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Abstract

Hairy roots are rapidly growing, highly differentiated transformed root cultures 
induced by Agrobacterium rhizogenes infection usually at the infected site of the 
representative medicinal plant. Hairy roots have the ability to rapidly multiply in 
the culture medium devoid of any hormones. Unlike other plant cell cultures, 
hairy root cultures are genetically and biochemically stable and produce a variety 
of secondary metabolites. In the past three decades, researchers across the world 
have successfully initiated and cultured hairy roots in vitro for a large number of 
medicinal plants. Hairy root technology is becoming a promising source for the 
production of pharmaceutically and industrially important secondary metabo-
lites. This is due to the characteristics of hairy roots, such as rapid growth, the 
lack of geotropism, extensive lateral branching, and, more importantly, genetic 
stability. This chapter explores the applications of secondary metabolites in drug 
formulation, cosmetic preparation, food processing, and the study of plant meta-
bolic pathways. It also briefs about the recent advancements in the area of hairy 
root culture involving other biotechnological approaches like metabolic engi-
neering or genetic engineering, elicitation, metabolic trapping, and phytoreme-
diation. This chapter certainly benefits the researchers to further explore on the 
applications of hairy root culturing technology to produce desired plant second-
ary metabolites on a large scale.

Keywords
Agrobacterium rhizogenes · Genetic engineering · Hairy roots · Medicinal 
plants · Secondary metabolites

10.1  Introduction

Medicinal plants produce a variety of biologically active compounds, i.e., secondary 
metabolites which play a vital role in plant self-defense mechanisms. Especially, roots 
play major roles in plants, including anchoring plants to the soil, uptake of minerals and 
water from the soil, storage of nutrients in perennial plants, and defending themselves 
from other plants or microbes present in the soil by producing a wide variety of chemi-
cal compounds, popularly known as secondary metabolites. These secreted metabolites 
not only provide protection to plants from biotic and abiotic stresses like pathogens, 
insects, and other environmental stresses but also useful in improving human’s and 
other animal’s health (Tian 2015). These compounds are produced in trace amounts 
during the secondary metabolism, but not essentially necessary for plant growth and 
development. Plant-based compounds, including alkaloids, flavonoids, saponins, ter-
penes, anthraquinones, and anthocyanins, are the essential source for the preparation of 
drugs, food additives, dyes, oils, resins, and agricultural chemicals (Kim et al. 2002; 
Zhou et  al. 2011; Bharati and Bansal 2014). Obtaining the chemical compounds 
directly from the wild- or field- grown plants is not promising as the yield obtainable is 
being very low and has limited availability in their habitat. Moreover, it may lead to the 
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destruction of the natural habitat due to over exploitation of these plants. The artificial 
synthesis of chemical compounds also has several disadvantages including high cost of 
production, the difficulties in the synthesis, unavailability of the optimized methods for 
the compound synthesis, and characterization. These problems can be overcome by the 
using the biotechnological approaches such as plant tissue culture, transgenic medici-
nal plants, etc. to enhance the synthesis of valuable phytochemicals from medicinal 
plants (Zhou et al. 2011). In this regard, the hairy root technology is widely preferred 
by biotechnologists for the large-scale production of diverse secondary metabolites 
from various medicinal plant resources (Veena and Taylor 2007).

Hairy roots are the by-products from the Agrobacterium rhizogenes (gram nega-
tive, soil bacterium)-infected sites, commonly known as hairy root disease or syn-
drome. This soil bacterium transfers its T-DNA segment from Ri (root-inducing) 
plasmid into the host plant genome. The T-DNA region contains a set of genes 
encoding for the specific enzymes, which control the biosynthesis of natural auxins 
and cytokinins. The new changes, i.e., insertion of new genes, cause hormonal imbal-
ance in the host plant and induce the formation of proliferating roots (hairy roots) 
from the wounded sites infected with A. rhizogenes (Guillon 2006). Hairy roots are 
characterized by the abnormal multiplication on the phytohormone free medium by 
retaining genetic stability. Hairy roots have several unique properties including fast 
growth rate, able to accumulate vast variety of chemical compounds, no requirement 
of exogenous hormone in the medium, and genetic and biochemical stability (Giri 
and Narasu 2000). The schematic representation of hairy root induction and its appli-
cation is shown in Fig. 10.1. Nowadays, many research groups are paying attention 
toward in vitro culturing of hairy roots for producing wide varieties of root-oriented 
plant secondary metabolites. Recent advancements have provided a better under-
standing about the molecular mechanisms involved in the T-DNA transfer and their 
integration into the host plant genome. This has paved a new way for producing plant 
secondary metabolites through employing metabolic engineering strategies. Also, 
hairy roots have shown the capability of absorbing some of the threatening recalci-
trant pollutants and thus can be used to clean the environment (phytoremediation). In 
this chapter, detailed information about hairy roots and their applications in the pro-
duction of valuable plant secondary metabolites are discussed. Further, more recent 
advances in the field of hairy root culture technology are highlighted.

10.2  Production of Secondary Metabolites Through Hairy 
Root Cultures

From several decades to now, worldwide population is still depending on plants and 
plant-derived products for their daily needs. Even today, around 80% of the human 
population depends on plants as a traditional medicine to cure several diseases 
(Ekor 2014; Swamy et al. 2016). Terrestrial plants are the greatest source for several 
chemical compounds with wide-ranging pharmaceutical applications. As these 
compounds occur in trace amounts in plants, they generally do not meet the huge 
demand in the pharmaceutical industry. Hence, this has raised a curiosity among 
researchers to make use of biotechnological approaches to commercially produce 
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these valuable compounds using plant sources (Verpoorte et al. 1999). In search of 
this is the hairy root culture technology, an alternative approach which offers the 
production of secondary metabolites in a large scale. Moreover, hairy roots have the 
unique characteristics of fast growth, and also levels of secondary metabolites pro-
duced are equal to or superior than the parent plants (Roychowdhury et al. 2013). 
The genetic and biosynthetic stability of hairy roots is another advantage for the 
production of valuable secondary metabolites. In addition to that, transformed hairy 
roots can be proficient to regenerate into entire viable plants and also preserve their 
genetic stability throughout and further successive subculturing and plant regenera-
tion (Giri and Narasu 2000). There are several important secondary metabolites 
produced through hairy root cultures in many medicinal plant species which are 
endangered and pharmaceutically important. The list of few important secondary 
metabolites produced through hairy root cultures from various medicinal plants has 
been described in Table 10.1. In the recent era, hairy root cultures are not only used 
for secondary metabolite production but also widely used as model systems for 
studying plant physiology and metabolism, regulation of metabolic pathways, and 
identification of key genes for production and regulation of particular metabolite 
(Shanks and Morgan 1999; Sharma et al. 2013; Tian 2015). For example, the roots 
of Panax ginseng plants were rich in ginsenosides, saponin which possesses immu-
nomodulatory, adaptogenic, and antiaging properties. The hairy roots of P. ginseng 
produce twofold increased concentration of ginsenosides than the wild- type roots 

Fig. 10.1 The schematic representation of hairy root induction and its application
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Table 10.1 Establishment of hairy root cultures for plant secondary metabolite production

Plant species Secondary metabolite Biological properties References
Artemisia annua Artemisinin Antimalarial Weathers et al. 

(2005)
Beta vulgaris Betalains Antioxidant, colorant Pavlov and Bley 

(2006)
Bixa orellana Stigmasterol Antimalarial Zhai et al. (2014)
Chlorophytum 
borivilianum

Stigmasterol and hecogenin Antioxidant Bathoju et al. 
(2017)

Clitoria 
ternatea

Taraxerol Anticancer Swain et al. (2012)

Datura innoxia Scopolamine and 
hyoscyamine

Anticholinergic Dechaux and 
Boitel-Conti 
(2005)

Echinacea sps. Alkamides Anti-inflammatory, 
immune-stimulatory

Romero et al. 
(2009)

Eschscholzia 
californica

Benzylisoquinoline Antimicrobial, 
anticancer

Vázquez-Flota 
et al. (2017)

Fragaria x 
ananassa cv. 
Reikou

Polyphenols 
(proanthocyanidins, 
flavonoids, hydrolyzable 
tannin)

Antioxidant, 
anticancer

Motomori et al. 
(1995)

Gingko biloba Ginkgolide Against cardiovascular 
and aging diseases

Ayadi and 
Tremouillaux- 
Guiller (2003)

Hyoscyamus 
niger

Tropane alkaloids Anticholinergic Jaziri et al. (1988)

Isatis tinctoria Flavonoids Antioxidant Gai et al. (2015)
Linum flavum Aryltetralin lignans

Lignans coniferin
Anticancer Renouard et al. 

(2018) and Lin 
et al. (2003)

Linum 
usitatissimum

Lignan Anticancer Gabr et al. (2016)

Nasturtium 
officinale

Glucosinolates 
(gluconasturtiin, 
glucotropaeolin)

Anticancer, antifungal, 
antibacterial, 
antinematode, 
anti-insect

Wielanek et al. 
(2009)

Ophiorrhiza 
pumila

Camptothecin Antitumor Saito et al. (2001)

Papaver 
somniferum

Morphine
Sanguinarine
Codeine

Sedative, analgesic Le Flem- 
Bonhomme et al. 
(2004)

Polygonum 
multiflorum 
Thunb

Anthraquinones Antifungal, anti- 
inflammatory, 
antimicrobial

Thiruvengadam 
et al. (2014)

Rauvolfia 
micrantha

Ajmalicine
Ajmaline

Antihypertensive Sudha et al. (2003)

(continued)
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(Yoshikawa and Furuya 1987). In addition to that, P. quinquefolium is another 
important Panax species, and its hairy roots produced 0.2 g g−1 dry weight of gin-
senoside content within 10 weeks of hairy root culture (Mathur et al. 2010). The 
hybrid plant was made between P. ginseng and P. quinquefolium which was more 
dynamic in ginsenoside production than the parental plant. The hairy roots (8-week-
old) derived from the hybrid plant containing equivalent amounts of ginsenosides 
present in the field-grown parental plant roots revealed the biosynthetic potential of 
hairy roots maintained in the parent plants (Washida et al. 1998; Tian 2015).

10.3  Role of Bioreactors in Large-Scale Production 
of Secondary Metabolites

Scaling-up process of commercially important secondary metabolites through bio-
reactor at the industrial level is the next step after establishing in vitro hairy root 
cultures (Giri and Narasu 2000; Bourgaud et al. 2001). Bioreactors work as a chem-
ical factory and offer a big hope for the large-scale production of high-quality bio-
logically active compounds from medicinal and aromatic plants cells/tissues. This 
process is also known as molecular farming (Shanks and Morgan 1999). Large- 
scale production of secondary metabolites using bioreactor is not an easy process, 
because designing of the bioreactor and optimization of culture conditions are very 
difficult. The successful cultivation of hairy roots in bioreactor depends on several 
requirements, including growth characteristics, morphology, nutrient uptake and 
availability, oxygen supply, composition of the medium, inoculum concentration, 
and distribution which can facilitate the growth of inoculum (Giri and Narasu 2000; 
Roychowdhury et al. 2013; Ho et al. 2017). Also, the productivity in bioreactors 
depends on several physical and chemical parameters like light, temperature, pH, 
water, substrate availability, impeller designs, composition of gases, choice of hairy 
root clone, removal of toxic by-products, reactor operation, etc. (Roychowdhury 

Table 10.1 (continued)

Plant species Secondary metabolite Biological properties References
Rauwolfia 
serpentina

Terpenoid indole alkaloids 
(reserpine, ajmalicine, 
ajmaline, serpentine, 
yohimbine)

Hypertension, high 
blood pressure, mental 
illness

Mehrotra et al. 
(2015)

Solanum 
chrysotrichum

Saponin Antifungal Caspeta et al. 
(2005)

Stevia 
rebaudiana

Stevioside glycosides Antioxidant, anti- 
inflammatory, 
antihypertensive

Kumari and 
Chandra (2017)

Taxus brevifolia Taxol Anticancer Huang et al. (1997)
Valeriana 
wallichii

Iridoids (valepotriates) Sedative, spasmolytic Banerjee et al. 
(1998)

Withania 
somnifera

Steroidal lactones 
(withanolide A)

Anticancer Murthy et al. 
(2008)
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et al. 2013; Sharma and Shahzad 2013). There are several types of bioreactor designs 
that have been reported for hairy root culturing. Generally, three major types of 
bioreactors are used for hairy root cultivation, namely, liquid-phase reactors, gas- 
phase reactors, and hybrid reactors (a combination of both liquid-phase and gas- 
phase reactors) (Srivastava and Srivastava 2007). Liquid-phase reactors are 
commonly known as submerged reactors, in which roots remain submerged in the 
culture medium and air is passed or bubbled on culture medium to supply oxygen. 
The best examples for liquid-phase reactors are air lift, stirred tank, bubble column, 
liquid-impelled loop, and submerged connective flow reactors. In gas-phase biore-
actors, hairy roots were occasionally exposed to air, nutrient liquid, and other gas-
eous mixtures in the bioreactors. In these reactors, nutrients are provided as either 
in the form of either spraying liquid nutrients onto the roots or roots getting nutri-
ents in the form of droplets, which significantly depends on the varying sizes. 
Trickle bed, liquid-dispersed, droplet phase, and nutrient mist reactors are some 
examples for the gas-phase reactors. In hybrid reactors, hairy roots were first 
exposed to liquid phase and then grown in a gas phase (Roychowdhury et al. 2013). 
Bioreactor culture systems are mainly used in the industrial application, and they 
have several advantages, such as requiring very small amount of the inoculum, con-
trolled environmental conditions, increased working volumes, and standardized 
growth parameters, viz., pH, light, temperature, nutrient media composition, etc. for 
inducing metabolite production effectively. In addition, easy separation of the target 
compounds, reproducible yield of the end product, and simpler and quicker harvest-
ing of the cells are some of the other advantages of using bioreactors (Sharma and 
Shahzad 2013). Some examples for the production of secondary metabolites through 
the use of bioreactors are mentioned in Table 10.2. For example, artemisinin and its 
derivatives are high efficient drugs used for the treatment of Plasmodium falciparum 
(both chloroquine-sensitive and chloroquine-resistant strains) which is the causative 
agent of cerebral malaria. Traditionally, it is obtained from the plant source Artemisia 
annua which contains low concentrations of artemisinin. Patra and Srivastava 
(2016) reported that large-scale artemisinin production by A. annua hairy roots in 
nutrient mist bioreactor.

10.4  Advances in Metabolic Engineering of Hairy Roots

A new promising technology known as metabolic engineering or genetic engineer-
ing was evolved in the early 1990s (Bourgaud et al. 2001). Metabolic engineering in 
plants involves the alteration of metabolic pathways to increase the flux toward 
desired secondary metabolites or to attain better understanding of metabolic path-
ways and use of cellular pathways for chemical transformation, energy transduc-
tion, and supramolecular assembly (Chandra and Chandra 2011; Hussain et  al. 
2012). In other words, metabolic engineering is the alteration or improvement of the 
cellular activities involving transport and enzymatic and regulatory functions of the 
cell by using rDNA technology (Bourgaud et al. 2001; Hussain et al. 2012). It is one 
of the fastest-growing applications for the production of industrially important 
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bio-active compounds from various plant sources. The main aims of this technique 
are (1) overproduction of a desired compound which is normally produced in less 
quantity or increased metabolite production by transferring the pathways to another 
plant or microorganisms, (2) reducing the production of unwanted compounds, and 
(3) production of a new compound that is usually produced in nature but not present 
in the host plant (Verpoorte and Memelink 2002; Capell and Christou 2004; Chandra 

Table 10.2 Examples of some important plant secondary metabolites produced through 
bioreactors

Plant species Secondary metabolite Bioreactor type References
Artemisia annua Artemisinin Mist and bubble 

column reactor; 
gas- and liquid-phase 
bioreactors

Kim et al. (2001) and 
Patra and Srivastava 
(2016)

Astragalus 
membranaceus

Astragaloside IV and 
polysaccharide

Air lift bioreactor Du et al. (2003)

Artemisia annua Terpenoids Mist and bubble 
column reactor

Souret et al. (2003)

Atropa belladonna Tropane alkaloids Stirred bioreactors Lee et al. (1999)
Atropa belladonna Tropane alkaloids, 

atropine
Bubble column 
bioreactor

Kwok and Doran 
(1995)

Beta vulgaris Betalains, peroxidase Bubble column reactor Rudrappa et al. 
(2004, 2005)

Catharanthus 
roseus

Ajmalicine Bubble column and 
rotating drum 
bioreactor

Thakore et al. (2017)

Datura 
stramonium

Hyoscyamine Isolated impeller 
stirred tank reactor

Hilton and Rhodes 
(1990)

Eleutherococcus 
koreanum

Saponins Air lift bioreactor Lee et al. (2015a, b)

Genista tinctoria Phytoestrogens Prototype basket- 
bubble bioreactor

Luczkiewicz and 
Kokotkiewicz (2005)

Hypericum 
perforatum

Hypericin Balloon-type bubble 
bioreactor

Cui et al. (2010)

Hyoscyamus 
muticus

Tropane alkaloids Trickle bed bioreactor Flores and Curtis 
(1992)

Nicotiana rustica Nicotine Air-sparged vessel 
stirred tank

Rhodes et al. (1987)

Panax ginseng Ginsenosides Air bubble bioreactor Murthy et al. (2017)
Panax ginseng Saponins Air lift bioreactor Yoshikawa and 

Furuya (1987)
Panax ginseng Ginsenosides Wave bioreactor Palazon et al. (2003)
Polygonum 
multiflorum Thunb

Anthraquinones, 
stilbenes, flavonoids, 
tannins,

Air lift bioreactor Lee et al. (2015a, b)

Stizolobium 
hassjoo

Levodopa Mesh hindrance mist 
trickling bioreactor

Sung and Huang 
(2006)

Trigonella 
foenumgraceum

Diosgenin Air lift bioreactor Rodriguez-Mendiola 
et al. (1991)
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and Chandra 2011). This can be achieved by conquering the rate-limiting steps or 
by jamming competitive pathways and blocking of catabolism successfully.

Now, multistep metabolic engineering is possible, which overtakes single-step 
engineering, and it is the best way to produce secondary metabolites in transgenic 
plants (Capell and Christou 2004). The main advantage of this method is that it is 
convenient and cost-effectively produces industrially important secondary metabo-
lites continuously (Hussain et al. 2012). Also, this technique is used as a tool for 
improving crop plants that are resistant to various diseases, plants producing allelo-
pathic compounds to control the weeds, pest-resistant plants to improve the impor-
tance of ornamentals and fruits, and enhanced pollination by modifying scent 
profiles (Chandra and Chandra 2011). Another advantage is the production of valu-
able secondary metabolites under controlled environment which is free from cli-
mate and soil conditions (Hussain et al. 2012). Engineering or structural design of 
secondary metabolite pathways is quite difficult in plants, because it requires a 
detailed knowledge of the whole biosynthetic pathways and a detailed perception of 
its regulatory mechanisms. But, such information is not explored in many medicinal 
plants known to have vast variety of bio-active metabolites (Oksman-Caldentey and 
Inze 2004). Recent advances in metabolic engineering have open a new way for the 
production of secondary metabolites in higher quantities. However, the success of 
this approach depends on the metabolic pathway elucidation and metabolite path-
way mapping and identifying specific restraining enzyme activities. This process 
can be further improved by using an appropriate genetic transformation procedure. 
So far, most of the biosynthetic pathway strategies developed for producing second-
ary metabolites were through various ways which include isolating and expressing 
of the respective genes in more efficient organisms, construction of promoters to 
enhance the expression of a target gene, or antisense and co-suppression techniques 
for knockdown of particular plants for the desired traits (Bourgaud et al. 2001). For 
example, engineering of the flavonoid pathway in Saussurea involucrata by a trans-
genic approach increased the production of apigenin. The gene responsible for api-
genin production in S. medusa was found to be chalcone isomerase (chi) gene. A 
complete cDNA sequence of chi gene construct was prepared under the control of 
the cauliflower mosaic virus (CaMV) 35S promoter. The chi gene was introduced 
into the S. involucrata genome by A. rhizogenes-mediated transformation which 
resulted in the establishment of transgenic hairy root lines. The enzyme chalcone 
isomerase converts naringenin chalcone into naringenin, which is the precursor of 
apigenin. After 5 weeks of incubation, C46 hairy root line accumulated 32.1 mg/l of 
apigenin with total flavonoids at 647.8 mg/l. The accumulation of apigenin and fla-
vonoid content was found to be 12 and 4 times, respectively, which is superior when 
compared to the wild-type hairy roots. The enhanced enzyme productivity was 
obtained due to the superior activity of chalcone isomerase (Li et al. 2006). In addi-
tion to that, hairy root metabolic engineering has been widely used to enhance the 
production of pharmaceutically important secondary metabolites and also the pro-
duction of certain recombinant proteins. For example, solasodine glycoside harm-
fully controls its own biosynthesis. A recombinant gene construct, i.e., 
anti- solamargine (As)-scFv gene, contains single-chain fragment variable (scFv) 
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antibody region derived from hybridoma cell lines. Transformed hariy root cultures 
with anti-solamargine (As)-scFv gene controls and enhances the solasodine glyco-
side concentration up to 2.3-fold more in the transgenic S. khasianum than wild- 
type hairy roots (Putalun et al. 2003). Metabolic engineering of the hairy roots is 
also used to make the de novo synthesis of secondary metabolites by introducing the 
specific genes that encode related enzymatic process in other organisms. The trans-
fer of three genes from Ralstonia eutropha bacterium into the genome of sugar beet 
hairy roots directed the accumulation of poly(3-hydroxybutyrate) (Menzel et  al. 
2003). Recently, Hidalgo et al. (2017) reported the metabolism of tobacco hairy root 
for the production of stilbenes. In this study, in order to achieve the holistic response 
in the phenylpropanoid metabolic pathway and also direct the upregulation of mul-
tiple metabolic process, transformed tobacco hairy root (HR) cultures carrying the 
gene stilbene synthase (STS) derived from Vitis vinifera and Arabidopsis thaliana 
transcription factor (TF) AtMYB12 were established. In addition to that, the normal 
flux was arrested through the incorporation of an artificial microRNA responsible 
for chalcone synthase (amiRNA CHS); otherwise there will be a heavy competition 
with STS enzyme for precursors. The transgenic tobacco hairy roots were capable 
to synthesize the target compound, stilbenes.

10.5  Enhancement of Secondary Metabolites 
Through Elicitation

Elicitation is an efficient and promising method for increasing the production of 
secondary metabolites using an elicitor which is a substance that when introduced 
into a living cell system in ideal/little concentrations improves the biosynthesis of 
secondary metabolites. The mechanism involved in this process is that the addition 
of elicitors (both biotic and abiotic) into the plant system attacks the plant cell wall 
and triggers the production of plant-defensive secondary metabolites (Namdeo 
2007; Bensaddek et al. 2008).

In general, the plant cells recognize the elicitor compounds through various sig-
naling molecules and interact or bind with specific receptors present on the plasma 
membrane. These interactions later generate signals and activate genes that are 
responsible for the defense reactions including systemic acquired responses (SAR) 
and induced systemic resistance (ISR). This stimulates the biosynthesis of 
pathogenesis- related (PR) proteins or defense secondary metabolites, and these 
finally lead to the production of secondary metabolites (Zhao et  al. 2005). The 
mechanism involved in the production of secondary metabolites through elicitors 
was showed in Fig. 10.2. Elicitors are broadly divided into two types, viz., biotic 
and abiotic; mostly abiotic elicitors are inorganic salts (minerals) and physical and 
chemical factors such as pH, temperature, UV light, heavy metal salts (Cu and Cd 
ions), etc., while biotic elicitors are polysaccharides derived from plant cell wall and 
microorganisms (pectin, cellulose, chitin, and glucans), glycoproteins (G-protein or 
intracellular proteins), pathogenic fungi and bacteria, plant hormones (methyl jas-
monate and salicylic acid), etc. (Donenburg and Knorr 1995; Bourgaud et al. 2001; 
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Namdeo 2007; Ramirez-Estrada et al. 2016). In addition to that, new types of elici-
tors have been recently introduced and successfully used in few plant cell cultures. 
These new elicitors include voliticin, caeliferins, and inceptins. These compounds 
are derived from plants and insects (which are mostly found in oral secretions of 
insects). Recently, it was found that they act as an elicitor by activating jasmonates 
and lead to the production of secondary metabolites, mainly the volatile compounds 
(Ramirez-Estrada et al. 2016). However, improved production of the metabolites 
from plant cell cultures through elicitation depends on several parameters, such as 
selection of suitable elicitor, concentration of elicitor, duration of elicitor treatment, 
age of the explants, cell line, nutrient composition of the media, growth regulation, 
etc. (Namdeo 2007). Elicitation method for the plant cell culture system has shown 
a positive result in secondary metabolite production. However, the study about how 
plant cells or tissues and their metabolic pathways respond to both abiotic and biotic 
elicitors is a key route to design the new strategies to enhance the industrially impor-
tant bio-active compounds in a large scale. For example, a few important bio-active 
compounds produced through elicitation with biotic and abiotic elicitors are Taxol 
(Veersham et al. 1995), phytoalexins (Kuroyanagi et al. 1998), saponins (Wu and 
Lin 2002), tropane alkaloids (Lee et al. 1998), etc. Different types of elicitors used 
for the production of valuable metabolites are listed in Table 10.3. For example, 
Largia et al. (2016) reported that the transformed hairy roots plants of Bacopa mon-
nieri elicited with 10  mg/L chitosan for 2  weeks enhanced the accumulation of 
bacoside A (5.83%) content, which is a five- and fourfold increase when compared 

Fig. 10.2 The mechanism of elicitors in secondary metabolite production
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Table 10.3 Production of plant secondary metabolites by using different elicitors

Plant species
Secondary 
metabolite Elicitors References

Ammi majus Coumarine, 
furocoumarine

BION® Enterobacter 
sakazakii

Staniszewska et al. 
(2003)

Arachis 
hypogaea

Trans-resveratrol Sodium acetate Medina-Bolivar 
et al. (2007)

Arachis 
hypogaea

Resveratrol, 
piceatannol, 
arachidin-1, and 
arachidin-3

MeJA and cyclodextrn Yang et al. (2015)

Astragalus 
membranaceus

Calycosin and 
formononetin

Aspergillus niger Jiao et al. (2017)

Artemisia 
annua

Artemisinin Chitosan Putalun et al. 
(2007)

Azadirachta 
indica

Azadirachtin Salicylic acid, jasmonic acid Satdive et al. 
(2007)

Catharanthus 
roseus

Alkaloids (indole) Penicillium sp. Rijhwani and 
Shanks (1998)

Centella 
asiatica

Asiaticoside Methyl jasmonate Kim et al. (2007)

Datura metel Atropine AgNO3, nanosilver, Bacillus 
cereus, Staphylococcus aureus

Shakeran et al. 
(2015)

Hyoscyamus 
muticus

Sesquiterpenes Rhizoctonia solani Singh (1995)

Hyoscyamus 
niger

Polyamines and 
tropane alkaloids

Methyl jasmonate Zhang et al. (2007)

Linum album Lignan Coniferaldehyde and 
methylenedioxycinnamic acid

Ahmadian 
Chashmi et al. 
(2016)

Oxalis tuberose Harmaline, harmine Phytophthora cinnamomi Bais et al. (2003)
Lotus 
corniculatus

Isoflavonoids Glutathione Robbins et al. 
(1991)

Papaver 
orientale

Morphinan alkaloids MeJA and salicylic acid Hashemi and 
Naghavi (2016)

Panax ginseng Ginseng saponin Selenium, NiSO4, NaCl Jeong and Park 
(2006)

Pharbitis nil Umbelliferone, 
scopoletin, skimmin

CuSO4, MeJA Yaoya et al. (2004)

Salvia 
miltiorrhiza

Tanshinone Sorbitol Shi et al. (2006)

Scopolia 
parviflora

Scopolamine Pseudomonas aeruginosa, 
Bacillus cereus, 
Staphylococcus aureus

Jung et al. (2003a, 
b)

Solanum 
tuberosum

Sesquiterpene, 
lypooxygenase

Rhizoctonia bataticola, B 
cyclodextrin, MeJA

Komaraiah et al. 
(2003)

Tagetes patula Thiophene Furasium conglutanis, 
Aspergillus niger

Mukundan and 
Hjortso (1990) and 
Buitelaar et al. 
(1993)

A. S. Rency et al.



249

to wild plants and unelicited transformed plants. Similarly, Shilpha et  al. (2016) 
reported that Solanum trilobatum hairy roots (ST-09 clone) elicited for 2 weeks with 
4 μM for methyl jasmonate enhanced the solasodine content, which is 1.9- and 6.5- 
fold higher than unelicited hairy roots and wild roots.

10.6  Biotransformation

Biotransformation is the process in which a substance is transformed from one chem-
ical to another, and it is catalyzed by the effective enzyme structures of biological 
systems. Plant cell or organ cultures have the capability to convert exogenously 
added organic compounds into functional analogs (Banerjee et  al. 2012; 
Roychowdhury et al. 2013). This type of protocols has been done by using plant cell/
organ cultures which have generated the libraries of analog compounds with limited 
structural modifications, and it also ensures the sustainable use of the resource under 
defined culture conditions free from seasonal variations and pathological constraints. 
The resulted compounds will have the important characteristic potency of a parent 
molecule and can also attain a superior selectivity, safety, and physicochemical prop-
erties with lower toxicity. This can be more appropriate to be used for newer thera-
peutic applications. The biotransformation method is very useful for the discovery of 
novel phytochemicals having therapeutic and commercial advantages. Also, this 
method is attaining more attention toward the green chemistry, because of the 
reduced usage of hazardous chemicals in the process of chemical modifications. The 
major reactions involved in biotransformation methods include oxidation, reduction, 
glycosylation, esterification, methylation, isomerization, and hydroxylation. Hairy 
root cultures have various advantages as biocatalysts over cell suspension cultures, 
because of their genetic and biochemical stability, multi- enzyme biosynthetic poten-
tial comparable to the parent plant, and cost- effectiveness. Therefore, hairy root cul-
tures also act as an experimental model system in biotransformation studies (Giri 
et  al. 2001; Banerjee et al. 2012). Biotransformation studies were reported in Ri-
transformed root cultures of several plant species for producing valuable secondary 
metabolites and are briefly described by Banerjee et  al. (2012). For example, the 
biotransformation ability of Atropa belladonna hairy root cultures has been explored 
by using three carbonyl substrates such as 3,4,5- trimethoxybenzaldehyde, 3,4,5-tri-
methoxy-acetophenone, and 3,4,5- trimethoxy-benzoic acid. Among the three sub-
strates used, 3,4,5- trimethoxybenzaldehyde and 3,4,5-trimethoxy-acetophenone 
were biotransformed, but, 3,4,5-trimethoxy-benzoic was not biotransformed. The 
3,4,5- trimethoxybenzaldehyde was biotransformed by oxidation and reduction of 
substrate into 3,4,5-trimethoxy-benzoic acid and 3,4,5-trimethoxy benzyl alcohol, 
respectively (Srivastava et al. 2012). Overall, the biotransformation using hairy root 
cultures has got potential to generate new products or to generate already known 
products very efficiently. The list of reactions involved in biotransformation of hairy 
roots for metabolites production are shown in Table 10.4.
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Table 10.4 Biotransformation of hairy roots for plant secondary metabolite production

Plant species Types of reaction Product References
Anethum 
graveolens

Acetylation, 
reduction

Menthyl acetate linalool, α 
-terpineol, citronellol

Faria et al. 
(2009)

Anisodus 
tanguticus

Oxidation Androst-4-ene-3,17-dione 6 
α-hydroxy androst-4-ene-3

Liu et al. (2004)

Astragalus 
membranaceus

Deglycosylation Calycosin
Formononetin

Jiao et al. 
(2017)

Atropa 
belladonna

Reduction Scopolamine Subroto et al. 
(1996)

Brassica napus Reduction, 
glycosylation

6-(1(S)-hydroxyethyl)-2,2-dimethyl- 
2,3-dihydro-4H-chromen-4-one

Orden et al. 
(2006)

Brugmansia 
candida

Glucosylation 4-Hydroxyphenyl β-D- 
glucopyranoside (arbutin)

Casas et al. 
(1998)

Coleus 
furskohlii

Glycosylation Methyl β-D-glucopyranosides, 
methyl 
β-D-ribo-hex-3-ulopyranosides

Li et al. (2003)

Cyanotis 
arachnoidea

Reduction Deoxyartemisinin Zhou et al. 
(1998) and 
Ligang et al. 
(1998)

Daucus carota Reduction (S)-1-phenyl ethanol) Caron et al. 
(2005)

Lobelia 
sessilifolia

Glucosylation Protocatechuic acid 
3-O-β-D-glucopyranoside

Ishimaru et al. 
(1996)

Lobelia 
sessilifolia

Glucosylation (+)-catechin 
7-O-β-D-glucopyranoside

Yamanaka et al. 
(1995)

Protocatechuic acid, protocatechuic 
acid 3-O-β-D-glucopyranoside
(–)-epicatechin 
7-O-β-D-glucopyranoside
(–)-epiafzelechin 
7-O-β-D-glucopyranoside

Levisticum 
officinale

Isomerization Linalool, nerol Nunes et al. 
(2009)

Panax ginseng Esterification Digitoxigenin stearate Kawaguchi 
et al. (1990)

Digitoxigenin palmitate
Digitoxigenin myristate
Digitoxigenin laurate

Panax ginseng Glycosylation (RS)-2-phenylpropionyl 
β-D-glucopyranoside

Yoshikawa 
et al. (1993)

(2RS)-2-0-(2-phenylpropionyl) 
D-glucose

(2RS)-2-phenylpropionyl) 6-0-β-D-
xylopyranosyl β-D-glycopyranoside

(continued)
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Table 10.4 (continued)

Plant species Types of reaction Product References
Myoinositol ester of (R)-2- 
phenylpropionic acid

Panax ginseng Glycosylation 30-O-[β-D-glucopyranosyl (1→2) 
β-D-glucopyranosyl]

Asada et al. 
(1993)

18 β-Glycyrrhetinic acid

30-O-[β-D-glucopyranosyl] 18 
β-glycyrrhetinic acid

3-O-[β-D-glucopyranosyl -(1→2) 
β-D- glucopyranosyl] 18 
β-glycyrrhetinic acid

3-0-[β-D-glucopyranosyl-(1→2)-β- 
D- glucopyranosyl] -30-0-(β-D- 
glucopyranosyl) 18 β-glycyrrhetinic 
acid

Panax ginseng Glycosylation p-carboxyphenyl 
β-D-glucopyranoside

Chen et al. 
(2008)

p-hydroxybenzoic acid

β-D-glucopyranosyl ester
m-carboxyphenyl 
β-D-glucopyranoside

Pharbatis nil Glucosylation Skimmin Kanho et al. 
(2004, 2005)

4-Methylskimmin
Scopoline
3,4,8-Tri methylskimmin
Scopolin, aesculin, eichoriin, 
vanillin-4-O-β-glucopyranoside
Vanillyl 
alcohol-4-O-β-D-glucopyranoside

Physalis 
ixocarpa

Glucosylation Arbutin Bergier et al. 
(2008)

Plantago 
lanceolata

Glucosylation (E)-p-coumaroyl-1-O-β-D-
glucopyranoside

Fons et al. 
(1999)

Polygonum 
multiflorum

Glycosylation 3-oxo-eremophila 
1,7(11)-dien-12,8-olide

Yan et al. 
(2008)

3-oxo-8-hydroxy-eremophila 
1,7(11)-dien-12,8-olide

Polygonum 
multiflorum

Glucosylation 4-Hydroxybenzene derivatives: 
1-4-benzendiol

Yan et al. 
(2007)

4-Hydroxybenzaldehyde
4-Hydroxybenzyl alcohol
4-Hydroxybenzoic acid

Polygonum 
multiflorum

Glucosylation 5-Methyl-2-(1-methylethyl) 
phenyl-β-D-glucopyranoside

Dong et al. 
(2009)
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10.7  Hairy Root Applications in Environmental Protection 
(Phytoremediation)

Environmental pollution is a universal problem that adversely affects both the 
developed and developing countries. The major reason for environmental pollution 
is due to human activities and natural hazards. Contaminants are usually classified 
into two types: organic and inorganic. Due to the human activities including oil 
spills, agriculture wastage, military explosives, fuel production, and wood treat-
ment, organic contaminants are released into the environment. Some of important 
organic pollutants such as trichloroethylene (TCE), atrazine, trinitrotoluene, poly-
cyclic aromatic hydrocarbons, benzene, toluene, polychlorinated biphenyls (PCBs), 
polycyclic aromatic hydrocarbons, and methyl tert-butyl ether contaminating the 
soil and water are a challenge to the world. Generally, inorganic contaminants are 
originated from either human activities or natural processes. The most dangerous 
inorganic contaminants include heavy metals such as copper, zinc, manganese, lead, 
molybdenum, mercury, and nickel which are released into the environment by natu-
ral and human activities causing a health threat to humans and livestock (Suza et al. 
2008). The removal of these contaminants from the environment is not an easy task, 
and decontamination is a very expensive process. Phytoremediation, as an emerging 
alternative technology, is highly appreciated in recent times for its effectiveness in 
cleaning up of the contaminated environment. Phytoremediation is defined as the 
ability of plants to uptake contaminants from the polluted environment (soil, water, 
or air) and convert the toxic chemical molecules to harmless forms enzymatically 
(Roychowdhury et al. 2013; Guillon et al. 2006). The key advantage of phytoreme-
diation technique is that it is about ten times less expensive than conventional envi-
ronmental cleanup methods, and it is a safe method. Generally, plants act as natural 
soil stabilizers, reduce the amount of contaminants, and maintain the surroundings 
free from pollutants. Phytoremediation is better than bioremediation methods that 
uses microbes in terms of easy monitoring. This is because, in phytoremediation, 
the plants’ condition is visible, and the presence of pollutants in plant tissues can be 
easily tested (Doty 2008). The major phytoremediation strategies involved in the 
removal of contaminants include phytoextraction, phytostabilization, and rhizofil-
tration of organic and inorganic pollutants (Gonzalez et al. 2006). In this regard, 
hairy root technology also plays an important role in the process of phytoremedia-
tion. Some of the advantages offered by hairy roots for this purpose include fast 
growth and high branching of hairy roots allowing increase absorption of contami-
nants, high biochemical and genetic stability, easy maintenance, scaling-up in bio-
reactors being easy, and provision of a huge surface area of contact with the 
contaminants. Moreover, hairy roots contain essential enzymes and metal chelating 
agents to detoxify the harmful compounds (Gonzalez et al. 2006; Roychowdhury 
et al. 2013). In recent years, hairy roots are serving as a potential tool to decontami-
nate the environment and are being highly appreciated by environmental biologists 
for its effectiveness. A wide variety of environmental pollutants that can be removed 
by hairy roots derived from different plant species are shown in Table 10.5. However, 
it is required to completely understand the enzymatic machineries involved in the 
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bioconversion of toxic contaminants to nontoxic complexes and also the mecha-
nisms involved in the hyperaccumulation and metal tolerance (Roychowdhury et al. 
2013). In the future, the application of genetic engineering to insert specific detoxi-
fying genes in hairy roots enhances their capacity to effectively clean up the 
contaminant.

Table 10.5 Phytoremediation of environmental pollutants by hairy root cultures

Plant species Pollutant Reference
Solanum nigrum PCBs (polychlorinated biphenyls) and 

zinc
Macková et al. (1997a, b) 
and Subroto et al. (2007)

Thlaspi caerulescens Cadmium Nedelkoska and Doran 
(2000) and Boominathan 
and Doran (2003)

Alyssum sp. Nickel Nedelkoska and Doran 
(2001) and Suresh et al. 
(2005)

A. bertolinii, A. tenium, 
and A. troodi
Catharanthus roseus RDX (hexahydro-1,3-5-trinitro-1,3-5- 

triazine) and HMX 
(oxtahydro-1,3,5,7-tetranitro-1,3,5,7- 
tetrazocine)

Bhadra et al. (2001)

Daucus carota Phenol and chloroderivatives De Araujo et al. (2002)
A. bertolonii and 
Thlaspi caerulescens

Nickel, and cadmium Boominathan and Doran 
(2002)

Atropa belladonna TCE (trichloroethylene) Banerjee et al. (2002)
Brassica napus 2,4-Dichlorophenol, Phenol Agostini et al. (2003) and 

Coniglio et al. (2008)
B. juncea and 
Chenopodium 
amaranticolor

Uranium Eapen et al. (2003)

B. juncea and 
Cichorium intybus

DDT 
(Dichloro-diphenyl-trichloroethane)

Suresh et al. (2005)

Helianthus annuus Tetracycline and oxytetracycline Gujarathi et al. (2005)
Lycopersicon 
esculentum

Phenols Wevar-Oller et al. (2005)

Daucus carota, 
Ipomoea batata, and 
Solanum aviculare

Guaiacol, catechol, phenol, 
2-chlorophenol, and 2,6-dichlorophenol

De Araujo et al. (2004, 
2006)

Brassica juncea Phenol Singh et al. (2006)
Lycopersicon 
esculentum

Phenol Wevar-Oller et al. (2005) 
and González et al. 
(2006)

Alyssum murale Nickel Vinterhalter et al. (2008)
Solanum lycopersicon Phenol Wevar-Oller et al. (2005) 

and González et al. 
(2006)

Nicotiana tabacum Phenol, 2,4-DCP Alderete et al. (2009) and 
Talano et al. (2010)

Armoracia rusticana Uranium Soudek et al. (2011)
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10.8  Germplasm Conservation

Germplasm conservation is one of the prominent techniques to preserve/restore the 
plant biodiversity, because most of the plants do not produce viable seeds and prop-
agate vegetatively, while some plants produce recalcitrant seeds, and the storage of 
seeds is affected by pests or other pathogens. So, the conservation of wild, rare, and 
endangered medicinal plant species for future use has become a big problem, and 
more efforts are initiated in this direction. Biotechnological tools such as plant tis-
sue culture micropropagation and cryopreservation have certainly benefited in pro-
tecting plant germplasms including vegetatively propagated plant species, genetic 
resources of recalcitrant seeds, rare and endangered plant species, cell lines with 
special attributes, genetically transformed plant material, and clones obtained from 
elite genotypes (Engelmann 2011). Based on the storage duration, in vitro conserva-
tion methods are classified into three types, namely, short-, medium-, and long-term 
storage. Among them, cryopreservation is the most efficient technique for long-term 
conservation of the germplasm of a valuable plant, because of its cost-effectiveness 
and safety. Three types of cryopreservation methods are highly employed for the 
biodiversity conservation. They include freeze-induced dehydration, encapsulation- 
dehydration, and encapsulation-vitrification (Shibli et al. 2006). Hairy root cultures 
can be used for the germplasm conservation, because hairy root cultures are signifi-
cantly a good resource for the production of several secondary metabolites and, in 
recent times, they are obtained in many medicinal plants for commercial applica-
tions. Hence, conserving such hairy roots will be more useful for future applica-
tions. However, there are only very few reports available on the conservation of 
hairy roots of medicinal plants. Hairy roots in the form of artificial seeds are a reli-
able delivery system for the clonal propagation of elite plants with genetic unifor-
mity, high yield, and low production cost. Cryopreservation method for root tips 
was first developed by Benson and Hamill (1991) from hairy root cultures of Beta 
vulgaris, and the same technique was implemented in Nicotiana rustica. Yoshimatsu 
et al. (1996) reported the cryopreservation of Panax ginseng hairy roots. In addition 
to that, cryopreservation of hairy roots was reported in some more medicinal plants 
like Artemisia annua (Teoh et  al. 1996), Armoracia rusticana (horseradish) 
(Phunchindawan et al. 1997; Hirata et al. 1998), Atropa belladonna (Touno et al. 
2006), Eruca sativa, Astragalus membranaceus and Gentiana macrophylla (Xue 
et al. 2008), Maesa lanceolata and Medicago truncatula (Lambert et al. 2009), and 
Rubia akane (nakai) (Kim et al. 2010, 2012; Salma et al. 2014).

10.9  Omics Approaches in Secondary Metabolite Production

The omics approaches, namely, genomics, transcriptomics, proteomics, and metab-
olomics, have been majorly utilized in hairy root-based secondary metabolite pro-
duction. As transcriptomic tools the microarrays and expressed sequence tags (EST) 
were useful in measuring the gene expression studies in large scale. Expression of 
target genes in a plant cell can be modified through various methods such as 
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precursor feeding, elicitor treatment, overexpression or silencing of transgenes, etc. 
Generation of cDNA microarrays and EST database provides the information about 
the changes at mRNA level and also briefs the functions of genes and its regulation 
in secondary metabolism of hairy root cultures. Transcriptome analysis of hairy root 
cultures has been done in several plants including P. ginseng (ginsenoside), C. 
roseus (indole alkaloids), Medicago truncatula (anthocyanin), S. miltiorrhiza (tan-
shinones), etc. (Jung et al. 2003a, b; Murataa et al. 2006; Pang et al. 2008; Gao et al. 
2009; Wang et al. 2010). In studying the tanshinone biosynthesis, S. miltiorrhiza 
hairy root cultures were used as a model system. The combined analysis of metabo-
lite profiling and cDNA-AFLP identified the candidate genes which are potentially 
involved in the biosynthetic pathway (Yang et al. 2012). Proteomics is an important, 
powerful, and under-explored omics technology for the secondary metabolite eluci-
dation in hairy root cultures. Proteomic approach for hairy root cultures has been 
initiated in P. ginseng and opium poppy (Kim et  al. 2003; Zulak et  al. 2009). 
Metabolomics is an emerging approach which is highly useful in secondary metab-
olite production (Yang et al. 2012). The systems biology approaches with a combi-
nation of omics approaches will offer a great opportunity for high-throughput 
secondary metabolite elucidation in various plant species.

10.10  Conclusions and Future Prospects

In the modern era, humankind is facing the problem of high demand for several 
potent plant secondary metabolites possessing many bio-pharmacological activities. 
Previously, in vitro dedifferentiated plant tissue cultures were used for obtaining 
plant metabolites. As the years passed, cell suspension and adventitious root cul-
tures were widely adopted for the same. However, to elucidate such metabolites, 
there is a need to develop an efficient and reliable, fast-growing in vitro tissue cul-
ture model to overcome the problem of wild plant availability. In this regard, hairy 
root cultures offer a great value to the continuous production of several precious 
secondary metabolites, because of their unique characteristics discussed above. 
Since the emergence of hairy root technology, a lot of improvements have been 
made day by day especially the use of bioreactors, application of elicitation strategy, 
and biotransformations. Overall, hairy root technology has shown its wide utility in 
many medicinal plants. Moreover, the production of plant secondary metabolites in 
the hairy root culture system has delivered very encouraging findings, for example, 
illuminating the sites of biosynthesis or rate-regulating stages, precursor’s require-
ments, role of regulatory genes, transcription factors, and putative metabolite inter-
mediates relating to secondary metabolite biosynthesis. Also, it offers the possibility 
of recognizing a suitable gene candidate required for metabolic engineering of spe-
cific plant traits and to improve their secondary metabolite secretion. However, 
more efforts are to be encouraged to better understand the biosynthetic pathways 
and regulatory cascades involved in secondary metabolite synthesis. Therefore, it is 
crucial to make use of genetic engineering approaches in order to fully realize the 
biosynthetic prospective of hairy roots. Plant biotechnologists are required to work 
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closely with bioengineers to overcome the challenges faced during the scaling-up of 
hairy root cultures in bioreactors. In the future, research efforts should be encour-
aged toward making use of hairy root culture technology for producing high-value 
secondary metabolites commercially from many unexplored medicinal plant 
species.
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