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Preface

This book presents the latest, most interesting research efforts regarding intelligent
transport system (ITS) technologies, from theory to practice. The book’s main
theme is “Mobility for everyone by ITS”; accordingly, it gathers a range of con-
tributions on human-centered factors in the use or development of ITS technologies,
infrastructures, and applications. Each of these contributions proposes a novel
method for ITS and discusses the method on the basis of case studies conducted in
the Asia-Pacific region.

The book consists of 26 chapters, which were selected from over 150 papers
after strict reviews, and are roughly divided into four general categories: (1) Safe
and Secure Society, (2) ITS-Based Smart Mobility, (3) Next-Generation Mobility,
and (4) Infrastructure Technologies for Practical ITS. In these categories, several
key topics are touched on with each other such as driver assistance and behavior
analysis, traffic accident and congestion management, vehicle flow management at
large events, automated or self-driving vehicles, V2X technologies, next-generation
public transportation systems, and intelligent transportation systems made possible
by big data analysis. In addition, important current and future ITS-related problems
are discussed, taking into account many case studies that have been conducted in
this regard.

Dr. Tsunenori Mine, Dr. Shigemi Ishida, and Dr. Akira Fukuda are grateful to
the authors and reviewers for their great contributions to this work. The editors also
acknowledge with their gratitude the editorial team of Springer-Verlag for their
support and patience during the preparation of the manuscripts of this book.

Fukuoka, Japan Tsunenori Mine
February 2019 Akira Fukuda

Shigemi Ishida
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Part I
Safe and Secure Society



The Unconscious Learning Effect
on Driver Attention

Shuji Sudo and Toshio Ito

Abstract The rate of traffic accidents caused by low driver awareness for the con-
firmation of surrounding safety is high. In this study, we improved driver safety
confirmation by using the technique of unconscious learning and action. Here, we
assumed that drivers will unconsciously learn an alarm pattern that sounds during
dangerous scenarios when driving. In our experiment, we used a driving simulator
and eye mark recorder. Subjects were drivers who do not check their environment
fully. The experiment was conducted five times every few days. The alarmwe used to
encourage safety confirmation had a frequency of 250 Hz and an intermittent sound.
This frequency is slightly higher than the noise of a car. The experiment interval
was every three days or every week. In the first session, we checked the subjects’
safety confirmation on a course with intersections where dangerous scenarios played
out. After a few days, the subjects drove the course with the alarm sounding at the
intersections, and ended up looking around at their surroundings when hearing the
alarm. We told only some of the subjects the details and timing of the alarm. After
this drive, we asked them whether the sound seemed noisy or not. This was repeated
three times. Finally, the subjects drove another different course with intersections
with dangerous scenarios. We then compared their safety confirmation between the
first and last experiment, and found that the subjects looked at their surroundings
better in the later experiment, than they did at first. The subjects found the alarm noisy
the first time, but gradually grew used to it, so that it eventually stopped seeming
noisy. From this result, we determined that the effect of unconscious learning with
an alarm can change a driver’s safety confirmation.

Keywords Human behavior · Alarm
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1 Introduction

In recent years, safety technology has been developed to reduce traffic accidents. The
major cause of traffic accidents in Japan is a lack of surrounding safety confirmation
by the driver [1]. These accidents increase with the automation of operation [2].
One of the technologies used to prevent this kind of accident is the Inter-Vehicles
DistanceWarning System (IVDWS). IVDWSwarns the driver if there is a possibility
of crashing with the vehicle in front. However, the alarm system of the IVDWS has
a high frequency sound and is set to ring early, before a possible crash takes place.
This makes the system prone to false alarm, which can be annoying for the driver,
and can even result in them turning off the system as a whole.

In a previous study [3], the author considered the fact that the warning sound does
not need to be at a high frequency. In cognitive psychology, the process of driving has
three elements (Cognition, Judgment and Operation) [4]. IVDWS is included within
the cognition element, because the system tells the driver about incoming danger.
However, cerebral activity preceded the reported time of a conscious intention to act
by about 0.3 ms [5]. Moreover, the author focused on unconscious human learning
and human action [6]. Humans get some information by their ears and eyes and
unconsciously select the information that is necessary (the Cocktail Party Effect) [7,
8]. Drivers unconsciously choose the necessary information in a vehiclewithmultiple
competing sounds. Therefore, drivers learn that the sound can indicate danger. The
author believes that a sound that is not high frequency can be used to inform the
driver of danger. The current warning sound of the IVDWS is an intermittent sound
of 1 to 4 kHz, chosen because humans feel a sense of urgency when they hear a high
frequency and intermittent sound [9, 10]. However, in an emergency situation, the
author considered the fact that drivers could psychologically react more calmly to a
low frequency and gentle sound, than they would to a high frequency one. As such,
the author conducted an experiment to test this idea using a driving simulator. The
experiment scene was a pedestrian suddenly rushing out into the road in front of the
driver’s vehicle. The alarm sounds 1.8 s before collision with the pedestrian. The
alarm used was an intermittent, 250 Hz sound, which is a slightly higher frequency
than the load noise in the vehicle [11]. As a result, the drivers reacted more quickly
than with the current alarm warning system. Moreover, the drivers found the gentle,
low frequency alarm to be acceptable, and so will not turn it off even in the event of
a false warning.

In this study, we adopted a gentle, low frequency alarm, which we will refer to as
the “gentle alarm”, as the sound for encouraging drivers to check the safety of their
vehicle’s surroundings.When the drivers suddenly hear an alarm sound, theywill tend
to look and check their surroundings, and at the same time, will unconsciously ask
questions like “Why is the alarm sounding?” and “When does the alarm sound?” As a
result, we hypothesized that driverswho learn about the alarmwarning unconsciously
will also look and check their surroundings unconsciously. This brings us to the aim
of this study, which is to improve the behavior of drivers that do not tend to confirm
the safety of their surroundings sufficiently while driving (Fig. 1).
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Fig. 1 Japanese traffic accidents in 2016

2 Learning by Gentle Alarm

2.1 Experiment Scenario

The study we conducted was approved by the Research Ethics Committee of the
Shibaura Institute of Technology. The subjects received an explanation of the exper-
iments and signed a participation agreement. The subjects in the study were six
university students who hold a driver’s license. We used a swing-type, six-axis driv-
ing simulator with an eyemark recorder (nac: EMR-8B) to determine the eye position
of the driver (and thus, determine where they are looking). The driving course was set
to be a general road occupied by pedestrians and other vehicles. The subjects were
told to drive while listening to classical music, namely Pachelbel Canon, playing in
the background. This was in order to hide the presence and sound of the gentle alarm
to some extent.

In this experiment, we grouped the subjects as shown in Table 1. Group A knew
about the gentle alarm while Group B did not. At first, the subjects drove on a course
(Course 1) without the use of any alarm. This was to determine the baseline perfor-
mance of their awareness of the surrounding safety. At five specific intersections,
the subjects experienced dangerous scenarios, such as the sudden appearance of a
bicycle (Fig. 2). We also tracked the subjects’ eye position to determine where they
were looking while driving (Eye Track Result 1).
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Table 1 Group Group Group A Group B

Gentle alarm Known Unknown

Number of subjects 2 4

Fig. 2 Example of a
dangerous scene

Three days later, the subjects drove on a different course (Course 2), but with the
gentle alarm present. This drive saw an improvement in the subjects’ behavior. They
drove this course three times, once every three days. This was implemented based
on Ebbinghaus’s Forgetting Curve [12, 13], which shows the relationship between
memory and time. This curve indicates that humans forget about 70% of things they
have learned after three days. The gentle alarm used here was an intermittent sound
of 250 Hz, which starts to sound when the turn signal is used. At the end of each of
the three drives, the subjects filled out a questionnaire evaluating the gentle alarm.

Finally, the subjects drove back on Course 1 without the gentle alarm being
present. On this drive, we tracked their eye position one more time, in order to
determine where they were looking while driving (Eye Track Result 2), and then
compared Eye Track Result 1 with Eye Track Result 2.
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2.2 Experiment Result and Discussion

In this experiment, there were two criteria for evaluating whether the subjects suffi-
ciently check their surroundings for safety confirmation. The first criterion was the
place where the subject is looking. Here, we set four defined targets which were:

1. Back of the sidewalk
2. Back of the crosswalk
3. In front of the crosswalk
4. In front of the sidewalk

The second criterion was whether the subjects look to each target three or more
times. We assumed that each time a subject looks at the above four places, they:

1. Grasp the traffic condition at the intersection
2. Look at their surroundings before turning left/right
3. Check for any dangerous threats

The experimental results are as shown in Table 2. The table shows the eye tracking
results for one of the intersections with a dangerous scenario on the course (this
intersection is as depicted in Fig. 2). Figures 3 and 4 show the results for the subjects
in Group A and Group B, respectively. The boxes in Figs. 3 and 4 visualize the
number of times the subjects looked and checked for safety at those boxes’ positions
which correspond to the four defined targets. A subject in Group A (No. i) looked
only forward and did not checked the sidewalk in the first drive. However, in the
final drive, the same subject checked the surroundings and thus, increased the value
for surrounding safety. This shows that the gentle alarm is effective in increasing the
subjects’ awareness of the safety of their surroundings. A subject in Group B (No.
iii) only looked at and checked the crosswalk in the first drive. However, in the final
drive, the same subject looked at and checked the crosswalk and the sidewalk. This
result is basically the same as with Group A.

Fig. 3 Experiment result (Group A)
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Fig. 4 Experiment result (Group B)

We also found that the subjects checked their surrounding for safety confirmation
at the other four dangerous intersections in the course more in their final drive than
in the first. Here, we used the t-test to show statistically that the unconscious learning
phase is effective in these subjects. We did this by comparing the total value for the
subjects’ surrounding safety confirmation in the first and final drive in each scenario.

As for the result of the questionnaire, all of the subjects were happy with the low
frequency sound of the gentle alarm. At first, the subjects in Group B were annoyed
by the number of times the gentle alarm sounded but then, they got used to it. The
subjects in Group B thought that the alarmwarned themwhen they were approaching
pedestrians or other vehicles. The subjects felt that even a low frequency sound was
alarming, and therefore, led to awareness of surrounding safety confirmation.

In this experiment, the intermittent 250 Hz alarm sounded at road intersections
when a driver is driving. This resulted in an improvement in driver awareness of the
surrounding safety confirmation, without causing annoyance in the process.

However, there were two issues with this experiment.

1. Since the subjects drove on the same course (in the first and final drive) and the
three-day experiment interval can be considered short, there is a possibility that
the subjects performed better in the final drive because they were familiar with
the course.

2. Since the subjects do not usually drive, the result of this experiment might be not
correct.

In order to verify whether or not the above two issues affected the experiment, we
conducted a new experiment, as described in Sect. 3.
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3 Learning by Gentle Alarm or Getting Used to Driving

3.1 Experiment Scenario

In this experiment, we examined the effect of learning by the gentle alarm and the
effect of getting used to driving. The subjects comprised ten persons, all of whom
differed from previous experiment. However, the experiment process was almost the
same as previously.

At first, the subjects drove on the same course as in the previous experiment’s first
course, and experienced dangerous scenarios at five specific intersections.

Next, the subjects were divided into two groups, as in Table 3, with Group A to
drive the next three courses (each differing from the others) with the gentle alarm
present. Group B did the same, but without the presence of the gentle alarm. We set
the experiment interval at one week. We instructed Group A, “If you hear the alarm
sound, please look at your surroundings”. The subjects in Group A then filled out a
questionnaire evaluating the gentle alarm.

Finally, all of the subjects drove on a new course without the gentle alarm being
present. We then compared the eye track result of the first drive with that of the final
drive, in order to evaluate their performance in checking the surroundings for safety
confirmation.

3.2 Experiment Result and Discussion

The result of the subjects’ eyes movement at one of the road intersections with a
dangerous scenario is shown in Table 4. As the table shows, we were unable to
acquire some of the results, as the subjects ran into pedestrians or bicycles at the
intersection. Figures 5 and 6 show results for the subjects in Group A and Group B,
respectively. The boxes in Figs. 5 and 6 visualize the number of times the subjects
looked and checked for safety at those targets.

A subject in Group A (No. i) only looked forward and did no check his sur-
roundings in the first drive. However, in the final drive, the same subject looked and
checked his surrounding and, therefore, increased the value for surrounding safety
confirmation. This result is the same as in the previous experiment.

A subject in Group B (No. vi) only looked forward and did not check his sur-
roundings in the first drive. However, in the final drive, his frequency of looking

Table 3 Group Group Group A Group B

Gentle alarm Sound No alarm

Number of subjects 5 5
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Table 4 Experiment result of the subject’s eye movement

Subject Eye Track Result 1 Eye Track Result 2

Group
Subject 

No

Back of 

the 

sidewalk

Back of 

the 

crosswalk

In front

of the 

crosswalk

In front

of the 

sidewalk

Back of 

the 

sidewalk

Back of 

the 

crosswalk

In front

of the 

crosswalk

In front

of the 

Group 

A

i 3 2 0 0 1 3 3 0
ii 2 2 2 0
iii 2 4 3 0
iv 4 3 2 1 3 3 3 2
v 2 2 1 0 3 2 2 1

Group 

B

vi 1 1 0 0 0 3 2 0
vii 1 1 0 0 1 2 1 0
viii 2 3 2 0
ix 0 3 3 2
x 3 2 0 0 3 2 3 1

sidewalk

Fig. 5 Experiment result (Group A)

and checking the surroundings increased. This indicates that the surrounding safety
confirmation of the subjects had improved.

Five subjects (Nos. i, ii, iii, vi, vii) across both of the groups ran into pedestrians
or bicycles in the first drive. However, in the final drive, only one subject (No. iii) in
Group A ran into a bicycle, while three subjects in Group B ran into pedestrians. This
suggests the possibility that in the first experiment, the gentle alarm was effective at
increasing driver awareness of the surroundings, and that it was not caused by the
two aforementioned issues. Nevertheless, we still cannot dismiss the idea that getting
used to driving while participating in this experiment could have contributed to the
subjects becoming more aware of their surroundings during the final drive. This is a
matter to be investigated in future work.
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Fig. 6 Experimental result (Group B)

As for the questionnaire results, the subjects in Group A did not find the gentle
alarm noisy, and were not annoyed by it. The subjects felt that even a low frequency
sound is alarming enough to lead them to a greater awareness of their surroundings.

4 Conclusion

In this study, we focused on unconscious human learning and human action. We
alerted drivers who do not fully check their surroundings for safety via the use of the
gentle alarm.

The drivers unconsciously learned the alarm pattern, which then caused them to
look and check their surrounding better than they had prior to learning. In conclusion,
we can say that the use of the gentle alarm succeeded in improving the drivers’
awareness for surrounding safety confirmation in this study.

We made use of an eye mark recorder in the experiment to track the eye positions
of the subjects and thus, were able to check whether or not they were aware of their
surroundings for safety confirmation. The gentle alarm we used has an intermittent
sound of 250 Hz, and the experiment interval was three days or one week. We found
that the effect of unconscious learning was effective even if the subjects did not know
about the presence of the gentle alarm beforehand. Furthermore, the subjects who
knew about the alarm did not feel annoyed by its sound.

On the other hand, itmaynot have been solely the gentle alarm thatwas responsible
for the improvement in the drivers’ awareness of their surrounding safety confirma-
tion; the effect of getting used to driving while participating in the experiment could
also have contributed. However, we feel that the effectiveness of the gentle alarm
was more prominent, although this is a matter to be investigated further.

In terms of future work, we are considering extending our research by altering the
gentle alarm, and by investigating the effectiveness of unconscious learning when
other scenarios and places are used. In addition, we are considering adding another
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evaluationmethodbesides just tracking eyemovement, such as evaluating the drivers’
behavior via a driving style check sheet.
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Inattentive Driving Effects on Eye
Movement and Driving Behavior

He Xi and Kazunori Shidoji

Abstract Many studies of Intelligent Transport Systems (ITS) have been conducted
to reduce traffic accidents. Driver monitoring systems can detect dangerous driver
behaviors and reduce traffic accidents through alarm and active safety systems. Data
from the National Police Agency of Japan for 2017 show that the main cause of fatal
traffic accidents is driver inattentiveness. Investigating eye movement characteristics
and driving behavior during inattentive driving can reveal characteristics of inatten-
tiveness. For this study, we designed a driving simulation experiment with subtasks
while driving to assess the inattentive behavior of drivers. During the driving exper-
iment, drivers were asked to drive normally, drive and answer arithmetic problems,
or drive and answer questions about a map. Driver reaction times during emergency
braking to a sudden appearance of a car at an intersection, sudden appearance of
a pedestrian at a non-intersection, and steering performance on curved roads were
assessed. In addition, we assessed gaze fixation time and driver eye movement veloc-
ity and direction. Inattentive driving resulted in a longer reaction time, more steering
wheel operation, shorter fixation time, slower angular speed of eye movement, and
lower frequency of left–right direction change.

Keywords Driving simulation · Eye movements · Inattentive driving ·Mental
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1 Introduction

Distraction is a general phenomenon in daily life. In some circumstances that require
a driver’s close attention to road conditions, distraction degrades safety and traffic
flow [22], and occurs frequently at all ages [14]. To reduce traffic accidents caused by
distractions, many studies have investigated distracted driving. Most studies specif-
ically examine distracted driving caused by external factors such as mobile phones
[4, 15, 16], in-vehicle information systems [2], passengers [3, 10, 19], and music and
auditory materials [6, 7, 24].

There is one type of distraction that has nothing to do with external factors:
inattentive driving [11]. This distraction is difficult to examine, but it is extremely
dangerous and difficult to control. Based on National Police Agency of Japan data,
careless driving (inattentive driving) is the most common reason reported for all
fatal traffic accidents attributed to a violation of safe driving practices (Fig. 1). To
reduce traffic accidents and to resolve traffic difficulties of all kinds, Intelligent
Transport Systems (ITS) have become a mainstream field of study, especially to
alleviate inattentive driving.

Because it is difficult to ascertain and control the timing of an inattentive state,
subtasks while driving, such as mathematical operations, are generally used to study
inattentive driving. When examiners ask participants verbal questions while driving,
drivers blinkmore frequently, and their fixation time is reduced [23].Harbluk et al. [5]
used easy tasks and difficult arithmetic tasks to assess distracted driving, and found
that the mean number of braking events with difficult tasks during driving was higher
than that without a task. When driving while following other vehicles, brake reaction
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times are longer if drivers are doing mental arithmetic [8]. If numerous vehicles are
on the road and the driver is doingmental arithmeticwhile driving, then the frequency
of eye fixation time is increased at the 0.1–1 s time interval, and eyes move more
often. With few other vehicles on the road, the result is the opposite [1]. Louie and
Mouloua [9] used mathematical problems that are commonly encountered in life
(e.g., the total price of 2 boxes of $3 turkey). Slower braking reactions occurred when
a yellow traffic light appeared and during the sudden appearance of vehicles when
distracted. Some studies have used subtasks such as memories. Akiyama et al. [1]
used numerical memorization tasks, and Ross et al. [20] studied the effect of a verbal
working memory load task on driving behavior. Driving performance deteriorated
with increasing verbal working memory load in terms of the mean deviation in the
lane change path, lane change initiation, and the percentage of correct lane changes.

Some studies have measured eye movement during distracted driving [13, 25].
Metz et al. [12] compared the visual attention in driving for two visual secondary
tasks and found that drivers had a longer fixation in a driving simulation. Savage
et al. [21] studied the effects of mobile phone conversations on eye movement during
driving and found higher saccade peak velocities, increased blink frequencies, and a
reduction in the spread of fixation along the horizontal axis.Wang et al. [27] designed
an experiment with and without a mobile phone and found that compared to drivers
without mobile phones, drivers with them had higher numbers of glance transitions
and shorter on-road glance duration during distracted driving.

Drivers will often think or recall something during inattentive driving. Further-
more, an image might appear in the person’s mind during recall. To ascertain the
manner by which and the degree to which this process affects drivers, we designed
two subtasks of mental arithmetic and map recall to simulate thinking and recall
processes during driving.

An inattentive state has a significant impact on eye movement [26], and driving
behavior has a direct relationship with traffic accidents. We examined the influence
of mental arithmetic and map recall on driver behavior when a car or a pedestrian
suddenly appeared in front of the vehicle. Driving behavior and eye movements were
captured using the driving simulation and eye movement measurement apparatus.
We measured brake reaction time, the number of steering wheel rotations, fixation
time, angular eyeball speed, and the direction of focal point movement.

2 Methods

2.1 Participants

Thirteen participants (10 men, 3 women) from Kyushu University participated in
this experiment. Participants were 22–29 years old, and each participant held a valid
driver’s license.
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2.2 Equipment

Hardware. The simulator was controlled using a PC (Precision T1700; Dell Inc.).
The image was displayed on a 27-inch liquid crystal monitor (T 270 W; Hyundai
IBT Co. Ltd.) with a resolution of 1,920× 1,080 pixels. A simulated vehicle steering
wheel, accelerator pedal, and brake pedal were used (Driving Force GT, Logicool;
Logitec Corp.). An eye movement measurement apparatus (EMR-9; NAC Image
Technology Inc.) was used to measure eye movements.

Software. The driving simulator control program was created using software (UC-
win Road Ver. 6.00.02; Forum 8). Data related to brake operation, steering operation,
and other vehicle parameters weremeasured using theUC-win RoadDrive Log plug-
in, which we created in our laboratory. The system frame rate was about 50 fps in
all experiments. Reaction time accuracy was about 20 ms. Eye movements were
analyzed using software (EMR-dFactory; NAC Image Technology Inc.).

2.3 Design

To find driving behavior and eye movement differences between participants driving
while doing a subtask andwithout doing a subtask, four types of roadswere designed:
S1, S2, C1, and C2. Roads S1 and S2 were straight lines with three intersections.
Because the buildings on road S1 were taller and closer to the road, the view of the
driver on road S1 was narrower than that on road S2. At the intersection, another
vehicle might suddenly cross the vehicle path. At this point, wemeasured the driver’s
emergency braking reaction time. Roads C1 and C2 were curved roads: road C1
was more curved than road C2. The purpose of the curved roads was to study the
direction change, the right and left fine adjustment, of the steering wheel. In this
experiment, all participants drove six road combinations with a driving simulator.
All road combinations comprised the four roads: S1, S2, C1, and C2 (Table 1). A
three-second break was inserted between roads.

Table 1 Road combinations of six types

Road combination number Road combination order

1 S1—break—C2—break—C1

2 C2—break—S2—break—S1—break—S2

3 C1—break—S1—break—C2

4 S2—break—C1—break—S1

5 S1—break—S2—break—C2—break—S2

6 C2—break—S1—break—C2—break—S2
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2.4 Tasks

Main task. Figure 2 presents some captured monitor screens. All participants were
required to drive at up to 60 km/h. They were able to brake when any possibility of
a road incident was presented.

Subtasks. The subtaskswere for participants to domental arithmetic and drive during
map recall.

Mental arithmetic. With an increase in the difficulty level of arithmetic calculations,
the brake reaction time increases gradually [29]. To prevent the calculations from
being too simple to affect driving, six sets of mental arithmetic of double digit sums
and subtractions were used in the six road combinations. The answers to mental
arithmetic questionswere 0–99 (Table 2). Participants had 3 s to answer each question
before the next question was asked.

Recall the map. Six maps were used in the six road combinations. Each map had
markings for seven locations, several roads, and north (Fig. 3). The map was dis-
played on themonitor for two and a halfminutes before each driving test for the driver
to memorize. The map then disappeared and driving started. While driving, the par-
ticipant was asked map-information-related questions continuously. The questions
were about directions and distances between several locations, location on the map,
and the number of intersections between locations (Table 3). Participants had five
seconds to answer before the next question was asked.

Table 2 Examples of
questions related to mental
arithmetic

Number Mental arithmetic

1 41 − 33 =
2 50 − 19 =
3 44 − 27 =
4 26 + 25 =
5 45 + 26 =
6 45 + 47 =
7 38 − 16 =
8 41 − 21 =
9 28 − 12 =
10 38 − 10 =
11 42 + 50 =
12 41 − 33 =
… …
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(a) Sudden car appearance at road S1

(b) Sudden car appearance at road S2

(c) Sudden appearance of pedestrian at road C1/C2 

Fig. 2 Three road incident situations
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Fig. 3 Example of maps in
the map recall experiment

Table 3 Examples of
questions related to map
recall

Number Questions

1 Where is the westernmost location?

2 Where is the nearest place from the hospital?

3 Which direction is the post office from the library?

4 Which direction is the supermarket from the post
office?

5 How many intersections from the library to the
hospital?

6 What is the farthest place from school?

7 Which direction is the cinema from the school?

8 Where is the southernmost location?

9 How many intersections from the bus station to the
supermarket?

10 Do you think the school is southeast of the
hospital?

11 Do you think the library is the closest place from
the post office?

12 Do you think the hospital is southwest of the
cinema?

… …

2.5 Procedure

The participants were divided into two groups. The first group started with themental
arithmetic subtask. A week later, they were asked to continue the experiment for the
map recall subtask. The other group participated in the experiment in the opposite
order, and each participant spent around forty minutes a day for the experiment.

On the first day after the experiment was explained, participants were asked for
their consent to participate. After an eye movement measurement apparatus was
applied, participants practiced using the driving simulator. No sudden incidents were
presented during practice mode, which was intended for participants to become
accustomed to the system and road combinations. The requirements below were
given to the participants.
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• The accelerator pedal should be pushed to the end, always maintaining driving
speed at 60 km/h on smooth roads: 60 km/h was set as the maximum speed.

• The brake pedal must be pressed immediately when a pedestrian or vehicle sud-
denly enters the road.

• After pushing the brake pedal to allow a pedestrian or vehicle to pass, release
the brake pedal and press the accelerator pedal to the end to continue the driving
simulation.

The experiment started after completion of the process described above.
First, we let participants drive through all six road combinations in the
order of with-subtask—without-subtask—with-subtask—without-subtask—with-
subtask—without-subtask. Second, we reversed the order of the with/without sub-
tasks, and let participants drive through all road combinations. These two steps were
to ensure that with-subtask and without-subtask situations had been met in all road
combinations. We eliminated possible influences that the subtask order may have
had on the experiment results.

We used R (3.5.0) software for statistical processing. Anovakun (4.7.0) was used
for analysis of variance (ANOVA). Mendoza’s Multisample Sphericity Test was
used to test for the assumption of sphericity. The degrees of freedom were corrected
using the Greenhouse–Geisser method if the assumption was not valid. Multiple
comparisons were used when a significant difference was found using Shaffer’s F-
Modified Sequentially Rejective Bonferroni Procedure. Average values were used
for without-subtask conditions because the without-tasks were conducted both days.

3 Results

3.1 Driving Behavior

Reaction time of braking. The reaction time was the time from the appearance of
a vehicle or a pedestrian appearing on the screen to the time when the driver started
to brake. Figure 4 shows the average of all participants’ reaction times for the three
types of incidents during drivingwith subtasks,mental arithmetic andmap recall, and
during driving without the subtasks. Data were calculated using two-factor ANOVA
according to the incident and the subtask type. A significant difference was found for
the main effects of an incident (F (2, 24) = 38.5888,MSE = 0.0065, ηp

2 = 0.7628,
p = 0.0000) and for the subtask type (F (1.21, 14.54) = 10.4468, MSE = 0.0285,
ηp

2 = 0.4654, p = 0.0041). Furthermore, a marginally significant effect was found
for the interaction of those two factors (F (4, 48) = 2.5277, MSE = 0.0032, ηp

2 =
0.1740, p = 0.0527). For driving without a subtask, the reaction times of braking
to the sudden appearance of a car on road S2 (0.657 s) and to the appearance of
a pedestrian (0.701 s) were longer than that of the appearance of a car on road S1
(0.540 s). When driving with mental arithmetic, the reaction times of braking to the
car appearance on road S2 (0.642 s) and the appearance of a pedestrian (0.668 s) were



Inattentive Driving Effects on Eye Movement and Driving Behavior 23

0

0.5

1

1.5

2

2.5

3

Sudden car appearance on
road S1

Sudden car appearance on
road S2

Sudden appearance of a
pedestrian

Re
ac

tio
n 

tim
e 

of
 b

ra
ki

ng
 (s

)

Event

No subtask
Mental arithmetic
Map recall

* 
* 

* * * * 

Mean SE
N=13
*p<0.05

* 
* 

* * 

* * 

Fig. 4 Reaction time of braking for all incidents

longer than that to a car appearance on road S1 (0.561 s). When driving during map
recall, the reaction time of braking to a car appearance on road S2 (0.797 s) and the
reaction time of braking to the appearance of a pedestrian (0.813 s) were longer than
that to a car appearance on road S1 (0.628 s). For the car appearance on road S1, the
reaction time of braking when driving during map recall (0.628 s) was longer than
that when driving with no subtask (0.540 s) or when driving with mental arithmetic
(0.561 s). For the car appearance on road S2, the reaction time when driving during
map recall (0.797 s) was longer than that when driving without a subtask (0.657 s) or
with mental arithmetic (0.642 s). After the appearance of a pedestrian, the reaction
time when driving during map recall (0.813 s) was significantly longer than that
when driving without a subtask (0.701 s) or when driving with mental arithmetic
(0.668 s).

Frequency of steeringwheel fine adjustment. The number of times that the steering
wheel was manipulated clockwise or counterclockwise to keep the car in the lane on
a curved road. Figure 5 shows the average number of times that all participants were
driving through roads C1 and C2. Data were calculated using two-factor ANOVA
according to the type of road and subtask type. A significant difference was found for
the main effect of roads (F (1, 12) = 69.1188,MSE = 117.6255, ηp

2 = 0.8521, p =
0.0000) and for the subtask type (F (2, 24)= 21.8786,MSE= 38.5584, ηp

2 = 0.6458,
p = 0.0000). Furthermore, a significant difference was found for the interaction of
those two factors (F (2, 24)= 13.4338,MSE= 16.9968, ηp

2 = 0.5282, p= 0.0001).
With regard to the type of road when driving without a subtask, the frequency of
changes in the direction of the steering wheel on road C1 (29.4 times) was higher
than that for road C2 (15.6 times). When driving while doing mental arithmetic, the
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Fig. 5 Frequency of rotating the steering wheel on roads C1 and C2

frequency of changes in the direction of the steering wheel on road C1 (29.4 times)
was more than that for road C2 (19.4 times). When driving during map recall, the
frequency of changes in the steering wheel direction on road C1 (43.8 times) was
more than that on roadC2 (21.6 times). Regarding the subtask type,when drivingwith
mental arithmetic (44.7 times) and during map recall (43.8 times), the participants
rotated the steering wheel more frequently than without a subtask (29.4 times) on
road C1. For driving with mental arithmetic (19.4 times) and during map recall (21.6
times), the average number of times that participants rotated the steering wheel was
more than that without the subtask (15.6 times) on road C2.

3.2 Eye Movement Characteristics

Fixation time frequency distribution. Figure 6 shows the average frequency distri-
bution of different fixation times. Data were used with three-factor ANOVA accord-
ing to the six types of road combinations, the subtask type, and the fixation time. A
significant difference was found for the main effect of fixation time (F (15, 180) =
147.4924, MSE = 85.9559, ηp

2 = 0.9197, p = 0.0000). Furthermore, a significant
difference (F (30, 360) = 1.7999, MSE = 29.4200, ηp

2 = 0.1304, p = 0.0072) was
found for the interaction of the subtask type and fixation time. Compared to the
without-subtask figure, the fixation time when driving with mental arithmetic had a
lower frequency in the 0.5–0.7 s and 0.8–0.9 s time intervals; the fixation time when
driving during map recall had a higher frequency in the 0.2–0.3 s time interval, but
a lower frequency in the 0.7–0.8 s time interval. The frequency of the fixation time
with map recall was higher than other tasks in the 0.2–0.3 s time interval.
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Traveling speed frequency distribution. Figure 7 shows the average frequency
distribution of all participants’ angular eyeball speed. Data were calculated using
three-factor ANOVA according to the six types of road combinations, the subtask
type, and the angular eyeball speed. A significant difference was found for the main
effect of the angular eyeball speed (F (1.14, 13.68) = 63.3727, MSE = 3087.5676,
ηp

2 = 0.8408, p = 0.0000). Furthermore, a significant difference was found (F (18,
216)= 2.9505,MSE= 87.0523, ηp

2 = 0.1974, p= 0.0001) for the interaction of the
subtask type and the angular eyeball speed. Compared to driving without a subtask,
the angular eyeball speedwithmental arithmeticwas found to have a higher frequency
in the 0–30 deg/s speed interval, but a lower frequency in the 150–180 deg/s speed
interval. In the case of map recall, a higher frequency was found in the 0–30 deg/s
speed interval, but a lower frequency was found in the 60–120 and 150–180 deg/s
speed intervals. The frequency of traveling speed with mental arithmetic was higher
in the 60–90 deg/s speed interval than that with map recall.

Traveling direction frequency distribution. Figure 8 shows the average frequency
distribution of all participants’ eye movement directions. Data were calculated using
three-factor ANOVA according to the six types of road combinations, the subtask
type, and the fixation direction. A significant difference was found for main effects of
the angular speed of fixation direction (F (1.27, 15.22)=89.9521,MSE=1537.8463,
ηp

2 = 0.8823, p = 0.0000). Furthermore, a significant difference was found (F (14,
168) = 5.0601, MSE = 41.3128, ηp

2 = 0.2966, p = 0.0000) for the interaction of
the subtask type and fixation direction. Compared to driving without a subtask, the
fixation with mental arithmetic had a lower frequency in the left and right directions,
but a higher frequency was found in the up/right, up, and down directions. Compared
with no subtask andwithmap recall, a lower frequency was found in the left and right
directions with map recall, but the frequency was higher in the up/right, down/left,
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and down directions with map recall. For subtasks between driving with mental
arithmetic and driving during map recall, the frequency of traveling direction was
higher in the up/right direction.
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4 Discussion

We investigated the influence of mental arithmetic and map recall on eye move-
ment and driving performance. Each task weakened driving ability, increased driver
burden, and altered eye movements.

Brake reaction times were longer for map recall than for driving without a subtask
and driving with mental arithmetic in response to the sudden appearance of a car or
pedestrian.When following a lead vehicle,memory tasks also increase brake reaction
times [28]. Compared to driving with no subtask, no significant difference in reaction
time was found with mental arithmetic during driving. This result demonstrates
that mental arithmetic does not affect a driver’s ability to brake, which differs from
other results [8]. This result may be true because of the lower difficulty of mental
arithmetic, such as ample time for thinking, which has a lower burden on participants.
Map memory had a strong effect, and drivers needed more time to slow. Under the
same subtask condition, brake reaction time was significantly different for different
incidents.

For all subtasks, brake reaction times to a car appearance on road S2 and a pedes-
trian appearance were longer than that to a car appearance on road S1. The brake
reaction time was shorter for narrow field of view intersections (Road S1). The
brake reaction time from a pedestrian appearance was longer than that from a car
appearance on road S1. One likely reason is that the participants did not anticipate
pedestrians entering into the road. Because of the narrow field of view for inter-
sections on road S1, participants may have had increased vigilance. In contrast, the
wide field of view intersections on road S2 may have resulted in decreased vigilance.
Although the participants could not estimate which intersections will have vehicles
suddenly entering the intersection, they understood that vehicles could only enter at
intersections. Pedestrians could enter the road at any point, which was unpredictable.
Therefore, the overall reaction time was longer when pedestrians entered the road.

The number of times rotating the steering wheel was higher for driving with
mental arithmetic and driving during map recall than for without-subtask driving.
Therefore, both subtasks increased driver burden, reduced driver attention to road
conditions, and increased actions for correct driving.

Furthermore, a significant difference was found between two different curved
roads, which suggested that driving on a more curved road was more difficult and
required more steering wheel maneuvers.

Eye movement was expressed as a frequency of distribution. Both subtasks
decreased eye fixation time, and eyes had more movement during with-subtask driv-
ing, which suggests that thinking or recall will increase driver burden and make it
difficult for a driver to fix on one point for long periods. However, the frequency
of the fixation time when driving during map recall was higher than with the other
subtasks in the 0.2–0.3 s time interval. The influence of map recall was stronger
than that of mental arithmetic. Recarte and Nunes [18] showed that fixation time was
longer during a spatial-imagery task. Therefore, an image-related task increases the
maximum fixation time, but the frequency of a long fixation time was not high.
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Angular eyeball speed was lower for driving with mental arithmetic and driving
duringmap recall.When drivingwithout a subtask, the distribution of angular eyeball
speedwas highest in the 0–30 deg/s speed interval, and subtasks further improved this
distribution. A slower angular speedmight increase the time to recognize pedestrians
or vehicles entering an intersection, which may increase brake reaction times. Wakui
and Hirata [26] showed a horizontal saccadic movement with a peak speed less
than 40 deg/s and at time intervals of less than 0.2 s increased while driving in an
inattentive state. Combining their results and ours, the frequency of fixation time in
the 0.1–0.3 s interval and travel speed in the 0–40 deg/s interval may be an important
indicator of the inattentive state.

Eye direction frequency was lower in the left/right directions and higher in the
up/down directions for mental arithmetic and map recall, which indicates that think-
ing or recall required the eyes to move frequently in the up/down directions. The
frequency of the traveling direction with map recall was higher than when driving
with mental arithmetic in the up/right direction. Subtasks increased driver burden
and reduced driver awareness in the left/right direction.

We found that map recall decreased driving ability, which suggests that mental
images impair real ones.Mental arithmetic andmap recall subtasks require numerical
analysis and comparison, and eye movements are produced throughout the whole
driving process.Whether eyemovements at intersections differ fromperiods between
intersections needs more investigation.
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Automatic Extraction of Passing Scene
Through Signalized Intersection from
Event Data Recorder During Night Time
and also Daylight

Mikuni Motoi, Haruki Kawanaka, Md. Shoaib Bhuiyan and Koji Oguri

Abstract Data from event data recorders (EDR) are used for driver education and
safety in Japan. Thus, dangerous driving behaviors of individuals such as failure
to stop at a red light are found out and are shown to the drivers from the video
images of EDR. In order to detect ‘the failure to stop at a red light’ automatically
from event data recorder images, ourmethod aims to extract passing scenes through a
signalized intersection. To extract passing scenes through a signalized intersection, it
is necessary to detect the positions of traffic light candidates in each frame. However,
the detection of traffic lightsmay be affected by various lighting conditions according
to weather and time. In this paper, we propose a method to automatically extract the
scene passing through a signalized intersection considering lighting conditions from
EDR. Experiments we conducted show that our proposed algorithm successfully
extracts the passing scene through signalized intersection.
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1 Introduction

An event data recorder (EDR) which can record not only when traffic accidents have
occurred but also throughout the driving is widely used nowadays. In Japan, for
example, education of safety driving for professional drivers of transport companies
is conducted using the video images thus obtained from EDR, which is equipped on
the trucks they drive [1].

During the course of driver education and safety, the EDR is first installed into
almost every truck, the video images are thus collected and managed in the video
storage of the transport control office. Next, scenes of dangerous driving such as
the failure to stop at a red light and the pedestrian interference are manually found
out from the collected data by the human analyst. At this time, the analyst must
find scenes of dangerous driving by visual observation of all the collected video
data. After that, the professional driver looks back on his or her own behavior of
dangerous driving from the found images approximately within a month. Individual
driver can thus grasp his or her own undesirable driving behavior and can improve
awareness of safe driving by taking advantage of own reflections.

To extract the scenes of dangerous driving behavior used for safe driving edu-
cation, visual analysis of the total number of images is required. However, it is too
difficult to manually find out the scenes of dangerous driving behavior, such as the
failure to stop at a red light, from EDR’s data which is usually for a very long du-
ration. This problem is one main reason why the EDR is not used widely for driver
education and safety. It is required to extract such scenes efficiently from the video
images of EDR. In order to detect ‘the failure to stop at a red light’ automatically from
EDR images, we propose a method to extract passing scenes through a signalized
intersection. Finally, we demonstrated the effectiveness of our proposed method by
conducting an experiment and evaluated the accuracy.

2 Definition of Extraction Subject

The failure to stop at a red light is judged when a vehicle enters the intersection when
the traffic light is red, not otherwise. Therefore, it is important to knowwhether traffic
signals are visible or not. Figure 1 shows the definition of a passing scene through a
signalized intersection. The start point of the extraction period is defined as a frame
in which the traffic signal has become visible and a stop line on the road does not
exist. The final point of the extraction period is defined as a frame where the traffic
signal has been shifted and disappeared.

By this definition, it is assumed that the traffic signal is visible in the image
frames while one’s own vehicle passes through the intersection. Thus, we detect
traffic signals in order to extract a passing scene through an intersection and evaluate
the color of the traffic light.
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Fig. 1 Definition of a passsing scene through a signalized intersection

3 Detection of Traffic Signal Candidates

3.1 Previous Study to Detect Traffic Light

Color and shape of traffic signals varies from country and area. For example, traffic
signals in USA are mostly arranged in vertical direction, while most traffic signal-
s are arranged in horizontal direction in Japan. Comparing traffic lights, size and
brightness, traffic lights of USA are often smaller, and brighter than those of Japan.

Appearance of traffic lights also differ with time. Figure 2a shows an example of
a traffic light in the daytime. Figure 2b shows it in the night time. When comparing
daytime images with night time images, the spreading and appearance of traffic lights
are different. Becausemost of the EDR’s camera has automatic gain control function,
the lighting area of the traffic light in the night time gets overexposured and the traffic
light color extends to surrounding area, making it difficult to distinguish whether an
arrow signal is present or not and to recognize the direction of the arrow as shown
in Fig. 2.

Using a high dynamic range (HDR) camera may be an alternative solution for
handling the halation, and some methods to recognize traffic lights using a HDR
camera have been proposed [2, 3]. For example, it is actually used as a camera for
an autonomous driving and an automatic braking system. However, since the EDR
is not for detecting objects but for recording video images, the EDR usually does

(a) Daytime (b) Night time (c) Traffic light with arrow

Fig. 2 Traffic lights of Japanese style
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not consist of a HDR camera. Complex background in the image also makes traffic
light recognition difficult. In daytime, objects such as advertising sign and billboards,
which have similar color as traffic lights, easily add to false positive detections. In
night time, surrounding neon signs and the tail lamps of preceding vehicles easily
adds to false positive recognitions.

To solve problems mentioned above, many traffic light recognition methods have
ever been proposed. In general, features used to detect a traffic light are often obtained
from the standard of a traffic light. Researchers are frequently focused on the shape,
aspect ratio, texture or size of detected objects. Circle and ellipse features are used
to detect traffic lights [4–6], and radial symmetry transform is used to recognize a
traffic light shape [7]. After detecting shape features, the object tracking is used to
reduce false positive [8, 9]. In night time, traffic light recognition has been realized
by color and shape features [10], especially spot shape feature has been used to
recognize traffic lights [11, 12]. Although shape features such as circle, ellipse, spot
and radial symmetry are useful for traffic light detection, these features are too simple.
Therefore, they do not work well in images having complex background in daytime
and lighting objects in night time.

Color features are used for traffic lights recognition [4–6, 8, 9, 13, 14], and se-
lecting color space is important to obtain good recognition results. And, the multiple
exposure is used for the halation problem [15]. However, in Japan, the traffic light
color differs by a type of light source such as a lightemitting diode (LED) and an
incandescent lamp. Additionally, in case of LED traffic lights, the traffic signals
sometimes light out in the EDR’s images because the traffic light is blinking at either
120Hz or at 100Hz in Japan. One other reason is the Japanese traffic regulations
where a flashing red light means an instruction to temporarily stop. These make the
extraction of passing scenes through signalized intersection more difficulty. There-
fore, we also must detect blinking signals adaptively.

3.2 Detection of Traffic Signal Candidates in the Daytime

In each frame of the EDR video image, the position of the traffic signal candidate
is detected using the Haar-like features and the Adaboost algorithm. The Adaboost
which is used for visual object classification using the Haar-like features has been
proposed by Viola & Jones for face and pedestrian detection [16]. And some re-
searchers proposed a method to detect traffic signal areas in the frame image [17].
The method using the Adaboost has the advantage of being able to detect objects at
a high speed with higher accuracy in various environments. As shown in Fig. 3, the
traffic signal candidates are detected by the Adaboost with the Haar-like features.

For learning of the Adaboost classifier, some traffic light images are cut out from
various video images recorded by EDRs. The training data consists of sample images
of a traffic signal that we call ‘positive image’ which is scaled to the same size of
another image that we call ‘negative image’ which is arbitrary image of the same
size.
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Fig. 3 Detection of traffic signal candidates in the daytime

The traffic signal candidates are detected by applying the Adaboost algorithm
based on the Haar-like features. However, false positives could not be filtered out
because there are a few visual features that represent traffic lights in terms of the
Haar-like features. In addition, when we detect the failure to stop at a red light
automatically from the passing scene through signalized intersection extracted by
our proposed method, recognition of the traffic light color is necessary. Thus, we are
going to recognize traffic light color using color features of traffic signals and divide
the traffic signal candidates into two groups, traffic lights and those other than traffic
lights.

RGB components in original images may be affected by various illumination con-
ditions such as RGB components that change nonlinearly according to surrounding
light conditions, and it is hard to determine a specific color range for each color.
Therefore, many researchers make conversion from RGB to HSV color spaces [18],
HSI color spaces [19], La*b* color spaces [20] and YCbCr color spaces [17, 21]. In
this paper, we use HSI color spaces [22] to analyze colors of traffic light. At first, the
components of HSI space can be transformed from RGB spaces. A number of sam-
ples are extracted from several different images in order to determine the boundaries
of HSI for green, yellow and red signals. Green, yellow and red pixels are selected
manually in each samples. The analysis of distributions of hue, saturation, and inten-
sity provides nine conditions. Therefore, we set up three segmentation formulations
based on the following rules:

bg(u, v) =
{
1 if cond(Hg) ∩ cond(Sg) ∩ cond(Ig)

0 otherwise
(1)

by(u, v) =
{
1 if cond(Hy) ∩ cond(Sy) ∩ cond(Iy)

0 otherwise
(2)
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br (u, v) =
{
1 if cond(Hr ) ∩ cond(Sr ) ∩ cond(Ir )

0 otherwise
(3)

where, let Hg , Hy , Hg be hue of each color, and Sg , Sy , Sr be saturation of each color,
and Ig , Iy , Ir be intensity of each color, and cond() be segmentation condition for
extracting each color component of traffic light.

After three segmentation, we obtain three binary images bg(u, v), by(u, v) and
br (u, v) that describes the existence of green or yellow or red respectively. Figure 4
shows binary images of some sample images obtained by segmentation of HSI col-
or space. Green components are extracted from bg(u, v), yellow components are
extracted from by(u, v) , and red components are extracted from br (u, v).

We use white pixels extracted as each color feature. However, it is not always
possible to extract suitable pixels effectively as shown in Fig. 4. Because various
environments easily affect the color of a traffic signal candidate, there are caseswhere
white pixelswere not extracted in intended area andwherewhite pixelswere extracted
in an unintended area. Thus, a simple thresholding can not work well to narrow down
the traffic signal candidates. Therefore, color information of traffic signals grabbed
in various environments in advance are learned and used for recognition of the traffic
light. We prepared a training dataset by manually extracting the traffic signal regions
from various images of EDR and performed a machine learning technique for the
color of the traffic signal. The algorithm is a multiclass classifier with the Random
Forests [23] to distinguish them into four labels such as green light, red light, yellow
light, and other than traffic lights. In order to effectively extract features and use
information of the lighting position, we determine a specific area in which we extract
features. Figure 5 shows the specific area on each binary image and featuresηg ,ηy and
ηr extracted from the specific area. The specific area of bg(u, v) is surrounded by a
green rectangle, and the specific area of by(u, v) is surrounded by a yellow rectangle,
and the specific area of br (u, v) is surrounded by a red rectangle. In addition, color
features ηg , ηy and ηr are given by the following Eq. (4) for each specific area, and
the green component ratio ηg , the yellow component ratio ηy , and the red component
ratio ηr are obtained respectively by

Fig. 4 Binary images obtained by segmentation of HSI color space
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Fig. 5 Specific area on each
binary image and extracted
features
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where,wd and hd be the width and height of the traffic signal candidate. In this study,
we use ηg , ηy , and ηr as color features at Random Forest machine learning algorithm.

3.3 Detection of Traffic Signal Candidates in the Night time

The traffic lights usually have high brightness in the night time images. Therefore, all
the spots of high brightness are extracted as traffic signal candidates by brightness
segmentation. After a grabbed image as shown in Fig. 6 is gray-scaled, a binary
image b(u, v) is derived by Eq. (5)

b(i, j) =
{
1 if f (u, v) ≥ α

0 otherwise
(5)

where, let f (u, v) be the brightness at pixel (u, v) of the grayscale image, and α be
a threshold (e.g. α = 240). Figure 7 shows an example of the binary image for the
input image which is shown in Fig. 6.

After color segmentation, some scattered small blocks may be produced. In order
to eliminate scattered small blocks of candidate regions and to preserve the connected
regions more accurately, we apply expansion and contraction on the morphological
operation known as opening process to the aforementioned binary image. This op-
eration can connect nearby objects and smooth borders, but it does not significantly
change its size, so it can remove noise effectively.

After noise reduction, there may be some regions which is not a traffic signal. So,
we select appropriate regions by using shape features. When the car passes through
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Fig. 6 Input image contains several spots of high brightness

Fig. 7 Binary image showing spots of high brightness
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a signalized intersection, the traffic signals are located in front of the car. Therefore,
it is assumed that the shape of a traffic light is approximately circular in the image.
Thus, the regions that have irregular shapes should be filtered out. Here, circularity
is defined as circular shape index C such as Eq. (6).

C = 4π S

L2
(6)

where, let S be an area of the traffic signal candidate, and L be a length around
the spot of traffic signal candidate. If the shape is irregular and not circular then C
becomes close to 0. So, it is extracted as a traffic light candidate when C ≥ β (e.g.
β = 0.8). Figure 8 shows traffic signal candidates after the selection by circularity.

And then, the regions of traffic lights were extracted as rectangles for the machine
learning which is the next step in processing. Rectangular regions, which satisfy two
conditions consisted of the inclusion ratio (7) and the aspect ratio (8), are decided
for the regions of traffic lights.

1

wnhn

∑
u′,v′

b(u′, v′) = γ (7)

wn

hn
= δ (8)

where, let wn and hn be the width and height of the rectangle. The parameters are set
at γ = 0.31 and δ = 1.2 empirically based on the training images for the machine

Fig. 8 Spots of traffic signal candidates after selection by circularity
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Fig. 9 Rectangles of traffic signal candidate regions after screening based on rectangular conditions

learning. In addition, we decided that if an area of a rectangle is extremely large or
small then the area should be eliminated. Figure 9 shows the candidates of traffic
signals after screening based on rectangular conditions. The traffic signal candidates
are now surrounded by red rectangles.

Any brightness circular region other than traffic lights such as street lamps and
signboards, illumination of buildings would first be extracted as traffic signal can-
didates. Thus we are going to identify them using color features of traffic signals.
Because a color of a traffic signal candidate is easily affected by various illumina-
tions, a simple thresholding on each color channel can not work well to narrow down
the traffic signal candidates. Therefore, color information of traffic signals grabbed
in various environments in advance are learned and used for recognition of the traffic
light. We again prepared a training dataset by manually extracting the traffic signal
regions from various images of EDR and performed a machine learning technique
for the color of the traffic signal. The algorithm is a multi-class classifier with the
Random Forests algorithm to distinguish them into four labels such as green light,
red light, yellow light, and other than traffic lights. Dominant component for a red,
green and yellow light are extracted using color transform proposed by Ruta et al.
[24]. A simple color enhancement is provided by a set of transformations given
below in Eqs. (9), (10) and (11), and then the red-dominant component IR(x), the
green-dominant component IB(x) and the yellow-dominant component IY (x) are
respectively obtained by

IR(x(u, v)) = min(xR(u, v) − xG(u, v), xR(u, v) − xB(u, v))

s(u, v)
(9)
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Fig. 10 Candidate regions after Traffic light classification

IB(x(u, v)) = min(xG(u, v) − xB(u, v), xG(u, v) − xR(u, v))

s(u, v)
(10)

IY (x(u, v)) = min(xR(u, v) − xB(u, v), xG(u, v) − xB(u, v))

s(u, v)
(11)

where, let intensity valueswithRGBcolors at each pixel (u, v) in the traffic candidate
region be x(u, v) = [xR(u, v), xG(u, v), xB(u, v)] and a summation of all the col-
or components be s(u, v) = xR(u, v) + xG(u, v) + xB(u, v). In this study, we use
max(IR(x)), max(IB(x)), max(IY (x)), min(IR(x)), min(IB(x)), min(IY (x)) as color
features for each traffic candidate region using Random Forest machine learning al-
gorithm. The traffic light classification result of the aforementioned sample is shown
in Fig. 10. Traffic light candidate identified as a green traffic light is surrounded by
green rectangle, and traffic signal candidates identified as other than traffic signal is
surrounded by white rectangle.

4 Extraction of Passing Scenes Through a Signalized
Intersection

It is assumed that some traffic light is visible in the frame image while one’s own
vehicle passes through the intersection. However, there are cases where brightness
regions other than traffic lights are detected as traffic light candidates. Therefore,
we determine the passing scenes through a signalized intersection or not on the
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Fig. 11 Example of extraction result of passing scenes through a signalized intersection

assumption that the traffic light should be continuously detected, and extract a scene
under the conditions that the detection number of traffic signal candidates in each
frame is one or more while traffic signal candidates are continuously detected over
seven frames in test data. In this way, an extracted example is shown in Fig. 11. This
Figure represents the number of detections of traffic light candidates for each frame.

5 Experiment

The experiments have been performed to evaluate the extraction accuracy of our
proposed method. Detection of traffic light candidates for all frame and extraction
of the passing scene through a signalized intersection were performed, then we
evaluated the performance of our proposed method.

We applied the detection method of the traffic light in the daytime to the images
captured between 5 AM and 7 PM, and applied the detection method of the traffic
light in the night time to the images captured between 7 PM and 5 AM.We extracted
the passing scenes through a signalized intersection from video images which were
recorded by EDRs for a duration of about 330 min (daytime: about 180 min, night
time: about 150 min) while three human drivers, both male and female. The total
number of the passing scenes included in the video was 355 (daytime: 184, night
time: 171). The frame rate of test videos is 30 fps and the size of each image frame
was 1920 pixels by 1080 pixels. All the traffic lights that should be detected by
the proposed method were restricted to horizontal signals and we excluded vertical
traffic signals during this experiment.

In daytime images, we determined a narrow color range for each color because
a low exposure image is used for color segmentation. Experimental parameters of
Eqs. (1), (2), and (3) were given below in Eqs. (12–20).
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cond(Hg) : 150 < Hg < 200 (12)

cond(Hy) : 10 < Hy < 15 (13)

cond(Hr ) : 60 < Hr < 80 (14)

cond(Sg) : 5 < Hr < 10 (15)

cond(Sy) : Sy < 20 (16)

cond(Sr ) : Sr < 60 (17)

cond(Ig) : 10 < Ig < 60 (18)

cond(Iy) : 10 < Iy (19)

cond(Ir ) : 80 < Ir < 100 (20)

In night time images, experimental parameterswere as follows.α = 240,β = 0.8,
γ = 0.31, δ = 1.2, minimum rectangle area had 396 pixels, maximum rectangle area
had 7664 pixels, and the number of continuous frames to be regarded as passing scene
was set to 7.

We evaluated the extraction accuracy of our proposed method by precision (posi-
tive predictive value) and recall (sensitivity). Precision means the ratio of the scenes
correctly extracted out of all the passing scenes through signalized intersection, while
recall means the ratio of the scenes that is truly a passing scene through signalized
intersection out of all the extracted scenes.

6 Results and Discussion

Table 1 shows extraction accuracy of passing scene through a signalized intersection.
As of experimental result, 180 of 184 passing scenes through a signalized intersec-
tion were successfully extracted from the daytime images and the precision of our
proposed method was 97.8% and the recall was 93.7%. 165 of 171 passing scenes
through a signalized intersection were successfully extracted from the night time
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Table 1 Extraction accuracy of passing scene through a signalized intersection

Time zone Precision Recall

Daytime (184) 97.8% (180/184) 93.7% (180/192)

Night time (171) 96.5% (165/171) 85.2% (165/193)

Total (355) 97.2% (345/355) 89.6% (345/385)

Table 2 Accuracy of traffic light recognition

Time zone Color Accuracy (%) Precision (%) Recall (%)

Daytime Green 100.0 100.0 100.0

Yellow 97.3 97.3 95.9

Red 93.7 97.0 97.2

Night time Green 98.9 99.0 97.9

Yellow 93.1 91.0 91.9

Red 93.2 96.0 87.9

images and the precision of our proposed method was 96.5% and the recall was
85.2%. Compared to the images captured at the daytime, the accuracy of the images
captured at the night time was slightly lower. The extraction failure of passing scene
through a signalized intersection were caused by undetected traffic signal candidates.
The accuracy of traffic light recognition is shown in Table 2.

In daytime images, green traffic lights, yellow traffic lights, and red traffic lights
showed high precision. Figure 12 shows results of some sample images correctly
recognized as the green light, yellow light and red light respectively and binary
images. Traffic lights affected by sunshine are recognized.

However, there are some false positives of yellow lights and red lights. The reason
why the accuracy of the red signal and the yellow signal is lower than the green signal
is the misidentification of the red light and the yellow light. Red traffic lights being
recognized as yellow light have yellow component in a frame. As shown in Fig. 13,
many white pixels were extracted as yellow component from br (u, v). Contrary to
this, many white pixels were extracted as red component from by(u, v).

As regards night time images, green traffic lights, yellow traffic lights, and red
traffic lights showed high precision as well as daytime images. However, the most
important factors with lower precision compared to daytime images are misiden-
tification between the red traffic light and the tail lamp. Furthermore, erroneous
identification of yellow traffic lights and street lamps is also one of the main fac-
tors of erroneous extraction. The feature values of red traffic lights and tail lamps
on max(IR(x))-min(IR(x)) are shown in Fig. 14. And the feature values of yellow
traffic lights and street lamps on max(IR(x))-min(IR(x)) are shown in the Fig. 15.
Figures 14 and 15 show that false positives are similar to a traffic light in terms of
color features. False positives are also similar to the traffic lights even in terms of
shape features. Figure 14 shows that color feature values of the traffic light with



Automatic Extraction of Passing Scene through Signalized … 45

Fig. 12 Result of some sample images correctly recognized

Fig. 13 Result of some samples of false recognition

arrows deviates from the range of the color feature values of the traffic light. This
happens because the lighted portion of the traffic light images captured at night time
overlap with the lighted portion of traffic lights with arrows. In experimental da-
ta, most traffic lights with arrows were undetected. It is necessary to discuss and
implement a method to detect the traffic lights with arrows in the future.
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Fig. 14 Tail lamps erroneously detected as red traffic light

Fig. 15 Street lamps detected as yellow traffic light
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Fig. 16 The kind of extracted scene and the ration of factor of an error in the daytime images

Fig. 17 The kind of extracted scene and the ration of factor of an error in the night time images

The kind of extracted scene and the ratio of factor of an error in daytime images
is shown in Fig. 16. And the kind of extracted scene and the ratio of factor of an error
in night time images is shown in Fig. 17. As shown Figs. 16 and 17, some scenes
while the car is stopped for a long duration in front of red lights were also extracted
as passing scenes through signalized intersection. In order to reduce such scenes, it
is necessary to identify whether one’s own vehicle is stopping or passing through a
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signalized intersection when the red light is on. If these identifications are realized,
it will be possible to detect the failure of a vehicle to stop at a red light automatically
from EDR data.

7 Conclusion

In order to detect the failure to stop at a red light automatically from EDR image
frames, we proposed a method to extract passing scenes automatically through a sig-
nalized intersection. First, traffic light candidates are detected. We propose different
methods for daytime and night time, because the detection of traffic lights may be
affected by various lighting conditions according to weather and time. Next, passing
scenes through signalized intersections were extracted. Experimental results showed
that the proposed method had high extraction performance.

A future work might be to reduce misdetection of traffic light candidates and
identifying whether one’s own vehicle is stopping or passing through a signalized
intersection while the red light is on.
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Collision Warning Strategies Using V2X:
An Analysis of How Motorcycles
and Bicycles Undergo Collisions

Tien-Pen Hsu, Wei-Lun Hsiao and Wan-Ching Ho

Abstract Connected vehicle technology which enables vehicles to communicate
with nearby infrastructure and other vehicles is on the verge of revolutionizing trans-
portation and vastly improving traffic safety. In recent years, many V2X systems
have been tested worldwide in various complex traffic conditions. For example, in
Taiwan, which typically can be characterized as a mixed flow heavy traffic envi-
ronment that includes passenger cars, bicycles and motorcycles, developing such a
V2X safety system becomes more complicated because these diverse vehicles have
unique characteristics with regard to dynamics, size, driver behavior and directional-
ity on roads, resulting in the complexity and variety of collision types. Insights into
the crash patterns of motorcycles and bicycles are needed before developing a V2X
collision warning system. For this reason, we analyzed the characteristics, accident
types and features of various vehicle types using accident and traffic video data. We
utilized accident statistics to identify critical collision patterns for each vehicle type.
In addition, video data were collected to investigate the trajectories and driver behav-
iors with regard to each type of vehicle. We also performed comparisons of collision
types and analyzed issues of system development for motorcycles and bicycles, the
V2X power supply problem of non-motorized vehicles and potential challenges of
issuing warnings in mixed flow traffic, etc.
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1 Introduction

In Taiwan, traffic typically includes a high percentage of two wheeled vehicles such
as motorcycles and bicycles. According to statistics on modal sharing in Taiwan in
2016, motorcycles accounted for 46%, almost twice that of passenger cars, of total
traffic while buses and bicycles only made up 9% and 4% respectively, as shown in
Fig. 1 [1]. These diverse vehicles form a special mixed flow traffic environment that
must be better understood to increase traffic safety.

Annual modal shares of motorcycles, passenger cars and bicycles are shown in
Fig. 2. From 2009 to 2016, the percentage of motorcycles and passenger cars held
steady with an average annual growth rate of–0.27% and 0.17% respectively, while
bicycles made up only–4.33%. Considering accidents per 100,000 population for
each mode, as shown in Fig. 3, casualties involving passenger cars and bicycles
per 100,000 population continued to increase at an average annual rate of 6.91% and
5.44%. On the other hand, those involving motorcycles rose between 2009 and 2014,
before finally declining in 2015.

Traffic safety is a critical issue. In Taiwan, approximately six people out of 23.5
million die daily in traffic accidents. In addition to the human suffering, according
to the Institute of Transportation of Ministry of Transportation and Communication
(MOTC), the economic damage resulting from traffic accidents each year in Taiwan
is estimated at $16 billion, which accounts for 3.1% of the GDP.

Due to the fact that motorcycle riders and cyclists are very vulnerable on the
road, scholars have been conducting related safety research and field trials on con-
nected vehicle collision warning systems which have been proven to have potential
to increase safety. Before these applications can be effectively utilized, collision or
crash types must be clearly defined. Pre-crash scenarios help researchers understand
how and why an accident occurred and how various vehicles withstood the accident.

Fig. 1 Modal share in Taiwan 2016
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Fig. 2 Modal share of main transportation modes in Taiwan

Fig. 3 Casualties per 100,000 population
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In the U.S., several such crash typologies have been developed, such as “44-crashes”
byGeneralMotors and “pre-crash scenarios” byU.S. DOT [2]. However, the first has
the shortcomings of limited data and difficulties replicating results when new data
sources are introduced. The second excludes multi-vehicle and some low-frequency
crash types and thus does not include all police-reported crashes [2]. Combing infor-
mation from both crash types, Najm et al. found a new type consisting of 37 pre-crash
scenarios involving at least one light vehicle which are then ranked by three qualities:
crash frequency, functional years lost, and economic cost [2]. For heavy vehicles,
they focused on a total of 37 pre-crash scenarios taken from the original 46. They also
employed the same three aspects used to analyze the light vehicle crashes mentioned
above [3]. Pre-crash scenarios were then used to assess potential safety applications
in V2I and V2 V communication systems [4, 5].

Although similar pre-crash scenarios may be effective for understanding numer-
ous types of traffic conditions, the causes, types of crashes and frequencies may vary
due to different traffic composition and road design. We will discuss these aspects
as they relate to Taiwan’s mixed traffic environment, which consists of over 60%
two-wheeled vehicles, including motorcycles and bicycles, and how to develop V2X
collision warning systems for such a complex environment.

The purpose of this paper is to investigate the collision characteristics of motor-
cycles and bicycles in mixed flow traffic. We analyzed this data to determine the
collision patterns for these two types of vehicles and how V2X technology might
one day help to prevent crashes and save lives.

2 Overview of Accidents Involving Motorcycles
and Bicycles

We collected crash statistics of total 31,293 records in Kaohsiung City in Taiwan
from 2013 to 2015 and performed an analysis on involved vehicle types, severity,
driver or rider’s age, and accident type to gain an overview of these crashes. Traffic
accident data included A1 (fatal), A2 (injury) and A3 (property damage).

2.1 Analysis of Types of Vehicles Involved

Table 1 shows the breakdown of the involved vehicles by vehicle type. Passenger car
drivers were most frequently at-fault, making up 50% of the total accident counts.
This is particularly serious when we note that the modal share of passenger cars was
only approximately 24% [6].

For motorcycle being an at-fault driver, the main victim vehicle type is motor-
cycle following by passenger car, the ratio between motorcycles and passenger cars
was approximately 2:1. When cyclists were at fault, we found that they mainly had
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Table 1 Breakdown of the involved vehicles by vehicle type

collisions with motorcycle riders followed by passenger car drivers. The ratio of
accidents between motorcycles and passenger cars was almost 2.5:1.

2.2 Severity Analysis

Figure 4 shows the statistics on the severity of motorcycle and bicycle accidents.
For motorcycle involved accidents, the percentage of A1, A2 and A3 accidents were
0.3%, 91.8% and 7.9% respectively; for bicycle accidents, the percentage of each
severity level was 0.6%, 94.5% and 4.9% respectively. Generally speaking, acci-
dents involving bicycles entailed a higher severity of injuries than those involving
motorcycles [1.1].

2.3 Statistics on Drivers’ Ages

As seen in Fig. 5, the perpendicular line represents drivers who are 18-years old (the
minimum age to get a driver’s licence for cars and motorcycles in Taiwan). The peak
age for motorcycle accidents was 19. Interestingly, we found a sudden drop until age
26, then a gradual decline. Therefore, compared to drivers of passenger cars, there
were more underage motorcycle riders. Unlike motorcycle riders, for cyclists, there
are two peaks in the curve. In the first, the highest peak of accidents occurs at age
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Fig. 4 Statistics on severity of motorcycle and bicycle accidents

14, After this age, the chance of causing an accident drops steeply until age 22, then
it slowly increases until the second peak which is approximately at age 72 [6].

2.4 Statistics on Collision Type

Statistics on collision types at signalized intersections, non-signalized intersections
and road section and a breakdown of at-fault and victims by vehicle types are shown
in Tables 2, 3 and 4. Angled collisions were the most common type for all vehicles
at both signalized and non-signalized intersections. Right angle collisions were the
second most common which involved motorcycles and bicycles. Rear end collisions,
were the most frequently occurring accidents between two passenger cars in signal-
ized intersections. Angled collisions were also found to be most common for riders
of two wheeled vehicles as they may be more likely to violate traffic laws by making
unsafe turns. Generally, we found that rear end and sideswipe collisions frequently
occurred in road sections between two different vehicle types. These two collision
types happen because of speed differences when drivers of faster vehicles try to pass
those that are slower. Sideswiping occurs most frequently either when motorcycle
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Fig. 5 Statistics on driver’s or rider’s age

riders attempt to weave in and out of fast moving traffic or when cyclists ride between
rows of slow moving or stopped motor vehicles.

In the above analysis, we decided not to split angled collisions into right/left turn
with through, right/left turn opposing through and so on due to the limited data. We
provide detailed analysis later that includes diagrams of these types of accidents.

The collision type analysis above provides an overview onmotorcycle and bicycle
accidents. Now, we will look more closely at this phenomenon. Motorcycle riders
and cyclists are particularly vulnerable to angled collisions, right angle collisions,
read end and sideswiping. Angled collisions can be further categorized in terms of the
following scenarios. 1. If the involved vehicle was turning left, right or going straight
2. If the two involved vehicles were headed in the same direction, opposite directions
or at an angle. 3. If the collision occurs on the roadwayor at an intersection. Therefore,
detailed collision type data should be collected in order to gain more insight into the
most common collision types involving the most vulnerable motorists.

3 Analysis of Accidents Involving Motorcycles and Bicycles

In this section, we discuss detailed data and video accounts, particularly from Kaoh-
siung and Taipei City using an accident data base and videos of accidents.
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3.1 Motorcycle Accident Analysis

Figure 6 shows the statistics on motorcycle accident types in Kaohsiung City in dan-
gerous intersections. Angled collisions are separated into vehicles headed straight,
turning right/left and left turn opposing through. The top threemost common accident
types for motorcycles are “through with right,” “right angle” and “left turn opposing
through.” From the accident location analysis, shown in Fig. 7, approximately 60%
of all collisions occur at intersections, and 42–45% of this type are angled collisions,
while 12–23% of them are right angle collisions [7–9].

For example, Fig. 8 shows the crash trajectory of an accident in which the involved
vehicles are turning right at the intersection, which was collected using real accident
video. From the figure, it is clear that a car is turning right from the inner lane,
and the car next to it is slowing down in response. However the motorcycle rider
next to the car fails to see the car turning right on its left-hand side. Therefore, the
motorcycle rider keeps going straight. On the other side, the driver that is turning
right recognizes that the car on the right-hand side is slowing down and speeds
up to pass through the intersection. However, the visibility of the motorcycle rider
is blocked by the car, so it causes the two vehicles to collide. This is a common
problem since many motorcycle riders tend to keep right on the road. Accidents
occur when a car in the middle slows down; however, at the same time the driver who
is turning and the motorcycle rider don’t see each other and maintain their original
directions. Figure 9 illustrates another example of visibility problems regarding left
turn opposing through. Visibility problems in non-signalized intersections cause
right angle collisions to occur when cars are queuing and lane splitting motorcycles
and bicycles collide with vehicles from adjacent approaches, as shown in Fig. 10.

Fig. 6 Statistics on types of motorcycle accidents
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Fig. 10 Examples of right angle collisions caused by motorcycle riders and cyclists

In signalized intersections, the main contributing factor to right angle collisions is
related to inter-green time.

The tendency of motorcycle riders to lane split greatly increases the incidences of
sideswiped collisions.However,most of these involvingbicycles occurwhenvehicles
overtake them, whilemost sideswipe collisions involvingmotorcycles happen during
lane splitting when a motorcycle rider attempts to overtake a car or when a car
attempts to overtake a motorcycle.

3.2 Analysis of Accidents Involving Bicycles

Figure 11 shows the statistics on bicycle accident types in Taipei City. Compared
to motorcycles, bicycles tend to be involved in more types of collisions because
cyclists can ride either on the street, in the bicycle lane or on the sidewalk. Right
angle collisions are by far the most prevalent, accounting for up to one fourth of
all accidents, which is followed by sideswiping. From the accident location analysis
shown in Fig. 12, approximately 60% of all collisions occur at intersections, and
33–37% of those are angled collisions, while 26–39% are right angle collisions.

The most frequent type of angled collision for cyclists is “through with left.”
Interestingly, this is the least frequent type for motorcycles. It is most likely to occur
at signalized intersections when a car turning left hits a cyclist crossing on the far side
of the intersection, shown in Fig. 13. At non-signalized intersections, since cyclists
tend to ride in the right-hand side of the street, more crashes happen when a cyclist
turning left collides with a motorcycle rider or car going straight, as shown in Fig. 13,
picture 2. There are some scenarios that exclusively affect cyclists because they can
cross the street in two directions on a bicycle crossing and, furthermore, can either
ride in the street or in the cross walk. These scenarios are shown in Fig. 13, i.e. “A”
in picture 1, “B” in picture 3 and picture 4.
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Fig. 11 Statistics on types of bicycle accidents

4 Comparison of Motorcycle and Bicycle Accidents

Motorcycles and bicycles have different collision patterns because they have distinct
operating speeds, acceleration performance, traffic laws and locations on the roads.
These differences and corresponding collision types are summarized below:

1. Bicycles are slower than motorcycles, which increases the possibility of them
becoming involved in “rear end” and “sideswipe” collisions. Both of these vehi-
cles occupy the right lane, so they aremore likely to be rear ended and sideswiped
than cars, as illustrated in Table 4. Sideswipe type accidents occur with motor-
cycles during lane splitting either when the rider attempts to pass a car or a car
attempts to pass the motorcycle rider, as shown in Table 4.

2. Motorcycles are involved in a higher percentage (7.6%) of “rear end” collisions
at signalized intersections compared to bicycles (3.5%), as shown in Figs. 7 and
12.

3. Motorcycles and bicycles usually stay in the right lane. Cyclists will keep to
the right regardless of which direction they are headed, which will increase the
possibility of “through with left” accidents in non-signalized intersections, as
shown in Figs. 6 and 11, in which 4.6% is all motorcycle-related accidents, and
7.8% is all bicycle-related accidents.

4. Because motorcycles and bicycles are smaller than other vehicles, they are diffi-
cult to see in traffic. When riders are in the right lane, “through with right” and
“left turn opposing through” accidents are much more likely. Particularly when
cars are lined up at a red light, the motorcycle rider may try to lane split and
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cross the line of vehicles from the adjacent lane which would be likely to cause
a “sideswipe”collision.

5. Unlike cars and motorcycles, bicycles don’t have bright headlights to warn other
vehicles when they are approaching the intersection, which will also increase the
risk of a “right angle collision” at a non-signalized intersection at night or in the
early morning. This would increase the likelihood of having a “right or left turn
into path” crash with merging vehicles.

6. Bicycle traffic laws fall somewhere between those for motor vehicles and pedes-
trians. When an intersection has no signal exclusively for cyclists, they should
obey signals for motorized vehicles. However, if the signal timing-clearance time
was designed with motorized vehicles in mind, it will be not be long enough for
a bicycle. This situation may cause a “right angle collision” of a bicycle with a
motor vehicle. On the other hand, because there are usually no laws regarding
riding direction while a cyclist crosses an intersection, this situation may cause
a “right turn opposing through” bicycle accident, a “through with left” collision
in a crosswalk or a “right angle collision” in both the near side or far side of the
pedestrian crossing.

7. Bicycles are slower and have more flexibility in changing direction than drivers
of motorized vehicles; therefore, bicycle traffic is often more unpredictable com-
pared to motorized vehicles. However, cyclists are faster than pedestrians and
their trajectory is also unpredictable. Drivers will not have time to react and will
collide with the bicycles.

8. Motorcycle riders and cyclists are more likely to violate traffic laws by riding
in the wrong direction, especially on minor roads or small alleys, which makes
their route of travel unpredictable for approaching vehicles.

5 Motorcycle and Bicycle Crash Scenarios

According to the above analysis, we will discuss some common motorcycle and
bicycle collision scenarios regarding the possible application of V2X technology for
enhancing the safety that are illustrated in Table 5.

6 Conclusions and Suggestions

According to the statistical data, most accidents occur when motorcycle riders and
cyclists collide with other motorcycles and passenger cars; therefore, both are more
likely to be a victim rather than an at-fault driver. According to modal share, with the
ratio of motorcycle riders and passenger cars being 2:1 on the road, most motorcycle
accidents occur when a motorcycle collides with a passenger car, and most bicycle
accidents occur when a cyclist collides with a motorcycle. In general, accidents
involving cyclists have a higher death rate thanmotorcycle accidents. Themost severe
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Table 5 Common Motorcycle and Bicycle Crash Scenarios

Collision type Scenarios Description

Left turn with
through

Bicycle riders tend to be in
the right lane. A cyclist
turns left while in the right
lane and hits a motorcycle
to his or her left
Location:
Unsignalized intersection

Left turn with
through

A car turns left while in
the right lane and hits a
motorcycle to its left or a
cyclist riding in a cross
walk in the opposite
direction
Location:
Signalized intersection

Left turn opposing
through

Motorcycles and bicycles
are smaller which makes
them harder to see in
traffic
A car turns left and hits a
motorcycle or bicycle
coming from the opposite
direction
Location:
Signalized intersection
Non-signalized
intersection

(continued)
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Table 5 (continued)

Collision type Scenarios Description

Left turn opposing
through

Cars that are lining up to
turn left in the opposite
direction form an
obstruction between the
cars turning left and the
other vehicles headed in
the opposite direction
A car turns left and hits a
motorcycle and a bicycle
on the roadway or cross
walk
Location:
Signalized intersection

Right turn with
through

A car turns right and hits a
motorcycle and bicycle on
its right. The conflict point
could be on the roadway
(slow traffic lane–the
exclusive motorcycle lane)
or at the crosswalk
Location:
Signalized intersection

(continued)



72 T.-P. Hsu et al.

Table 5 (continued)

Collision type Scenarios Description

Right angle collision A car or motorcycle at the
onset of yellow or the
beginning of a red light
fails to pass through the
intersection and causes a
right-angle collision on its
right side
Location:
Signalized intersection

Right angle collision Cars lining up to turn form
an obstruction between
vehicles on minor and
major roads. A car going
straight or turning left
from a minor road, hits a
motorcycle or bicycle
from the adjacent
approach
Location:
Unsignalized intersection
with signalized
intersection ahead

Right angle collision Buildings on the corner or
parked cars form an
obstruction between two
minor roads. A car going
straight or turning left
from a minor road, hits a
motorcycle or bicycle
from an adjacent road
Location:
Unsignalized intersection

(continued)
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Table 5 (continued)

Collision type Scenarios Description

Right angle collision A car or motorcycle turns
right from a minor road,
hits a bicycle in the
crosswalk from the right
Location:
Unsignalized intersection

Rear end-in the
intersection

A car or motorcycle hits
another car or motorcycle
that is stopped while
waiting for the light to
change
Location:
Signalized intersection

(continued)
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Table 5 (continued)

Collision type Scenarios Description

Rear end-in the
intersection

A car or motorcycle rear
ends a bicycle when
attempting to pass it
Location:
Section

Sideswipe A car or motorcycle
sideswipes a cyclist when
attempting to pass it.. A
motorcycle rider collides
with other vehicles when
lane filtering
Location:
Section

type of motorcycle accidents are angled collisions, right angle, and sideswipes and,
not surprisingly, these types are most severe for accidents involving bicycles. Right
angle collisions are frequent for both motorcycles and bicycles. The lane splitting
ability of motorcycle riders at high speed, their small size and speed difference from
bicycles and other motor vehicles are the key factors that cause these accidents. The
V2X system can be utilized to help drivers be aware of other vehicles, which is very
beneficial in traffic situations in which motorcycles and bicycles are often obstructed
by other vehicles. This technology includes displaying a warning message to the
driver, as well as personal information via the on-board unit. It can also provide
warning information to all approaching vehicles, as illustrated in Fig. 14.
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Fig. 14 Warning sign
example (designed proposed
in this study)

The efficacy of theV2X andwarning system inmixed flow trafficwith a high num-
ber of motorcycle riders and cyclists requires further study. For example, researchers
must identify the warning threshold and how to filter out unnecessary warning mes-
sages. In other words, the drivers must be provided only with critical information and
not be overwhelmed with extraneous data that might distract them and jeopardize
their safety.
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Assistive Devices for Safe Driving
at a Crossing with No Traffic Lights
Using 920 MHz Band

Shintaro Uno

Abstract V2I, a new system using 920MHz band requiring lower power consump-
tion and costs is introduced as an assistive device to reduce crushes at small-scale
crossings without traffic lights. A prototype of this new V2I system was made.

Keywords V2I · 920 MHz · Safe driving

1 Introduction

In Japan, about one-third of the traffic accident cases occur at crossings [1]. Approx.
40% of them happen at small crossings without traffic lights [2], so, there is a critical
need for preventing crushes at such crossings. Dedicated Short Range Communi-
cation (DSRC) with 5.8G band [3] and the 760 MHz band V2X system [4] whose
PHY and MAC layer are based on IEEE802.11p [5] have already been developed
usingV2I system andV2V system to lessen crushes at crossings. In addition, Driving
Safety Support System (DSSS) using optical beacon is also being developed [6].

However, these are targeting mainly large-scale crossings with traffic lights rather
than small-scale crossings. Moreover, their power consumption and equipment costs
are relatively high. To reduce crushes at minor crossings with no traffic lights, we
propose a new V2I system using 920 MHz band of short-distance wireless whose
power consumption and equipment costs are relatively low. 920MHzband is included
in the ISM band in Japan, and it is planned to be used for Home EnergyManagement
System (HEMS) [7] and ZigBee IP [8]. The communication range of 920 MHz is
longer than the other short-distance wireless such as ZigBee [9], and the diffraction
is better.

In this chapter, we introduce a new V2I protocol that alerts the driver in a car
approaching a crossing without traffic lights that another vehicle is approaching the
crossing from different sides, utilizing the 920 MHz communication module. These
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drivers may receive the alert at points even a bit far from the crossing. Several field
trials were conducted, and the effectiveness of this method was proved.

2 Related Work

In this section, several approaches to assist safe driving at crossings in Japan are
discussed; such as DSSS, DSRC, 760 MHz and ASV. Moreover, trends in such
approaches in the U.S. and Europe are also referred.

2.1 DSSS

DSSS shown in Fig. 1 [10] is used to expand the Vehicle Information and Commu-
nication Systems (VICS), with which a driver can recognize that another vehicle is
approaching to the crossing by means of optical beacon. However, DSSS can only
be applied to large-scale crossings.

2.2 DSRC

DSRC expands the functions of Electronic Toll Collection (ETC) in 5.8G band.
Figure 2 shows a view of an experiment using vehicle-to-vehicle communication to
avoid crushes at a crossing. The antenna installed on a vehicle is shown in Fig. 3

Fig. 1 Avoidance of crushes
at crossings with DSSS
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Crush at a crossing

Fig. 2 Experiment using vehicle-to-vehicle communication byDSRC to avoid crushes at a crossing

V2V experimental antenna
(5.8 GHz)

Fig. 3 Antenna on a vehicle
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[11]. Vehicle-to-vehicle communication is considered to be easily realized. However,
it is not that effective at a crossing with poor visibility. A system using vehicle-to-
infrastructure communication to avoid crushes at crossings is also being studied,
which is applicable only for large-scale crossings.

2.3 760 MHz

The system supporting safe driving using 760MHz was standardized as ARIB STD-
T109 in Japan, and part of the system is already commercialized. A safe-driving
assistance system using vehicle-to-vehicle communication is shown in Fig. 4 [12].
A system using vehicle-to-infrastructure communication in 760 MHz is also under
development. Figure 5 shows an antenna for vehicle-to-infrastructure communication
set at a large-scale crossing in Japan. There, relatively high equipment costs and
power-consumption are required [13].

2.4 ASV

Advanced Safety Vehicle (ASV) [14] is a vehicle on which the equipment to avoid
crushes using themillimeter-wave radar is installed. It is partly commercialized. This
is quite effective against forward collisions, however, not able to cover all the crushes
at a smalls-scale crossing with poor visibility.

Fig. 4 Safe-driving assistance using vehicle-to-vehicle communication with 760 MHz
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Roadside equipment
(760MHz antenna)

Roadside equipment
(sensor)

Fig. 5 An antenna of vehicle-to-infrastructure communication with 760 MHz and a sensor

2.5 Trends in the U.S. and Europe

In the United States and Europe, the DSRC vehicle-to-infrastructure communication
system and the vehicle-to-vehicle communication system using 5.9 GHz band are
being examined for crushes at crossings. IEEE802.11p/1609.4 and ETSIES202663
are standardized in the United States and Europe, respectively. ARIB STD-T109
using 760MHz band in Japan [15] is based on IEEE802.11p.However, the frequency
and channels used differ from the ones used in Japan.

3 920 MHz Communication Module

As described above, 920 MHz has a lot of advantages such as the long-distance
coverage and enough diffraction comparing with 2.4 GHz band. In Japan, while
920 MHz band is planned to be used for HEMS and ZigBee IP, it is hardly used for
ITS. In this study, to decrease crushes at small-scale crossings with no traffic lights,
we developed a new application protocol using 920 MHz communication module
[16] whose PHY is 802.15.4d and MAC is based on IEEE 802.15.4 as shown in
Fig. 6. The application software is realized on a PC connected to a 920 MHz module
via the interface board shown in Fig. 7. The power consumption is under 120 mVA.
The cost is cheaper than the module of DSRC.
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Fig. 6 920 MHz
communication module

Fig. 7 Interface board

4 System Configuration and Protocol Flow

4.1 System Configuration

Figure 8 shows the system configuration of the vehicle equipment, roadside equip-
ment, and control equipment. The vehicle equipment is set at the dash-board of a
vehicle and some pieces of road equipment are set along the roads respectively. The
control equipment is placed near the center of the crossing.

The basic flow is as follows.

1. Vehicle equipment of a car searches/finds a device set in the roadside equipment
by comparing RSSI.

2. When the devicewith the highest RSSIwas selected, the vehicle equipment sends
data to that device, notifying the vehicle is approaching the crossing along the
road.

3. The roadside equipment sends the data to the control equipment via some pieces
of road equipment. The control equipment sends the crossing information to
all the pieces of roadside equipment, notifying the vehicle is approaching the
crossing from which road.
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: Vehicle equipment

Roadside equipment

Control equipment

: 920MHz radio

Fig. 8 System configuration

4. The roadside equipment sends the crossing information to the vehicle equipment
of vehicles approaching the crossing.

5. Aviewof an approaching vehicle pops up on themonitor of the vehicle equipment
to tell each driver from which road other vehicle is coming.

6. When the vehicle passes the crossing and the vehicle equipment finds the roadside
equipment set at the different road, the vehicle equipment sends the notification
that the vehicle has left the crossing.

7. The data is sent to the control equipment, and it sends the crossing data with no
information of the vehicle which has left the crossing.

8. The roadside equipment sends the data to the vehicle equipment, and the view is
gone.

4.2 Protocol Flow of the Vehicle Equipment
and the Roadside Equipment [17, 18]

Protocol flow of the vehicle equipment and the roadside equipment are shown in
Figs. 4 and 5 respectively. In Fig. 9, the interval of searching the device in the
roadside equipment is set at 500 ms. When the vehicle equipment finds a certain
device with the highest RSSI twice in a row, that device is the one to be selected.
Since 920 MHz has enough diffraction, the vehicle equipment may find the device
with the highest RSSI that is included in a piece of roadside equipment on different
roads, not only the one closest to the vehicle. To avoid any error in finding the proper
device, it is designed to find the one with the highest RSSI consecutively twice.
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Start 

Finding Device

Device to be selected   To select the other 
device of the other road  

by comapring RSSI

End

To send no fica on 

To receive crossing informa on

To send  no fica on 

To restart to find device

To complete  to receive
crossing informa on

Fig. 9 Protocol flow of vehicle equipment

After selecting the device in the roadside equipment, the vehicle equipment sends
the data of notification to the device in the roadside equipment and starts finding
another device in the roadside equipment again. Figure 10 shows the protocol flow
of the roadside equipment where the data is sent to the control equipment or to the
vehicle equipment.
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Fig. 10 Protocol flow of roadside equipment
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Fig. 10 (continued)
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5 Miniaturization

Vehicle equipment and roadside equipment were miniaturized as shown in Figs. 11
and 12 using 8-bit microcomputer. The roadside equipment is installed in a water-
proof case as shown in Fig. 12.

Fig. 11 Miniaturization of vehicle equipment

Fig. 12 Miniaturization of roadside equipment
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6 Field Trials and Evaluation

6.1 Field Trials

After developing the software based on the protocol flow in Figs. 9 and 10 using the
920MHz communicationmodule shown in Fig. 6, several field trials were conducted.
The conditions of the field trials were as follows.

The spotswhere the field trialswere heldwere two types of small crossingswith no
traffic lights. The control equipmentwas set near the center of the crossings, and three
pieces of roadside equipment were set along the roads, respectively. Two vehicles
approached each crossing from the different sides as shown in Fig. 8. The distance
between the control equipment and the roadside equipment or between each piece of
the roadside equipment was from 20 to 40 m. The height of the antenna was 1.0 m
for the roadside equipment, and 0.8 m for the vehicle equipment. The speed of the
vehicles was about 30 km/h. The transmission power of the 920MHz communication
module was 10 mW. The view of vehicle equipment is shown in Fig. 13.

The field trials were conducted three times. The results are shown in Table 1.

Fig. 13 View of vehicle equipment

Table 1 Results of field trials

Number of trials Number of success Success rate
(%)

System delay

Trial 1 13 12 92 299–688 ms

Trial 2 10 8 80 292–760 ms

Trial 3 25 24 92 –
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Fig. 14 View of roadside equipment

The definition of “Success” in Table 1 is as follows.

– Trial 1 and Trial 2: The on-board monitor displayed the approaching vehicle at
130–150 m before the crossing. The distance between each piece of the roadside
equipment is 40 m.

– Trial 3: Themonitor displayed the approaching vehicle at 70m before the crossing.
The distance between each piece of the roadside equipment is 20 m.

– Every trial: The display was gone after the vehicle had passed the crossing.
Trial 3 was conducted with the miniaturized roadside equipment shown in Fig. 12
and the vehicle equipment shown in Fig. 11. Figure 14 shows the view of roadside
equipment, and Fig. 15 shows the view of field Trial 3. The measured packet error
rate was below 10−2.

6.2 Evaluation

According to the trial results, we confirmed that this method was effective at small-
scale crossings with no traffic lights. In an un-successful case of Trial 1, the vehicle
equipment sent data to the roadside equipment whose RSSI did not indicate at or
higher the reference value of “−80 dBm.” So, the data could not reach the roadside
equipment. In Trial 2, the vehicle equipment was made to send data only when the
corresponding RSSI clears the reference value, bymodifying the software. Transmis-
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Fig. 15 View of field Trial 3

sion power of roadside equipment can be selected from among 1, 5, 10 and 20 mW. It
will not be easy for a vehicle equipment to find the roadside equipment far from the
crossing if transmission power is lower than 10 mW. With the transmission power
higher than 10 mW, on the other hand, a vehicle equipment will find the roadside
equipment installed on other roads than the vehicle is running on. The optimum
transmission power has not been verified yet, and further examinations should be
carried out in the next step.

Two tests in Trial 2 were not successful. The obstacles such as parked vehicles
near the roadside equipment seemed to have affected the radio condition. The same
situation was observed in a test in Trial 3.

In the next step, therefore, we should examine the influence of obstacles by chang-
ing the height of antenna for the roadside equipment. Making the antenna higher than
1.5 m may improve the success rate of the system operation. In Japan, the system
delay including communication delay and processing delay should be kept at or under
400 ms [19]. Retransmission performed under some unstable radio conditions may
have caused system delays over 400 ms in trials 1 and 2. We should also examine
how to minimize the system delay, even when some retransmission is necessary.
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7 Conclusion and the Next Step

In this chapiter, we propose a new V2I system based on 920 MHz to assist safe
driving at small- scale un-signalized intersections, with lower equipment costs and
power consumption. A prototype of this new system was made. Miniaturization of
the vehicle equipment and roadside equipment was realized to conduct some field
trials. The effectiveness of this system was proved at such crossings.

This system can co-exist with DSRC or 760 MHz system since the scale and
type of respective targeted crossings are different. As described above, the influence
of obstacles and retransmission delay should be thoroughly examined in the next
step. Currently, this system using 920 MHz band seems not to be interfered by other
systems such as HEMS, however, we should examine this in more detail in the next
step.
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Validation for Improving Reliability
in Driver Arousal Method
by Physiological Magnetic Stimulation

Yoshihide Hayashi, Masashi Tsukada, Tomoaki Nakano, Muneo Yamada
and Kaneo Mohri

Abstract In recent years, the number of occurrences of traffic accidents tends to
decrease. However, many traffic accidents caused by careless driving representative
of drowsy driving are still reported. In accidents caused by drowsy driving, deceler-
ation by brakes is not often performed immediately before a collision, so the impact
at the time of a collision increases. Therefore, in order to reduce the fatalities caused
by traffic accidents, it is essential to prevent drowsy of drivers while driving. So
far, our research group has proposed a novel driver arousal method applying the
principle of bioactivation, Magneto-protonics principle, and has been examining the
effectiveness of the method. As a result, we obtained the result that drowsy driving is
suppressed by applying a small extremely low frequency alternating magnetic field
against the vehicle driver. In this study, we have newly verified and considered the
sustain effect of drowsy driving suppression by magnetic stimulation and the influ-
ence of the experiment task which were not verified before. In addition, by further
increasing the number of subjects, we tried to improve the reliability of the drowsy
driving prevention effect by the proposed method.
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Keywords Driver arousal method · Physiological magnetic stimulation ·
Magneto-protonics principle

1 Introduction

In recent years, the number of occurrences of traffic fatal accidents tends to decrease
due to advancement of preventive safety technology and collision safety technology
of automobile system [1–5]. However, many traffic accidents caused by accidental
driving typified by drowsy driving are still reported. On August 25, 2017, extremely
serious accident was occurred in which 16 people were killed or injured on the
Tokushima Expressway [6]. In accidents caused by drowsy driving, deceleration by
brakes is not often performed immediately before a collision, so the impact at the
time of a collision increases. Therefore, there is a high possibility that damage will be
enormous. Considering such circumstances, in order to reduce the fatalities caused
by traffic accidents, it is essential to prevent drowsy of drivers while driving.

Under such circumstances, research on techniques for evaluating drowsiness and
detecting drowsy driving has been actively conducted. There are methods using
bioinformation such as blinking, pupil/eye movement, heartbeat, pulse wave and
electroencephalogram [7–11], and vehicle information such as steering angle and
speed [12, 13]. In addition, many researches using warning sounds, vibrations, fra-
grances, etc. [14–16] have been conducted as a method to prevent drowsy driving,
and some systems combining drowsy driving detection technology and prevention
technology are put to practical use [17, 18].

The drowsy prevention technology proposed so far directly stimulates visual,
auditory and tactile sensation. However, in these sensory stimulus arousal methods,
“sleep rebound phenomenon” is caused, in which sleepiness induced again after
temporary forced awakening becomes deeper drowsiness [19]. In view of this, we
focused on the principle of bioactivation, Magneto-protonics principle [20, 21], pro-
posed a novel awakeningmethod applying this principle and continuously verified its
effectiveness [19, 22–33]. As a result [32], valid driver arousal effect was confirmed
for 10 subjects.

In the previous verifications, the effect of fatigue, the sequential effect of magnetic
stimulation and the remaining time of the arousal effect were unknown in the case
of conducting the verification experiment several times on the same day. In order
to avoid these effects, experiments that apply magnetic stimulation and experiments
that do not apply magnetic stimulation were conducted separately each day.

Therefore, in this verification, we conducted experiments on the presence or
absence of magnetic stimulation during the same day, and newly examined the effect
of ordering, residual effect and fatigue by experimental tasks. In addition, additional
verification was carried out by further increasing the number of subjects, and the
reliability of the driver arousal effect by the physiological magnetic stimulation was
improved.
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2 Drowsy Driving Prevention Based on Magneto-Protonics
Principle

Organisms have been producing the energy necessary for daily activities by consum-
ing adenosine triphosphate (hereinafter called “ATP”) in the body. When driving a
vehicle, the driver must repeat muscle contraction and consumes energy generated
by decomposing ATP into ADP. ATP is replenished by conversion from ADP while
sleeping. Adenosine is a sleeping substance that increases as ATP decreases, and it
has the property of stimulating the sleeping nerve as well as suppressing the activity
of the arousal nerve [34].

When this principle is applied to the living body, the ability to produce ATP, which
is a bioenergetic substance, improves in the inner membrane of mitochondria by
activating protons in cell water. In other words, by applying the magnetic stimulation
based on the Magneto-protonics principle to the driver, the ability of ATP generation
in cells is enhanced and it is possible to suppress the decrease in the arousal degree
of the driver. For the detailed mechanism of the Mangeto-protonics principle, see
Mohri et al. [20, 21].

3 Magnetic Stimulation System

Verification experimentswere conductedusing amagnetic stimulation systemwith an
electromagnetic coil (Helmholtz coil, size: 50 cm× 1.5 cm, direct current resistance:
56 �, number of turns: 50 turns) shown in Fig. 1, and an alternating current was
supplied by the function generator (WF 1943 manufactured by NF Co.). Magnetic
stimulation is applied to the driver from the electromagnetic coil disposed in the
backrest portion of the driving simulator.

The magnetic field frequency was continuously and linearly swept from 1 to
21 Hz at 2 s intervals based on reference (Fig. 2) [32]. The magnetic field strength
was set 600 mG at the center of the coil surface and 100 mG at 2 cm vertical from
the center plane of the coil. We confirmed that the magnetic field frequency and the
magnetic field strength are non-invasive to the humanbody from“ICNIRPGuidelines
for limiting exposure to time-varying electric, magnetic, and electromagnetic fields
(upto 300 GHz)” [35] defined by WHO-ICNIRP. This system enables a complete
blind test on the presence or absence of magnetic stimulation.
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Fig. 1 Magnetic stimulation
system with an
electromagnetic coil

Electromagnetic coil

Fig. 2 Output method of the
magnetic field frequency

4 Evaluation Method of Arousal Degree
by Electroencephalogram

4.1 Electroencephalogram Measurement Method

Electroencephalogram (hereinafter called “EEG”) was measured using Miniature
DAQ Terminal intercross-410 manufactured by Intercross Co. (Fig. 3).

The probe electrodewas attached to the parietal (C3, C4) and occipital region (O1,
O2) according to electrodes of international 10–20 system [36], and the reference
electrode was attached to the stable part of the right ear behind (Fig. 4). The sampling
frequency was set to 1 kHz, and 50 Hz or more was cut off by a low-pass filter.
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Fig. 3 Miniature DAQ Terminal intercross-410 manufactured by Intercross Co

Fig. 4 Electrode placement
based on international 10–20
system

4.2 Evaluation Method by EEG

Partial Overall method [37] was adopted as an analysis method of EEG. The EEG
was divided into four bands of 0.5 Hz to 4 Hz, 4 Hz to 8 Hz, 8 Hz to 13 Hz and 13 Hz
to 30 Hz, and were defined as a δ band, a θ band, an α band and a β band based on
international 10–20 system [36], respectively. In this study, α and β waves appearing
during awakeningwere treated as “arousal EEG”, and δ and θwaves appearing during
sleep were treated as “sleep EEG”. The PO values of each band were defined as αpo,
βpo, δpo and θpo, respectively. In order to evaluate the arousal degree by the ratio of
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the arousal EEG to the sleep EEG, the arousal index (hereinafter called “AI”) (1)
was calculated based on the PO value of the EEG.

AI = (
αpo + βpo

)
/
(
δpo + θpo

)
(1)

The arousal index ratio (hereinafter called “AR”) (2) which is the ratio of the
arousal index (AI1) for 3 min before driving to the arousal index (AI2) for 3 min
after driving was calculated. The arousal effect was verified by the transition of the
arousal index before and after the driving.

AR = AI2/AI1 (2)

For details on the evaluation of arousal degree based on EEG, see Mohri et al.
[29, 30].

5 Verification of Influence on Arousal Degree
by Conducting Experiment on the Same Day

In this verification, we examined the effects of fatigue by experimental tasks when
subjects performed multiple experiments on the same day, the order effect of the
presence or absence of magnetic stimulation and the remaining time of the arousal
effect.

By conducting both experiments which apply magnetic stimulation twice in suc-
cession and experiment which does not apply it twice in succession, we examined the
influence of fatigue by experimental task. In addition, we conducted experiments to
replace the presence or absence of magnetic stimulation in the first and second exper-
iments, and also verified the remaining effect and the order effect by experimental
procedure.

5.1 Experimental Method

Experimental Conditions
The subjects were 10 men in their twenties who have a driver’s license. In addition,
in order to unify the condition of subjects on the day of the experiment, the following
conditions were set.

• Subjects get a sleep of 6 h or more the day before the experiment.
• Conduct an experiment 1 h after eating.
• Subjects did not take stimulants such as coffee, gum, and smoking on the day of
the experiment.
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• To eliminate the placebo effect, the experiments were carried out for subjects with
a complete blind test that does not convey any information on the presence or
absence of magnetic stimulation.

When the sleeping time on the day before the experiment is less than 4 h, the
occurrence rate of the accident due to drowsy driving increases as sleeping time
decreases. On the other hand, when the sleeping time was 6 h or more, the incidence
of the accident did not change, so the sleeping time of the subject on the day before
the experiment was set to 6 h or more [38]. In addition, in order to consider the
induction of drowsiness due to satiety, the experiment start time was unified after 1 h
aftermeals. Furthermore, since irritants such as coffee, gum, smoking etc., may affect
the arousal degree, subjects were asked to refrain from taking intake. This study was
conducted with the approval of the ethics review committee of Meijo University.
Before the experiment, the contents of experiment were explained to the subject by
document and verbally, and informed consent was got.

Experiment Procedure
The following four experiments were conducted using a driving simulator.

• Experiment 1: Experiment that apply magnetic stimulation twice in succession
were performed.

• Experiment 2: Experiment that does not apply magnetic stimulation twice in suc-
cession were performed.

• Experiment 3: Experiments that apply magnetic stimulation were performed in
the first half, and experiments without magnetic stimulation were performed in
the second half.

• Experiment 4: Experiments without magnetic stimulation were performed in the
first half, and experiments that apply magnetic stimulation were performed in the
second half

The above experiments were conducted in the following procedure.

1. Apply magnetic stimulation to the driver for 30 min before driving. In the case
of not applying magnetic stimulation, setting the magnetic field intensity to 0.

2. Measure EEG for 3 min before driving (AI1).
3. Subjects drive a course simulating a night expressway for 20 min with magnetic

stimulation. In the case of not applyingmagnetic stimulation, setting themagnetic
field intensity to 0.

4. Measure EEG for 3 min after driving (AI2).
5. After a 30-minute break, a second experiment was conducted in experimental

procedures 1 through 4.

Between the first half of the experiment and the second half of the experiment, we
asked subjects to refrain from stimulant ingestion and nap. Based on reference [32],
in order to obtain the arousal effect by magnetic stimulation, preliminary stimulation
time is required about 30 min, so the magnetic stimulation time of 30 min was set
in experimental procedure 1. For comparative evaluation of arousal effect, EEG was
measured for 3 min before and after experimental procedure 3.
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5.2 Experimental Result

Figure 5 shows the result of experiment 1 for 10 subjects. In this result, the AR
of 9 out of 10 subjects was higher in the first half experiment than the second half
experiment.

In addition, Fig. 6 shows the comparison result of the average values of the AR of
10 subjects in experiment 1. In this result, the AR in the second half of the experiment
was 14.1% lower on average than the first half experiment. As a result of significant
difference test by Wilcoxon signed-rank test, a significant difference was confirmed
with a significance level of less than 5% (P = 0.0367).

Figure 7 shows the result of experiment 2 for 10 subjects. In this result, the AR of
all 10 subjects was higher in the first half experiment than the second half experiment.

In addition, Fig. 8 shows the comparison result of the average values of the AR of
10 subjects in experiment 2. In this result, the AR in the second half of the experiment
was 20.1% lower on average than the first half experiment. As a result of significant
difference test by Wilcoxon signed-rank test, a significant difference was confirmed
with a significance level of less than 1% (P = 0.0051).
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Fig. 8 Average AR of the 10 subjects in experiment 2

Figure 9 shows the result of experiment 3 for 10 subjects. In this result, the AR
of all 10 subjects was higher in the experiment that applies the magnetic stimulation
than the experiment which does not apply magnetic stimulation.

In addition, Fig. 10 shows the comparison result of the average values of the AR of
10 subjects in experiment 3. In this result, the AR in the second half of the experiment
was 33.4% lower on average than the first half experiment. As a result of significant
difference test by Wilcoxon signed-rank test, a significant difference was confirmed
with a significance level of less than 1% (P = 0.0051).

Figure 11 shows the result of experiment 4 for 10 subjects. In this result, the
AR of 5 out of 10 subjects was higher in the experiment that applies the magnetic
stimulation than the experiment which does not apply magnetic stimulation.

In addition, Fig. 12 shows the comparison result of the average values of the AR of
10 subjects in experiment 4. In this result, the AR in the second half of the experiment
was 2.5% lower on average than the first half experiment. As a result of significant
difference test by Wilcoxon signed-rank test, there is not a significant difference.
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Fig. 12 Average AR of the
10 subjects in experiment 4
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5.3 Consideration

Based on the results of Experiment 1 and Experiment 2, it was confirmed that the
average value of AR in the second experiment was significantly lower than AR in
the first experiment, regardless of the presence or absence of magnetic stimulation.
From these results, it was confirmed that when two experiments were conducted
on the same day, the AR of the second half experiment decreased as a result of
the fatigue caused by the experiment task in the first half. On the other hand, in
Experiment 1, the average value ofAR in the second experiment decreased by 20.1%,
whereas in Experiment 2, the decrease in ARwas suppressed as 14.1%. Furthermore,
in Experiment 3, the average value of AR in the second experiment decreased by
33.4%, whereas in Experiment 4, the decrease in AR was suppressed as 2.5%. From
these results, the arousal effect by magnetic stimulation was also confirmed in this
verification experiment.

Furthermore, in the result of Experiment 3, despite the fact that the magnetic
stimulation was applied in the first half as compared with Experiment 1, the AR of
the second half experiment was greatly reduced. In this result, it was suggested that
the arousal effect remaining time by applying the magnetic stimulation may be less
than 1 h.

From the above results, the arousal effect by the magnetic stimulation was con-
firmed, suggesting the possibility that the remaining time is less than 1 h. However,
when conducting two experiments on the same day, the influence of fatigue by exper-
imental task was also confirmed. Therefore, it is considered that verification exper-
iments on driver arousal effect in the presence or absence of magnetic stimulation
should not be done on the same day but should be done separately.
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6 Verification of Driver Arousal Effect Using Magnetic
Stimulation

Based on the results of the verification in the previous chapter, it became clear that the
verification experiment of arousal effect on the presence or absence of the magnetic
stimulation need to be conducted separately and the rationality of the verification
experiment so far was obtained. In this chapter, we further conducted experiment
by increasing the number of subjects, and tried to improve the reliability of driver
arousal method using physiological magnetic stimulation.

6.1 Experimental Method

Experimental Conditions
The experimental conditions were the same as those shown in Sect. 5.1. In this
verification, the subjects were 10 men, and the experimental procedure is as follows.
Experiments that apply magnetic stimulation and experiments that do not apply
magnetic stimulation were conducted separately each day.

Experimental Procedure
Experiment was conducted in the following procedure.

1. Apply magnetic stimulation to the driver for 30 min before driving. In the case
of not applying magnetic stimulation, setting the magnetic field intensity to 0.

2. Measure EEG for 3 min before driving (AI1).
3. Subjects drive a course simulating a night expressway for 20 min with magnetic

stimulation. In the case of not applyingmagnetic stimulation, setting themagnetic
field intensity to 0.

4. Measure EEG for 3 min after driving (AI2).

6.2 Experimental Result

Figure 13 shows the result for 10 subjects we have examined so far [32]. In this
result, the AR of 9 out of 10 subjects was higher in the experiment that applies the
magnetic stimulation than the experimentwhich does not applymagnetic stimulation.
As a result of significant difference test by Wilcoxon signed-rank test, a significant
difference was confirmed with a significance level of less than 1% (P = 0.000934).

Figure 14 shows the experimental results of 10 subjects newly obtained in this
additional verification. In this result, the AR of all 10 subjects was higher in the
experiment that applies the magnetic stimulation than the experiment which does not
apply magnetic stimulation. As a result of significant difference test by Wilcoxon
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signed-rank test, a significant difference was confirmed with a significance level of
less than 1% (P = 0.00506).

Figure 15 shows the average value ofARof 20 subjectswhenmagnetic stimulation
is not applied and when magnetic stimulation of 1 to 21 Hz is applied. In this result,
compared with the case without magnetic stimulation, the average value of ARwhen
applyingmagnetic stimulationwas 29.5%higher. In addition, as a result of significant
difference test by Wilcoxon signed-rank test, a significant difference was confirmed
with a significance level of less than 1% (P = 0.00014).

6.3 Consideration

In the previous verifications, there were 9 out of 10 subjects who got higher AR in
the case of applyingmagnetic stimulation than in the case without applyingmagnetic
stimulation. As a result of additional verification this time, there were all 10 subjects
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Fig. 15 Average AR of 20
subjects
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who got higher AR in the case of applying magnetic stimulation than in the case
without applying magnetic stimulation. Even when these results were integrated,
and the number of subjects was increased to 20, a tendency that the AR increased
when the magnetic stimulation was applied was similarly obtained, and a significant
difference was also confirmed. Based on these results, we believe that the reliability
of the driver arousal method by magnetic stimulation has further increased.

7 Conclusion

In this study, we conducted experiments on the presence or absence of magnetic
stimulation on the same day and newly verified the order effect, residual effect and
the effect of fatigue by experimental tasks. In addition, by further increasing the
number of subjects, additional verification experiments were conducted to improve
the reliability of driver arousal effect by physiological magnetic stimulation.

Experimental results on the presence or absence of magnetic stimulation during
the same day confirmed the arousal effect by magnetic stimulation and suggested
that the remaining time of the arousal effect may be less than 1 h. However, when
conducting two experiments on the same day, the influence of fatigue caused by
the experimental task was also confirmed, so we decided to increase the number of
subjects and verify them in the same way as in previous verification experiments. As
a result, even in the case of increasing the number of subjects, the effectiveness of
the driver arousal effect by magnetic stimulation was confirmed.

We will continue to prove that the driver’s arousal effect by magnetic stimulation
is obtained based on the Magneto-protonics principle. In addition, in order to con-
firm whether there is a frequency band particularly effective for driver arousal, we
will examine the driver arousal effect when narrowing the range of the theoretical
frequency band.
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Study on Simultaneous-Action
Discrimination System Using the Neural
Network

Takahiko Murayama, Masato Ito, Hatsuo Yamasaki, Tomoaki Nakano
and Muneo Yamada

Abstract Along with the rapid spread of a smartphones, accidents caused by
“simultaneous-walking” which is walking while operating a smartphone and
“simultaneous-cycling” which is cycling while operating a smartphone has become
a social problem. Our research group has been studying algorithms to detect
simultaneous-walking and simultaneous-cycling using the smartphone itself, and
proposed amethod to switch each detection algorithmbased onGPS speed.However,
in an environment that could not obtain the GPS information, there were problems
that cannot be used this conventional method and the detection accuracy changes
greatly depending on the surrounding environment. In this study, our research group
suggests a discriminationmethodof simultaneous-walking and simultaneous-cycling
which is robust against the above problem by learning tri-axial acceleration sensor
information of a smartphone with a neural network.
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1 Introduction

Simultaneous-walking which is walking while operating a smartphone (hereinafter
referred to as SP) and Simultaneous-cycling which is cycling while operating a SP
is a cause of serious accidents. Actually, many accidents caused by simultaneous-
action are occurring all over the world [1–9]. In 2016 Shinagawa Tokyo, the woman
felled station home while simultaneous-walking. Thereafter she was hit by a train
and was dead [1]. In addition, in 2017 Kawasaki Tokyo, an accident that a woman
at the simultaneous-cycling collides with an elderly pedestrian and caused her to die
has also occurred [2]. As described above, simultaneous-action has the danger of
causing serious fatal accidents and it is necessary to take countermeasures immedi-
ately. Our research group has studied the detection method of simultaneous-action
using a SP itself [10–12] and the warning method to a SP user [13]. However, in
the conventional method of detecting simultaneous-action, since a GPS sensor was
used for discriminate between walking and cycling, there were problems such as a
method cannot be used in an environment where a GPS sensor does not work and
the detection accuracy greatly changes depending on the environment. In this study,
in order to solve the above problem, a method of improving simultaneous-action
discrimination accuracy without using GPS information was studied by a neural net-
work (hereinafter referred to as NN) that learned information of tri-axial acceleration
sensor information of a SP.

2 Conventional Study on Simultaneous-Action

Many studies for identifying the status of a SP users by using various sensor devices
mounted on the SP have been reported so far [13–17]. In the research by Kodama
et al. [13], in view of the fact that SP users cannot stop simultaneous-walking despite
recognizing the risk of it, a system that supports simultaneous-walking as safe as
possible was suggested. Specifically, the degree of danger is calculated based on the
distance to the object close to the SP user, the relative speed, etc., and the degree
of danger and the direction are displayed on the upper part of the SP screen (risk
display area). Then, the color of the risk display area is changed from blue (safety)
to red (danger) according to the calculated degree of danger, and furthermore, the
discoloration point is changed according to the direction in which the object exists.
In addition, to avoid impairing the functions of existing a SP, overlay method was
employed for risk display. The distance from the user to the adjacent object is acquired
not by using the SP sensor but by using the range image sensor CamBoard pico
flexx. Attach this sensor to the waist so as to be perpendicular to the ground, and
photograph the entire surface in the horizontal direction with the ground. The range
image sensor is connected to the laptop on which the degree of danger calculation
program is activated by a USB connection. During the verification experiment, the
laptop is stored in the backpack. As a result of the evaluation experiment by two
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subjects, the collision rate with pedestrians was 13.3 [%] when not assisting by the
proposed system during simultaneous-walking. On the other hand, by supporting
with the proposed system, the collision rate decreased to 2.2 [%]. However, since the
proposed system requires sensors other than the SP terminal, the user’s satisfaction
level was low. As future studies, installing a range image sensor on a SP case and
studying another danger notification method was planned.

In the research byYoshida et al. [14], a system that detects the collision possibility
by GPS sensor mounted on a SP and gives warning to a SP user was proposed for
the purpose of preventing collision accident between bicycle and pedestrian. In this
system, the position of the bicycle and the pedestrian are respectively measured
by the GPS, and the position information is shared with each other through the
Bluetooth communication. Furthermore, the distance from the position of the other
party that received the position information to its own position is calculated, and if
the distance is equal to or smaller than the prescribed threshold value, a warning is
issued. However, since positional information obtained from a GPS generally causes
errors due to various factors, when measurement errors are large, it is necessary to
acquire GPS information a plurality of times. As a result of verification experiment
with the GPS error tolerance set to 16.9 m andwarning distance set to 30m, the result
that collision between pedestrian and bicycle can be avoided with accuracy of 100
[%] has been obtained. As the warning distance becomes longer, the warning will
be issued at an early stage. Therefore, considering usability in a real environment,
there is concern about the troublesome warning and the reliability of warning. Since
“detection error” and “warning delay” are in a trade-off relationship, examination of
the optimum ratio of both is cited as a future study.

In the above-mentioned method of Kodama et al., installation of a range image
sensor in addition to the SP terminal is required, so practical problems such as system
cost and troublesomemounting are considered to be significant. On the other hand, in
the method of Yoshida et al., It is important to be able to share location information
by communication, so further examination and verification of the communication
method with multiple SPs and the influence of radio wave interference by obstacles
is considered to be essential. More than anything, with this method, collision with a
general pedestrian who does not own the SP cannot be avoided. In this study, we aim
to realize a system that can prevent accidents by discriminating simultaneous-action
using only the sensors installed in a SP and giving warnings to the SP user.

3 Conventional Simultaneous-Action Detection

3.1 Definition of Simultaneous-Action

In this study, the state where the SP operation and the movement operation are simul-
taneously performed was defined as “simultaneous-action”. The state in which SP
operation and walking are performed at the same time was defined as “simultaneous-
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walking”. The state in which SP operation and cycling are performed at the same
time was defined as “simultaneous-cycling”. On the other hand, the walking state
without SP operation was defined as “non-simultaneous-walking”. Likewise, the
cycling state without SP operation was defined as “non-simultaneous-cycling”. Dur-
ing non-simultaneous-walking or non-simultaneous-cycling, the SP was assumed
to be stored in the user’s pants pocket. A state in which the SP is operated with-
out moving operation was defined as “stationary-state”. In our previous studies, we
focused on this feature and proposed a method to detect it as simultaneous-action
when moving operation and SP operation are simultaneously detected.

3.2 Detection of the Movement While Simultaneous-Action

The movement behavior of the SP user is detected by using a tri-axial acceleration
sensor that is standard installed in the SP. Since the characteristics of acceleration
in simultaneous-walking and simultaneous-cycling are different, the movement state
is discriminated on the basis of the moving speed of the SP measured by the GPS
and each operation is detected by applying each detection algorithm. The detection
method of simultaneous-walking and simultaneous-cycling are explained below.

3.3 Detection of Simultaneous-Walking

During simultaneous-walking, the SP was stabilized more than non-simultaneous-
walking because the shaking of the SP accompanying walking is absorbed by
the operator’s arm. Figure 1 show the time series data of tri-axial acceleration
scalar values of simultaneous-walking. And Fig. 2 show the time series data of
tri-axial acceleration scalar values of non-simultaneous-walking. In Figs. 1 and
2, significant differences in acceleration amplitude and frequency can be con-
firmed between simultaneous-walking and non-simultaneous-walking. Therefore,
simultaneous-walking can be detected by setting thresholds for the amplitude and
frequency of acceleration.

3.3.1 Detection of Simultaneous-Cycling

As with simultaneous-walking, even during simultaneous-cycling, the swing of the
SP accompanying cycling is absorbed by the operator’s arm. However, when cycling,
the left and right wobbling due to steering wheel operation was reflected in the swing
of the SP, so the stable periodicity of the acceleration was lost. Therefore, we focused
on the variance value as the feature quantity instead of the amplitude and frequency of
the acceleration scalar value. Figure 3 show the variance value of the tri-axial accel-
eration scalar value for simultaneous-cycling. And Fig. 4 show the variance value of
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Fig. 1 Time series behaviors
of acceleration scalar value
of simultaneous-walking

Fig. 2 Time series
behaviors of acceleration
scalar value of
non-simultaneous-walking

Fig. 3 Time series
behaviors of variance of
acceleration scalar value of
simultaneous-cycling

the tri-axial acceleration scalar value for non-simultaneous-cycling. In Figs. 3 and
4, between simultaneous-cycling and non-simultaneous-cycling, remarkable differ-
ence can be seen in the variance value of the acceleration scalar value. Therefore,
simultaneous-cycling can be detected by setting thresholds for variance value.
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Fig. 4 Time series
behaviors of variance of
acceleration scalar value of
non-simultaneous-cycling

3.4 Detection of SP Operation

The SP operation detection is based on the following three elements, and when two
or more elements were detected, it was determined as SP operation.

• Detection of touch event of the SP screen by touch sensor
• Screen gaze detection by camera image analysis
• Detection of tilting angle of the SP by angle sensor.

4 Discrimination of Simultaneous-Action Using the Neural
Network

In the conventional method that was explained Sect. 3, since the moving state was
discriminated using GPS speed, there was a problem such as the method cannot be
used in an environment where aGPS sensor does not work. In this study, we proposed
the discrimination method of each simultaneous-action by the NN that was learned
acceleration data without using a GPS sensor. In simultaneous-action, since a SP
screen was fixed in order to gaze on a SP screen, the high frequency component
of the acceleration data tends to be small. Also, a tri-axial acceleration components
shows the attitude of a SP, which can discriminate whether simultaneous-action or
not. For these reasons, we studied a method to discriminate simultaneous-action by
the NN learning tri-axial acceleration data. The definition of input/output data and
the structure of the network are explained below.
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4.1 Input/Output Data

The input data is the acceleration frequency spectrum (Fig. 5) calculated from the
tri-axial acceleration components by FFT and the acceleration average value (Fig. 6)
of the tri-axial acceleration components. The sampling frequency was 50 Hz, and
the number of sampling points was 256 points. The number of input data of the
acceleration frequency spectrum was total of 378 points which 126 points excluding
near zero frequency calculated from x axis component, y axis component and z axis
component respectively. The number of input data of the acceleration average value
is three components of x axis, y axis and z axis. Therefore, the total number of input
data to NN was 381 points. The output is the likelihood of five states of stationary-
state, simultaneous-walking, non-simultaneous-walking, simultaneous-cycling and
non-simultaneous-cycling.

4.2 The Network Structure

The NN structure was the three-layer hierarchical (Fig. 7), with 381 units for the
input layer and 5 units for the output layer. Since the determination of the number of
hidden layer units and the learning times leads to improvement in expressive ability
and generalization ability of a NN [18], these values have studied by preliminary
verification. As a result, the hidden layer was 100 units and the number of learning
was 50 times. RPROP [19] was employed for the learning algorithm. The sigmoid
function was employed as the activation function of RPROP, and the learning was
terminated when the specified number of times was satisfied.

Fig. 5 The acceleration
frequency spectrum
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Fig. 6 The average of the
acceleration value
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Fig. 7 The three-layer
hierarchical neural network

5 Verification Experiment

By measuring the tri-axial acceleration data of a SP in various real environments,
various kinds of simultaneous-action discrimination accuracy by the conventional
method described in Sect. 3 and themethod by theNNof this proposalwere compared
and verified. Measurement experiments of the tri-axial acceleration data of a SP is
explained below. Subjects were seven men in their twenties.
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Fig. 8 Flat road

5.1 Measurement Experiment of Acceleration Data
in Simultaneous-Walking

In simultaneous-walking and non-simultaneous-walking, experiments were con-
ducted in three environments; flat road, slope and stairs. Experimental environments
on flat road, slope and stairs are shown in Figs. 8, 9 and 10, respectively. Sub-
jects were walked 70 steps in each of three environments. Subjects performed this
sequence for ten times in each walking environment and acquired acceleration data
in both simultaneous-walking and non-simultaneous-walking.

5.2 Measurement Experiment of Acceleration Data
in Simultaneous-Cycling

In simultaneous-cycling and non-simultaneous-cycling, experimentswere conducted
in three environments that flat road, slope and uneven road. Since the probability of
simultaneous-cycling occurring on the uphill slope is low, this study only focuses
downhill slope. Experimental environments on flat road, slope and uneven road are
shown in Figs. 11, 12 and 13, respectively. Subjects were cycling 70 m in each of
three environments. Subjects performed this sequence for ten times in each cycling
environment and measured acceleration in both simultaneous-cycling and normal-
cycling.
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Fig. 9 Slope

Fig. 10 Stairs
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Fig. 11 Flat road

Fig. 12 Slope
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Fig. 13 Uneven road

5.3 Measurement Experiment of Acceleration Data
in Stationary-State

In the stationary-state, subjects were asked to perform SP operation for 60 s while
sitting on a chair. Similarly, subjects performed this sequence ten times andmeasured
acceleration of stationary-state.

5.4 Experimental Verification of Discrimination Accuracy
by the NN

As a verification method of discrimination accuracy by NN, K-fold cross-validation
[20] was employed. Let K= 7, learning the data of 6 subjects, and the discrimination
rate were calculated using the remaining 1 subject’s data. This sequence was done
seven times so that the data of all subjects would be test data.

6 Experimental Result

Figure 14 show the comparison results on discrimination rate between the conven-
tional method and the proposed method. From the result in Fig. 14, the average dis-
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Fig. 14 Discrimination rate of the conventional method and proposed method

crimination rate for five states was 86.09 [%] in the conventional method and 95.49
[%] in the proposed method, it was confirmed that the proposed method improves
the discrimination rate of 9.4 [%] as compared with the conventional method. In
the proposed method, accuracy of the stationary-state was 83.12 [%], which was
much lower than other state. In addition, when comparing the discrimination results
between the conventionalmethod and the proposedmethod, the discrimination rate of
the proposed method was improved by 20 [%] or more in simultaneous-walking and
simultaneous-cycling. On the other hand, for the stationary-state, the discrimination
rate of the proposed method was reduced by about 17 [%]. For non-simultaneous-
walking and non-simultaneous-cycling, there was no significant difference in the
discrimination rate between the conventional method and the proposed method.

6.1 Discussion

Table 1 shows the breakdown of the discrimination results by the proposedmethod. In
the results of Table 1, among the misjudgment of the proposed method, the highest
rate of misjudgment was 16.49 [%] which erroneously discriminates stationary-
state as simultaneous-cycling. The next highest rate of misjudgment was 5.11
[%] which erroneously discriminates simultaneous-cycling as stationary-state. From
these results, it was confirmed that themisjudgment has occurred between stationary-
state and simultaneous-cycling. Factors in whichmisjudgment tend to occur between
two states, stationary-state and simultaneous-cycling, were discussed from the view-
point of input data. Figure 15 shows the acceleration average value of various state
of simultaneous-action. The acceleration average value of each axis was information
indicating the attitude of the SP. From the results in Fig. 15, it can be confirmed that
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Fig. 15 Acceleration average value of various simultaneous-action

there was no significant difference in the acceleration average value in stationary-
state, simultaneous-walking and simultaneous-cycling.Next, Fig. 16 shows the accel-
eration frequency spectrum of the z axis of various state of simultaneous-action.
Here, the acceleration frequency spectrum of the z axis was used as a comparison
target because a waveform characteristic to the acceleration frequency spectrum of
the z axis of the SP was confirmed. In simultaneous-walking and non-simultaneous-
walking, the spectrumpeak as thewalking cyclewas confirmed around 1.7Hz.On the
other hand, in simultaneous-cycling and non-simultaneous-cycling, no characteristic
spectrum corresponding to cycling was confirmed. Based on the above discussion,
we thought that misjudgment had occurred because it could not be confirmed the
significant difference in the two states of stationary-state and simultaneous-cycling
in the acceleration average value and the acceleration frequency spectrum used as
the input data.

6.2 Study on Improvement of Discrimination Accuracy

In order to improve the discrimination accuracy of theNN, it is necessary to use a fea-
ture quantity inwhich a difference between the stationary-state and the simultaneous-
cycling appears conspicuously as input data. Therefore, data obtained from various
sensors mounted on the SP were compared and examined. As a result, it was con-
firmed that there was a remarkable difference in the value of the tilting angle sensor
capable of detecting the holding angle of the SP (Fig. 17). In the stationary-state,
users tend to bring the SP closer to the position of the line of sight where the SP
can be easily operated. As a result, the user tends to possess a SP perpendicular to
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Fig. 16 Acceleration frequency spectrum of various simultaneous-action

the ground. On the other hand, in simultaneous-cycling, the user tends to possess a
SP horizontally with respect to the ground in order to avoid falling of the SP. For
these reasons, it is considered that the difference in the tilting angle of the SP appears
between the stationary-state and the simultaneous-cycling. From the above discus-
sion, it is considered that if the tilting angle of a SP is added as a new feature quantity,
the accuracy of discriminating simultaneous-action by the NN can be improved.
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Fig. 17 The tilting angle of
the smartphone of
stationary-state and
simultaneous-cycling
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7 Future Problems to be Studied

7.1 Problems Related to Real Time Property

In this study, the acceleration data used as the input data of the NN was data of
256 points sampled at 50 Hz. In this method, since 256 points of acceleration data
were acquired at 0.2 s intervals, input data was created every 5.12 s. Therefore, the
discrimination by the NN is performed only about every 5 s, and the problem of real
time property is pointed out. This problem is thought to be solved by creating input
data while shifting by one point instead of creating input data every 256 points. By
this method, it is possible to discriminate by the NN every 0.2 s, and to secure real
time property without re-learning of the NN.

7.2 Problems Related to Learning Data of the NN

In this study, the number of data used for learning the NN was 5127 and the data for
testing was 854. In general, it is preferable to use more data sets in order to realize the
NN with high generalization ability. There is concern about the shortage of learning
data for the scale of the network proposed in this study. In the future, we plan to solve
this problem by increasing the number of subjects and collecting more acceleration
data.
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8 Conclusion

In this study, as a detection method of simultaneous-action moving while operating a
smartphone, a discrimination method by a neural network was newly examined and
compared with the conventional method. As a result, the average discrimination rate
of simultaneous-action by the conventional method was 86.09 [%], whereas in the
proposed method it was 95.49 [%], and the discrimination accuracy improvement
of 9.4 [%] was achieved. On the other hand, in the result of the proposed method,
only the stationary-state discrimination rate was reduced by 17 [%] compared to
the conventional method. We will investigate new features reflecting the features of
various simultaneous-actions and improve the accuracy of further discrimination by
creating more learning data sets by increasing the number of subjects.
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Prediction of Travel Time over Unstable
Intervals Between Adjacent Bus Stops
Using Historical Travel Time in Both
the Previous and Current Time Periods

Mansur As and Tsunenori Mine

Abstract Travel time prediction is an important issue for many people who want to
know their departure time from an origin and arrival time at a destination in order to
make decisions (e.g., postpone departure time at certain hours) and to reduce their
waiting time at bus stops. Accurate predictions of bus travel time are necessary to
knowwhether the travel time over target intervals between pairs of adjacent bus stops
is stable or not. For this purpose, at first, we classified intervals between adjacent
bus stops into two classes: stable and unstable. Next, we identified two statistically
significant factors: variations of travel time in the same time periods over days and
correlation of travel time between eight time-periods, which influence the bus travel
time in the current time-period over unstable intervals. Then, we developed nonlinear
dynamical models for predicting bus travel time over each unstable interval between
adjacent bus stops for 7 time periods in a day. The proposed method basically utilizes
time series methods based on Artificial Neural Network (ANN), Support Vector
Machine Regression (SVR) and Random Forest (RF). We conducted experiments
using bus probe data collected from November 21st to December 20th, 2013 and
provided by Nishitetsu Bus Company, Fukuoka, Japan. In addition, to evaluate our
proposed approach, we conducted a comparison experiment between our proposed
model and the model in our previous study. Experimental results show that our
proposed models can effectively improve the previous study model on the prediction
accuracy of travel times over unstable intervals.
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1 Introduction

1.1 Background

Prediction of bus travel time is a crucial tool that lets passengers know their departure
time from and arrival time at origin and destination locations, and reduces their
waiting time at the bus stops. Furthermore, it can also play an important role in
evaluating the effectiveness of public bus transportation. On the other hand, realizing
accurate prediction of bus travel times has been a challenging research problem over
the last several years in the study of intelligent transport systems. Thus, previous
studies have investigated a lot of cases, such as travel time over routes, distributions
of travel times, delay of arrival/departure time, usingweather and/or traffic conditions
[1, 2, 6, 21].

Our recent research activities [2–5], have also attempted to predict travel time
over shorter intervals such as the interval between pairs of adjacent bus stops using
an Artificial Neural Network (ANN) model built from real bus probe data. This
research succeeded in classifying the intervals into stable and unstable ones [2], and
in obtaining accurate prediction results on average [1, 3, 5], but has not focused
only on unstable intervals for travel time prediction. This paper focuses on unstable
intervals to predict travel time and clarifies the characteristics of the prediction of
travel time over unstable intervals.

On the other hand, a lot of studies [1, 6, 8, 11, 20], have employed other machine
learning techniques such as Support Vector Machine (SVM), Artificial Neural Net-
work (ANN) and Random Forest (RF) to build prediction models for bus travel
time and showed that these models were practical, useful and reliable, although they
assumed cases where the traffic flow was relatively small and stable. In this study,
we propose a prediction model for travel time over unstable intervals using Support
Vector Regression (SVR), Artificial Neural Network (ANN) and Random Forest
(RF) with the time series approach method and try to clarify the characteristics of
the prediction of travel time over the unstable intervals.

Wefirst conducted statistical analyses on the observed travel time over the unstable
intervals between pairs of adjacent bus stops so that we could clarify the correlation
of the travel time between adjacent time periods and the variability of travel time
in the same time periods over the past several days. Based on the results of these
analyses, we employed two types of input data: dynamic average travel time (DATT)
in the time period right before the current one and historical average travel time
(HATT) in the same time-period over the past several days to build our prediction
model of travel time over unstable intervals. We will explain the two types of data,
DATT and HATT in Sect. 3.3.
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1.2 Objective and Scope

The main objective of this study is to develop prediction models of bus travel time
over unstable intervals between pairs of adjacent bus stops. We use Support Vector
Regression (SVR), Artificial Neural Network (ANN) and Random Forest (RF) to
build the models. We divide the day into 8 time periods according to the bus time
tables in the probedata, andperformprecise predictionof travel timeover the intervals
for each time period. These eight time periods are defined in Table1. Since we use
two types of input data: DATT and HATT, where DATT requires a time period just
before the current one and there is no time period just before EM, we focus on the
prediction of travel time for 7 time-periods omitting EM andwe conduct experiments
comparing our proposed model in this study and a model in our previous study. This
is done in order to grasp the rough characteristics of average travel time over the
intervals in each time period over several instances of the same day of the week,
which is a weekday. We will discuss the details in Sect. 4.4.

On the other hand, in this study, we perform precise prediction for average travel
time over unstable intervals for each time-period only for weekdays. This means that
the prediction of the travel time for each time period in this study is influenced by
the travel time in the previous time periods of a day and is more sensitive than the
previous work [5]. To this end, this study broadly divided all intervals into stable and
unstable ones based on their travel time in each time period using 20-weekday data;
we examine the correlations of travel time over intervals, especially unstable intervals
between adjacent time periods, and the variability of travel time over the intervals
during the past several days. Based on these results, we identified the characteristics
of unstable intervals and noted, in particular, if there are any recurrent properties
in their time series data. Considering the characteristics identified, we chose two
types of input data: DATT and HATT to build a prediction model. We summarize
our objectives in this study as follows:

Table 1 Time periods Periods Ranges of time

Early morning (EM) 5:00:00–7:29:59

Morning peak (MP) 7:30:00–9:29:59

Late morning (LM) 9:30:00–11:59:59

Midday (MD) 12:00:00–12:59:59

Early afternoon (EA) 13:00:00–15:29:59

Afternoon peak (AP) 15:30:00–17:29:59

Evening (E) 17:30:00–19:29:59

Late night (LN) 19:30:00–25:59:59
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1. Compute historical average travel time in each of eight time periods in a day and
distinguish stable and unstable intervals using 20days of weekday probe data.

2. Carry out an exploratory data analysis to clarify correlations of travel time over
unstable intervals between adjacent time periods and variability of travel time
over the intervals in the same time period during the past several days.

3. Evaluate prediction results by comparing the resultswith themodel in our previous
study.

The rest of this paper is organized as follows: Sect. 2 describes our data and
methodologies; Sect. 3 describes the preliminaries for model development in our
study and shows some results of analysis; Sect. 4 discusses the experimental setup
and presents the results our study using three machine learning techniques. Next, we
compare the results of our proposed model with those of our previous study. Finally,
we conclude the paper.

2 Data and Methodologies

2.1 Data

Probe data generated by vehicles include data obtainable from navigation systems,
such as the time andposition (longitude and latitude), i.e. data on the vehicle’s running
history, and front-rear acceleration or right-left acceleration, i.e. data on the vehicle’s
performance history. Since these probe data can be obtained continuously over time
from the vehicles, they allow one to monitor the state of road traffic at any chosen
location or point in time and provide intelligence regarding traffic information. Thus
probe data offers the potential to develop a prediction model and can improve the
accuracy of prediction results [15, 17].

The probe data we used in this research were provided by NISHITETSU Bus
Company. The data were collected from the 21st of November to the 20th of Decem-
ber in 2013. The probe data include (1) Bus route number, (2) Number of buses, (3)
Identity of Vehicle, (4) GPS position of buses, (5) Time of the day, (6) Bus stop code,
(7) Actual arrival and departure times at the beginning of the route, end of the route
and at every bus stop along the route, (8) Direction: inbound or outbound.

The typical travel time unit of a bus on its route is the time it takes to move from
one bus stop to the next bus stop, as shown in Fig. 1, which is determined by the time
position when a bus departs from one and arrives at the other of two adjacent bus
stops along route. The bus will not travel on the same segment twice in a single trip,
although it could travel on the same segment more than once in a single trip, but in
the opposite direction i.e, inbound and outbound directions.
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Fig. 1 Samples of pairs of the position and time of the bus on the route are obtained by GPS

Bus routes are operated for around 18hours a day. Buses run in different patterns
on weekdays, Saturdays and Sundays/holidays according to their timetable. Here,
in this paper, we just deal with travel time on 20 weekdays, excluding Saturdays
and Sundays/holidays because of the paucity of data for those days. We analyzed
77 routes that contain 824 intervals for inbound and 1196 intervals for outbound
directions, and calculated travel time over each interval between pairs of adjacent
bus stops.

2.2 Methodologies

2.2.1 Travel Time over Intervals

In order to calculate the average bus travel time in each time period, first we classified
the travel time data into eight time periods in a day. This is because bus travel times
are influenced by the traffic conditions, ridership and weather conditions in each
time period, which often change even when buses run over intervals between pairs
of adjacent bus stops [2, 3, 5, 13].

The following explains how to calculate bus travel time over an interval between
adjacent bus stops.

We first define travel time T tAB(i, tp, d) in Eq. (4), which is the length of time
when bus #i runs between adjacent bus stops: A and B, in time-period tp (∈ (EM,
MP, LM, MD, EA, AP, E, LN)) on day d, which is always a weekday in this paper.
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Fig. 2 Bus travel time over
an interval between adjacent
bus stops: A and B

Figure2 illustrates the calculation of travel time over the interval between adjacent
bus stops for each time period, and Table1 shows the ranges in each time periods.

T tAB(i, tp, d) = tB(i, tp, d) − tA(i, tp, d), (1)

where tB(i, tp, d) and tA(i, tp, d) are the time when the bus #i arrives at bus stop B
and departs from bus stop A in time-period (tp) on a day (d), respectively.

Using Eq. (1), we calculate the average travel time T tAB(tp, d) as follows:

T tAB(tp, d) = 1

N

N∑

i=1

T tAB(i, tp, d), (2)

where N is the number of buses running on the interval between adjacent bus stops:
A and B, and may vary according to each interval.

2.2.2 Distinguishing Stable and Unstable Intervals

First, we transform the data of average of travel time over each interval in each time
period using natural logarithm. Then, we calculate the average travel time T ti (tp)
over interval i in time period tp over n weekdays, where n = 20 in this research.

T ti (tp) = 1

n

n∑

d=1

T ti (tp, d) (3)

Then, we put a number onto each interval from 1 to N , where N is the total
number of intervals; we calculate T ti , which is the average travel time over interval i
(1 ≤ i ≤ N ) among T P = {EM, MP, LM, MD, E A, AP, E, LN }, a set of eight
time periods of a day.

T ti = 1

|T P|
∑

tp∈T P

T ti (tp) (4)

Then, we calculate StDevi , which is the standard deviation of the average travel
time over interval i to find out whether travel time over each interval is stable or not.
To make a fair comparison for all routes considering the differences of distance of all
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the intervals, we divide the standard deviation of the average travel time over each
interval by the average travel time over the interval.

StDevi =
√

1
|T P|

∑
tp∈T P(T ti (tp) − T ti )2

T ti
(5)

Then, we calculate σ , the standard deviation of the standard deviation of the
average travel time over all the intervals.

σ =
√∑N

i=1(StDevi − μ)2

N − 1
(6)

Here μ is the average of the standard deviation over the intervals.

μ = 1

N

N∑

i=1

(StDevi ) (7)

According to StDevi , interval i is classified into logarithm ranges of interval
criteria as shown in Table2. We roughly classified all intervals into two classes:
stable and unstable; if the standard deviation of travel time over an interval is less
than μ, then the interval is classified as stable, or otherwise, unstable [2, 3, 5]. Then,
we further classified each of the two into three sub-classes: weak, medium and strong
(we present the results in Sect. 3.2).

Next, we briefly present references and the outline of nonlinear time series predic-
tion usingmachine learning techniques for prediction of bus travel time over unstable
intervals in seven time periods of a day; we used Support Vector Regression (SVR),
Artificial Neural Network with NARX and Random Forest (RF) Regression.

2.2.3 Support Vector Regression (SVR) Method

Support VectorMachine (SVM) has been developed to work on a non-linear problem
by incorporating the concept of the kernel in high-dimensional space; SVR is an

Table 2 Logarithmic ranges
of interval criteria

Interval category Ranges

Strong stable if St Devi <= μ − 2σ

Medium stable if μ − 2σ < St Devi <= μ − σ

Weak stable if μ − σ < St Devi <= μ − σ

Weak unstable if μ < St Devi < μ + σ

Medium stable if μ + σ <= St Devi < μ + 2σ

Strong unstable if St Devi >= μ + 2σ
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application of SVM to the case of regression [19], which was designed to overcome
the over-fitting and to yield a good performance [18, 20].

We assume there are n numbers of training data (xi , yi ) (i = 1, . . . , n), where xi
is an input vector, and yi is a scalar output. With SVR, we want to assign a function
f (x), which has the significant deviation ε from the actual target yi for all training
data. If the value of ε becomes equal or near to 0, a good regressionmodel is obtained
[20].

The main purpose of the SVR model is to construct a linear model in m-
dimensional feature space which input x is mapped onto. Using mathematical nota-
tion, the linear model f (x,w) is given below [12]:

f (x,w) =
n∑

j=1

wj g j (x) + b, (8)

where wj and g j (x) denote the j th weight and nonlinear transformation, respec-
tively, and b is a bias. Next, prediction performance is measured by the loss function
L(y, f (x,w)). SVRuses a new type of loss function called ε-insensitive loss function
proposed by Vapnik [19]:

Lε(y, f (x,w)) =
{

0 i f |y − f (x,w)| ≤ ε

|y − f (x,w)| − ε otherwise
(9)

SVR performs linear regression in the high-dimensional feature space using ε-
insensitive loss, and at the same time, tries to reducemodel complexity byminimizing
||w||2. This can be described by introducing (non-negative) slack variables ζi , ζ

∗
i (i =

1, . . . , n), to measure the deviation of training data outside the ε-insensitive zone.
Thus SVR is formulated as a minimization of the following function:

R(w,ζ ) = 1

2
||w||2 + C

n∑

i=1

(ζi + ζ ∗
i ) (10)

subject to : ⎧
⎨

⎩

yi − f (xi ,w) ≤ ε + ζ ∗
i

f (xi ,w) − yi ≤ ε + ζi
ζi , ζ

∗
i ≥ 0, (i = 1, ..., n)

, (11)

where (1/2)||w||2 is a weight vector norm, and C is a regularized constant determin-
ing the trade-off between the empirical error and the regularized term. ε is called the
tube size of SVR and it is equivalent to the approximation accuracy placed on the
training data points. By introducing optimal constraints, this optimization problem
can be transformed into a dual problem whose solution is given by:
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f (x) =
nsv∑

i=1

(ai − a∗
i )K (xi , x) (12)

subject to: 0 ≤ a∗
i ≤ C , 0≤ ai ≤ C , where nsv is the number of SupportVector (SVs)

and K is a kernel function. The kernel parameters should be carefully chosen as they
implicitly define the structure of high dimensional features and thus controls the
complexity of the final solution. However, generalization performance, here predic-
tion accuracy, depends on a good setting for parameters C , ε, kernel parameters, and
input values (x) of the training data [12, 20].

We selected Radial Basis Function (RBF) as the kernel function in this study. For
measurement of performance (C) in the training process, we selected RBF network
(λ, ε) at the minimum error as an SVR model [12].

2.2.4 Artificial Neural Network (ANN) with NARX

Next, we use an ANN-based time series prediction method to perform the predic-
tion of travel time over intervals between adjacent bus stops on all of the routes.
The method is based on a Nonlinear Auto Regressive model with the eXogenous
input (NARX) model. The NARX model is well suited for modeling dynamic non-
linear systems, especially, with time series characteristics. The NARX model is a
subset of the Nonlinear Auto-Regressive Moving Average with Exogenous Inputs
(NARMAX), which are nonlinear non-parametric identification models [10, 22].
The mathematical function which models a real world system is very complex and
usually unknown. However, the NARX model can be constructed using a simpler
function structure such as neural networks [9]. The NARX model formulation [9]
[10] is described as follows:

y(t) = f (y(t − 1), ..., y(t − ny), u(t − 1), ..., u(t − nu)) + e(t), (13)

where y(t), u(t) and e(t) are the model output, model input, and noise at time t ,
respectively. ny and nu are themaximum lags in the output and the input, respectively;
f (.) is some vector-valued non-linear function, but can be approximated using some
known simpler function such as neural networks [9].

In our model, we used a multilayer perceptron (MLP) with a single hidden layer
to approximate any bounded continuous function. The MLP contains one or more
layers of hidden units. The hidden units enable the MLP to learn complex tasks and
meaningful features from the input/output relationships. Moreover, high degree of
connectivity between the MLP layers is determined by the weights of the network
[22]. We conducted MLP training with the Levenberg-Marquardt algorithm and
evaluated the model using the measure of Mean Squared Error (MSE) in training
and testing. The MSE is a default indicator in training the ANN model. The ANN
model with the smallest MSE value is considered to be the best model [22].
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2.2.5 Random Forest (RF) Regression

The present Section is not intended to provide a detailed description of Random
Forest (RF); the parameters are described in Sect. 4.1.

Random Forest (RF) Regression is a regression technique that combines the per-
formance of numerous Decision Tree (DT) algorithms to predict the value of a
variable [7]. Therefore, regression using RF can be implemented for time series pre-
diction purposes. That is, when RF receives a u input vector, made up of the values
of the different evidential feature analyses for a given training area, RF builds k
numbers of regression trees and averages the results.

Assumed that the u is a random vector with k elements, the aim is to predict v by
estimating the regression function [16]:

m(u) = E[v|u = u] (14)

given fitting sample:
Ss = ((u1v1), ..., (us, vs)) (15)

which are independent realizations of the random variable (u v). Therefore, the aim
is to construct an estimate ms of the function m.

A random forest is a predictor constructed by growing M randomized regres-
sion trees. For the j-th tree in the family, the predicted value at u is denoted by
ms(u; θ j , Ss), where θ1, ..., θM are independent random variables, distributed as θ

and independent of Ss . The random variable θ is used to resample the fitting set
prior to the growing of individual trees and to select the successive directions for
splitting [16]. The prediction is then given by the average of the predicted values of
all trees. Before constructing each tree, the observations are randomly chosen from
the elements of u. These observations are used for growing the tree. To avoid the
correlation of the different trees, RF increases the diversity of the trees by making
them grow from different training data subsets created through a procedure called
bagging.

Hence, some data may be used more than once in the training, while other data
might never be used. Thus, greater stability is achieved, as it makes it more robust
when facing slight variations in input data and, at the same time, it increases prediction
accuracy [7]. On the other hand, when the RF makes a tree grow, it uses the best
feature of split point within a subset of evidential features which has been selected
randomly from the overall set of input evidential features. Therefore, this can decrease
the strength of every single tree, but it reduces the correlation between the trees,
which reduces the generalization error [7]. Another characteristic of interest is that
the trees of a RF classifier grow with no pruning, which makes them light, from
a computational perspective [14]. However, The performance of the RF algorithm
depends on the tuning of its parameters and the variable selection (also known as
feature selection) [7, 16].
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2.2.6 Measures of Model Performance and Prediction Results

The model parameters are evaluated by Root Mean Squared Error (RMSE). The
model with the smallest RMSE error value is chosen as it shows the best perfor-
mance. Next, we select Mean Absolute Percentage Error (MAPE) as the measure of
prediction accuracy and calculate it for all prediction results. RMSE and MAPE are
defined below:

RMSE =
√√√√ 1

N

N∑

i=1

(tActual(i) − tPredicted(i))2 (16)

MAPE =
N∑

i=1

| tActual(i) − tPredicted(i)

tActual(i)
| , (17)

where tActual is the observed bus travel time over an interval in each time-period;
tPredicted is the predicted bus travel time over the interval in the same time-period.
N is the number of observations.

3 Preliminaries to Model Development

In general, travel time variability has been classified into recurrent and non-recurrent,
where recurrent variability is a result of insufficient capacity, such as traffic conges-
tion in rush hour. While the non-recurrent variability is caused by transient events,
sources of unexpected congestion include accidents, inclement weather, construction
and special events [20, 21].

The variability of bus travel time has been one of crucial issues in many studies
because understanding the variance of travel time on a route helps to understand the
situation of traffic flows on the urban networks. Results from this analysis motivate
themodeling assumptions described in Sect. 1. Although calculation of the variability
of route travel time is based on a simple accumulation of travel times, the difference
in travel time between time periods in a day may show changes in road conditions
caused frequently or unexpectedly. In this study we investigated two things: first,
variability of bus travel time between time periods and discrimination between stable
and unstable intervals.

3.1 Variability of Bus Travel Time Between Time Periods

Many measures of travel time variability have been proposed in previous studies [3,
5, 21]. The goal of the data analysis is to explore characteristics of the data that can be
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Table 3 Periodical variance of travel time over unstable intervals on weekdays

Day Inbound Outbound

Pooled
StDev (ln)

F-value P-value Pooled
StDev (ln)

F-value P-value

Mon 0.339 21.35 0.00 0.329 43.397 0.00

Tue 0.346 20.512 0.00 0.33 37.093 0.00

Wed 0.344 19.642 0.00 0.333 43.699 0.00

Thu 0.347 21.733 0.00 0.338 43.004 0.00

Fri 0.351 26.551 0.00 0.342 46.791 0.00

used for building prediction models [20]. Using the method mentioned in Sect. 2.2,
we calculated average travel time during eight time-periods in a day over 20days.
Next, we investigated the relationship of travel time between days over intervals
between pairs of adjacent bus stops on all routes in each time period and ascertained
the daily characteristics of bus travel time. We also intended to prove an assumption
that travel time in certain time periods has a strong correlationwith travel time in other
time periods in a day; during off-peak hours such as early morning (EM), midday
(MD), or late night (LN), both traffic volume and travel time decrease. Meanwhile,
during peak hours such as morning peak (MP), late morning (LM), and evening (E),
the traffic volume increases dramatically and causes the travel time to increase as
well. Thus, the travel time should be different between different time periods in a
day [2, 3, 20].

Using statistical analysis, we compared the average travel time among eight time
periods for five weekdays. Table31 shows the resulting f-values and p-values for five
weekdays for the inbound and outbound directions.

The results show, for five weekdays, p-values<=0.05; this indicates that there
are statistically significant differences in the average travel time among the eight
time periods for the five weekdays. Further, on Thursday and Friday, the pooled
standard deviation values are higher than other days for the inbound and the outbound
directions. It is true that the characteristics of travel time over intervals between pairs
of adjacent bus stops may vary between time periods day to day. During the morning
peak, late morning, and evening on weekdays, bus travel time may significantly
increase due to the heavy traffic volume. This result also explains why we chose
eight time periods in a day as input variables in our proposed model.

1All the data has been transformed using a natural logarithm to make the data conform to normality
distribution.
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3.2 Stable and Unstable Interval

Next, using the method described in Sect. 2.2.2, we roughly divided all intervals
into two classes: stable and unstable, which could be further classified into weak,
medium or strong. The width of the category ranges of weak, medium and strong
of stable and unstable intervals is one standard deviation from mean; their ranges
are between mean plus-minus one standard deviation, from mean plus-minus one
standard deviation to mean plus-minus two standard deviations, and more or less
than two standard deviations from mean, respectively (see our method in Sect. 2.2).

Figure3 shows the percentage of stable and unstable travel times over all the inter-
vals on weekdays. There is a significant amount of variability in the travel time over
each interval on all routes onweekdays. The percentages of the three unstable interval
classes: weak, medium and strong, are 28.52%, 13.35% and 3.16% for the inbound
direction, and 31.1%, 12.79% and 3.51% for the outbound direction, respectively.
The results clearly indicate the existence of unstable intervals whose percentage is
not negligible (see Fig. 3, Ratio of stable and unstable intervals). Therefore, in this
study we focus on these unstable intervals in the above data to develop a prediction
model for travel time over each interval.

3.2.1 Variability of Travel Time over Unstable Intervals for Several
Days of Data in Each Time Period

In the second part of the data analysis, we verified the daily variance of travel time
over unstable intervals. In this analysis, data from the same time period on different

Fig. 3 Ratio of stable and unstable intervals
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weekdays were compared. This analysis aims to find the variability of travel time
over unstable intervals, and to confirm whether the variability tends to be recurrent
or non-recurrent day to day as we described in Sect. 3.

The results of the variability analysis of travel time obtained by using one-way
ANOVA in SPSS are shown in Table4, where 0.000 denotes less than 0.0005. Table4
shows that some specific time periods, especially rush hours: MP, AP and E for both
the inbound and the outbound directions, have smaller p-values than 0.05 although
travel time in LM for the outbound direction has also a smaller p-value than 0.05.
Interestingly, the other time periods have greater p-values than 0.05, even when the
target intervals are unstable ones. The results indicate that historical average travel
times in time periods other than rush hours seem to have recurrent properties and to
help in the prediction of travel times even over the unstable intervals. The results also
support the same assumption as our previous study [5] that travel times over intervals
in the same time period have recurrent and non-recurrent properties between several
days. However the time periods with recurrent and non-recurrent properties shown
in Table4 are different from those of our previous study [5]. This is because this
study only focuses on unstable intervals, unlike our previous study.

3.2.2 Correlation of Travel Time Between Adjacent Time Periods

In Sect. 3.2.1,wementioned that travel times over unstable intervals showed recurrent
and non-recurrent properties for several time periods day to day. In addition, in our
previous study [5], we found there are correlations between adjacent time periods, for
example, travel time in late morning (LM) is affected by that in morning peak (MP)
and travel time in evening (E) is affected by that in afternoon peak (AP). However,
unlike our previous study, this study only focuses on unstable intervals. Thus, we
conducted experiments to confirm if there are any correlations in travel time between
the eight time periods in a day. The experimental results denote that there are strong
or moderate correlations between time periods in a day over unstable intervals, in

Table 4 Daily variance of travel time over unstable intervals

Time period Inbound Outbound

F-value P-value F-value P-value

EM 0.325 0.997 1.005 0.451

MP 1.380 0.015 6.615 0.000

LM 0.462 0.977 1.953 0.008

MD 0.810 0.697 1.034 0.416

EA 0.611 0.901 1.395 0.117

AP 1.483 0.003 3.010 0.000

E 2.577 0.000 4.435 0.000

LN 0.686 0.836 0.539 0.947
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particular when two time periods are near to each other. The results were similar to
our previous study [5]. So we can say that travel times in the previous time periods
is a useful factor in predicting travel times in the later time periods and in building
a prediction model for travel times.

In summary, there are three results we obtained from the statistical analysis of
travel time over unstable intervals. First, the characteristics of travel time between
pairs of adjacent bus stops may vary between time periods in a day. Second, the daily
variance of travel time tends to be recurrent or non-recurrent. Third, There are strong
correlations of travel time between time periods in a day. These results show that
there is great potential to predict the travel times over unstable intervals.

3.3 Selection of Input Variables

The results of the analyses described inSects. 3.2.1 and 3.2.2 explainwhywe consider
travel time in each time period as input variables of the prediction model. We chose
two input variables: DATT and HATT. Figure4 illustrates how the model uses the
two input variables for travel time prediction.

1. DATT is expected to adjust the prediction of travel time in the current time-
period using the travel time observed in the period just before the current one.
For instance, we predict travel time in morning peak (MP) using the travel time
observed in early morning (EM) and so on. It is more effective for detecting
unexpected dynamic events than only using HATT.

2. HATT denotes the average travel time in the same time period during the past
several days. It is an important input variable of the prediction model because
travel time over intervals in some time periods tends to have recurrent properties
between days.

Fig. 4 Two input variables:
DATT and HATT for
prediction model
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4 Experimental Setup

4.1 Prediction Model Building

We carried out experiments to predict travel time over each unstable interval between
pairs of adjacent bus stops on the route using the SVR, ANN and RF methods with
two input variables: DATT and HATT. In the experiments, because DATT relies
solely on the travel time observed in the time period just before the current one and
there is no time period before EM, prediction of travel time was performed for each
of 7 time-periods in a day: MP, LM, MD, EA, AP, E and LN. Therefore we just used
HATT for the EM period. We used SVR and RF of WEKA version 3.8. For SVR,
RBF was selected as the kernel function in this study. Other parameters are C : 1.0,
ε : 1.0E-12, and ε parameter tolerance: 0.001. In addition, the number of features
used for training at each node split is mtry.

For RF, observations per a tree default = 1.0; features per node scalar default =
nvars/3; maximum tree depth = unlimited and the method of calculating variable
importance = 0,1. In addition, we used M = 500 trees, which is equal to their default
values in theWekaRF package, and a node size = 5. The parametermtry is controlled
during the validation phase to avoid over-fitting.

Next, in ANN, we used a multilayer perceptron (MLP) with a single hidden
layer to approximate any bounded continuous function. Also, we selected a narxnet
network architecture, where the number of hidden neurons is 10, and the number of
delays is 2. Furthermore, in the training network, we used the Levenberg-Marquardt
algorithm in MATLAB trainlm. After every n epoch we applied Series-parallel (SP)
mode to actual values of the target series data in order to form the regression of the
target series data, and to minimize over-fitting in the training process; we performed
validation using the validation data.

The optimal performance parameters of SVR, ANN and RF were found by cal-
culating the average performance of each training model, while the search for the
optimal value of the parameter was performed in a grid. The RMSE was used to
measure the performances. The optimal parameters minimizing the RMSE were
selected.

4.2 Training Data and Prediction Iteration

In the training phase, we used two sets of input data: DATT and HATT, for each
model: SVR, ANN and RF. In the first prediction step, we used 14-days data as
trainingdata, 1-daydata as validationdata, and1-daydata as testingdata.Weprepared
five days of data as testing data and selected one day among them in each iteration
without duplication. In the training process, predicted results were evaluated by
RMSE, conducting out-of-sample prediction with validation data; when the RMSE
value fell below the threshold, the training was stopped to avoid over-training. We
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Fig. 5 Training data and prediction iteration

repeated all the above steps five times selecting another 1-day data in the 5-day test
data. In the next iteration step, we added the validation data in the previous iteration
step into the training data and used the test data in the previous iteration step as the
validation data. Then, the quantity of training data was increased by one day data in
each iteration step. The iteration of the prediction model is shown in Fig. 5. Unlike
our previous study [5], this procedure does not add the prediction result in the current
step, but adds the validation data in the current step into the training data in the next
step. Further, in this study, we used not only ANN, but also other machine learning
models: SVR and RF.

Further, we investigated if just adding the validation data used in the previous
step into training data in the current step has any effect. To this end, instead of just
adding the validation data, we implemented a moving window model such that the
length of training data is the same 14days in each iteration. This model changes the
training data by moving one day forward so that each data set has the same 14day
training data size. Accordingly, the validation data in the previous step was added
into training data in the current step, but the earliest day data in the training data in
the previous step was removed. In summary, the difference between the proposed
models in this study and the model proposed in our previous study [5] is that the
previous study model just adds both the predicted result and the validation data in
the previous step into the training data in the current step, but the proposed model in
this study replaces the earliest day data in the training data with the validation data
in the current step for the next step by taking the moving window model. Figure6
illustrates the experimental procedure of the proposed model in the training process.

4.3 Prediction Performance Evaluation

When building prediction models, the primary goal is to make a model that most
accurately predicts the desired target value for actual data. To measure the model
error, we used mean absolute percentage error (MAPE) as described in Sect. 2.2.6.
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Fig. 6 The training process in the proposed model

Fig. 7 Prediction error for the inbound direction

Fig. 8 Prediction error for the outbound direction

Figures7 and 8 present the MAPE values of the prediction models in each time
period for five days by performing one step ahead prediction on weekdays.

First, we observed the prediction results for five days. For the inbound direction
on Monday in morning peak (MP), the RF model obtained the lowest prediction
error of approximately 6.72% and on Wednesday in morning peak (MP), the SVR
model obtained the lowest prediction error of approximately 6.70%.Next onTuesday,
Thursday and Friday always in early afternoon (EA), the ANN model obtained the
lowest prediction error of approximately 6.94%, 6.57% and 6.31% respectively.
While, for the outbound direction, the RF model obtained the lowest prediction error
on Monday for midday (MD) of approximately 5.46%, the SVR model was next,
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Table 5 Average MAPE of prediction error

Models Direction MP (%) LM (%) MD (%) EA (%) AP (%) E (%) LN (%)

SVR Inbound 8.27 10.53 9.99 8.16 9.22 9.74 12.45

Outbound 6.68 8.85 10.33 8.52 9.13 11.19 9.58

ANN Inbound 9.65 10.95 8.90 6.93 10.82 11.33 11.43

Outbound 8.07 10.40 10.84 10.16 10.01 10.35 9.61

RF Inbound 8.63 9.90 9.67 9.14 9.63 10.52 10.42

Outbound 8.30 9.24 8.89 9.17 9.55 9.84 10.71

obtaining the lowest prediction error for several days i.e, on Tuesday in morning
peak (MP), Wednesday in afternoon peak (AP), Thursday in morning peak (MP) and
on Friday in late morning (LM), with values of approximately 5.55%, 7.37%, 5.02%
and 6.69% respectively.

In general, the observations indicate that there is no significant difference in the
distribution of MAPE between the three models. However, it can be clearly seen for
the inbound direction that the ANNmodel outperformed the SVR and RFmodels for
the prediction travel time on several days, especially in time periods with recurrent
variability i.e., early afternoon (EA).On the other hand, for the inbound and outbound
directions the SVR and RF models give better prediction results compared to the
ANN model in predicting travel time in time periods with non-recurrent variability
i.e., in morning peak (MP), afternoon peak (AP) and evening (E). Recurrent and
non-recurrent variability of travel time were observed as described in Sect. 3.2.1.

Second, in order to clarify the above discussion, we carried out further analysis
on overall average MAPE for each time period for the three models. The analysis
results can be seen in Table5.

As can be seen in Table5, the SVM and the RF models have the lowest MAPE
value inmorning peak (MP), afternoon peak (AP) and evening (E).However, the SVR
model obtained worse prediction results for the inbound direction in late night (LN)
and midday (MD), with values of approximately 9.99% and 12.45% respectively.
At the same time, the RF model also obtained worse prediction results in late night
(LN) for the outbound direction, compared with the ANN model. In summary, the
SVR and RF models outperform the ANN model in most cases, but there were no
significant differences between the three models. Also, the results of three models
showed acceptable performance and are in the reasonable error range in predicting
the travel time over unstable intervals.

4.4 Model Comparison

In order to discover the characteristics of the training data in our previous study [5],
we conducted other experiments predicting travel time in each time period for the
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Fig. 9 Comparison of the prediction error

inbound and the outbound directions according to the training model in our previous
study. Since the SVR model had the best performance in this study, we repeated the
experiments five times as we conducted experiments in Sect. 4.2.

On the other hand, to make a fair comparison with this study, we conducted
experiments on our previous model using time series data for 20days; each day is
divided into eight time periods and we predicted for 7 time periods in a day. Next, we
conducted experiments usingWEKA version 3.8 as described in Sect. 4.1. RBF was
selected as the kernel function, parameters wereC : 1.0, ε : 1.0E-12, and ε parameter
tolerance: 0.001.

We compared the results between our proposed model and the previous model
using average MAPE values. The experimental results shown in Fig. 9 illustrate that
our proposedmodel obtained lowerMAPE results thanour previousmodel, except for
two time periods of travel time i.e., midday (MD) and late night (LN) for the inbound
direction andmidday (MD) for the outbound direction. In addition, we focused on the
time periods with non-recurrent properties: morning peak (MP), late morning (LM),
afternoon peak (AP), and evening (E), for the inbound and the outbound directions.
The results above indicate that our proposedmodel outperformed the previousmodel,
especially in prediction for the time periods with non-recurrent variability of travel
time.

Next, we conducted a t-test in SPSS software to see if there are any significant
differences between the prediction results. In this procedure, we compared our pro-
posed model and previous model in each time period for all days. Table6 shows that
there are significant differences between the proposed and previous models; for the
inbound direction there are five such time periods i.e., morning peak (MP), early
afternoon (EA), afternoon peak (AP), evening (E) and late night (LN). While, for the
outbound direction there are four such time periods i.e., morning peak (MP), early
afternoon (EA), afternoon peak (AP) and evening (E). Considering the above results,
we can say that the proposed model in this study outperformed our previous model
and there are significant differences between them.
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Table 6 Paired sample test

Proposed versus Previous Inbound Outbound

T-value P-value T-value P-value

Pair 1 MP −8.427 0.001 −7.829 0.001

Pair 2 LM −0.647 0.553 −2.367 0.077

Pair 3 MD 1.113 0.328 1.633 0.178

Pair 4 EA −13.083 0.000 −3.270 0.031

Pair 5 AP −3.847 0.018 −3.924 0.017

Pair 6 E −7.039 0.002 −3.567 0.023

Pair 7 LN 6.057 0.004 −0.270 0.801

5 Conclusion and Future Work

It is a challenging problem to accurately predict bus travel time over each unstable
interval between pairs of adjacent bus stops because the characteristics of the travel
timeover unstable intervals includenon-recurrent properties aswell as recurrent ones.
In this study, we built our prediction model using three machine learning techniques:
SVR, ANN and RF, with a time series model approach. We applied the models to
more than 2000 intervals on 77 routes to predict travel time over unstable intervals.
Before building the prediction model, we conducted exploratory data analyses to
clarify its characteristics, especially the variability of the unstable intervals. Based
on the analysis results, we determined two input variables: HATT and DATT, for the
prediction model.

To validate the proposed model, we conducted experiments using 20-weekday
data, where we used 14-days data as training data, 1-day data as validation data,
and 1-day data as test data in the prediction step at the beginning. From the second
prediction step, we added validation data from the previous step to the training data,
used the test data in the previous step as validation data, and chose another 1-day
data from the 5-day test data as test data in the current prediction step. We repeated
the prediction step five times and each prediction step produced prediction results
for one step ahead.

Experimental results showed that our proposed model provided promising per-
formance in predicting travel time over unstable intervals compared to our previous
model. The results also indicated that our proposed model accurately and dynam-
ically predicted travel time over unstable intervals for each time-period in a day,
especially for the time periods with non-recurrent variability of travel time. This
means that bus travel time can be reasonably estimated using both DATT and HATT
data over unstable intervals.

In our future work, we will strive to continuously improve our prediction models
focusing on rush/peak hours and off-peak periods of travel time.
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Dynamic Arrival Time Estimation Model
and Visualization Method for Bus Traffic

Kei Hiroi, Hitomi Imai and Nobuo Kawaguchi

Abstract Bus transportation service is more strongly influenced than other public
transport modalities by various factors such as traffic congestion, weather condi-
tions, number of passengers, and traffic signals. These factors often cause delays,
and users may feel inconvenienced when waiting at a bus stop. Few studies have ana-
lyzed the relationship between operational situations and multiple different factors
by visualization. Thus, we propose an arrival time estimation method and a visual-
ization model. The arrival time estimation model dynamically updates the accuracy
via an estimation method using a combination of a multiple-regression model and
a Kalman filter. The visualization model analyzes relationships between delays and
various factors. The goal of this study is to realize a society where people can use
buses more comfortably.

1 Introduction

Many people use public transport in the form of bus service. According to a survey
by theMinistry of Land, Infrastructure, Transport and Tourism [1], in Japan, approx-
imately 12million people use this service every day. Recently, traffic data have begun
to be collected by various systems [2], for example, bus arrival information systems.
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Such systems obtain bus information using GPS: arrival or departure time, traveling
locations (latitude and longitude), etc. In addition, the number of passengers and
the behavior of the driver are also recorded. On the other hand, bus operation situ-
ations are more strongly influenced than other public transport modalities by traffic
congestion [3], weather condition [4], number of passengers [5, 6], traffic signals
[7], etc. These factors [8] are related to delays, and the motion of buses changes in a
complicatedmanner [9, 10].Many services inform the users of departures from a bus
stop [11, 12], but few services provide specific estimated arrival or delay times. Few
studies have analyzed the relationships between operational situations and multiple
factors by visualization. When a bus is delayed, passengers may feel inconvenienced
when waiting at the bus stop. Thus, we propose an arrival time estimation method
and a visualization model: “EMRF (Extended Multiple Regression Filter) model”.
The arrival time estimation model dynamically updates the accuracy via an estima-
tion method using a combination of a multiple-regression model and a Kalman filter.
The multiple-regression model estimates the trend in advance, and the Kalman filter
updates the estimation to the optimal state based on the trend in Fig. 1. As a feature
of this method, the closer the bus is to the terminal station, the better the accuracy.
“Bus Tapestry” is the visualization model, which analyzes relationships between
delays and factors. This model creates a heat map of operational situations (delays
or premature arrival) and adds bus stop positions, signal positions, and bus traffic
data. We can thereby visually find factors related to delays. The goal of this study is
to realize a society whereby people can use buses more comfortably.

Fig. 1 Outline of the proposed system
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2 Literature Review

2.1 Multiple-Regression Analysis

Multiple-regression analysis is a linear model and derives the dependent variable Y
using multiple independent variables Xi(i = 0, 1, . . .) by Eq. 1 as follows:

Y = a0 + a1X1 + · · · + aiXi (1)

where ai is a coefficient calculated for each independent variable. In the study by
Jayakrishna and Chien [13], the dependent variable was the estimated time taken
between bus stops. Independent variables, such as the time required for the timetable,
the distance between bus stops, the number of passengers, and the time to open and
close the door, were factors that influenced delays. The estimation under this model
was highly accurate. However, multiple-regression analysis is a static estimation
based on the past data and does not consider increased passengers due to rainy
weather or events being held near the bus stop. Therefore, it is difficult to respond
to such a real-time changing environment and present the estimated arrival time to
users.

2.2 Kalman Filter

The Kalman filter is a powerful mathematical tool for estimating the future states
of variables even without knowing of the precise nature of the system modeled. In
the study by Chen et al. [14], the time required in the next interval was dynamically
estimated based on the time required for the timetable and information accumulated
from the starting station. Although the Kalman filter can process information includ-
ing errors and perform estimation dynamically, accurate estimation is difficult when
a bus stop interval is characteristic.

3 Model Development

3.1 Arrival Time Estimation

The EMRF model consists of a multiple-regression model and Kalman filter. Before
departure, themultiple-regressionmodel estimates changes in inputs, and after depar-
ture, the Kalman filter performs estimation dynamically from the difference between
the measured value and the estimated value based on the preliminary estimation.
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First, we explain the multiple-regression analysis in this study. The dependent
variable is the estimated time takenbetweenbus stops [13]. The independent variables
are factors that influence delays [15] such as bus stop sections, delays ahead of n
stations, the time zone, the day of the week, the time required for the timetable, and
the number of passengers. The delay is defined as the difference between the required
time for the timetable and the actual required time. For the time zone, Early Morning
is defined as until 7:00, Late Morning is defined from 8:00 to 10:00, Early Noon is
defined from 10:00 to 13:00, Late Noon is defined as from 13:00 to 17:00, Evening
is defined from 17:00 to 19:00, and Night is defined after 19:00. For the number of
passengers, the number of people getting onto the bus is compared with the number
getting off, and the higher number is recorded.

Second, we describe our Kalman filter in Fig. 2. Based on the estimation of the
multiple-regression model, the Kalman filter estimates the required time for each
bus stop interval. The end point is defined as the bus stop N . At a given bus stop k,
the EMRF model estimates the times required for bus stop intervals k – (k + 1), k –
(k + 2), . . ., ,k – N . We input values estimated by a multiple regression model as the
initial state of the system. Specifically, for k = 1, an estimated value is calculated
using past data. For k > 1, the model calculates the real time differences (delay or
premature arrival) using the estimated value for the bus stop interval (k − 1) – N ,
together with the timetable used in the calculation, and it inputs the results that are
re-estimated using the multiple-regression model. After the bus leaves the starting
station, the model updates the system status and estimated value each time it arrives
at the bus stop and repeats this motion until it reaches the end point. By repeating the
update, it is possible to correct the value even if the estimated and actual measured
values are different from each other. Additionally, as the bus approaches the end
point, the accuracy of the estimation can be improved.

In general, the Kalman filter estimates the state of the system at time (k + 1) using
the state equation based on the previous state by Eq. 2 as follows:

xk+1,j = Φk+1xk,j + uk + Wk, j (2)

Fig. 2 Outline of the proposed method
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where xk+1,j is the state of the system at time (k + 1), Φk+1 is the state-transition
model, uk is the state vector, andWk, j is noise. We use a multiple-regression model
(Eq. 1) instead of the state vector uk in Eq. 2. The relationship between an observation
value zk and a state variable xk,j is expressed by the observation equation of Eq. 3.

zk = Hkxk,j + vk,j (3)

where Hk is the observation model and vk,j is noise. We define the state variable xk,j
as the estimated time Ek,j and the real time required Rk in Eq. 4 as follows:

xk,j = (Ek,j,Rk) (4)

where Ek,j is the total value from an arbitrary bus stop k to the bus stop j and Rk is
the total value from the starting station to the bus stop k.

3.2 Visualization

BusTapestry creates a heatmap of operational situations (delays or premature arrival)
and adds bus stop positions, signal positions, and bus traffic data. This visualization
method attempts to determine and find a tendency of bus delays and their reasons to
use large-scale bus traffic data as a scatter plot. The vertical axis is the time zone,
the horizontal axis is the distance from the starting to the ending bus stop, and each
position is the accumulated distance.

First, we explain how to process the data. Our visualization expresses operational
situations by the difference between the actual time required and the required time.
The value is positive when the bus is later than the timeline suggests, and it is
negative when the bus is earlier than the timeline suggests. The route distance is the
total value based on the bus stop and the location information of the signal (latitude
and longitude) in Fig. 3a. Our method calculates the interval distances dn+1 from Ln
to Ln+1 using the information at each position. The total distance Ln+1 is the sum of
their values in Eq. 5 as follows:

Ln+1 = Ln + dn+1 (5)

In this study, our method does not consider the curvature of the road, for example.We
did not process data from the bus arrival information system because these datamight
include errors. Similarly, the travel distance of the bus is also the sum of the distances
between the locations traveled in Fig. 3b. For the travel distance, the location of the
bus stop is the point at which the departure information was recorded.

Second, we describe how to visualize the data. Our method visualizes operational
situations and the signal position using our created data. The heat map represents
operational situations (delays or premature arrivals), where the vertical axis is the
time zone (hour) and the horizontal axis is the distance (km). The horizontal axis
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Fig. 3 Definition of interval
and total distance

(a) Case of Bus Stops and a Signal.

(b) In Case of Bus.

expresses the distance between bus stops by putting the same data every 0.01 km
within each bus stop interval. We add the signal position data (mileage) and make
the number of traffic signals between routes visible. Consequently, we can analyze
the influence of the signals between bus stops and operational situations of each time
zone. Furthermore, we can evaluate the operational situations in greater detail by
adding the location information of each bus to the visualized data.

4 Data Collection

In this study, data were collected from the bus arrival information system. The
recorded area is located in the Aichi Prefecture and includes information on position,
time, route, bus stop, etc. These datawere provided by theTransportationBureauCity
of Nagoya [11] and the Meitetsu Bus Company Limited [12] through the Location
Information Service Research Agency (Lisra) [16]. The above data were recorded
when arriving and departing a bus stop and during communications at 30 s intervals.
The range for the data collection was from December 13–22, 2014. This dataset
includes 1030 buses, 3784 bus stops and 664 routes. These data were recorded only
when departing the bus stop. The range for data collection was for July 1–15, 2016
and from January through October 2017. This dataset includes 710 buses, 1539 bus
stops and 523 routes. The number of passengers was provided by the Meitetsu Bus
Company Limited. In addition, we indicate each position of traffic signals on the
target bus routes.
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5 Analysis of Results

5.1 Independent Variables and Coefficients of
Multiple-Regression Model

Weanalyzewhether the independent variables assumed in Sect. 3.1 are necessary and
sufficient manner. First, we add “The amount of precipitation”, “Temperature”, “The
number of signals in the bus stop sections” and “Interval distance” as the independent
variables of our model. Table 1 shows a result of the multiple-regression analysis on
the data for 1 month in March 2017 and 10 months from January to October 2017
In the multiple-regression analysis with the independent variables in Sect. 3.1, the
coefficient of determination was 0.77 for the one month of data and 0.79 for the
10 months of data. In the multiple-regression analysis using Sect. 3.1’s variables,
the amount of precipitation was 0.77 and 0.79. Although the coefficients slightly
improved due to the increase in the data volume, we cannot confirm large changes
due to the addition of independent variables.

5.2 Influence of Data Volume on p Value

Figure 4 shows the comparison results for the p value calculated by the multiple-
regression analysis using the independent values of Sects. 3.1 and 5.1. The inde-
pendent variables in Fig. 4 are arranged in descending order of p value for the data
for 10 months. The coefficients of “bus stops interval 1–2”, “Early Morning” and
“Monday” are 0, and the significance level (p value < 0.05) is represented by a red
dotted line. According to Fig. 4, there are variables with significantly different p
values for the data for 1 month and 10 months. Specifically, with regard to “The
amount of precipitation”, “Temperature”, some “bus stop interval”, “Time zone”,
“Day of week”, and “Delay in front of 2 stations”, the p value using the data for 1
month did not satisfy the baseline value. These independent variables resulted in less
influence on the required time than the other factors; however, the p values changed
significantly for the 10 months of data, and the p values that met the significance

Table 1 Independent variables and coefficients

Independent variables Coefficients (1 month) Coefficients (10 months)

– 0.7715 0.7934

The amount of precipitation 0.7716 0.7935

Temperature 0.7715 0.7934

The number of signals 0.7715 0.7934

Interval distance 0.7715 0.7934
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Fig. 4 p value of each independent variable

level increased. We think that this is because although these independent variables
have minimal influence on the required time in the case using the data for one month,
the data for 10 months include the day on which these independent variables work
well. However, some independent variables using data for 10 months exceeded the
level of significance, with the result that “Tuesday”, “Wednesday”, “Thursday”, and
“Friday” had minimal impact. It seems that this was because of the similar operating
conditions on weekdays and weekends. In addition, it was found that this situation
considered more data, and the effectiveness of the independent variable increases.
On the other hand, when using 10 months of data for “The amount of precipitation”,
“temperature”, “number of signals” and “interval distance”, no p value remarkably
increased compared to other p values. Therefore, these independent variables are
thought to affect the required time.

5.3 Correlation between the Independent Variables

The added variables of “The amount of precipitation”, “temperature”, “number of
signals” and “interval distance” were found to affect the required time; thus, we
investigate the correlation between the independent variables. We calculate the cor-
relation coefficientR for all independent variables assumed in this study, andwe show
the variables with |R| > 0.4 in Fig. 5. “The delay in front of n stations” showed a
strong correlation overall. This seems to be because the delay at the previous bus stop
influences the delay of the next bus stop directly. There was also a strong correlation
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Fig. 5 Independent variables whereby |R| > 0.4

between “The required time” and “Number of signals”. This is why no significant
change was observed in the decision coefficient even when “number of signals” was
added as an independent variable; thus, “the number of signals” could be one of
the factors in setting the required time. In addition, the “number of signals” also
shows a strong correlation with “interval distance”, and this tends to increase the
number of signals as the distance increases. “Bus stop interval” sometimes showed
strong correlation with other independent variables; however, “Bus stops interval”
was a dummy variable and occurred because the values indicated by the factors were
biased. However, “Early Noon” and “Late Noon” are dummy variables set under the
same condition, and they must be independent variables. Since this time zones were
arbitrarily categorized, we thought that the correlation could be weakened by rear-
ranging it according to the bus location data of each area. Therefore, we classified
the time zones into 6 classes based on the median, maximum and minimum of the
time zone lag using k-means clustering. K-means is a typical non-hierarchical clas-
sification method that divides a set of data into l clusters. First, an arbitrary centroid
μi(i = 1,���, l) is defined in the cluster as an initial value. Then, each point of
the data is assigned to the cluster ci having the closest centroid, and the centroid is
updated to the average point of the data included in the cluster. The cluster assignment
and the update of the centroid are repeated until the dispersion within the cluster is
minimized to calculate the optimum classification result. Figure 6 shows the result
of the classification of time zones in a route. Using this classification result, the cor-
relations between time zones all achieve |R| > 0.4. Then, we removed “Number of
signals” from the independent variables and improved the multiple-regression model
for “time zone” tailored to each route.
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Fig. 6 Clustering result for
time zone

5.4 R-squared by Multiple-Regression Analysis

The results of a multiple-regression analysis are shown in Fig. 7. The data are from
the Meitetsu Bus Company Limited, having a range of March 1–31, 2017. For com-
parative purposes, the R-squared for the Nagoya City Bus data is collected in Fig.
7. The range of the utilized data is for December 13–19, 2014. The R-squared value
indicates how well an independent variable accounts for the variability of another,
dependent variable. The value of R-squared ranges from zero to one, with values
closer to one indicating a lower degree of relative error. The highest R-squared
value was 0.90. However, since the coefficients had abnormally large values, such as
5.86 × 1011, multiple-regression analysis could not be performed properly. This is
because the route contains 25 bus stops, and as such, there are too many independent
variables. On the other hand, the smallest R-squared value is 0.46. This seems to be
caused by irregular congestion in a bus stop interval. The average value for Meitetsu
Bus was 0.69, which was close to the average value of the Nagoya City Bus (0.76).
However, the value of Meitetsu Bus was slightly lower than that of the Nagoya City
Bus because there was less data on Meitetsu Bus than on Nagoya City Bus. Data
of Nagoya City Bus were recorded when arriving and departing the bus stop and
when communicating every 30 s, but data of Meitetsu Bus were only recorded when
departing the bus stop. The relationship between the R-squared and the number of
bus stops is shown in Fig. 8. The R-squared is 0.0053, and there was no correla-
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Fig. 7 R-squared for Meitetsu Bus

Table 2 R-squared for Nagoya City Bus

Route ID R-squared

8415 0.79

8471 0.76

8784 0.69

8921 0.58

8939 0.80

8990 0.80

9014 0.80

9015 0.88

Average 0.76

tion between the multiple-regression analysis and the number of bus stops in Fig. 8
(Table2).

5.5 Accuracy Verification by Changing the Amount of Data

We verified how a change in the amount of data affects the estimation accuracy
using the multiple-regression model using the data from Meitetsu Bus Company
Limited. The compared data were data for 14 days (July 1–14, 2016), 101 days (July
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Fig. 8 The relationship
between the R-squared and
the number of Bus Stops

Table 3 Variation of
R-squared for Route 9

The type of data R-squared

14 days 0.34

101 days 0.44

Excluding 0.55

1–14, 2016 and from January to March 2017), and 101 days excluding the abnormal
values. The estimated date is July 15, 2016. We removed the abnormal values using
the interquartile range. We calculated the R-squared by comparing the estimated
and actual values for route 9 (Fig. 7) in Table 3. Table 3 shows that the R-squared
increased as the amount of data increased. Additionally, excluding the abnormal
values further improved the estimation accuracy.

5.6 Visualization

We used the data from the Transportation Bureau City of Nagoya on December 16
and 21, 2014. The result of our visualization is presented in Fig. 10. The black dots

Fig. 9 Bus Tapestry sample
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(a) Visualization for Route 8415 (Tue).

(b) Visualization for Route 8415 (Sun).

(c) Visualization for Route 8471 (Tue).

Fig. 10 Result obtained by Bus Tapestry
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are the running positions of the bus, the red dots are the bus stop positions, and the
dotted lines are the signal positions. The white areas in the heat map are the time
zones during which the bus was not running. For example, Fig. 9 is an enlarged view
of the initial time in Fig. 10a, where the bus travels along the y axis as time elapses.
The points representing the positions of the bus are divided into sparse and dense
points, where the bus does not move much when the points are dense but does move
when the points are not dense.

Figure 10a, b are other days of the same route and show a similar delay condition
overall. However, in the range of bus stop 5 to bus stop 6, we find that the delay
on Sunday is greater than those on Tuesdays from 16:00 to 17:00. Figure 10a, c are
the other route on the same day. They show that route 8471 has a large delay near
three stations before the end point compared to route 8415. Moreover, in Fig. 10a,
the signal between bus stop 2 and bus stop 3 does not significantly affect the delay
because there are few points before it. On the other hand, the signal between stop
11 and stop 12 is likely to affect the delay because there are many points before it.
Thus, we can visually identify the relationship between delay and factors using our
visualization method.

6 Evaluation of the Model

We used the data from Meitetsu Bus Company Limited for March 1–31, 2017 for
Route 9. The estimated date is Tuesday, January 31, 2017. The model was created
for 30 days, excluding the estimated date. For the estimated date, the number of
passengers and delay in front of n stations were the average of 30 days.

6.1 Comparison by Estimation Errors

For Schedule 10430, the estimation errors by the multiple-regression model and our
model are presented in Fig. 11. Schedule 10430 is a bus running from 20 to 21 h. The
estimation errors are the difference between the estimated value and the actual value.
The error is positive when the EMRFmodel estimates are longer than the actual value
and negative when the model estimates are shorter than the actual value. Figure 11
shows that the estimation errors are smaller than those of the multiple-regression
model, and the EMRF model corrects the estimation.

6.2 Comparison by RMSE

We evaluate the models using the RMSE (Root Mean Squared Error) in Eq. 6 as
follows:
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Fig. 11 Estimation error in route 9, schedule: 10430

RMSE =
√
√
√
√

1

N

N
∑

i=1

(yi − ŷi)2 [s] (6)

where N is the number of bus stop intervals, yi is the actual value of the i-th bus
stop interval, and ŷi is the estimated value of the i-th bus stop interval. The RMSE
is an evaluation method that quantifies the difference between the estimated value
and the actual value. An RMSE closer to 0 indicates a more accurate estimation.
Figure 12 presents the the RMSE obtained by the multiple-regression model and our
model. Schedule 10430 is a bus running from 10 to 11 h. The estimated date varied
from March 1 to 31. The horizontal axis is the estimated bus stop, and the vertical
axis is the RMSE. Figure 12a, b, presenting March 31 using data of other dates,
show that the RMSE by our model is smaller than that obtained solely by using the
multiple regression model. Especially in Fig. 12a, the estimation was well corrected
at bus stop 2. In Fig. 12c, showing March 13, the results are approximately equal to
those under themultiple-regressionmodel. Then, we estimated the other route in Fig.
12d. Most of the RMSE values under our model showed a higher accuracy than the
multiple-regression model except for bus stops 5 and 10. Similarly, for all schedules,
the average RMSE is presented in Fig. 13. This figure shows that the RMSE was
smaller in our model even in the case of using the average value for the data of one
month. Therefore, it is assumed that our model can improve the estimation accuracy.
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(a) Route 9, Schedule: 10400 (3/31). (b) Route 9, Schedule: 10425 (3/31).

(c) Route 9, Schedule: 10400 (3/13). (d) Route 10, Schedule: 11209 (3/31).

Fig. 12 The RMSE for route 9 and route 10

Fig. 13 The average RMSE
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7 Examination of Presentation Method

We propose a method for presenting the arrival time including estimation errors.
Using the standard deviation, the estimated required time is calculated with some
leeway and presented to users with an accuracy of approximately 95% using Eq. 7
as follows:

E′ = E ± 2SD(E − R) (7)

where E′ is the required time including estimation errors, E is the estimated required
time, and R is actual required time. Showing users the earliest arrival time allows
them to broaden their choice of actions, as in Fig. 14. For example, users might think
“If this time is the earliest possible, let’s go to a convenience store” or “Since there is
no need to hurry, let’s walk slowly”. Presenting the latest arrival time has the effect
of alleviating the anxiety of “How long will I have to wait at the bus stop?” Our
method can also show the estimated arrival time at the destination stop and inform
the users of it because our model can be applied to all bus stop intervals. Presenting
the specific estimated arrival times in this way gives users a more accurate idea of
operational situations, making it easier to act upon such data.

Moreover, to investigate the viewpoints of the users on the presentation method of
the estimated arrival time, we performed an investigation using questionnaires. This
period was for January 29–30, 2018. We obtained responses from 184 people using
SNS,where valid responses from 169 peoplewere obtained. Respondents were asked
to evaluate how they viewed estimation errors with 5 responses: “Never”, “Hardly
ever”, “Neutral”, “Some of the time”, or “All of the time”. When the estimation
errors are less than 1 min, “All of the time” accounted for approximately 90% of all
responses. When the estimation errors are within 1–5 min, “All of the time”, “Some
of the time” and “Neutral” accounted for approximately 90% of all responses. There-
fore, it is assumed that the standard for estimation errors is less than 5 min. Figure 15
shows the results of the questionnaire on the presentationmethod. There were 4 types
of sample types: “Estimated delay time”, “Estimated arrival time”, “Estimated time
remaining”, and “Graphical presentation”. “Estimated arrival time” and “Estimated
time remaining” each accounted for approximately 40% of all responses. Thus, we
found that the users prefer to display the arrival time over the delay time. It is assumed

Fig. 14 How to present the
results to users
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Fig. 15 The result of the questionnaire about the presentation method

that the users could comfortably use an application in which they could select the
presentation method because the answers were divided.

8 Conclusion

In this study, we proposed the EMRFmodel and Bus Tapestry. The EMRFmodel is a
dynamic model for arrival time estimation combining the multiple-regression model
and the Kalman filter. We verified the accuracy of the estimation using the R-squared
and evaluated the EMRF model by the RMSE. The results showed that the average
estimation error improved from 186 s to 17 s. We also presented the estimated
arrival time including estimation errors. We performed an investigation using the
questionnaires and obtained 184 answers concerning the presentation method. The
results showed that the standard estimation error was less than 5 min, and the users
preferred to display the arrival time rather than the delay time.

Bus Tapestry is a visualization method for analysis of operational situations. We
can visually compare the operational situations of other days or routes and poten-
tially find different features. Additionally, we can see the relationship between delays
and number of signals in greater detail. In the future, it may be possible to estimate
abnormal values and use machine learning. Furthermore, to start an estimation ser-
vice, it is necessary to conduct a demonstration experiment and collect the opinions
of users.
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Simulation for Passengers Convenience
Using Actual Bus Traffic Data

Kei Hiroi, Takehiro Arai and Nobuo Kawaguchi

Abstract Public transport bus service is an important means of transportation for
commuting, schooling and daily life. However, many unpredictable problems arise,
resulting in delays caused by traffic congestion or an increased number of passengers.
Changing the operation schedulemay alleviate these problems; however, determining
the optimal schedule change requires an iterative process of trial and error. As the
number and diversity of changes increase, it becomes necessary to notify users many
times, which places a heavy burden on both users and bus operators. In addition, it is
difficult to evaluate what kind of schedule is best for passengers and bus operators.
Therefore, in this study,wepropose a framework for simulating and analyzing various
driving situations. We define a “dissatisfaction degree” based on factors related to
the convenience of passengers, such as the waiting time or the congestion rate,
from simulations based on actual bus traffic data. Then, we measure and evaluate the
dissatisfactiondegreewhen thedriving situation changes quantitatively.Additionally,
we develop a tool to confirm how operations change based on the conditions of the
simulation, such as the number of buses or passengers.

1 Introduction

Public transport bus service is an important means of transportation for commuting,
schooling and daily life. For the convenience of the passengers, it is desirable for bus
service to operate on time. Public transport bus service, however, is subject to many
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factors that interfere with scheduled operations. The bus operation situation is easily
influenced by various factors, such as traffic congestion or weather conditions. The
number of passengers is also a factor that affects the delay: the more passengers need
to get on and off, the more time the bus will spend at the bus stop, and the more the
arrival time at the next stop will be delayed as the number of passengers increases.
These factors lead to bus delays and make bus service inconvenient.

On the other hand, bus location systems have recently emerged that can easily
obtain various data, such as arrival and departure times and travel locations. Using
such bus location data, we have analyzed the bus delays in Aichi Prefecture, Japan,
and confirmed that there are delays at specific times and places, such as during
commuting time in the morning and near the main station on holidays. Naturally, bus
operators have been working to resolve these delay factors and planning to operate
according to a given time schedule. However, bus operators must periodically revise
their schedules since the road situation and the number of passengers are constantly
changing as the population increases and as changes are made to nearby facilities
and the operation plans for other transportation systems. Bus operation simulations
are used for this purpose.

Wang et al. considered the optimization of bus operations by using time-dependent
passenger demands and traffic patterns [1]. Duzha et al. simulated public transporta-
tion to mitigate congestion in the morning and evening through cooperation between
municipalities and public transport operators [2]. Reference [3] simulated travel opti-
mization by adjusting the departure times at specific stops to adjust bus departure
times. These studies sought efficient and low-cost operation. However, it seems that
these approaches show little consideration for the convenience of passengers.

In this study, we develop a simulation system to achieve both better bus operations
and greater convenience for passengers using actual bus traffic data. We adopt the
concept of a “dissatisfaction degree” as an index for measuring the convenience of
passengers with respect to bus operations. We simulate bus operations in Okazaki
City, Aichi Prefecture, where buses are delayed by 20 to 30 min on a daily basis
due to congestion. The simulation calculates passenger appearance rates at each bus
stop every hour based on passenger number data. Bus operations are simulated based
on actual operation information and the numbers of passengers getting on and off.
Various operation conditions are reproduced by adjusting the appearance probability
of passengers and the bus arrival timing at bus stops. Then, in the area where traffic
congestion occurs frequently, we evaluate how the dissatisfaction degree varies with
the situation using our simulation. Furthermore, we develop a system for visualizing
the simulation results and visually confirming the influence of changes in operation
conditions. This research contributes (a) to the construction of a system for pursuing
greater convenience for both bus operators and bus users and (b) to the efficient use
of actual bus operation information and passenger number information.
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2 Related Research

Many researchers have attempted to improve bus operations by using alternative
methods to replace the optimization problem. Reference [4] addressed the optimiza-
tion problem by representing the bus network with nodes and edges, [5] studied
optimal bus operation with a genetic algorithm, [6] considered optimal bus opera-
tion using a random variable to represent the bus arrival time, and [7] used an ant
colony algorithm to calculate the bus delay as a stochastic value. In [8], because of
the difficulty of completely optimizing bus operations, inequalities were derived to
obtain suboptimal solutions as a basis for optimization. Reference [9] studied the
application of evolutionary algorithms to the operations of each bus individually.

Researchers have also attempted to reproduce bus operations using computer sim-
ulations. Reference [3] simulated bus optimization by adjusting bus arrival intervals
by adjusting the departure times of buses at specific stops. References [10, 11] sim-
ulated the construction of a bus network considering road congestion and delays
due to passengers getting on and off. In [2], in cooperation with local governments
and public transportation facilities, the authors studied how to eliminate congestion
in the morning and evening by simulating the operation of bus routes based on the
population composition of the target city and road conditions.

Moreover, research on a new form of bus operation called on-demand bus opera-
tion, in which the passenger demand is observed in real time and used to determine
travel plans, was conducted in [12]. The authors of [13, 14] are developing a system
to determine the travel routes of buses in real time according to passenger demand.

In the research discussed above, optimization or simulation has been performed
with the aim of mitigating congestion and delays in bus operations; however, appro-
priate optimization with respect to user preferences has not been done. For example,
it is expected that during commuting and school hours, many people would prefer to
arrive at their destinations as soon as possible even at the cost of some congestion.
By contrast, those who are coming home from the shopping mall might prefer to take
their time and be able to find a seat when boarding the bus. Therefore, in this study,
in addition to improving the efficiency of operations from the bus operator’s perspec-
tive, we also consider optimization from the user’s perspective. Taking into account
the changing seasons, different times of day, and the locations between which users
require bus operations, we consider a system that will enable optimal bus operations
at all times.

3 Proposal of the Dissatisfaction Degree for Bus Service

3.1 Definition of the Dissatisfaction Degree

We first present the “dissatisfaction degree”, which is used to quantify passenger
convenience in bus use. The “dissatisfaction degree” is defined as an index that
quantifies the difference between the operations desired by passengers and the actual
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operations. This quantification of passenger convenience makes it possible to verify
the effectiveness of various simulated bus operation schedules. In situations in which
passengers’ desired operations and the actual operations differ, passengers will typ-
ically use the bus under the assumption that the bus will be operated in accordance
with the given timetable; thus, it is expected that any difference from passengers’
desires will be caused by the actual operations being different from the timetable.
The difference between the timetable and actual operations can be represented as a
delay, and this delay has two components: a passenger’s waiting time at the bus stop
until the passenger boards the bus and the delay of the arrival time of the bus at its
destination. Furthermore, if the passengers’ buses are crowded, they will not be able
to expect comfortable transportation to their destinations. The operation delay and
level of congestion are thought to vary with various factors, such as the season, time
of day, location, and weather.

This study therefore considers the “dissatisfaction degree”, denoted by S, derived
from the above three factors: the waiting time at the bus stop before boarding the bus,
Twait ; the delayof the arrival time at the destination,Tdelay ; and the level of congestion,
C , during boarding.We express the dissatisfaction degree by converting these factors
into functions: f (Twait ), g(Tdelay), and h(C). Although these factors are closely
related (for example, a bus that is delayed in arriving at a bus stop where passengers
are waiting will also be delayed in arriving at its destination), this paper assumes
that each factor is independent, and the “dissatisfaction degree” S is expressed as a
combination of the values associated with each factor as expressed in the following
equation. Since each factor can vary due to seasonality or time of day, each function
is given a weight, ωi :

S = ω1 f (Twait ) + ω2g(Tdelay) + ω3h(C) (1)

3.2 Derivation of the Functions Contributing
to the Dissatisfaction Degree

Figure 1 shows the derivation of each function contributing to the dissatisfaction
degree. The function f (Twait ) is derived from the passenger’s waiting time at the
bus stop. In other words, it depends on the extent to which the actual arrival time is
delayed with respect to the timetable. When the passenger must waits for 5 min or
more because of bus delays, the value of the dissatisfaction degree increases. Sincewe
expect that the longer the waiting time is, the greater the passenger’s dissatisfaction
will be, f (Twait ) is assumed to increase linearly with the waiting time. However, it
is not realistic to suppose that a passenger will remain waiting for a long time during
daily bus use in a region with many operating buses. The delay of the target bus is
likely to be related to a delay of the previous bus, meaning that waiting passengers
will be able to board the previous bus instead. Therefore, the maximum bus waiting
time is set to 20 min, and the upper limit of the function value is accordingly fixed
to 30.
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Fig. 1 Dissatisfaction degree function

The function g(Tdelay) is derived from the delay of the arrival time at the des-
tination. When Tdelay is 5 min, g(Tdelay) is defined as 0, and g(Tdelay) is defined
to linearly increase as Tdelay increases. Finally, we derive h(C) from the level of
congestion on the bus. We set the level of congestion C to 1 when 50 people are on
board. The seating capacity of our target buses is approximately 25 people; thus, a
C value of 0.5 represents the threshold determining whether a passenger can find
a seat when boarding. We expect that dissatisfaction will increase when passengers
are not able to sit. The more passengers are on the bus and the more crowded the bus
becomes, the more dissatisfied the passengers will be. However, because there is an
upper limit on the number of passengers that can ride on one bus, the upper limit on
h(C) is fixed to 30.

In this paper, these functions are designed using linear functions.However, various
possibilities can be considered for function determination. To design a dissatisfaction
degree that faithfully expresses the convenience of passengers, it is necessary to
consider which functions are suitable. In this paper, we demonstrate the derivation
of our dissatisfaction degree on the basis of simulations using actual data and the
linear functions shown here, and we discuss the validity of the resulting values.

4 Simulation of the Dissatisfaction Degree

4.1 Outline

The dissatisfaction degree is derived from simulations based on actual bus traffic
data. Our aim is to propose a method of optimizing operations by analyzing how
the dissatisfaction degree varies with changes in the bus operation schedule. We
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Fig. 2 Diagram of the simulation procedure

repeatedly simulate changes to the bus operation schedule and derive the resulting
dissatisfaction degree to observe the changes in its numerical value. The method-
ology applied in this research is shown in Fig. 2. To reproduce bus operations, we
generate three kinds of agents (bus agents, bus stop agents, and passenger agents),
which imitate the actual movements and characteristics of the corresponding real
agents based on actual data. (1) We use three types of data, namely, bus departure
data, passenger appearance rate data, and passenger destination data, to calculate
the dissatisfaction degree from simulations using actual data. (2) We simulate the
behaviors of each agent based on these data. (3)We substitute the Twait , Tdelay , andC
values obtained from these data into the equations presented in the previous section
to calculate the value of each function.

4.2 Bus Traffic Data

The actual data used are bus operation data collected by Meitetsu Bus Co., Ltd.,
through a bus arrival information system. Their bus arrival information system
records data for each bus, including the unique bus ID, the actual/scheduled arrival/
departure times at each bus stop, and the numbers of passengerswho get on/off at each
bus stop. This study uses data from Okazaki City, Aichi Prefecture, Japan, which is
a major city with a large number of buses and passengers. Meitetsu Bus Co. has 710
buses, 1539 bus stops and 523 routes in Okazaki City. The data ranges correspond
to July 1–16, 2016, and from January through October 2017. In particular, we use
the data collected on July 8, 2016, the day when the number of passengers was the
largest between July 1 and 16, 2016.
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4.3 Multi-agent Simulator

We develop our simulation using a multi-agent simulator (MAS): artisoc [15]. An
MAS performs agent-based simulations in which an agent representing each object is
placed in a defined space and each agent takes actions in accordance with behaviors
determined for each step. In this study, three kinds of agents are defined: “bus stop
agents”, “bus agents”, and “passenger agents”. We design the behaviors of these
agents based on actual bus traffic data. The simulation outputs the data necessary for
calculating the dissatisfaction degree. Then, we modify the bus operation schedule
and analyze the resulting changes in the dissatisfaction degree for various operation
schedules. The agents perform predetermined operations in each step. In this study,
1 step = 1 s.

4.4 (1) Data Processing

Based on the actual data, we generate three kinds of agents: bus agents, bus stop
agents, and passenger agents. The data processing described here is the procedure
used to determine the behavior of each agent based on the actual bus traffic data.

4.4.1 Bus Departure

The bus departure data comprise the bus stop route of each bus agent and the arrival
and departure times at the bus stops. The bus departure data are generated using actual
bus traffic data provided by Meitetsu Bus Co., Ltd. The bus traffic data consist of the
unique bus IDs, the scheduled arrival/departure times, and the actual arrival/departure
times. Based on these data, we created a database consisting of the target bus IDs
and the corresponding routes (the lists of bus stops visited and their order) within
the target area, Okazaki City. Furthermore, we generated a reference database for
the bus departure steps in the simulation from the actual arrival and departure times
of each bus at each bus stop. During our simulation, each bus agent refers to these
databases to determine its behavior.

4.4.2 Passenger Appearance Rate

The passenger appearance rate data describe the proportion of passengers appearing
at each bus stop as a function of time. This rate is a value calculated from the
data on the boarding/alighting of passenger agents based on the actual bus traffic
data. Although we have data on the number of passengers present at each bus stop,
we cannot know when each passenger arrives at the bus stop and how long the
waiting time at the bus stop is. Thus, we generate the passenger appearance rates—
representing when passengers visit each bus stop—through simulation.
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We calculate the number of passengers at each bus stop from the actual data. To
determine the timing of when each passenger appears at the bus stop before the bus
arrives, passengers are stochastically generated in accordance with the upper limit on
the number of passengers at the target bus stop. Each bus stop agent judges whether
a passenger should appear in every step based on the passenger appearance rate data.
This judgment is based on a function that returns a random number in accordance
with the Poisson distribution. Since 1 step = 1 s in this study, the passenger appearance
rate calculated in units of person/minute is divided by 60 to obtain the rate per second
as the argument for this function.

We assume that only a return value of 0 or 1 can be obtained because the value
of the argument is very small. This calculation uses the passenger number data for
each bus stop and aggregates the data for every 15 min. Then, we divide the number
of passengers for every 15 min period by 15 to calculate the passenger appearance
rate per minute. We calculate the passenger appearance rate every 15 min.

4.4.3 Passenger Destination

From the actual bus traffic data on the passengers’ destinations, we determine the
destination of each passenger agent. The destinations of the passengers are deter-
mined in accordance with the probabilities that passengers will get off at the various
possible bus stops. Based on the data on the number of passengers getting off at each
bus stop, we calculate the proportion of passengers getting off at each bus stop. The
passengers’ destinations are then calculated based on these proportions. For exam-
ple, we consider a case in which two, three, and four passengers depart from bus
stop s1 and have destination bus stops of s2, s3, and s4, respectively. The probabilities
of alighting at each bus stop are then 2

2+3+4 ≈ 0.22 for s2, 3
2+3+4 ≈ 0.33 for s3, and

4
2+3+4 ≈ 0.44 for s4.

4.5 (2) Agent Behaviors for Bus Operations

Based on the actual data, we generate three kinds of agents: bus agents, bus stop
agents, and passenger agents.

4.5.1 Bus Agents

Figure 3 shows the simulation flow for the behavior of the bus agents. Each bus agent
moves to the next bus stop and is loaded with waiting passengers. The bus agent has
the route information determining the bus stops at which it stops. Each bus also has
data on the number of passengers to board and the number of passengers getting off
at each bus stop. After the boarding and alighting of passengers, the bus leaves at
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Fig. 3 Behavior flow of bus agents

the departure time recorded in the actual data. Then, the bus repeatedly heads for the
next bus stop on its route, arrives, allows passengers to get on and off, and departs
until it reaches the terminal station. The simulated arrival time at each bus stop is
generated from the arrival times recorded in the actual bus departure data. We use the
output of the passenger agent behavior as the data for the passengers’ destinations.

4.5.2 Bus Stop Agents

The role of each bus stop agent is to create the passenger agents who will board at the
corresponding bus stop. The locations of the bus stop agents and the stopping buses
are generated from the latitudes and longitudes of the actual bus stops and the bus
route data. Each bus stop agent creates passengers in accordance with the passenger
appearance rate at that bus stop. The bus stop agents are assigned individual numbers
that identify the corresponding stops. These numbers are used to specify the next bus
stop to which each bus should head. In addition, each bus stop agent maintains the
passenger appearance rate at the corresponding bus stop for each hour as calculated
from the data as a series of constant values.
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4.5.3 Passenger Agents

Passenger agents are generated by bus stop agents. Each passenger agent has infor-
mation on the destination bus stop name based on the passenger destination data.
When a bus arrives at the bus stop, each passenger agent determines whether its
desired destination exists on the route served by that bus. The passenger agent gets
on the bus if the destination bus stop exists in the route data of the bus. The passenger
agent moves along with the boarded bus. When the bus arrives at the destination bus
stop, the passenger agent gets off the bus and deletes itself from the simulation field.

The simulation flow of the passenger agents is shown in Fig. 4. Passengers appear
in accordancewith the probability of appearance at each bus stop. For each step of the
simulation, a random number that corresponds to the number of appearances every
second (that is, the x axis of the Poisson distribution) is generated in accordance with
the Poisson distribution corresponding to the appearance probability per second.
Since the appearance rate per second is low, almost all of the random numbers
generated from thePoisson distributionwill be 0 or 1.When the value is 1, a passenger
appears at the corresponding bus stop.

When a bus arrives at the bus stop, the simulation judges whether each passenger’s
destination exists on the route served by that bus. If the route of the bus agent includes
the bus stop corresponding to the passengers agent’s destination, that passenger agent
gets on the bus. When the bus agent arrives at the destination bus stop, the passenger
agent gets off the bus. The simulation records the times at which each passenger gets
on and off the bus.

Fig. 4 Behavior flow of passenger agents
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4.6 (3) Calculation of the Dissatisfaction Degree

Wedescribe the procedure for calculating the dissatisfaction degree from the behavior
of each agent. The simulation outputs the appearance times of passengers waiting
for a bus at each bus stop from the behaviors of the passenger agents. The difference
between the appearance time and the arrival time of the bus is Twait . To calculate
f (Twait ), we substitute Twait into:

f (Twait ) =
{
2Twait − 10 (Twait ≤ 20)

30 (Twait > 20)
(2)

Furthermore, the simulation records the time at which each passenger agent gets off
at the destination bus stop. The difference between the scheduled arrival time and the
agent’s alighting time is Tdelay . To calculate g(Tdelay), we similarly substitute Tdelay
into:

g(Tdelay) = 2Tdelay − 10 (3)

Each bus agent holds data on the number of passengers on the bus. Let C be the
number of passengers when the target passenger agent boards; to calculate h(C), we
substitute this value into:

h(C) =
{
60C − 30 (C ≤ 1)

30 (C > 1)
(4)

Finally, we calculate the dissatisfaction degree S of each passenger by substituting
f (Tdelay), g(Twait), and h(C) into Eq. (1).

4.7 Visualization Tool

Although this study aims to quantify the convenience of passengers and use the
resulting dissatisfaction degree to optimize the bus operation schedule, it is also
critical to consider the analysis of bus operations from the viewpoint of the bus
operator. Hence, we have developed a visualization tool, called Harmoware-VIS,1 to
present the result of the proposed simulations. Harmoware-VIS is based on deck.gl,2

a WebGL-based big data visualization framework developed and published by Uber.
The deck.gl framework can perform the analysis and drawing tasks based on a GPU
implementation and can combine multiple layers. Using this multi-layer capability,
we can visualize various data, such as the behavior of passengers at each bus stop or

1Harmoware-VIS: https://github.com/Harmoware/Harmoware-VIS.
2deck.gl: https://deck.gl/.

https://github.com/Harmoware/Harmoware-VIS
https://deck.gl/
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Fig. 5 Bus operation visualization using Harmoware-VIS

theweather conditions, in addition to the bus operation output from the simulation for
the purpose of observing the interactions between bus operations and other factors.

Figure 5 shows the Harmoware-VIS interface displaying bus traffic data and the
number of passengers at each bus stop. In this figure, light purple circles represent
bus stops, and green, yellow and red circles represent buses. The different colors
represent different degrees of delay for the buses. When a bus is delayed, the color
of the circle representing it changes. The circle is red when the bus is delayed and
is green when it is operating on time. The data are described in a json file, and the
display is updated according to the passage of time. The vertical bar at each bus and
bus stop shows the corresponding number of passengers. The bar at each bus stop
indicates the number of people waiting to get on at that time.

5 Simulation Result

In this section, we will explain the results of our simulations. The simulation results
obtained using artisoc are shown. We carried out simulations with fixed passenger
appearance rates and varying bus operation schedules. The passenger appearance
rateswerefixed to those observedon July 8, 2016, and the simulationswere conducted
by varying the bus operation schedules to correspond to those observed from July 4
to 8, 2016. The simulation results can be presented in two forms: the change in the
number of passengers over time and the change in the number of passengers waiting
to board at a bus stop over time.
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Fig. 6 Simulation result of number of passengers at all busstops

5.1 Time Transition of the Number of Passengers

The transition of the number of passengers over time is shown inFig. 6. The horizontal
axis represents time, and the vertical axis represents the number of passengers by
showing the number of people who boarded every arriving bus at all stops. Notably,
the granularity of a representation of all rides at every time point is too fine for good
visibility; therefore, the aggregated number of passengers for every 15 min period is
shown instead. In this way, it can be seen that the simulated numbers of passengers
are close to the actual data. The correlation coefficient between the actual data and
the simulation result is 0.94. Next, a graph showing the change in the number of
passengers over time at a given bus stop is shown in Fig. 7. It can be seen that even
for a single bus stop, the change in the number of passengers can be reproduced with
a quality similar to that achieved for the bus system as a whole.

5.2 Time Transition of the Number of Passengers Waiting
for Boarding

The transition of the number of passengers waiting to board at all bus stops over
time is shown in Fig. 8. It can be seen that the passenger volume is concentrated
during commuting hours, whereas the curve is more gentle in the afternoon when
various people are riding. It seems that some degree of reproducibility is obtained.
A more detailed examination of the degree of reproducibility will be addressed in
future work. In addition, these data were obtained by excluding the changes at the
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Fig. 7 Simulation result of number of passengers at busstop: “Okazaki station”

Fig. 8 Time transition of the number of passengers waiting for boarding excepting “Higashi
Okazaki” and “Okazaki Station”

Higashi Okazaki and Okazaki Station stops. The results were not accurate when
these stops were included. These stops are the main stops in Okazaki City, where
people with a wide variety of destinations gather. Since the destination probabilities
of the passengers run throughout the day, there is a possibility that a passenger may
appear even though there is no bus scheduled that is heading towards that passenger’s
destination at that time.
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Table 1 Simulation result (Passenger Appearance Rate: July 8, 2016, Bus Operation: from July 4
to 8, 2016)

July 4
(Mon)

July 5
(Tue)

July 6
(Wed)

July 7
(Thu)

July 8
(Fri)

July 9
(Sat)

July 10
(Sun)

Level of
Congestion

0.40 0.39 0.40 0.39 0.40 0.48 0.48

Wait time (s) 502 485 500 500 489 528 539

Delay time (s) 265 268 216 254 443 327 185

Dissatisfaction
Degree

59.1 58.7 57.7 58.7 63.3 61.0 58.1

Number of
Buses

415 415 415 415 415 372 372

5.3 Simulation Results for Different Operation Dates

Table 1 shows the results of simulationswith the same passenger appearance rates and
varying operation schedules. In the current method of calculating the dissatisfaction
degree, when the level of congestion is 0.5 or less, the dissatisfaction degree due
to congestion becomes 0. The average level of congestion is 0.39–0.48; therefore,
the influence of this index on the overall dissatisfaction is considered to be low.
Consequently, the main factors affecting dissatisfaction are delay and waiting time.
On Saturdays and Sundays, the number of buses is decreased compared to that
on weekdays, and the waiting time is correspondingly increased; however, the bus
delays are simultaneously reduced. As a result, the dissatisfaction degree remains
approximately the same. Delay is the main reason why the dissatisfaction degree
on the 8th is found to be especially large; indeed, the bus delay on this day was
approximately 1.7 times the delay on other days (including weekdays), so it seems
that the influence of this factor is clear.

5.4 Simulation Result of Various Passengers Rate

Then, we show the results of the simulation, changing the number of passengers.
The simulation result using the bus operation condition on July 6, and the passengers
appearance rate from from July 4 to 8, 2016 is shown in Table 2 (A). The bus operated
on the same schedule on weekdays and on weekends. The number of passengers of
the targeted area were 483, 950, 878, 947, 908, 367, 476 passengers, from July 4 to
8, respectively, passengers on July 4, 9, 10 were small. Therefore, the dissatisfaction
degree on July 4, 9, 10 was calculated especially low. The maximum congestion rate
was 0.7.

This paper defines three functions: f (Tdelay), g(Twait), h(C) for calculating the
dissatisfaction degree. We evaluate these kinds of functions by manipulating the
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Table 2 Simulation result of various passengers rate at all busstops

July 4
(Mon)

July 5
(Tue)

July 6
(Wed)

July 7
(Thu)

July 8
(Fri)

July 9
(Sat)

July 10
(Sun)

(A) f (Tdelay), g(Twait ), h(C) 58.4 61.4 61.3 60.7 61.1 59.6 59.6

(B) f (Tdelay), g(Twait ) 19.2 21.0 20.9 19.7 20.4 19.5 20.5

(C) f (Tdelay), h(C) 45.0 45.0 45.0 45.0 45.0 45.0 45.0

(D) g(Twait ), h(C) 58.4 61.5 61.3 60.7 61.1 59.6 59.6

Table 3 Simulation result of various passengers rate at terminal busstops

July 4
(Mon)

July 5
(Tue)

July 6
(Wed)

July 7
(Thu)

July 8
(Fri)

July 9
(Sat)

July 10
(Sun)

(A) f (Tdelay), g(Twait ),
h(C)

56.7 61.4 61.1 60.4 60.2 59.6 60.5

(B) f (Tdelay), g(Twait ) 17.1 21.1 21.5 19.3 20.0 18.8 20.3

(C) f (Tdelay), h(C) 45.0 45.0 45.0 45.0 45.0 45.0 45.0

(D) g(Twait ), h(C) 56.7 61.4 61.1 60.4 60.2 59.6 60.5

combination of functions, as to whether these functions are necessary or not. The
Table 2 (B) is a simulation result performed using only f (Tdelay) and g(Twait) in
Eq. (1). The dissatisfaction degree on this condition shows dissatisfaction only by
the bus arrival time delay and the delay to the destination. The dissatisfaction degree
on July 4 and July 6 were 19.2, 20.9, which were not so much difference. However,
each maximum value of the congestion rate is 0.5, 0.7. The number of passengers
on July 4 was crowded to the extent that passengers could sit, on the other hand,
the passengers on July 6 were in a situation where some passengers could not sit.
It seems that there is a difference in the situation of passengers on the bus on the 2
days, although the differences could not be properly expressed by not using h(C).

Furthermore, Table 2 (C) is a simulation result performed using only f (Tdelay) and
h(C) in Eq. (1). Thoughwe can observed delay, all dissatisfaction degreewas equal. It
was impossible to adequately represent a decline in convenience to passengers due to
delay. Dissatisfaction degree could not adequately represent a decline in convenience
of passengers due to delay.

Table 2 (D) is a simulation result performed using only g(Twait ) and h(C) in Eq.
(1). The simulation using these two functions is almost the same as A), however,
there was a difference from A) only on July 5. The arrival time to the destination is
related to the waiting time for bus. Thus the longer the waiting time, the higher the
possibility that the arrival time will be delayed. However, due to traffic congestion
on the way to the destination, the arrival time may be delayed, and dissatisfaction
degree simulation including f (Tdelay) can correspond to various situations.

Table 3 shows the result of calculating the dissatisfaction degree by extracting
only the bus heading near the terminal station, which has a particularly large number
of passengers in the target area. We fixed the bus operation to July 6, and simulated
the passenger appearance rate from July 4 to 8, 2016. Thus the results are similar to
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Table 2, result on July 4is 56.7, which is lower than 58.4 of Table 2 (A). Passengers
heading to terminal stations are considered to be commuters on weekdays or train
passengers on weekends. It seems that the dissatisfaction degree on July 4 is low,
because the passengers are fewer and delay is less than other busstops.

5.5 Simulation Result for Various ωi

We show the simulation results by changingωi to various values. In previous section,
the simulations were performed using weights of ωi = [1, 1.5, 1.5]. However, we
believe that the value of ωi will take various depending on the characteristics or
conditions of passengers. That is, the possible values ofωi can be changed according
to the situation in which it is in a hurry condition such as commuting to school or
office. In shopping situation, passengers will tolerate some delay but would like
to get on the empty bus as possible. It is also thought that the elderly people will
give priority to sitting when taking a bus from delay. Thus, we assume the several
combination of ωi for various situations.

The simulation results with the passengers appearance rate and operation condi-
tion of July 6 are shown in Tables 4 and 5. Here, (i) is a set of ωi for commuters,
ωi = [1.5, 1.5, 0.5]. Thisωi includes the factors: Tdelay , Twait of functions f (Tdelay),
g(Twait) and h(C), that is, the definition that the delay greatly affects passengers’
dissatisfactions. (ii) is a set of ωi for the elderly people, ωi = [1.0, 0.5, 1.5]. We
thought that the waiting time for bus and bus congestion rate—Twait and C—have
a great influence on dissatisfaction. (iii) is a set of ωi assuming a time-constrained
situation such as shopping, ωi = [1.0, 1.0, 1.0].

Table 4 shows the simulation results using variousωi .We simulate the dissatisfac-
tion degree, extracting the data of passengers heading for busstop near two terminal
stations in the target area. We compare the dissatisfaction degrees with the timezone
of Weekday (7: 00–10: 00), Weekday (10: 00–12: 00), Weekday (13: 00–16: 00),
Weekends (13: 00–16: 00) for (i), (ii), (iii). In all the time zones of Weekday and
Weekends, (ii) Elders’ dissatisfaction degree got higher than (i) Commuters’. For the
passengers heading to the terminal stations, the extracted timezone has particularly
commuters, the dissatisfaction degree was calculated large for (ii) Elders. For Week-
day (13: 00–16: 00) not commuting time, (i), (ii), (iii) all got a lower dissatisfaction
degree.

Table 4 Simulation result for various ωi (To Terminal Station)

Weekday
(7:00–10:00)

Weekday
(10:00–12:00)

Weekday
(13:00–16:00)

Weekday
(13:00–16:00)

(i) Commuters 40.0 44.3 37.4 46.9

(ii) Elders 62.2 64.5 60.0 66.3

(iii) Others 47.2 49.5 45.0 51.2
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Table 5 Simulation result for various ωi (To Hospital)

July 4 (Mon) July 5 (Tue) July 6 (Wed) July 7 (Thu) July 8 (Fri)

(i) Commuters 38.1 31.7 35.5 49.2 40.3

(ii) Elders 60.4 56.1 58.7 67.8 61.8

(iii) Others 45.4 41.1 43.7 52.8 46.8

Table 5 is the result of extracting passengers heading to five hospitals in the target
area. We extracted the data of 8:00–12:00, as to hospital business hours. Especially
(ii) Elders’ dissatisfaction degree is high on July 4, which is crowdedwith passengers
heading to hospital on the first day after the holidays, thus possibly the dissatisfaction
degree has increased. On July 7, the dissatisfaction degree is higher in (i), (ii), (iii).
The simulation results that the number of passengers increases on a specific day of
the week and the dissatisfaction degree increases. (ii) Elders’ dissatisfaction degree
was also particularly high, whereas, the dissatisfaction degree of (i) Commuters and
(iii) Others was calculated relatively low.

6 Conclusion

In this study, for the optimization of bus operations through simulation, we have
proposed the concept of the “dissatisfaction degree”, which is an index that varies
with the operation evaluation criteria for each user. By doing so, we aim not only
to improve the efficiency of operations from the bus operator’s point of view but
also to ensure comfortable bus operations from the perspective of each passenger.
Using actual transportation data provided byMeitetsuBusCo., Ltd., we constructed a
simulation to reproduce bus operations using theMAS artisoc.We confirmed that the
simulation performed correctly by approximating the number of passengers per hour,
achieving a correlation coefficient of 0.94 between the simulation results and actual
operation data. In addition, visualization software that displays on a map the number
of people waiting to board at each bus stop and the number of passengers on each
bus has been made available by means of the visualization library BusDataVisualizer
using deck.gl.

In future work, a clear definition of the dissatisfaction degree should first be
developed. It will be necessary to examine the correlations of factors such as location
and time with operation times and congestion levels and to further investigate the
influence of operation time and congestion level on the overall dissatisfaction degree.
Next, it will be necessary to calculate the passenger destination probabilities with
respect to time to achieve more accurate probabilities and then to examine the extent
to which the numbers of people waiting to board over time are accurately reproduced.
Moreover, in the current simulation, the bus behavior is completely determined over
time, and there is nomodel formodifying the delays during the simulation. Therefore,
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it will be necessary to address this shortcoming. Then, we will examine the resulting
influence on the dissatisfaction degree when the operation schedule is changed.

In addition, we intend to further develop the visualization tool in the future. With
the current specifications, it is not possible to compare multiple operation schedules
simultaneously on one screen, so it will be necessary to implement the ability to
review various simulation results at the same time. The tool should also provide the
ability to simultaneously review various types of information, such as delay logs,
which is a subject to be studied in the future.

The purpose of visualizing the simulation results is to visually confirm how the
passenger flow changes when the simulation conditions change. The simulation con-
ditions considered are the bus operation times, the number of operating buses, and
the passenger appearance rates. We will make various modifications to ensure the
faithful reproduction of various driving scenarios (such as different days of the week
and seasons) and to improve the definition of the dissatisfaction degree.
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Adaptive Traffic Signal Control Methods
Based on Deep Reinforcement Learning

Chia-Hao Wan and Ming-Chorng Hwang

Abstract Smart cities are characterized by their use of intelligent transportation
systems (ITS), which utilize advanced traffic signal control methods to achieve effec-
tive and efficient traffic operations. Recently, due to significant progress in artificial
intelligence, research has focused on machine learning-based frameworks of adap-
tive traffic signal control (ATSC). In particular, deep reinforcement learning (DRL)
can be formulated as a model-free technique and applied to optimal action selection
problems. We propose a DRL-based ATSC method for two kinds of neural network
models: deep neural networks (DNN) and convolutional neural networks (CNN). In
the training processes, the microscopic simulator Vissim builds a virtual intersection
that the agent uses to scan all possible observations and makes interactive decisions.
For each testing scenario, five random experiments are generated. The average sys-
tem total delay (ASTD) over the five experiments is compared for the two proposed
neural networkmodels and a fixed timing plan byway of theWebster delay formulas.
Based on these preliminary tests, the DNN-model (CNN-model) signal control agent
performed a lowest value of ASTD for the unsaturated (oversaturated) cases. More-
over, the CNN-model has better feature extraction capabilities than the DNN-model
particularly for the oversaturated cases. We found that situations with specific traffic
maneuvers, such as a spillback of a protected left-turn bay, are well learned by the
proposed CNN-model, even the training scenario remains only unsaturated.
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1 Introduction

The adaptive traffic signal control (ATSC) method is a powerful approach to mitigate
urban congestion, as it can deal with intersection traffic fluctuations. While receiv-
ing and processing real-time data from traffic sensors, the ATSC method instantly
determines green splits to optimize intersection performance [1]. Theoretically and
practically, the ATSC method is a better alternative for signalized intersections than
pre-timed and actuated control approaches. Several well-knownATSCmethods have
been investigated and developed in the literature (e.g., SCOOT [2], SCATS [3], and
OPAC [4]). However, these methods demand a pre-defined traffic system to describe
the operational characteristics of intersection and then to be the inputs of computing
optimal signal timing. These model-based methods are usually disputed to achieve a
reasonable and affordable representation of the environment encountered. Moreover,
thesemethods require human interventions both in design and operation phases. That
makes the robustness of these methods deteriorated from mapping complex nature
of traffic situations into optimal control actions.

In contrast, reinforcement learning (RL) can be formulated as a self-training and
model-free procedure without any supervision or the use of human data [1]. This
key property is exploited to allow the proposed ATSC methods to self-train by
autonomously interacting with a traffic simulator. A simulated intersection is set
up as the environment for the RL agent to interact with. The states, actions, and
rewards within the RL framework are vehicle-presence, signal phase selection, and
total system delay, respectively. The RL agent is trained to find a phase selection
policy that optimizes the total system delay on the simulated intersection. We con-
sider deep neural network (DNN) and convolutional neural network (CNN) models
to address the non-linear relationship among states, rewards, and actions.

The rest of this paper is structured as follows. Section 2 reviews the literature.
Section 3 describes the modeling of the proposed deep-RL based ATSC methods.
Section 4 discusses the results of training and testing for the different methods.
Section 5 provides a brief conclusion and proposes future works.

2 Literature Review

Reinforcement learning (RL) is a machine learning paradigm focused on stochastic
sequential decision-making problems [5]. Figure 1 depicts a typical RL model [6],
which formulates the interactions between learners and corresponding environments
to achieve a goal. In this model, the learner/decision-maker is called the agent. The
agent interacts with the environment by selecting actions. Actions cause a state-
change of the environment, and may incur rewards, which the agent continuously
seeks to optimize. The entire RL algorithm helps the agent learn how to achieve a
goal via sequential decision-making.
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Fig. 1 A typical RL
framework

There are three major categories of RL methods: dynamic programming, Monte-
Carlo, and temporal difference (TD) learning methods. Dynamic programming algo-
rithms are model-based and require a model of the Markov decision process [7, 8].
Monte-Carlo methods are model-free and learn directly from experience. Unlike
dynamic programming methods, Monte-Carlo methods do not need the complete
probability distribution of all possible transitions [5, 8]. TD learning is a combina-
tion of Monte Carlo and dynamic programming concepts [5, 9]. Temporal difference
learning does not require the entire trajectory sample because it updates the state
value from part of the trajectory [5].

Q-learning is a TD method [10, 11] that aims to learn an action-value function,
Q(s, a), which ultimately gives the expected utility of taking a given action a in a
given state s and following an optimal policy thereafter. Deep Q-networks (DQN)
are a variant of Q-learning [12], and have been successfully used in Atari games.
Recent advances in deep neural networks [13–15] allow DQN using DNN to play
the role of the action-value function Q(s, a).

On the other hand, there have also been attempts to introduce artificial intelligence
to traffic signal control to create innovative solutions. Beginning in the early 2000s,
several studies have adopted the RL technique for adaptive signal control [16–18].
After Google’s DeepMind first proposed the term Deep Reinforcement Learning
(DRL) in 2013 [19], another wave of DRL in signal control was triggered [20–24].
Previous efforts have established a clear DRL signal control framework for an iso-
lated intersection. In this paper, we continue these experiences but focus on whether
different traffic scenarios affect the agent’s learning process and performance.

3 DQN Signal Control Model

In this section, we first discuss how to fit the signal control problem into an RL
model by defining the state element, action space, and reward. Then, we introduce
an algorithm for the traditional DQN method. Finally, we improve the inefficient
parts of DQN to make it suitable for the signal control problem.
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3.1 Environment, State, Action, and Reward

The environment is a Markov process, and a reinforcement learning agent learns
by interacting with its environment. In this case, our environment is an isolated
signalized intersection with four identical approaches as shown in Fig. 2.

Because we cannot let the agent directly learn from the real world, we establish
the environment in the microscopic simulator Vissim, which is a world-renowned
traffic simulation software. Two lanes and a left turn bay (about 20 m) approach the
intersection from each direction. The arrival rates at the four arms are random in
each episode, but their sum is constant to ensure a baseline demand is maintained.
All movement ratios are also constant. Random number seeds are changed for each
episode to guarantee randomness in every simulation. The approaches are 1000 m
from the stop line to ensure all queuing vehicles are included in the total delay (we
explain this further when discussing rewards).

The state is described by the input data. In general, using more information to
describe a state helps the network more precisely determine the value of the state.
For example, Fig. 3 describes the state using cell occupancy [22, 24].

Fig. 2 The isolated
signalized intersection layout

Fig. 3 Using cell occupancy
to describe traffic states
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Fig. 4 Phase configurations

Each lane approaching the intersection is divided into many cells. If a cell is
occupied by a vehicle, the cell is set to 1; otherwise, it is set to 0. This state description
method provides a great deal of information to the agent and almost resembles an
image data input. Therefore, this method is expected to work well with the image
recognition vehicle detector. In this research, each cell is 5 m long, which is about
the length of a car in the simulation. In total, there are 260 cells across the four
approaches. The farthest cell from the stop line is about 200 meters away.

The action refers to the choice of a signal phase. Figure 4 shows possible signal
phase configurations. The agent picks one of these eight phases once a second. The
inter-green limitation and minimum green time are taken into consideration. Thus, if
the agent decides to change the current phase, it cannot make any new actions in the
next time period. However, if the agent decides to maintain the current phase, it can
select the same signal phase. This implies the agent needs to learn the consequences
of different actions in different states.

The reward is a guide that allows the agent to know whether it is moving in the
right direction. In this case, we choose system delay as our reward. Since the agent
is performing a sequential decision-making process, each state-action generates an
instant reward called rt . Here, we use a time-step accumulated system delay as rt ,
meaning that rt is the accumulated system delay between two actions. At the terminal
time T, the total reward R will equal the accumulated system delay:

R =
T∑

t=1

rt (1)
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3.2 DQN Framework Application

The basic concept of DQN is to find an equation Q that inputs the current state and
outputs each action’s expected total reward. The optimal action-value function with
environment ε can be expressed using Bellman’s equation as

Q∗(s, a) = Es ′∼ε

[
r + γ max

a′ Q∗(s ′, a′)|s, a
]

(2)

Here, a neural network is used as a non-linear approximation to estimate the
action-value function. To train the neural network, TD error is considered the loss.
The loss function is expressed as

Li (θi ) = Es,a∼ρ(.)

[
(yi − Q(s, a; θi ))

2
]

(3)

where θ i are parameters, yi = Es′∼ε

[
r + γmaxa′ Q

(
s′, a′; θi−1

)|s, a] is the target
for iteration i, and ρ(s, a) is a probability distribution over sequences. Finally, we
perform a gradient descent with respect to θ and we update parameters. Algorithm
1 describes this process.

The algorithm’s two key features are memory replay [25] and target network
[12]. Memory replay allows the agent to learn from earlier experience and speed
up learning. Target network helps the agent learn the Q function more stably. We
use a Deep Neural Network (DNN) as the estimator Q in Eq. (2). The DNN model
architecture is shown in Fig. 5. There are 300,000 trainable parameters in this DNN
model.

Fig. 5 DNN model
architecture
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Algorithm 1

Deep Q-learning Network 
off-line learning with memory replay and ε-greedy 

----------------------------------------------------------------------------------------------
Initialize replay memory D to capacity N
Initialize action-value function Q with random parameters 
Initialize target action-value function  with parameters 
for episode = 1..M do

Initialize environment and 
for t=1..T do 

With probability ε, select a random action 
Otherwise select 
Execute action in environment and observe reward and next state 
Store transition in D
If the size of D is larger than N then

Remove the oldest data in D
end for
for k=1..C do

Sample random minibatch of transitions from D

Perform a gradient descent step on - 
-with respect to network parameters 

end for
Reset 

end for

The discount factor γmust be considered carefully. Asmentioned in 3.1, the action
is phase selection. Figure 6, which shows a simple action-based example, reveals an
execution time difference between actions. In this example, taking the upper action
requires 1 time-step and taking the lower action requires 2 time-steps. If we use the
function in Algorithm 1, yi = ri + γmaxa′ Q̂(sj+1, a′; θ̂ ), to do the iteration, we find
that the bottom state for t = 5 has been discounted twice, but the top state for t =
5 has been discounted five times. This simple case demonstrates that regardless of
the relationship between reward and action, an action based-structure will lead to a
biased estimation of the Q value.

Therefore, we incorporate the action execution time E, which is the time interval
between two sequential decisions, into the discount factor. In the equations below, δ
is the dynamic discount factor depending on E and the original fixed discount factor
γ .

δ = 1 − E(1 − γ ) (4)

yi = ri + δmaxQ̂
a′

(
s j+1, a

′′; θ̂
)

(5)

The dynamic discount factor in Eq. (4) is derived from the summation of an infinite
geometric series. By using Eq. (5), we can ensure that at each time-step, the Q value
will have the same level of discount. We expect this modification to make the agent
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Fig. 6 Time difference between actions’ execution

more inclined to maintain the same phase compared with fixed γ , which repeatedly
reduces the Q value for each action. Maintaining the same phase means more actions
during a certain period of time and more discounts than changing a phase.

3.3 Convolutional Neural Networks Model

Convolutional Neural Networks (CNN) are a class of DNN inspired by biological
processes [26]. The basic concept of CNN is to learn filters via the machine itself.
The filter detects features of the input data to increase the efficiency of the training
process and to improve performance. In this paper, the filter works as Fig. 7.

Here, we want the CNN model to distinguish queuing features, such as spillback
from the left turn bay, and to then apply these to each approach. Unlike the common
2Dconvolutionused in image recognition,webuild up themodelwith 1Dconvolution
layers because we use cell occupancy to describe traffic states, which is more similar
to 1D data. We hope the CNNmodel, whose architecture is shown in Fig. 8, helps the
agent converge faster and more accurately. There are 256,040 trainable parameters
in this CNN model.
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Fig. 7 The filters detect the queuing features in a single approach

Fig. 8 CNN model architecture
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4 Training and Scenario Testing

4.1 Training

The performance of DQN is evaluated with the traffic metric known as the system
total delay. We also observe the loss value over episodes to determine whether the
agent has achieved a converged Q value function. Each episode is set to simulate
1,200 simulation seconds from the initial state. After each episode, the target network
is updated with the same parameter as the model. The rest of the settings are shown
in Table 1.

Note that before training, data was collected under a random action policy. This
was to ensure that the agent was learning from a stochastic experience instead of
from the initial network parameters. The data was collected and stored in thememory
replay space. The agents have the opportunity to re-use these experiences before they
are removed. The training was processed in a python script and used TensorFlow as
the backend. The training results are shown in Figs. 9 and 10. In each episode, the
model performed 500 gradient descents and the model’s parameters were updated.

Figure 9 shows that both the DNN and CNN models reached convergence. How-
ever, the DNNmodel was much easier to train and had lower loss compared with the
CNN model. Both models reduced the total system delay to around −50,000 s, but
the CNN model had more variation in its results, as seen in Fig. 10.

Table 1 Training Settings

Parameter Value

Simulation times 1200 s

Arrival rates 1000 passenger car units(pcu)/h at each approach

Network parameter update rate 1/episode

Memory replay capacity: N 100,000

Episode 2000

Epochs in one episode: C 500

∈ 0.2

∈ decrease rate 0.002/episode

Optimizer Adam [27]

Loss function Mean square error of TD

Amber period 3 s

All red 3 s
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Fig. 9 The training process of the DNN and CNN models

Fig. 10 The total system delay over episodes for the DNN and CNN models
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4.2 Scenario Testing

Here, we set up two arrival rate scenarios, unsaturated and oversaturated, to test the
models’ performance. The arrival rates are set to 1000 pcu/h for each approach in
the unsaturated scenario, which is the same total demand as in the training setting. In
the oversaturated scenario, we set the arrival rates to 1800 pcu/h input on the North
and West boundaries, and 200 pcu/h on the East and South. We maintain the same
turning movement ratios for training.

We compare the performance of the DNN model, the CNN model, and the Fixed
Timing plan, which is calculated via the delay formulas fromWebster [28] for unsat-
urated situations.

We also set up an unsaturated scenario with noise in arrival rates. That is, the
arrival rates are slightly different in each simulation (N(1000,100)), although they
are equal for the comparison between the DNN model, the CNN model, and the
fixed timing plan. For the oversaturated scenario, the fixed timing plans were derived
empirically. We set a 180-s cycle and split it into green periods weighted by the ratio
of arrivals to the saturation flow.

The evaluation index is the system total delay because it was the reward during
the training and it is a common traffic performance indicator. For each scenario, we
ran simulations three times with different random seeds to ensure variability in the
scenarios. Figure 11 shows the results of the comparison.
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Fig. 11 Average system total delay
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5 Discussion

The comparison in Fig. 11 shows some interesting results. The DNN model had
the best score in the under-saturated scenario, reducing system delay by about 8%
compared with the fixed timing plan. Similarly, the DNN reduced delay by about
10% in the under-saturated with noise scenario. In contrast, the results of CNN were
worse than the fixed timing plan for both under-saturated scenario.

Surprisingly, the DNN model had the worst score in the oversaturated scenario,
and the CNN model performed slightly better than the fixed timing plan. This might
be because the training sample does not have similar experiences to learn from.
Furthermore, if the state can improve the description of arrival rates, this might
support the application of the DRL model in oversaturated scenarios.

We expected the CNN model to have better performance. The unexpectedly poor
results could be because the vehicle queue pattern is not suitable for fetching feature
values with 1D filters. In contrast, the DNN model has a fully connected structure,
which is more appropriate for the queue patterns herein. If the simulator could pro-
duce an infinite sample to train the model, this might eliminate the advantage of the
CNN model for oversaturated scenarios.

Our results aremarkedly different from reference [29]. However, it is worth noting
that the state and reward settings are different in this study and in [29], which could
be an explanation for the disparity. Regardless, there is no doubt as to the potential
of DRL signal control.

6 Conclusions and Further Work

In this paper, we applied a DRL method called DQN to the traffic signal control
problem. Some modifications were made in the DQN algorithm to suit this task.
Training and scenario testing were conducted. The results showed that the DNN
model performed better in under-saturated scenarios than both the fixed timing plan
and the CNNmodel, but performed poorly in oversaturated scenarios where the state
did not have any descriptions of the arrival rates.

In future research, we plan to focus on applying DRL to multi-intersections. The
DQN framework can only be used while the action set is discrete. The inclusion of a
multi-intersection signal phase is a type of continuous action problem. There are sev-
eral DRL algorithms designed to solve continuous action tasks such as Actor-Critic,
DDPG (Deep Deterministic Policy Gradient), and PPO (Proximal Policy Optimiza-
tion). The question of how to apply these state-of-the-art approaches to traffic signal
control will be one of the hottest topics in the next generation of ITS.
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Analysis of Quality/Quantity Trade-Off
of Images Collected by On-Vehicle
Fisheye Cameras for Super Resolution

Shintaro Ono, Teruhisa Takano, Hiroshi Kawasaki and Katsushi Ikeuchi

Abstract Fisheye cameras or wide-angle cameras used on automobiles have vari-
ous applications as distributed sensors and their image resolution can be enhanced
using super resolution (SR) technology. However, when an object is observed while
the vehicle moves or by multiple vehicles, the object regions are often captured with
very low quality (low resolution and large blur) resulting from the character of the
lens. Therefore, applying SR requires a decision as to which images to use as inputs:
a greater number of lower-quality images or fewer higher-quality images. We evalu-
ated and discussed the input image quality necessary to obtain effective SR results,
especially focusing on degree of image blur. Then, we considered its potential use
as a requisite in observing road environments.

Keywords Reconstruction-based super resolution · On-vehicle fisheye/super
wide-angle camera · Number of input images · Trade-off between image quality
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1 Introduction

Road sensing using general-purpose automobiles for business and personal use is
becoming more feasible as well as using dedicated-purpose vehicles such as MMS
(mobile mapping system). Particularly, web-connected on-vehicle cameras, driving
video recorders, and parking assistance cameras have gained popularity. Although
image and position data collected by such sensing devices have relatively low quality
or poor accuracy, the quantity of data is very large and the quality and accuracy can
potentially be improved through post-processing.

Regarding on-vehicle cameras in general-use vehicles, super wide-angle lenses,
including fisheye lenses, are often used to view wider areas using fewer cameras,
leading to lower image quality around the peripheral area. It is even possible to gen-
erate images with higher resolution through post-processing, using super resolution
(SR) technology.

However, because of its lens character, on-vehicle image sensing with such a
super wide-angle camera faces a trade-off problem on the quality and quantity of the
collected images and it is hard to meet both of them at the same time, as described in
3.2 with Fig. 2 in detail. Therefore, the inclusion or exclusion of the collected images
from input of post-processing becomes an important issue.

Here, focusing on SR of the fisheye images collected by on-vehicle camera, we
examine and consider the inclusion or exclusion of images that will enable better SR
result. Then, we discuss the possibility of the blur level of the image region being a
criterion for the inclusion/exclusion of input images.

Specifying the inclusion/exclusion criteria for input images of SR can be a contri-
bution to ITS–. It can assist in inferring requisites for on-vehicle sensing, including
the number of observations, speed, and camera specifications (frame rate and lens
character), depending on the distance of the observed objects. Moreover, it can also
provide basic information for assessing the necessity for cloud-based sharing of data
captured by other vehicles and on the requisites for the shared data quantity and
frequency.

2 Related Works

2.1 Sensing by Vehicle for Dedicated Use or General Use

Regarding road sensing by a vehicle, a system composed of special sensing devices
such as LiDARs and cameras has been commonly used on a dedicated-use vehi-
cle. Such a system is generally called MMS (mobile mapping system) and widely
developed by survey companies. In this case, the specification of the sensor can
be intentionally designed to obtain enough data quality; however, its cost makes it
unrealistic to frequently survey wide area. The features are summarized in Table 1.
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Table 1 Sensing using dedicated-use vehicles and general-use vehicles

Dedicated-use vehicles
(MMS)

General-use vehicles

Sensing system specifications Can be designed intentionally An inexpensive and
multi-purpose system is
generally assumed

Accuracy of acquired data Relatively high Relatively low, but might be
improved through
post-processing

Quantity of acquired data Depends on the operational
opportunities of the vehicle
itself

Potentially capable of
collecting a large quantity of
data through sharing, if the
system becomes widely used

Sensing for wide areas and/or
with frequent opportunities

Typically, costly and not very
realistic

Relatively realistic, if the
system becomes widely used

Conversely, exploiting general-use vehicles for probe survey became more fea-
sible today. For example, it is quite practical to analyze motion data of general-use
vehicles to sense traffic congestion, road-surface condition, dangerous driving, etc.

Moreover, web-connected on-vehicle cameras, including driving video recorders,
and parking assistance cameras, have gained popularity. Exploiting such
online/offline data enables to visually share situations of congested spots [1], esti-
mate per-lane as well as per-road traffic congestion [2], construct near-miss incident
or traffic accident database [3, 4], etc.

Although image and position data collected by such a sensing scheme lacks high
quality or accuracy than dedicated sensing scheme, it is realistic to sense wider
area with higher frequency. Since the quantity of data is large, the issue of quality
and accuracy can potentially be improved in post-processing. These characters are
confronted in Table 1. Image sensing by this scheme will lead to more expansive
applications, such as map construction and criminal investigation, if issues regarding
personal data protection are resolved.

2.2 Improving Resolution of Fisheye Images

Improving image resolution is a basic signal processing technique to generate a
high-resolution image as output from inputted low-resolution images, called super
resolution (SR). A method named reconstruction-based SR is known well. In this
method,multiple images are provided as inputs and the image positions are registered
in sub-pixel order.

Several related studies have been conducted on SR for fisheye/super wide-angle
cameras [5–8]. Although their problem settings are in part similar to ours, they
consider only limited cases in which the shape and blur level of the image region of
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Fig. 1 Process of SR for fisheye images based on the adaptive degradation model

interest (ROI), the region in which the object is observed, are constant throughout all
of the input images. This differs from the conditions in our study. To our knowledge,
no other study has been reported discussing the relation between SR results and
constraints on the input images.

3 SR Using a Fisheye Camera on a General-Use Vehicle

3.1 SR Method Based on Adaptive Deformation and Blur
Model

SR for fisheye image is fundamentally based on the conventional reconstruction-
based SR method. Figure 1 illustrates the problem of reconstruction-based SR for
fisheye images. After successively shooting a real-world object and before it is stored
as observed image data, a process with degradation model is assumed that includes
displacement, blur, down sampling, and noise. The SR can be realized by finding
an ideal high-resolution image that minimizes the difference between the actual
observed images and the “degraded ideal image” using the same model and param-
eters.
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Particularly, in the case of dealing with fisheye images, unlike the case of ordinary
images, the image degradation model includes some special processes: lens distor-
tion/undistortion, deformation, and scaling of the blur caused by the undistortion.
Please note that these effects are not uniform but dependent on position in the image.
Therefore, we call the model as “adaptive degradation model”. We have developed
an improved SR method based on this model in [9].

The problem can be formulated as shown in Eq. (1), where x is an ideal image
(in column-vector form), yk is rectangular regions in the observed images after
correcting lens distortion. k is the image index, and Hk , Bk , and D are degradation
matrix operations representing registration (deformation and displacement), blur,
and downsampling (a constant matrix given as problem setting).

min
x

∑

k

∣∣DBkx − Hk yk
∣∣ (1)

The approximate solution can be found through the following iterative calculation
[10] as shown in Eq. (2), where β is a convergence step, λ is a smoothness constraint,
α is an attenuation by distance, and Slx , S

m
y are image translations.

n+1x = nx − β

{
∑

k

BT
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T
k sign

(
DkBk
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)

+ λ
∑

l

∑

m

{
α|l|+|m|(I − S−m

y S−l
x

)
sign

(
nx − Slx S

m
y
nx

)}

− p ≤ l ≤ p, 0 ≤ m ≤ p, l + m ≥ 0 (2)

The deformable image registration Hk is assumed to be represented by a homo-
graphic conversion and can be found using image-to-image block matching and
point-to-point correspondences inside the images by using Speeded-up Robust Fea-
tures (SURF). Through this process, images are theoretically registered in sub-pixel
order including rotation and deformation.

The blur Bk consists of three components: (1) a blur generated by the lens itself
by the optical interference (point spread function), (2) the defocus depending on
the depth of field, and (3) image scaling resulting from correcting lens distortion.
These components are assumed to be integrated and represented approximately by
convoluting a two-dimensional Gaussian function. The standard deviation of the
Gaussian function corresponds to the degree of blur. We refer to this value as the
“blur size” in this paper.

The blur size is assumed to be the product of the lens blur size (1) and the image
scaling ratio (3). The defocus (2) is not assumed, i.e., the camera focus is fixed to
the object depth. The lens blur (1) can be estimated by fitting a Gaussian function
to intensity values across a black/white edge in the captured raw image, which is
focused and theoretically and ideally observed as a step function. The image scaling
ratio caused by undistortion (3) can be calculated from lens distortion parameters.
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Fig. 2 Trade-off of quality and quantity in collecting images using an on-vehicle fisheye/wide-
angle camera and SR

Finding the ideal image x requires the initial value 0x, which is determined by
scaling one of the yk values using linear interpolation and iterative calculation.

3.2 Trade-Off of Input Images: Quality Versus Quantity

A super wide-angle lens, especially a fisheye lens, generally captures an image with
greater distortion and lower resolution, especially in the peripheral area of the lens.
Let us assume a situation in which such a camera is on a vehicle moving directly
forward, observing a static object.

As Fig. 2 illustrates, if an object is observed around peripheral area of the lens,
its image quality becomes lower, and if observed in central area, its image quality
becomes higher. Meanwhile, the peripheral-area observation has more chance to
occur rather than the central-area observation. Therefore, the quality and the quantity
cannot be compatible. This is inevitable for fisheye lens, unless some extra sensing
scheme is assumed such as collecting sensing data by multiple vehicles.

Reconstruction-based SR technology theoretically requires sufficient information
as input, i.e., sufficiently many input images. However, at the same time, low-quality
input images cause errors in estimating image observation parameters (such as dis-
placement or blur) required in the SR process and lower the quality of the result.
In other words, there is a trade-off problem between the quality and quantity of the
input image for SR. Whether to include or exclude the images from post-processing
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Fig. 3 Examples of the captured fisheye images and the undistorted images

affects the final quality of the output image, however, it is unknown which images
have to be included/excluded to obtain better results.

In this study, we focus on the size of the blur parameter of the image region as the
criterion, and we discuss the problem by comparing several choice/refusal patterns
based on this criterion.

4 Quantitative Analysis of the Trade-Off Problem

For quantitative analysis of the trade-off problem, we assumed an experimental sit-
uation including outdoor objects observed by an on-vehicle camera.

4.1 Acquisition of the Experimental Data

We successively observe a signboard by an on-vehicle fisheye camera. The vehicle
proceeds in a straight line parallel to a planar signboard. The signboard is on the left
side of the path and the camera is directed to the left. The distance between the board
and the line (depth to the object) are one, two, and four meters.

We used Canon EOS Kiss Digital X/Sigma 8 mm F3.5 EX DG Circular Fisheye
for the camera and the lens, with its focal length fixed. Figure 3 shows some examples
of the captured images in the upper row.
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A1 (20 images) A2 (50 images) A4 (64 images)
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Fig. 4 Examples of registered image sets

4.2 Deformable Image Registration and Blur Estimation

As pre-processing, the captured images are first undistorted, i.e., converted into
perspective images by removing lens distortion. We use the calibration method/tool
of [11] for undistortion. Figure 3 shows the images after undistortion in the lower
row. In addition, to normalize roughly the apparent dimensions of the signboard
for later comparison, the undistorted images captured at one meter and two-meter
distances are resized into 1/4 and 1/2 scale, respectively.

Then, two rectangular ROIs, A and B, (64 × 64 pixels) for SR are extracted
from the observed images. For each sequential frame, the regions corresponding to
A and B are tracked using block matching and registered with image deformation.
In addition, the blur sizes of A and B, i.e., how much the pixels in the regions are
blurred compared to a sharp edge, are estimated.

Hereafter, the registered sequential image sets of the ROIs A and B, with the
shooting depth d = 1, 2, 4 m, are described as Ad and Bd. Figure 4 shows some of
the deformable registration results, and Fig. 5 plots their estimated blur sizes. Since
the lens distortion effect is internally approximated by a polynomial function in [6],
the blur size values also follow a continuous curve. Although the pixel scaling ratio
varies strictly for each pixel, they are averaged within the ROI for approximation on
the graphs.
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4.3 Choosing Input Images

Then, we selected several input images for SR from Ad and Bd and examined how
the SR result varies depending on the input images, and especially their blur sizes.

To select the input images for SR from Ad and Bd, the images are first sorted by
ascending order of the blur size. As shown in Fig. 5, for example, in A1 and B1 the
orders are (A7

1, A
6
1, A

8
1, …, A16

1 ) and (B14
1 , B13

1 , B15
1 , …, B23

1 ), respectively. In A2, B2,
A4, and B4, only some key images indicated with large dots with image indices in
Fig. 5 are subject to selection.

Then, with these orders, the first four images are selected as the first sets, and the
first six, eight, ten, and further images are selected as the second, third, fourth, and
further sets.

Throughout all of the inclusion/exclusion patterns, the minimum number of input
image is four, and the maximum size of the blur is 2.72. The more input images are
chosen, the larger the amount of information there is, but at the same time, low-quality
images with larger blur size and lower registration accuracy are included.

4.4 SR Result

SR is performed to increase the resolution twice, generating a 128× 128-pixel image
as output from the 64× 64-pixel input images. The parameters in (2) in the appendix
are set as β = 1.0, λ = 0.2, α = 0.5, p = 3. The initial value of the SR image is
provided by resizing one of the input images using linear interpolation.

Figure 6 shows examples of SR images. Although some images partially include
false color effects caused by the image border, the SR effect can be recognized.
Additionally, the effect of SR can also be seen in Fig. 7 (described later), in which
the gradients of the pixel intensity around edges, usually caused by factors such as
the border of a character, became steeper compared to the linearly-scaled image, and
yet, the difference in the intensity values was not enlarged more than the input, in
contrast to unsharp masking.

4.5 Evaluation

Peak signal-to-noise ratio (PSNR) is a well-known score for evaluating image degra-
dation and restoration. It requires a ground-truth image for comparison; however,
the ground truth is unknown in SR of real images. Setting a camera to low- and
high- resolution modes and regarding the former as input for SR and the latter as the
ground truth does not work, because even the latter image contains a blur caused by
the lens itself and, hence, differs from the ground truth.
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Using 4 input 
images

8 images 10 images 12 images 16 images Linear scaling

(a) Using input images A1

6 input images 10 images 12 images 14 images 16 images Linear scaling
(b) Using input images A2

10 input images 14 images 16 images 18 images 20 images Linear scaling
(c) Using input images A4

4 input images 8 images 10 images 12 images 16 images Linear scaling
(d) Using input images B1

8 input images 12 images 14 images 16 images 18 images Linear scaling
(e) Using input images B2

10 input images 14 images 16 images 18 images 20 images Linear scaling
(f) Using input images B4

Fig. 6 Result images of SR with varying numbers of input images (calculation iterations= 1,000).
The linear scaling is not a result of SR. It is included just for comparison
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(a) Input images A1
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Fig. 7 Pixel intensity values around an edge (across the character “1” on the left) along the hori-
zontal line in a result image of SR

In this study, we focus on edges in the image and their gradients to evaluate the
results of SR, because SR generally restores the high-frequency component.

Evaluation using the Edge Intensity Gradient. Figure 7 shows some examples of
the intensity value of the SR results around the edge. For A1, as more input images
were provided for SR, the gradient became steeper in the result. On the other hand,
for A2 and A4, whenmore than ten input images were provided, the gradient became
lower, meaning that the edge became less sharp.

To evaluate these edge attributes comprehensively and quantitatively, as Fig. 8
shows, the mean square value of the edge intensity (dI/dx)2 + (dI/dy)2 within the
image (except the image border with a false color effect) was calculated. The score
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Fig. 8 Mean value of squared edge intensity in a result image of SR

achieved a maximum, indicating the best SR result, when 12 images were provided
as input for A1, and eight images for A2 and A4. The same tendency can be seen for
B1, B2, and B4.

Let us check the maximum blur size of the input image when the edge intensity
achieves its maximum value as above. As Fig. 5 shows, for A1, the maximum blur
size is 1.25 with 12 input images. This indicates that the observed images that have
larger blur than this value are to be excluded from the input of SR, and that the blur
size can be a criterion.

In the same manner, the maximum blur sizes that provide choice/refusal criteria
in the other cases (A2, A4, B1, B2, and B4) were found to range from 1.08 to 1.45.

4.6 Discussion

Theoretically, the number of input images used cannot itself be a causative factor for
low-quality result images in reconstruction-based SR.
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In contrast, errors in pre-processing, deformable image registration, and blur esti-
mation are considerable factors. Among these, blur estimation is unlikely to be a
causative factor since it is a process common throughout all of the cases (A1 ~ B4)
and its scaling ratio can be found analytically. Deformable image registration is most
likely the causative factor in worsening the quality of the result images, because
including larger blur in the input images and searching corresponding points for
deformable image registration results in lower accuracy.

5 Conclusion

Thework reported in this paper regarding the SRof on-vehicle fisheye camera images
made the following contributions.

• It pointed out the problemof trade-off between quality and quantity of input images
and evaluated the effects of choice/refusal of input images on the SR results.

• It found that the results worsen when more input images are included with a
maximum blur greater than 1.08 ~ 1.45, as a result of image registration errors.

• It estimated that the blur size can potentially be a criterion for inclusion/exclusion
of input images.

Future work includes improving the blur estimation process, experiments using
more commonly-used inexpensive cameras, consideration of motion blur, and dis-
cussion of the requisites for better SR results.
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Architecture and Development
of Agent-Based Unified Simulation
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Tsuneo Nakanishi and Akira Fukuda

Abstract Agent-based traffic simulation has become increasingly interesting and
important for developing new intelligent transport systems (ITS) services. Till date,
a variety of studies and developments that combine simulators and evaluate ITS ser-
vices on the combined simulators have been conducted. In this paper, we propose a
simulation environment called asAgent-based unified simulation environment (USE)
for ITS services. To confirm the effect of ITS services on the society via simulation,
it is generally necessary to implement a model of the service on a simulator. The
Agent-based USE provides an easy-to-build simulation environment for ITS-related
services. Particularly, by connecting simulators with ITS services, the Agent-based
USE determines behaviors to be changed on the simulators using the data of the ser-
vices such as recommendation results generated by the services and communicates
the decisions to the simulators; the Agent-based USE then obtains the data represent-
ing the current situation on the simulators and sends it to the services as feedback so
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as to enable the services to generate the next recommendation. Additionally, using
the Agent-based USE, it is possible to construct a co-simulation environment where
simulation is performed by synchronizing some types of simulators and services
and by sharing simulation information. In this paper, we introduce the overview and
architecture of the Agent-based USE for traffic simulation and discuss its usefulness.

1 Introduction

With the development of the internet of things (IoT) technology, there have been
increasing expectations to become a smart mobility society equipped with new social
information infrastructure systems. Information infrastructure systems that support
the smart mobility society are called smart mobility systems, and research on system
life cycle that includes the development of such a system has become increasingly
important. The realization of a sustainable smart mobility society is currently being
discussed as a challenging task [2]. Particularly, many issues concerning the develop-
ment of smartmobility systems such as services and applications related to intelligent
transport systems (ITS) that are responsible for the social infrastructure still remain
to be addressed.

While developing ITS services, it is important to confirm their effect on the society
affected by them, and field trials are often conducted before their full-scale intro-
duction. However, the field trials are time-intensive and expensive, and the cost of
their preparation is also considerable; therefore, it is not realistic to conduct the field
trials several times on a single system. Therefore, it is common to check the effect
of these systems via simulation before their field trials or release.

Generally, while checking the effect of ITS services via simulation, we need to
create models on the behavior of ITS services in addition to modeling the vehicles,
pedestrians, and road networks. Apart from the ITS services, we have to create the
behavior model with the same function that the services have.

In addition to the method of performing simulation, there exists a method of
preparing a simulation system for each service individually. In that case, it is neces-
sary to modify the whole or a part of the simulation system at each service update.
At least it is necessary to implement the behavior models of the services on the sim-
ulation system repeatedly. If the implementation of the behavior model is omitted,
the simulation cost can be reduced.

For a purpose similar to the abovementioned, combining different simulators or
combining simulators and services has been attempted. However, simulators and
services are combined directly during the attempts, and the main objective of the
attempts is to exchange data with each other. There are considerable researches
on Agent-based simulation incorporating the decision-making model of the entity
(agent) to be simulated. Such a decision-making model is implemented in the sim-
ulator; however no consideration is given to connecting it with other simulators or
services. Even for simulators including such decision-making models, the services
can be connected by introducing a mechanism to connect simulators and services as
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described above. However, in order to introduce decision-making models on other
simulators, it is necessary to newly implement the decision-makingmodel. Addition-
ally, while implementing a decision-making model for each simulator, because the
simulator information used in each decision-making model is different and sharing
of simulator information is generally difficult, it is not easy to ensure consistency
between different implementations of the decision-making models.

We propose a simulation environment, called the Agent-based unified simulation
environment (USE) for ITS services. It is possible to apply a common decision-
making model to multiple simulators and to services associated with the object
by introducing one decision-making model for each object. Therefore, there is no
inconsistency between the above decision models. Even if it is necessary to use
different decision-making models in different simulators, it can be dealt with by
handling them as different objects (entities). In this paper, we describe the overview
of this Agent-based USE and discuss case studies to verify its effectiveness.

The rest of this paper is organized as follows. In Sect. 2, we introduce traffic
simulators used for observing the effects of ITS services. In Sect. 3, we describe
motivational examples of development of our Agent-based USE. In Sects. 4 and 5,
we present an overview of the Agent-based USE and its architecture. In Sect. 6, we
discuss case studies to confirm the effect of the Agent-based USE using its prototype
implementation. Section 7 describes related work, and we conclude the paper in
Sect. 8.

2 Traffic Simulator

Traffic simulators simulate the behavior of a moving object such as a vehicle or a
pedestrian on a road network and the behavior of a signal system in a virtual space.
These simulators observe the behavior of the moving objects and the condition of
traffic in the virtual spaces. The traffic simulators are classified into macro traffic
simulators, micro traffic simulators, and human flow simulators according to the size
of the virtual space to be focused on and the observation granularity of the moving
objects. An appropriate simulator is selected according to the simulation purpose.
The characteristics of the different simulators are given below.

Macro traffic simulator This covers a relatively wide area and targets a large-
scale road network. Additionally, it does not treat moving objects individually
object-wise, but as fluids that flow over a network, and observes their flow rates.
Visum [9] is an example of a macro traffic simulator.

Micro traffic simulator This covers a relatively smaller area. Additionally, it treats
moving objects individually and simulates their detailed motion. SUMO [4], Vis-
sim [8], Aimsun [13] etc. are few examples of micro traffic simulators.

Human flow simulator This primarily covers areas such as stations or commercial
facilities and simulates the movement of people in such spaces. In the simulation
of the evacuation of people during a disaster, artisoc [3] is used as a human flow
simulator.
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3 Motivational Example

In this section, we describe motivational examples of development of our Agent-
based USE.

3.1 Connection of Simulator and Multiple Services

First, we describe the motivational example illustrated in Fig. 1. Figure1 shows a
situation in which vehicles and pedestrians move within an area having few buildings
and parking lots.

A vehicle traveling in this area uses a service of the system for recommending the
available parking lots and determines a destination parking lot. Additionally, it uses a
service of the car navigation system and determines the travel route to its destination.

On the other hand, a pedestrian in this area uses a service of the pedestrian navi-
gation system, determines a route based on the information provided by the service,
and moves between some buildings and parking lots along the route.

In the above situation, there may be demands for observing the interference
between services for an object receiving multiple services, and between objects

Fig. 1 Motivational example for connection of simulator and multiple services
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receiving different services. In order to observe this interference via simulation, it
is necessary to implement all the factors of the services into one simulation system.
This is a considerably tough job.

Therefore, in our Agent-based USE, we decided to provide a mechanism to con-
nect the simulator and implementations of services. Using this mechanism, we can
easily connect a simulator and multiple services without modeling them and reduce
construction costs of a simulation system.

3.2 Connection of Different Kinds of Simulators

Next, we describe the motivational example illustrated in Fig. 2. The figure shows
how the flow of people on each floor and the behavior of each elevator interact with
each other in a building with multiple elevators.

A person is a user of a service that recommends which elevator to ride; the person
determines a target elevator based on the information from the service, and moves
up to the target elevator on the floor. The varying degree of congestion in front of
the elevators affects the behavior of the elevators. Consequently, the behavior of
the elevators or users riding the elevators also affects the behavior of the elevator
recommendation service, which cyclically affects the flow of people again.

In order to observe the situation mentioned above, the following simulation is
desired.

• Human flow and elevator behavior are simulated using different simulators: a
human flow simulator and an elevator simulator that are appropriate to the human
flow and elevator behavior, respectively.

Fig. 2 Motivational example for connection of different kinds of simulators
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• The simulation is performed by synchronizing the different simulators, sharing
each simulation result at each timing of synchronization.

• In the simulation, the shared results at a step are used as each simulator’s input for
the next step of the simulation.

Such a simulation is called co-simulation, and it is difficult to construct it.
Therefore, our Agent-based USE provides a mechanism that enables connecting

different simulators with each other. Using this mechanism, the construction costs
of the co-simulation environment can be reduced.

4 Overview of the Agent-Based USE

In this section,we describe theAgent-basedUSE that is currently under development,
and which uses ITS services.

Figure3 illustrates a simulation system using the Agent-based USE that consists
of three main parts: simulators, ITS services, and our Agent-based USE. The roles
of the components in the simulation system are as follows.

Fig. 3 Conceptual diagram of the Agent-based USE
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Simulator A simulator simulates the movements of objects in the simulator. In
terms of a traffic simulator, it simulates only “driving a car” to the destination and
does not voluntarily “change” the destination of the car.

ITS Service An ITS service provides useful information to determine the desti-
nation of a moving object and a route to the destination. Some services acquire
information such as the current location of the object and point of interest (POI)
information such as the congestion status of the destination and provide informa-
tion based on the acquired information.

Agent-based USE The Agent-based USE connects simulators and ITS services
with each other. It changes the parameters of moving objects from outside the
simulator such as for determining and changing the destination of amoving object
on the simulator and changing the route. It also gathers the information neces-
sary for the service from the simulator and sends it to the service. It determines
changes in the parameter values of moving objects on the simulators, based on
the information provided by the connected ITS services.

By connecting the implementation of the ITS service with the traffic simulator,
simulation can be performed without creating a model representing the behavior of
the ITS service on the simulator.

Moreover, because the traffic simulator and the implementation of ITS services
can exchange information in real time through the Agent-based USE during the
simulation, the behavior of the ITS services affects the environment being simulated
in real time. Additionally, it is also possible to observe that the environmental change
on the simulator affects the behavior of ITS services in real time.

The Agent-based USE can connect to multiple ITS services with the traffic simu-
lator. This enables us to observe the interference between influences of each service.
More specifically, it enables us to observe whether the effect of multiple cooperating
services is as expected.

Furthermore, the Agent-based USE enables mutual connection between the ITS
services and the different kinds of simulators; it enables the simulation of the fol-
lowing scenarios:

1. Under the guidance of a car navigation system, a carmoves to a parking lot closest
to the destination, which is a target building such as a commercial facility. The
driver walks to the commercial facility after getting off the car.

2. The driver walks from the entrance to the target store within the commercial
facility, using the in-facility guidance system.

In this scenario, simulation is performed using amicro traffic simulator outside the
commercial facility and a human flow simulator inside. The two types of simulators
are executed at the same time. In the simulation, the moving object performing
the scenario behaves as a moving object on the micro traffic simulator when present
outside the facility and as a moving object on the human flow simulator when present
inside the facility.
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5 Architecture of the Agent-Based Unified Simulation
Environment

5.1 Modules of Agent-Based USE

In this section, the architecture of the Agent-based USE, which is currently under
development, is outlined based on the architecture diagram shown in Fig. 4. This
Agent-based USE comprises several types of core modules and objects as follows:

Unified Simulation Field This module forms the base of the Agent-based USE and
is responsible for managing instances of each module appearing in the Agent-
based USE.

Sim This module is responsible for connecting an individual simulator and the
Agent-based USE.

Vehicle This object is responsible for connecting with a moving object on a sim-
ulator. When a moving object moves into the space of another simulator, it is
moved to another Sim module by the unified simulation field module.

POI This object is responsible for connecting with a POI object within a simulator.

ITS Service

ITS Service

ITS ServiceAgent
Mental

Sim

Vehicle

POI

Sim

Vehicle

POI

Vehicle
Agent
Mental

Agent
Mental

Agent
Mental

Agent
Mental

ITS Service

Unified Simula on Field 

Agent Based  
Unified Simula on Environment 

Connected Simulators Connected 
 ITS Services 

Fig. 4 Architecture of the Agent-based USE for traffic simulation
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Agent This object plays the role of an intermediary for exchanging information
between a vehicle object and the ITS services or between a POI object and the ITS
services. This object is also responsible for changing the movement of a moving
object that it is connected with.

Mental This object is a component of an Agent object, and plays the role of a
decision-maker for the Agent object. It is responsible for determining of the
parameter of the moving object after the behavior change based on the infor-
mation is received by the Agent object.

5.2 Information Transmitted and Received in the
Agent-Based USE

In each connection between the modules and objects, information is transmitted and
received as follows.

Information from the vehicle on the simulator to the Agent The present location
and speed of the moving object are acquired from the simulator through the
vehicle object and sent to the Agent object in charge.

Information from the POI on the simulator to the Agent The POI information
such as the degree of congestion is acquired from the simulator through the POI
object and sent to the Agent object in charge.

Information from the Agent to the ITS services The Agent object that obtains the
information from the simulator transmits it to the ITS services. Additionally, the
Agent acting as an intermediary with the moving object transmits what operation
is to be performed and the information necessary for the operation to the ITS
services, on behalf of the moving object that performs the operation.

Information from the ITS service to the Agent The ITS service returns appropri-
ate response information for the operation to Agent. For example, a route rec-
ommendation service recommends a proper route to the user. This information is
used by Mental that is a component of Agent to create a decision to change the
object behavior.

Information from the Agent to the vehicle on the simulator The Agent responsi-
ble for the moving object sends a decision to change the behavior of the moving
object created by Mental.

5.3 Connections of Each Component in the Simulation
System Using the Agent-Based USE

Wedescribe connection of each component in the simulation system using theAgent-
based USE. Presently, an interface called traffic control interface (TraCI) [14] to con-
nect theAgent-basedUSEwith the simulators. TheAgent-basedUSE acquires object
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status and handles object behaviors through the interface. Additionally, the TCP/IP
and RESTAPIs are supported for the communication between the Agent-based USE
and ITS services. The Agent-based USE communicates with the services, sends nec-
essary information through a request to the services, and receives a response. Using
this mechanism, it is possible to construct a simulation environment reflecting the
results in real time.

We are currently developing a prototype of this Agent-based USE based on the
architectural design using Python. Functions to connect different types of simulators
have not been implemented yet; however, connection between the same kind of
simulator and multiple kinds of ITS services is already supported.

5.4 Connecting Multiple Simulators

In this section, we describe connectingmultiple simulators in our simulation environ-
ment. Our proposed simulation environment enables connection of multiple traffic
simulators. Presently, its prototype is able to connect only those simulators with
the same simulation time granularity; however, we plan to implement the feature to
connect simulators with different time granularity as well.

In Fig. 5, we explain the management of multiple simulation times and the time
of our simulation environment.

The time of each connected simulator never overtakes the time of the simulation
environment. The time of each connected simulator and the simulation environment
satisfies the following conditions, where Tickenv is a tick of the simulation environ-
ment and Ticki is the tick of simulator Si respectively.

Fig. 5 Management of simulation tick
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1. Ticki ≤ Tickenv
2. The least common multiple of each connected simulator tick is a tick of the

simulation environment. Therefore, the following formula gets established.

Tickenv = mi × Ticki (mi ∈ N)

In generally, since the tick of the simulator takes values such as 1, 5 and 1000 ms,
we believe that it is acceptable.

Also, connectingmultiple traffic simulators requires consideration of objectsmov-
ing betweendifferent traffic simulators. InFig. 6,we explain how tohandle the objects
moving between traffic simulators.

For objects moving to another simulator space, the corresponding Agent is added
to the list of transferred objects and to the destination simulation space in the next
simulation step. Since the Agent has the information of the corresponding object, it
can hold the information in the simulation space of the destination. In this manner,
the moved object is recognized as the same one on the simulation environment, and
the object information can also be handed over and handled.

5.5 Connecting Multiple Services

In this section, we describe connecting multiple services and our simulation envi-
ronment.

Our proposed simulation environment is connectable to multiple services. This is
realized by having the client of the service in the Agent. If you have multiple clients
in an Agent, you can connect to multiple services.

When the Agent uses the service, it receives the recommendation information as
a result. It accepts the recommendation information and judges whether to replace
the information owned by the Agent by Mental model. Further, the same Agent may
use multiple services and receive a plurality of recommendation information. Even
in this case, we decide which information to accept depending on the Mental model.
To judge the recommendation information by theMental model, the evaluation value
of the recommendation information is calculated and decided based on the value.
The following equation is an expression for calculating the evaluation value.

V =
∑

i

fi (ei )

V represents an evaluation value, and ei represents an element relating to the
evaluation, e.g., a distance, congestion rate etc. fi is the weight of the element. For
example, when ei is a distance and its evaluation function fi is a linear function,
the evaluation value fi (ei ) is proportional to the distance. Based on this evaluation
formula, the evaluation value of the recommendation information and the information
competing with the recommendation information is calculated and evaluated.
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Fig. 6 Management of a transfer object
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Fig. 7 Connection of multiple services

Figure7 shows the overview of replacing information owned by the Agent based
on the result of the obtained evaluation value. As an example, wewill explain the flow
of receiving recommendation information from m connected services and replacing
that information.

1. The Agent requests the recommendation information tom competing recommen-
dation services.

2. The Agent receives recommendation information from the m services.
3. For each unit of recommendation information, each evaluation value (V1 ... Vm)

is calculated using the evaluation formula.
4. Calculate the evaluation value of the recommendation information, and also cal-

culate the evaluation value (V0) of the information currently owned by the Agent.
5. From all the calculated evaluation values, find the one with the maximum evalu-

ation.
6. If the one with the highest evaluation value is obtained from the recommendation

information, it replaces the information that the Agent originally owned.

6 Case Study

In this section, we describe a case study of simulation using the prototype of the
Agent-based USE under implementation in Python language based on the architec-
ture design shown in Sect. 5. In this case study, we implemented several simple ITS
services and connected them with SUMO as a traffic simulator.



240 R. Fujii et al.

6.1 Connected with Multiple ITS Services

We introduce a case study connecting two ITS services that we prepared for the
simulator to observe the interference between the services.

Data Used for the Simulation Execution

Road Network:

road network shown in Fig. 8 was prepared as the application space of the case study.
Three places marked in gray represent parking lots that are POIs. Additionally, the
POI information of each parking lot is assumed to be the degree of congestion at that
time, and the maximum number of cars which each parking lot can accommodate is
40, 40, and 25 in order from parking lot 1.

Vehicle Data:

The data of the vehicles moving on the road network were created using the tool
attached to SUMO. Each vehicle emerges from any one of the left, right, or lower
end, and moves to one of the three parking lots.

In this case study, the number of execution steps in the simulation is 3,600 and
the vehicles on the simulator are generated in one of the steps and discarded on
reaching one of the parking lots. Additionally, some vehicles use one of the ITS
services described below and conform to the recommendation information from the
ITS services. Depending on the recommendation information from the ITS services,
the vehicles may change the destination from one parking lot to another. The number
of vehicle units using each ITS service is shown in Table 1.

ITS Service:

We implemented a simple ITS service that connects to the simulator and recom-
mends vacant parking lots according to the degree of congestion of the parking lot.

Fig. 8 Road network for simulation
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Table 1 Number of vehicles
according to the
recommendation of an ITS
service

ITS service 1 83 units

ITS service 2 98 units

NOT use service 119 units

Total 300 units

We prepared two simple parking lot recommendation services, where two services
monitor two different parking lots. They recommend one of the two parking lots
monitored.

The first service monitors parking lots 1 and 3 and recommends either of the two,
and the second service monitors parking lots 2 and 3 and recommends either of the
two.

In this case study, simulations were carried out by simultaneously connecting the
above two simple parking lot recommendation services to the Agent-based USE.

Result of the Simulation Execution

Simulation was performed using various data described in the previous section and
the prototype of the Agent-based USE currently under development. Consequently,
the simulation was executed without abnormal termination up to the set step, and it
was confirmed that simulation using the implementation of ITS services is possible
by using this Agent-based USE.

Furthermore, we observed the change in the degree of congestion of the parking
lot during simulation, as shown in the graph of Fig. 9. In this graph, the horizontal

Fig. 9 Result of parking congestion ratios
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line represents the number of steps, and the vertical represents the congestion rate of
the parking lot. The congestion rate of the parking lot is calculated by the following
equation.

(Congestion rate) = (Number of vehicles parked)

(Maximum number of storable cars)
× 100

In this graph, when the simulation step reaches around 1,500, the congestion rate
of parking lot 3 suddenly rises and exceeds 70%. This can be easily confirmed. This is
because parking lot 3 was less congested than parking lots 1 and 2 in the immediately
preceding step, and parking lot 3 was recommended at the same time by both the
services.

From the aforementioned, it can be seen that this Agent-based USE is useful for
manifesting the mutual interference situation influenced by multiple ITS services.

6.2 Connecting with Mixed Reality Environment

Secondly, we introduce a case study in which a mixed reality device and a simulator
are connected and the simulation result is projected onto the mixed reality in real
time. We used Microsoft HoloLens [5] as a mixed reality device, and a simulation
monitor application on the device was connected to our Agent-based USE as an ITS
service.

Prepared Simulation Monitor Application:

We prepared a 3D map [16] corresponding to the simulation area and the 3D model
of a vehicle to project the simulation result in the mixed reality. Further, we prepared
scripts that acquire information such as the location and orientation of each vehicle
from the vehicle Agent and control the behavior of a 3D vehicle model. From the
view point of the Agent-based USE, the monitor application is connected as an ITS
service.

Screen Shots of the Example Application

Figure10 is a screen shot of the simulation result on the simulator at a certainmoment
and Fig. 11 of the mixed reality device at the same instant.

Using our Agent-based USE, we can easily connect with a mixed reality applica-
tion similar to connecting with the ITS services, and we can easily build an environ-
ment that allows to observe a more stereoscopic result of the simulation.
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Fig. 10 Screen shot of the simulation result on the simulator

Fig. 11 Screen shot on the HoloLens at the same instant of Fig. 10
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7 Related Work

Among the research on environmental development of traffic simulation, research [1,
7] on the construction of an integrated simulation environment connecting a traffic
simulator and various simulators, research [14] on an interface-enabling connection
with a traffic simulator, and similar other researches have been conducted.

In the literature [1], an integrated simulation environment that combines vari-
ous simulators such as Vissim, MATLAB [11], and ns-3 [15] to create a simulation
environment of vehicle-to-everything (V2X) communication technology has been
proposed. In the literature [7], an integrated simulation environment traffic and net-
work simulation environment (TraNS) for vehicle ad hoc networks (VANETs) has
been proposed, in which the traffic simulator SUMO and the network simulator ns-2
[12] are interconnected by TraCI that is described below. These simulation envi-
ronments are focused on the V2X communication technology system or VANETs
system. However, our proposed simulation environment is focused on the overall
ITS services. In the literature [6], a simulation environment that integrates different
domain simulators such as a traffic, and an electronic simulator has been proposed.
Additionally, the design of each domain simulator has been also proposed, and the
design is constructed toward simulation integration. Our Agent-based USE also has
the function to integrate simulators. However, we suppose that each integrated sim-
ulator is an existing one which has been used in each domain. The simulator is not
necessarily constructed for simulator integration.

In the literature [14], an interface known as TraCI for interconnecting a traffic
and a network simulator has been proposed. By using TraCI, it becomes possible to
acquire congestion information on the road, via the traffic simulator, or to control
the behavior of the moving object in real time during the simulation. The Agent-
based USE proposed in this study uses TraCI to realize the connection between the
simulator and the implementation of the ITS service.

In the literature [10], a platform that integrates a traffic simulator andmulti-driving
simulators has been proposed. In this platform, the data is exchanged in real time
between the driving simulators and the traffic simulator, and simulation results are
mutually reflected. Our simulation environment also exchanges information between
the simulators and services in real time. However, our simulation environment is
targeted for the services that can communicate using network protocols such as
TCP/IP, and therefore it is possible to exchange information in real time between the
services and simulators.

8 Conclusion

In this paper, we discussed a simulation environment called Agent-based USE that
does not require modeling of the ITS services for simulation, and outlined the Agent-
based USE and its architectural design. The Agent-based USE has the following
features.
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• The Agent-based USE does not require modeling of the ITS services; however,
it provides a simulation environment connecting the implementation of the ITS
services to the simulators.

• In the Agent-based USE, information is exchanged between the simulator and the
ITS service when the simulation is executed, and it is possible to simulate the ITS
service behavior and environmental changes mutually affecting each other in real
time.

• The Agent-based USE provides an environment enabling connection between a
simulator and multiple ITS services, and confirms how the effects of each ITS
interfere with each other.

• The Agent-based USE provides an environment in which multiple or different
types of simulators can be connected, and a simulation can be performed on objects
moving to different simulator worlds.

Further, we developed a prototype of the Agent-based USE in Python language
based on the proposed architectural design. By using the prototype implementation, it
was possible to perform the simulation of an environmentwheremultiple ITS services
are affected by each other. Using case studies, the effectiveness of the proposed
Agent-based USE was confirmed.

In future work, we plan to develop and implement the feature to connect even
simulators with different time granularity. Further, we plan to build ameta simulation
environment that can deploy a simulation environment with our Agent-based USE
more easily. Continuing development of the Agent-based USE, conducting case
studies, and getting feedback of the case studies, we will find a way of solving the
uncertainty problems before or during the designing phase of the Agent-based USE
and establish a process for strengthening the Agent-based USE.
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Traffic State Estimation Using Traffic
Measurement from the Opposing
Lane—Error Analysis Based
on Fluctuation of Input Data
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Abstract In this study, we propose a method of estimating traffic states using the
traffic data observed from the opposing lane. As input data, our proposed method
requires (1) probevehicle trajectory on the target section and (2) vehicle data observed
by vehicles running in the opposing lane. These input data identify the cumulative
vehicle counts along the trajectories of the probe vehicles and observation vehicles in
the time-space of interest. We applied the variational theory based on the kinematic
wave to estimate vehicle trajectories over the entire time-space using the identified
cumulative vehicle counts as the boundary condition. Furthermore, we used the Clark
approximation to analytically examine the sensitivity of the estimate to the stochastic
fluctuations of the input data and measurements. Validation using a hypothetical
network confirms that the proposed method reasonably reproduces the traffic states
and that the Clark approximation can accurately estimate the sensitivity.
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1 Introduction

1.1 Background

Understanding the traffic flow is important for tackling various problems in road
traffic, such as congestion, accidents, and environmental load. Owing to the pop-
ularization of high-precision positioning made possible by the global positioning
system (GPS), deployment of communication infrastructure and road infrastructure,
advances in the electronic control of vehicles, and widespread use of in-vehicle sen-
sors, in recent years, the type and amount of information that can be collected as
probe vehicle data has become enormous. Traffic monitoring is expected to be based
on such information.

In this study, we assume that forward-moving passing vehicles can be counted
by the measurement vehicle running on the opposite lane (we call this the backward
probe vehicle) using advanced technologies such as video recording,millimeter wave
radars, and vehicle-to-vehicle communications. We are still developing a measure-
ment device to be equipped on the backward probe vehicle. However, we believe
that such sensing technologies can be deployed in the near future, especially under
the connected and automated vehicle environment.

We employed the variational theory (VT) to estimate the traffic states utilizing
the count measurement from the opposite lane (backward probe) in addition to probe
vehicle data in the forward direction (forward probe). The VTwas employed because
the vehicle counts by the backward probe vehicle are used directly for the boundary
condition of the VT. In addition, we propose an analytical method that examines
the sensitivity of the estimates in relation to the variabilities of the input data and
measurements.

1.2 Previous Researches

Here, we review mainly the studies that estimate traffic states based on physical
traffic flow dynamics utilizing various sensing data.

Mehran and Kuwahara [10, 9] examined a method that estimates vehicle trajec-
tories in a simple section with signalized intersections based on the VT proposed
by Daganzo [3, 4] using a traffic detector, probe vehicles, and signal-timing data.
In addition, they extended the method to consider the inflow and outflow at inter-
sections in the middle of the study section. Takayasu and Kuwahara [14] examined
the sensitivity of the estimated cumulative counts in relation to the variability of the
input data considering the correlation among the data. Kawasaki et al. [8] carried
out a similar analysis using VT with traffic detector and probe vehicle data, consid-
ering the variability of the fundamental diagram. Several studies reported filtering
techniques for data assimilation considering the stochasticity of traffic flow models
and sensing data (Herrera and Bayen [5], California. Allströma et al. [1], Yuan et al.
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[16], Nantes et al. [11], Jiang et al. [7], Xie et al. [15]). Patire et al. [12] examined the
amount of Eulerian and Lagrangian data needed based on an ensemble filter using
traffic detector and probe vehicle data. Canepa and Claudel [2] and Sun et al. [13]
formulated optimization problems for data assimilation.

The aforementioned studies basically focused on a simple road section without
any alternative routes. Hofleitner et al. [6] proposed a model that estimates traffic
states in a two-dimensional network. However, the vehicle routing is not related
directly to the estimated traffic states.

None of these previous studies employed measurements from a vehicle running
in the opposite lane.

1.3 Purpose

To solve the above problem, we propose a method to estimate the traffic state using
the traffic flow data from the opposite lane as measured by vehicle sensors such
as cameras and millimeter wave radars, instead of using data measured by a fixed
vehicle detector. By applying this method, we can estimate the traffic state using data
measured by vehicles alone with the same accuracy as when using the fixed vehicle
detector data. In this paper, we describe the results obtained using the VTmodel as an
estimation model of the proposed method and the evaluation results using simulated
data.

2 Proposed Method

2.1 Overview of the VT

In the VT, we assume a two-dimensional space (a time-space diagram). The time
and position of road segments form the axes of the diagram. Then, we consider the
traffic volume accumulated from the origin to each point on the diagram as the value
at the point. As Fig. 1a shows, the line where the value is known on the space is
called the boundary. Daganzo proves that N P , the value of a non-boundary point
P, can be expressed as Eq. (1) using N B, the value of an arbitrary boundary point
B, and �BPmax , the maximum number of vehicles that overtake a virtually moving
observer from B to P. In other words, N B is the minimum value of N P + �BPmax ,
when the vehicle moves from point B on all boundaries accessible to point P. Note
that to evaluate N B, we must access P from all the accessible directions and, then,
find the minimum value.

N P = inf B{N B + �BPmax } f or any Boundary point B (1)



250 K. Kawai et al.

posi on

me

trajectory

trajectory

P

B

Boundary flow rate

density

(a) Boundary and accessible range (b) Fundamental Diagram at location x

Fig. 1 Movement range of a mobile observer

Fig. 2 Boundaries
determined by the vehicle
detectors and probe vehicle

posi on

me

P

Vehicle detector installed

Vehicle detector installed

Probe vehicle trajectory

O

As Fig. 1 shows, if a fundamental diagram showing the relationship between
traffic flow rate and density (FD) is given for all positions x of the target road section,
the accessible range can be found using the maximum value wmax (x) and minimum
valuewmin(x) of thewave speed of the Fundamental Diagram (FD) at that position. In
addition, �BPmax can be calculated from FD using the relative capacity (Daganzo).

2.2 Example of Application of the VT in Previous Researches

Mehran, Kuwahara et al. showed an example of applying the VT using trajectories of
probe vehicles and fixed vehicle detector data. The cumulative traffic volume can be
calculated from the number of passing vehicles at the point where vehicle detectors
are installed. In addition, the cumulative traffic volume on the probe vehicle trajectory
is constant. The thick line in Fig. 2 shows the boundaries determined by the vehicle
detector data and the probe vehicle trajectories. As Fig. 2 shows, if the target section
has a homogeneous FD, Eq. (1) should be evaluated from all the boundaries of the
thick line between the maximum and minimum values of the wave speed of the FD.

A method for conveniently evaluating Eq. (1) using these boundaries is described
in this paragraph. We assume that the forward wave speed is defined as v and the
backward wave speed as −w about the linear fundamental diagram of the target
section area, as Fig. 3 shows (For simplicity, it is assumed that all sections have the
same FD). At first, the time axis is divided into uniform minute sections. Next, as
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Fig. 3 Liner fundamental diagram
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Fig. 4 shows, the lines with a slope of speed v and −w for each discretized time are
noted, and the network that has these lines as directed links and these intersections
as nodes is configured. The forward links (they have the slope of forward wave
speed) are set to zero as the link cost, and the backward links (they have the slope of
backward wave speed) are set to qmax�t . Then, the cumulative number of arbitrary
nodes proved to be the cost of the shortest path from origin O to the node.

In this paper, the path with the minimum total cost from one point to another is
called the shortest path between the points, and the total cost of the shortest path is
called the minimum cost between the points.

2.3 Application of the Boundary of the Proposed Method

In contrast to previous studies that employed fixed vehicle detector data, the proposed
method uses the measurement data measured by backward probe vehicles. Figure 5
shows schematic diagrams of the boundaries. In Fig. 5b, blue solid lines are probe
vehicle trajectories, and red dots are the space-time points of the vehiclesmeasured by
the backward probe vehicles. If the boundaries can be defined at sufficient intervals,
it is possible to estimate the traveling trajectories of general vehicles between the
probe vehicles by applying the VT as it is.
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3 Analysis of Estimation Errors in the Proposed Method

3.1 Overview of the Analysis

To apply the proposed method to the actual traffic flow, it is necessary to consider the
influence of the variation of the input condition such as driver’s driving behavior and
terminal traffic volume. In this section, we use the boundary condition obtained from
one trip of the backward probe vehicle to analyze the effect of probability variation
of the input condition on the result of estimation.

Figure 6 shows the analysis target on the search network. We assume the starting
point of the boundary as origin node o and analyze the cumulative traffic volume
from o to any node (target node j). Since the cumulative traffic volume of target
node j is calculated as the minimum cost from origin node o to j, we develop the
probability for the minimum path from o to j and calculate the expectation value.

Among the candidate paths that can reach target node j, the shortest path through
a node on a certain boundary (boundary node i) can be determined to one. Thus,
we calculate the minimum cost for each passing boundary node. Here, we define
a set of boundary nodes that the path to target node j may pass through as � j :{
1, 2, 3, . . . , n j

}
. We classify the path from origin node o through boundary node i

to target node j into a boundary partial path (from o to i, the red line in Fig. 6) and the
internal partial path (from i to j, the blue line in Fig. 6), and calculate each minimum
cost. Furthermore, we analyze the probability of selecting the whole path together
with these partial paths as the shortest path.
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3.2 Minimum Cost of the Boundary Partial Path

Fluctuation of the terminal traffic volume of the target interval by the demand fluctu-
ations and the detection errors of the vehicle sensor on the backward probe vehicle is
considered as a fluctuation on the boundary. Therefore, this fluctuation can be treated
as a variation of the minimum cost Yi in the boundary partial path.

Here, since the boundary that the backward probe vehicle generates monotoni-
cally increases on the time axis (monotonically decreases on the spatial axis because
it proceeds in the opposite direction), the probability distribution of Yi is not inde-
pendent but correlated with each other. That is, ti > tk , xi ≤ xk and Yi ≥ Yk . In
addition, demand fluctuations and detection errors are cumulative and affect the next
fluctuations. Then, we consider εi (on i ∈ Ωi ), which is the traffic volume including
the fluctuation components fromnode i−1 to node i. The probability distribution of εi
is assumed an independent identical distribution (iid) that has the reproductive prop-
erty. Then, the expectation and dispersion of this probability distribution are defined
as μεi and σ 2

εi
. The Poison distribution, normal distribution, etc., are described as

the probability distributions with a reproduction property, and the following is a
description of the normal distribution, for example.

εi ∼ i id N
(
μεi , σ

2
εi

)
(2)

Then, Yi can be expressed as a sum of εi , and it follows the normal distribution
that has an expectation μYi and a dispersion σ 2

Yi
.

Yi =
∑i

k=1
εk ∼ i id · N(

μYi , σ
2
Yi

)
(3)

μYi =
∑

μεi (4)

σ 2
Yi =

∑
σ 2

εi
(5)
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Fig. 7 Linear fundamental
diagram

3.3 Minimum Cost of the Internal Partial Path

Fluctuation of the vehicle trajectory due to the variation of the driving behavior is
considered as a fluctuation within the network. Therefore, this fluctuation can be
treated as a variation of the minimum cost Zi j in the internal partial path. In general,
the changes in cumulative traffic volume from boundary node i to target node j can
be written as follows.

Zi j =
∫ t j

ti

sup
k(x,t)

(q(k(x, t), x) − k(x, t)u(x, t))dt (6)

Here, as shown below, we assume the Fundamental Diagram (FD) in which the
forward and backward waves are linear. Then, the maximum traffic flow rate and the
critical traffic density in the path via boundary node i are defined as qi j

max and ki jc ,
respectively. Furthermore, qi j

max and ki jc are assumed to follow normal distributions
and to be iid with the maximum traffic flow rate and the critical traffic density in
the path via other boundary nodes. Then, the expectation and dispersion of qi j

max

are defined as μq and σ 2
q , respectively, and those of ki jc are defined as μk and σ 2

k ,
respectively (Fig. 7).

qi j
max ∼ i id N

(
μq , σ

2
q

)
(7)

ki jc ∼ i id N
(
μk, σ

2
k

)
(8)

Then, Zi j follows the normal distribution that has an expectation μZi j and a
dispersion σ 2

Zi j
.

Zi j =
∫ t j

ti

qi j
max

(
1 − u

v

)
dt = qi j

max

(
1 − u

v

)(
t j − ti

)

= qi j
max

(
t j − ti

) − ki jc
(
x j − xi

) ∼ i id N
(
μZi j , σ

2
Zi j

)
(9)
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3.4 Minimum Distribution of Path Costs

The cumulative traffic volume Ui j of the path from origin node o through boundary
node i to target node j can be expressed as shown in the following equation.

Ui j = Yi + Zi j (10)

Therefore, the distribution of the minimum values of all path costs can be written
as follows.

P(min Path Cost > n) = P(U0 > n,U1 > n, . . . ,Ui > n)

= P
(
Y0 + Z0 j > n,Y1 + Z1 j > n, . . . ,Yi + Zi j > n

)

(11)

4 Approximate Calculation of Estimation Errors
in the Proposed Method

4.1 Overview of the Approximate

Since the minimum distribution has a probability fluctuation Y0,Y1, . . . ,Yi , which
are correlatedwith each other, it is difficult to calculate analytically. Therefore,we use
the Clark approximation method to calculate the expectation and standard deviation
of cumulative traffic volume.

TheClark approximationmethod allows approximating themaximumvalue of the
probability variable according to two multivariate normal distributions as a probabil-
ity variable according to a new multivariate normal distribution. In this method, we
calculate the covariance and the correlation coefficient of two probability variables
from the expectation and variance of each probability variable and, then, recursively
calculate the correlation coefficient and maximum value of multiple probability vari-
ables. Here, we write the expectation and variance of the probability variable X as
E(X) and V (X), respectively, and the covariance and correlation coefficient of the
two probability variables X and Y as Cov(X,Y ) and ρ(X,Y ), respectively. In addi-
tion, we omit j of the affixed character to make the expression concise.

4.2 Confirmation to Multivariate Normal Distribution Check

We show that the cumulative traffic volume Ui is a multivariate normal distribution.
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Since εi and Zi are normally distributed according to formulas (2) and (9), the iid
standard normal distribution xi and standard multivariate normal distribution X can
be defined as shown below.

xi = εi − μεi

σεi

= Zi − μZi

σZi

∼ i id N (0, 1) (12)

X = (
x1 j , x2 j , . . . , xi j

)t
(13)

Therefore, Ui can be represented by the linear transformation of the standard
multivariate normal distribution X . It is a multivariate normal distribution, and the
Clark approximation can be applied.

Ui = AX + C (14)

where

A =

⎛

⎜⎜⎜
⎝

σε1 + σZ1 0 · · · 0
σε1 σε2 + σZ2 · · · 0
...

...
. . .

...

σε1 σε2 · · · σεi + σZi

⎞

⎟⎟⎟
⎠

(15)

X =

⎛

⎜⎜⎜
⎝

x1 j
x2 j
...

xi j

⎞

⎟⎟⎟
⎠

(16)

C =

⎛

⎜⎜⎜
⎝

με1 + μZ1 j

με1 + με2 + μZ2 j

...∑i
k=1 με1k + μZi j

⎞

⎟⎟⎟
⎠

(17)

4.3 Calculation of Correlation Coefficients

This subsection describes how to determine the correlation coefficient of the two
probability variables that are known to be expected and distributed.

If 0 < εik , the covariance Cov(Ui ,Ui−k) of the probability variablesUi andUi−k

can be described as follows.

E
(
Ui ,Ui−k

) = E
(
Yi + Zi

)(
Yi−k + Zi−k

)

= E
(
Yi−k + εik + Zi

)(
Yi−k + Zi−k

)

= E
(
Yi−kYi−k

) + E
(
Yi−k

)
E

(
Zi−k

) + E
(
εik

)
E

(
Ui−k

) + E
(
Zi

)
E

(
Ui−k

)

= V
(
Yi−k

) + E
(
Yi−k

)
E

(
Yi−k

) + E
(
Yi−k

)
E

(
Zi−k

) + E
(
εik

)
E

(
Ui−k

) + E
(
Zi

)
E

(
Ui−k

)
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= V
(
Yi−k

) + E
(
Yi−k

)
E

(
Ui−k

) + E
(
εik

)
E

(
Ui−k

) + E
(
Zi

)
E

(
Ui−k

)

= V
(
Yi−k

) + E
(
Ui

)
E

(
Ui−k

) (18)

Cov(Ui ,Ui−k) = E(Ui ,Ui−k) − E(Ui )E(Ui−k) = V (Yi−k) (19)

Therefore, if Yi−k < Yi , the correlation coefficient ρ(Ui ,Ui−k) of the probability
variable Ui and Ui−k can be calculated as follows.

ρ(Ui ,Ui−k) = Cov(Ui ,Ui−k)√
V (Ui )

√
V (Ui−k)

= V (Yi−k)√
V (Yi + Zi )

√
V (Yi−k + Zi−k)

= V (Yi−k)√
V (Yi + Zi )

√
V (Yi−k + Zi−k)

(20)

4.4 Maximum Value Recursion

Clark showed that when consideringmultivariate normal distributionsU1 andU2, the
firstmomentα12 and the secondmoment β12 of the probability variableMax(U2,U1)

are as shown in formulas (21) and (22).

α12 = E(U1)	(γ ) + E(U2)	(−γ ) + cφ(γ ) (21)

β12 = (
E(U1)

2 + V (U1)
)
	(γ ) + (

E(U2)
2 + V (U2)

)
	(−γ )

+ (E(U1) + E(U2))cφ(γ ) (22)

where

φ(ω) = (2π)−(1/2) exp

(−ω2

2

)
(23)

	(ω) =
∫ ω

−∞
φ(t)dt (24)

c2 = V (U1) + V (U2) − 2
√
V (U1)V (U2)ρ(U1,U2) (25)

γ = E(U1) − E(U2)

c
(26)

Then, Max(U1,U2) can be approximated by the following normal distribution.

Max(U2,U1)∼ N
(
α12, β12 − α2

12

)
(27)
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In addition, the correlation coefficientρ(U3, Max(U2,U1)) is obtained as follows.

ρ(U3, Max(U2,U1)) =
√
V (U1)ρ(U1,U3)	(γ ) + √

V (U2)ρ(U2,U3)	(−γ )
(
β12 − α2

12

)1/2

(28)

Using the above definition and by applying formulas (23)–(26) to U3

and Max(U2,U1), the first moment α123 and second-order moment β123 of
Max(U3, Max(U2,U1)) = Max(U3,U2,U1) are obtained in the same way as
shown in formula (21) and (22).

The expectation and variance of Max(U3,U2,U1) are obtained as follows.

Max(U3,U2,U1) = Max(U3,max(U2,U1))∼ N
(
α123, β123 − α2

123

)
(29)

By repeating this treatment for Ui , the expectation of Max(U1,U2, . . . ,Ui ) can
be calculated.

5 Validation on a Hypothetical Network

5.1 Validation of Traffic State Estimates

5.1.1 Generating True Traffic States

To validate the proposed method, the true traffic states are first constructed on a
simple network shown in Fig. 8. The total length of the straight pipe section is
5.0 km; however, as presented in Table 1, the first 3.5 km and the last 1.5 km sections
have different fundamental diagrams. Although both sections have the same forward
and backward speeds of 60 km/h and −15 km/h, respectively, they have different
capacities of 1,500 veh/h and 750 veh/h, respectively. As Table 2 indicates, the
demand from origin O to destination D is generated time-dependent. The first and
last 20-min periods have a demand of 1,200 veh/h, which exceeds the capacity of
750 veh/h on the 1.5-km section (ND). Therefore, a queue is generated from node N
during the periods.

3.5 km 1.5 km

O N D

Fig. 8 Simple network
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Table 1 Simulation
conditions

Item Value

Simulation time span 60 min

FD qmax:
Saturation flow rate

O → N 1,500
veh/h

N → D 750 veh/h

Forward wave speed 60 km/h

Backward wave speed 15 km/h

Table 2 Traffic demand Origin →
Destination

Time (min)

0–20 20–40 40–60

O → D 1,200
veh/h

500 veh/h 1,200
veh/h

Fig. 9 True traffic state

To construct the true traffic state, we employ a simple simulation with a 1 s
scanning interval in which each vehicle moves forward based on the speed-spacing
relationships defined by the assumed fundamental diagrams. Figure 9 shows the con-
structed true traffic state, where a queue grows during the first and last 20-min periods
from node N because of the demand exceeds the capacity of the 1.5-km section; how-
ever, the queue decreases for the next 20 min because the demand decreases. The
forward and backward probe vehicles are generated every 10 min, as shown by the
blue and red lines, respectively, in Fig. 9. The backward probe vehicles are assumed
to move at a free flow speed of 60 km/h.
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50 40<=V

30 20<=V<40

10 V<20

V(km/h)

Fig. 10 Estimated traffic states

5.1.2 Estimating Traffic States

Using the proposed method, the traffic state is estimated from the forward and back-
ward probe data. For the VT, a triangular network is constructed. In this network, a
time step dt is equal to 1 s. Figure 10 shows the estimated traffic states, and Fig. 11
shows the relationship between the true and estimated velocities. The result estimated
using only backward probe vehicle data is almost equivalent that estimated using for-
ward and backward probe vehicle data. Both of the results show good agreement with
the true states, especially the locations of the queue tail described by the red dots
are well reproduced. However, the regions in which traffic state can be estimated
are limited. Since the simple simulation and the proposed method employ the same
fundamental diagram and no measurement errors are included in the estimation, the
errors in the estimates arise from the time and space discretization in the VT. An
important conclusion is the traffic state can be reasonably estimated only from the
backward probe data. In previous studies, both forward probe data and traffic detector
data are needed, and the traffic state could not be reproduced in the absence of any
one type of data.

5.2 Validation of Sensitivity of the Estimates

In this section, we examine the sensitivity of the estimates attributed to the variabil-
ities in the input data. In particular, we examine the sensitivity resulting from the
measurement noises of the backward probe vehicle measurements since the traffic
count measurements may contain errors due to sensing technology and occlusions
caused by obstacles on the median and adjacent moving vehicles.

The true sensitivity is created that the boundary cumulative counts measured by
the backward probe vehicles are stochastically fluctuated. Specifically, in Eq. (3),μYi
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Fig. 11 Relationship
between true and estimated
velocities

is assumed as the cumulative counts set in the previous section, and σ 2
Yi
is assumed

the same as μYi . By focusing on the backward probe vehicle measurements, μZi j

and σ 2
Zi j

are assumed zero, implying that the variability due to driving behaviors is
neglected in this examination. By following the stochastic distribution, the simple
simulation based on the velocity-spacing relationship mentioned earlier is repeated
30 times to evaluate the true standard deviations of the cumulative counts.

Figure 12 compares the estimated standard deviations for the Clark approximation
with the true standard deviation. Since the measurement noises on the cumulative
boundary are accumulated, the standard deviation increases with the cumulative
counts, and this natural tendency is observed both in the true and estimated standard
deviations. Furthermore, the standard deviations estimated by the Clark approxima-
tion at the same location and time agree well with the simulated values with the
correlation coefficient of 0.963.

6 Conclusion

This study proposes a method that estimates traffic states using measurements from
a vehicle running on the opposite lane (backward probe measurements) in addition
to conventional probe vehicle data (forward probe measurements) and examines
the sensitivity of the estimates in relation to the variabilities of the input data and
measurements. Assuming that the backward probe vehicle can measure the counts
of passing vehicles running forward, we employ the VT to estimate the traffic states
by utilizing count measurements. This method seems advantageous in that it allows
quick responses to unexpected incidences such as accidents andvehiclemalfunctions.
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(a) True standard deviation

(b) Standard deviation obtained by the Clark approximation

Standard daviation
12 s

9 s<12
6 s< 9
3 s< 6

s< 3

s [veh]

Fig. 12 Standard deviation due to backward probe measurement noises

This is because the backward probe vehicle is expected to observe such incidents
without much delay. In addition, we use the Clark approximation to analytically
examine the sensitivity of the estimates in relation to variabilities of the input data
and measurements.

The validation confirms that the proposed method can estimate traffic states rea-
sonably without using traffic detector data. Furthermore, the Clark approximation
provides the accurate standard deviations of the estimates when the input and mea-
surement data have stochastic noises.

Acknowledgements This research was supported by “Study on probe data utilization method in
traffic control system,” research commissioned by Mitsubishi Electric Co., Ltd.
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Development of a Statistical Model
to Predict Traffic Congestion in Winter
Seasons in Nagaoka, Japan Using
Publicly Available Data

Hiroaki Ikeuchi, Kiichiro Hatoyama, Ryota Kusakabe and Ikumi Kariya

Abstract Since the weather condition can be a cause of serious traffic congestion, it
is necessary to establish a methodology to forecast future traffic congestions caused
by rainfall and snowfall. However, there are few studies with simple methods that
are applicable for practitioners such as road administrators. Therefore, in this paper
we challenged to construct a statistical model to predict locations and levels of
traffic congestion in a city, using only existing data that is open to the public. We
collected hourly precipitation amount, hourly snowfall amount and cumulative snow-
fall amount from the Japan Meteorological Agency as weather observation data and
images of Google Maps as traffic congestion data. As a result of the correlation anal-
ysis, we found that the hourly precipitation amount and the hourly snowfall amount
did not correlate much with the relative congestion level whereas the correlation
between the cumulative snowfall amount and 18-hour snowfall amount was found
to be high. Consequently, a logistic regression analysis was conducted to explain
the relative congestion level at various points on the roads using the 18-h snowfall
amount and the cumulative snowfall amount. As a result, the model demonstrated
good performance to reproduce the occurrence of increase in traffic congestion levels
with >80% hit rates. In future, we would like to improve the present model to fore-
cast potential road congestion based on weather forecast by using highly accurate
weather information and longer term data.
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1 Introduction

1.1 Needs for Traffic Congestion Prediction

In Japan, the areas along the Sea of Japan often suffer from heavy snowfall every
year due to the mountain range and the moist air brought by the northwest seasonal
wind. In these areas, the weather conditions can be a cause of serious traffic con-
gestion particularly in large cities, even those with well-developed road networks.
The major causes include frozen road surfaces, road width reductions due to snow
removal works, poor visibility due to bad weather, etc. In February 2018, in Fukui
and Ishikawa prefectures, more than thousand drivers were stuck overnight in their
vehicles on a national highway due to a rare and heavy snowfall [1]. To avoid such
incidents, it is necessary for these cities to develop a strategy to predict traffic con-
gestion caused by rain and snow. Thus, we attempted to establish a method that
analyzes traffic congestion directly, and consider the applicability for practitioners
such as road and traffic administrators.

1.2 Objective of this Study

Based on the above context, the objective of this study is to develop a simple method
to predict locations and levels of traffic congestion in a city, using only publicly
available data. Specifically, in this research, we attempted to build a statistical model
to explain the relationship between weather performance data and traffic congestion
data as a preparation process for future traffic congestion predictions.

2 Literature Review

2.1 Transportation Engineering Studies

In the field of traffic engineering, there are some related studies that analyzed the
impact of weather conditions on saturation flow rates, vehicular speeds, traffic vol-
umes, and traffic capacities.

Several papers have investigated vehicular speed under various weather condi-
tions. Zhao et al. observed freeway speed in New York in snowy and icy conditions
and developed a regression model [2]. Kyte et al. revealed that free-flow speed of
traffic on American rural interstate freeways is likely to be affected by pavement
conditions, visibility, and wind speeds under poor weather conditions [3]. In Japan,
Terauchi et al. conducted a survey in Fukui prefecture to calculate reduced traffic
speed during snowfall [4]. However, these studies did not deal with traffic congestion
directly.
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Asamer and Van Zuylen measured saturation flow rates through a video survey
at several signalized intersections in Vienna, and found that snow may reduce the
saturation flow [5]. Ivanović and Jović showed the impact of rainfall intensity on
saturation flow rates in Belgrade [6]. Sun et al. focused on saturation flow rates of
left-turn lanes in Shanghai following the same survey method as Ivanović and Jović
and found less significant differences under the condition of light rain [7]. However,
to conduct these studies, it is necessary to perform time-consuming video analyses.

Akin et al.measuredvehicular speed and traffic capacity in Istanbul usingdetectors
and showed that rainfall reduced the average vehicular speed and traffic capacity [8].
Jia et al. also studied the effect of rainfall on traffic flow in Beijing to carry out
microscopic simulation [9]. Agarwal et al. conducted a survey following the same
method as Jia et al. in the northern metropolitan areas of America and found that
speed reduction due to heavy snow was significantly lower than capacity reduction
[10]. These studies indicate that heavy snow, unlike rain, may not reduce vehicular
speed, but may reduce traffic volume itself. However, the observed situations in
these studies are different from the situation of areas receiving heavy snowfall areas
in Japan, where snow might not affect traffic volume. Ibrahim et al. confirmed that
under similar traffic volume conditions, speed and traffic capacity reduce during
heavy snowfall in Ontario [11] and the same phenomenon was observed by Weng et
al. through a case study inBeijing [12].Most of these studies used data fromdetectors;
however, it is difficult to install a number of detectors outside metropolitan areas.

Some studies suggested that traffic congestion may occur because of precipitation
and accumulated snowfall. Chung collected traffic flow data from a vehicle detection
system in Korean freeways and found that rainfall and snowfall increased traffic con-
gestion, whereas extremely heavy snowfall sometimes reduced traffic demand itself
[13]. Lee et al. also attempted to predict traffic congestion using a linear regression
model with weather forecasting factors [14]. Thus, it is safe to say that the number
of studies targeting traffic congestion from a meteorological point of view is limited.

2.2 Recent Technologies

Recently, several studies demonstrated the use of advanced technology to predict traf-
fic conditions using meteorological data. Qiu et al. used a neural network, principal
component analysis, and the precipitation-correction fusion model to predict traffic
volume under rainy conditions [15]. Tselentis et al. attempted to compare statistical
and Bayesian combination models with classical ones to predict short-term traffic
[16]. Furthermore, there are some studies which introduced deep learning method-
ology for short-term traffic flow prediction [17] or modeling with social media data
[18]. However, these studies used complicated models to analyze the relationship
between precipitation, snowfall amount, and traffic congestion levels.
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3 Data

3.1 Target Area

For the target area in this study, we selected the roads situated on the west side of
StationNagaoka of JapanRailways.Amajor reason for this choice is that it frequently
suffers from severe traffic congestion and heavy snowfall.

3.2 Target Period

The target period was 21 December 2016 to 25 January 2017. In this period, a heavy
snowfall event with 80 cm of cumulative snowfall occurred. This snowfall event was
the largest within the target period.

3.3 Weather Observation

Hourly weather observation data can be downloaded as csv files from the website of
the Japan Meteorological Agency [19]. Hourly precipitation, hourly snowfall, and
cumulative snowfall data observed at Nagaoka were obtained. For analyses, we used
the cumulative snowfall over an antecedent of 18 hour because the Niigata Prefecture
provides predictions of snowfall during the coming 18 h twice per day [20].

3.4 Traffic Congestion

Traffic congestion data of public roads were obtained from Google Maps using a
function to display traffic conditions on roads, called ‘Google Traffic’ [21]. This
function enables to display traffic congestion by four different levels. Green and
red indicate fast and slow traffic conditions, respectively. We automatically obtained
images of the traffic congestion maps once per hour by taking screen shots with the
domain and the scale fixed using a shell script.

3.5 Image Analysis of Traffic Congestion

Four traffic congestion levels were digitized from theGoogle Traffic images. First the
RGBvalues corresponding to each congestion level were investigated as summarized
in Table 1. Next, the traffic congestion levels on the Google Traffic images were
determined by referring to the RGB values (Fig. 1). All analyses were conducted
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Table 1 RGB values of 4
traffic congestion levels

Red Green Blue

Level 4 0.620 0.075 0.075

Level 3 0.902 0.000 0.000

Level 2 0.941 0.490 0.008

Level 1 0.518 0.792 0.314

Fig. 1 An example of the digitization of traffic congestion levels from Google Traffic

using Python. Note that we cannot use raw data with regard to traffic volume or
traffic velocity because they are not available.

It is expected that traffic conditions strongly depend on time, i.e., the day of
the week or time in a day. Therefore, to eliminate such temporal effects on traffic
conditions,we calculated the difference in traffic congestion levels between the actual
traffic conditions and the ‘typical’ conditions at the same time and day of the week.
The ‘typical traffic conditions’ can be displayed on Google Traffic at a given time
and day of a week, and we assumed that the typical traffic data reflected the effects of
temporal information on traffic condition. Figure 2 shows an example of this method
at 6 PM on 25 January 2017. Hereinafter we call this difference as the ‘relative traffic
congestion levels’.

4 Correlation Analysis Between Traffic and Weather Data

4.1 Method

We conducted a correlation analysis between the relative traffic congestion levels and
weather data to investigate the impact of weather conditions on traffic congestion.
For each time (hour-long periods from 6 AM to 10 PM) over the target period (from
21 December 2016 to 25 January 2017), we calculated the correlation coefficients
between (a) the number of pixels within the map images of traffic congestion that
have positive values of relative traffic congestion levels, and (b) four types of weather
observations, i.e., hourly precipitation, hourly snowfall, and cumulative snowfall,
over the preceding 18 h, and cumulative snowfall at the time period. Figure 3 shows
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Fig. 2 Illustration of the calculation of the difference in traffic congestion levels between the actual
and typical traffic conditions

Fig. 3 An example of the time series of the number of pixels (y axis) with relative traffic congestion
levels at 6 PM during the target period (x axis). Warm and cool colors indicate positive and negative
values of relative traffic congestion levels. Bar graphs with zero data such as 7 or 19 January indicate
missing data
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an example of the time series of relative traffic congestion levels at 6 PM. Note that
the bar graphs with zero data (i.e., 7 or 19 January) indicate missing data due to
technical errors in retrieving Google Traffic images.

4.2 Result

Figure 4 shows an example of the correlation analysis between the relative traffic
congestion levels and weather observations at 6 PM. In this case, the correlation
coefficients were 0.143 for hourly precipitation, 0.460 for hourly snowfall, 0.604
for cumulative snowfall over the preceding 18 h, and 0.701 for cumulative snowfall;
thus, the latter two show a relatively good positive correlation with relative traffic
congestion levels.

Figure 5 shows the correlation coefficients between the positive relative traf-
fic congestion levels and weather observations for each time from 6 AM to 10
PM calculated over the entire target period. The overall averages of correlation
coefficients for each weather factor were 0.277 for hourly precipitation, 0.170 for
hourly snowfall, 0.488 for 18-h cumulative snowfall, and 0.530 for cumulative snow-
fall, respectively.

Two points can be pointed out from this analysis. First, hourly precipitation and
hourly snowfall have a weak correlation with the increase in traffic congestion,
whereas 18-h cumulative snowfall and cumulative snowfall have a moderate cor-
relation. Therefore, we assumed that these two parameters were the factors which
may determine traffic congestion. Second, even though we subtracted typical traffic
condition to eliminate temporal effects on traffic congestion, there still remains a
certain temporal dependence between the time of a day and correlation between the
weather and traffic congestion. This implies that we should consider the time of day
as a factor to determine traffic congestion as well.

5 Logistic Regression Analysis

5.1 Method

Logistic regression analysis was employed to estimate whether a pixel i shows an
increase in traffic congestion using cumulative and 18-h cumulative snowfall (x1i and
x2i , respectively) and time (x3i ) information. Logistic regression analysis is a method
to develop a statistical model to estimate the probability of occurrence (pi ) of a
certain phenomenon using linear regression by maximum likelihood estimation with
regard to factors that can determine the occurrence of the phenomenon. Thus, logistic
regression analysis can be considered as a proper way to represent the statistical
relationship between snowfall and traffic congestion. In this case, the regression
equation can be described as follows:
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Fig. 4 An example of correlation analysis between relative traffic congestion levels and weather
observation at 6 PM, that is, a hourly precipitation, b hourly snowfall, c cumulative snowfall over
the antecedent 18 h, and d cumulative snowfall



Development of a Statistical Model to Predict Traffic Congestion . . . 273

Fig. 5 Correlation coefficients between the total number of pixels within each map image that
have positive relative traffic congestion levels and the weather observations for each time during
the target period

pi = exp(β0 + β1x1i + β2x2i + β3x3i )

1+ exp(β0 + β1x1i + β2x2i + β3x3i )
(1)

where β j means the parameters to be optimized.
We used a generalized linear model (GLM) in the programming language R. Two

modelswere developed for twodifferent thresholds (1 or 2)with regard to the increase
in relative congestion levels to predict moderate (1) and severe (2) traffic congestion.
First, the relative traffic congestion levels were converted into binary data, where 1
means that the relative traffic congestion level is greater than or equal to the threshold,
whereas 0 means it is not. Next, logistic regression analysis was applied for each
pixel by using the converted binary data and weather observations (Fig. 6). Finally,
by using the coefficients obtained from logistic regression analysis and past weather
observations, the past occurrence of traffic congestion was estimated to validate the
applicability of the statistical model developed here. The probabilities calculated by
the optimized parameters and input variables (i.e., weather observations and time)
were converted to binary data by rounding, and then hit rates were calculated as
percentages of the true prediction for each pixel. Note that the pixels that always
contains values of 0 were excluded from analysis because they do not represent the
traffic conditions.
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Fig. 6 Flowchart of logistic regression analysis

Fig. 7 Histogram of hit rates (%) of predictions for a positive relative traffic congestion level and
b relative traffic congestion level � 2. The red lines indicate the mean values

5.2 Result

Figure 7 shows the histogram of hit rates (%) for all pixels. The mean and median
values of hit rates were 85.231% and 87.136% in the case of a threshold of 1, and
97.216% and 98.285% in the case of a threshold of 2, respectively. These high values
indicate that the statistical model proposed here is valid to predict the occurrence of
traffic congestion due to weather conditions.
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6 Discussion

This study has some limitations. First, this study ignores several factors that can
determine traffic congestion. For example, although snowfall has a significant impact
on the occurrence of traffic congestion as demonstrated in this study, the reason for
traffic congestion is not necessarily the weather conditions. It can be caused by
other factors, such as traffic accidents and road construction or repairs. In addition,
we did not take into account human activities to mitigate the adverse impacts of
snowfall, such as snow shoveling, snow removal, and the operation of snowplows
and snow-melting pipes. Therefore, if such effects become significant to determine
traffic congestion, the statistical model developed in this study may not accurately
predict traffic congestion.

Second, the reliability of the Google Traffic data is an important issue that should
be discussed. Google Traffic displays four levels of traffic congestion, but it does not
provide concrete information about traffic parameters such as traffic speed, volume,
or how to calculate traffic congestion levels. Hence, it is necessary to validate the
accuracy of the Google Traffic data by comparing it with observed traffic congestion
situations. To evaluate the reliability of the Google Traffic data, a potential solution
may be to use ETC2.0 data [22]. It provides probe information obtained via mutual
communication between ETC2.0 devices on cars and roadside devices. Therefore, if
we can collect abundant data from ETC2.0, it may be possible to check whether the
Google Traffic data appropriately captures actual traffic conditions.

In this study, althoughwe obtained ETC2.0 data along theNational Route 8within
the central part of Nagaoka City (Fig. 8), it was difficult to use the data to validate the
Google Traffic data in this study because of a technical issue. According to the ETC
portal, the number of cars which have ETC2.0 is around 3 million throughout Japan,
but only 1,158 in Niigata Prefecture [22]. Owing to this, the data obtained from
ETC2.0 shows an inconsistency in the number of the cars available for observation.
Figure 9 shows that only 5 to 10 cars per hour are detected via ETC2.0 even in

Fig. 8 Road sections where ETC2.0 data were available along the National Route 8
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Fig. 9 Time series of the number of cars detected per hour. Each line indicates one road section

Fig. 10 An example of mean velocity per hour at the outbound road section from 25 to 24 in the
Fig. 8

daytime, while more than 1,000 vehicles per hour pass through this road even in
off-peak hours. When focusing on the hourly average speed of detected vehicles,
it is observed that the calculated average speed shows large variation (Fig. 10). If
the ETC2.0 system becomes more popular than now, this information can provide
a reliable basis to validate the Google Traffic data. Despite these limitations, our
statistical model developed to predict traffic congestion during snowfall is highly
reliable.
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7 Conclusion

In this study, we proposed a simple method to predict traffic congestion caused
by weather conditions using free, publicly-available data. Nagaoka City in Niigata
Prefecture, Japan, was selected as a target region because of the recurrent traffic
congestion induced by heavy snowfall in the winter. Weather observations were
obtained as a csv file, and traffic congestion data were digitized from Google Traffic,
a web page that can demonstrate live and typical traffic congestion levels.We found a
positive correlation between the increase in traffic congestion levels and cumulative
snowfall, and therefore proceeded to use logistic regression analysis to formulate the
relationship between them. Validation of the performance of the developed statistical
model demonstrated that it can predict the occurrence of traffic congestion compared
to typical traffic conditions with a hit rate of greater than 80% on average. This high
hit rate indicates the validity of the model.

Future work that stems from the present study will include the incorporation of
anthropogenic impacts on the relationship between traffic congestion and snowfall
with data of a longer period that includes more snowfall events.
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Collisions for Comfort Intelligence
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Abstract Previous studies about autonomous vehicles only focus on safety and
efficiency, however, it is also necessary to consider passenger comforts inside
autonomous vehicles including autonomous wheelchairs in order to use by a
widespread in the society. Therefore, in this research, we emphasize an importance
of considering passenger comforts in designing a real autonomous navigation for a
concept of comfort intelligence (CI) in future autonomous society. There are many
different factors that reduce passenger anxiety relates to comforts in autonomous sce-
narios. For example, passengers on autonomous vehicles often feel stress by potential
collisions around blind intersections due to lack of information. In contrast to the
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previous method that controls the velocity of vehicles based on the passenger’s vis-
ibility, this paper proposes another reduction method by showing information. In
this research, we examine three types of methods to find the best method for show-
ing information includes a previous method without showing any information, the
method uses a convex mirror sets up at the edge of a blind corner, and other method
uses a tablet device mounted on the vehicle to display texts and play sounds to inform
oncoming moving objects. Experiments are performed with physiological indexes
to 16 participants to verify results. These results showed the convex mirror method
and the tablet device with texts and sounds method reduce passengers stress.

1 Introduction

Growing technologies in autonomous navigation in the state of the art have made
it possible to realize autonomous vehicles in human life [1, 2]. Recently, there are
many different types of autonomous vehicles that are developed depending on sce-
narios, such as high-speed desert driving without manual intervention in DARPA
Grand Challenge [3], autonomous mobilities used in urban area [4], and autonomous
wheelchairs for assisting elderly people [5]. Main purposes of developing these
autonomous vehicles are to reduce traffic accidents and traffic jams caused by human
errors, to walking assist for people, and to improve human comforts [6–8].

Most of the research mainly focuses on safety issue and efficiency problems of
vehicles, however, it is also necessary to consider passenger comforts in autonomous
vehicles for a widespread in society. Therefore, in this work, we emphasize the
importance of considering passenger comforts in an autonomous navigation for a
concept of comfort intelligence (CI) for future autonomous society. The comfort
intelligence for autonomous vehicles defines as the intelligent system that considers
human comforts both inside and outside people of any kinds of autonomous vehicles.

There are already related works about human comfort during navigational tasks
by using autonomous vehicle [9–11]. In contrast to these previous approaches in
stress measurement methods, we use physiological indexes to detect and analyze the
stress level of passengers during navigational tasks to reduce passenger’s anxiety in
autonomous navigation with objective measurements.

In this research, the stress of reducing human comfort that occurred when a pas-
senger predicts potential collisions with oncoming objects in blind spots are targeted
(see Fig. 1). Showing notification with a convex mirror and a tablet device for dis-
playing texts and playing sounds of information about blind spots are proposed.
Compared with the previous scenario of no warning notification, especially inside
a building environment. Verification experiment is held with physiological indexes
(the heart rate sensor and the galvanic skin response) to analyze the effectiveness of
methods.

The rest of the paper is organized as follows: Sect. 2 presents related works
of autonomous vehicles considering human comfort, and stress measurement by
using physiological sensors. Section 3 describes two proposed methods to show
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Pedestrian

Autonomous
Wheelchair

People may
collide with me !

Somebody might
come over ?

Fig. 1 Scenario for riding vehicles when passengers feel stress from collision prediction

information of the blind spots while riding the autonomous wheelchair, Sect. 4
describes an experimental procedure and results including hypothesis and implemen-
tation of the autonomous wheelchair and, finally Sects. 5 and 6 present discussions
and conclusions respectively.

2 Related Works

2.1 Comfort Intelligence for Autonomous Vehicles

For the widespread in the human society, it is important to consider human comfort
in autonomous vehicles of the concept of comfort intelligence for future autonomous
society. In this paper, comfort intelligence (CI) is defined as the system that considers
passenger comfort inside autonomous vehicles. In the idea of CI contains both a
negative state to a positive state of passengers’ feeling inside vehicles.

Doi says that there are 3 levels of human feeling state when they meet with new
tools or devices in the field of human interface [12]. This concept idea is also the
same as riding autonomous vehicles for the first time (see Fig. 2). State 1 is the
naturality that passenger want to use its vehicles as the assisted walking tools as
the ordinary use case. This is the first goal for autonomous vehicles to achieve for
widespread use in the human society. State 2 is a feeling of anxiety (or fears) of riding
autonomous vehicles. This is the important and most difficult parts in psychological
and physiological for passengers tomeet with new vehicles for the first time. Doi also
explained that when people meet with new devices, they tend to get anxiety about
using it. This anxiety increases if people do not understand its devices. State 3 is the
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Fig. 2 The concept idea of
human interface with a
different state from anxiety
to entertainment

entertainment (or having fun) when passengers get used to riding with autonomous
vehicles. Many passengers want to spend their time doing work or having fun with
entertainment inside vehicles.

Main anxiety factor is motion sickness in autonomous vehicles.Michael et al. [13]
suggest that it is necessary to focus more on motion sickness in autonomous vehicles
since therewill bemore high possibility for passengers to getmotion sickness because
of passengers have more time for entertainments after they are released from driving.

Therefore, some research mentions the importance of reducing motion sickness
when the vehicle becomes autonomous. In the autonomous environment, it is more
high possibility to become car sickness since passenger has hardly recognized the
direction of acceleration effects [14]. Moreover, many car accessory companies try
to make newHUD for navigation with AR and VR in the future autonomous vehicles
[15–17]. Isobe [18]mentions the existence of newkinds ofmotion sicknesswhenpeo-
ple tend to ride autonomous vehicles from these technological trends. That is mixed
with car sickness and VR sickness called Autonomous Vehicles Motion Sickness
(AVMS). In that research, the existence of AVMS is explained through experiments
by comparing different types of environments, car sickness, autonomous vehicle
motion sickness, and VR sickness environment.

There is also research about motion sickness reduction in future autonomous
vehicles. Wada [19] propose an algorithm to measure motion sickness based on
vehicles’ behavior parameters. In that research state that motion sickness reduction
method is also important for passengers’ comfort in future autonomous vehicles.
Sawabe et al. [20] propose the solution to reduce motion sickness in autonomous
vehicles by using vection illusions to induce passengers’ body movements to let
sensory organs to know the behavior of vehicles and its acceleration.
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Fig. 3 Concept idea of
comfort intelligence (CI)
with changing passengers
feeling in autonomous
vehicles

Anothermain anxiety factor is stress in autonomous vehicles.Mohamed et al. [21]
summarize recent researches relates to autonomous vehicles. It states the importance
of stress reduction for passenger comforts in autonomous situations.

Ota et al. [22] classify stressors of passengers bymeasuring physiological indexes
while they are in a semiautonomous driving situation, and defined these kinds of stress
on autonomous vehicles as “Autonomous Vehicle Stress (AVS)”. From experimental
result, the classification table of stressors and solutions to reduce these stress are
summarized. In the table, control vehicles’ behavior and show information are the
effective solutions to be adequate to reduce stress in autonomous vehicles.

In this research, the stress factor is focused more since more possibility to feel
anxiety when they ride autonomous vehicles at first time (see Fig. 3).

2.2 Stress Reduction Method by Controlling Vehicle Behavior

There are previous studies related to control vehicles. Gulati et al. [23] propose
and demonstrate the concept of high-performance control for a graceful motion of
an intelligent wheelchair. González et al. [24] introduces the continuous curvature
path planning algorithm that can avoid obstacles. The previous study related to the
human comfort of reducing stress by controlling vehicle,Morales et al. [25] evaluated
the passenger’s stress of riding an autonomous wheelchair from the static environ-
ment. In this work, the relationship between the visibility of the environment and
the stress is evaluated by using laser range-finder to collect 3D information of the
static environment and use this information to estimate the visibility of passenger.
Moreover, Nomura et al. [26] proposed the path planning algorithms for reducing the
stress of passengers on autonomous wheelchairs in static environments. These two
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types of research mainly focus on the stress caused by static environments. Further-
more, Sawabe et al. [27] proposed a method for velocity control of the autonomous
wheelchair based on the concept of “Behaviour Dependent Observability (BDO)” to
reduce stress from collision prediction in blind regions. By using BDO, the velocity
of the autonomous wheelchair is computed so that passengers feel comfortable. The
approach is to use the method of controlling vehicle-based on passengers’ visibility
to reduce predicted stress.

2.3 Stress Reduction Method by Showing Information

There are already previous works related to stress reduction by showing information.
Hashimoto et al. address stress reduction by showing information about the behav-
ior of the autonomous wheelchair to the passenger [28]. This work evaluates the
relationship between stimulus intensity (strong or week) or duration of stress factor
(long or short) and physiological indexes by analyzing reactions to each physiolog-
ical indexes of different kinds of stress events such as sudden accelerations, jerking
movements and passing too close to walls. Moreover, it demonstrates that stress is
reduced by showing the behavior of the autonomous wheelchair to the passenger.

Sasai et al. [29] propose a system to reduce stress by using augmented reality
to show the blind spot of its vehicle with using physiological indexes for stress
measurements. In this work, the see-through image with AR to show the relationship
between the tires and the position of the road directly for stress reduction from
colliding prediction with static environments. This research targets the reduction of
stress from collision prediction with other dynamic objects in blind spots, and not
many studies have not targeted yet.

Generally, autonomouswheelchairs enter corners with suitable velocity, only con-
sidering the efficiency of movement, but without visual information. In this case, the
stress by predicting the crossing collision with other dynamic objects because the
passenger will not be able to see what will happen after entering the blind corner due
to the lack of information. Therefore, in this research, we propose methods to show
information with the convex mirror and the tablet device to display texts and play
sounds.

Weuse the tablet device displaying texts and playing sounds about coming objects.
The approach is compared towards a static convex mirror that is normally used in
blind environments in normal road situations.Moreover, verification experiments are
held to validate the efficiency of showing informationmethods by using physiological
indexes.
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2.4 Physiological Indexes for Stress Monitoring

This section explains objective measurements for related researches by using phys-
iological indexes for stress measurements. There are many ways to measure human
stress, however, in this research, the heart rate sensor of LF/HF value and the galvanic
skin response for sweat value is focused more for riding autonomous vehicles.

2.4.1 Heart Rate (HR)

The analysis of heart rate (HR) data for stress measurement is a well known in
physiological indexes [30, 31]. In this research, HR information is measured with
a thoracic HR band and an electrocardiograph circuit (Fig. 4 left). Then, to evaluate
the stress level, the ratio LF/HF is used.

The LF/HF value is the value that is computed from the ratio of LF: Low Fre-
quency, 0.05−0.15 Hz to HF: High Frequency, 0.15−0.40 Hz by analyzing the
frequency of the heart rate data. To compute a value on whether a person is stressed
or not, a comparison between a few seconds before and after the LF/HF rate is done.

2.4.2 Galvanic Skin Response (GSR)

The analysis of the galvanic skin response (GSR) for stress measurement is well
known and have been used in main previous works. Many cognitive psychology
studies show that changes in skin response are linked to psychological processes
such as emotion, stress and pain [32, 33].

Passengers use terminals in two of his fingers to measure the electric value of
personal skin conductance (Fig. 4 right). In this research, we use the eSense Skin
Response GSR sensor byMindfield Biosystems Inc. For passenger stress evaluation,
we analyze the variation of GSR rate in time series. To compute a value on whether
a person is stressed or not, an analyzing the change of GSR rate, if it is rapidly
changing the person get stress from that event.

Heart Rate Sensor GSR Sensor Stimulus intensity
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(Heart Rate Sensor)
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Fig. 4 Physiological indexes for measuring stress. The HR band and an electrocardiograph circuit
(left), the GSR sensor (middle), and the classification result (right) [28]
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2.4.3 Stress Measurements for Autonomous Vehicles with Physiological
Indexes

There is previous research to measure the mental stress of the passenger who drives
the autonomous wheelchair by using HR and GSR [28]. In this previous work, dif-
ferent behavior of autonomous wheelchair and the influence of the stress can be
classified based on physiological indexes. As the result, the stress can be classified
as the stimulus intensity (strong or weak) and the duration (long or short) of events
while moving. Evidence regarding stimulus intensity and duration are shown on
experimental results of Sect. 4. If the event has long stimulus, LF/HF ratio can detect
the stimulus, and if the event has strong short stimulus, GSR is more appropriate to
detect it.

In this research, stress comes from collision prediction that is weak stimulus
intensity and long duration is targeted, and it can detect by using the heart rate
sensors (see Fig. 4 in the right).

3 Reducing Stress by Showing Information

There are already studies for stress reduction by showing information of vehicles’
behavior or surrounded static environments in related works (Sect. 2). In contrast,
we propose a method with visual and sound effects in order to reduce stress caused
by collision predictions from dynamic objects in blind spots. In the experiment, we
test 3 methods to verify effects. First, autonomous vehicles without showing any
information to the passenger. Second, a static convex mirror that normally sets at
the edge of blind corners in outside situations is used. Third, a visual and a sound
notification from a tablet device is used. Following paragraphs explain the convex
mirror method and tablet device method.

3.1 Showing Blind Spots Information with the Static Convex
Mirror Set in the Environment

The use of static convex mirrors is common in street traffic outside environment.
Generally, in-car driving roadswith blind spots, there are convexmirrors near corners
to show information about blind spots for the safety and human comfort [34]. The
driver can see blind information before turning corners by using convex mirrors. By
being aware of such information, stress from collision prediction also decrease. In
this research, the convex mirror called “Square Indoor Mirror: View-mirror” by the
NAC group Co., Ltd. is used to show information. The specification of the convex
mirror is shown in Table 1 and the image is shown in Fig. 5.
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Table 1 Specifications of the
convex mirror

Size [mm] H420 * W620 * D320

Radius [mm] R1500

Material Methacrylic resin

Fig. 5 The convex mirror
used to show information in
a blind corner

Dynamic objects

The convex mirror

Fig. 6 The procedure of
displaying texts and playing
sounds

82%iPad

SAFE

82%iPad

OBJECT

82%iPad

82%iPad

Normal condition (Black screen)

Normal condition (Black screen)

When the no object is coming. When the object is coming.

After the vehicle pass the blind corner.

Before the vehicle pass the blind corner.
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Table 2 Display texts and play sounds from the tablet device

Object Text Sound

Yes Object Object is coming

No Safe It is safe

In order to reduce stress from collision prediction, showing information about
blind spots by using a tablet device for displaying texts and playing sounds is pro-
posed. In this research, the iPad is used to for notifications. Figure 6 shows the
procedure of displaying text and playing sounds in the iPad screen. The sound is
created by using the speech synthesis system called the rospeex, and implement in
the application for iOS by using the Swift programming language. The rospeex is a
cloud-based multilingual communication package for ROS, and it can easily support
speech recognition and speech synthesizes in different languages [35].

The content of displaying texts and playing sounds notification is shown in Table 2
depends on situations. The normal condition when the autonomous wheelchair is
moving, there is no contents and no sound from the tablet device, however, if the
vehicle close to the blind spot, the device displays texts and play sounds depending on
two situations. One is when the dynamic object is not coming, the text shows “SAFE”
in the screen and make sound saying “It is safe”, and another is when the dynamic
object is coming from the corner, the tablet device display the text “OBJECT”, and
make sound saying “Object is coming”.

4 Experimental Procedure and Results

4.1 Hypothesis

The purpose of this research is to find the best method for showing information to
reduce stress on autonomous vehicles, compared with previous ways of showing no
information, use of the convex mirrors, and use of the tablet devices with text and
sound notification. The hypothesis of the experiment is that uses the convex mirror,
and uses the tablet device by displaying texts and playing sounds notification will
reduce passengers potential collision stress compared with showing no information
no_Info. This is, by checking at LF/HF values of the same passenger between two
intervals to analyze stress level. The convexmirror and the tablet devicemethods will
have the LF/HF values decreases or stays constants compared to the conventional
method of showing no information. In the experiment, the autonomous wheelchair
travels the routine stated path which includes the blind spots, while measuring the
weak and long stress caused by collision prediction with other objects. Table3 shows
the hypothesis of the experiment with different methods of showing information.
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Table 3 Condition and hypothesis of the experiment

No_Info Info A Info B

Showing information – Mirror Text and Sound

LF/HF value Increase Decrease or constant Decrease or constant

GSR Value No change No change No change

PC & Sensors

Autonomous Wheelchair

(a) Scanning 
Range Finder

(b) Emergency 
Stops Button

(c) Wii Remote
Controller

(d) Laptop PC

(e) Wheelchair 
Control System

(f) Motor Driver

(g) Motor + Encoder

Fig. 7 The autonomous wheelchair used in the experiment (left) and constructed system (right)

4.2 Implementation

In the implementation, the maximum linear velocity vmax is fed to the motion planner
implemented as a ROS node [11]. The motion planner operates as a trajectory tracker
which computes vehicle’s angular (w) velocity of the vehicle to follow a given
global path at maximum linear velocity (vmax). The source code of the trajectory
tracker is implemented in ROS framework available at http://openspur.org/atsushi
.w/packages/.

The system of the autonomouswheelchair is composed of two parts (see in Fig. 7).
First parts, PC & sensors which include the laptop PC, a scanning rangefinder, an
emergency stops button for the passenger, a wireless Bluetooth controller used as
the emergency button for the experiment observer. Second parts, the whole hardware
wheelchair which includes a wheelchair control system, a motor driver, and motors
with encoders.

http://openspur.org/atsushi.w/packages/
http://openspur.org/atsushi.w/packages/
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Fig. 8 Experimental
environments with intervals
and the planning path
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4.3 Experimental Procedure

In the verification experiment, we called 16 Japanese people at the age of about 20
years old to ride the autonomous wheelchair in an indoor path includes the blind
spot. In this experiment, the maximum velocity of the autonomous wheelchair is 1.2
m/sec as the default velocity, and the velocity of other dynamic objects is considered
as 1.2 m/sec which is typical fast velocity enough for human walking [36]. Left
side of Fig. 8 shows the top view of the experimental environment. For objective
evaluation, physiological indexes, such as HR and GSR are used to evaluate stress.
In this research, the stress from the collision prediction is classified as the weak-long
stress. The stress can be verified by the changing of LF/HF value in two different
intervals.

To evaluate stress, we subtract the average value of LF/HF at the interval of
straight path (which is in the interval_1) and before entering the corner (which is in
the interval_2) as shown in Fig. 8. There are two different intervals: the interval_1 is
the basic straight path where the passenger visibility is guaranteed, and the interval_2
contains “L” intersection with the blind spot. The interval line between the interval_1
and the interval_2 is decided with the timing of showing information.

Three different methods were compared: no_Info of the conventional method,
Info A of with using the convex mirror method, and Info B of using the tablet device
with display texts and play sounds notification.

For the experiment, we prepared three different types of runs.

– Test runs:we allow the participant to get accustomed to the autonomouswheelchair
and its driving. Basically, this run is held in the same environment (same path and
same velocity) as the experimental run.
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– Dummy runs: these runs are to make the participant aware that there might be
people walking in the blind spots in the environment. We asked people who helped
us to walk near the autonomous wheelchair when it turns the blind corner.

– Experimental runs: these runs are used for the evaluation of stress level. No_Info
of not showing information, InfoAusing the convexmirror, and InfoB of using the
tablet device to display texts and play sounds is conducted. No moving obstacles
were present in these experimental runs.

The procedure of this experiment is as follows:

1. Each participant has 15 runs in total.
2. First, 3 test runs are performed. No_Info, Info A (mirror), and Info B (text and

sound) with the dummy runs.
3. Then 12 experimental runs are done.

a. 3 dummy runs carried out.
b. 9 experimental runs are evaluated.
c. Conditions were randomized to avoid ordering effects

4. Finally, an interview is held at the end of each experiment.

From preliminary experimental results between no_Info and Info A, Info B, we
know that there are few passengers who do not predict collisions with possible
moving objects in blind spots. This causes that LF/HF ratio value of the Infomethod
is bigger in the interval 2 with the blind spots corner compared with the interval 1 in
the straight corridor. This suggests the fact that stress from the collision prediction is
smaller than the other factors (e.g. wheelchair velocity). For these reasons the data
of passengers who do not predict collisions are excluded from the evaluation data to
evaluate the stress (in this case 8 participants’ data are excluded in the result).

4.4 Evaluation Results

In the experiment, evaluation of the stress is conducted to 8 participants looking at the
change of the average value of LF/HF (No predicting data are excluded). Figure 9
is the result of the subtracted value of the average LF/HF between interval 1 (in
the straight line area) and interval 2 (before entering the blind corner area) for all
8 passengers. The figure shows the result of the showing no information no_Info,
the convex mirror Info A, and the tablet device Info B. The horizontal axis shows
the method of showing information, in order of no_Info, Info A, and Info B. The
vertical axis shows the subtraction of the average LF/HF in two intervals with 0.2
scale intervals. The average LF/HF value for all passengers for no_Info is 0.041, Info
A is −0.152, and Info B is 0.003.

Moreover, the t − test is used to validate the significance of the result of each
LF/HF. In the graph, the significance is shown as the black line on the top of the bar.
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Fig. 9 The average LF/HF
values for all passengers
with each method
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T − test mainly use p− value to validate significance. If the p− value is smaller
than 0.05 the result is significant, smaller than 0.1 and bigger than 0.05 the result is
marginally significant and bigger than 0.1 the result is not significant.

5 Discussion

From experimental results from Fig. 9, the stress from collision prediction with mov-
ing obstacles was reduced with the convex mirror and the tablet device with display
texts and play sounds as the LF/HF value decreased between intervals 1 and 2, com-
paredwith a no_Info run.Moreover, data suggests that the convexmirror is effectively
working to reduce targeted stress for passengers on the autonomous wheelchair. In
addition, the t − test shows the result of using the mirror to be of significance (from
p− value in the Table 4). However, the using the tablet device with texts and sounds
show that there is no significant difference.

The main reason for this is because of the lack of trust in the tablet device by
displaying texts and playing sounds, given that it does not show the moving objects.
The mirror shows moving obstacles at blind spots. It seems that the mirror is more
insightful. Another reason might be the lack of the number of participants that influ-
ence the verification results (Fig. 9).

Furthermore, from the interview result, in the mirror method experiment, partici-
pants have still anxiety from the crossing collision that comes from the area outside
of the mirror since the mirror has the limitation of displaying the whole environmen-

Table 4 t − test statistical significance values for each condition

t − test No:mirror No:text and sound

p− value 0.011 0.378

Significance Significant Not significant
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tal view. In the tablet device with texts and sounds method experiment, participants
tend to trust the device after they have enough experience of using the tablet device
to predict the objects from the blind corner.

6 Conclusions

This paper proposes an importance of considering human comforts in the autonomous
vehicle in the concept of comfort intelligence (CI), and to presents a new approach
for human passenger anxiety reduction while riding autonomous wheelchairs due
to collision prediction stress in blind corners by showing information. Experimental
results suggest that the use of the convex mirror and displaying texts and playing
sounds reduce the collision prediction stress from occurred regions. Physiological
indexes with t − test are used to evaluate the result of LF/HF. From the result, the
convex mirror method shows the significant and effective for most of the passengers.
Moreover, data from participant interviews suggest that suitable method of showing
information is depends on the passenger characteristics.

As future work, a verification with the larger number of subjects is needed in
different types of blind spots to verify the effectiveness of these approaches. In
addition, more variety of approaches to show information such as using a static
camera to display blind spots or to use argument reality to see through the blind
corner have to be tested for stress reduction.
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Part III
Next-Generation Mobility



Exploring System Characteristics
of Autonomous Mobility On-Demand
Systems Under Varying Travel Demand
Patterns

Farid Javanshour, Hussein Dia and Gordon Duncan

Abstract Shared Autonomous Mobility on-Demand (AMoD) systems are pre-
scribed by many as a solution to tackle congestion. In these systems, customers are
serviced on demand by a fleet of shared Autonomous Vehicles (AV). The main aim
of this novel mobility system is meeting travel aspirations of people while reducing
the number of passenger cars on roads. Our study explores the relationship between
fleet size and induced Vehicle-Kilometres Travelled (VKT) in AMoD systems in
the context of a case study in Melbourne, Australia. To achieve this, an agent based
simulation model was developed to investigate this relationship through scenario
analysis. Our results show that fleets of on-demand shared AVs have the potential
to reduce the number of vehicles by 79% on our roads. These systems, however,
lead to 61% more VKT within the transport network. This finding indicates that the
vast majority of literature is overoptimistic about the potential of AMoD systems
for mitigating congestion. This paper also reports on an investigation into the effects
of travel demand pattern on the performance of these systems, and shows that the
impact of this phenomenon on their efficiency is not trivial. Further, our simulation
results reveal a quadratic relationship between AMoD fleet size and induced VKT
in the system, which holds for all travel demand patterns.
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1 Introduction

Urban mobility suffers from various problems such as congestion, road trauma, and
emissions. This issue becomes even more serious for large and capital cities, which
are considered the best place to thrive by members of the public. Undoubtedly, our
cities would fail to deliver the prosperity people expect as long as urban arterials
are clogged by private vehicles, seeking the best route to their desired destinations.
Hence, providing urban environments with an efficient and sustainable transport
system remains critical [22].

Public transport is one of the most sustainable transport solutions to the current
mobility challenges. These systems, however, are not always successful in encourag-
ing people to relinquish their personally owned vehicles mainly because they often
lack the comfort and privacy one could find in private cars. Their high construc-
tion costs, especially for underground metro lines is another matter that discourages
authorities from a vast deployment of mass transit systems.

All these issues have prompted experts and city councils to find an alternative
to mass transit, which is not only a more cost-effective system to operate but also
appealing to private vehicle users.

Autonomous Mobility on-Demand (AMoD) systems have recently been at the
centre of attention as the key solution to the current urban transport problems [7,
23, 24, 31]. AMoD systems are made up of a fleet of shared Autonomous Vehicles
(AVs) that could provide their customers with almost the same degree of comfort
and privacy. Given in these shared systems travelers only purchase the mobility as
a service whenever needed, the overall number of vehicles within the city declines
dramatically.

Shared AMoD systems, however, could induce more Vehicle-Kilometres Trav-
elled (VKT) in the network due to additional empty travels that would be undertaken
by AVs to pick-up customers. The major part of the current literature suggest very
little amounts of empty VKT (eVKT), which is contradictory to our findings.

In this paper, we will discuss the possible reasons for these discrepancies, and
explore the relationship between AMoD fleet size and induced VKT more rigor-
ously using a Melbourne case study. Further, we have proposed a new measure for
assessing the performance of AMoD systems, called “travel demand pattern”. Our
investigations show that thismeasure could have a significant impact on the efficiency
of AMoD systems.

The remainder of this paper is organized as follows. Section 2 provides a review
of the current literature on AMoD systems and identifies their drawbacks. We have
described ourmethodology, in Sect. 3, and explained the study area and travel demand
in Sect. 4. Sections 5 and 6 deals with the simulation framework, and results respec-
tively. Section 7 looks into how travel demand pattern could affect the efficacy of
AMoD systems and whereby VKT. Section 8 outlines some policy insights based on
the findings of this paper. Finally, Sect. 9 presents the conclusions of the study and
puts forward a few research directions for the future studies.
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2 Related Work

The current literature on AMoD systems envisage a wide range of implications as a
result of deploying these newmobility means. Different articles have investigated the
potential impacts of AMoD systems from various perspectives such as their effect
on road capacity, travel behaviour, travel cost or environmental issues [9, 27].

Our study would investigate transport network-impacts of AMoD systems using
four performance measures: 1. fleet size, 2. VKT, 3. customer waiting times, 4.
trip success-rate. The available studies that have explored the AMoD systems with
almost the same measures of this research could be categorised into two groups
namely, analytical models, and simulation models.

Analytical models, most of which are based upon the method proposed by James
R. Jackson in 1957 [21], utilise mathematical techniques to model transport net-
works. The main drawback of analytical models is their reliance on quite unrealistic
assumptions such as disregarding the effects of congestion in the network. Although
using such models could have been justifiable back in time when powerful comput-
ers did not exist, deploying them for answering today’s transport questions does not
make sense.

One of the analytical models was developed for Singapore [30] in which
researchers showed a fleet of AMoD system could meet the same travel demand
as today using only a third of the current number of passenger vehicles. Another
analytical model [32] also suggests that an AMoD system could meet the current
taxi demand in Manhattan using only 70% of the current New York taxi fleet.

A recent study published in Nature [31] deploys an analytical approach to explore
its AMoD scenarios. The model uses a travel demand consisting of 150 million trips
undertaken in New York City over the calendar year of 2011. It has also utilised
historical data to estimate travel times between the origins and destinations. The
results of this research suggest a 30% reduction in fleet size compared to the current
taxi fleet in New York City.

All of these models, however, have overlooked the effects of AMoD systems on
VKT. Further, two of them [30, 32] have assumed Euclidean distances between their
origins and destinations rather than utilising the real road network, which ultimately
lead to less realism.

There are also many simulation models in the literature, which have suggested
AMoDsystems couldmeet the current demandusingmuch fewer numbers of vehicles
than that of today at the expense of an increase in VKT.

Many studies suggest very little amounts for the potential increase in VKT that
ranges from 6 to 14% [4, 6, 10, 16, 17, 26]. The Stockholm study [8] also predicts a
24% increase in VKT when AMoD systems are operational. However, studies such
as [20, 25] suggest AMoD studies could translate into high induced VKT in the
system.

Some other simulation models also exist [1, 29] that although have showed the
potential impact of AMoD services on reducing the current private vehicle fleet size,
they have not reported on the amount of increase inVKTdue to use of shared systems.
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MATSim is the main package that has been used in many of the reviewed studies.
MATSim is an agent-based traffic simulation tool tailored for large-scale scenarios
[19]. In MATSim, traffic flow is represented at a mesoscopic level that disregards the
interactions between vehicles. Further, simulatingmovement of emptyAVs travelling
to pick-up their customers is not possible. Thus, the studies, which has deployed
MATSim as their modelling platform, have only estimated the eVKT based on the
Euclidean distances between origins and destinations rather than simulating them on
the real network.

Apart from the limitations, the open access nature of the MATSim has provided
a good opportunity for the researchers and experts across the world to enhance the
functionalities of this software through developing new modules and sharing them
with other MATSim users [3, 4, 5, 14, 18].

Our research, which is an extension of the work reported in [11] aims at exploring
the relationship between AMoD fleet size and induced VKT through a more metic-
ulous model compared to other studies in order to find the possible causes for the
aforementioned discrepancies among reported VKTs in the literature.

3 Methodology

An agent-based traffic simulation package, called Commuter [2], has been utilised
as the modelling tool for this research. Commuter uses a microscopic traffic flow
model, meaning the interactions between vehicles are taken into account. It uses three
well-known car-following and lane-changing models namely, Gipps, Wiedemann,
and Fritszche (used in this study). Users can also define their own car-following
algorithms using the tool’s Application Programming Interface (API) [2, 12, 13].

In Commuter, each traveller and vehicle is considered an agent, and any infor-
mation related to it is recorded over the course of the simulation. In this program,
simulating the movement of empty AVs on the real network is also possible as
opposed to the other models appraised in Sect. 2. Travel demand in Commuter is
defined to themodel through amatrix similar to other simulation tools such as Vissim
and Aimsun.

Due to spatiotemporal characteristics of travel demand, AMoD systems are liable
to become imbalanced in terms of vehicle availability within the network. In this
study, a real time optimum rebalancing model developed by [28] has been imple-
mented. This algorithm is responsible for sending idle AVs to service customers in
areas where no AV exists so that the total induced eVKT remains minimum in the
system. In other words, whenever rebalancing algorithm is invoked, it distributes
idle vehicles within the network such that system reaches again to a stable condition
without the need to scaling up the fleet size. To date, this algorithm has only been
tested in Matlab, which is a low fidelity simulation tool.

In order to embed this rebalancing model into Commuter, a code was written in
Java, and installed in the model as a new plugin. Once the simulation is run, at the
end of each specific time-step (e.g. each 5 min), an optimal Linear Program (LP) is
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solved by the simplex method based on the current information the model receives
from the network, and sends idle AVs from where they are accumulated to where
they are needed. This time-step will be referred to as Optimisation Time-Step (OTS)
throughout the paper. In other words, OTS is the amount of time the fleet operator
has to wait before rebalances the AVs. In fact, the optimisation process minimises
the total induced eVKT within the network.

Note, although the travel demand has already been imported to the model, the
rebalancing algorithm takes no account of that and distributes the idle AVs without
any a priori information. That is to say, the travel demand is assumed unknown to
the fleet operator in this study.

Let vi(t) be the total number of vehicles available at station i. Now, if sta-
tion i has ci(t) customers, then the excess vehicles at station i is vexcessi (t) =
vi (t) − ci (t). These are the vehicles that station i has currently available to send
to other stations in need. Thus, the total number of excess vehicles in the system is∑

i v
excess
i (t) = V − ∑

i ci (t). Note that by definition,
∑

i vi (t) = V . At the end of
a time-step, the excess vehicles will be sent by solving for the objective function (1).
The objective function represents minimisation of the total travel time experienced
by unoccupied AVs, which will ultimately result in minimum eVKT in the system.

min (eVKT) = min
∑

i, j
Ti j numi j (1)

Subject to,

vexcessi (t) +
∑

j �=i
(num ji − numi j ) ≥ vdi (t) numi j ∈ N ∀i, j ∈ N , i �= j (2)

where,
numi j : number of rebalancing vehicles from station i to station j (numi j is reverse

for num ji )
Ti j : travel time from station i to station j
vdi (t): desired number of vehicles at station i at time t following rebalancing
vexcessi (t): excess vehicles at station i at time t.

For this study, vdi (t) is assumed zero, whichmeans that at the time of optimisation,
AMoD stands with an excess number of vehicles would send all their idle vehicles
upon request, and stands with a deficit number of vehicles would receive as many
vehicles as pick-up requests are logged at those AMoD stands. In other words, if vdi
(t)were assumed one for a sender stand, it would send all its idle vehicles except one
vehicle, which will remain at the AMoD stand. Similarly, if vdi (t) is assumed one for
a receiver stand, it would receive as many vehicles as it needs plus one more vehicle.

It is obvious that the proper determination of vdi (t) could only happen when
demand is certain, which is difficult to predict. For example, if it is known that there
is an upcoming demand at a station (say one person will come in 2 minute-time), the
system will keep one idle vehicle to service this forthcoming request. Similarly, this
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pre-emptive action could apply to receiver AMoD stands. Note that investigating the
optimum approaches of determining vdi (t) is out of the scope of this paper.

If constraint (2) is rewritten considering that vdi (t) is zero, and v
excess
i (t) = vi (t)−

ci (t), constraint (3) becomes:

∑

j �=i
(num ji − numi j ) ≥ ci (t) − vi (t) numi j ∈ N ∀i, j ∈ N , i �= j (3)

4 Study Area and Travel Demand

Part of Melbourne with an area around 88.75 km2 (Fig. 1), which features 95 sig-
nalised intersections was chosen as the case study for this research. Travel demand
is imported into the model through centroids located at the centre of blocks shown
in Fig. 1, whose sides range from 200 to 700 M across the whole study area. These
centroids will be referred to as Origins and Destinations (ODs) in the current paper.
In fact, ODs are the places where trips originate or end during the simulation period.
In total, the study area consists of 53 ODs.

A hypothetical travel demand, constituted of 2000 trip requests have been
employed in this study. All trips happen within the study area, meaning both trip
origins and destinations are located inside the boundaries shown in Fig. 1. Further,
it is assumed that the central parts of the study area attract more trips than the other
regions. In other words, central parts of the city are more attractive than other areas,
and as a result receive more travel.

No through traffic has been considered in the modelling environment, and the
simulation is conducted only for the morning peak (07:00–09:00 am).

5 Simulation Framework

In the present model, first, a Base Case (BC) scenario that represents the current
condition in which all travellers use their own private vehicles to arrive in the desired
destinations would be considered. The BC scenario would be followed by several
AMoD scenarios in order to explore the potential impacts of these systems on the
current situation. It is worth noting that, calibration and validation of these scenarios
is not feasible given AMoD systems are not operational yet.

For this study, a station-based AMoD system has been configured so that there
is an AMoD stand at each centroid (Fig. 1), where customers can be picked-up or
dropped-off by the AVs. In other words, in this system, travellers would have to walk
from their residences to these stations to be able to use the AMoD service provided.

In this paper, we have assumed that demand is uncertain to the fleet operator and
vehicle rebalancing is performed without any priori information. As a result, the
initial number of AVs would be distributed equally between different stations within
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Fig. 1 The study area and spatial distribution of ODs within that

the study area. Further, it is assumed that trips are one-way travels among origins
and destinations. Note that for the all AMoD scenarios, OTS would always be set to
5 min.

When customers enter any station if no AV is available, they would wait up to
15 min. Travellers would leave the station if no AV were found within 15 min. In the
current modelling framework in two conditions, a customer could receive an AV:

1. There is an occupied AV on the way to the station where the customer is waiting.
In this case, the AV can pick-up the waiting customer after having its on-board
passenger dropped-off.
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Fig. 2 Amount of increase in VKT for different AMoD fleet sizes

2. Otherwise, the customer should wait until the next rebalancing process is per-
formed. It means, in themeantime, noAVwill be assigned from the neighbouring
stations to service the waiting customer.

In this paper, no ride-sharing has beenmodelled including car-pooling or dynamic
ride sharing such as the one discussed in [15]. In other words, in this study, theAMoD
scenarios represent car-sharing systems in which each AV serves only one traveller
at a time. These travellers are the ones who used to drive their own vehicles in the
BC scenario.

For the AMoD scenarios, we deployed eight different fleet sizes ranging from 424
to 1855 AVs. All fleet sizes are shown in Fig. 2. The minimum fleet size was selected
so that all the travel requests were met for the OTS of 5 min. That is to say, through
simulation, different fleet sizes were examined and finally it became clear that 424
AVs is the smallest fleet size that could meet the whole demand. Afterwards, the
fleet size was gradually scaled up such that we could track the general change in the
performance of the system.

Note, the fleet sizesmust be chosen such that the equal distribution ofAVs between
53AMoD stations is possible. For instance, when fleet size is 848, each stationwould
have 16 vehicles (i.e. 848/53 = 16) at the start of the simulation.

6 Simulation Results

This section reports on the simulation outputs of nine scenarios conducted in this
study. The obtained results suggest that all the AMoD fleet sizes successfully met
the whole travel demand with passenger waiting times always less than 5 min.
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Fig. 3 The relationship between the amount of decrease in the BC fleet size and VKT

The model, however, shows that AMoD scenarios lead to significant increase in
VKT compared to the BC scenario. As shown in Fig. 2, the AMoD system featuring
424 AVs would translate into 61% more VKT in the network. As the fleet size
grows, the increase in VKT drops gradually. The least increase in VKT (20%) has
been recorded for the AMoD system comprised of 1855 AVs.

Note that the estimatedVKTs in this study aremuchhigher than the ones suggested
in many studies in the literature. Most of the available AMoDmodels e.g. [4, 16, 17]
suggest a VKT increase around 10% for the fleet size, almost 90% smaller than the
BC one. Whereas our model suggests 61% increase in VKT with the AMoD fleet
size (424 AVs), 79% smaller than the current fleet size.

Figure 3 shows how VKT increases as the fleet size is cut down. Each point on
this graph represents an AMoD fleet size described in comparison to the BC fleet
size. For instance, we can represent the AMoD system made up of 424 AVs as a
system 79% smaller than the BC fleet size and so on. As clear from Fig. 3, there is
a quadratic relationship between fleet size and VKT.

The key reason for these discrepancies might be rooted in some simplifying
assumptions that have been made in these studies. For instance, these studies moved
rebalancing AVs on Euclidean distances between different areas rather than simu-
lating them on the real network. This could certainly translate into less VKT in the
network.

Further, unlike our model, these studies assumed a perfect knowledge of demand
and provided as many AVs as required at the start of simulation, which is quite
unrealistic. Rebalancing of AVs at the start of simulation could generate considerable
amounts of eVKT.

These disparitiesmight also be due to the fact in thesemodels, a high percentage of
travellers have shared ride with other customers. These studies, however, have never
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mentioned the inclusion of ride-sharing scenarios in their modelling environment.
Obviously, employing ride-sharing services especially with high car-occupancy rates
would result in unrealistic impression regarding the contributions of AMoD systems.

Difference between the Travel Demand Pattern (TDP) of these studies and ours
might be another factor that has led to these discrepancies. The effects of this phe-
nomenon is discussed in the next section.

7 Effects of Travel Demand Pattern on VKT

In this section, we aim at investigating the effects of TDP on the potential increase
in VKT as a result of deploying AMoD systems. To achieve this, in addition to the
TDP used in the previous section (D1), three other hypothetical TDP constituted of
2000 trip requests would be introduced into the model namely, D2, D3, D4. In other
words, all demands (D1, D2, D3, D4) feature the same amount of travel requests
(2000 trips) with different TDPs.

In this paper, TDPwill be represented by the distribution of a parameter, calledNet
Trip Rate Ratio (NTRR) within the study area along with their associated Standard
Deviation (SDV) values. By definition, for each TDP (Dj), the value of NTRR for
each area (i) will be computed as follows,

NT RRi j = Total number of incoming trips to area i

T otal number of outgoing trips f rom area i
(4)

where,

NT RRi j : net trip-rate ratio of area i when TDP is Dj

The value of SDV for the whole study area when TDP is Dj will be calculated as
follows,

SDV j = SDV
(
NT RR1 j , NT RR2 j , . . . , NT RRi j

)
(5)

where,

SDV j : Standard deviation of NTRR values for the whole study area when TDP is
Dj. For this study, i ε (1, 2, 3, …, 53) and j ε (1, 2, 3, 4)

By definition, if the NTRR for an area is equal to 1, then it attracts as many trips
as it generates. On the other hand, if the NTRR is zero, this indicates this area does
not attract any trips. Similarly, an area will attract more trips than it generates if its
NTRR is more than 1.

The distribution of NTRR within the study area for each TDP and their related
SDV is shown in Fig. 4. As clear from the graph, in the first and second TDPs (D1,
and D2), the central parts of the study area (i.e. area 9–34) have the highest NTRR
values (5.50 for D1, 3.33 for D2) meaning these regions are popular in comparison to
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Fig. 4 The distribution of NTRR within the study area for various travel demand patterns

the other areas.1 While, for the third TDP (D3), the central parts of the study area are
less attractive than other regions with a NTRR value of 0.67. Finally, for the fourth
TDP (D4), the NTRR of the all areas within the study area is equal to 1, meaning the
attractiveness of all regions is on a par.

As shown in Fig. 4, as TDP moves from D1 to D4, the value of SDV gradually
declines from 2.51 to 0. In fact, D1 represents the case in which the study area is
constituted of regionswith very different attractiveness levels, and asTDPapproaches
D4; all areas display an equal attractiveness.

It is most likely to observe a TDP, similar to D1 or D2 between suburbs and
city centres over peak hours when most people travel from their residences to CBD
for work. During off-peak hours, travel demand distribution within the city could
approach D3 or D4. However, observing a TDP similar to D4 in reality is quite
difficult.

Figure 5 illustrates the simulation results for all 32 AMoD scenarios conducted
in this section. Obviously, it shows there is still a quadratic relationship between
fleet size and induced VKT irrespective of demand pattern. In other words, given
the simulation results obtained through out this study, it can be deduced that there is
always a quadratic relationship between fleet size and induced VKT irrespective of
TDP. In this section, the all scenarios were successful in meeting the whole demand
with customer waiting times always less than 5 min.

Figure 6, however, shows that demand pattern has a substantial effect on the
induced VKT. As seen in this graph, for a specific fleet size there is a considerable
difference between the VKT generated in each TDP. For instance, when fleet size is
424, the induced VKT for D1 is 39% more than that of D4. Note that the number of
trips (demand) are the same (2000 trips) for all of the scenarios investigated in this
section.

1Note that the NTRR values in D1 and D2 are the same (0.56) for the area 34–53 (Fig. 4).
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This happens due to the fact that in D1, customers in the non-attractive areas
whose NTRR is so low could only be serviced through sending idle vehicles from
the attractive areas (central parts in this study) whose NTRR is so high. Whereas, in
D4, customers are not only reliant on rebalancing AVs to be serviced. Travellers in
these areas could also be picked-up by AVs, carrying passengers from other parts of
the city to this area.

The occupied AVs could pick-up waiting customers at these areas after having
their on-board passengers dropped-off. In fact, the incoming travels from other parts
of the urban area is the key reason, which have led to less VKTs in D4. While in D1,
non-attractive areas could barely receive any trips from other parts. As a result, in
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D1, the AMoD system is heavily dependent on the rebalancing process to meet the
travel demand, which ultimately leads to high VKTs.

8 Policy Insights

The findings of this research are of direct relevance to policy makers and will help
them arrive at informed and realistic decisions. Some of the policy insights gained
from this research are outlined below.

1. Deploying AMoD systems for servicing customers within the whole urban area
would lead to sizable increase in VKT if they are not shared. Therefore, imple-
menting ride-sharing schemes in these systems is imperative in order to avoid
the potential growth in congestion.
Governments should also investmore in researching the possible factors influenc-
ing travellers to share rides with their fellow citizens. Having a realistic insight
into people’s travel behaviour and expectations would assist governments in
introducing new schemes that encourage more ride-sharing.

2. Given that AMoD systems may lead to significant potential for increasing VKT
in urban areas, they would be more suited for improving accessibility to current
mass public transit systems particularly as related to first and last kilometre travel.
Implementing shared AVs between residential areas and public transport stations
and huns would promote more mass transit use. In other words, introducing
AMoD systems as first/last kilometre solutions could prompt more people to use
them and reduce the number of vehicles on roads.
Further, the increased interest inmass transit would attract more funds to enhance
the current public transport systems, and thereby the number of travellers using
these systems would grow. This strategy would not only cut VKT, but also estab-
lish a more sustainable mobility system.

3. This study, for the first time in the literature, proposed a method to explore the
impacts of Travel Demand Patterns on the efficiency of AMoD systems. The
results showed that this phenomena can substantially affect the efficacy of these
systems and render them unsustainable.
The study showed that deploying AMoD system during peak hours between
suburbs and city centres might not be a viable solution to fix congestion problem
in urban areas. Governments should also take this issue into account along with
other decision factors while establishing new urban transport agendas in the age
of emerging technologies.

4. Public transport investments, particularly high capacity rail, will remain criti-
cal even in future mobility scenarios. Together with walking and cycling, these
should continue to be promoted as prominent modes of transport particularly in
urban areas.

5. Transport policies and deployment strategies should consider the shape, type
and size of AMoD fleets and ensure that the right mix between public transport
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and shared vehicles is reached to minimise empty running and avoid increased
congestion and emissions in cities.

6. Environmental benefits will depend on vehicle technology, car occupancy, and
total VKT in the system. An AMoD fleet comprised of efficient and advanced
AVs that deploys ride-sharing schemes will most likely succeed in delivering an
environmentally friendly transport system.

7. To ensure the public transport industry remains viable and relevant, it needs to
be more entrepreneurial and step forward to be an actor in shaping the regulatory
frameworks and future use of AVs. Otherwise it will be mainly shaped by the
automobile and technology companies. The industry can achieve this by support-
ing public transport AV trials to raise profile and increase public awareness. The
regulatory frameworks will need to be adapted to allow public transport operators
to innovate and launch such pilot studies.

8. Authorities should promote and adapt policies to prepare citizens for the shared
use of vehicles. This can be achieved through demonstrating support, removing
barriers and providing tax incentives to shared mobility schemes to support the
trends in declining car ownership and favour shared ownership of vehicles. More
shared mobility and more digital services today will lay the foundation for AV
fleets and AMoD services tomorrow.

9. The commercial sector and provider of AMoD should design fare systems and
pricing structures ofmobility services that ensure the sustainability of the service.
To the traveller, it will not matter in the future who will provide the service but
more importantly the type and cost of the service. These services will need to be
run in line with public policy goals to provide safe, clean, equitable, accessible
and affordable mobility solutions.

9 Conclusions and Future Directions

This paper explored the performance of shared AMoD systems when travel demand
is uncertain to the fleet operator. We explicitly investigated the relationship between
AMoD fleet size and VKT and showed that there is a quadratic relationship among
them.

The simulation results also showed that a large portion of the literature is overop-
timistic about the potential of AMoD systems for mitigating congestion in urban
areas. We proposed and discussed four possible causes, which might have led to this
unrealistic optimism about AMoD systems.

Further, this study, for the first time, introduced a new measure called “travel
demand pattern” for assessing the performance of AMoD systems. Our model sug-
gests that this phenomenon has a significant impact on the efficiency of AMoD
systems and the potential increase in VKT due to deployment of these systems.
However, for different travel demand patterns, the general quadratic relationship
between fleet size and VKT always holds.
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The current study also showed that the worst performance of AMoD systems
occur during peak hours between suburbs and city centres. That is to say, over peak
hours when the majority of trips happen between suburbs and central parts of urban
areas, implementing AMoD systems might even worsen the congestion level in the
city.

In this paper, however, we did not consider the effects of ride-sharing scenarios on
the performance of AMoD systems. In the future, we will quantify the implications
of these systems in the presence of ride-sharing schemes as well.

Future studies could also make an effort to formulate the relationship between
AMoD fleet size, VKT and the amount of increase in capacity due to need to fewer
parking lots. Discovering this relationship will be a valuable contribution to the
knowledge and assist us in gaining a more comprehensive insight into the potential
of AMoD systems.
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Strategies to Increase the Response Rate
of Smartphone-Based Travel Surveys
in Afghanistan: Exploring the Effects
of Incentives and Female Survey
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Abstract Smartphone-based travel surveys have been used widely in developed
countries as promising alternatives to traditional travel data collection methods. In
addition, researchers in developed countries have employed several strategies to
increase response rate of the surveys. However, few studies have investigated these
issues in developing countries. Therefore, to consider the case of a developing coun-
try, we conducted three smartphone-based travel surveys in two Afghanistan cities.
The first survey was conducted in 2015 in Kabul. In 2017, we have conducted two
additional surveys in Kabul and Khost cities. Two improvements were made to the
survey method: offering rewards to increase response rate and appointing female
survey conductors to target female participants. The main objectives of this study
are: (1) to investigate the effect of rewards on the response rate. (2) to demonstrate
female survey conductor’s effects on female response rate. (3) to compare response
rates of Khost and Kabul surveys. The results reveal that the overall survey response
rate in Kabul increases significantly after the improvements are made to the survey
method. Rewards have shown to increase male response rate, and female response
rate is improved by female survey conductors.
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1 Introduction

1.1 Background

Transportation researchers continuously attempt to collect comprehensive, accurate
and temporal travel behavior data to develop transport planning policies. In traditional
paper-based survey method, obtaining accurate travel behavior data such as the exact
locations of origin and destination, travel time, trajectory of the recorded trip, and
multi-day data is not an easy task [1, 5, 44]. Thus, the use of smartphones as a means
of technological data collection, which have been found to improve data accuracy
and efficiency, is a promising alternative to traditional survey methods [15, 43]. In
contrast to other tools such as global positioning system (GPS), smartphones as
personally-owned devices are ubiquitous and versatile that are rarely forgotten by
users; the embedded GPS and accelerometer in smartphones reduces the burden of
carrying an extra devices as well as instrument cost [3, 33].

In spite of these advantages of smartphone-based surveys method, some concerns
such as battery drain and the different penetration rate of smartphones aremain causes
of recruiting small and nonhomogeneous samples [6, 13, 14, 48, 49]. In addition, the
privacy concerns of the respondents may also negatively affect the response rate.

Another issue of smartphone-based travel surveys is that the experiences mainly
been limited to developed countries, and the implementation of these types of survey
in developing countries has not been fully investigated. Several studies have revealed
that people in developed countries are more willing to participate in smartphone-
based travel surveys than paper-based surveys [22, 46]. In particular, younger,wealth-
ier, and more educated individuals have high smartphone-ownership rate, and those
fall in this demographic are more willing to participate in smartphone-based travel
surveys [35, 37, 51]. However, very little research has been conducted investigat-
ing the socioeconomic and demographic factors that influence the response rates of
smartphone-based surveys in developing countries.

Researchers have been striving to implement strategies to increase the response
rates and collect representative samples in smartphone-based travel surveys [36, 45].
One of these strategies is offering incentives to respondents in order to increase the
response rate and collect a homogeneously distributed sample [31, 32, 34]. However,
few literatures have examined the effects of incentives for smartphone-based surveys
in developing countries.

Smartphones, internet, and other technological tools are expanding globally; how-
ever, the technology ownership gap between developed countries and developing
communities still remains [38]. In addition, the level of education, literacy of using
technology, and freedom of making decision to participate in smartphone-based sur-
vey may vary among large and rural cities which may result in different response
rate.

Based on these motivations, this paper investigates strategies to increase response
rate and studies the socioeconomic and demographic factors affecting response rate
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in developing countries. As a case study, we examine the smartphone-based travel
surveys conducted in a rural city and a large city of Afghanistan.

We conducted three smartphone-based travel surveys in Afghanistan. Our first
survey was conducted in 2015 in Kabul without a participation incentive, and had
a limited response rate. We found that a strategy is needed to increase the overall
response rate. We also found that females are hard-to-reach population in traditional
and patriarchal community ofAfghanistan, and particular considerations are required
to capture female respondents. For instance, our previous study revealed that cul-
tural restrictions and privacy concerns may negatively affect response rate of female
respondents in developing countries [41]. Considering these concerns, we conducted
two additional smartphone-based travel surveys in 2017 with the following improve-
ments.

(1) Conducted surveys in rural city (Khost) as well as large city (Kabul)
(2) Offered incentive to increase response rate
(3) Assigned female survey conductors to target female participants

With the implementation of these improvements, this study aims to investigate
the following issues using our smartphone-based travel survey data collected in 2015
and 2017 in Kabul and Khost cities.

(1) Compare response rates of smartphone-based travel surveys in large and rural
cities in Afghanistan

(2) Compare response rates of surveys with and without reward
(3) Demonstrate the effects of using female survey conductors on the female

response rate

The current experiences of smartphone-based travel survey are limited to devel-
oped countries [4, 5, 12, 17, 18, 22, 23, 31, 33, 42, 47]. In the case of developing
countries, the experience of this survey method is limited. Hence, the originality of
this study is the investigation of smartphone-based travel surveys in Afghanistan as a
developing country. In addition, investigating the effects of different strategies (e.g.,
incentive and female survey conductors), and residential area type (e.g., rural and
large cities) on response rate is another contribution of this study.

The structure of this paper is organized as follows: Sect. 2 focuses on the liter-
ature review of passive and active data. Section 3 explains the methodology of our
smartphone-based travel survey. Section 4 is allocated for the results analysis and
discussions, and Sect. 5 includes a summary of our findings and conclusions.

2 Literature Review

The recent advancements in technology (e.g., GPS, smartphones, and so on) pro-
vide opportunities for automatic collection of a larger amount of data with a higher
accuracy compared to the traditional survey methods. In the field of transportation,
several technological tools (e.g., GPS, mobile phones, and so on) have been used
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for data collection. Data can be automatically collected from several sources such
as: fixed-location sensors (e.g., roadside sensors for vehicle counting data collec-
tion), installed sensors on moving objects (e.g., GPS installed on the vehicles), and
mobile phones and smartphones [19]. Technological devices allow researchers to
obtain passive data (e.g., from mobile phone) and active data (e.g., from smartphone
applications) for transportation. The merits and demerits of passively-generated and
actively-collected datasets are described in the following subsections.

2.1 Passive Data Collection

Capturing massive amounts of spatial and temporal data from individuals is one
of the significant advantages of recent technological advancements. Passive data
can be collected from various sources. For instance, smart card datasets [2, 8, 24,
30, 53], mobile phone datasets [11, 21, 50, 54], and GPS installed in taxis [29,
55]. Smart cards and taxis with installed GPS sources can be used for particular
groups of people. For example, smart card datasets can provide insight into the
travel patterns of users of public transport, and the travel behaviors of taxi drivers
and passengers can be captured from the GPS installed in the taxis. The mobile
phone, as a ubiquitous versatile product, has become an integral part of everyday
life. Therefore, data collection through mobile phones is a reliable and widely used
method for capturing the mobility patterns of individuals [11]. Hence, researchers
and transportation planners have attempted to use this device for collection of data
from individuals for transportation [20]. There are two ways (call detail records and
sighting records) that can offer the opportunity to obtain an individual’s movement
data using a mobile phone [11]. In the call details record (CDR) dataset, each phone
call represents an observation. In order to channel the call to the cell tower, the
cellular network operator system needs to know the location of the individuals who
initiate/receive calls. Hence, information such as the location of caller/callee, the start
time of the call, and the duration of the call can be recorded in the cellular network
operation system [10, 11, 26]. Another type of mobile phone dataset is sightings data
[9, 10, 11]. In the sightings dataset, each record represents the change in the position
of the mobile phone. There are various factors that distinguish CDR data from the
sightings data. The sightings data have higher temporal (a single call in CDR can
generate a single record while the same call may generate multiple sightings if the
caller/callee change their positions during the call) and spatial (the recording location
is the location of the cellphone tower inCDR,while the recording location in sightings
is the device location) resolutions when compared to the CDR data. In addition, the
information from both the caller and callee can be simultaneously observed for
each call in the CDR, while it cannot be observed in the case of sightings data
collection [3, 9, 11]. The collection of massive amounts of data and real positioning
are the dominant merits of passive data. However, there are several shortcomings in
passively-generated data such as:
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1. Lack of individual attribute information: Due to privacy concerns of individuals,
the passive dataset usually comprises anonymized records. In other words, the
demographic and socioeconomic information of individuals cannot be obtained
from passive data sources [7, 9, 19, 28, 30].

2. Sample unrepresentativeness: There are several concerns regarding the repre-
sentativeness of the sample. Passive data sources can provide insight into travel
patterns of particular groups. For instance, the smart card can only capture the
travel pattern of individuals who use public transport. In the case of GPS data
from taxis, the data can only collect the behaviors of drivers and passengers. The
concern of sample unrepresentativeness also exists for mobile phone data. While
some mobile phone users may own several devices, others may have only one
or no mobile phone. In addition, the frequency of using mobile phones varies
among people. Therefore, most of the sample consists of those who own mobile
phones and frequently use the device; the sample lacks data for those who rarely
use mobile phones or have no mobile devices. Furthermore, the penetration rate
of the mobile phone may vary among cellphone carriers. Hence, using single
cellphone carrier data may lead to an unrepresentative sample collection [9, 11,
16].

3. Inaccurate measurements: In the passive data obtained from mobile phones, the
term “displacement” has been used instead of travel distance. Displacements are
straight-line distances between two consecutive records. Therefore, the accuracy
of these measurements can be low [11].

The route and mode choice cannot be easily obtained from passive data collected
throughmobile phones. Some researchers have attempted to infer the route choice by
using the intermediate point between the origin and the destination. Overlaying the
intermediate points with the transport networks may help to determine the possible
route choices [11]. In addition, the trip purpose cannot be directly derived from the
passive data obtained from mobile phones. However, for obtaining the trip purpose,
researchers have used several methods such as frequency-based measurements (e.g.,
return home if the location was frequently visited during night time, work-based trip
if the location was frequently visited during day time) [39], and statistical approaches
(e.g., using regression models for predicting the location type) [10].

In the case of actively-collected dataset, smartphone-based travel survey is one
of the promising methods for collection of individuals’ travel behaviors. The merits
and drawbacks of this survey method are described in the subsection below.

2.2 Active Data Collection

Several studies have investigated the implementation of the active travel data collec-
tion using smartphones [31, 42, 52]. The embedded technology in the smartphones
and the available survey apps have enabled researchers to obtain temporal, accurate,
and effective travel information. In smartphone-based travel surveys, the survey app
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allows respondents to validate their travel information (e.g., validating trip purpose,
trip mode, and so on); this is not applicable in the case of passive data collection
methods. In addition, the survey app can automatically record the travel distance,
departure/arrival time, travel mode (e.g., by vehicle, on foot, or on a cycle), and so on.
Unlike the passive data collection method, the recruitment of individuals to partici-
pate is the integrated part in the smartphone-based travel surveymethods. Consenting
individuals are then trained and guided to participate in the survey. If the respondents
consented to participate, they have agreed to part with their data confidentiality and
privacy. In addition, by using supplementary (e.g.,web-based, paper-based) question-
naires, the collection of information on attributes (e.g., demographic, socioeconomic,
and so on) of consenting individuals is possible in smartphone-based travel survey
methods. Considering these unique features of smartphone-based travel surveymeth-
ods, data accuracy, and ability to capture detailed information of respondents are the
advantages of this data collection method when compared to the passively-generated
data collection method.

Despite the abovementioned advantages of smartphone-based travel surveys, there
are several shortcomings of this survey method such as:

1. Small sample size and small amount of data: The small size of the sample is one
of the main concerns in smartphone-based travel survey methods. Therefore,
several strategies have been used by researchers to increase the sample size of
smartphone-based travel surveys. For instance, using incentives is an effective
strategy for increasing the sample size [31, 48]. In addition, some technology-
related (e.g., fast battery drain, slower device operation speed while app is run-
ning, and appmalfunctioning) and respondent-related (e.g., concerns about being
tracked) challenges are the main barriers for collecting long-term (several days)
data from smartphone surveys [6, 13, 14, 17, 27, 33, 34, 40, 42, 48, 51].

2. Cost issues: Active data collection through smartphone-based travel surveys
necessitates several financial costs. For example, the internet consumption by
the survey app and provision of incentive to attract individuals can incur finan-
cial burden for the researchers [31, 40]. This does not occur in the case of passive
data collection.

3. Sample unrepresentativeness: The penetration rate of smartphones is different
from country to country, and from population to population. Some studies have
stated that the ease of accessibility to the internet and the smartphones devices is
different for developed and developing countries [25, 38]. The inaccessibility to
the internet and the low penetration rate of smartphones could adversely affect the
sample representativeness. In addition, the choice to participate in smartphone-
based surveys may not be random. Therefore, the unrepresentativeness of the
sample is one of the dominant concerns in the smartphone-based travel surveys
as well as in methods involving passive data collection frommobile phones. This
is one of the motivations of this research.
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3 Methodology and Survey Overview

This survey was designed and implemented to investigate the feasibility of
smartphone-based travel surveys in Afghanistan and to obtain daily trip information
regarding each user’s travel behaviors. The respondents were invited to participate
in the survey through the personal network of the survey conductors. The respon-
dents that consentedwere instructed to download and install theMOVES application.
MOVES was an existing application, which was available for Android and iOS in
Google Play and App Store, respectively, without cost. This application records tem-
poral (travel time, departure and arrival time), spatial (location, travel distance) and
mode (e.g., vehicle, walk, cycling) information.

Prior to starting the survey, face-to-face instructions regarding the use of the appli-
cation were given to each participant. Moreover, a printed user guide and privacy
policy documents were distributed to those who accepted our invitation. The user
guide helps the respondents to download and install the application, generate an
account using a provided ID, run the app, and stop running the app when the smart-
phone battery drains. Additional information, such as the survey objectives, security
of the respondent’s privacy, types of data, and usage of the data are described and
provided in the privacy policy documents. Incentives were promised to the respon-
dents, and those who successfully complete the two-week survey were entitled to the
reward of 100 AFN to be provided as a phone credit.

3.1 Survey Overview

Tables 1 and 2 summarize the survey recruitment methods and survey sample data,
respectively. In 2015, 200 participants were recruited, and the response rates of male
and female respondents were 36.2% and 40.0%, respectively. Furthermore, in 2017,
the total recruited sample sizes of the Kabul and Khost surveys were 137 and 218,
respectively. For Kabul survey, the male response rate was 70.5%, and the female
response rate was 49.0%, while in Khost survey, the response rates were 52.2% and
23.2% for the male and female respondents respectively.

3.2 Data Collection in 2015

In our survey of 2015 in the city of Kabul, the respondents were recruited through
the personal networks of the research team. The overall response rate was low for
both males and females [41]. The survey conductor team consisted of males, and
due to some traditional restrictions, a small sample size of females were collected.
The personal information (gender, age, occupation, and smartphone ownership his-
tory) of the consenting participants was collected through a web-based question-
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Table 1 Survey recruitment methods

Survey items Kabul survey (Aug
2015)

Kabul survey (Sep
2017)

Khost survey (Sep
2017)

Survey period 1 month 2 months 2 months

Application MOVES MOVES MOVES

Incentive Not offered 100 AFG 100AFG

Gender of survey
conductors

Male Male and female Male and female

Requested
participation period

2 weeks 2 weeks 2 weeks

Table 2 Overview of survey
samples

Demographic
information

Kabul
survey
(Aug
2015)

Kabul
survey
(Sep 2017)

Khost
survey
(Sep 2017)

Sample information n % n % n %

Total (Recruited) 200 100 137 100 218 100

Gender

Male 135 67.5 88 64.2 123 56.4

Female 65 32.5 49 35.8 95 43.6

Response

Male 49 65.3 62 72.1 65 75.0

Female 26 34.7 24 27.9 22 25.0

Response ratea

Male 36.2 70.5 52.8

Female 40.0 49.0 23.2

aResponse rate = (Agreed participants/Total)

naire. However, we were not able to collect the personal information of those who
rejected the invitation, with the exception of gender and apparent age. Therefore, this
knowledge was used to improve the recruitment methods and conduct two additional
smartphone-based travel surveys in 2017.

3.3 Data Collection in 2017

In 2017, we conducted two smartphone-based travel surveys reinforced by paper-
based questionnaires in the cities Kabul and Khost. In these surveys, the following
strategies were implemented to increase the sample sizes and obtain more detailed
information.
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• Providing an incentive as mobile credit of 100 AFG (equivalent to approximately
1.2 USD) to increase sample sizes and investigate its effect on the response rate

• Appointing female survey conductors to target female and increase their response
rates

• Obtaining information from non-respondents through a paper-based questionnaire

Prior to starting the main survey, a pilot survey was conducted to ensure that the
surveyworked as intended. Furthermore, feedbackwas received from the respondents
of the pilot survey,which allowedus to enrich the surveydocumentation. For instance,
the feedback from the respondents of the pilot survey allowed us to add answers and
more detailed information to the Frequently Asked Questions documentation. In the
pilot survey, we recruited 38 and 59 respondents in Kabul and Khost, respectively.
From these recruits, 22 respondents in Kabul and 19 respondents in Khost agreed
to participate in our survey, and the data collected during this stage was added and
analyzed in combination with the data obtained from the main surveys.

The main surveys were conducted following the pilot survey. We recruited 137
individuals in Kabul, and from these recruits, 62 males and 24 females accepted the
invitation and participated in the survey. The non-consenting respondents consisted
of 26 males and 25 females. In the city of Khost, we recruited 218 people, and 65
males and 22 females agreed to participate in the survey. The number of those who
declined their participations were 58 males and 73 females, as outlined in Tables 3
and 4.

Table 3 Response and non-response rate of Kabul survey (2017)

Response rate Non-response
rate

Total

n % n % n P-value

Gender Male 62 70.5 26 29.5 88 0.013*

Female 24 49.0 25 51.0 49

Age Age < 30 45 70.3 19 29.7 64 0.087

Age > 31 41 56.2 32 43.8 73

Marital status Married 52 65.0 28 35.0 80 0.52

Single 34 59.6 23 40.4 57

Education Educated 80 70.1 34 29.9 114 6.6 × 10−5**

Uneducated 6 26.0 17 74.0 23

Occupation Employed 54 68.3 25 31.7 79 0.11

Unemployed 32 55.0 26 45.0 58

*p < 0.05; **p < 0.01
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Table 4 Response and non-response rate of Khost survey (2017)

Response rate Non-Response
rate

Total

n % n % n P-value

Gender Male 65 52.8 58 47.2 123 9.0 × 10−6**

Female 22 23.1 73 76.9 95

Age Age < 30 55 44.7 68 55.3 123 0.09

Age > 31 32 33.6 63 66.4 195

Marital status Married 52 38.5 83 61.5 135 0.44

Single 35 43.8 45 56.2 80

Education Educated 86 47.5 95 52.5 181 1.0 × 10−5**

Uneducated 1a 2.9 33 97.1 34

Occupation Employed 45 43.3 61 56.7 106 0.55

Unemployed 42 39.3 67 60.7 109

**p < 0.01, aDue to small number of uneducated respondents, the fisher exact test has been applied

4 Results and Discussion

4.1 Response Rate of Kabul Survey (2017)

After the improvements made to the survey, the overall response rate of Kabul survey
is 62.8%, while male and female have response rate of 70.5% and 49.0% respec-
tively. A significant difference between male and female response rates is confirmed
after conducting statistical test (p = 0.013 < 0.05), as shown in Table 3. This signif-
icant difference may be due to females rejecting their participations on the basis of
traditional restrictions and privacy concerns.

Figure 1 reveals the response rate in term of age and gender. The lowest response
rate (22.2%) of female aged under 20 could be due to their dependency on male
member of family in patriarchal society of Afghanistan. Male over 51 years of age
show the lowest response rate (25.0%), which may be due to their less familiarity of
using smartphones. However, the difference of response rate between respondents
aged under 30 and over 31 years of age is not statistically significant (p = 0.087 >
0.05), as shown in Table 3.

The response rates are also shown for each gender and marital status in Table 3.
Those who are married have a response rate of 65.0%, while those who are single
have a response rate of 59.6%, though this difference is not statistically significant
(p = 0.52 > 0.05). As shown in Fig. 2, single females have the lowest response
rate (30.0%), whereas single males have the highest response rate (75.7%). The
lowest response rate being single females may be due to their dependency regarding
decision-making rights.
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Fig. 1 Response and non-response distribution by gender and age (Kabul)
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Fig. 2 Response and non-response distribution by gender and marital status (Kabul)

The difference in response rates between single and married males is not sta-
tistically significant (p = 0.36 > 0.05), whereas the difference between single and
married females is statistically significant (p= 0.02 < 0.05). The difference between
the response rates ofmarriedmales andmarried females is not statistically significant
(p = 0.68 > 0.05), whereas the difference is significant between single males and
single females (p = 8 × 10−4< 0.01).

Figure 3 compares the response rates in terms of education level for both genders.
Those classified as illiterate have the highest non-response rates of 73.3 and 75.0%
for males and females, respectively. The results confirm a statistically significant
difference in the response rates between those who are literate (school-educated and
university-level individuals) and those who are illiterate (p = 6.6 × 10−5< 0.01), as
shown in Table 3. More specifically, when statistically comparing the response rates
of the literate and illiterate groups for both genders, it is confirmed that the difference
in male response rates for those two groups is statistically significant (p= 4× 10−5<
0.01), while a statistically significant difference is not apparent for females of those
two groups (p = 0.14 > 0.05).

The effect of employment conditions on the response rate has also been consid-
ered. Male students have the highest response rate (86%), while the highest response
rate for females is the private organization workers category (78%). A statistical test
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Fig. 3 Response and non-response distribution by gender and education level (Kabul)

reveals that the response rate difference between those that are employed (govern-
ment employees, private organization workers, and self-employed) and those that do
not hold a job (students and unemployed) is not statistically significant (p = 0.11 >
0.05), as shown in Table 3.

4.2 Response Rate of Khost Survey (2017)

The overall response rate of Khost survey is 40%, while that rate of male and female
is 52.8 and 23.2% respectively. A significant difference between male and female
response rates is confirmed after conducting statistical test (p= 9.0× 10−6 < 0.01) as
shown in Table 4. This significant difference could be due to traditional and privacy
concerns of females. Please note that 3 females strongly declined their participations
and we could not able to record their demographic (except their gender and apparent
age) and socioeconomic information.

Figure 4a reveals the response rates in term of age and gender.Males over 41 years
of age have the lowest response rate (23.8%), while females under 20 and over
41 years of age share lowest response rates of 15.2 and 15%, respectively. It is
confirmed that the difference in the response rates of those under 30 and over 31 years
of age is not statistically significant (p = 0.09 > 0.05), as shown in Table 4.

Figure 4b explains the response rates in term of marital status for each gender.
Single females have the lowest response rate (21.9%), while their male counterparts
have the highest response rate (58.3%). A statistically significant difference between
married and single respondents is not observed (p= 0 .44> 0.05), as shown inTable 4.
More specifically, the response rate difference between single and married males is
not statistically significant (p = 0.33 < 0.05), and such is the case for females (p =
0.6 < 0.05), as shown in Fig. 4b. We also compared the response rates of married
males and married females, as well as between single males and single females;
statistically significant differences are confirmed in both cases (p = 9.0 × 10−3 <
0.01 and p = 1.2 × 10−3< 0.01, respectively).



Strategies to Increase the Response Rate of Smartphone-Based … 329

65.2%
63.4%

50.0%
23.8%

15.2%
34.6%
31.3%

15.0%

34.8%
36.6%

50.0%
76.2%

0.0%
84.8%

65.4%
68.8%

85.0%
0.0%

0% 50% 100%
Under 20 (N=23)

21-30 (N=41)
31-40 (N=38)
41-50 (N=21)

Over 50 (N=0)
Under 20 (N=33)

21-30 (N=26)
31-40 (N=16)
41-50 (N=20)

Over 50 (N=0)
M

al
e

Fe
m

al
e

Response Rate Non-Response Rate

(a) Age and gender distribution (b) Marital status distribution 

(c) Education level distribution 

58%

52%

25%

7%

26%

42%

48%

0%

75%

93%

74%

0% 50% 100%

Relative male (N=24)

Non relative male (N=99)

Female (N=0)

Relative male (N=8)

Non relative male (N=14)

Female (N=73)

M
al

e
Fe

m
al

e

Response Rate Non-Response Rate

(d) Survey conductor’s gender and 
their relationship to respondents 

49.3%

58.3%

25.0%

21.9%

50.7%

41.7%

75.0%

78.1%

0% 50% 100%

Married (N=75)

Single (N=48)

Married (N=56)

Single (N=32)

M
al

e
Fe

m
al

e

Response Rate Non-Response Rate

73.3%
27.3%

6.7%
58.8%

5.1%
0.0%

26.7%
72.7%

93.3%
41.2%

94.9%
100.0%

0% 50% 100%

University (N=75)
School (N=33)

Uneducated (N=15)
University (N=32)

School (N=39)
Uneducated (N=17)

M
al

e
Fe

m
al

e

Response rate Non-Response Rate

Fig. 4 Response and non-response rate distribution of Khost survey (2017)

Figure 4c compares the response rates in terms of education level for both genders.
Those who are illiterate have the highest non-response rates of 93.3% and 100% for
males and females, respectively. The response rate differences between those who
are literate and those who are illiterate is statistically significant (p = 1.0 × 10−5<
0.01). These differences may be due to the increased familiarity of smartphone usage
for the educated respondents compared with those who are less educated.

We have also considered the effects of employment conditions on the response
rates. Male students and female government employees have the highest response
rates of 71%and 57%, respectively. In addition, the response rates of the unemployed,
self-employed, and private organizational female workers are zero. This may be due
to their unfamiliarity with smartphone usage and privacy concerns. A statistical test
between thosewhoare employed (government employees, private organizationwork-
ers, and self-employed) and those who do not hold a job (students and unemployed)
does not show a statistically significant difference (p = 0.55 > 0.05), as shown in
Table 4.

Figure 4d describes the response rates of males and females in terms of genders of
the survey conductors and their relationships with the respondents. We conducted a
statistical test between the response rates and non-response rates of females recruited
by males, and females recruited by females, and the difference is not statistically
significant (p = 0.22 > 0.05), as shown in Fig. 4d. Please note that the female
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Table 5 Comparison of
response and non-response
rates of Khost and Kabul
(2017)

Response
rate

Non-
Response
rate

Total

n % n % n P-value

Male Kabul 62 70.5 26 29.5 88 9.9 ×
10−3**Khost 65 52.8 58 47.2 123

Female Kabul 24 49.0 25 51.0 49 1.6 ×
10−3**Khost 22 23.2 73 76.8 95

Both
gender

Kabul 86 62.8 51 37.2 137 2.7 ×
10−5**Khost 87 40.0 131 60.0 218

**p < 0.01

survey conductors did not attempt to recruit male respondents; however, all survey
conductors were requested to target the respondents without considering gender.

4.3 Comparison of Response Rate in Kabul and Khost
Surveys (2017)

The overall response rate of Kabul survey is 62.8%, whereas the overall response
rate for the Khost survey is 40.0%. We compared the response rates from these two
surveys, and the difference is statistically significant (p = 2.7 × 10−5< 0.01), as
shown in Table 5. More specifically, the difference between the response rates of
the two surveys in terms of males and females is also statistically significant (p =
9.9× 10−3< 0.01 and p= 1.6× 10−3< 0.01, respectively). The main reason behind
these differences can potentially be attributed to the concern of smartphone battery
drainage in rural locations because there is no accessibility to public electricity. The
high non-response rate of rural females may be due to traditional restrictions that
force them to reject survey participation.

Figure 5 compares the response rates of the Kabul and Khost surveys in terms of
age and gender. The response rate declines greatly with increasing age of the male
participants in both surveys. Moreover, the middle-age female participants have the
highest response rate, while response rates of younger and elderly females are lower.
The lower response rate of younger females may be due to their dependency on male
family members. In addition, the lower response rate from elderly respondents may
be due to their relatively lower education level and unfamiliarity with smartphone
usage.
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Fig. 5 Response rate
distribution in term of age
and gender of (Kabul and
Khost)
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4.4 Investigation of Incentive and Female Survey Conductors
Effects

To investigate the effects of incentives, we compared the response rates from the 2015
survey without an incentive and the 2017 survey with an incentive. It is confirmed
that the difference between the response rates of the two surveys is statistically
significant (p= 5.0× 10−6< 0.01), as shown in Table 6. Thus, we can conclude that
this difference is likely due to the improvements made to the 2017 survey methods.

To determine the improvement in the results for each gender, the response rates
of each gender are statistically compared. The difference in the male response rates
is statistically significant (p= 6.1× 10−7< 0.01), while the difference in the female
response rates is not statistically significant (p = 0.33 > 0.05), as shown in Table 6.
From these results, we can conclude that the strategies implemented to increase the

Table 6 Comparison of response and non-response rates of Kabul (2015 and 2017)

Response rate Non-Response rate Total

n % n % n P-value

Male Kabul (2017) 62 70.5 26 29.5 88 6.1 × 10−7**

Kabul (2015) 49 36.2 86 63.8 135

Female Kabul (2017) 24 49.0 25 51.0 49 0.33

Kabul (2015) 26 40.0 39 60.0 65

Under
30

Kabul (2017) 45 70.3 19 29.7 64 1.2 × 10-3**

Kabul (2015) 48 44.9 59 55.1 107

Over 31 Kabul (2017) 41 56.2 32 43.8 73 4.2 × 10−4**

Kabul (2015) 27 29.0 66 71.0 93

Total Kabul (2017) 86 62.8 51 37.2 137 5.0 × 10−6**

Kabul (2015) 75 37.5 125 62.5 200

**p < 0.01
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response rate may vary between genders. An incentive will significantly increase the
male response rate, whereas the female response rate will not be greatly affected by
an incentive.

We also considered the effects of incentives on younger and elderly respondents.
The response rates of the younger respondents (under 30 years of age) from the
2015 survey and 2017 survey were statistically compared, and the test shows that
the difference is statistically significant (p = 1.2 × 10−3< 0.01). We also compared
the response rates of those over 31 years of age from both surveys, and a statistically
significant difference (p= 4.2× 10−4< 0.01) is confirmed, as shown in Table 6. We
can conclude that the use of incentives for increasing the response rate is effective for
both younger and elderly respondents; however, the younger respondents are more
affected than the elderly. In the case of developed countries, offering incentive is
an effective strategy in order to improve response rate of smartphone-based travel
survey. For instance, [31] reported that the effects of incentive was significant on the
improvement of response rate of smartphone-based travel survey conducted in the
city of Kumamoto, Japan.

In the 2015 survey, females were less likely to participate in the survey due
to the male survey conductors. Considering this fact, we assigned female survey
conductors to target and recruit females in the 2017 survey. Figure 6a reveals that
females are more willing to join the survey if the survey conductors are female. A
statistical test confirms that the difference between the response rates of females
recruited by males and those recruited by females is significant (p = 3.18 × 10−5<
0.01), as shown in Fig. 6a. The reason behind this significant difference may be due
to cultural restrictions, as females may feel more comfortable communicating with
other females. In addition, we instructed that the conductors recruit respondents
without considering gender, but the female survey conductors did not attempt to
recruit male respondents. Furthermore, we have also compared the female response
rates of the 2015 survey without female survey conductors with the response rates of
female recruited by females in survey of 2017, and a statistical significant difference
(p = 0.001 < 0.01) is confirmed, as shown in Fig. 6b. Considering these significant
differences, we can conclude that it is important to consider gender in smartphone-
based surveys in traditional communities, such as Afghanistan. These findings may
be not applicable in the case of developed countries, since there could be no traditional
restrictions against females’ participation.

5 Conclusion

This study aimed to investigate the effects of survey method improvements on
increasing the response rates of smartphone-based travel surveys in Afghanistan. We
conducted three smartphone-based travel surveys in the cities of Kabul and Khost.
The first survey was conducted in Kabul in 2015, and the other two surveys were
simultaneously conducted inKabul andKhost in 2017. The high non-response rate of
the 2015 survey led us to improve the recruitment methods to generate an increased
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Fig. 6 Female survey conductor’s effects on respondent’s recruitment

response rate in the 2017 surveys. The improvements employed in the 2017 survey
were as follows:

(1) Conducted smartphone-based travel surveys in the rural city Khost, and the
capital city, Kabul

(2) Offered an incentive of 100 AFN (approximately equivalent to 1.2 USD) to
respondents who participate in the survey for two weeks

(3) Included female survey conductors to target female respondents

The overall response rate of the survey in Kabul increased significantly after the
survey improvementswere implemented.Various studies in developed countries have
demonstrated that an incentive can be a useful strategy in increasing the response
rates of young people, regardless of gender. However, in the case of a developing
country, we found that the effects of incentives differ between males and females,
and the impacts of an incentive differ depending on a rural or urban environment.

The following conclusions were obtained from this study:

(1) The response rate of the survey varies between capital residents and rural com-
munities.

(2) Incentives have a significant impact on increasing the overall response rate of the
smartphone-based survey. However, the effect of an incentive differs between
the younger and elderly.

(3) Recruiting female participants by male survey conductors is a sensitive issue in
traditional countries, and thus, female survey conductors significantly increase
the response rate of females.

Therefore, unlike developed countries, it is necessary to take certain countermea-
sures for increasing the response rates of smartphone-based surveys in developing
countries, taking the cultural and traditional backgrounds into consideration.

Based on the data collected from our surveys in 2017, we propose further inves-
tigation of the factors associated with the non-responses in the Kabul and Khost
surveys. In addition, analyzing the GPS data from our surveys to generate trip and
time related measurements is a future research consideration.
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Sensing Information Dissemination
Strategy for Collective Perception in
VANET Based on the Relative Position of
Vehicles and the Road Structure

Kaito Furukawa, Mineo Takai and Susumu Ishihara

Abstract Sharing local sensing data about objects in vicinity among the surrounding
vehicles by using Vehicle-to-Vehicle (V2V) communication expands the perceptual
range of vehicles as compared with a case of using only onboard sensors. In order
to recognize the presence of non-V2V-equipped vehicles with high accuracy, vehi-
cles need to receive messages containing information about vehicle locations in a
non-line-of-sight region frequently. However, packet collisions caused by high ve-
hicle density and the hidden terminal problem make it difficult to deliver messages
containing sensing data about nearby vehicles. To ensure delivering sensing data of
vehicles in non-line-of-sight regions, it is important to give high priority for sending
packets to vehicles that are in better positions to observe obstacles and other vehicles.
In this paper, we propose a strategy to control the sensing information transmission
frequency based on the positional relationship of vehicles and road structure in order
to improve the surrounding awareness of vehicles. Furthermore, we investigate the
effectiveness of the proposed strategy through simulations.

Keywords Collective perception · VANET · V2V

1 Introduction

In recent years, vehicles equipped with Advanced Driver Assistance System (ADAS)
applications have been becoming popular [1–3]. For example, they have functions
for detecting obstacles by using onboard sensor equipment, e.g. RADAR and camera

K. Furukawa (B) · S. Ishihara (B)
Shizuoka University, Hamamatsu 432-8561, Japan
e-mail: furukawa.kaito.17@shizuoka.ac.jp

S. Ishihara
e-mail: ishihara.susumu@shizuoka.ac.jp

M. Takai (B)
University of California, Los Angeles, CA, USA
e-mail: mineo@ieee.ong

Osaka University, Suita, Japan

© Springer Nature Singapore Pte Ltd. 2019
T. Mine et al. (eds.), Intelligent Transport Systems for Everyone’s
Mobility, https://doi.org/10.1007/978-981-13-7434-0_19

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7434-0_19&domain=pdf
mailto:furukawa.kaito.17@shizuoka.ac.jp
mailto:ishihara.susumu@shizuoka.ac.jp
mailto:mineo@ieee.ong
https://doi.org/10.1007/978-981-13-7434-0_19


338 K. Furukawa et al.

and supporting collision avoidance. Most of today’s ADASs provide the driver with
support for collision avoidance or avoidance of traffic congestion by detecting the
presence of road participantswithin the Field-of-View (FoV) of their onboard sensors
or Road Side Units (RSUs).

Today, vehicles with the Vehicle-to-Vehicle (V2V) communication function are
sold in some regions. Vehicles equipped with the V2V communication function
(hereinafter referred to as V2V-equipped vehicles) periodically broadcast messages
(hereinafter referred to as beacons) containing its status information (e.g., position,
speed, direction, etc.) to notify its presence to the surrounding vehicles in Vehicular
Ad Hoc Network (VANET) [4]. The beacons improve the range of surrounding
awareness of vehicles compared with a case that vehicles use only onboard sensors
and do not have the V2V communication function. Nevertheless, it remains difficult
to recognize the presence of vehicles that are out of the FoV of onboard sensors of
vehicles and do not have a V2V communication function (hereinafter referred to as
non-V2V-equipped vehicles). If RSUs detect the presence of out-of-sight vehicles by
sensors and/or collect the location information fromavehicle that detects the presence
by onboard sensors, vehicles can recognize the presence of vehicles by receiving the
location information from the RSUs. However, RSUs are not fully installed on roads
and It will be difficult to become such environments. We, therefore, assume that the
RSUs are not installed in the rest of the paper.

In order to expand the range of surrounding awareness of vehicles, the collective
perception technology recently collects much attention [5]. The concept of collective
perception envisions sharing of sensing data obtained by onboard perception sensors,
e.g., RADAR, camera, LIDAR, etc. between road participants. Location information
of road participants detected by such sensors is attached to sensing data. Vehicles that
receive the sensing data recognize the presences of other road participants. Figure1
shows that a situation that the car Awhich does not detect the non-V2V-equipped car
D being the out-of-sight perceives the presence of D using by collective perception.
The authors of [5] evaluate the performance of a collective perception through real-
world tests using a small number of vehicles [6]. The test results showed that a vehicle
can recognize the presence of an obstacle installed on a road about three times faster
than the case of without the collective perception.

On the other hand, they also mention that the collective perception suffers from
scalability issues as the network grows. For V2V communication in US, Europe, and
Japan based on IEEE 802.11 wireless LAN technology is used [7–9]. It uses Carrier

A
(V2V/Camera)

Sensing
C

(V2V/Camera)
B D

Blind area
of A

Position of B, C, D
V2V

Beacon
Pos., speed, etc. of C
Position of D (Sensing data)

Sensing

Fig. 1 Detection of the presence of a car being out-of-sight using by collective perception
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Sense Multiple Access/Collision Avoidance (CSMA/CA) as the access mechanism
[10]. The higher the density of V2V-equipped vehicle periodically transmitting bea-
cons, the more the vehicles on the network send a beacon simultaneously. Therefore,
in such a situation, it is pointed out that the reception rate of beacons deteriorates due
to collisions of beacons caused by high vehicle density, the hidden terminal problem
and congestion of communication channels [11]. Accordingly, it becomes difficult
to recognize the presence of the surrounding road participants with an accuracy for
operating ADAS applications satisfactorily.

In order to satisfy the requirements of packet delivery in ADAS applications, we
introduce a strategy for transmitting beacons from vehicles at important positions
with relatively high transmission frequency in this paper. This strategy controls the
frequency of beacon transmission and/or transmission power so that a vehicle with
a sensor covering areas not covered by sensors of other vehicles can obtain more
transmission opportunities based on a positional relationship of vehicles and road
structure.

The remainder of this paper is organized as follows. In Sect. 2, we present work re-
lated to the transmission control of beacons in a vehicular network. Section3 proposes
the data transmission control strategy based on the positional relationship of vehicles
and road structure. In Sect. 4, we investigate the range of surrounding awareness of
vehicles in collective perception by simulation of a simple highway scenario when
giving a high priority to vehicles at important positions. Finally, Sect. 5 concludes
the paper and presents future direction of this study.

2 Related Work

When vehicle density is high, the packet collisions frequently occur and transmis-
sion delay increases due to the congestion of the communication channel and the
hidden terminal problem. To reduce packet collisions and to improve the beacon
reception rate, in such an environment, methods for controlling the beaconing have
been proposed.

The authors of [12] propose Distributed Fair Power Adjustment for Vehicular
Network (D-FPAV) that controls the transmission power of beacons based on channel
utilization.Vehicles increase the transmission power until the beaconing load exceeds
the maximum network load. As a result, D-FPAV can keep network load below a
given constant, and vehicles can use channels fairly.

European Telecommunications Standards Institute (ETSI) standardizes Decen-
tralized Congestion Control (DCC) algorithm as a part of medium access control
(MAC) protocol of Vehicle-to-X (V2X) in Europe [13]. DCC controls transmission
parameters (e.g., power, frequency, datarate, etc.) of beacons based on a Channel
Busy Ratio (CBR). Vehicles estimate the current level of channel utilization and
control the transmission parameters according to the level. Whenever an average
received signal level in a vehicle exceeds a predefined threshold, the vehicle regards
the current level of channel utilization as busy. In this case, the vehicle controls the
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transmission parameters so that vehicles in the vicinity can receive beacons stably.
On the other hand, if the vehicle does not regard the current level of channel uti-
lization as busy, vehicles control the transmission parameters to deliver beacons to
farther vehicles at a higher frequency.

Sommer et al. propose a method to control the transmission frequency of beacon
based on an available channel capacity and a message utility, Adaptive Traffic Bea-
con (ATB) [14]. Vehicle detects the number of collisions and the Signal-to-Noise
Ratio (SNR) of the beacon in the current communication channel. If the channel
is overloaded, the beaconing period of the vehicles is extended, resulting in fewer
beacons per time. In constant, if the channel is still underutilized, the beaconing fre-
quency of the vehicles is increased up to a certain upper limit. The message utility is
used to describe the importance of traffic information to be sent. This importance is
estimated given information such as the distance to an event and the age of amessage.
ATB allows messages that have been sent by vehicles closer to an event and newer
information to spread faster.

These methods essentially control beaconing based on the density of V2V-
equipped vehicle and do not take into account the positional relationship of vehicles
in terms of increasing the reliability of packet transmission and decreasing the trans-
mission delay. Therefore, packets from vehicles in an important location, e.g. at the
head of a cluster, where a vehicle can perceive obstacles in front of the cluster, could
fail to deliver beacons to a vehicle that needs the information contained in the bea-
con packets. It is considered that vehicles capable of transmitting beacons useful for
collision avoidance are different for individual vehicles depending on the positional
relationship of the vehicles and road structure. In order to increase the transmission
opportunities of such useful beacons and delivery the beacon with short transmis-
sion delay, we propose a strategy to control the transmission frequency based on the
positional relationship of vehicles.

3 Data Transmission Control Strategy

In this section, we firstly present the problem of controlling the transmission
power/frequency of the beacon according to vehicle density with some examples.
Then, we propose a strategy for controlling beacon transmission according to the
positional relationship of vehicles and road structure.

We classify the range of surrounding awareness of a vehicle into the following
two areas: a simple perception area and an extended perception area. As shown in
Fig. 2, we define a simple perception area as the area a vehicle can directly sense with
its own sensors, and an extended perception area as the combined area of a vehicle’s
simple perception area and simple perception areas of other vehicles that have sent
a beacon received by the vehicle.
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A

B

Beacon

Non-V2V-equipped car

Fig. 2 Simple perception area and extended perception area

3.1 Why Is Vehicle Density-Based Traffic Control Not Always
Effective?

3.1.1 No Occlusion Case

Figure3 shows beacon transmission frequency of each vehicle on a road, and the
aggregated beacon transmission frequency on the road. In this figure, we model a
road in one-dimension for the sake of simplicity. We assume that the communication
range of each vehicle is significantly long and the vehicles calculate the same vehicle
density. We do not consider the effect of occlusion here. Each vehicle can always
detect other vehicles and obstacleswithin its sensing range. In otherwords, the simple
perception area of a vehicle and the sensing range of the vehicle are the same. The
aggregated beacon transmission frequency of a location is calculated by summing the
beacon frequency of onboard sensors of vehicles that are covering the location. Let
FT be the threshold of the transmission frequency of a beacon necessary for a vehicle
to grasp the road conditions (including the existence of vehicles and obstacles) with
sufficient accuracy to prevent accidents, and FTh = 8Hz in Fig. 3. Let Fa be the
aggregated frequency of beacon transmission of each location on the road. If two
vehicles are in the same position and they have the same simple perception areas, the
Fa in the areas is 2F . If there is only one vehicle that has a simple perception area not
overlapped with other vehicle’s simple perception area, Fa in the simple perception
area of the vehicle is F .

Figure3a shows a case when the beacon transmission frequency of all vehicles
is set to a constant value. If the transmission frequency of all the vehicles, F is 5,
the transmission frequency of sensing information in a simple perception area of car
A is 5Hz. Thus, Fa in the area is less than FT . On the other hand, Fa in an area
where the simple perception area of car B,C, D and E overlap is the sum of the
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F of the vehicles. Therefore, Fa in the overlapping area is greater than FT . Fa in
the non-overlapping area, however, is less than FT . In the most overlapping area,
Fa (=20) is more than twice of FT . This means that beacons are being transmitted
excessively.

Figure3b shows Fa of a case where beacon transmission frequencies of vehicles
are controlled according to the vehicle density. If the vehicles regard the vehicle
density is high, they will reduce their beacon transmission frequency. Let us assume
F = 2. In such a case, Fa in the area where the simple perception areas mostly
overlapped can be reduced. However, only the area satisfies the required condition
Fa > FTh .

Figure3c shows a case of controlling the beacon transmission frequency by con-
sidering the overlap of the simple perception area of vehicles. In this case, F of a
vehicle in the area with a small degree of overlap of simple perception areas is in-
creased to 8. On the other hand, vehicles in the most overlapped area decrease their
F to 2. As a result, Fa in the simple perception area of all vehicles satisfies FT . In
addition, Fa in the area where the simple perception area is the most overlapped is
lower than when using a constant value of F .

3.1.2 Occlusion Case

Figure4 shows a situation where simple perception areas of V2V-equipped vehi-
cles are blocked by bodies of non-V2V-equipped vehicles. In this case, the area
surrounded by the non-V2V-equipped is out-of-sight of the V2V-equipped vehicles’
sensors. Hereinafter, we refer to such an area as a blind area. If a V2V-equipped
vehicle A is in a blind area, increasing the chance of sending beacons from A will
assist other vehicles out of the blind area know the condition in the area. In a case
when controlling beacon transmission frequency according to only vehicle density,
each vehicle uniformly controls the beacon transmission frequency. Thus, the beacon
transmission opportunity of vehicle A becomes the same as one of other vehicles and
beacons transmitted by vehicle A become will be hard to be received by other vehi-
cles. In order to increase the beacon transmission opportunity of A, the transmission

Fig. 4 Blind area for
V2V-equipped vehicles
made by non-V2V-equipped
vehicles

A

Simple perception area

Non-V2V-equipped car

B C

Blind area made by non-V2V-equipped cars
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Fig. 5 Blind area for
vehicles inside a cluster

Tails Heads

Cluster

Blind area for the vehicle inside the cluster

frequency of the vehicle B and C should be reduced. By this control, the blind area
for vehicles B and C can be covered with high aggregated beacon frequency.

Figure5 shows a cluster that is traveling by keeping a constant inter-vehicle dis-
tance and the blind area for vehicles inside the cluster. Sensors of vehicles in the
head and the tail group of the cluster can observe an area that is not covered by sen-
sors of other vehicles in the cluster. In a case when controlling beacon transmission
frequency according to only vehicle density, as discussed above, the beacon trans-
mission opportunity of each vehicle is the same. For this reason, beacons transmitted
by the vehicles in the head and the tail of a cluster become hard to be received by other
vehicles in the cluster. Therefore, in order to increase the opportunity of transmitting
beacons from vehicles at the head and tail of the cluster, the transmission frequency
of other vehicles in the cluster should be reduced. In this way, it will be possible to
cover the blind area at the front and rear of the cluster for the vehicles in the cluster,
so that the vehicles can notice the existence of vehicles approaching the cluster from
the front or the back.

3.2 Basic Concept for Giving a Higher Priority of Sending
Sensor Information

In order to disseminate useful sensing data for ADAS, in our strategy, vehicles having
such sensing data transmit beacons including sensor data with a higher priority than
others (i.e., a chance of beacon transmission of the vehicles is more than others). In
this section, we discuss the positional relationship between vehicles with such useful
sensing data and other vehicles. In addition, we discuss the relationship between
such vehicles and road structures.

3.2.1 Blind Area in a Cluster

As described in the previous subsection discussing the effect the occlusion, the line-
of-sight of onboard sensors of vehicles inside a cluster are blocked by bodies of outer
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side vehicles. We define a cluster as a group consisting of V2V-equipped and non-
V2V-equipped vehicles that are moving in the same direction and keeping a constant
inter-vehicle distance. Head/tail vehicles of a cluster can observe a wider area, while
vehicles in the inside of the cluster are hard to observe outside of the cluster. If an
obstacle is in front of the cluster or a motorcycle approaches to the cluster rapidly,
vehicles inside the cluster are hard to detect the existence of the obstacle or the
motorcycle directly. From these reasons, vehicles at the head or the tail of a cluster
have useful sensing data for ADAS.

3.2.2 Overlapping of Simple Perception Areas

Sensing data obtained by vehicles observing an area that is not covered by sensors of
other vehicles should be transmitted more frequently than sensing data of vehicles
observing an area overlapping with a simple perception area of other vehicles in
order to disseminate useful sensing data for ADAS. If the size and the shape of
simple perception area of onboard sensors of all vehicles are the same, as shown in
Fig. 6a, most of the simple perception area of a vehicle that is in a group of vehicles at
the head/tail of a cluster and is on the center lane overlapwith simple perception areas
of other vehicles of the group on the left and the right lanes. Furthermore, vehicles at
the side edge of the group of vehicles at the head/tail of the cluster have more useful
sensing data for ADAS than others in the group because they can observe right/left
side of the cluster in addition to the front/back of the cluster.

So far, we have discussed cases where vehicles at the head of cluster or the tail of
the cluster are moving side by side. Drivers, however, tend to avoid driving vehicles
side by side because it is hard to see a vehicle moving together side by side in the
neighboring lane. Thus, the shape of the head group of a cluster is not flat as shown in
Fig. 6b. In such a case, the overlapped area of the simple perception area of the head
vehicle of a cluster and one of vehicles at the head of other lanes can be small, and
the head vehicle of the cluster has wider view of the outside of the cluster. That is, a
vehicle at the head or the tail of a cluster has more useful sensing data for ADAS.

3.2.3 Long Cluster

When a size of a cluster is long in the traveling direction of the vehicles in the cluster,
a vehicle not detected by sensors of vehicles in the head group or the tail group may
approach to the cluster from the side of the cluster. Figure6c shows a car not detected
by sensors of vehicles in the head and tail group approaches to a long cluster from
the side of the cluster. The approaching car A is detected by sensors of car B. Car B
can notify cars in the cluster the existence of car A, and notify car A of the existence
of cars in the cluster. In this case, B obtains useful sensing data for the surrounding
cars in the cluster. That is, vehicles at the edge of a cluster have useful sensing data
for ADAS. The outer side of the cluster can be efficiently covered by sensors on
vehicles the sensor coverage distance away from the vehicles in the head or the tail
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(a) Overlapping of simple perception areas
of vehicles in the head and the tail group of
a cluster. (Vehicles in the head or the tail
group are moving side by side.)
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tail vehicle of the cluster are given a high

beacon transmission prioity and lane
head/tail in a lane nCL away from the

head/taile vehicles are given a high beacon
transmission priority (CL = 3).

Fig. 6 Cars having useful sensing data for ADAS in cluster

group of the cluster. Thus, it is reasonable to give such vehicles a higher priority of
sending sensor data.

3.2.4 Wide Cluster

Let us assume that a size of a cluster is wide laterally with respect to the traveling
direction in the cluster (e.g. highway with many lanes). Here, we focus on the ac-
curacy of detecting an object by sensors. The accuracy of detecting an object of a
perception sensor such as LIDAR drops when the distance between the sensor and a
detection target is long. Thus, for obtaining higher accuracy of object detection, we
should avoid using longer range of sensors.

LetCL be the number of lanes that can be covered by sensors of vehicleswith high
accuracy. Vehicles at the head and the tail groups of a cluster can efficiently cover an
area outside the cluster with high accuracy if a vehicle at the head of vehicles group
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Fig. 7 A car having useful
sensing data for ADAS on a
merging lane

Wall

on each lane selected at an interval ofCL lanes is given a higher beacon transmission
priority.

Figure6d shows a case when CL = 3. Red cars are given a higher beacon trans-
mission priority. We can see that the sensor coverage with high accuracy of the red
cars cover an area outside the cluster with small overlapping areas.

3.2.5 Merging Lanes

Figure7 shows a case where lane merges with a road with multiple lanes. One red
car that is close to the merging point is given a higher beacon transmission priority
because it has a view covering both two merging lanes and has useful sending data
for ADAS.

3.3 Proposed Strategy

Based on discussions in the Sect. 3.2, in our strategy, a vehicle transmits beacons
with a high priority if the vehicle satisfies one of the following conditions:

Condition 1 It is at the head or the tail of a cluster.
Condition 2 It is at the head of a vehicles on a lane in the cluster and the lane is

CL lanes away from the lane where the head of the cluster exists.
Condition 3h It is at the tail of a vehicles on a lane in the cluster and the lane is

CL lanes away from the lane where the tail of the cluster exists.
Condition 3t If the distance between the vehicle and a vehicle satisfies the first or

the second condition in the same lane is almost the same as the sensing range with
high accuracy.

Condition 4 It is the closest to the lane merging point.
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Fig. 8 Vehicles disseminating beacons with high priority in our strategy

Figure8 shows that cars satisfyingoneof the above conditions in red.The encircled
numbers in the figure correspond to the condition index numbers.

4 Simulation Study

To demonstrate the effectiveness of the proposed strategy for controlling beacon
transmission frequency and/or transmission power according to the positional rela-
tionship of vehicles and road structure, we evaluate the effect of the strategy through
simulation using Scenargie wireless network simulator [15]. We focus on the second
pattern presented in Sect. 3.3 and controlling the beacon transmission frequency.

4.1 Simulation Scenario

We arranged three clusters of cars on a 770m straight highway with 7 lanes in the
simulator as shown in Fig. 9. In each cluster, the distance between cars on the same
lane is 20m, and the length of the cluster is about 100m. The distance between
neighboring clusters is 80m. All cars keep their positional relationship during the
simulation. In other words, all cars move parallel at the same speed. The size of each
car is 4.7m × 1.7m. We assume that all cars are equipped with a LIDAR sensor.
They can detect objects on the road in 150m range unless their line-of-sight is not
blocked by bodies of other cars. Table1 summarizes other simulation parameters.
All cars have the V2V communication function and they transmit beacons including
LIDAR sensing data at a given frequency according to their positional relationship.
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Fig. 9 Cars and road layout in the simulation

Table 1 Simulation
parameters

Radio IEEE 802.11p at 5.9 GHz

Bandwidth 10 MHz

Data bitrate 6 Mbps

Propagation model Free space

Transmission power 20 dBm

Receiver sensitivity threshold −85 dBm

Carrier sense level −65 dBm

Packet size 1500 Bytes

LIDAR sensor range 150 m

LIDAR sensor horizontal
FoV

360◦

Sensing interval 0.1 s

Simulation time 30 s

Number of runs 10

We simulated various patterns of beacon transmission frequency. The patterns
are summarized in Table2. In the table, “Head & tail (all lanes) 10–1” means that
a head and tail of a cluster in all lanes transmit beacons with 10Hz and the others
transmit beacons with 1Hz, and this transmission pattern is referred to as HTA101.
Furthermore, “Center lane 10–1” means that cars in a center lane transmit beacons
with 10Hz, and the others transmit beacons with 1Hz and “const. 1” means that all
cars transmit beacons with constant frequency 1Hz.

4.2 Performance Metrics

We introduce performance metrics, Δt-view and 2Δt-view, for evaluating the effec-
tiveness of the proposed strategy. Δt-view is an extended perception area obtained
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Table 2 Beacon transmission pattern

Group Allocation of beaconing frequency Name

Proposed (context aware beaconing
frequency)

Head & tail (all lanes) 10–1 HTA101

Head & tail (all lanes) 10–5 HTA105

Head & tail (center lane) 10–1 HTC101

Head & tail (center lane) 10–5 HTC105

Head & tail (edge lanes) 10–1 HTE101

Head & tail (edge lanes) 10–5 HTE105

Center lane 10–1 CL101

Center lane 10–5 CL105

Constant frequency Const. 1 CT1

Const. 5 CT5

Const. 10 CT10

t2

A B C

Direct-view t-view 2 t-view

tt t

Beacon
with sensor data

t0

t1

t2

t

2 t
Sensing and
calculation time
of a view area

t-view and 2 t-view at t0 and t1

Fig. 10 Δt-view, 2Δt-view and direct-view
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from beacons sent within the pastΔt time duration. Figure10 illustrates the definition
of Δt-view. 2Δt-view is also defined in the similar manner. Direct-view is defined as
a simple perception area obtained from only line-of-sight of onboard sensors of the
car. We assume that each beacon includes information of the simple perception area
of the beacon sender car. Even if a car’s onboard sensor’s view is blocked by other
car’s body, if the blocked area is covered by the view of other cars that have sent a
beacon to the car, the car can obtain the view area blocked from its sensor.We assume
that sensing data would reach all cars one hop away. As time passes, information in a
beacon becomes old. If the ADAS allows Δt delay of sensing information, Δt-view
tells the effective extended perception area for the ADAS system. We assume cars
evaluate direct-view, Δt-view, and 2Δt-view every 100ms and Δt = 100ms.

4.3 How to Calculate the View Area

For calculating the view area of a car, we virtually placed points at a constant interval
on each lane and counted the number of the points perceived by the cars.

4.3.1 Points Detected by a Car’s LIDAR

Points for calculating the view area are virtually placed on the center of all lanes at
a 0.5m interval. Figure11 shows points detected by the LIDAR of car A and points
not detected by the LIDAR. A’s LIDAR can detect a point if there are no obstacles
between A and the point. On the one hand, A’s LIDAR cannot detect a point if there
is a body of another car between A and the point. More specifically, the LIDAR of
A can detects a point P satisfying the following two conditions:

1. a line drawn from the center point of A to point P does not intersect the line
forming the body of another car.

2. P is within the sensor range of the LIDAR of A.

A

Sensing range of A0.5 m

Blind area
of A

Points detected by the LIDAR of A

Points NOT detected by the LIDAR of A

Fig. 11 Points detected by the LIDAR of car A and points not detected by the LIDAR
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4.3.2 Calculation of the View Area

Direct-view Vdirect of a car is calculated as follows:

Vdirect = Np_detected

Np_road
(1)

Np_detected is number of points detected by the LIDAR of the car, Np_road is number
of points on the road.

Δt-view VΔt of a car is calculated as follows:

VΔt = Np_detected + Np_beacon

Np_road
(2)

Np_beacon is the number of points obtained from beacons sent within the past Δt time
duration. 2Δt-view is also calculated in the similar manner.

4.4 Simulation Results

Figure12 plots the relationship of view area (Δt-view, 2Δt-view and direct-view) of
a car at the center of the right hand cluster in Fig. 9 and the amount of communi-
cation traffic of each beacon transmission pattern when Δt is 100ms. We calculate
the amount of communication traffic as the sum of beacon frequency of all cars.
For example, in case of HTE101, the communication traffic is 483 beacons/s. Each
black dotted frame in the figure indicates a beacon traffic pattern, and green, blue
and read plots in a frame correspond to Δt-view, 2Δt-view and direct-view of the
traffic pattern, respectively. The values of a view area are normalized. Ideally, the
communication traffic should be smaller and the perception area should be larger. If
points of a beacon transmission pattern are plotted closer to the bottom right of the
graph, the result indicates the beacon traffic pattern is more effective.

In all cases, the value of direct-view is the same (0.09) because all cars move
parallel at the same speed. In case of CT1, CT5 and CT10, Δt-view and 2Δt-view
are less than 0.2. In contrast, in the case of the beacon transmission patterns derived
from the proposed strategy,Δt-viewand2Δt-vieware about 0.8 or larger than 0.8. For
example, 2Δt-view of HTA105 is about 10 times wider than one of CT10. There are
two possible reasons why the view values based on constant transmission patterns is
lower than the ones based on proposed transmission patterns. First, packet collisions
occur frequently and packets suffer a long waiting time before transmission due to
the high communication traffic and the same transmission chance of packets of all
cars. Second, the number of transmissions of valuable information for expanding
an extended perception range, i.e. information about out of the cluster, is smaller
than the proposed transmission patterns due to the same beacon transmission chance
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of all cars. The beacon transmission pattern that achieves the largest Δt-view and
2Δt-view is HTA101.

These results show that when cars transmit beacons according to the proposed
beacon transmission strategy,Δt-viewand2Δt-viewcan bewider than using constant
beacon transmission patterns. That is, controlling transmission frequency of beacon
according to the positional relationship of cars can expand an extended perception
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area of a car wider than controlling transmission frequency uniformly. Δt-view and
2Δt-view of CL101 are larger than ones of HTE101, although communication traffic
ofCL101 is almost the sameas oneofHTE101.Additionally, as described inSect. 3.3,
the cars are more likely to cover a wider area in a left and right of a center lane by
sensors of the cars compared to sensors of other cars when the number of lanes is
large. Thus, Δt-view and 2Δt-view of CL101 are larger than ones of HTE101 due to
cars covering wider area inside a cluster than the others transmit beacons with higher
transmission frequency than other cars.

Figure13 shows the time transition of view area (Δt-view, 2Δt-view and direct-
view) of the car at the center of the right hand cluster over time when Δt is 100ms.
Figure13a and b shows the result when beacons transmission pattern are CL101 and
HTA101 respectively. In both figures, we can see that Δt-view sometimes drops,
while 2Δt-view is stable. This indicates that loss of sensing data from other cars is
compensated by following beacon packets from other cars.

5 Conclusions

In this paper, we proposed a data transmission control strategy that controls the
transmission power and/or frequency of messages according to the positional re-
lationship of vehicles and road structure in order to exchange the data of onboard
perception sensors that cover a region that is not covered by onboard perception
sensors of other vehicles. Our proposed strategy assume vehicles recognize traffic
conditions by collective perception. In order to avoid collision accidents using on-
board perception sensors and V2V communication, it is necessary for vehicles to
recognize surrounding traffic conditions with sufficient accuracy. We presented that
vehicles can recognize surrounding traffic conditions efficiently by controlling bea-
con transmission considering areas of surrounding awareness of vehicles compared
to controlling beacon transmission simply based on vehicle density and road struc-
ture. The strength of using this strategy is summarized as follows. (i) Vehicles can
recognize the positions of objects in a blind area of its sensors with high accuracy,
(ii) The load of the V2V communication channel is reduced.

We presented preliminary simulation results to demonstrate the effectiveness of
the proposed strategy. We showed that the surrounding awareness of vehicles can
be improved by controlling opportunities for beacon transmission of vehicles based
on the positional relationship of vehicles and road structure compared to a case of
controlling the opportunities uniformly.

For our future work, we plan to design a concrete algorithm for calculating a suit-
able priority for sending beacons and evaluate the performance through simulations
of realistic traffic scenarios.
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Increase of Traffic Efficiency by Mutual
Concessions of Autonomous Driving Cars
Using Deep Q-Network

Tomohisha Yamashita, Ichitaro Ogawa, Soichiro Yokoyama,
Hidenori Kawamura, Akira Sakatoku, Tadashi Yanagihara, Tomohiko Ogishi
and Hideaki Tanaka

Abstract In recent years, autonomous operation technology has been actively devel-
oped in various research institutions and companies. Many experiments have been
conducted on public roads to confirm whether an autonomous driving car can drive
safely. However, there is a lack of research on autonomous driving operation for
improving traffic efficiency with inter-vehicle communication. In our research, we
implement mutual concessions of autonomous driving cars with Deep Q-Network
(DQN), which is a deep neural network structure used for estimating the Q-value
of the Q-learning method. Mutual concessions are a collective behavior in which a
vehicle sometimes gives way to other vehicles and sometimes is given way by other
vehicles. To verify the influence of mutual concessions, an experiment environment
has been developed with radio control (RC) cars. Our experiment environment con-
sists of up to 16 RC cars equipped with infrared LED markers and RaspberryPi3,
an infrared camera for location estimation of the RC cars, a laptop controlling the
RC cars through Wi-Fi, and a course of 6m in length and 6m in width. In this
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paper, mutual concessions of autonomous cars are implemented at the confluence at
a roundabout. DQN is applied for the decision-making mechanism to decide speed at
the roundabout based on the status of other cars. As a result of the experiment in our
experiment environment, it is confirmed that mutual concessions at the roundabout
were acquired with DQN, and that mutual concessions can increase traffic efficiency.

1 Introduction

The recent development of automatic operation technology has been remarkable,
the Japanese government has come up with a policy of practical use of unmanned
automatic operation mobile services in limited areas in 2020 [16]. Definition of the
current automatic operation has followed the definition of the International Society
of Automotive Engineers (SAE), which is a standardized mechanism established in
the United States in 1905.

The guidelines for automatic operation of the Japanese government are given in
“Public-Private ITS Initiative Roadmap 2017”, where the four levels of classification
of the automatic operation was changed to a five-level classification. According to
the current level classification of the automatic operation, the implementation of all
operating task system in certain conditions, which aims to commercialization by
2020, corresponds to level 4.

Various sensors such as stereo camera, a rider, a millimeter-wave radar, a GPS,
and an odometer are mounted on the autonomous driving car. With these sensors, the
autonomous driving car detects other vehicles, obstacles, and pedestrians and esti-
mates self-position and surrounding situation. Particularly in analysis of the camera
image, the tertiary artificial intelligence boom has been significant, and since con-
volutional neural network (CNN: Convolutional Neural Network) [7] results have
been applied, a significant improvement in the object sensitivity has been observed.
Stable operation control for driving along a driving line and maintaining appropri-
ate distance from other vehicles is realized by learning the method of adjusting the
steering and the acceleration/deceleration by using the acquired sensor data. Learn-
ing of driving behavior is one of the most important among automatic operation
technologies.

ICT is also important in order to perform the learning of the driving action in
automatic driving. NVIDA’s Grzywaczewski [3] reported a trial calculation of the
data capacity and the amount of computation required for the learning of the driving
behavior for automatic operation vehicles. As a modest estimate, even if only five
cameras are focused on, every hour, 1 TB or more of the data is generated in one
autonomous driving car. In consideration of the compression and sampling of data,
204.8 PB of data is generated in 100 cars during 260 business days (8h per day).

Because it is necessary to aggregate the large amount of driving data from the
vehicles, the fifth-generation mobile communication system (5G), with large capac-
ity, low latency, and high reliability, is required for learning driving behavior. Further,
because 5G can support real-time sharing of location information, 5G is expected to
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contribute not only aggregation of the learning data, but also to accident prevention
and improvement of traffic efficiency.

In previous research,many researchers haveworked on avoidance of accidents and
collisions by learning driving behavior, and the alleviation of congestion by central
information system. However, approaches addressing interaction among vehicles
have received relatively little attention. Because there is intensive interaction among
the vehicles in transportation systems, operation control of a single vehicle and
information sharing among vehicles are not sufficient to enhance the safety and
efficiency.

For example, assumea situationwheremultiple carsAre simultaneously approach-
ing an intersection without a traffic signal. When each vehicle is controlled indepen-
dently, there is a possibility that all vehicles simultaneously advance to an intersection
or stop. The adjustment process of vehicle behavior through a central system con-
sists of the transmission of information from the vehicles to a central system, the
adjustment of the central system, and the notification of adjustment results to the
vehicles. Therefore, there is a possibility of a delay in the response and inappropriate
adjustment due to lack of information.

Based on this research background, we have been working on collaborative learn-
ing with radio control cars (RC cars) using DQN (Deep Q-Network) [9]. DQN is
a combination technic of Q learning and Deep Neural Network (DNN) to infer the
action-value function of the table form of the Q table in the approximate function
using the DNN. In this study, we implement mutual concessions of autonomous driv-
ing cars with DQN. To verify the effectiveness of the proposed mutual concessions,
we developed an experiment environment for verification of autonomous operation
with RC cars. Our experiment environment consists of 16 RC cars equipped with

Fig. 1 Appearance of the course on which the RC cars run
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infrared LED markers and RaspberryPi3, and a course of 6m in length and 6m in
width., shown in Fig. 1.

We found that “mutual concessions” are valid for the improvement of the traffic
efficiency of the vehicles. It is one outcome of the collaborative research [10] of
Hokkaido University and KDDI Research, Inc. since 2016 that the autonomous-
driving cars learnmutual concessions of driving path, and the overall traffic efficiency
can be thereby increased. The demonstration video of mutual concessions with the
RC cars has been opened to the public on YouTube [8].

In Sect. 2, mutual concessions among vehicles is explained. In Sect. 3, previous
studies where machine learning is used for acquiring the driving behavior of the
autonomous driving car are reviewed. In Sect. 4, the experiment environment with
RC cars and the learning of mutual concessions with DQN are described. In Sect.
5, the influence of mutual concessions in the experiment environment is confirmed.
Finally, our paper is summarized in Sect. 6.

2 Implementation of Mutual Concessions

This section is focused on mutual concessions of the autonomous driving car in a
roundabout, and explaining how mutual concessions work. First of all, in this study,
“mutual concessions” between the autonomous driving cars are considered as per the
situation shown in Fig. 2. The roundabout is an intersection format in which inflow
vehicles to intersection are handled in a one-way manner on an annulus around
the central island, and follows a control scheme with priority over vehicles driving
on the ring road. In the roundabout, there is priority to the vehicles driving on the

Fig. 2 Outline of mutual concessions acquired by using machine learning
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central circle than the vehicles attempting to enter the central circle from the outside.
Therefore, the vehicle driving on the central circle can move without stoppage.

However, it is possible to increase traffic efficiency if the vehicles driving on the
circular path give way to the vehicles attempting to enter from the outside. From
the point of view of the individual vehicle driving on the circular path, not to give
way is always the dominant strategy. On the other hand, from the point of view of
all vehicles, to give way is sometimes assumed to result in increasing the traffic
efficiency of all vehicles collectively.

Improvement of traffic efficiency by giving way can be observed in various real
contexts.

For example, suppose that at an intersection with no right turn lanes on one side of
a two-lane road, a leading vehicle to turn right is waiting for passage of one oncoming
vehicle. Some vehicles are also waiting after the leading vehicle in the same lane,
but they have intention to go straight on the intersection In this case, if a vehicle
approaching the intersection in the opposite lane gives way to the leading vehicle to
turn right, it is possible to improve the collective traffic efficiency.

It is easy to understand that giving way under such a simple circumstance can
increase collective traffic efficiency. However, it is not revealed that the collective
traffic efficiency can be increased bymutual concessions, which is a collective behav-
ior in which a vehicle sometimes gives way to other vehicles and sometimes is given
way by other vehicles. Therefore, in this paper, we verify the following two hypothe-
ses; (1) mutual concessions can be acquired by machine learning, and (2) mutual
concessions can increase the traffic efficiency of all vehicles.

In practice, mutual concessions, such as the veteran driver giving priority road
to beginner learner driver, are usually observed. This kind of mutual concession
is different from driving according to traffic signals and road signs, because it is
not based on clear rules. For that reason, it has been asserted that it is difficult to
realize mutual concession in an automatic operation in which the machine judges
the situation on behalf of a person and performs a driving operation. If autonomous
driving cars learn mutual concessions, the realization of the automatic driving in the
general road will be one step closer.

3 Related Research

The present section offers a review of research on acquisition of driving behavior
with machine learning and research related to mutual concessions.

Bojarski et al. at NVIDIA [2] reported an automatic operation system that per-
forms learning of the driving behavior in the End-to-End. in this operation system
with CNN, direct learning of driving behavior of wheel operation and accelera-
tion/deceleration is performed based on the image acquired from a camera mounted
on the driver’s seat.

In the research of Kendall et al. at Wayve Co. [6], in the learning environment
where an automated driving vehicle moves back into the lane when the automated
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driving vehicle is out of the lane, applying the Actor-Critic method led to the auto-
matic driving car successfully learning to drive inside the lane with a 20-minute
training.

Ishikawa et al. [5] tried to apply Q-learning to acquire driving behavior of an
autonomous driving car based on traffic simulation. This research adopted a cooper-
ative learning framework in which a plurality of agents (vehicles) refer to and update
the same behavior value function Q by applying a compensation setting that gives
a negative compensation to a stop or a distance equal to or greater than a certain
distance. As a result, agents learned the timing of acceleration and deceleration of
automated driving vehicles and lane change in single-track bottleneck, and it was
confirmed that the traffic flow rate increased as a result.

David et al. [4] sought to combine automatic operation and DQN. It has been
reported that in the passage throughput of an intersection without traffic signal, the
control of autonomous driving car by using a DQN is better than rule-based control.

The demonstration of the “collision-free car” proposed by Nippon Telegraph
and Telephone Corporation, Toyota Motor Corporation, Preferred Networks can be
cited as an example of the research applying this approach with RC cars. In this
demonstration, under the environment in which a camera is set over a driving area to
detect the position data of the vehicles, acceleration/deceleration and steering control
of the vehicle to prevent collision was acquired by using the DQN [12].

Researching the control method of the autonomous driving cars in a junction,
Jackeline et al. [14] reported that there are distributed type and centralized type, and
that many schemes have been proposed for each. In another paper, Jackeline et al.
[13] evaluated fuel economy of autonomous driving cars by centralized control in a
junction.

Turning to research trends in information sharing of autonomous driving cars,
Tanari et al. [11] have proposed a spatial information platform to share autonomous
driving cars status and path through servers. Moreover, Sato et al. [15] substantiated
that the actual vehicle can share information by using theLocalDynamicMap (LDM)
for integrally managing information of vehicles and pedestrians.

4 Development of Experiment Environment

The present section elaborates on the experiment environment with the RC car. At
first, we explain the whole of the experiment environment. Then, we explain two
main sub-systems of the experiment environment. One is the location estimation
system for acquiring the position of the RC cars. The other is the driving operation
system, consisting of an accel PWM module, steering PWM module, and learning
module of mutual concessions with DQN.
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4.1 System Outline

The experiment environment shown in Fig. 3 consists of RC cars (up to 16 units)
equippedwith IRLEDs andRaspberry Pi 3, a camera for location estimation of theRC
car, a laptop PC for driving control, and a log viewer. Figure4 shows the appearance
of the RC car, and Fig. 5 shows the RC car without the body. The present subsection
explains the function and processing procedure of the experiment environment.

The experiment environment using the RC car constructed in this research is
located between the experiment by the actual autonomous driving car and the traffic
simulation of the software.

An advantage of the experiment environment using RC cars is that it is possible to
conduct experiments safely and inexpensively compared with experiments using real
automatic driving vehicles. The experiment environment using RC cars is a useful
approach because it can naturally capture realistic elements such as location esti-
mation, communication delay, and environmental disturbance compared to software
simulation.

Fig. 3 System outline of the experiment environment

Fig. 4 Appearance of the
RC car
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Fig. 5 Inside of the RC car

Fig. 6 Procedure of location estimation and determination of accel and steering PWM in the
experiment environment

The control PC determines the traveling direction and the traveling speed of
each RC car based on the positions of all the vehicles, and it transmits them to the
Raspberry Pi 3mounted on eachRC car.Wi-Fi is applied for communication between
the control PC and RC cars. The Raspberry Pi 3 installed in the RC cars operate the
motors based on the accelerator/steering PWM received from the control PC. The
log viewer receives the position, speed, and internal information of the RC cars from
the control PC and visualizes it, shown in Fig. 3.

In the experiment environment, the RC car is controlled based on its position and
the surrounding car situation, as shown in Fig. 6. The monochrome network camera
shoots the images of IRLEDs on the RC car and sends them to the control PC. The
location estimation system in the control PC calculates the position, direction, and
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the car ID of the RC car from the positional relationship of IRLEDs attached to the
ceiling of the RC car. The accel PWM module determines the target speed based
on the situation of the surrounding vehicles and outputs the PWM for accel control.
The steering PWMmodule determines the direction along the target points based on
the driving line and outputs the PWM for steering control. The RC car receives the
PWMs and operates the motors based on accel/steering PWM modules.

4.2 Location Estimation

In location estimation, the position, direction, and ID of the RC car are determined
from the positional relationship of IRLEDs attached to the ceiling of the RC car. Up
to eight IRLEDs are attached to the RC car. Three IRLEDs are used for the position
recognition, and up to five IRLEDs are used for the car ID recognition. Location
estimation consists of camera image transformation, camera distortion correction,
perspective transformation, and position and ID recognition of the RC cars (Fig. 7).

At first, in camera image transformation, the infrared network camera ofVLG24M
with VS-0618H1 lens set at 6m above the ground shoots the IRLEDs of all RC cars
on the course. Frame rate of the camera is at the highest 38.5 f ps and resolution is
1920 × 1200. The camera images acquired by the camera are sent to the control PC
via a LAN cable at 27.8 f ps.

The control PC calculates the center of gravity of the white areas (IRLEDs) in
the image and performs distortion correction of the camera to determine the posi-
tion in the Cartesian coordinate system based on the algorithm proposed by Suzuki

Fig. 7 Position of target point for steering PWM
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et al. [17]. Correction of the relative camera distorted coordinates of the detected
IRLED corrects the height by the detected position of the IRLED real coordinates.
The position, direction, and car IDs of the RC cars are determined from the positional
relationship of IRLEDs and are converted into real coordinates by perspective trans-
formation [18]. Please refer to the reference [10] for detailed explanation of camera
distortion correction, perspective transformation, and position and ID recognition.

4.3 Driving Operation

In driving operation of the RC car, there are two operation types. One is steering
operation, to move to the target point. The other is accel operation, to move at the
target speed. The present subsection explains the steering and accel operations of the
RC car.

4.3.1 Steering Control

In steering operation of the RC car, the RC car is supposed to move to a target point.
To implement this operation, the steering PID control is applied. The output of the
steering PID control is the steering PWM.

To move to a target point, it is necessary to calculate relative angle θt from the
current moving direction to target point Rt in step t . Target point Rt in step t is
calculated as described in the next paragraph.

Here, the direction and centroid of the RC car in step t are described as dirt and
centroid Ot . The driving line is defined based on Cubic Bézier curve and the figure
of a road. Point Qt in step t is defined as the nearest point to the RC car on the driving
line (centroid Ot ). Target point Rt is determined based on the length of Ot Qt .

At first, based on the length of Ot Qt the length from target point Rt to point Qt

is determined using the following formula 1.

Qt Rt [m] =
⎧
⎨

⎩

1.2 (Ot Qt ≤ 0.3)
3.2 (0.8 ≤ Ot Qt )

4.0Ot Qt (otherwise)
(1)

The parameters in formula (1) are adjusted heuristically in order to make the RC car
follow the driving line as closely as possible.

Subsequently, point Rt is selected as the point satisfying that the length is Qt Rt and
that it is above the driving line. When the position of target point Rt is determined,
relative angle θt from the current moving direction to target point Rt in step t is
determined. Finally, steering PWM is calculated using the following formula (2),
and is sent to the steering motor.
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PWMsteering
t = θt × KP +

∑

t

θt × KI + (θt − θt−1) × KD, (2)

where PID parameter KP is 80.0, KI is 5.0 × 10−5, and KD is 70.0.

4.3.2 Accel Control

The accel PWMmodule determines the target speed and outputs the PWM for oper-
ating the accelerator motor shown in Fig. 8.

In the accel PWMmodule, the target speed candidates calculating module calcu-
lates the following five target speed candidates.

Emergency stop for collision avoidance

The emergency stop is a safety device for when there is another RC car in front of
the RC car. The target speed for emergency stop is given by formula (3).

T SEmargencyStop
t (vt , d

f ront
t ) =

{
0 (d f ront

t < dthr_EmargencyStop)

vt (otherwise),
(3)

Fig. 8 Procedure of determination of the accel PWM



368 T. Yamashita et al.

where vt is the other candidate speed in step t , d f ront
t is the distance to the RC car

in front, and dthr_EmargencyStop is the activation threshold of emergency stop. Here,
dthr_EmargencyStop is set as 1.0 × 10−1.

Upper limit of speed change

The upper limit of speed change is set to suppress sudden braking at deceleration.
The target speed based on the upper limit of speed change is given by formula (4).

T SAccelLimit
t (vt , vt−1) =

⎧
⎨

⎩

vt−1 + athr_upperΔt (athr_upper < vt − vt−1)

vt−1 − athr_lowerΔt (vt − vt−1 < −athr_lower )

vt (otherwise),
(4)

where athr_upper is the upper limit of acceleration, athr_lower is the lower limit of
acceleration, and Δt is the time for 1 step. Here, athr_upper and athr_lower are set as
2.0 and 2.0, respectively. Δt is set as 8.3 × 10−2 sec(=12 f ps).

Optimal speed model

TheOptimumSpeedModel (OVM) [1] is amethod of deciding the speed based on the
distance from the RC car driving ahead. This model is used for speed determination
during normal driving. The target speed based on the OVM is given by formula (5).

T SOVM
t (d f ront

t ) = a ∗ (tanh(d f ront
t − c) + tanh(c)), (5)

where d f ront
t is the distance to the car in front, and a and c are the parameters of

OVM.When there is no preceding carwithindmax ahead,d
f ront
t is set as themaximum

distance dmax . Here, a, c, and dmax are set as 1.0, 7.0 × 10−1, and 3.0, respectively.

Speed for stopping at stop lines

There are places where it is necessary to accurately stop at a stop line, such as the
confluence and T-junction in the course. This speed is used to decelerate and stop
when the distance to the stop line becomes less than or equal to a certain value. The
target speed for stopping at a stop line is given by formula (6).

T SStopLine
t (vt , d

StopLine
t ) =

⎧
⎨

⎩

0 (dStopLine
t < dthr_Stop)

vmin + 1.6(dStopLine
t − 0.4) (dthr_Stop ≤ dthr_Stop < dthr_Deceleration)

vt (otherwise),
(6)

where dStopLine
t is the distance to he stop line, vmin is the minimum speed of the

RC car, and dthr_Stop and dthr_Deceleration are the activation threshold of stop and
deceleration for stopping on stop line, respectively. Here, thresholds dthr_Stop and
dthr_Deceleration are set as 0.4 and 1.2, respectively.
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Fig. 9 Procedure of selection of the target speed

Mutual concessions

The speed setting for mutual concessions with DQN is explained in the next subsec-
tion.

Target speed selecting module selects target speed v∗
t from the five candidates

based on the procedure in Fig. 9. If the condition of emergency stop is satisfied, the
target speed is determined as the speed for emergency stop for collision avoidance.
Otherwise, target speed selecting module selects the slowest one from the speed
for stopping at stop line, the speed based on the OVM, and the speed for mutual
concessions. And then, the condition of the speed based on upper limit of speed
change is applied to the slowest one, and the target speed is determined.

For example, if there are other vehicles within 0.1m in front of the RC car, the
target speed selecting module selects the speed for emergency stop as the target
speed v∗

t . In this case, even if the target speed for stopping at the stop line has been
calculated, the target speed selecting module selects the speed for an emergency stop
because the priority of emergency stop is higher than that of stopping at the stop line.

As another example, if there is no preceding car within 10m ahead of the RC car
and it is close to the stop line, the target speed selecting module selects the speed for
stopping at the stop line because it is the minimum speed.

Finally, the accel PWM is calculated using the following formula (7).

PWMaccel
t = PWMaccel_Main

t + PWMaccel_Corr
t ,

(7)
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The accel PWMconsists of a main component term PWMaccel_Main
t and a correction

term PWMaccel_Corr
t . Themain component term PWMaccel_Main

t is calculated based
on the relation of the accel PWM input to the motor and the actual speed of the RC
car. In preliminary experiments, it was recorded the speed of the RC car observed
when a certain PWM was input. This record is used as a measure to determine the
PWM for driving the target speed. Please refer to reference [10] for the preliminary
experiment for investigating the relationship between the input PWM and the speed
of the RC car.

However, even if a certain PWM is input to the motor, the same speed cannot
always be obtained depending on the current speed and acceleration. Therefore,
PWMaccel_Corr

t for correcting PWMaccel_Main
t is required according to the situation

of the RC car. The correction term PWMaccel_Corr
t is given by formula (8).

PWMaccel_Corr
t =

(v∗
t − vt ) × KP+

+{(v∗
t − vt ) + (v∗

t−1 − vt−1) + (v∗
t−2 − vt−2)} × KI

+(v∗
t − vt ) × KD,

(8)

where PID parameter KP is 40.0, KI is 1.0 × 10−4, and KD is 1.0.

4.4 Learning Module of Mutual Concessions with DQN

Thepresent subsection explains the setting of applying themethodof learningmodule
with DQN for acquiring mutual concessions.

Fig. 10 Setting of car names at roundabout
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Fig. 11 Influence of action choice by priority car

Table 1 Setting of state, action, and reward used in DQN

State Current speed of car A

Current speed of car B

Current speed of car D

Distance between car A and junction point O(AO)

Distance between car B and junction point O(BO)

Distance between car A and car D(AD)

Number of merging cars

Number of cars on roundabout

Number of all cars

Average speed of all cars

Action Speed of car A : stop (0 m/s)

Speed of car A : low speed (0.50 m/s)

Speed of car A : high speed (0.65 m/s)

Rewards Addition: average speed of all RC cars

Deduction: emergency stop (−100.0)

Deduction: stop time of car A exceeds 10 s (−100.0)

In this paper, DQN is applied to determine the target speed for mutual concessions
shown in Fig. 8. DQN is a deep neural network structure used for estimating the Q-
value of the Q-learning method. As shown in Fig. 10, when there is a preceding car B
or merging car C at the roundabout, we implement mutual concessions by learning
the speed of priority car A.

DQN learning mutual concessions use the states, actions, and reward described in
Table 1. As shown in Fig. 11, we assume a scenario of mutual concessions in which
priority car A selects “stop” or“low speed” and gives way to merging car C . On the
other hand, priority car A selects “high speed” and goes through the merging point
before merging car C .
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In order to increase the overall speed, the average speed of all cars is rewarded.
In order to avoid continuing emergency stop and stop, each reward is set to −100.

In the configuration of theDQNmodel, the number of input units is 10 units, equal
to the number of states, the number of intermediate layers is three, and the number
of units is 10 in each layer. The number of output units is three units, corresponding
to the three actions listed in Table 1. ReLu and RMSProp are used as the activation
function and the optimization function. Epsilon ε in RMSProp is 0.01.

DQN learns 227,358 data offline for 100,000 epochs (1 epoch is 100 steps).
Because the data collected in the experiment environment consists of the position,
speed, and direction of all RC car, the status in Table1 can be calculated based on
the data. Date of 100 steps selected randomly is used for experience play. The target
network is updated every 100 steps.

5 Verification of Effect of Mutual Concessions

This section reports application of the the experiment environment to verify the
influence of mutual concessions. We analyze the difference in the driving situation
with and without DQN and verify whether DQN has learned mutual concessions,
and mutual concessions can increase traffic efficiency.

The course used for the experiment consists of the roundabout shown in Fig. 1
and the road around it. This course has a one-way lane on one side and there is no
passing.

To evaluate the influence of the concession on the traffic flow, we conduct an
experiment when using DQN and when not using it and compare the results. As
the experiment settings, three trials are conducted with 12 RC car for 5min. With
respect to the 5-minute data, the data of the first minute is not used because the initial
position at the start of driving of the RC car is affected and the variation is large.
Only the data of the last 4min is used for learning of DQN.

As a first experimental result, mutual concessions at the roundabout were con-
firmed in each trial with DQN. Table2 shows in each trial the number of times
that mutual concessions occur, the number of times that mutual concessions did not
occur, and the ratio in which mutual concessions occur in the situation where there is
a priority car at the roundabout and there is also a merging car. Here, the occurrence
of mutual concessions means that, when the priority car drives in the roundabout

Table 2 Number of times that mutual concessions occur in three trials

Trial 1 Trial 2 Trial 3 Average

Number of times that mutual concessions occur 28 22 14 21.3

Number of times that mutual concessions did not occur 86 80 96 87.3

Ratio that mutual concessions occur 0.24 0.22 0.13 0.20
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Fig. 12 Average moving distance of all 12 RC cars

and the merging car approaches the roundabout, the priority yields to the merging
car by decelerating or stopping. At the roundabout, it was confirmed that mutual
concessions occurred in about 20 percent of all opportunities that it occurs.

As a second experimental result, mutual concessions can be confirmed to improve
traffic efficiency. Figure12 shows the average moving distances of all RC cars for
4min with and without DQN. From the graph, the average moving distance increases
with the introduction of DQN. Therefore, in the case with DQN, it is confirmed that
since mutual concessions to the invasion to the roundabout has been acquired, it
is possible to increase the average moving distance of all the RC cars by mutual
concessions.

6 Conclusion

In this paper, we address machine learning of driving behavior in autonomous driv-
ing and explain an outline of mutual concessions among vehicles. Then, related
researches on acquisition of driving behavior with machine learning and researches
related to mutual concessions are overviewed.

Next, the experiment environment using the RC car is explained. The experiment
environment consists of RC cars (up to 16 units) with Raspberry Pi 3, a camera for
location estimation of the RC car, a laptop PC for vehicle control, log viewer showing
the status of the RC cars, and a course of 6m in length and 6m in width.

In location estimation, the position, direction, and ID of the RC car are determined
from the positional relationship of IRLEDs attached to the ceiling of the RC car. In
steering operation of the RC car, steering PWM module determines the direction
along the target points based on the driving line and sends Steering PWM to the RC
car. In accel operation of the RC car, accel PWMmodule selects the target speed with
the highest priority among candidates and sends accel PWM to the RC car. DQN is
applied for learning of mutual concessions among the RC cars at the roundabout.
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To evaluate the influence of the concession on the traffic flow, an experiment when
using DQN and when not using it are conducted under the settings with 12 RC car
for 5min. Finally, the experiment in our experiment environment results that mutual
concessions at the roundabout was acquired with DQN, and that mutual concessions
can increase traffic efficiency.
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Floating Car Data-Based Real-Time
Road Traffic Prediction System and Its
Application in Macau Grand Prix Event

Ngoc-vai Chiang, Lap-mou Tam, Kin-hou Lai, Ka-in Wong
and Wai-meng Si Tou

Abstract Traffic congestion is a major concern in Macau. To alleviate the situation,
this study aims to develop an effective and reliable real-time road traffic prediction
system for Macau. In most existing studies, traffic prediction systems are developed
based on moving-average models and using only historical traffic data. Considering
that new arriving data usually contain themost updated and useful traffic information,
this study proposes to construct the prediction model using a novel machine learning
algorithm, namely extreme learning machine, which is capable of learning the data
behavior in an extremely fast and online manner. To collect real-time traffic data,
floating car data from public transportation are employed as the data source in this
study. By performing online learning and real-time traffic prediction simultaneously,
the proposed system is able to provide reliable real-time forecasting traffic informa-
tion, even in the presence of undesired traffic changes. To evaluate the performance
of the proposed system, a case study on the Macau Grand Prix event is conducted.
During this event, many road sections are closed and more than half of the bus routes
need to be diverted. The evaluation results show that the proposed system is effective
for predicting future traffic conditions under the complicated traffic situation and dif-
ferent time frames. Based on the forecasting information, the traffic authorities will
be able to make corresponding traffic management measures and provide optimal
route guidance for the citizens.
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1 Introduction

Being a previous colony of Portugal and now a Special Administrative Region of
China, Macau is a beautiful city well-known for its mixed culture of Chinese and
Western. Every year, more than thirty millions tourists visit Macau for sightseeing,
gambling and attending annual mass events such as Macau Arts Festival and Macau
Grand Prix. This brings not only huge benefits to Macau’s economy, but at the same
time huge impact to Macau’s traffic environment. According to Macau Statistics
and Census Service, the vehicle density of Macau has already reached 557 vehicles
per kilometer in mid-2018. With the ever-increasing number of tourists, more and
more travelling buses and taxies need to be put into service, unavoidably increasing
the traffic pressure. Moreover, during some of the mass events, temporary traffic
arrangement would be implemented, which further worsens the already complicated
traffic situation. Taking Macau Grand Prix as an example, many roads need to be
temporarily closed during this event, and thus many bus routes have to be diverted or
suspended, affecting the traffic conditions of other surrounding roads. The result is
that traffic congestion always happens—even at non-rush hour, and the travelling time
is almost unpredictable, which can be very inconvenient for road users. Therefore,
in order to alleviate the problems, this study aims to develop a road traffic prediction
system for Macau, such that, based on the predictions of the proposed system, the
traffic authorities are able to make optimal traffic management plans and improve
the traffic situation.

Developing an accurate and reliable prediction model for Macau traffic, however,
can be extremely challenging due to its complex road characteristics. As limited by
the available area, most roads in Macau are only two-lane roads (one lane for each
direction), and the road width is usually very narrow (generally around 5.5 m for
two-lane). Some statistical studies already indicated that narrow lane width strongly
affects the drivers’ behavior and the corresponding driving speed [1–3]. Thus, the
average flow speed in Macau usually varies a lot, and traffic congestion can happen
very easily. Furthermore, the road network ofMacau contains too many intersections
and loops. When a congestion occurs at the intersections, it is very difficult to sort
out because the vehicles can easily get stuck in the surrounding loops, and hence the
congestion can spread out quickly. What makes the problem even worse is that there
are numerous traffic lights and bus stops around the city, and their distribution is very
dense, which further reduces the overall flow speed in Macau. Obviously, all these
factors together make the prediction of Macau traffic a highly complex and uncertain
problem to deal with.

In the literature, variousmethods have been proposed to handle complicated traffic
prediction problems [4]. A famous one is with the use of historical average mod-
els, such as the autoregressive integrated moving average models in [5, 6] and the
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vector autoregressive models in [7]. However, these approaches only use time-series
data as the model inputs, without considering the spatial information. As the traffic
flow of any road in Macau can change rapidly and is correlated to the surrounding
traffic, neglecting the spatial data would only lead to poor prediction accuracy. Arti-
ficial intelligence (AI) methods, such as neural network [8–10], fuzzy logic [11, 12]
and support vector machine (SVM) [13, 14], which have been recently employed
for traffic prediction, should be more favorable for the current study. In these AI
approaches, the inputs are not restricted to time-series data but anything. That is, any
traffic-related factors can be included as the inputs of the prediction model, which
can greatly enhance the prediction accuracy as compared to time-series approaches
[15]. A previous study by Shi et al. [16] already demonstrated that neural network can
be applied to the prediction of Macau traffic. Still, limitations of these conventional
AI methods are that: (i) they are usually computationally-intensive; (ii) the model
parameters are sub-optimal; and (iii) some of the training algorithms may suffer
from overfitting risk, leading to poor generalization performance. Moreover, since
these methods can only build the prediction model based on historical data, the new
arriving real-time data, which may contain the most updated traffic information, are
totally wasted and cannot be used to update the model, unless the model is re-trained
from scratch.

Considering the above issues of conventional methods, an emerging AI algorithm
called extreme learning machine (ELM) [17–19] is employed in this study. It is a
machine learning algorithm that overcomes most of the aforementioned drawbacks,
requires extremely low computational complexity, and has the capability of learning
new data online [20]. These features are beneficial for addressing the difficulties in
Macau traffic prediction. Since the algorithm is a data-driven method, lots of traffic
data are required for training themodel. Owing to the fact that very limited sensors are
currently available in the road network of Macau, this study further proposes to use
another emerging and effective way for data collection—floating car data (FCD) [21,
22]. Comparingwith other in situ data collectionmethods such asmagnetic loops and
microwave radar, FCD have the advantage that the installation location is not limited
to the road environment. Any vehicle equippedwith global positioning system (GPS)
can be used as the source of FCD. They can cover almost everywhere of Macau with
very low cost and reflect the real-time traffic very effectively. It is believed that with
FCD, the proposed system can provide more accurate traffic predictions for Macau.

In short, this study proposes a traffic prediction system that utilizes FCD as the
data source and ELMmodel as the predictionmethod. The system is suitable for real-
time traffic prediction with online learning ability. To show the effectiveness of the
proposed system, a case study on the Macau Grand Prix event in 2017 is conducted
for evaluation of the system. Based on the result, possible traffic management plan
for the Macau Grand Prix event is discussed and analyzed.
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2 Design of Proposed System

A schematic diagram of the proposed traffic prediction system is shown in Fig. 1.
The purpose of the proposed system is to predict the future traffic flow based on the
current traffic flow. It basically consists of three parts: (i) FCD collection system,
(ii) data processing system, and (iii) traffic flow prediction system. In the following
sub-sections, details of each part of the system are presented.

2.1 FCD Collection System

The FCD collection system aims to collect real-time traffic data via internet. Cur-
rently, most of the public transportation in Macau (taxies, buses, etc.) are already
equipped with Global Positioning System (GPS). Each of them can act as an in situ
traffic probe to monitor the real-time traffic. Along with the GPS location of the vehi-
cle (latitude, longitude, head direction), other useful information are also needed for
data processing purposes, including the time, vehicle ID, vehicle speed, vehicle state
(e.g., whether the taxies are empty, whether the buses are picking passengers) and
engine state (e.g., whether the engine is running). All these information are stored
together in the form of data packets. At every short interval (around 10–30 s, depend-
ing on the number of available vehicles), each vehicle sends one data packet of that
instant via 3G wireless transmission back to the central server owned by the Macau
government. After the data are received at the central server, they are then transferred
to the data processing system.

2.2 Data Processing System

Based on the data collected from the FCD collection system, the data processing
system utilizes certain algorithms to convert them into useful information for traffic
prediction.

Firstly, a quick map-matching algorithm is employed to determine which roads
the vehicles are located. This algorithm directly compares the GPS data (latitude and
longitude) with an electronic map provided by the Macau government, and validates
the result by checking if the head direction of the vehicle is same as the road direction.
If no road can be located for the corresponding GPS data, or the head direction is
different from that of the located road, the data will be omitted.

After the road of the data are specified, the next step is to filter out the useless data.
A filtering algorithm is therefore employed. The algorithm checks the vehicle state
and the engine state of the data. For buses and taxies, if the engine is not running, it
is assumed that the vehicle is not operating on that street. For taxies, if the engine is
running, but the taxi is empty and is not moving for 60 s or the moving distance is
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less than 8 m, it is assumed that the taxi is waiting for passengers. For buses, if the
engine is running, but the bus is near a bus stop and is picking up passengers, it is
assumed that the bus is not on the main lane but the bus lane. For all these mentioned
cases, the data are filtered.

The last step of this system is to compute the traffic flow of each road. Based
on the remaining data, the average vehicle speed of each road is calculated. A time
frame of 5-minutes is adopted in this system, and the average speed is updated every
minute. That is, at every one-minute interval, the average flow speed of the past 5 min
is determined. Finally, the processed data (time, road name, flow speed) are passed
to the traffic flow prediction system for training the model and making predictions.

2.3 Traffic Flow Prediction System

The traffic flow prediction system is the core of the proposed system. The reliability
and accuracy of the prediction depends greatly on the prediction model. As men-
tioned, an emerging machine learning algorithm, namely ELM, is employed in this
study for training the prediction model.

2.3.1 ELM Algorithm

The ELM algorithm [17, 18] was originally designed to overcome the shortcomings
of slow learning speed in conventional learning algorithms. The key concept of ELM
is that the input weights to hidden nodes of the feature mapping layer need not be
tuned, and that the feature mapping layer can be implemented by either random
hidden nodes or kernels [19]. In the following, the derivation of the ELM learning
algorithm is provided.

The model formulation of ELM is:

f (x) = h(x)β =
∑L

i=1
βi hi (ai , bi , x) (1)

where x = [x1, . . . , xn] is the input vector, h(·) = [h1(·), . . . , hL(·)] is the feature
mapping vector, β = [β1, . . . , βL ]T is the output weight vector, ai = [a1i , . . . , ani ]T

is the input weight vector, bi is a bias term added to the hidden nodes, L is the number
of hidden nodes and n is the number of inputs.

According to theory of ELM [17], as long as the number of the hidden nodes is
large enough, the parameters of the hidden nodes can be generated randomly and
remain fixed, and the resultingmodel still retains very high generalization. Therefore,
it is only necessary to learn the output weights β of the model. Given a training data
set D, output weights β can be obtained by solving the following linear system:

Hβ = Y (2)
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where H = [h(x1), h(x2), . . . , h(xN )]T is a matrix of the feature mapping output.
The solution of β to Eq. (2) can be obtained with least-squares method:

β = H†Y (3)

where H† is the Moore-Penrose pseudoinverse of matrix H that can be calculated
using the orthogonal projection method (see [17]).

To improve the generalization performance and robustness of the solution, the
regularization factorC can be added to the diagonal of HTH or HHT. According to
Barlett’s theory, this resulting solution tends to have better andmore stable prediction
performance, as verified in [18].

2.3.2 Online Learning of ELM

Since the training algorithm in ELM is a least-squares method, it can be easily
extended to recursive least-squares (RLS) for online learning. The following algo-
rithm shows the RLS form of ELM:

For the (k + 1)th arriving training data,

(a) Calculate the hidden layer output matrix Hk+1;
(b) Update the output weights using the following equations:

Pk+1 = Pk − PkHT
k+1

(
I + Hk+1PkHT

k+1

)−1
Hk+1Pk (4)

β(k+1) = β(k) + Pk+1HT
k+1

(
T k+1 − Hk+1β

(k)) (5)

It should be noted that this algorithm is usedwhen a base ELMmodel is initialized,
so it is only used for updating a trained model with new arriving data.

2.3.3 Structure of Prediction Model

Based on the ELM algorithm and FCD, a model can be trained. The purpose of the
model is to predict the future traffic flow based on the current traffic condition. As
mentioned, the model considers not only the past traffic flow of the road, but also the
flow in the surrounding. That is, the average traffic flow into the road and the average
traffic flow out of the road. A schematic diagram of the model structure is shown in
Fig. 2.

It can be seen from Fig. 2 that the structure of the proposed prediction model only
concerns the traffic flow in and out, without considering howmany roads are actually
linked to the target road. This is a more general structure since even if the driving
direction of the target road is changed, it is not necessary to revise themodel structure
to keep up with the revised road network structure. In this study, the traffic flow in
and out are respectively calculated by averaging the flow speed of the surrounding
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ELM
prediction model

Past traffic flow
Current traffic flow

Traffic flow in
Traffic flow out

Future traffic flow

Fig. 2 Model structure

roads. Further investigation on how they should be obtained would be left for future
study. With the prediction model, the traffic authorities can provide any flow speed
profile to it for other useful analysis.

3 Evaluation of Proposed System

To evaluate the prediction performance of the proposed system, a case study on the
Macau Grand Prix event is conducted. In the following sub-sections, background of
the event is firstly introduced to show its impact to the traffic situation in Macau and
the major difficulties in traffic prediction of this case. Then, traffic prediction models
for different prediction time frames are trained based on the data collected before
the Macau Grand Prix 2017 event. After that, the trained model is used to predict the
traffic conditions during the Macau Grand Prix 2017 event. Finally, the prediction
results of the models are compared with the actual traffic conditions to demonstrate
its prediction performance.

3.1 Macau Grand Prix and Its Impact

MacauGrand Prix is an annually heldmotor-racing event inMacau,where top drivers
from all around world are attracted to compete on the only street racing circuit in
Asia, known as the ‘Guia Circuit’ (see Fig. 3).

Famous by its unique and challenging nature, the Guia Circuit has been one of
the most demanding circuits in the world. As shown in Fig. 3, the circuit contains
an ultra-long straight that allows vehicles to speed up to its limit, sharply twisting
corners that require drivers to have superior driving and handling skills, and a high
variation in altitude (over 30 m differences) that challenges the engineers to tune up
the vehicles to keep their hill-climbing performance.

Since this circuit is mainly composed of streets, many streets and roads have to
be closed as part of the racing track during the Macau Grand Prix event. Access to
some of the surrounding roads and areas is also restricted. Carefully planned traffic
management measures have to be implemented to minimize the impact of the events
and to ensure the transportation of the visitors, event attendants and local citizens
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Fig. 3 Guia circuit in Macau (retrieved from Macau Online Map provided by Macau Cartography
and Cadastre Bureau)

from the event location to other parts of the city. For instance, Fig. 4 shows some
traffic management measures taken during previous Macau Grand Prix event. It can
be seen that, not only some of the key roads were closed, but the driving direction for
some roads were reversed or revised into two-way driving. Apart from this, during
the Macau Grand Prix, usually more than half of the bus routes need to be diverted.
For example, during the Macau Grand Prix event in 2017, 45 out of all 82 bus routes
were altered. By comparing the bus operating time of those 45 diverted routes in the
early peak hours between the first day of the Grand Prix event and a week before it,
the commute time was increased by approximately 35 min on average.

Due to the temporary closure of the roads and the temporary diversion of bus
services, the traffic on the surrounding area would inevitably be affected. As this
traffic change only take places during the event, it becomes a good case to evaluate
if the traffic prediction models can forecast how the traffic would be affected when
only the traffic information under usual situation (i.e., data without traffic change)
are provided. Consequently, the data collected before and during the Macau Grand
Prix event in 2017 are employed in this study for evaluation.
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Fig. 4 Examples of traffic management measures taken during Macau Grand Prix (retrieved from
news provided by Macau Traffic Bureau)

3.2 Prediction Performance

The Macau Grand Prix 2017 event is held in November, so the traffic data collected
in November 2017 are employed. The data before the period of Macau Grand Prix
event (November 1–15), representing the traffic information under usual situation, are
used to train the prediction model of the system, whereas the data during the period
of Macau Grand Prix event (November 16–19), representing the traffic information
under traffic changed situation, are used to test the prediction model. In order to
demonstrate the superiority of the proposed ELM prediction model, SVM is also
employed in this study to generate prediction models, so that their performance can
be compared.

3.2.1 SVM Model

As SVM model is employed for comparison, its formulation is briefly introduced
here. The general form of the SVM model can be represented by:

f (x) = h(x)β + b (6)
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where h(x) and β are same as those in ELM, that is, the feature mapping vector and
the model weight respectively, and b is a bias term contributes to the shifting of the
model origin.

Although it has similar form to the ELM model, the methods for calculating the
model weights are totally different. The key to train the SVM is to solve the following
optimization problem:

min
1

2

∥∥β2
∥∥ + C

∑N

k=1

(
ξk + ξ ∗

k

)
subject to:

⎧
⎨

⎩

yk − f (x) − ξk ≤ ε

f (x) − yk − ξ ∗
k ≤ ε

ξk, ξ
∗
k ≥ 0

(7)

where yk is the target output, N is the number of training data, ξk ≥ 0 and ξ ∗
k ≥ 0

are two slack variables to control the model accuracy within the “ε-tube”, ε > 0 is
the user-specified precision, and C is the regularization factor.

Solving of Eq. (7) is a quadratic programming (QP) problem and the resulting
SVM model can be re-written in a more detailed form:

f (x) =
∑N

k=1

(
αk − α∗

k

)
K (x, xk) + b (8)

where αk, α
∗
k are the trained support vectors, and K (x, xk) is a user-specified kernel

function satisfying the Mercer’s condition.
Since the learning process of SVM requires solving a QP problem, a large training

data set sizemay incur high computational cost for the learning process.Moreover, as
SVM adopts kernel functions and support vectors for feature mapping, it is relatively
difficult to extend the algorithm to online learning.

3.2.2 Model Parameter Tuning

In the algorithms of both ELM and SVM, certain parameters need to be specified by
the user. For ELM, two parameters are needed, namely the regularization factor and
the number of hidden nodes, while for SVM, three parameters are needed, including
the regularization factor, the basis width parameter of the kernel function and the
precision. To select the optimal values for these model parameters, leave-one-out
cross-validation is applied in this study.

3.2.3 Model Evaluation

Avenida de Venceslau de Morais, which may suffer from serious traffic congestion
issue during the Macau Grand Prix event, is selected in this study for illustrative
purpose. This is a long road located near the racing track of Guia Circuit. It is linked
to ten roads, and one of them is closed during the Grand Prix event (see Fig. 5). This
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Fig. 5 Blue: Avenida de Venceslau de Morais; Red: closed during Macau Grand Prix (retrieved
from Macau Online Map provided by Macau Cartography and Cadastre Bureau)

illustrative example can evaluate if the model can provide accurate prediction of a
road even when some of the surrounding roads are closed or blocked.

Asmentioned, the proposed ELMmodel has the online learning ability that allows
adjustment of its prediction performance based on the real-time arriving data. To
demonstrate its effectiveness, the prediction model of ELM is updated sequentially
when new data are seen. The overall prediction performance of the models is evalu-
ated by using root-mean-squared error (RMSE).

For eachmodelingmethod, three models are built: one is used to predict the traffic
flow for the future 5 min (e.g., at 09:00, the average traffic flow of 09:01–09:05 is
predicted); one is for the future 30min (e.g., at 09:00, the average flowof 09:25–09:30
is predicted); and the remaining one is for the future 1 h (e.g., at 09:00, the average
flow of 09:55–10:00 is predicted). These results are included to evaluate whether the
models are capability of predicting a longer period of time (i.e., long-termprediction).
The results are provided in Fig. 6 and Table 1.

Table 1 RMSE of prediction
result for Avenida de
Venceslau de Morais

5 min 30 min 1 h

ELM (without online update) 3.4668 3.6927 3.9215

ELM (with online update) 3.1759 3.5220 3.5470

SVM 4.3081 4.5228 4.9799
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Fig. 6 Prediction result for Avenida de Venceslau de Morais

3.3 Discussions of Results

The results from Table 1 and Fig. 6 show that the proposed ELM traffic prediction
model can handle the complicatedMacau road traffic prediction problem effectively.
Although it cannot perfectly match the actual flow speed profile, it can still follow
the trend effectively. The reason could be that the model tries to fit all the data and
thus all the “spikes” are smoothed out as they might be considered as outliers in the
training algorithm. From the results, in terms of both accuracy and tracking ability,
the proposed ELMmodel is superior to another famous AI algorithm, namely SVM.
In terms of long-term prediction, worse results are seen for longer prediction period
for ELM. This is reasonable because of the high variation in Macau traffic flow.
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It is believed that further using some feature extraction methods and adding some
representative inputs can help to improve the results, and it would be left for future
study. Finally, the results from Table 1 demonstrated that the performance of the
proposed ELM model can be improved by updating with the newest data in situ.
These results also imply that the model can adapt to any kind of traffic situation,
even under a large traffic change event, as long as the data are available for model
update.

4 Applications of Proposed System

When there is a road being blocked, closed or under traffic jam, it is of great interest
to know how the traffic on its surrounding road would be affected. Fortunately, as
demonstrated above, such impact can be observed with the prediction model. This
can help the government to understand how much impact a road blockage will bring
to its surrounding and then decide whether that target road should be closed or not,
which is very useful for making optimal traffic management plan.

Fig. 7 Mobile app for traffic prediction display
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On the other hand, using the prediction system, the traffic authorities can investi-
gate the traffic congestion trend up to 1 h ahead (or even longer if the corresponding
models are trained). If the traffic congestion is likely to occur in the near future, the
traffic authorities can do some traffic arrangements, such as adjusting traffic lights
or assigning police forces to direct the on-site traffic.

Based on the proposed prediction system, the traffic authorities will be able to
publish the near term traffic prediction through mobile app and website, so that
the general public can have a better understanding about the traffic conditions. An
example of the mobile app is shown in Fig. 7, where the traffic conditions at different
roads are presented using different color lines.

5 Conclusions

In this study, a novel traffic prediction system for Macau is proposed. Two emerging
techniques, including amachine learning algorithm called ELM and a data collection
strategy called FCD, are employed and combined in the making of this system. The
proposed system is able to provide accurate and reliable traffic prediction, even in the
presence of undesired traffic changes. A case study on the Macau Grand Prix 2017
eventwas conducted and the result has demonstrated the effectiveness of the proposed
system. With the assistance of the proposed system, the governmental authority can
make optimal traffic management plans for improving the traffic situation in Macau.
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Modeling Speed Profile of Two-Way
Two-Lane Expressways in Japan

Makoto Kasai, Jian Xing and Shin-ichi Narushima

Abstract Recently, several studies have tried to reveal the level of service of traffic
flow using data collected with probe cars. In particular, it was reported that the
variation of spot speed along the flow direction could be larger than previously
believed on two-way two-lane (TWTL) expressways. Although the variation may
be due to driver behaviors such as longitudinal alignment and merging at the end
of auxiliary lanes, guidelines to effectively improve locally reduced speeds have
not been published. Toward this end, in this study a model predicting the speed
profile in TWTL sections is proposed. This model is mainly composed of three terms
expressing “gradual attenuation” along the flowdirection, “merging conflict” causing
slow-down after the end of an auxiliary passing lane, and “local speed reduction” at
sag sections. The model is calibrated with probe car data collected on representative
TWTLexpressways in Japan.With respect to the rootmean square error, the accuracy
of estimation was acceptable. Finally, a future direction for further improvement and
way to implement the model are discussed.

Keywords Two-way two-lane expressway · Probe data · ETC 2.0 · Speed
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1 Introduction

Measurement and improvement of the quality of service (QOS) on highways are
major concerns in traffic flowmanagement. Intelligent transportation systems (ITSs),
inwhich traffic flow ismonitored on-line and smoothed through dual-communication
devices, are expected to play an important role in pro-active traffic management.

ITSs can also contribute to off-line analyses: huge amounts of stored data col-
lected by ITS devices are available for predictions of level of service in the eval-
uation of alternative plans for road design or re-construction. In Japan, public and
private expressway companies as well as the Ministry of Infrastructure, Transport
and Tourism (MLIT) have developed and promoted a dual communication device
called ETC 2.0 to users (customers). The on-board equipment for ETC 2.0 records
and uplinks running data such as time, position, and speed, as measured by a global
positioning system [1].

According to the concept of smart utilization of existing road assets advocated by
theMLIT in 2015, travel demandmanagement is to be promoted bymonitoring traffic
flow with probe cars. For this purpose, scientific analyses of huge amounts of stored
probe data are essential for determining factors decreasing QOS. In this context,
ITSs are expected to store data of traffic flow off-line. In Japan, overtaking using
the opposite lane is not allowed and running slower than drivers’ expectations may
be more common than in countries where such overtaking is permitted. Therefore,
drivers in Japan may be highly concerned about speed in their evaluation of level of
service.

Off-line analysis with the ETC 2.0 data is a powerful tool to reveal a section of
road that is relatively weak in terms of QOS. In rural areas in Japan, expressways
are often only two-way two-lane (TWTL) roads rather than multi-lane highways.
According to one guideline [2], it is desirable to provide auxiliary lanes to allow
overtaking at intervals of approximately 6–10 km. This guideline was written under
the assumption that the QOS of traffic flow is not sensitive to longitudinal alignment.

In recent years, several studies (e.g., [3]) using probe car data including ETC
2.0 reported that spot speed tends to vary spatially more than previously believed.
This tendency has not previously been observed clearly since detectors that can
observe traffic volume and speed are installed only approximately every 10–15 km
(strictly speaking, an interchange pair has only one detector). Therefore, it seems
that longitudinal alignment possibly affects spot speed in TWTL sections.

This study proposes a model to predict spot speed, accounting for factors such as
longitudinal alignment andmerging conflict. First, “speed-profile curves” at different
flow rates are obtained from ETC 2.0 data. Then, these curves are formulated as
functions of flow rate and longitudinal gradient.
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2 Related Works

2.1 Conventional Measures of Effectiveness

According to the Highway Capacity Manual (HCM) [4], average travel speed, per-
centage of time spent following (PTSF), and follower density can all be taken as a
measure of effectiveness (MOE) for two-way two-lane expressways. The level of
service (LOS) of the overall MOE is expressed in terms of six categories, A to F, in
the HCM [4]. These MOEs do not, however, explicitly take longitudinal alignment
into account. Other past studies [5, 6] of MOEs for TWTL expressways have also
not considered the effect of longitudinal alignment.

Nakamura et al. [5] proposed a performance curve of follower density under the
assumption that longitudinal alignment is homogeneous along the flow direction.
They pointed out that follower density is the preferable measure to evaluate QOS
on TWTL expressways, since average travel time is insensitive to increments of
flow rate. Although, of course, PTSF is regarded as a much better approximation of
drivers’ perception of QOS than average travel time and follower density, it is quite
difficult to measure PTSF directly. Consequently, that study related follower density
to factors such as length of TWTL, and flow rate.

A criterion for the LOS has also been proposed by the Transportation Develop-
ment Division of the Oregon Department of Transportation based on field data [7].
However, the criterion does not take longitudinal alignment into account.

2.2 Spatially Varying Speed as an MOE

To reveal the QOS for representative TWTL expressways in Japan using ETC 2.0
data, “speed profiles” were drawn [3]. The curve shows the speed of the 15th per-
centile value for every 200-m length of road. Findings of the study can be summarized
as follows. (1) There is a tendency for a gradual reduction of speed. In particular,
if the length of the TWTL is much larger than the guideline, this tendency is more
clearly seen. (2) In some stretches, local reductions of speed are also found (Fig. 1)
in sag or ascent sections. For the effective installation of auxiliary passing lanes to
improve the LOS, it is important to specify the causes of slow-down and predict
locations of slow-down, or predict the LOS of MOEs, such as follower density or
PTSF, at every spot.

Since follower density is not directly measured, traffic simulation is often used
(e.g., see [5, 8]). The previous study [8] showed that the follower density is not
sensitive to traffic conditions, while the speed profile fluctuates strongly. Thus, in the
present study, speed profiles that change spot by spot are modeled. The consideration
of spot speed is also preferable because it is intuitively comprehensible for users.

In the past, to measure or estimate such MOEs, traffic detector data were often
used rather than ETC 2.0 probe data. Traffic detectors are installed at intervals of
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approximately 2 km on interurban expressways in the suburbs of metropolitan areas,
while on expressways containing TWTL sections in rural areas of Japan, only one
traffic detector is embedded in a basic section (corresponding to an interchange pair).
Thus, the fluctuation of spot speed observed by the ETC 2.0 was not revealed until
recently. The relation between spot speed and longitudinal gradient was also only
discussed to a limited degree due to the sparse installation of traffic detectors.

3 Examples of Speed Profile

To aid the modeling of speed profiles for TWTL sections, the speed profiles for the
Joban Expressway are shown in Fig. 1. To draw speed profiles, the speed of a probe
car is linked with flow rate. The speed distribution of probe cars is specified every
200m. In Fig. 1, the 15th percentile speed profile is shown for every rank of flow rate.
The 15th percentile speed approximately corresponds to the cumulative frequency
from −∞ to μ − σ, where μ is the mean and σ is the standard deviation in a normal
distribution.

In Fig. 1, three characteristic behavior can be seen. (1) There is slow-down in the
stretch immediately after the disappearance of an auxiliary lane. For instance, from
184 to 185 kp, in cases over 600 pcu/h, the slow-down clearly appears. (2) There is
a gradual slow-down along the flow direction in TWTL sections. (3) There is a local
reduction of speed in sag sections. Hereinafter, these three characteristics are called
“merging conflict”, “gradual attenuation”, and “local speed reduction”, respectively,
to avoid cumbersome explanations.

High flow rate tends to amplify the above characteristics. “Merging conflict”
seems to appear for high flow rates over 600 pcu/h. “Gradual attenuation” is possibly
amplified by increasing flow rate. “Local speed reduction” is similarly amplified by
high flow rate in sag sections.

Although detailed considerations of themechanisms behind these effects are given
in the literature [3], we mention them briefly here as follows. (1) The slow-down
immediately aftermergingmight be caused by the propagation of a decelerationwave
derived from a merging car’s failure to adjust headway distance. (2) The possible
cause of the gradual slow-down along flow-direction is attributed to the enlargement
of the “platoon”, since a freely running car eventually catches up with the car in
front on a long TWTL stretch. (3) The local speed reduction in sag sections could
also be explained as the propagation of a deceleration wave, which could trigger a
break-down in flow at a bottleneck in multi-lane expressways.
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4 Model Formulation

Here, we try to give a basic model of the speed profile. The speed profile is assumed
to be decomposed into three components representing the characteristics mentioned
above. In this paper, as a pilot study, these characteristics are approximated as follows:
(1) the gradual attenuation is assumed to be formulated as amonotonically decreasing
function, f 1(x); (2) themerging conflict is assumed to be approximated by a unimodal
and convex downward function, f 2(x); and (3) the local speed reduction is formulated
as a function depending on longitudinal gradient, f 3(x), since the mechanism behind
the slow-down may be similar to that in the multi-lane case. The linear summation
of these functions in Eq. (1) is regarded as a model of the speed profile. In Fig. 2, the
concept is illustrated briefly.

Based on the above assumptions, the speed profile at x, which is the distance from
the end of an auxiliary lane, is formulated as follows:

f (x) = f1(x) + f2(x) + f3(x). (1)

The gradual attenuation term f 1(x), which is a monotonically decreasing function,
can be expressed using many alternative functions, such as a linearly decreasing

Fig. 2 Three components of
spot speed

Monotonically decreasing function

Unimodal and convex downward 
function

Term associated with the longitudinal gradient

Speed

x
Speed

Speed

Original speed profile
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x
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function or a negative exponential function. Here, a negative exponential function is
used. The traffic flow rate can also be taken into account in this function since traffic
flow rate may affect the rate of decrease.

The second term, f 2(x), models merging conflict, which can be seen as the abrupt
slow-down immediately after the end of an auxiliary passing lane. Therefore, a
unimodal and convex downward function is appropriate for the second term.

The third term, f 3(x), reflects local speed reduction and is derived from the lon-
gitudinal gradient.

We consider four models whose variations are shown in Table 1. In two models,
it is assumed that the gradual attenuation of speed depends on the traffic flow rate,
while in the other two models, it is assumed that traffic flow rate has no effect.

Merging conflict is effective in Models II, III, and IV, while in Model I, it is
assumed to be negligible. The unimodal and convex downward function is approx-
imated here by a lognormal function. In Models III and IV, it is assumed that the
effect of longitudinal gradient on speed is amplified by traffic volume.

The functional forms used in the four models are shown below.

f1(x) =
{
a0 + 1

a2
exp{−(a1 + a7q)x} for Models I and IV

a0 + 1
a2
exp(−a1x) for Models II and III

(2)

f2(x) =
{

a5√
2πa4qx

exp
[
−{log(x−a3)}2

2(qa4)2

]
forModels II, III, and IV

0 forModel I
(3)

f3(x) =
{
a6qi(x) forModels III and IV
a6i(x) forModels I and II

(4)

where, an (n = 0, 1, …, 7) are parameters, q is flow rate, i(x) is longitudinal gradient
[%], and x [km] denotes longitudinal location. If the gradient is descending, the sign
of i(x) is negative.

Table 1 The different assumptions about the effect of traffic flow rate used in our four models

Model I Model II Model
III

Model
IV

Monotonically
decreasing (Gradual
attenuation)

With flow rate q X – – X

W/O flow rate q X X

Unimodal and convex
downward (Merging
conflict)

Used, with flow rate q – X X X

Identically zero X – – –

Longitudinal gradient
(Local speed
reduction)

With flow rate q – – X X

W/O flow rate q X X – –
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5 Model Calibration

5.1 Estimated Parameters

The speed profiles of three representative routes (the Joban Expressway, the Tokai-
Hokuriku Expressway, and the Okayama Expressway) were used for an implemen-
tation test. The numbers of samples and the observed sections are listed in Table 2.
For cross-validation, TWTL sections on the three routes are divided into two groups:
a group for model calibration and another group for model validation. Successive
TWTL sections are placed alternately into the two groups.

For calibration, the simplex method [9], which is an iterative numerical optimiza-
tionmethod,was applied. The rootmean square error (RMSE) between estimated and
actual speeds (i.e., speed profiles) for the sections in the group for model calibration
was the objective of the minimization. To confirm the universality of the calibrated
model, the RMSE for the sections in the group for validation was also computed.
In the model calibration, speed profiles for three different ranks of traffic flow rate
(200–400, 400–600, and 600–800 pcu/h) were used simultaneously. In this paper,
the highest rank traffic flow rate (over 800 pcu/h) is omitted because it is reported
that traffic congestion often occurs in that rank.

In Table 3, estimated parameters and RMSEs are listed. If there is no prior knowl-
edge about the speed, it is natural to assume that speed is constant (invariant) on a
TWTL section.We call thisModelW in Table 3. The RMSE in this case is 4.20 km/h,
and amodel that has a smaller RMSE than that is significant. Models II and III satisfy
this criterion. However, the estimated value 39.2 km/h of parameter a0 in Model II is
unnaturally low as an initial speed at the start of a TWTL section. So, overall, Model
III is better than the other models.

5.2 Estimated and Predicted Speed Profiles

The results for Model III are shown in Figs. 3 and 4. In these figures, estimated speed
profiles are compared with the actual speed profile. In auxiliary sections, the lines are

Table 2 Numbers of samples and sections of observation

Expressway Section Number of samples

Okayama Kayo–Ukan 8,800

Tokai-Hokuriku Shirakawago–Gokayama 5,420

Joban Iwaki-chuo–Iwaki-Yotsukura 13,453

The number of samples is the average number of cars with ETC 2.0 that successfully recorded and
uplinked data for the section shown the central column. The duration of data collection was from
October 2014 to September 2015
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Table 3 List of calibrated model parameters, used data, and accuracy of the estimation

Model I Model II Model
III

Model
IV

Model W

a0 72.9 39.2 70.0 72.8 –

a1 −408 0.00979 0.123 0.202 –

a2 −4532 0.0280 0.188 0.210 –

a3 – −12.0 −1.03 −4.76 –

a4 – 10.0 1.10 −0.789 –

a5 – 1.08 1.03 3.41 –

a6 −0.71 −0.77 −0.00147 −0.00126 –

a7 71.9 – – 9.13 –

RMSE for calibrating sections [m] 4.28 3.89 3.98 4.24 4.20

RMSE for cross-validation [m] 3.32 3.05 3.10 3.31 3.32
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Fig. 3 Cross-validation of speed profiles based on Model III with estimated parameters for flow
rates from 200 to 400 pcu/h on the Joban Expressway

missing. The solid red line and blue dashed line denote actual speed and estimated
speed from the calibrated model, respectively. The gray dashed line and the light
red line correspond to actual speed and estimated speed used for cross validation,
respectively, where speed is estimated with the parameters estimated for sections in
the group for the calibration.

As shown in Fig. 3, the estimated speed in the model calibration and predicted
speed based on the calibrated model follow the actual speed profile acceptably for
200–400 pcu/h, which is a relatively low flow rate. In case of higher flow rate (as
shown in Fig. 4), the discrepancy between the estimated and actual speeds is larger
than for the lower flow rate. Large discrepancies are seen around the 208 kp and the
231 kp. A parking area (named “Naraha PA”) is positioned around the 208 kp, and
this parking area may affect the actual speed profile. On the other hand, the cause
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Fig. 4 Cross-validation of speed profiles based on Model III with estimated parameters for flow
rates from 600 to 800 pcu/h on the Joban Expressway

of the discrepancy around the 231 kp is not clear. Since the longitudinal gradient
gradually changes from 3 to 1% uphill, the steep uphill is a factor in slow-down.
Further exploration is required and will be included in a future study.

There are two possible ways to improve the accuracy for high flow rates, which
will be explored in the future. One way is to calibrate the models for only high
flow rate ranks. The other way is to reconsider the model structure. For instance, a
non-linear effect of gradient on speed reduction may be included.

A calibratedmodel using all the data from three routes may have a higher transfer-
ability than a model calibrated with data from only one route. On the other hand, the
features of a specific route may be not fully captured when using this approach. We
examined whether a model calibrated with data from Tokai-Hokuriku Expressway
and Okayama Expressway predicts the speed profile of Joban Expressway. As shown
in Fig. 5, an acceptable level of reproducibility is achieved.
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Fig. 5 Predicted speed on the Joban Expressway using a model calibrated with data from the
Tokai-Hokuriku and Okayama Expressways

6 Conclusions

This study aimed to model speed profiles on TWTL expressways based on ETC 2.0
probe car data. Themodel could be used to predict spot speeds before the construction
of new roads or auxiliary lanes. In particular, the models identified in this paper may
be helpful as a guideline for length and location when considering the construction
of a new auxiliary lane.

Further exploration is, of course, required to reach the final goal. First, the structure
of themodelwas assumed a priori, considering the three factors of “merging conflict”,
“gradual attenuation”, and “local speed reduction”. The correspondence between
model output and observations also contributes to an intuitive understanding of the
model. Nevertheless, for more accurate prediction, some refinement of model is
required. Another challenge is to examine the transferability of the model. In this
study, three routes were chosen as representatives of TWTL expressways. In future
work, probe data from other TWTL expressways will be used for exploration.
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Effect of the Moving-Light-Guide-System
on Driving Behavior at Sag

Yuuta Tabira and Yasuhiro Shiomi

Abstract There has been an increase in the cases of installation of theMoving-Light-
Guide-System (hereafter, MLGS) as a countermeasure against traffic congestion at
sag bottlenecks of freeways in Japan.MLGScreates aflowofLED light travelingwith
constant speed alongside the car. It intends drivers to perceive the speed gap between
MLGS and their own vehicles and encourage the spontaneous speed recovery on
uphill section at sag. It has been reported that traffic congestion at some bottlenecks
were mitigated due to the installation of MLGSs, though its influence on the driving
behavior and the mechanism of congestion-mitigation were still unrevealed. In this
study, based on a car-following experiment conducted on the Hanshin Expressway
Route 3, the influence of the MLGS in the uphill section on driving behavior was
analyzed. Based on the rigorous statistical analysis, the following findings were
obtained. (1) Regardless of the operating speed, the MLGS tended to exert a change
in the inter-vehicle distance on entire section. (2) When the MLGS was operated at
a light flow speed of 60 km/h, for drivers who tried to match the vehicle speed with
the MLGS light flow speed, the inter-vehicle distance was likely to decrease and
traffic capacity improved in the uphill section. (3) The average of the PICUD value
in the uphill section was higher in the presence of the MLGS than in their absence,
and even in the downhill section of the PICUD value was maintained in the safety
level in the uphill section. (4) Although the effect on stability improvement was not
found to be statistically significant, the number of drivers who exhibited extreme
car-following behavior decreased, which may contribute to an overall improvement
of the traffic situation in the entire section.
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1 Introduction

Freeway congestion has become one of the most serious social problems in many
large metropolitan areas. According to Japan’s Ministry of Land, Infrastructure,
Transport, and Tourism, the amount of time lost due to traffic congestion is esti-
mated to be around 200 million people-hours per year on intercity highways alone,
equivalent to about 100,000 workers per year [1]. In particular, sags, which are sec-
tions where the road gradient transitions from downhill to uphill, are the primary
cause of traffic congestion in Japan. Typically, hard measures to reduce traffic con-
gestion, such as the construction of additional roads, are costly and time consuming.
Hence, soft measures for the mitigation of congestion are more attractive in terms of
the cost and time.

More specifically, the advanced driver-assistance system and connected and
autonomous vehicles have the potential to increase traffic capacity and have attracted
considerable research attention in recent years. Ludmann et al. (1997) showed that
when the desired time gap is reduced from 1.2 s to below 1.0 s using ACC systems,
traffic capacity increases with an increase in the ACC penetration rate in traffic [2].
Goñi Ros et al. [3] proposed a method to prevent the traffic breakdown at sag bottle-
necks, in which the acceleration of autonomous vehicles was exogenously controlled
[3]. The theory of jam-absorption driving (JAD), which controls the cruising speed
of a vehicle to absorb the shockwave was proposed by Nishi et al. [4] and He et al.
[5]. Stern et al. [6] experimentally demonstrated that the intelligent control of an
autonomous vehicle could dampen waves of stop-and-go traffic [6]. However, the
effectiveness of these strategies highly depends on the penetration rate of the vehi-
cles with ACC and CACC and the relative number of connected and autonomous
vehicles. Meanwhile, in recent years, the Moving-Light-Guide-System (MLGS, see
Fig. 1) has been proposed in Japan as an effective countermeasure against traffic
congestion. The MLGS is expected to influence the driver’s speed recognition by
flashing LED lamps installed along the freeway in a sequential pattern to create a
perceived flow of light traveling alongside the car. This mechanism is expected to
prompt the driver to suppress excessive speed on downhill sections of the road and
to recover speed in the uphill and sag sections of roadways [7]. Thus, MLGSs can
potentially alleviate the factors leading to traffic congestion.

Fig. 1 An example of
MLGS devices
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The mitigation of congestion from the use ofMLGSs has been recently confirmed
in real-world conditions. For example, it was reported from amacroscopic viewpoint
that in the Tokyo Bay Aqualine, the maximum traffic flow rate during free flowing
traffic increased, and the driving speed after a breakdown increased in congested
traffic flow [8]. On the Hanshin Expressway, considering the lighting pattern of the
MLGS, the congestion time decreased by 60–70%, and congestion amount, which is
defined as the integral of the congestion queue length, also decreases by about 70%
under MLGS operating conditions [9]. It has also been reported that by analyzing
the change in speed and the size of platoons by using a vehicle detector and video
recordings, MLGS contributed to preventing platoon formation, and the difference
between platoon speeds in the shoulder lane was reduced [10]. These analyses were
limited from a macroscopic viewpoint, though the influence of the MLGS on car-
following behavior and the mechanism of the contribution of MLGS to increased
traffic capacity at bottlenecks have yet to be clarified.

Thus, in this study, car-following experiments were conducted on an expressway
with an MLGS installed to examine how the MLGS affects car-following behavior
of drivers. In particular, we focused on the variations in inter-vehicle distances and
transition of relative speed as a characteristic of car-following behavior. The inter-
vehicle distance was related directly with traffic capacity when the speed of the
preceding vehicle was constant. The transition of the relative speed becomes an
important index in evaluating the stability of the car-following behavior. The inter-
vehicle distance for each participant in the experiment was analyzed in relation to
the presence or absence of the MLGS, and the results of the questionnaire in which
each participant’s perception of the MLGS was measured. Regarding the transition
of relative speed, we quantified it using Fourier transform and verified whether the
driver’s car-following behavior was generally stabilized. In addition, to assess the
collision risk associatedwith operation of theMLGS, the potential index for collision
with urgent deceleration (PICUD) values in the presence and absence of the MLGS
in downhill and uphill sections were analyzed.

The remaining Sections are organized in the following manner. Section 2 outlines
the car-following experiments conducted as part of this study and the method of
estimating inter-vehicle distance. Section 3 discusses the analytical results of inter-
vehicle distance with and without the MLGS, and the cross-tabulation analysis of
the questionnaire results and inter-vehicle distance. A verification of the change in
traffic capacity with and without the MLGS using a car-following behavior model
are described in Sects. 4 and 5 assesses a collision risk for the MLGS. Section 6
assesses the effect of MLGS on the stability of car-following behavior, and finally,
the findings of this study and proposed future work are summarized.
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2 Car-Following Experiment

2.1 Outline of the Car-Following Experiment

The section of Hanshin Expressway Route 3, including the Fukae sag (20.5–19.5 kp)
bound for Osaka was selected for experimental analysis (see Fig. 2). In this section,
the MLGS has been operating since June 2015 to mitigate traffic congestion caused
by bottlenecks. The experiments were conducted on weekdays and divided into two
periods: the first from July 13–21, 2015, and the second from September 10–17,
2015. The same participants participated in both of the experiments.

The participants included 20 males in their 30–60 s who have been driving for
10 years or more and who routinely use the Hanshin Expressway. Table 1 lists the
attributes of the participants. Each participant was asked to drive a car on the route
from Uozaki IC past the Fukae Sag to Nishinomiya IC three times when the MLGS
was not in operation (hereafter, no MLGS), MLGS operation with a sequential light
speed of 60 km/h (hereafter, MLGS 60), and MLGS operation with an 80 km/h
light speed (hereafter, MLGS 80). To eliminate any order effects, the order in which
these conditions were tested was randomized on each day as shown in Table 2. For
each day, in the first and second halves, two subjects participated in the car-following
experiment (i.e., four people joined the car-following experiment each day), and over
the five-day study periods, the total number of the participants was 20. In Fig. 2, the
blue line indicates the driving route, the green arrow indicates the traveling direction
for the car-following experiment, and the red line indicates the section of the road
in which the MLGS was installed. In this experiment, a conductor of the experiment
drove the preceding vehicle maintaining a speed of 60 km/h, while the participant
drove the following vehicle and was just instructed to follow the preceding vehicle.
All the participants used the same standard vehicle (TOYOTA Succeed) to eliminate
variations associated with different vehicle characteristics. After the experiment, a
questionnaire regarding the experiment was administered to the participants. In the

Fig. 2 Travel route overview
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Table 1 List of subject attributes

Subject
ID

Age Driving experience
(year)

Usage frequency
(Hanshin
Expressway)

Usage frequency
(Kobe line)

1 30–39 10 1 day a week 1 day a week

2 40–49 29 2 or 3 days a week 2 or 3 days a week

3 40–49 15 1 or 2 days a month 1 or 2 days a month

4 40–49 29 2 or 3 days a week 1 or 2 days a month

5 60–69 44 1 day a week 1 day a week

6 50–59 35 1 day a week 1 or 2 days a month

7 30–39 10 1 or 2 days a month 1 or 2 days a month

8 40–49 24 1 or 2 days a month 1 or 2 days a month

9 50–59 32 1 day a week 1 day a week

10 50–59 38 2 or 3 days a week 1 day a week

11 40–49 20 1 day a week 1 day a week

12 30–39 15 1 day a week 1 or 2 days a month

13 40–49 20 1 or 2 days a month 1 or 2 days a month

14 40–49 28 2 or 3 days a week 2 or 3 days a week

15 40–49 15 2 or 3 days a week 2 or 3 days a week

16 40–49 19 almost every day almost every day

17 50–59 30 2 or 3 days a week 1 day a week

18 40–49 11 1 day a week 1 or 2 days a month

19 30–39 17 1 or 2 days a month 1 or 2 days a month

20 50–59 32 2 or 3 days a week 1 day a week

questionnaire, we asked whether the participant felt that he tried to fit his driving
speed according to the MLGS light flow.

2.2 Method for Measuring Inter-vehicle Distance

The GPS data, video image data, and speed data recorded for both the preceding
and following drivers were recorded and used to measure inter-vehicle distance.
With the GPS, the position of the vehicle was recorded at one-second intervals, and
the inter-vehicle distance was estimated by calculating that difference between the
positions of the preceding and following vehicles at corresponding points in time.
Since the GPS data contained errors, the vehicle position data were corrected by
mapmatching. Consequently, the GPS point sequences were absorbed in the analysis
section. Furthermore, the inter-vehicle distance of GPS data at 20.5 kp (the starting
point of the analysis section) was compared with the video image data at 20.5 kp to
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Table 2 Lighting conditions for each trial on each day of the experiment

ID July September

1st round 2nd round 3rd round 1st round 2nd round 3rd round

1 no MLGS MLGS 60 MLGS 80 MLGS 60 no MLGS MLGS 80

2 MLGS 80 MLGS 60 no MLGS MLGS 60 MLGS 80 no MLGS

3 MLGS 60 MLGS 80 no MLGS MLGS 80 MLGS 60 no MLGS

4 no MLGS MLGS 80 MLGS 60 no MLGS MLGS 80 MLGS 60

5 MLGS 60 no MLGS MLGS 80 no MLGS MLGS 80 MLGS 60

6 MLGS 60 no MLGS MLGS 80 MLGS 80 MLGS 60 no MLGS

7 MLGS 80 MLGS 60 no MLGS MLGS 60 no MLGS MLGS 80

8 no MLGS MLGS 60 MLGS 80 MLGS 80 MLGS 60 no MLGS

9 no MLGS MLGS 80 MLGS 60 MLGS 60 MLGS 80 no MLGS

10 no MLGS MLGS 80 MLGS 60 MLGS 80 MLGS 60 no MLGS

11 no MLGS MLGS 60 MLGS 80 MLGS 80 no MLGS MLGS 60

12 MLGS 80 MLGS 60 no MLGS no MLGS MLGS 80 MLGS 60

13 MLGS 60 MLGS 80 no MLGS no MLGS MLGS 60 MLGS 80

14 no MLGS MLGS 80 MLGS 60 MLGS 80 MLGS 60 no MLGS

15 MLGS 80 no MLGS MLGS 60 no MLGS MLGS 60 MLGS 80

16 MLGS 80 no MLGS MLGS 60 no MLGS MLGS 60 MLGS 80

17 MLGS 80 MLGS 60 no MLGS MLGS 60 MLGS 80 no MLGS

18 no MLGS MLGS 60 MLGS 80 MLGS 60 MLGS 80 no MLGS

19 MLGS 60 MLGS 80 no MLGS no MLGS MLGS 80 MLGS 60

20 MLGS 60 MLGS 80 no MLGS MLGS 80 no MLGS MLGS 60

correct the inter-vehicle distance based on the GPS data. The inter-vehicle distance
from the image data was obtained by similarity calculating the width of the bottom
portion of the windshield in the following vehicle and the width of the vehicle in the
preceding vehicle. The distance between the camera lens and the bottom portion of
the windshield was set at 1 m. Although the error was about several meters, it was
possible to take the variation characteristic of the inter-vehicle distance because it
was possible to confirm that the transition of the inter-vehicle distance from GPS
data and that from the drive recorder were virtually identical.

When the subject drivers were involved in congestion during the experiment, the
data were excluded as error data. Even when corrected with data from the drive
recorder, where the inter-vehicle distance was inappropriate (e.g., negative values)
were also excluded. The experimental data from July 16 to September 11, as well
as those from the second half of September 14, are missing because of equipment
problem. Thus, Table 3 shows the numbers of IDs before and after the removal of
erroneous data, and the number of IDs after erroneous data removal is the number
of participants for which the inter-vehicle distance can be estimated.
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Table 3 Number of IDs
before and after removal of
erroneous data

Number of
IDs before
error removal

Number of
IDs after error
removal

No MLGS July 20 16

September 20 13

Operated
60 km

July 20 14

September 20 11

Operated
80 km

July 20 14

September 20 13

3 Fundamental Analyasis on Inter-vehicle Distance

3.1 Outline

In this Section, the analysis of differences in the inter-vehicle distances in the presence
and absence of the MLGS is described. To analyze the influence of the MLGS on
car-following behavior of the driver as a function of the longitudinal gradient of the
road, the section of the road in which the MLGS was installed was divided into 5
sub-sections; (1) downhill, (2) just before the bottom of the sag, (3) just after the
bottom of the sag, (4) first half of uphill, and (5) second half of uphill, as shown in
Fig. 3. The influence of the MLGS was first analyzed in relation to road geometry,
and the attributes of the participants follows.

3.2 Variation of Inter-vehicle Distance in Subsections

As indicated previously, the inter-vehicle distance in the presence of the MLGS was
compared with that with no MLGS, MLGS 60 and MLGS 80 for each participant

Fig. 3 Road geometry of the
analysis section and division
of the road into sections
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in each section shown in Fig. 3. By applying ANOVA and conducting multiple
comparisons, the significant variation with 5% level in the inter-vehicle distance in
the presence of the MLGS compared to that in their absence was identified for each
participant and each subsection. Note that each subsection has a certain distance
and approximately more than 10 observational data on inter-vehicle distance was
available for analysis. Based on the results, the variation patterns were categorized as
(1) “increased”, (2) “stable”, or (3) “decreased”, and the proportions of the measured
inter-vehicle distance variations for each of the three categories for MLGS 60 and
MLGS 80 are presented.

According to Fig. 4, under MLGS 60 conditions, the inter-vehicle distance “de-
creased” compared to no MLGS conditions for the largest proportion of drivers.
Moreover, this proportion was the largest just after the bottom of the sag, implying
that it may be possible to reduce the excessively large inter-vehicle distance that is
likely to occur just after the bottom of the sag. While, according to Fig. 5, under
MLGS 80 conditions, the ratio of “increase” to “decrease” was relatively larger
than that under MLGS 60 conditions. Although there was random variation in inter-
vehicle distances, it is interesting to note that the MLGS somewhat influenced the
inter-vehicle distance maintained by each driver.

Downhill Just before 
bottom 

Just after 
bottom 

First half of 
uphill 

Second half 
of uphill

Increased

Stable

Decreased

N=25

Fig. 4 Change in inter-vehicle distance with the use of MLGS 60 compared with that without the
MLGS

Increased

Stable

Decreased

Downhill Just before 
bottom 

Just after 
bottom 

First half of 
uphill 

Second half 
of uphill N=27

Fig. 5 Change in inter-vehicle distance with the use of MLGS 80 compared with that without the
MLGS
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3.3 Variations of Inter-vehicle Distance in Driver Perceptions
About MLGS

3.3.1 Cross-Tabulation of Inter-vehicle Distance and Questionnaire
Results

To examine which driver attributes were significant, cross tabulation analysis was
conducted focusing on the relationship between the inter-vehicle distance variation
and the responses to the questionnaire conducted during the experiment. In the ques-
tionnaire, the participants were asked whether they felt that they tried to adjust their
driving speed to that of the MLGS in light traffic. The participants were classified
into three categories; “tried to match the speed of theMLGS light flow”, “did not feel
anything in particular” or “other”. Note that the participants who answered “other”
were excluded from further analysis. The breakdown of inter-vehicle distance varia-
tions, “increased”, “stable”, and “decreased”, in the results are shown in Figs. 6 and
7, respectively.

As Fig. 6 shows, in the group of participants who tried to fit the MLGS light flow
speed, the proportion of “decrease” in the inter-vehicle distance was relatively large.
This decrease was expected to suppress the excessive inter-vehicle distance increase.
However, as Fig. 7 shows, under MLGS 80 conditions, the opposite tendency was
observed. This was apparently caused by the deviation between the driving speed
and the MLGS light flow speed. As Figs. 6 and 7 shows, for the participants who
did not try to fit the MLGS light flow speed (noted as “Did not feel anything” in the
figures), no clear tendency was observed in the proportions of the variation patterns.

Not felt anything

Tried to fit MLGS

Increased

Stable

Decreased

Fig. 6 Inter-vehicle distance changes with MLGS 60

Not felt anything

Tried to fit MLGS

Increased

Stable

Decreased

Fig. 7 Inter-vehicle distance changes with MLGS 80
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3.3.2 Verification by Statistical Significance

Based on the data shown in Fig. 6, it is reasonably clear that the ratio of “decreased”
for the participants who tried to fit the MLGS 60 light flow was dominant.

To determinewhether therewas statistical significance in the relationship between
the perception of theMLGSand the decrease in inter-vehicle distance, logistic regres-
sion analysis was conducted. The model is expressed as Eq. (1), and the target data
were all the participants with available data under MLGS 60 conditions.

ln

(
p

1− p

)
= b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5, (1)

where p is probability that inter-vehicle distance decreases. x1 is a dummy variable
for which a value of 1 indicates a participant, who answered that he tried to adjust
his driving speed to the MLGS light flow and 0 otherwise. Similarly, x2 is a dummy
variable for a participant who answered that he did not have any feelings about
following the MLGS. x3 represents the driving experience of the subject (in years),
x4 represents the age of the subject, and x5 is a dummy variable for a subject who
frequently used the target section of roadway on a daily basis. b0 to b5 were the
parameters to be estimated, and Table 4 shows the results of the logistic regression
analysis.

Based on the data shown in Table 4, the p-values of x1 and x5 were less than 0.05,
showing that these explanatory variables were significant at a 5% level. Since the
parameter b1 had a positive value, it can be concluded that a driver who tries to fit the
speed of the MLGSwould be more likely to decrease the inter vehicle distance in the
uphill section of the road. Furthermore, it can be interestingly noted that according
to the negative value of b5, the inter-vehicle distance was less likely to decrease in
the up-hill section for drivers who frequently used the target section.

Table 4 Logistic regression analysis results

Explanatory variable Regression coefficient Standard
deviation

Z value

Constant term −2.75 3.70 −0.742

Subjects who wanted to fit
MLGS dummy

3.73 1.76 2.12*

Subjects who didn’t feel
anything dummy

1.79 1.36 1.31

driving experience (year) −0.0281 0.110 −0.255

Age 0.0968 0.131 0.74

the Kobe line high frequency
user dummy

−2.79 1.40 −1.99*

AIC = 36.4, Likelihood ratio = 0.296, N = 25
*p < 0.05
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4 Traffic Capacity Estimation Based on Car-Following
Model

4.1 Outline of the Car-Following Model

According to the results reported thus far, the influence of the MLGS can be consid-
ered to influence inter-vehicle distance. However, the impact of the MLGS on traffic
capacity is still unclear. Thus, in this Section, the traffic capacity was estimated on
an individual basis by applying the car-following model [11] shown in Eq. (2).

ẍn+1(t + T ) = λ · ẋn+1(t)
α

[
xn(t) − xn+1(t)

]β
· [ẋn(t) − ẋn+1(t)

]
, (2)

where ẍn+1(t + T ) represents the acceleration of the following vehicle; T represents
the reaction time; ẋn(t) and ẋn+1(t) represent the speeds of the preceding vehicle
and the following vehicle, respectively; xn(t) and xn+1(t) represent the positions of
the preceding vehicle and the following vehicle, respectively; and λ, α, and β denote
parameters. The differential equation (Eq. 2) was mathematically solved by applying
variable separationmethod,whereT,α, andβ were set as 0, 1, and 3, respectively. The
macroscopic relationship between traffic density and average speed are expressed in
Eq. (3).

ln v = −λ

2
· k2 + ln v f , (3)

where v is the speed of the following vehicle, ẋn+1(t), k is the traffic density, vf is
the free-flow speed. Herein, k = 1/ [xn(t) − xn+1(t)] holds. It is assumed that v = vf
holds when k = 0. Then, the relationship between q and k can be derived as Eq. (4).

q = k · v f · exp
(
−λ

2
· k

)
. (4)

The traffic capacity is defined as themaximum value of qc, which is derived as Eq. (5)
at k = 1/λ.

qc = v f · (λ · e)− 1
2 . (5)

Therefore, the traffic capacity, qc, can be estimated by supplying the parameters λ

and vf in Eq. (3). According to the analysis by Takashima et al. [12], the bottleneck
of congestion in the Fukae Sag was around 19.8 kp. Thus, in this study, the section
from the sag bottom (around 20.25 kp) to 19.8 kp was analyzed.
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Fig. 8 Comparison of traffic
capacity with and without
the MLGS

No MLGS MLGS No MLGS MLGS
Tried to fit MLGS Not felt anything
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4.2 Evaluation of Traffic Capacity

The traffic capacity of the participants who tried to fit the speed of the MLGS and
those who did not were compared. Considering the number of analytical data, the
parameters estimated in Eq. (3) with a coefficient of determination of 0.20 or more
was chosen, and data that did not meet this criterion or took on an abnormal value
were excluded from the analysis. The average was calculated separately for the
participants who tried to fit the speed of the MLGS light flow and those who did not.

Figure 8 presents the results. For convenience, the data associated with the 60 and
80 km/h MLGS light flow speed and data from July and September were pooled.
The results indicated that the participants who felt that they tried to fit the movement
of the MLGS light flow speed showed a tendency to increase traffic capacity. It
was significant at a significance level of 10% (df = 8, p-value = 0.08) based on
a t-test. Meanwhile, the participants who did not feel anything in response to the
MLGS light flow speed showed a tendency to decrease traffic capacity, though it
was not statistically significant. When comparing traffic capacity with the MLGS
operation for both categories of participants, they are interestingly almost equal to
each other. This suggests that the MLGS may stabilized the traffic capacity of the
entire population of drivers. However, it is necessary to increase the number of
samples and continue to enhance the present analysis by improving the model.

5 Evaluation of Collision Risks

The change in inter-vehicle distance due to the use of the MLGS was confirmed
for a large number of participants. If the inter-vehicle distance decreased due to the
MLGS, the risk of a rear-end collision may be higher. Hence, we verified that driving
safety was also improved by the MLGS operation. In this study, the safety analy-
sis was performed based on the PICUD (Potential Index for Collision with Urgent
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Fig. 9 Transition of PICUD
in MLGS installation section

kp

PIC
U

D
 (m

)

Deceleration) value proposed by Uno et al. [13] as a collision risk indicator. The
PICUD is defined as the distance between vehicles when both cars have stopped
after the preceding vehicle suddenly decelerates, and the following vehicle subse-
quently decelerates with a delayed reaction. In other words, if the PICUD value was
less than 0, even if the driver of the following vehicle urgently applied the brake hard,
a collision with the preceding vehicle will occur. The PICUD index is expressed by
Eq. (6).

P ICUD = −V 2
1

2a
+ s0 −

(
V2 · �t − V 2

2

2a

)
, (6)

whereV1 is the speed (m/s) of the preceding vehicle immediately before deceleration,
V2 is the speed (m/s) of the following vehicle at the time of deceleration of the
preceding vehicle, a is the acceleration during the deceleration of both vehicles
(assumed to be −3.3 m/s2), s0 is the inter-vehicle distance (m) at the start of the
deceleration of the preceding vehicle, and Δt is the reaction delay time for the
following vehicle (assumed to be 1.5 s).

The change in the PICUD in the presence of theMLGSwas determined according
to theMLGS operating speed (60 and 80 km/h). The PICUDwas taken as the average
value for all participants. About sample number, No MLGS is 30, MLGS 60 is 25,
and MLGS 80 is 27 people. Based on the data shown in Figs. 4 and 5, the influence
of the MLGS on the inter-vehicle distance was different in the downhill and uphill
sections. Hence, the road section to be tested for significant difference in the PICUD
was divided into two sections before and after the bottom of the sag. The average
PICUDs are shown in relation to the position in the road in Fig. 9. In the downhill
section (20.5–20.25 kp), it was confirmed that the PICUD for MLGS 60 conditions
was slightly lower than no MLGS conditions just behind the bottom of the sag, but
was still larger than 0.

It was shown that there was no significant differences among no MLGS, MLGS
60 and MLGS 80 conditions at a 5% level based on ANOVA in the downhill section,
whereas in the uphill section (20.25–19.5 kp), the PICUD values for MLGS 60 and
MLGS 80 conditions were significantly larger than those for no MLGS conditions.
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The larger the PICUD value in the uphill section of the road, the more likely rear
end collisions between the following vehicle when the preceding vehicle decelerates
suddenly will be prevented. Therefore, the collision risk does not rise due to the
operation of the MLGS and safety is maintained under the use of the MLGS.

6 Evaluation on Stability of Car-Following Behaviors

6.1 Longitudinal Variation of Relative Speed

In this section, the traveling speed is estimated using the GPS data installed in the two
vehicles in the car-following experiment, and the characteristics of longitudinal vari-
ation of relative speed, which can be considered as the stability of the car-following
behavior, is examined. The stability of car-following behavior is considered to be a
situation in which the speed reduction of the preceding vehicle is not expanded, and
the influence of the speed reduction is gradually reduced. Considering the fluctuation
of the relative speed, when the fluctuation range is small, the speed difference from
the preceding vehicle is small, and it responds quickly to the speed change of the
preceding vehicle. If the cycle is large, the variation in the speed difference from the
preceding vehicle becomes moderate, which means that the speed adjustment is not
excessive.

In this study, we define these states as “stable”. Since the analysis of inter- vehicle
distance was based on the average value for each section, it was impossible to evalu-
ate the longitudinal variation in driving behavior. In this study, the relative speed was
defined as the “preceding vehicle speed—following vehicle speed”, and the target
section was set between 20.5 and 19.5 kp where the MLGS was installed, which
was same for inter-vehicle distance analysis. Although it was easy to calculate the
speed from GPS data, due to observation errors, the fluctuation range of the transi-
tion became excessive. Hence, Kalman smoothing was applied to the relative speed
calculated with GPS data. In Kalman smoothing, it was assumed that the transition
of the data obtained by GPS included two kinds of observation error and state error.
Then, the maximum likelihood estimation method was used to determine the values
so that these two kinds of errors were minimized.

Figure 10 shows an example of smoothing. The blue line is GPS data, and the red
line is the data after smoothing. It can be seen that random noise can be successfully
eliminated. On the basis of data with Kalman smoothing, the average of all the data
(i.e., the data for both July and September was calculated for each presence/absence
of MLGS and operation speed. Figure 11 presents the results.

From Fig. 11, under MLGS 60 conditions, the fluctuation range of the relative
speed was remarkably large in the vicinity of 20.1 kp, and it shifted in smaller
increments on the downstream side compared to that at 19.9 kp. Meanwhile, under
MLGS 80 conditions, there was a difference in the fluctuation range and the cyclic
variation compared to that observed under no MLGS conditions.
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Fig. 10 Smoothing
processing example (July
ID1 No MLGS)

R
elative speed (km

/h) 

From these results, the fluctuation range and the cyclic variation apparently varied
due to the presence or absence and the difference in the operation speed of theMLGS.

6.2 Arrangement of Relative Speed Fluctuation Range
and Cycle in Individual Units

In this section, we analyze and quantitatively evaluate the relative speed fluctuation
of an individual driver. We considered the relative speed transition as a waveform
and analyzed the waveform amplitude (the variation width of the relative speed) and
the frequency (the periodic time of the relative speed) for each participant.

To represent the amplitude, average amplitude was used. Since the relative speed
fluctuates between positive and negative values, the method shown by the formula
(7) was adopted. Δv is the relative speed, and N is the number of observations.

x̄ =
√

1

N

∑
�v2 (7)

The frequency was converted to the power spectrum distribution using the Fourier
transform (FFT,N= 64). In this study,median power frequency (f med)was adopted as
the representative frequency [14].Median power frequency is a frequency that divides

Fig. 11 Relative speed
transition result (average of
all samples)

R
elative speed (km

/h)
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the area surrounded by the frequency axis and the power spectrum distribution into
two equal areas. When bisecting the area of the power spectrum distribution, it is
assumed that the power spectrum is linearly distributed piece-wise.

Based on this result, the distribution of the median power frequency and the
average amplitude are shown in the box chart in Fig. 12. Each horizontal line of the
box-and-whisker chart indicates the minimum value, the lower quadrant position,
the median value, the upper quartile, and the maximum value in ascending order.
Regarding the frequency, it was confirmed that although no significant difference
was observed between the presence and absence of a MLGS, the observed range of
frequency was smaller with an MLGS than without a MLGS.

Regarding the amplitude, although there was no significant difference between
observation widths, the medians under MLGS 60 and MLGS 80 conditions were
slightly larger than those observed under no MLGS conditions. In other words, the
amplitude level tended to be significantly higher with MLGSs than without MLGS,
though the observation widths were nearly equal.

Therefore, the amplitude of the relative speed tended to slightly increase, while
the frequency (periodic time) was found equalized by operated MLGS.

6.3 Evaluation on Stabilization of Car-Following Behavior

In this section, we examine the effect of MLGS on stabilization of car-following
behavior of all drivers using median power frequency and average amplitude. To
evaluate stability, a coordinate plane is considered in which the horizontal axis is
the average periodic time [min] (reciprocal of frequency) and the vertical axis is
the average amplitude [km/h]. Both of the values for each participant are plotted as
schematically represented in Fig. 13 (this is an example of no MLGS conditions).
The stability is then defined as the angle formed by the plotted point and the line
connecting the origin and the periodic axis. If the angle is large like θ1 in Fig. 13, it
is generally considered that the periodic time is small and the amplitude increases,
which corresponds to the unstable situation. Conversely, if the angle is small like θ2,
the periodic time is large and the amplitude decreases, indicating the stable situation.
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Fig. 12 Median power frequency and average amplitude distribution
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In this study, we also examined the dispersion level of the angle under MLGS and
no MLGS conditions to evaluate the stabilization of car-following behavior. It is
interpreted that the smaller the variance in the angle, the more homogeneous the car
driving behavior is, and vice versa.

The histogram of the recorded angle is shown in Fig. 14 for each operation con-
dition of MLGS, and the dispersion value is shown in Fig. 15. From the histogram, it
can be seen that the distribution range under no MLGS conditions is wider than that
associated withMLGS conditions.When comparing the variance, it was smaller dur-
ing MLGS operation than without operation of the MLGS. There was a statistically
significant tendency in the value of the angle, and there was no significant difference
in variance; however, the results suggest that car-following behavior of all drivers
could be more homogenate when the MLGS is operational. Therefore, by operating
the MLGS, there is a possibility that the number of drivers who exhibit extreme
car-following behaviors decreases, which may contribute to an overall improvement
in traffic conditions.
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Fig. 15 Angular variance
under each condition
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7 Conclusions and Future Research

In this study, car-following experiments were conducted on Hanshin Expressway
Route 3 at the Fukae Sag. The influence of the MLGS on the driving behavior was
analyzed, focusing on the change in inter-vehicle distance, traffic capacity, collision
risks and transition of relative speed.Based on the results of our analysis, the influence
of the MLGS on the uphill section of the road were as follows: (1) Regardless of the
operating speed, the MLGS tended to exert a change in the inter-vehicle distance on
entire section. (2) When the MLGS was operated at a light flow speed of 60 km/h,
for drivers who tried to match the vehicle speed with the MLGS light flow speed,
the inter-vehicle distance was likely to decrease and traffic capacity improved in the
uphill section. (3) The average of the PICUD value in the uphill section was higher in
the presence of the MLGS than in their absence, and even in the downhill section of
the PICUDvaluewasmaintained in the safety level in the uphill section. (4)Although
the effect on stability improvement was not found to be statistically significant, the
number of drivers who exhibited extreme car-following behavior decreased, which
may contribute to an overall improvement of the traffic situation in the entire section.

Future research should include an increase in the number of samples for com-
parison, an analysis using highly accurate inter-vehicle distance and relative speed
estimates should also be performed. In this context, collecting vehicle trajectories
using video image datamight be efficient rather than performing car-following exper-
iments, though it largely depends on the time and cost associatedwith data collection.
It is also important to verify the more detailed mechanisms: how do drivers perceive
the optical flow produced by MLGS, how do they change their driving behavior, and
how does it influence on the macroscopic traffic flow phenomena. Based on these
insights, the operation of the MLGS could be improved to mitigate traffic congestion
and traffic accident risks.
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Proposal of Acoustic Train Detection
System for Crowdsensing

Koji Sato, Shigemi Ishida, Jumpei Kajimura, Shigeaki Tagashira
and Akira Fukuda

Abstract Train operation status is an important piece of information for our trans-
portation plans. Without the latest train operation status, commuters might be face
transportation inconvenience. Nowadays, train operation status is managed by rail-
way companies. When a railway company delays the status update, commuters do
not know the actual train operation status. In rural areas, the status updates are often
delayed because railway companies focus more of their efforts on the recovery of
train operation. Therefore, we propose a crowdsourced train detection system using
a microphone on a smartphone. In our train detection system, a smartphone analyzes
the frequency components of sound signals acquired by a microphone. We calculate
the probability of a train passing using a logistic regression model on the sound
frequency components and apply a hysteresis thresholding with two thresholds to
detect passing trains. In addition, simple filtering based on train length is also applied
to increase robustness to noise, including the sound of other passing vehicles. We
conducted initial experimental evaluations and confirmed that our train detection
system can successfully detected trains with an F-measure of 0.99 and a recall of
1.0. Further, we also conducted experiments in a more practical environment where
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the audio signals were acquired by smartphones in pants’s pockets, and confirmed
that the acquired audio signals are useful for train detection.

Keywords Train detection · Acoustic sensor · Crowdsensing

1 Introduction

Trains are fast and high-capacity means of transportation that plays an important role
inmodern society. In Japan, 2.1 billion people traveled on trains inApril 2018 accord-
ing to a report from the Ministry of Land, Infrastructure, Transport and Tourism [9].

The train operation status is shared on the Internet nowadays because canceled
and delayed trains have a substantial influence on numerous train users. A railway
company provides the train operation status based on the train location derived from
track circuits and tachographs. Train users can rearrange their travel based on the
status information when trains are canceled or delayed.

Train operation status, however, is often updatedwith a considerable delay ofmore
than 20 min after the status changes. The railway company focuses on resuming or
recovering the train operation when the operation status changes; the operation status
is updated later. A 20-min update delay is often critical for train users, especially in
rural areas because the number of trains is limited.

Our goal is to realize a train-operation-status-sharing system that shares latest
train operation status based on crowdsensing. Crowdsensing offloads sensors onto
users’ smart devices to reduce the sensor deployment cost. The train-operation-status-
sharing system collects train-location information from the user’s devices and checks
if the train is running according to schedule.

Several studies have reported train-localization systems using a global positioning
system (GPS) module, acceleration sensor, or magnetic sensor [3, 4, 7], which are
available on smartphones. These studies assume that the smartphone is on-board, i.e.,
the user is on a train, and estimate the train location based on the smartphone location,
train velocity, or pre-trained sensor signatures. There is little chance of cooperation
from train users in rural areas where a limited number of people use trains.

To collect considerably more train-location information, we present a new train-
detection system that enables rail-side pedestrians to share the train location. Our
key idea is to detect trains using rail-side smartphones and share the detection results
along with the smartphone location. We utilize a microphones on a smartphones
to detect trains because smartphones are often in a pockets or bags. Our train-
localization system analyzes the frequency components of sound signals derived
by a smartphones and calculates the probability of a train passing using a logis-
tic regression model on the frequency components. The regression coefficients are
trained prior to system usage. Finally, the system applies hysteresis thresholdingwith
two thresholds to detect the passing train.

We conducted an experimental evaluation to demonstrate the basic performance of
our train-detection system.We installed amicrophone at a house nearby a railway and
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recorded the sound of passing trains for approximately 7.5 h. The sound signals were
then analyzed using our train detection system to detect passing trains.We confirmed
that the train detection system successfully detected trains with an F-measure of 0.99
and a recall of 1.0.

Specifically, our main contributions are twofold:

• We present a train-detection system using a microphone, which enables us to use
smartphones in a pockets or bags as sensors. To the best of our knowledge, this is
the first attempt to detect trains using a microphone located outside of the trains.

• Wedemonstrate experimentally that our train detection system shows a high detec-
tion performance when we clearly retrieve train sound.

The remainder of this paper is organized as follows. Section 2 shows an overview
of our train-operation-status-sharing system utilizing crowdsensing. Section 3
describes existing train localization methods that can be used in the operation-status-
sharing system. Section 4 shows our proposed train-detection system for rail-side
cooperators in the operation-status-sharing system. Section 5, describes the initial
evaluations conducted to demonstrate the basic performance of our system. Section 6
describes the experimental evaluations in a more practical situation. Section 7 dis-
cusses possibilities for performance improvement of the train-detection system, and
Sect. 8 concludes the paper.

2 Train-Operation-Status-Sharing System Utilizing
Crowdsensing

Figure 1 shows an overview of our train-operation-status-sharing system utilizing
crowdsensing. The status-sharing system relies on three information sources:

1. Railway company’s website:
Prior to the system use, the sharing system retrieves the regular train schedule
as “ground truth” of the train location. The sharing system also monitors the
operation status on the railway company’s website.

2. Smartphones of on-board cooperators:
On-board cooperators report their location and time information to the sharing-
system server.

3. Smartphones of rail-side cooperators:
Rail-side cooperators report their location and time information when train pass-
ing is detected.

The status-sharing system first calculates the train locations based on the “ground
truth” train schedule. The status-sharing system then compares the ground truth train
location with those collected from cooperators’ smartphones to detect irregular train
schedules, which are provided to users as a prompt report.

In the case in which insufficient location data is collected by crowdsensing,
the sharing system also updates the operation status based on the operation-status
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Fig. 1 Overview of train-operation-status-sharing system utilizing crowdsensing

information derived from the railway companies’website. Information on the railway
company’s web site is also used to identify the cause of the irregularity.

As we described in the following section, the first and second aforementioned
information sources are already available. We focus on the third information source
in this paper.

3 Related Work

In this section, we briefly investigate relatedwork on train detection. First, we explain
sensor-based train detection methods in use in Japan, which are mainly utilized by
railway companies. We then introduce train-detection methods relying on smart-
device sensors.

3.1 Existing Train-Localization Methods

This subsection overviews train-localization methods used by railway companies.
These methods are used indirectly as railway company’s website sources.
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There are three main methods used to detect trains: the tachograph, track circuit,
and axle counter methods. A tachograph is installed on-board, and the distance from
a reference point is calculated using the tachograph output. The reference points are
measured using IC tags installed along the railroad track [8]. These systems face a
communication problem as reliable communication between the train and ground
equipment is required.

A track circuit and axle counter are installed on the railroad track. A track circuit
is an electrical circuit using wheels and the axle of a train. Tracks are separated by
insulators forming track sections. When a train passes between sections, the circuit
is electrically shorted, which indicates the presence of a passing train between the
sections. An axle-counter detects a train passing when the train passes over an axle-
counter installed on a railroad track. These methods require sensors to be installed on
the railroad track, resulting in high deployment and maintenance costs for railroad
work, which sometimes restricts on train services. Because thesemethods require the
construction of railroad tracks or customization of train cars, only railway companies
can deploy sensing systems using these methods.

Satellite localization systems, including GPS and global navigation satellite sys-
tem (GNSS), have also been utilized for train localization. The GNSS provides the
train location calculated from radio signals from satellites [6, 12]. The GPS and
GNSS fail at localization or suffer from high localization errors when radio signals
are unavailable or weak, such as in tunnels. Because of these localization error, GPS
and GNSS have not been put into practical use in Japan as it has many tunnels.

3.2 Mobile Train-Localization Systems

Smartphones have a rich set of sensors such as aGPS,magnetic sensor, accelerometer,
and microphone. These sensors are used in wide variety of applications and are
focused on nowadays as a new area of research field called mobile phone sensing [5].
Several train-localization methods relying on mobile-phone sensing have also been
proposed.

Smartphones equipped with GPS modules carried by on-board users are utilized
in crowdsensing train-localization systems. Location information and timestamp are
sent to a crowdsensing server. As described in the previous section, GPS and GNSS
suffer from low localization accuracy with weak radio signals in areas such as in tun-
nels. To improve the localization accuracy, hybrid approaches that combine inertial
measurement units with GNSS have been proposed [1, 10]. In our crowdsensing
train-operation-status-sharing system, the GPS and GNSS are promising candidates
for on-board cooperators’ sensing.

Heirich et al. proposed a train-localization method using an inertial sensor in
an on-board smartphone [4]. This method uses location-dependent vibration as a
fingerprint that describes the location. Prior to the location estimation, a site survey
is conducted; vibration and location data are collected as fingerprints. The train
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location is estimated by finding the most similar fingerprint from fingerprints to
those collected in the site survey.

A multiple-sensor-based train-localization system using an acceleration sensor
andmicrophone has also been proposed [11]. In this system, an on-board smartphone
retrieves acceleration and sound data to estimate the train location. From the vertical
acceleration, the system detects trains passing over rail joints. In addition, the vertical
acceleration yields the approximate train speed because the acceleration is dependent
on the train speed.

Similarly, the sound of the train passing the rail joint is captured by a microphone.
The joint-passing sound is emitted when the front and rear wheels of the train pass
over the rail joints. From the distance between the front and rear wheels, we can
estimate the train speed based on the intervals of the joint-passing sound. Combining
these two approaches, the system estimates the actual train speed, which is integrated
to calculate the running distance of the train.

All of these methods are utilized in on-board cooperators’ crowdsensing in our
train-operation-status-sharing system. In rural areas, the number of on-board coop-
erators may be insufficient to collect train-location data. Our approach, microphone-
based rail-side train detection, is proposed to increase the number of cooperators in
the status-sharing system.

4 Train-Detection System Using a Microphone

Figure 2 illustrates an overview of our train-detection system using a microphone.
The train-detection system consists of predict and detect blocks to analyze the sound
signals retrieved from a microphone installed near the railroad tracks. A low-pass
filter (LPF) is applied prior to the analysis to reduce the influence of high-frequency
environmental noise. The predict block calculates the probability of train existence
based on the frequency components of the sound signals retrieved from the micro-
phone. The detect block calculates the moving average (MA) over the output of the
predict block and applies hysteresis thresholding with two thresholds to detect train
passing.

The details of each block are described in the following subsections.

4.1 Predict Block

A predict block consists of training and prediction phases because the block uses
logistic regression, which is a machine-learning method.

In the training phase, regression coefficients of logistic regression are trained
using frequency components of the sound signal. In the prediction phase, logistic
regression analysis is performed on the frequency components of the sound signal
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at each time-point using the regression coefficients trained in the training phase to
calculate the existence probability of train passing.

Each phase is described in detail as follows.

4.1.1 Training Phase

In the training phase, the system trains the regression coefficients of logistic regres-
sion using the training audio data. As shown in Fig. 2, we use frequency components
calculated by fast Fourier transform (FFT) as feature values. The sound data is divided
into fixed-length time windows. FFT is applied to the each divided data to calcu-
late the amplitude of frequency components. Using the amplitude of the frequency
components, the system trains the regression coefficients of the logistic regression.

In a logistic regression analysis for train detection, the system calculates the
probability of train existence using the frequency components derived from FFT as
feature values. Let Y = {0, 1} be a random variable that describes the existence of
a passing train such that Y = 1 when a train exists and Y = 0 when no train exists.
The probability of train existence is given by

P(Y = 1|X) = 1

1+ e−AX
, (1)

where X = t [1, x1, x2, . . . , xn] is an input vector, and A = [a0, a1, a2, . . . , an] is a
regression coefficient vector, and tZ describes a transpose of vector/matrix Z.

In the training process, regression coefficients are calculated by minimizing the
cost function C(A):

C(A) = 1

N

N∑

i=1

log P(Y = Yi |Xi ), (2)

Fig. 2 Overview of train-detection system
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where {Xi ,Yi |i = 1, 2, . . . , N } is a training data set derived from FFT.

4.1.2 Prediction Phase

In the prediction phase, the system calculates the existence probability of a passing
train using the regression coefficients obtained in the training phase.

Logistic regression analysis is performed using the frequency components calcu-
lated by FFT of the sound data. The sound data is divided into a fixed-length time
windows. Again, FFT is applied to each divided data to calculate the amplitude of
the frequency components X. Then, the probability of a train passing at each time is
calculated by substituting the regression coefficientsA obtained in the training phase
and the frequency component X for the regression model in Eq. (1).

Figure 3 shows an example of the predict block output. A train passed in front of
the microphone between 22 and 32 s. As shown in Fig. 3, the predict block outputs
high a probability when a train passes in front of the microphone.

4.2 Detect Block

A detect block applies moving average and hysteresis thresholding to the output of
the predict block to finalize the train detection.

As shown in Fig. 3, the output of the predict block chatterswhen a train approaches
and leaves. The output of the predict block may also increase when a large vehicle
passes on a road near the railroad tracks, resulting in a false positive train detection.
We apply the moving average to reduce faulty detections caused by the chattering
and by passing vehicles. The length of the moving average is set to approximately
five seconds based on the time length of the train passing.

Finally, the detect block applies hysteresis thresholding to obtain the final detec-
tion results. Figure 4 briefly explains hysteresis thresholding for train detection. The

Fig. 3 Example of predict
block output. The numbers 0
and 1 indicate that a train
exists and no train exists,
respectively
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Fig. 4 Overview of
hysteresis thresholding

two red lines represent the thresholds and the blue curve in Fig. 4 represents the out-
put of the moving average, i.e., the averaged probability of train passing. We apply
a higher threshold for the rising edge, whereas the falling edge is detected at a lower
threshold, deriving the square-shaped wave indicated by the green line in Fig. 4.

5 Initial Evaluation

To demonstrate the basic performance of our train-detection system, we conducted
an experiment with a microphone installed near a railroad track.

5.1 Experiment Setup

Figure 5 shows the experiment setup. A microphone was installed in a backyard of
a house near a single-track railroad in Itoshima city, Fukuoka, Japan. We collected
audio data for approximately 7.5 h.We also collected audio data at a different location
for approximately 3 h; this was used only for training to evaluate the influence of the
difference between the locations of training and testing locations. A total of 39 trains
passed in the 7.5-h testing data collection, whereas a total of 17 trains passed in the
3-h training data collection. Although two microphones were installed as shown in
Fig. 5, we only used one microphone in this study.

The target railroad has a single track, implying that multiple trains never pass
simultaneously. The sound was recorded using a SONY HDR-MV1 recorder with
an AZDEN SGM-990 microphone at a sampling frequency of 48kHz and word
length of 16 bits. Video monitoring of the target railroad was also recorded using a
SONY HDR-MV1 video recorder, which was used as the ground truth.
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Fig. 5 Experiment setup

Microphones

RailwayVideo Camera

We manually labeled the training data referring to the ground truth, i.e., recorded
video: 1 for train passing and 0 for no train passing. The label 1 is used only when a
train was passes directly in front of the microphone. The audio data when a train was
approaching and was moving away was excluded from the evaluation to improve the
training accuracy because these cases might include substantial noise other than the
train sound.

We define the train-passing time tp as the time at which the train passes directly
in front of the microphone. The train passing sound is extracted from tp = 0 to
tp = 5 s. In the training phase, audio data from tp = −5 to tp = 0 s and from tp = 5
to tp = 20 swas excluded from the training data because the data includes ambiguous
sound signals.

To determine the frequency range of features in logistic regression, we com-
pared the performance between full-range detection and frequency-limited detection.
Table 1 shows the frequency range and the numbers of FFT points of the full-range
and frequency limited detections.

We evaluated the numbers of true positives (TPs), false negatives (FNs), and false
positives (FPs) based on a comparison of the results derived from our train-detection
system with video. TP, FN, and FP are defined as the cases in which a train was
detected when a train passed, no train was detected when a train passed, and a train
was detected when no train passed, respectively.

Using the number of TPs, FNs, and FPs, we also evaluated the precision, recall,
and F-measure defined, respectively, as:

Precision = TP

TP + FP
, (3)

Recall = TP

TP + FN
, (4)

Fmeasure = 2 · Precision · Recall
Precision + Recall

. (5)
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Table 1 Frequency range and number of FFT points used as feature values in logistic regression

Frequency range (kHz) Number of FFT points

Frequency-limited 0 to 1 21

Full-range 0 to 24 512

5.2 Detection Performance

We evaluated the detection performance of our train-detection system using two
ranges of frequency components, i.e., less than 1kHz and less than 24kHz. Logistic
regression coefficients were derived using the 3-h training sound data and the 7.5-
h sound data was used for the evaluation to include the influence of the recorded
location difference between training and testing.

Table 2 shows the detection performance, i.e., the numbers of TPs, FNs, and FPs,
as well as the precision, recall, and F-measure. Table 2 indicates the following:

1. Frequency-limited and full-range detections exhibited the same detection per-
formance. This indicates that the frequency components less than 1kHz were
sufficient to practically detect trains.

2. The recall of 1.0 indicates that the train-detection system successfully detected
all of the passing trains.

3. The precision of 0.98 indicates that the train-detection system suffered from the
small number of FP detections. FP occurred when three motorbikes passed suc-
cessively near a microphone. Loud sound signals that partially include frequency
components of the train sound caused the FP detection. We believe that this type
of noise could be excluded if we use a sufficient amount of noise data for training.

4. The F-measure of 0.99 indicates that the train-detection system exhibited
extremely high detection performance. One cause of this high performancemight
be the experiment environment. There was a single railroad track in front of a
microphone such that multiple trains never passed simultaneously.

These results reveal that our acoustic-train detection system successfully and effec-
tively detected trains.

Table 2 Detection performance in (a) frequency-limited and (b) full-range detections

(a) (b)

TPs FNs FPs TPs FNs FPs

39 0 1 39 0 1

Precision 0.98 Precision 0.98

Recall 1.0 Recall 1.0

F-measure 0.99 F-measure 0.99



438 K. Sato et al.

Fig. 6 Regression
coefficients of logistic
regression in
a frequency-limited and
b full-range detections

(a)

(b)

Figure 6 shows the absolute values of the regression coefficients used in the
logistic regression, which correspond to the frequency components of the sound
signals. The absolute value of the regression coefficient implies a contribution of
the corresponding frequency component to the train detection. As shown in Fig. 6b,
frequency components of approximately 5–10kHz contribute substantially to train
detection. We still derived a good detection performance in the frequency-limited
detection; frequency components of less than 1kHz were sufficient for the detection
of trains.

6 Experiment in a Practical Environment

To confirm that our train-detection system can be used in the train-operation-status-
sharing system presented in Sect. 2, we conducted an experiment in a more practical
environment. Sound data was collected using a mobile phone in a pocket because
commuters usually carry their mobile phones in their pockets.
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6.1 Experiment Setup

We conducted experimental evaluations near Imajuku station in Fukuoka city,
Fukuoka, Japan. Figure 7 shows a map of the experiment location. Two railroad
tracks run in an east-west direction. An observer equipped with smartphones was
on the south side of the tracks. Trains travelling from the east run on the south
track, whereas trains travelling from the west run on the north track. Sound data was
collected in sitting and walking scenarios:

1. Sitting scenario:
The observer sat at the rail-side point indicated in Fig. 7. There is an overpass road
above the sitting point. The audio data collected in the sitting scenario therefore
includes considerable vehicle sound. The observer sat on a concrete pier of the
overpass. For the test data, we collected audio data for approximately 20 min. A
total of three trains passed in the 20-min test data collection period.

2. Walking scenario:
The observer walked along a sidewalk along the railroad tracks. Figure 8 shows
the walking area in the walking scenario. For each train direction, the observer
collected audio data of two trains while walking to east or west in the walking
area. The audio data of eight passing trains was finally collected. The audio data
length was approximately 15 min in total.

The sound was recorded using an ASUS ZenFone 3 Deluxe 5.5 at a sampling
frequency of 44.1kHz and word length of 16bits. Test data was collected from
smartphones in the front and rear pockets of jeans, as shown in Fig. 9.

Training data was collected from for approximately 40 min from a smartphone
installed at a sidewalk of railroad to evaluate the effect of the difference between the
training and test data. A total of six trains passed in the 40-min training data collection
period. During our experiment, multiple trains did not pass simultaneously.

Fig. 7 Map of experiment location (using 1:25,000 scale GSI maps from GSI, Japan [2])
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Fig. 8 Experiment
environment: the sidewalk
along the railroad

Fig. 9 Experiment setup:
smartphones in front and rear
pockets

Wemanually labeled the train data referring to the ground truth in the samemanner
as in Sect. 5.1. We used frequency components less than 1kHz as the feature values,
referring to the performance evaluation conducted in Sect. 5. FFT was performed on
1024 samples at a sampling frequency of 44.1kHz. Therefore, there were 22 FFT
points less than 1kHz.

Comparing the results derived from our train-detection system with ground truth,
we evaluated the numbers of TPs, FNs, and FNs as well as the precision, recall, and
F-measure.
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Table 3 Detection performance in the sitting scenario using a smartphone in (a) front and (b) rear
pockets

(a) (b)

TPs FNs FPs TPs FNs FPs

3 0 0 2 1 0

Precision 1.0 Precision 1.0

Recall 1.0 Recall 0.67

F-measure 1.0 F-measure 0.80

6.2 Detection Performance in the Sitting Scenario

Table 3 shows the detection performance in the sitting scenario. Table 3 indicates the
following:

1. A precision of 1.0 indicates that the detection system had no FP detection in either
pocket. In a crowdsensing system, FP detection is undesirable because they FP
confuse the system. Our train-detection system exhibited ideal performance for
crowdsensing in terms of FPs.

2. A rear pocket smartphone suffered from an FN detection as indicated by the
recall of 0.67. In our experiment, FN detection occurred when a train passed on
the north track, i.e., the track far from the observer. FN detections are not as
problematic in crowdsensing because crowdsensing relies on many participants;
train detections by other participants cover the FN detections.

6.3 Detection Performance in the Walking Scenario

Table 4 shows the detection performance in the walking scenario. Table 4 indicates
the following:

1. A precision of 1.0 indicates that the detection system again had no FP detection
in either pocket.

2. Recalls of 0.38 and 0.25 indicate that the system suffered from too many FN
detections.

We found that all of the trains that passed on the north track were undetected. This
implies that we need to minimize the influence of distance between the observer and
the railroad track for better detection performance.
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Table 4 Detection performance in the walking scenario using a smartphone in (a) front and (b) rear
pockets

(a) (b)

TPs FNs FPs TPs FNs FPs

3 5 0 2 6 0

Precision 1.0 Precision 1.0

Recall 0.38 Recall 0.25

F-measure 0.55 F-measure 0.40

7 Discussion

In Sect. 5, we demonstrated that our train-detection system successfully detected
trains while a smartphone was in a pocket. Section 6, however, noted that we face an
issue for practical use. This section discusses possibilities for performance improve-
ment of the train-detection system.

7.1 Frequency Range

In Sect. 5, we conducted an initial evaluation to determine the frequency range for
logistic regression based on the frequency components of the train sound signals
collected in an open space. Sound signals collected by a smartphone in a pocket in
a walking scenario include considerable friction noise caused by the pants’ pocket.
The friction noise negatively affected the detection performance, resulting in false
negative detections.

Fig. 10 Amplitude of
frequency components of
sound signals in sitting and
walking scenarios

0 200 400 600 800 1000
Frequency [Hz]

0

2

4

6

8

10

Am
pl

itu
de

Sp
ec

tr
um

Sitting
Walking



Proposal of Acoustic Train Detection System for Crowdsensing 443

Figure 10 shows the amplitude of each frequency component of the sound signals
in the sitting and walking scenarios. In the walking scenario, frequency components
under 1kHz were quite high compared to those in the sitting scenario. We believe
that the frequency components were caused predominantly by the friction noise,
resulting in the detection of performance degradation.

To reduce the influence of the noise, we need to utilize more wider-bandwidth
sound signals in the logistic regression.

As a reference,we additionally evaluated the detection performance in thewalking
scenario with frequency components from 0 to 2kHz in a logistic regression. We
confirmed that the F-measures were increased from 0.55 and 0.4 to 0.67 for the front
and rear pockets, respectively, with the wider bandwidth. We plan to analyze the
influence of frequency components as one of our future works.

7.2 Amount of Training Data

In Sect. 6.3, we found that all of the trains that passed on the north track were unde-
tected. The false negative detections were mainly caused by the difference between
the frequency components of the sound signals on different tracks.

Figure 11 shows the amplitude of the frequency components of the sound signals
for trains on the south and north tracks. Frequency components of approximately
600Hz of the south-track train are high compared to those of the north-track train.
We could not identify the cause of this difference; however we can conclude that
we need to collect significantly more training data that in many situations to provide
robustness to the environment difference.

Fig. 11 Amplitude of
frequency components of
sound signals for trains on
the south and north tracks
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8 Conclusion

In this paper, we proposed a train-operation-status-sharing system using crowdsens-
ing. To realize the status-sharing system, we presented an acoustic train-detection
system for rail-side cooperators. In the train detection system, the frequency compo-
nents of the train sound are analyzed using a logistic regression model to calculate
the probability of train passing. We conducted experimental evaluations to demon-
strate the detection performance of the train-detection system. Experimental evalu-
ations revealed that the train-detection system successfully detected trains with an
F-measure of 0.99 and a recall of 1.0. In addition, we also demonstrated that audio
signals collected by smartphones in pants’ pockets were capable of train detection.
For future works, we plan to improve the detection performance as we discussed in
Sect. 7.
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A Study for Social Benefit of VICSWIDE
Service by Using Traffic Simulation
in Tokyo

Shinya Adachi, Yasuhiko Iwasaki, Kazuhiko Mizushima
and Hisatomo Hanabusa

Abstract VICS (Vehicle Information and Communication System) Center started
traffic information service in 1996, now VICS receiver units are mounted on the
navigation systems more than 80%, and 4 million units are shipped annually. And in
April 2015, VICS Center added a new service “VICS WIDE”. VICS WIDE service
provides advanced traffic information that is aimed for more useful DRGS (Dynamic
RouteGuidance System).We anticipate that this new servicewillmake a convenience
of road traffic in the future. Since last year, we have started the study for estimation
of the social benefits and economic effects expected by the spread of VICS WIDE
service by using the traffic simulator with near-reality road network data and traffic
demand data. As a result, the VICS WIDE service got a prospect of reducing the
economic cost of traffic congestion by about 10%.

Keywords Traffic information · Traffic simulation · Socio-economic benefit

1 Introduction

22 years has passed from starting of VICS service. At present VICS receiver units
are mounted as an essential function on the navigation system and we estimate that
30% of drivers are using VICS service.
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In April 2015, VICS Center doubled the data transmission bandwidth of FM
multiplex broadcasting, and started a new service that is named “VICS WIDE”. In
the last quarter summary, 80% of the shipped VICS units correspond to VICSWIDE
service and we expect to spread rapidly in the near future.

One of the main services added at VICS WIDE is link travel time on ordinary
road.

Before the stating of VICSWIDE service, previous VICS services provided only
visual traffic jam information on the ordinary road and did not provide link travel
time.

For this reason, the route guidance in the previous VICS service has been based
on the static link cost that is calculated by the link length and road attributes.

We think that VICS WIDE users can get greater benefits by using DRGS that is
calculated with link travel time, and it will contribute to alleviate traffic congestion
socially as well.

In this paper, we estimated the economic effect of VICS WIDE by using traffic
simulation with near-reality traffic demand data and road network data.

2 Objective of This Study

In recent years, several studies have been conducted on the influence and effect on
traffic flow by providing traffic information.

In general, by providing traffic information, individual drivers select route which
isminimize travel time, so the road network can be effectively utilized and congestion
alleviation can be expected.

However, particularly in the crowded road network, along with the increasing of
number of vehicles following the traffic information, there is a possibility that the traf-
fic concentration to the unoccupied road may occurs by the vehicle according to the
information, and congestion loss may be increased [1]. On the expressway in Japan,
it was confirmed that such traffic concentration phenomenon occurred actually by
providing traffic information on variable message sign boards [2]. Moreover, several
methods for reducing traffic concentration phenomenon have also been proposed,
and its effect has been evaluated by simulation [3].

Most of the above mentioned research is evaluated in simple road networks such
as expressway or corridor. On the other hand, in an actual road network, there are
many urban streets with no traffic information, and some drivers use such urban
streets to avoid congestion.

First objective of this study is to estimate the socio-economic benefits of link
travel time information by VICS WIDE in actual road network and traffic demand.

And second is to check the possibility of occurrence of economic loss due to
traffic concentration in the situation where VICS WIDE users spread.
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3 Overview of VICS WIDE Traffic Information

VICS provides road traffic informationwith threemedia, FMmultiplex broadcasting,
infrared beacon, and radio wave beacon.

VICS WIDE is a new service for FM multiplex broadcasting.
For the more useful DRGS, traffic information of VICSWIDE has been improved

as follows.

• Provision of link travel time on ordinary road;
Although previous VICS has provided only traffic congestion (without link travel
time) for ordinary road via FMmultiplex broadcasting, VICSWIDE service added
link travel time of ordinary road.

• Enhancement of traffic information by taxi probe data;
We introduced the probe car system by about 5,000 taxis in Tokyo metropolitan
area. Probe car system make it possible to provide traffic conditions even in the
roads without vehicle detectors.

Figure 1 shows the difference in coverage of link travel time between previous
VICS and VICS WIDE in Tokyo Metropolitan area.

Fig. 1 Overview of coverage of link travel time
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4 Traffic Simulation for Estimating Socio-Economic
Benefits

4.1 Framework of Social Benefit

Drivers who refer to previous VICS information or VICS WIDE information select
routes avoiding congestion sections on the road network. As a result, these drivers
are appropriately allocated to the road section and the traffic congestion of the entire
road network will be reduced. Furthermore, also Non VICS users can get benefits as
VICS users spread. So VICS system contributes to the reduction of economic cost
of traffic congestion like Fig. 2.

In this paper, we estimate the socio-economic benefit by reducing the economic
traffic cost by using traffic flow simulation.

4.2 Stricture of Simulation

In this research, we used “SOUND (a Simulation model On Urban Networks with
Dynamic route choice)” that is a macro traffic flow simulator correspond to a large-
scale road network developed at the University of Tokyo [4, 5].

Figure 3 shows the structure of simulation. The outlines are as follows.

• Reproduce the traffic flow in the simulation by using input data for one weekday
from 4:00 am to 3:59 (see next chapter in detail).

• Traffic simulator output the chosen route of individual vehicle, link traffic volume
for every second, and link travel time for every second.

VICS users

Previous VICS
Avoid traffic jams

by visual traffic Information

VICS WIDE
Select a time shortest route 

based on link travel time

These driver behaviors lead to
desirable vehicle allocation to road-network
and contribute to reducing traffic congestion

Non-VICS users

Benefit 
from reduced 

traffic congestion

VICS service will reduce economic loss due to traffic congestion.
Socio-economic benefit by VICS service

Fig. 2 Framework of social benefit
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Traffic Simulator
(SOUND)

Route Choice Model
(VICS user)

Route Choice Model
(VICS WIDE user)

Route Choice Model
(non VICS user)

Travel Timeof 
Individual Vehicle

Travel Distance of 
Individual Vehicle

Delay Time of 
Individual Vehicle

Output

VICS 
information

OD Zone 
Data

OD Volume
Data

Road Network 
Traffic Signal

Traffic Regulation 
Input

Link Traffic Volume
for Every Second

Link Travel Time
for Every Second

Chosen Route of
Individual Vehicle

Aggregation

Economic Cost
due to Congestion

Convert and sum up to Unit Price per Minute

Fig. 3 Structure of simulation

• Calculate the delay time for individual vehicle by tracing chosen route.
• Convert delay time into economic traffic cost of each vehicle by using the “unit
price per minute”, and sum the amount.
The above “unit price per minute” is defined in “cost benefit analysis manual [6]”
issued by MLIT (Ministry of Land, Infrastructure and Transport). This value is
roughly 40 JPY/minute for general vehicles, and from 45 to 370 JPY/minute for
commercial vehicles by type.

• In accordance with the spread scenario of VICS WIDE service, Change the per-
centage of previous VICS users and/or VICS WIDE users, simulate again, and
calculate economic traffic cost again.

• Find the difference between both economic traffic costs and estimate the socio-
economic benefit of VICS WIDE.

Simulation scale is as follows.

• Simulation area is Tokyo Metropolis and buffering area; see Fig. 4
• The road network is composed of all roads with a road width of 5.5 m or more.
The total length of road network is 14,734 km.
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Buffering area 
(included in simulation area)

Evaluation area
(Tokyo)

Buffering area 
(included in simulation area)

©JAPAN DIGITAL ROAD MAP ASSOCIATION

Fig. 4 Simulation area (Tokyo Metropolis and buffering area)

©JAPAN DIGITAL ROAD MAP ASSOCIATION

Fig. 5 Traffic control signals in simulation area

• Approximately 12,000 traffic control signals existing in the above-mentioned road
network; see Fig. 5.
The signal control parameters applied typical static values for all signals.
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Fig. 6 Reproduction steps of traffic flow

4.3 Reproduction of Traffic Flow on Simulation

Reproduction steps of traffic flow is as follows; see Fig. 6.

• 1st step, source data is inputted to the simulation. Source data of traffic flow is
“OD (origin destination) traffic volume per day” and “geographicalODzone data”.
These data are part of “road traffic census” that is carried out every five years in
japan [7].

• 2nd step, OD traffic volume per day is decomposed to each time zone by referring
the typical traffic demand pattern.

• 3rd step, trial of simulation is done. Each vehicle is generated according to the
occurrence probability at origin zone, and move to destination zone for each. At
this time, the classification of VICS user is assigned to each vehicle by using
random numbers, and each vehicle selects the route according to the policy of that
classification.
The classification of VICS user is shown in Table 1.

• Above process is done from 4:00 AM to 3:59 AM at next day. The reason that
4:00 AM was chosen is because the traffic volume is the smallest in the day.
Congestion occurs on roads where vehicles are concentrated, depending on the
traffic flow theory. The road capacity and free flow speed is determined by the
road structure and road attributes.
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Table 1 Classification of the users

Classification Description

Non VICS users • In principle, the path is selected without considering the traffic
congestion. But some vehicles avoid heavy congestion (assuming use
of radio, information board, etc.)

• Logit-based route choice model

Previous VICS users • Select a path based on visual congestion information of VICS
information and avoid heavy traffic congestion.

• Logit-based route choice model

VICS WIDE users • Select a time shortest path based on the link travel time and traveling
time for each direction at intersection

Table 2 Reproducibility of traffic flow

Comparison item Simulation value Benchmarks Reproducibility

Value Reference

Vehicle–kilometers 62.9 million 66.3 million Road traffic
census (2010)

Good

Traffic volume by
time zone at
representative
points

See Fig. 8
Correlation Coefficient 0.82

Road traffic
census (2010)

Almost good

Economic traffic
cost amount in
Tokyo (JPY/year)

0.6 trillion 1.2 trillion Report by MLIT
(2005)

Less than
benchmarks

• 4th step, adjust parameters by comparing the simulated traffic volume of each time
zone at reprehensive point with actual measured traffic volume and try again until
both traffic flow agrees.

Figure 7 shows the example of traffic flow on simulation. Each dot on the road is
individual vehicle.

Reproducibility of traffic flow on simulation is shown in Table 2 and Fig. 8
Vehicle-kilometers is good, and traffic volumes by each time zone at representative

points are almost good like Fig. 8. However, it must be noted that the total economic
cost of congestion is underestimated comparing to the report by MLIT in 2005.

We think that the traffic jam in tsimulation is less than the actual one for some
reason. It must be improved in the future.

5 Estimation Result of Socio-Economic Benefits

Table 3 shows the test scenario and Fig. 9 shows the simulation result. Reproduced
state is scenario 1 and current situation before deploying VICS WIDE is scenario 2.
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Fig. 7 Overview of simulation

The percentage of previous VICS users in scenario 2 was estimated from the
number of past shipments of VICS units and retained motor vehicles. Large-size
vehicles rarely have car navigation unit, so all are regarded as non-users of VICS
service.

Scenario 4 assumes a time when VICS WIDE is fully popular in the future,
and it also serves as an investigation of the occurrence of the traffic concentration
phenomenon. Even if the VICS WIDE on-board units are installed in all vehicles,
some drivers do not refer to real-time traffic information, so it is estimated that the
number of users of VICS WIDE will not exceed 70% over the future.

Figure 9 show that the previous VICS service has reduced the economic cost of
traffic congestion by about 12% (scenario 2). By replacingwithVICSWIDE, it could
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Fig. 8 Traffic volume of simulation results and actually measured

Table 3 Test scenario of VICS/VICS WIDE widespread situation

Scenario no. Description Non VICS users
(%)

Previous VICS
users (%)

VICS WIDE
users (%)

1 Before deploying
VICS System

100 0 0

2 1st year of VICS
WIDE
(previous VICS
deployed)

70 30 0

3 All VICS units
are replaced to
VICS WIDE

70 0 30

4 Further growth of
VICS WIDE

30 0 70

be reduced further by 8% from now (scenario 3), and furthermore, if VICS WIDE
gets more popular in the future, we can get 11% reduction (scenario 4).

In this research, traffic concentration did not occur even in scenario 4. This is
considered that some vehicles select urban narrow streets without traffic information
when avoiding congestion in a complex urban road network, so traffic concentration
on unoccupied (guided) roads has been relieved.

Individual user benefit is shown in Fig. 10. This bar graph is the average travel time
per one trip for each classification in each scenario. Figure 10 is in good agreement
with Fig. 2. That is to say, previous VICS user’s benefit is greater than non-VICS
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Fig. 9 Estimation result of socio-economic benefits
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Fig. 10 Average travel time per trip of each classification

user’s benefit (see orange dotted line), VICS WIDE user’s benefit is greater than
previous VICS user’s benefit (see green one). Also non-VICS user can get benefit as
VICS WIDE user spread (see blue one).

In comparison between scenarios 3 and 4, it is indicated that the benefits of VICS
WIDE users are slightly decreased along with the further popularization of VICS
WIDE users due to the progress in properly allocating traffic flows.

Figure 11 shows the picture that traffic jam is gradually decreasing asVICSWIDE
users increase.
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Fig. 11 Example of traffic congestion on simulation

6 Conclusion

InApril 2015,VICScenter addedVICSWIDEservice aiming at further advancement
of VICS service, and traffic information has been improved for more useful DRGS.

We estimated the socio-economic benefits of VICSWIDE service by using traffic
flow simulation. The characteristic of this research is that it was done by using traffic
simulation with near-reality traffic demand data and road network data.

According to the simulation result, previous VICS service has reduced 12% of
economic cost of traffic congestion. Moreover, along with the VICS WIDE service
spread, economic traffic cost will be further reduced by about 10%.

Also, congestion loss due to traffic concentration caused by traffic information
that was pointed out in the past research did not occur even when the VICS WIDE
user reached 70%. This is considered that in a complex urban road network including
narrow streets without traffic information, some vehicles select such narrow streets
when avoiding congestion, so traffic concentration on unoccupied roads has been
relieved.

Analysis of the benefits of individual users confirmed the superiority of VICS
WIDE users and previous VICS users, and it was confirmed that non-VICS users
also benefit by spreading of VICS user.
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Explore User Behavior of the Taipei
Bikesharing System via Electronic
Payment Service Data

Chih-Lin Chung and Shu-Yuan Li

Abstract This paper identifies user behavior of the Taipei bikesharing system,
YouBike, along with the trip chain between YouBike and Taipei mass rapid tran-
sit (MRT). The one-month data from the electronic payment service (EPS) provider
contain 1,540,846 YouBike rides and 56,870,619 MRT rides. Data processing tech-
niques and descriptive statistics were applied via SAS©. The results show that among
the 407,935 YouBikers, 82.97% were casual users (defined as those with 5 or less
monthly rides), 14.53%were constant users (6–20 rides), and 2.50%were loyal users
(more than 20 rides). 41.35% of the YouBike rides were made by the casual users,
38.61% by the constant users, and 20.04% by the loyal users. 35.90% of the users
rode YouBike to or from the MRT stations at least once a month. 23.72% of the
YouBike rides complemented MRT by serving as the first- or last-mile feeder mode
of MRT. The casual users tended to ride YouBike on the weekends for the leisure
purpose, and the loyal and constant users tended to ride YouBike on the weekdays
for commuting. YouBike was particularly welcomed by students and general adults.
As YouBike has passed its growth peak and is now in the mature phase, it is sug-
gested that the transportation authority provide incentives to encourage existing and
potential users.

Keywords Bikesharing · Public bike system · Electronic payment service · User
behavior

1 Introduction

In 2009 Taipei launched its public bike system, also known as YouBike. As a new
transportation service, YouBike experienced a difficult introduction stage due to the
limited amount of bike stations and complicated rental process. The city government
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Fig. 1 YouBike station locations and equipment. Source compiled from http://www.youbike.com.
tw

fixed the drawbacks and initiated a revised system three years later.YouBike started to
gain its popularity in Taipei since then, and soon spread out all over the country. As of
July 2018, YouBike is available in seven local cities; Taipei has 400 YouBike stations
and 2.5 million monthly rides while the other six cities have 1,153 stations and 4.8
millionmonthly rides. The bike, dock, panel, and station locations inTaipei are shown
in Fig. 1. The YouBike system is run by the world leading bicycle manufacturer,
Giant. Equippedwith a three-stage derailleur, comfortable saddle, wheel-driven LED
front and tail light, etc., the quality of the bike is superior to regular products on the
market. In addition, the patented dock design allows two bikes using one column; this
reduces the construction cost and utilizes space more effectively. For the operational
performance, each bike is checked out approximately from 4 to 7 times per day in
Taipei. Riding YouBike has become not just a travel choice but an urban fashion.

Successful bikesharing and other transportation systems rely, to some degree,
on the implementation of electronic payment services (EPS). It enhances the pay-
ment efficiency for both service users and providers. Another benefit of EPS is the
availability of transaction records regarding every ride. Some cities offer real-time
or historical data of bikesharing station status—the number of remaining bikes at
the station—for web scraping. Quite a few research [1–3] were in light of such
time-series “station-based” big data. Typical station-based analysis includes station
performance (with respect to available bikes, available docks, and neighboring land

http://www.youbike.com.tw
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use), spatial and temporal ridership, etc. Some other cities release their historical
bikesharing (ride) transaction data to the public for free downloading. The data usu-
ally contain such columns as start time, start station, end time, end station, and the
amount of rental fees. An increasing number of research [4–6] have been supported
by such “ride-based” big data. Typical ride-based analysis involves spatial and tem-
poral trip distribution, travel duration, estimated travel distance, cost, and so on.
If the user identity (in the form of the transportation smart card number) of each
ride is accessible, the ride-based analysis can explore more characteristics, including
ride frequency and trip chain. We refer this type to the “user-based” or “advanced
ride-based” data; it allows all of the ride-based analyses, and can yet report user
characteristics.

The principal idea of YouBike as well as many public bike systems in the world
is to offer the first- and last-mile service for public transit. Therefore, every mass
rapid transit (MRT) station in Taipei has at least one YouBike station nearby. It
meanwhile raises the concern that YouBike may replace some short MRT trips.
MRT and YouBike are potentially in coopetition. The research objective is thus to
verify the characteristics of YouBike trips by various user types in Taipei City. The
findings will be helpful for the authorities to position YouBike among the urban
transport modes.

2 Data Processing

In Taiwan, people can use one smart card such as EasyCard, iPASS, and iCASH
for most transport services around the country. The card issuers hold the transaction
records in their backend ticketing platforms. Our raw data were purchased from the
EasyCard Corporation—the largest local smart card issuer with around 60 million
cards in circulation (as of October 2017). That means everyone in the island held 2.6
cards on average. Our data consist of one-month ride transactions in two separate
files—one for YouBike and the other for TaipeiMRT. All of the transactions occurred
in November 2016. Back then, Taipei City had 272 YouBike stations (now 400) and
there were 117 MRT stations in the metropolitan area (unchanged since then). The
average temperature of the month in Taipei was 22.6 degrees Celsius along with
limited rainfall. The decent weather condition kept the YouBike ridership stable in
comparison with other months during that period. In other words, the weather factor
is not a concern in this study.

The YouBike file originally stored 4,004,750 records. The data columns include
the card number, card type (regular, student, elderly, etc.), checkout station, return
station, return time, and rental fee. The Taipei MRT file originally stored 57,885,541
records. The data columns include the card number, card type, origin station, des-
tination station, station departure time, and transit fare. Note that due to the data
integration gap of the card issuer, neither the YouBike checkout time nor the MRT
station arrival time was available in the raw data. However, such information is
essential for analyzing transfers between YouBike and MRT. To deal with the issue,
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Table 1 Taipei YouBike progressive rental fees

a. Rental fee (NT$)
from the raw data

b. Rental duration
(min)

c. Fees per 30 min d. Estimated riding
time (min) set to be
the maximum rental
duration

5 <30 NT$ 5* 30

15, 25, …, 65, 75 30–240 NT$ 10 60, 90, …, 210, 240

95, 115, …, 215, 235 240–480 NT$ 20 270, 300, …, 450, 480

275, 315, … >480 NT$ 40 510, 540, …

Note Starting from April 2018, the first 30-min rental is free of charge given a transfer to or from
public transit (MRT or buses). Otherwise a fee of NT$ 5 applies. During our study period (Nov.
2016), users paid NT$ 5 for the first 30 min regardless of a transfer or not

we associated the YouBike rental fee with the estimated riding time based on the
fee-time lookup table, as shown in the columns (a) and (d) of Table 1. The YouBike
checkout time can then be calculated via Eq. (1). Secondly, we collected the travel
time of eachMRT station pair announced by theMRTCorporation. TheMRT arrival
time can be calculated via Eq. (2) that set the station dwell time as 5 min.

YouBike: checkout time= return time − estimated riding time (1)

MRT: station arrival time= station departure time − travel time − dwell time (2)

In addition, we assume that every individual consistently uses one card throughout
the study period. The YouBike file alone can capture the user frequency and ride
characteristics for further marketing strategy making. The YouBike file can link the
MRT file through the card number. The joint data reveal the transfer behavior by
associating the checkout time and the return time of each bike ride with its upstream
or downstream MRT ride, if any. We follow the time span of the city government
that defines a transfer as two trips no more than one hour apart. Therefore, when an
MRT ride is beyond one-hour earlier or later than its consecutive YouBike ride (or
vice versa), they are regarded as two independent trips.

The data cleansing process filtered out the non-Taipei rides, the transactions
involved in irregular travel costs, and the outliers with extremely high fees or fre-
quency of use. As a result, 1,540,846YouBike rides remained, accounting for 89.29%
of the Taipei YouBike ridership; 56,870,619 MRT rides remained, accounting for
98.25% of the Taipei MRT ridership.
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3 Results and Discussion

To identify theYouBikeuser characteristics,we classified thosewith 5or lessmonthly
rides as casual users, thosewith 6 to 20monthly rides as constant users, and otherwise
loyal users. Among the 407,935 YouBikers, 82.97%were casual users, 14.53%were
constant users, and 2.50%were loyal users; in terms of 1,540,846 rides, 41.35%were
made by the casual users, 38.61% were by the constant users, and 20.04% were by
the loyal users, as shown in Fig. 2 and Table 2. Each user on average rodeYouBike for
3.78 times per month. 5 and 21 monthly rides were arbitrarily set as the boundaries
of the three user types, they approximately respond to 1 and 5 weekly rides. The city
authority may adjust the lower boundary to 4 (or 6) monthly rides, and the upper
boundary to 20 (or 22) monthly rides, for example. Table 3 shows the result of the
above adjustment. Lower boundary performs a more sensitive impact on the casual
users than the upper boundary on the loyal users. Given the adjusted lower boundary,
the casual user percentage would decrease (or increase) from 82.97 to 79.00% (or
85.88%), and its ride percentage would decrease (or increase) from 41.35 to 36.09%
(or 45.96%). Given the adjusted upper boundary, the loyal user percentage would
slightly increase (or decrease) from 2.50 to 2.77% (or 2.26%), and its ride percentage
would also slightly increase (or decrease) from 20.04 to 21.47% (or 18.72%).

In terms of the card type, themajoritywere the regular card holderswho accounted
for 64.98% of the total YouBikers. However, the student group was the most active
users. Such an argument is supported by the following facts. First, according to the
statistics in 2017, the number of students at middle school and above accounted for
only 11.62% of the total population in Taipei, but the student YouBikers were the
second largest among different card types, as shown in Table 4. Second, Table 4

Fig. 2 Accumulated rides and percentage of YouBike rides by user type
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Table 2 Number of users and number of monthly rides by user type

Casual user
(≤5 rides)

Constant user
(6–20 rides)

Loyal user
(≥21 rides)

Total

No. of users 338,478
(82.97%)

59,270
(14.53%)

10,187
(2.50%)

407,935
(100%)

No. of monthly
rides

637,070
(41.35%)

594,961
(38.61%)

308,815
(20.04%)

1,540,846
(100%)

No. of monthly
rides per user

1.88 10.04 30.31 3.78

Table 3 Sensitivity of the boundaries with respect to the number of users and monthly rides

Casual user
(≤4 rides)

Casual user
(≤6 rides)

Loyal user
(≥20 rides)

Loyal user
(≥22 rides)

No. of users 322,271
(79.00%)

350,329
(85.88%)

11,287
(2.77%)

9,217
(2.26%)

No. of monthly
rides

556,035
(36.09%)

708,176
(45.96%)

330,815
(21.47%)

288,445
(18.72%)

No. of monthly
rides per user

1.73 2.02 29.31 31.29

also presents that the students tended to be more of the loyal or constant users than
of the casual users. Third, the official operational report by the YouBike Corpora-
tion constantly reveals that 3 out of the most popular 5 YouBike stations are next
to universities. On the other hand, the percentage of 65+ year-old usage (0.80%),
as expected, was much lower than the percentage of elderly population in Taipei
(13.88%). The number of rides by card type and user type in Table 5 presents similar
information as Table 4. But interestingly, the monthly rides per card were not much
different among the card types, ranging from 3.58 to 3.96, albeit the student card had
a relatively greater frequency. Table 4 shows a limited amount of elder YouBikers
while Table 5 indicates that once the elderly become YouBikers, they may ride as
frequently as, if not more than, the regular card holders.

Risks factors associated with elderly cycling include poor vision, reduced muscle
strength, and declining cognition [7]. It is suggested that the authority target the
existing regular and student YouBikers to boost their usage.Meanwhile, the authority
should try to create new users. An effective way would be the fare integration among
public transit. The city government has been implementing a joint monthly pass
for buses, MRT, and YouBike since mid-April, 2018. It immediately increased the
YouBike ridership in the followingmonths. Themonthly pass benefits the ridership of
buses and MRT as well. Other promotions in the city include draws of meal coupons
for those using YouBike for 11 or more days in the month, and free coffee for
YouBikers on Friday morning commuting hours. Although there are safety concerns
regarding elderly cycling, the seniors’ right to cycling must not be deprived. Some
interventions could be taken to prevent elderly cycling accidents (see [7]).
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Table 4 Number of users by card type and user type

a. Casual user b. Constant user c. Loyal user d. Total

Regular card
(column %; row
%)

221,550
(65.45%;
83.58%)

37,173
(62.72%;
14.02%)

6,337
(62.21%;
2.39%)

265,060
(64.98%; 100%)

Student card
(column %; row
%)

107,425
(31.74%;
81.64%)

20,576
(34.72%;
15.64%)

3,589
(35.23%;
2.73%)

131,590
(32.26%; 100%)

Elderly card
(column %; row
%)

2,688
(0.79%;
82.08%)

525
(0.89%;
16.03%)

62
(0.61%; 1.89%)

3,275
(0.80%; 100%)

Others
(column %; row
%)

6,815
(2.01%;
85.08%)

996
(1.68%;
12.43%)

199
(1.95%; 2.48%)

8,010
(1.96%; 100%)

Total
(column %; row
%)

338,478
(100%; 82.97%)

59,270
(100%; 14.53%)

10,187
(100%; 2.50%)

407,935
(100%; 100%)

Table 5 Number of monthly rides by card type and user type

a. Casual
user

b. Constant
user

c. Loyal user d. Total e. Monthly
rides per card

Regular card
(column %;
row %)

414,573
(65.07%;
42.36%)

371,815
(62.49%;
37.99%)

192,343
(62.28%;
19.65%)

978,731
(63.52%;
100%)

3.69

Student card
(column %;
row %)

205,065
(32.19%;
39.35%)

207,888
(34.94%;
39.89%)

108,187
(35.03%;
20.76%)

521,140
(33.82%;
100%)

3.96

Elderly card
(column %;
row %)

5,038
(0.79%;
40.87%)

5,309
(0.89%;
43.06%)

1,981
(0.64%;
16.07%)

12,328
(0.80%;
100%)

3.76

Others
(column %;
row %)

12,394
(1.95%;
43.26%)

9,949
(1.67%;
34.73%)

6,304
(2.04%;
22.01%)

28,647
(1.86%;
100%)

3.58

Total
(column %;
row %)

637,070
(100%;
41.35%)

594,961
(100%;
38.61%)

308,815
(100%;
20.04%)

1,540,846
(100%;
100%)

3.78

Note Column (e) is from column (d) of this table divided by column (d) of Table 4

YouBike inTaipei adopts progressively increasing rental fees, as shownpreviously
in Table 1. Table 6 lists the percentiles of travel cost (rental fees). It is found that
(1) regardless of the user type and weekdays or weekends, the majority of rentals
were within 30 min, (2) the weekend rentals had a longer duration than the weekday
rentals, and (3) for 95- and 99-percentiles of travel cost, the loyal users were the
lowest, the constant users were in the middle, and the casual users were the highest.
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Table 6 Travel cost (in NT$) by user type

Percentile Casual user Constant user Loyal user

Weekday Weekend Weekday Weekend Weekday Weekend

99 65 75 45 55 35 45

95 35 45 25 25 15 25

75 5 15 5 5 5 5

50 5 5 5 5 5 5

Fig. 3 No. of rides by user type and day of week

These findings justify the weekday rides for short-distance daily commutes, and the
weekend rides for the leisure purpose with longer rental duration in general.

Figure 3 further identifies the characteristics of each user type. The casual users
primarily rode YouBike on the weekends, while the other two types were mainly
weekday users. Figure 4 shows that the constant and loyal users had different amounts
of weekday rides but similar usage patterns throughout the day. On the weekdays,
there were noticeable AM (8–9) and PM (18–19) peaks as well as mini noon (12–13)
and evening (21–22) peaks. As for the casual users, there were one noticeable PM
peak and threemini AM, noon, and night peaks. Figure 5 shows that on theweekends,
the casual and constant users presented a PM (17–18) peak, but the loyal users had flat
YouBike usage. Overall speaking, the characteristics of the casual users were found
quite different from those of the loyal users. The constant users performed somewhere
in between. The loyal and constant users tended to be weekday commuters, and the
casual users tended to ride YouBike on the weekends.

Another item of interest is the transfer behavior between YouBike and MRT. As
shown in Table 7, among the 1,540,846 YouBike rides, 160,415 (10.41%) were the
first-mile feeder service of MRT, or YouBike to MRT (Y2M). Proportionally, more
rides were by the loyal users (12.44%) and constant users (10.40%) than by the
casual users (9.43%). 205,146 rides (13.31%) were the last-mile feeder service of
MRT, or MRT to YouBike (M2Y). Proportionally, more rides were generated by the
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Fig. 4 No. of weekday rides by user type and time of day

Fig. 5 No. of weekend rides by user type and time of day

constant users (13.72%) and loyal users (13.56%) than by the casual users (12.82%).
The results can extend the above argument to be that the loyal and constant users
tended to be weekday commuters who made transfers between YouBike and MRT
frequently. Besides, it appears that the M2Y rides (205,146) were greater than the
Y2M rides (160,415). TheM2Y rides are likely in the evening/afternoonwhen people
get off work/school and use YouBike in a relaxedmanner for going home, exercising,
shopping, or other purposes. Sweating is not a concern for M2Y once they are home.
Y2M, on the contrary, are more likely in the morning rush and people may worry
about the odor after cycling. Therefore, M2Y more popular than Y2M matches the
general understanding.

Aggregately, 23.72% of the YouBike rides were about MRT connection. YouBike
in this case enhanced the accessibility of Taipei MRT and to a certain degree accom-
plished its original purpose. Since 74 out of the 272 YouBike stations were next to
the MRT stations, some people would choose YouBike instead of MRT, especially
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Table 7 YouBike monthly rides to or from MRT stations

Casual user Constant user Loyal user Total

a. No. of rides 637,070 594,961 308,815 1,540,846

b. No. of Y2M rides 60,104 61,883 38,428 160,415

c. Y2M ride ratio (=b/a) 9.43% 10.40% 12.44% 10.41%

d. No. of M2Y rides 81,661 81,621 41,864 205,146

e. M2Y ride ratio (=d/a) 12.82% 13.72% 13.56% 13.31%

f. No. of transfers (=b+d) 141,765 143,504 80,292 365,562

g. Transfer ratio (=f/a) 22.25% 23.12% 26.00% 23.72%

Table 8 YouBike users to or from MRT stations

Casual user Constant user Loyal user Total

a. No. of users 338,478 59,270 10,187 407,935

b. No. of Y2M users 53,975 22,964 5,663 82,602

c. Y2M user ratio (=b/a) 15.95% 38.74% 55.59% 20.25%

d. No. of M2Y users 71,724 26,636 5,852 104,212

e. M2Y user ratio (=d/a) 21.19% 44.94% 57.45% 25.55%

f. No. of transfer users 106,427 33,192 6,826 146,445

g. Transfer ratio (=f/a) 31.44% 56.00% 67.01% 35.90%

for short-distance travel. In fact, 133,184 YouBike rides (8.64%) had both ends next
to the MRT stations; such travel demand could have been served by Taipei MRT.
YouBike in this case is a competitor against Taipei MRT. Fortunately, YouBike trips
were more to connect MRT (23.72%) than to replace MRT (8.64%). In addition, the
average ridership of Taipei MRT is around 60 million passengers per month. The
competing YouBike rides (0.13 million per month) had very limited impacts on the
MRT operation.

In terms of the 407,935 users, 82,601 (20.25%) rode YouBike to reach the MRT
stations while 104,212 (25.55%) rode YouBike to leave the MRT stations, as shown
in Table 8. Aggregately, 146,445 (35.90%) users rode YouBike to or from the MRT
stations at least once in the study month. Proportionally, more loyal users (67.01%)
treated YouBike as the first- and last-mile mode of MRT, followed by the constant
users (56.00%), and the casual users were the lowest (31.44%). Note that one can
simultaneously be a Y2M and M2Y user. The row (f) in Table 8 is not a simple
addition of rows (b) and (d) as it is in Table 7.

Figure 6 depicts the top 10 bidirectional transfer stations. Y2M andM2Y stations
were very similar, indicating an overall symmetric pattern that people hadY2M in the
morning andM2Y in the afternoon/evening. Although the three user types resulted in
somewhat different ranking of the transfer stations,many transfer stations overlapped
with one another. The downtown area did not perform strong YouBike-MRT transfer
demand. The possible reason is that both YouBike and MRT have a denser network.
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Taking one single mode can reach most downtown places. There is no need to make
a transfer in this case. Once out of downtown, transfer demand pops up. Transfers
at Zhishan station, for example, ranked no. 2 for the causal and constant users, and
no. 1 for the loyal users. The city government is planning to build an east-west light
rail transit (LRT) that connects the north-south MRT line at Zhishan station. Travel
demand is significant along the LRT line, and currently some are served by YouBike.
Another type of transfer occurs next to the university, such as Gongguan station that
ranked no. 1 for the causal and constant users, and no. 2 for the loyal users. Since
Y2M and M2Y usually happen in different times of day, imbalanced YouBike traffic
is expected. More bikes should be evacuated from the Y2M stations and delivered to
the M2Y stations. Figure 6 helps identify the stations with bike reallocation of great
concern.

4 Conclusions

Since its first launch in 2009, YouBike has experienced the introduction stage and
growth stage. In the past two years, the daily turnover rate per bike in Taipei was
between 7.2 and 4.4, as shown in Fig. 7. It indicates that YouBike, if not heading for
the decline stage, is likely in the mature stage after the completion of 400 stations
in 2017. This study is a pioneer research that adopted user-based bikesharing data
to identify user characteristics. It should be noted that the results based on the EPS
big data could be quite different from those based on the conventional surveys. For
example, YouBike rides by student users accounted for 34% in this study, but the
number was 42% in another study [8] that system sampled 1200 YouBikers. Other
noticeable distinctions between these two studies include the percentages of casual,
constant, and loyal users, the percentages of YouBike rides as the first- or last-mile
feeder service of MRT, and so on. As the advance of ITS, transportation big data
have become more accessible. Such big data can capture the characteristics of the
population. Future decision-making should thus be based on information derived
from big data instead of that from sampled data analysis.

The bikesharing characteristics found in this study enable the administrative and
operational authorities to market YouBike in an accurate way. First, the casual users
accounted for over 80% of the total YouBikers, but they only rode YouBike for less
than twice per month. There is a huge potential of ridership growth in this user
type. As the casual users tended to ride YouBike on the weekends for a longer time,
more incentives can be considered to encourage their weekday use of YouBike. For
example, any card with 5 rentals on weekdays can earn a free weekend YouBike
for one hour. Second, the constant and loyal users tended to ride YouBike on the
weekdays. The incentive exemplified above can also benefit them.Many of these two
user types treated YouBike as the MRT feeder mode. The transportation authority
should ensure at a safe and friendly cycling environment not only on the major roads
but also minor streets that connect MRT stations.
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Fig. 6 Top 10 YouBike transfer stations (upper one: Y2M; lower one: M2Y)
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Fig. 7 YouBike daily turnover rate by month
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