa, Bacillus 
macerans, B. megaterium

Anjaiah et al. (2003), Landa 
et al. (2004), and Saikia et al. 
(2006)

M. phaseolina P. putida, P. polymyxa Akhtar and Siddiqui (2007)
Rhizoctonia 
bataticola

P. fluorescens Ahamad et al. (2000)

Mung 
bean

M. phaseolina Burkholderia sp. Satya et al. (2011)

Soya bean P. ultimum P. putida Paulitz (1991)
Sclerotinia 
sclerotiorum

B. subtilis Zhang et al. (2011) and Zeng 
et al. (2012)

F. oxysporum B. subtilis Zhang et al. (2009)
F. graminearum

(continued)
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Table 8.1  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Soyabean stunt 
virus

P. aeruginosa Khalimi and Suprapta (2011)

Groundnut S. rolfsii P. fluorescens Vanitha (1998), and Abd-Allah 
and El-Didamony (2007)B. subtilis

Aspergillus niger P. aeruginosa, 
Pseudomonas sp.

Kishore et al. (2005a) and 
Anjaiah et al. (2006)

Bacillus sp.
Aspergillus flavus B. megaterium Kong et al. (2010)
Puccinia arachidis P. fluorescens Meena et al. (1999)
M. phaseolina P. fluorescens Shanmugam et al. (2002)

Sesame P. ultimum P. polymyxa Ryu et al. (2006)
M. phaseolina P. fluorescens Jayashree et al. (2000)

Sunflower Plasmopara 
halstedii

B. pumilus Nandeeshkumar et al. (2008)

Sunflower necrosis 
virus

Streptomyces fradiae, B. 
licheniformis

Srinivasan and Mathivanan 
(2011)

Safflower M. phaseolina P. fluorescens Prashanthi et al. (2000)
Rapeseed S. sclerotiorum B. subtilis, P. 

chlororaphis
Fernando et al. (2007) and 
Yang et al. (2009)

B. amyloliquefaciens
Cotton P. ultimum Enterobacter cloacae, 

Acinetobacter 
calcoaceticus, P. 
fluorescens

Nelson (1988), van Dijk and 
Nelson (1998), and Hagedorn 
et al. (1990)

Verticillium 
dahliae

Pseudomonas sp., 
Serratia plymuthica

Erdogan and Benlioglu (2010)

Thielaviopsis 
basicola

Paenibacillus alvei Schoina et al. (2011)

R. solani P. fluorescens, 
Pseudomonas cepacia

Hagedorn et al. (1990), 
Cartwright et al. (1995), and 
Ligon et al. (2000)

X. campestris pv. 
malvacearum

P. fluorescens, B. cereus Mondal et al. (2000) and Ishida 
et al. (2008)

Sugarcane Colletotrichum 
falcatum

P. putida Viswanathan and Samiyappan 
(2002)

Sugar beet Pythium ultimum 
var. ultimum

L. enzymogenes Palumbo et al. (2005)

P. ultimum Stenotrophomonas 
maltophilia

Dunne et al. (1998)

R. solani P. fluorescens Nielsen et al. (1998)
Cercospora 
beticola

B. subtilis Collins and Jacobsen (2003)
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Table 8.2  Plant growth-promoting rhizobacteria in horticultural crop diseases management

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Tomato P. ultimum P. fluorescens, B. 
subtilis

Hultberg et al. (2000) and 
Jayaraj et al. (2005)

Pythium 
aphanidermatum

P. fluorescens Ramamoorthy et al. 
(2001)

Pythium splendens P. aeruginosa Buysens et al. (1994)
Phytophthora 
infestans

B. pumilus, P. 
fluorescens

Yan et al. (2002)

F. oxysporum f. sp. 
lycopersici

P. fluorescens, S. 
griseoviridis

Chin-A-Woeng et al. 
(1998), Dekkers et al. 
(2000), Khan and Akram 
(2000), Minuto et al. 
(2006), and Omar et al. 
(2006)

P. fluorescens, P. 
chlororaphis
B. megaterium, B. 
cepacia

Alternaria solani P. fluorescens Geels and Schippers 
(1983)

S. rolfsii P. fluorescens, B. 
amyloliquefaciens

Thiribhuvanamala et al. 
(1999) and Jetiyanon 
et al. (2003)

R. solani P. fluorescens Geels and Schippers 
(1983) and Szezech and 
Shoda (2006)

B. subtilis

Ralstonia 
solanacearum

P. putida Amith et al. (2004)

X. axonopodis pv. 
vesicatoria

B. pumilus Ji et al. (2006)

Pseudomonas 
syringae pv. tomato

P. syringae, P. putida, P. 
fluorescens

Van Peer et al. (1991), 
Wilson et al. (2002), and 
Matilla et al. (2010)

Clavibacter 
michiganensis 
subsp. 
michiganensis

B. subtilis Utkhede and Koch (2004)

Potato P. ultimum E. cloacae Kageyama and Nelson 
(2003)

P. infestans P. fluorescens, S. 
plymuthica

Glass et al. (2001) and 
Slininger et al. (2007)

Phytophthora 
erythroseptica

E. cloacae, 
Enterobacter sp.

Schisler et al. (2009)

Pseudomonas sp.
R. solani P. fluorescens Grosch et al. (2005)
Fusarium sp. P. fluorescens Al-Mughrabi (2010)
Verticillium dahliae P. fluorescens Uppal et al. (2008)
F. roseum var. 
sambucinum

B. licheniformis, B. 
cereus

Sadfi et al. (2002)

(continued)
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Table 8.2  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Gibberella pulicaris P. agglomerans Schisler et al. (2000)
P. fluorescens

Helminthosporium 
solani

B. cereus, P. putida, 
Rhodococcus 
erythropolis

Martinez et al. (2002)

Rhodococcus 
globerulus

E. carotovora subsp. 
atroseptica

P. fluorescens Cronin et al. (1997)

Pectobacterium 
atrosepticum

R. erythropolis Crepin et al. (2012)

Streptomyces 
scabies

Pseudomonas mosselii Singhai et al. (2011)

Carrot P. ultimum E. cloacae Kageyama and Nelson 
(2003)

Alternaria radicina B. cepacia, B. 
amyloliquefaciens

Chen and Wu (1999)

Brinjal R. solanacearum P. fluorescens Chakravarty and Kalita 
(2011)

Chillies Phytophthora 
capsici

Bacillus sp. Jiang et al. (2006)
S. plymuthica Kim et al. (2008)
B. megaterium Akgül and Mirik (2008)

Colletotrichum 
capsici

P. fluorescens, B. 
subtilis

Bharathi et al. (2004)

Colletotrichum sp. P. fluorescens Hegde and Anahosur 
(2001)

Colletotrichum 
acutatum

Myxococcus sp. Kim and Yun (2011)

R. solani Chromobacterium sp. Kim et al. (2008)
F. oxysporum f. sp. 
capsici

B. licheniformis, P. 
fluorescens, 
Chryseobacterium 
balustinum, B. subtilis, 
B. amyloliquefaciens

Domenech et al. (2006)

P. fluorescens, B. 
subtilis

Sundaramoorthy et al. 
(2012)

S. rolfsii Streptomyces philanthi Boukaew et al. (2011)
Onion Botrytis allii B. licheniformis, B. 

amyloliquefaciens
Lee et al. (2001)

F. oxysporum B. amyloliquefaciens
Garlic Penicillium hirsutum P. agglomerans Kim et al. (2006)
Cassava P. aphanidermatum B. pumilus Pereira de Melo et al. 

(2009)R. solani
S. rolfsii

(continued)
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Table 8.2  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

X. campestris pv. 
manihotis

B. cereus, B. subtilis, 
Pseudomonas sp.

Amusa and Odunbaku 
(2007)

Pea P. ultimum P. fluorescens Naseby et al. (2001)
Pythium sp. P. cepacia, P. 

fluorescens
Parke et al. (1991)

P. infestans B. pumilus Yan et al. (2002)
Aphanomyces 
euteiches

B. mycoides Wakelin et al. (2002)

P. syringae pv. 
syringae

P. fluorescens Seuk et al. (2001)

Beans P. splendens P. aeruginosa Anjaiah et al. (1998)
Colletotrichum 
lindemuthianum

P. chlororaphis Lagopodi (2009)

Botrytis cinerea B. subtilis Ongena et al. (2007)
Radish F. oxysporum f. sp. 

raphani
P. fluorescens Leeman et al. (1996)
P. putida Scher and Baker (1982)

P. ultimum E. cloacae Kageyama and Nelson 
(2003)

Beetroot P. debaryanum, P. 
ultimum

P. fluorescens Dodd and Stewart (1992)

Cabbage P. brassicae Pseudomonas sp. Hjort et al. (2010)
Yam Botryodiplodia 

theobromae
B. subtilis Swain et al. (2008)

F. moniliforme B. subtilis Okigbo (2002)
Penicillium 
sclerotigenum

Pseudomonas sp.

Lettuce R. solani P. fluorescens Grosch et al. (2005)
P. ultimum P. fluorescens Crawford et al. (1993)

Cauliflower F. moniliforme P. fluorescens Rajappan and Ramaraj 
(1999)

Cucumber P. ultimum P. fluorescens Georgakopoulos et al. 
(2002)

E. cloacae Kageyama and Nelson 
(2003)

P. aphanidermatum L. enzymogenes Folman et al. (2004)
Fusarium sp. P. fluorescens Brovko and Brovko 

(2000)
F. oxysporum P. putida Park et al. (1988)
F. oxysporum f. sp. 
cucumerinum

P. aeruginosa Bradley and Punja (2010)

Cabbage X. campestris pv. 
campestris

Bacillus velezensis Liu et al. (2016)

Carnation F. oxysporum f. sp. 
dianthi

P. fluorescens Van Peer and Schippers 
(1992)

P. cinnamomi P. fluorescens Sorokina et al. (1999)

(continued)
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stimulus of plant growth contains a range of mechanisms by which the bacteria 
protect plants from phytopathogens (Glick 2012). The PGPR strains, viz., 
Paenibacillus sp. Azospirillum brasilense, B. subtilis subsp. subtilis, B. kururiensis, 
and P. stutzeri, enhanced biomass production in several trees and nursery saplings 
(Radhapriya et al. 2018). Also, the application of Bacillus spp. in the plant system 
facilitates plant growth promotion (Gange and Gadhave 2018). The enzyme ACC 
deaminase secreted by PGPR lowers the plant ethylene levels that are produced dur-
ing stress conditions and thus directly protects the plant from retardation (Glick 
1995). The significance of ACC deaminase gene has been documented in many of 
the crops which promote plant growth under various conditions (Mayak et al. 2004). 
Seed bacterization with fluorescent pseudomonads GRC2 resulted in improved seed 
germination, pod yield, and reduced charcoal rot disease incidence caused by M. 
phaseolina in peanut (Gupta et al. 2002). Similarly, application of P. fluorescens Pf1 

Table 8.2  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Tea Exobasidium vexans P. fluorescens Saravanakumar et al. 
(2007b)

Peppermint R. solani P. fluorescens Kamalakannan et al. 
(2003)

Mango Colletotrichum 
gloeosporioides

P. fluorescens Koomen and Jeffris 
(1993) and Vivekananthan 
et al. (2004)

Lasiodiplodia 
theobromae

P. fluorescens, B. 
subtilis

Parthasarathy et al. 
(2016)

Banana BBTV P. fluorescens, Bacillus 
sp.

Harish et al. (2008a)

Apricot, peach Leucostoma cinctum P. fluorescens Rozsnyay et al. (1992)
Apple Venturia inaequalis P. fluorescens Kucheryava et al. (1999)
Grapevine Plasmopara viticola B. subtilis Furuya et al. (2011)
Raspberry Phytophthora 

fragariae var. rubi
Streptomyces sp. Valois et al. (1996)

Arabidopsis P. syringae pv. 
lachrymans

P. putida Wei et al. (1996)

P. aphanidermatum Peanibacillus polymyxa Timmusk et al. (2009)
Hyaloperonospora 
parasitica

P. fluorescens Iavicoli et al. (2003)

Asparagus Phytophthora 
megasperma

P. chlororaphis Carruthers et al. (1995)

Chrysanthemum P. aphanidermatum, 
Pythium dissotocum

P. fluorescens Liu et al. (2007)

Mushroom Pseudomonas 
tolaasii

P. fluorescens Bora et al. (2000)

Tobacco P. ultimum P. fluorescens Howell and Stipanovic 
(1979)

Peronospora 
tabacina

S. marcescens Zhang et al. (2001)

S. Harish et al.



163

as seed treatment followed by soil application enhanced the plant growth and has 
better native rhizobium nodulation and grain yield in legumes (Jayashree et  al. 
2000). Thus application of PGPR strain promoted the growth of crop by direct and 
indirect means and thus compensates the loss caused due to pathogens.

8.4	 �Antibiosis

Antibiotics are mostly deliberated to be low molecular weight organic compounds 
produced by beneficial microbes and is considered as one of the most important 
traits of PGPR. Antibiosis shows a vital role in the biocontrol of plant disease which 
often acts in concert with competition and parasitism. Dennis and Webster (1971) 
first described the antagonistic properties of Trichoderma in terms of antibiotic pro-
duction which included both nonvolatiles and volatiles. Certain PGPR strains are 
capable of producing volatile and nonvolatile antibiotics and are important feature 
for suppression of plant pathogens (Table 8.3). Some of these antibiotic-producing 
strains were also shown to suppress fungal plant disease in vitro (Whipps 2001).

Several strains of Pseudomonas and Bacillus spp. have been shown to produce 
wide array of antibiotics which includes ammonia, butyrolactones, 2–4 diacetylphlo-
roglucinol, kanosamine, oligomycin A, oomycin A, phenazine-1-carboxylic acid, 
pyoluteorin, pyrrolnitrin, tropolone, pyocyanin, iturin, surfactin, viscosinamide, 
zwittermicin A, agrocin 84, as well as several other uncharacterized moieties 
(Nyfeler and Ackermann 1992; Keel and Defago 1997; Nielsen et al. 1999; Whipps 
2001). Burkhead et al. (1994) reported that P. cepacia B37W produced pyrrolnitrin 
antibiotic inhibitory to Fusarium sambucinum. Michereff et al. (1994) could corre-
late the in vitro inhibition of Pythium and Rhizoctonia by 2,4-diacetylphloroglucinol, 
an antibiotic produced by P. fluorescens PF5 and in vivo control of C. graminicola, 
incitant of sorghum anthracnose. P. fluorescens (Trevisan) Migula F113 was shown 
to control the potato soft rot pathogen, E. carotovora subsp. atroseptica (van Hall) 
Dye, by the production of antibiotic 2,4-diacetylphloroglucinol (DAPG) (Cronin 
et al. 1997). Some evidence was also obtained that siderophore production by P. 
fluorescens F113 may play a role in biocontrol of potato soft rot.

Bacillus cyclic lipopeptides belong to three major families, the iturins (bacillo-
mycins, iturins, and mycosubtilins), the fengycins (plipastatins), and the surfactins 
(bamylocin A, esperins, lichenysins, pumilacidins, and surfactins) (Jacques 2011). 
Iturins and fengycins possess antifungal activity against a wide range of phyto-
pathogens, while surfactins are mostly antibacterial (Ongena and Jacques 2008). 
Bacilysin is a dipeptide composed of an L-alanine and the unusual amino acid 
L-anticapsin and one of the simplest peptide antibiotics known with antifungal and 
antibacterial activities. Difficidin and bacilysin from B. amyloliquefaciens FZB42 
have antibacterial activity against X. oryzae in rice (Wu et  al. 2015). B. subtilis 
CMB32 produced antifungal lipopeptides which was found to be antagonistic 
against C. gloeosporioides (Kim et al. 2010). Thus antibiotics secreted by the bio-
control agents were found to inhibit the plant pathogens and thus play an important 
role in disease management.
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Table 8.3  Antibiotics produced by PGPR

Target group PGPR Antibiotics References
Oomycetes, 
fungi

P. fluorescens 2,4-diacetylphloroglucinol Shanahan et al. (1992)

Phenazine-1-carboxylic acid Gurusiddaiah et al. 
(1986)

Dimer of phenazine-1-
carboxylic acid

Sakthivel and Sunish 
Kumar (2008)

Pyrrolnitrin Ligon et al. (2000)
Pyoluteorin Keel et al. (1992)
Mupirocin (pseudomonic acid 
A)

El-Sayed et al. (2003)

Rhizoxin analogues Loper et al. (2008)
Viscosinamide Nielsen et al. (1998)
Tensin Nielsen et al. (2000)
Masstolides A de Bruijn et al. (2007)

P. aeruginosa Phenazine-1-carboxamide Sunish Kumar et al. 
(2005)

Pyocyanin Baron et al. (1997)
Pseudomonas 
aureofaciens

Phenazine-1-carboxylic acid Thomashow et al. 
(1990)

Pyrrolnitrin Elander et al. (1968)
P. chlororaphis Phenazine-1-carboxylic acid Pierson and 

Thomashow (1992)
2-hydroxyphenazine Chin-A-Woeng et al. 

(1998)
P. putida Phenazine-1-carboxylic acid Pathma et al. (2011)
P. cepacia Pyrrolnitrin Cartwright et al. 

(1995)
Pseudomonas 
pyrrolnitrica

Monodechloro-pyrrolnitrin Hashimoto and 
Hattori (1968)

Pseudomonas 
borealis

2,3-deepoxy-2,3-didehydro-
rhizoxin

Tombolini et al. 
(1999)

Pseudomonas spp. Isopyrrolnitrin Hashimoto and 
Hattori (1966a)

Oxypyrrolnitrin Hashimoto and 
Hattori (1966b)

Amphisin Sorensen et al. (2001)
Oomycin A Kim et al. (2000)
Cepaciamide A Howie and Suslow 

(1991)
Ecomycins Jiao et al. (1996)
2,3-deepoxy-2,3-didehydro-
rhizoxin

Miller et al. (1998)

Butyrolactones Thrane et al. (2000)
N-butylbenzene Gamard et al.(1997)
Sulphonamide Kim et al. (2000)

(continued)
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8.4.1	 �Hydrogen Cyanide (HCN) Production

HCN is a volatile, secondary metabolite that overwhelms the growth of microbes 
and that also disturbs deleteriously the growth and development of plants (Siddiqui 
et al. 2006). Several studies feature a disease defensive effect to HCN, e.g., in the 
suppression of “root-knot” and black rot in tomato and tobacco root caused by the 
nematodes Meloidogyne javanica and Thielaviopsis basicola, respectively (Voisard 
et al. 1989).

8.4.2	 �Siderophore Production

Iron (Fe) is an essential element to virtually all forms of life and plays an important 
role in different physiological processes such as respiration, photosynthesis, DNA 
synthesis, and defense against reactive oxygen species. However, its availability is 
extremely limited by the very low solubility of ferric hydroxide complexes at neu-
tral pH. To survive in such an environment, plant-associated PGPRs have different 
strategies for obtaining iron from the soil, which includes the synthesis of low 
molecular weight siderophores, viz., catechols, pyoverdin, and hydroxamate, which 
are selective ferric ion chelators. These compounds are secreted in response to iron 
deficiency. Siderophore-producing PGPR can prevent the multiplying of pathogens 
by repossessing ferric iron in the root zone (Siddiqui 2005). Iron depletion in the 
rhizosphere does not harm the plants, as the low iron level occurs at microsites of 
high microbial movement during the establishment of the pathogens.

Plants can utilize various fungal and bacterial siderophores as source of iron, 
while the total iron levels are too low to pay substantially to plant iron uptake. Plants 
also use their innate mechanisms to gain iron, dicots via a root membrane reductase 
protein that converts insoluble Fe3+ ion into the more soluble Fe2+ ion or in the case 
of monocots by the production of plant siderophores (Crowley 2006). 

Table 8.3  (continued)

Target group PGPR Antibiotics References
B. amyloliquefaciens Bacillomycin D Gu et al. (2017)
B. cereus Kanosamine Milner et al. (1996)

Zwittermicin A Silo-Suh et al. (1994)
B. subtilis Kanosamine Vetter et al. (2013)

Iturin A (cyclopeptide) Constantinescu (2001)
Plipastatins A and B Volpon et al. (2000)
Fengycins Zhang and Sun (2018)

Bacteria P. fluorescens Mupirocin (pseudomonic acid 
A)

Fuller et al. (1971)

Azomycin Shoji et al. (1989)
Virus Bacillus sp. Karalicin Lampis et al. (1996)

B. amyloliquefaciens Mersacidin Chatterjee et al. 
(1992)
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Siderophore-secreting microbial strains own iron-regulated outer membrane pro-
teins (IROMPs) on their cell surface that carriage ferric iron complex to the respec-
tive cognate membrane; iron thus becomes accessible for metabolic processes (Johri 
et al. 2003). Siderophore-producing fluorescent pseudomonads are ahead commer-
cial importance as they are harmless, do not prime to biomagnification, and also 
deliver iron nourishment to the plants, thereby stimulating plant growth (Sayyed 
et al. 2005). Carrillo-Castaneda et al. (2003) reported encouraging effects on alfalfa 
plantlet development after the inoculation of siderophore-producing genus such as 
Azospirillum, Pseudomonas, and Rhizobium grown in iron-starved cultures. The 
bacterized alfalfa seeds improved their germination as well as the root and stem dry 
weight. Iron-chelating hydroxamate siderophores of P. aeruginosa showed inhibi-
tory action against R. solani and C. gloeosporioides in chili (Sasirekha and Srividya 
2016). Also, inoculation of siderophore-producing rhizobacteria and their consor-
tium increased the growth of wheat plant (Kumar et al. 2018). Nevertheless, as with 
other PGPR, the growth elevation that occurred may be due to other mechanisms or 
combinations of one or two mechanisms that rise nutrient availability, subdue 
pathogens, or upset root growth via hormone production.

8.5	 �Competitions

Effective colonization and perseverance in the rhizosphere are essential for PGPR 
to utilize their positive consequence on plants (Elliot and Lynch 1995). Several 
reports indicate the importance of colonization of the biocontrol agents in rhizo-
sphere and endorhizosphere regions of plant (Forlani et al. 1999). Competition for 
nutrients, primarily carbon, nitrogen, and iron, might result in biocontrol of soil-
borne plant pathogens (Benson and Baker 1970). Suppression of damping off of 
peas by P. cepacia showed a significant relationship between population size of the 
biocontrol agent and the degree of disease suppression (Parke et al. 1991). The bac-
terial antagonist P. fluorescens effectively suppressed the green mold pathogen P. 
digitatum by means of competition and induced systemic resistance on citrus peels 
(Wang et al. 2018).

Also, suppression of take-all of wheat and Fusarium wilt of radish was corre-
lated with the colonization of roots by Pseudomonas strains (Bull et al. 1991). Scher 
et al. (1985) reported that disease suppression by fluorescent pseudomonads depends 
mainly on its ability to colonize rhizosphere. Introduction of sss gene encoding 
rhizosphere colonization ability into poor colonizer strain of P. fluorescens WCS 
307 increased competitive rhizosphere colonization ability in tomato root tip result-
ing in increased protection against F. oxysporum f. sp. lycopersici (Dekkers et al. 
2000). So, the microbial ability to colonize rhizosphere and their persistence 
throughout the growing season has become the crucial factor for the selection of 
effective antagonistic organism. Dekkers et al. (1998b) showed that the gene encod-
ing NADH dehydrogenase I plays an important role in root colonization. Another 
gene required for efficient colonization is the sss gene, encoding a site-specific 
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recombinase of the lambda integrase family which helps in adapting cells to rhizo-
sphere conditions (Dekkers et al. 1998a).

8.6	 �Lytic Enzymes

The antagonistic process relies on the production of hydrolytic enzymes which 
enhances penetration of the host mycelium and partial degradation of its cell wall 
via secretion of mycolytic enzymes, viz., chitinases and glucanases. The pathogenic 
microbes that have shown susceptibility to these hydrolytic enzymes include B. 
cinerea, F. oxysporum, Phytophthora spp., P. ultimum, R. solani, and S. rolfsii (Glick 
2012). The roles of each protein in the enzymatic complex of Pseudomonas appear 
to be different, and enzymes with different or complementary modes of action 
appear to be required for maximal antifungal effect on different pathogens 
(Viswanathan and Samiyappan 2002). Minaxi et al. (2012) described that B. subtilis 
solubilized phosphorus, exhibited 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase activity, and produced ammonia and indole-3-acetic acid. Various 
microbes secrete and excrete array of metabolites that can hamper pathogen growth 
and other activities. Numerous microbes produce and release hydrolytic enzymes 
that can lyse a wide range of polymers, including chitin, cellulose, hemicellulose, 
proteins, and nucleic acid (Table 8.4).

Expression and secretion of these hydrolytic enzymes by beneficial microbes can 
sometimes result in the suppression of plant pathogen activities directly. Several 
microbes like B. subtilis, B. cereus, B. thuringiensis, and S. marcescens have a 
potential to secrete hydrolytic enzymes for the biocontrol of phytopathogens 
(Jadhav and Sayyed 2016). Lytic enzymes can reduce different polymeric sub-
stances such as chitin, proteins, cellulose, hemicellulose, and DNA (Vivekananthan 
et al. 2004). Chitinase produced by S. plymuthica C48 inhibited spore germination 
and germ tube elongation in B. cinerea, but S. marcescens was considered to pro-
duce extracellular chitinases which act as antagonists against S. rolfsii (Frankowski 
et al. 2001). It was demonstrated that extracellular chitinase and laminarinase syn-
thesized by P. stutzeri lyse mycelia of F. solani (Compant et al. 2005).

8.7	 �Induced Systemic Resistance

The PGPR induces systemic resistance (ISR) through invigorating the physical and 
mechanical integrity of cell wall as well as altering physiological and biochemical 
response of host leading to the synthesis of defense molecules against challenge 
inoculation of plant pathogens. ISR mechanism in plants was imparted by several 
PGPR determinants, viz., lipopolysaccharides, lipopeptides, salicylic acid, masse-
tolide A, 2,3-butanediol, hexenal, and iron-regulated metabolite Cx (Pal and 
Gardener 2006). Followed by the interaction of PGPR determinants with plants, 
several defense reactions occur due to the accumulation of pathogenesis-related 
(PR) proteins (chitinase and β-1,3-glucanases), peroxidase, polyphenol oxidase, 
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phenylalanine ammonia lyase, chalcone synthase, catalase, phenolics, callose, lig-
nin, and phytoalexins. Kloepper et al. (1992) reported that five of six rhizobacteria 
induced systemic resistance in cucumber which exhibited both external and internal 
root colonization. Seed treatment of radish with resistance inducing P. fluorescens 
strain WCS374 reduced Fusarium wilt in naturally infested field soil upto 50 per-
cent (Leeman et al. 1995).

Chitinolytic enzymes together with β-1,3-glucanases or cellulases are most fre-
quently considered to play a vital role in biocontrol (Chet et al. 1998). The enzymes 
like chitinases and β-1,3-glucanases lyse the host cell wall and lead to the leakage 
of protoplasmic contents which are in turn used as a food material for the multipli-
cation of the antagonist. Biological control agents, namely, P. fluorescens 89B-27 
and S. marcescens 90–166, were observed to induce resistance in cucumber against 
bacterial pathogen P. syringae pv. lachrymans and fungal pathogens, F. oxysporum 
f. sp. cucumerinum and Colletotrichum orbiculare (Liu et al. 1995). ISR by PGPR 
has been achieved in large number of crops including potato (Doke et al. 1987), 
radish (Leeman et al. 1996), cucumber (Wei et al. 1996), bean (de Meyer and Hofte 
1997), tobacco (Troxler et  al. 1997), tomato (Duijff et  al. 1993), chilli, brinjal 
(Ramamoorthy et al. 2001), banana (Harish et al. 2009a, b), sugarcane (Viswanathan 

Table 8.4  Lytic enzymes produced by plant growth-promoting rhizobacteria

Enzymes Producer Target pathogen References
Chitinase S. plymuthica B. cinerea Frankowski et al. 

(2001)
S. sclerotiorum Kamensky et al. 

(2003)
S. marcescens S. rolfsii Ordentlich et al. 

(1988)
Phaeoisariopsis 
personata

Kishore et al. (2005b)

S. lydicus Pythium sp. Mahadevan and 
Crawford (1997)

B. cereus R. solani Chernin et al. (1997)
Paenibacillus 
illinoisensis

R. solani Jung et al. (2003)

Endochitinase P. fluorescens Tobacco necrosis virus Maurhofer et al. 
(1994)

F. oxysporum f. sp. pisi Benhamou et al. 
(1996)

β-1,3-
glucanase

Paenibacillus sp. F. oxysporum f. sp. 
cucumerinum

Singh et al. (1999)

P. cepacia S. rolfsii Fridlender et al. (1993)
Streptomyces spp. P. fragariae var. rubi Valois et al. (1996)
Streptomyces sioyaensis P. aphanidermatum Hong and Meng 

(2003)
Laminarinase Pseudomonas stutzeri F. solani Lim et al. (1991)
Proteases Stenotrophomonas 

maltophilia
P. ultimum Dunne et al. (1998)
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and Samiyappan 1999), rice (Harish et al. 2008b), and mango (Parthasarathy et al. 
2016) against broad spectrum of pathogens including fungi (Leeman et al. 1995), 
bacteria (Liu et al. 1995), and viruses (Kandan et al. 2005).

The ISR shares many properties with innate immunity in humans (Lugtenberg 
and Kamilova 2009). When plants grow, their roots enter quickly into a symbiosis 
with diverse microbes. This symbiosis may play the role of beneficial (aid in the 
uptake of water and minerals, such as phosphate, and protection of biotic and abi-
otic stress) or pathogenic agents in the development of plants (Gnanamanickam 
2006). In case of pathogenic bacteria, the immune response of the plant is character-
ized by the production of salicylic acid, which in revenge induces a set of genes 
encoding pathogenesis-related proteins in the plant (Gnanamanickam 2006). ISR 
was observed first with Pseudomonas sp. strain WCS417r against Fusarium wilt of 
carnations and by selected rhizobacteria against the fungus C. orbiculare in cucum-
ber (Compant et  al. 2005). Available reports showed that in rice, seed treatment 
followed by root dipping and a foliar spray with P. fluorescens strains Pf1 and FP7 
induces systemic resistance against the sheath blight pathogen, R. solani (Jayashree 
et al. 2000). Thus ISR plays a major role in combating the pathogen during the host-
pathogen-biocontrol interaction.

8.8	 �Formulations of PGPR

Potential PGPR needs to be formulated with suitable carriers for mass multiplica-
tion and broad-scale application in fields. Mass multiplication of PGPR in a suitable 
medium and development of a powder formulation were first carried out in 1980. A 
dried powder formulation of PGPR is especially important for seed treatment and 
soil application. Among the various bioformulations, talc- and liquid-based formu-
lations were extensively used in agriculture and horticulture crops for managing 
diseases (Table 8.5). Although this type of formulation can be produced in large 
quantity, it may be difficult to store and have a relatively short shelf life, poor qual-
ity, and low field performance. Development of bioformulation with short shelf life 
was possible by using vegetative cells of the antagonists as the active ingredient in 
the formulations (Kanjanamaneesathian et  al. 2007). Various solid formulations, 
such as floatable granules, floatable pellets, and effervescent fast-disintegrating 
granules, have been developed for the management of sheath blight disease under 
controlled conditions (Wiwattanapatapee et al. 2013). These carrier-based formula-
tions help in improving the shelf life, protecting the viability, and easy delivery of 
the bacterial cells to the targeted sites in the plant system and long-term survival in 
the soil. Thus formulations with longer shelf life need to be targeted as they can 
establish in the soil, survive for a considerable period of time, and improve the soil 
fertility besides protecting from harmful pathogens.
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Table 8.5  Different types of formulations from PGPR

Formulation PGPR Crop Disease References
Talc P. fluorescens Blue pine Nursery diseases Ahangar et al. (2012)

Chillies Fruit rot Bharathi et al. (2004)
Muskmelon Fusarium wilt Bora et al. (2004)
Rice Sheath blight Radjacommare et al. 

(2002)
Tomato TSWV Kandan et al. (2005)
Mung bean Macrophomina 

root rot
Saravanakumar et al.
(2007a)

Rice Sheath rot Saravanakumar et al.
(2007b)

Tea Blister blight Saravanakumar et al. 
(2009)

Sugarcane Red rot Viswanathan and 
Samiyappan (2002)

Mango Anthracnose Vivekananthan et al. 
(2004)

Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

Lignite P. fluorescens Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

Peat P. fluorescens Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

P. chlororaphis, B. 
subtilis

Turmeric Rhizome rot Nakkeeran et al. 
(2004)

Chitin B. subtilis Groundnut Crown rot Manjula and Podile 
(2001)Pigeon pea Fusarium wilt

Vermiculate P. fluorescens Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

Charcoal Bacillus sp. Mung bean Wilt Pahari et al. (2017)
Wheat bran B. subtilis, P. 

putida
Lettuce, 
cucumber

Root rot Amer and Utkhede 
(2000)

EB™ P. fluorescens Sugar beet Damping-off Moenne-Loccoz 
et al. (1999)

Alginate P. fluorescens Sugar beet Pythium rot, 
Rhizoctonia rot

Russo et al. (2001)

Streptomycetes sp. Tomato Damping-off Sabaratnam and 
Traquair (2002)

Liquid P. fluorescens Tomato Fusarium wilt Manikandan et al. 
(2010)

Mango Stem end rot Parthasarathy et al. 
(2016)

Water in oil Fluorescent 
pseudomonads 
(FP7)

Banana Anthracnose Faisal et al. (2014)
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8.9	 �Concluding Remarks and Future Directions

Historically, emphasis in crop science has been placed on the discovery of new dis-
ease resistance genes through molecular breeding techniques rather than using the 
resistance potential already present in plants. The resistance in the plants can be 
induced by means of beneficial microbes present in the soil rhizosphere. The recent 
demonstration of the use of biocontrol agents in the laboratory and field situations 
presents exciting opportunities for the control of plant diseases by multiple mecha-
nisms. Various field experiments with crop plants have shown that eco-friendly 
approaches using microbial bioagents can lead to long-lasting, broad-spectrum dis-
ease control and can be used preventively to bolster general plant health. However, 
application of bacterial bioformulation in the field at times may exhibit inconsis-
tency in the efficacy due to short shelf life in the environment and their susceptibil-
ity to unfavorable environmental conditions. The survival and competitive ability of 
the microbial strains to be introduced must be improved as very little information is 
known about the competitiveness of the microbes and factors governing it. In order 
to harness the potential benefits of bioagents in commercial agriculture, the consis-
tency of their performance must be improved. Development of quality inoculum 
with increased shelf life and user-friendly formulation are important factors essen-
tial for the success of bioinoculant technology. Besides, the molecular mechanisms 
underlying the host-pathogen-biocontrol interaction should be unraveled through 
genomic and proteomic approaches to identify the defense genes in the plants. 
These genes can be exploited for the management of plant diseases. Molecular 
markers, e.g., reporter gene tagging, PCR, or serological markers, can be used for 
studying the competence of the inoculated PGPR strains. Once these factors are 
identified, it may be possible to manipulate them in the field to enhance the stability 
of their performance. Thus the PGPR possessing the useful biosynthetic genes can 
be screened through molecular markers and can be exploited for sustainable plant 
disease management.
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