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Abstract The relationship of the homing of normal hematopoietic stem cells 
(HSC) in the bone marrow to specific environmental conditions, referred to as the 
stem cell niche (SCN), has been intensively studied over the last three decades. 
These conditions include the action of a number of molecular and cellular players, 
as well as critical levels of nutrients, oxygen and glucose in particular, involved in 
energy production. These factors are likely to act also in leukemias, due to the strict 
analogy between the hierarchical structure of normal hematopoietic cell popula-
tions and that of leukemia cell populations. This led to propose that leukemic growth 
is fostered by cells endowed with stem cell properties, the leukemia stem cells 
(LSC), a concept readily extended to comprise the cancer stem cells (CSC) of solid 
tumors. Two alternative routes have been proposed for CSC generation, that is, the 
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oncogenic staminalization (acquisition of self-renewal) of a normal progenitor cell 
(the “CSC in normal progenitor cell” model) and the oncogenic transformation of a 
normal (self-renewing) stem cell (the “CSC in normal stem cell” model). The latter 
mechanism, in the hematological context, makes LSC derive from HSC, suggesting 
that LSC share SCN homing with HSC. This chapter is focused on the availability 
of oxygen and glucose in the regulation of LSC maintenance within the SCN. In this 
respect, the most critical aspect in view of the outcome of therapy is the long-term 
maintenance of the LSC subset capable to sustain minimal residual disease and the 
related risk of relapse of disease.

Keywords Leukemia stem cell maintenance · Hypoxia · Oxygen · Stem cell niche

6.1  Introduction

The relationship of the homing of normal hematopoietic stem cells (HSC) in the 
bone marrow (BM) to specific environmental conditions, referred to as the “stem 
cell niche” (SCN), has been the object of intensive study over the last three decades. 
These conditions include the action of a number of molecular and cellular players 
as well as critical levels of nutrients, oxygen and glucose in particular, involved in 
energy production [1, 2]. These factors are likely to act also in leukemias. A strict 
analogy indeed emerged between the hierarchical structure of normal hematopoietic 
cell populations and that of leukemia cell populations [3]. This led to propose [4] 
that leukemic growth is fostered by cells endowed with stem cell properties, the 
leukemia stem cells (LSC), a concept readily extended to comprise the cancer stem 
cells (CSC) of solid tumors [5, 6]. More than one model exists to explain the rela-
tionship of CSC to their normal counterpart. Two alternative routes have been pro-
posed for CSC generation [6], that is, the oncogenic staminalization (acquisition of 
self-renewal) of a normal progenitor cell (the “CSC in normal progenitor cell” 
model) and the oncogenic transformation of a normal (self-renewing) stem cell (the 
“CSC in normal stem cell” model). The latter mechanism, in the hematological 
context, makes LSC derive from HSC, an assumption which suggests that LSC 
share with HSC the homing behavior within SCN of BM [7, 8]. This chapter is 
focused on the role of the availability of oxygen and glucose in the regulation of 
LSC maintenance. In this respect, the most critical aspect in view of the outcome of 
therapy is the long-term maintenance of the LSC subset capable to sustain minimal 
residual disease (MRD) and the related risk of relapse of disease following success-
ful induction of remission. The description of aspects of the regulation of LSC 
maintenance related to the symbiosis with stromal cells, to the action of soluble or 
cell surface/matrix-bound cytokines or growth factors, and to the modulation of 
intracellular signaling is left to other chapters of this book and/or to independent 
reviews.
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6.2  Why Hypoxia Is Written “Hypoxia”

Tissue zones where stem cell potential is maintained are commonly referred to as 
“hypoxic” SCN [9], being “hypoxia” an inappropriate term in this context, as it is 
used to define in vitro or in vivo situations where O2 concentration is lower than that 
of sea-level atmosphere (21% O2). Indeed, O2 concentration in normal tissues, even 
in the lung, is always significantly lower than 21% [10–13]. The papers we are 
referring to here provided convincing arguments for the use of the term “relatively 
(to 21%) low O2 concentration” (to be shortened to “low O2”), instead of “hypoxia,” 
to define conditions corresponding to physiological tissue O2 concentrations. 
Accordingly, any O2 concentration typical of any tissue under physiological condi-
tions should be considered as “in situ normoxia” [13]. On the other hand, the term 
hypoxia can be correctly used to refer to pathological situations where O2 concen-
tration is lower than that of the corresponding normal tissue. Therefore, it is impor-
tant to point out that the concept of in situ normoxia applies to significantly different 
O2 concentrations, between different tissues and different sites within the same tis-
sue [13]. In BM, for instance, the normal overall O2 concentration is lower than in 
most other tissues. BM cells are indeed physiologically distributed along a gradient 
of partial O2 pressure (ppO2) that ranges from around 5% O2 close to blood vessels 
to about 0 (“anoxia”) in the most distant regions. Thus, within BM, “normoxic” 
conditions correspond to O2 concentrations as different as 5% from 0.1%, being 
even anoxia to be considered as in situ normoxia in some zones of BM [13].

6.3  The Low-Oxygen Stem Cell Niche in the Bone Marrow

The key feature of SCN is to enable HSC to proliferate without losing (or losing as 
slowly as possible) stem cell potential, i.e., to undergo the so-called self-renewal, 
which is a defining property of stem cells. Such a pattern of HSC proliferation is 
what sustains long-term maintenance of HSC, yet allowing their contribution to 
active hematopoiesis. The SCN concept emerged as a theoretical model [14], yet 
based on experimental ex vivo data indicating an uneven compartmentalization in 
BM of HSC and less immature hematopoietic progenitor cells (HPC), being HSC 
located preferentially close to the bone surface and HPC instead in proximity of the 
central sinus. This concept evolved later from the HSC/HPC contraposition to a 
model where different HSC subsets are distributed between “endosteal SCN,” where 
the stem cell potential of HSC is maintained, and “vascular SCN,” where HSC com-
mitment to clonal expansion and differentiation is driven [15–17]. The relationship 
of SCN function to proximity to blood vessels is in keeping with a regulation based 
on nutrient supply, O2 and glucose in particular [18, 19]. It emerged that SCN where 
HSC are physiologically long-term maintained are placed in BM zones where O2 
concentration is lower than in the surrounding tissue and that in situ normoxic con-
ditions for HSC maintenance are ensured in sites at the lower extreme of ppO2 
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gradient in BM [20]. It is this HSC-maintaining SCN that will be referred to hereaf-
ter with the acronym SCN, according to the “restrictive” original Schofield’s defini-
tion [14].

The SCN model started to be enriched with mechanistic details in the early 1990s, 
on the basis of results of in vitro studies [21]. In murine BM cell cultures incubated 
in atmosphere at 1% O2, HSC maintenance was found enhanced, while HPC were 
suppressed and the overall hematopoietic output markedly reduced. Thus, low ppO2 
emerged as a regulatory aspect of SCN function, and the concept of “hypoxic” SCN 
was introduced. An interesting aspect of this study was that pooled data obtained 
using a number of different progenitor/stem cell assays revealed a precise hierarchi-
cal “gradient” of resistance to low O2, being the progenitor the more resistant, the 
higher its hierarchical level [21]. This means that an environment which is “hypoxic” 
for the bulk of hematopoietic cells and HPC is actually “normoxic” for HSC. Thus, 
the first mechanistic feature of SCN to emerge pointed to metabolic issues, and to 
the role of ppO2 in particular, in the regulation of HSC maintenance. Similar data 
were then collected for human hematopoiesis and long- term repopulating HSC [22–
24], and the existence of “hypoxic” SCN in vivo was later confirmed experimentally 
[9], leading to a complete systematization of the issue [13]. That said, it is necessary 
here to underscore a point relative to the abovementioned “gradient” of resistance to 
low ppO2. To home selectively within SCN placed in tissue zones at the lowest ppO2, 
HSC need to exhibit a metabolic profile that is not shared by HPC. This profile can-
not simply consist of the compatibility with a generic tissue “hypoxia,” which refers 
to a wide range of tissue O2 concentrations. Either HSC or HPC exhibit indeed a 
“hypoxic” metabolic profile [25]. Thus, what qualifies HSC from HPC is that HSC 
(but not HPC) are capable to stand the lowest physiological ppO2 and for extended 
times. The question invariably slides toward the upregulation of HIFα signaling, the 
best known driver of “cell adaptation to hypoxia.” However, HIFα stabilization 
threshold is around 3% O2 [26], and HIFα signaling is active in both HSC and HPC, 
so that it cannot sustain alone the critical metabolic differences between HSC and 
HPC or confer upon HSC all the features enabling their selective homing in low 
ppO2 SCN. Only a small minority of cells where HIFα is stabilized is indeed capable 
to stand the low ppO2 typical of SCN [9]. Thus, HIFα stabilization is a necessary, 
although not sufficient, condition for HSC maintenance, in keeping with what dem-
onstrated for the maintenance of LSC [27] of chronic myeloid leukemia (CML).

One of the mechanisms operating within the SCN to sustain hematopoiesis while 
making HSC lose stem cell potential as slowly as possible consists in the regulation 
of balance between HSC quiescence and cycling. It was therefore crucial to estab-
lish whether low O2 modulates this balance. The issue was addressed using murine 
BM cell cultures incubated at 1% O2 and two different strategies, i.e., determining 
the suppression of cycling HSC following treatment with 5-fluoro-uracil (5FU) [28] 
and the coupling between mitotic history and maintenance of stem cell potential 
[29]. It was found that, after 5 days in low O2, 1/3 of HSC are induced to quiescence 
(5FU-resistant), while 2/3 are 5FU-sensitive, suggesting that low ppO2 of SCN 
in vivo is compatible with the cycling of a substantial proportion of HSC [28]. It also 
emerged that one replication cycle at 1% O2 boosts stem cell potential and that this 
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effect is lost when cycling is sustained for more than one cycle at 1% O2 or cells are 
incubated in “normoxia” or in the presence of interleukin-3. This indicates that HSC 
self-renewal occurs immediately upon HSC recruitment from quiescence to cycling, 
provided this happens in low O2, suggesting that low ppO2 of SCN in vivo is a cru-
cial factor for the maintenance of stem cell potential of HSC, helping HSC to prolif-
erate as stem cells (self-renewal), and preventing their commitment to clonal 
expansion. On the contrary, stem cell potential is typically lost when proliferation is 
extensively stimulated, such as in the presence of IL-3 or relatively high ppO2 [29].

While all the earlier studies of the effects of low O2 on HSC maintenance were 
carried out incubating cells at 1% O2 (or even higher O2%), the question emerged of 
whether O2 concentrations lower than 1%, detectable in vivo [10, 11, 13, 20], should 
be considered to play a regulatory role in SCN. An affirmative answer was obtained 
in vitro, showing that at 0.1% O2 not only HSC survival but also HSC cycling, a 
crucial aspect of SCN function, is maintained, although induction of quiescence is 
favored [30, 31]. Actually, O2 concentrations ranging between 0.1% and 1.0% were 
classified even as “moderate hypoxia” [26]. A direct measurement of O2 concentra-
tion in BM showed that ppO2 is around 10 mmHg, equivalent to 1.3% O2, within the 
vascular SCN [32], the SCN type where ppO2 is believed to be relatively high. This 
suggests that ppO2 of endosteal SCN should be well below the 1% O2 concentration 
used for the earlier studies in vitro of the effects of low O2 on HSC maintenance. 
The compatibility of O2 concentrations as low as 0.1–0.2% with SCN function led 
to the use these concentrations for the studies of leukemias summarized below.

6.4  Low Oxygen and “Oncogene Suppression” in Leukemias

Working with CML stabilized cell lines or primary explants, it was shown that the 
culture in atmosphere at 0.1% O2 for relatively long incubation times (7–10 days) 
markedly reduced cell bulk with respect to time zero, while in the residual popula-
tion stem cell potential was integrally maintained on a per-cell basis. This parallels 
strictly what observed for normal hematopoiesis. A crucial outcome of these experi-
ments was that incubation in low O2 also completely suppressed BCR/Ablprotein, the 
product of the fusion oncogene responsible for CML pathogenesis, but not BCR/
AblmRNA [33]. Consequently, the CML cell subset capable to stand incubation in low 
O2 is independent of BCR/Abl for persistence in culture but remains genetically 
leukemic (Figs. 6.1 and 6.2). Thus, when BCR/Abl-independent cells were trans-
ferred to growth-permissive incubation conditions (“normoxia”), their stem cell 
potential was exploited, as expected, via BCR/Ablprotein re-expression, which 
is capable to ensure a maximal expansion of cell population. It is extremely relevant 
that the suppression of driver oncogenic proteins (“oncogene suppression”) follow-
ing cell incubation in low O2 is not restricted to CML (Fig. 6.1) but is extended to 
other types of leukemias [34, 35], such as murine Friend’s erythroleukemia (MEL; 
erythropoietin receptor and glycoprotein 55), human acute myeloblastic leukemia 
(AML; AML1/ETO), and human acute promyelocytic leukemia (APL; PML/
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RARα). In all leukemias tested, oncogene suppression is relatively slow (3–7 days 
after the beginning of incubation in low O2), indicating that the phenomenon cannot 
be considered as a direct consequence of HIFα stabilization, which is triggered 
within few minutes of cell transfer to low O2 [9]. Nevertheless, HIFα activity has 
been shown necessary for the maintenance of LSC of CML [27]. As for the down-
stream, effector mechanisms of oncogene suppression in low O2, they belong to a 
complex panel which includes transcriptional, translational, and posttranslational 
events [36–39]. It is important to point out that the downregulation of these pro-
cesses occurring in low O2 is not a generalized phenomenon and that the block of 
protein synthesis does not apply to a number of factors, many of which are appar-
ently important for cell maintenance under metabolic restriction [39, 40].

A key point of the scenario summarized above is that oncogene suppression 
occurring in low O2 does not correlate with a loss of stem cell potential, at least in 
the case of CML [33, 41] and MEL [34] cells. This points to the existence of a leu-
kemia cell subset endowed with LSC properties and capable to survive and cycle 
(34 and Tanturli M, Cheloni G, Bono S and Poteti M, unpublished data) in the 
absence of oncogenic signaling (Fig.  6.1). The selection of such an LSC subset 
under metabolic pressure suggests that maintained oncogenic stimulation makes 
LSC unfit to home the SCN, due to the detrimental effects of growth-promoting 
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stimuli in a growth-limiting environment. On the contrary, oncogene suppression 
would enable LSC to persist as such within the SCN, without risking to be pushed 
by oncogenic signaling to commitment to clonal expansion and differentiation. 
Thus, the loss of “oncogene addiction” [42–44] would be a necessary step of LSC 
adaptation to SCN (Fig. 6.1). In other words, in order to earn their long-term main-
tenance within the SCN, LSC are actually required to revert to a normal, HSC-like 
phenotype. On the other hand, when the homeostatic balance within the LSC com-
partment shifts from the maintenance of stem cell potential to commitment to clonal 
expansion and then differentiation, LSC would shift from the core to the periphery 
SCN environment, which is permissive for the expression of the oncogenic protein 
and the boosting of clonal expansion by oncogenic signaling. Under this perspec-
tive, two points are worth being underscored: (a) oncogene suppression is not a 
genetically blocked event but a fully reversible phenotypical adaptation, like the one 
proposed to describe the relationship between HSC and HPC [45]; (b) the with-
drawal of oncogenic signaling in LSC appears functionally equivalent to that of 
cytokine signaling in HSC [3]. With respect to (b), it is to note that BCR/Abl- 
induced growth factor independence of hematopoietic cells is mediated at least in 
part by IL3 signaling [46], which indeed impairs HSC maintenance in low O2 [29].

6.5  The Dual “Hypoxic/Ischemic” LSC Niche in Chronic 
Myeloid Leukemia

When the metabolic consequences of incubation of CML cells in low O2 were 
addressed, it was glucose consumption from culture medium to emerge as the crucial 
condition for the reduction of total cell number with respect to time zero, as well as 
for BCR/Ablprotein suppression. By varying time zero cell density and glucose con-
centration in cultures incubated in low O2, it was established that the kinetics of this 
suppression is strictly related to that of glucose exhaustion [41]. Deepening the 
issue, it was shown that the lack of glucose is capable to drive BCR/Ablprotein suppres-
sion independently of O2 shortage [40]. Thus, glucose availability emerged as a con-
verging trait of the metabolic control of BCR/Ablprotein expression, suggesting that it 
is severe energy restriction in general, rather than low O2 in particular, to trigger the 
BCR/Ablprotein suppression machinery that qualifies the SCN environment (Figs. 6.1 
and 6.2). If this is the case, why do we focus on low O2 environments? For two rea-
sons: (a) because the lower solubility of O2 when compared to glucose, affecting 
their diffusion in tissues, makes O2 shortage precede glucose shortage physiologi-
cally while getting away from blood vessel [47]; (b) because the enhanced glucose 
consumption rate (the Pasteur effect) typical of cell metabolism at low ppO2 makes 
of low O2 a powerful modulator of glucose availability. The time lapse between the 
onset of glucose shortage and that of O2 shortage (a) well explains the markedly 
delayed kinetics of BCR/Ablprotein suppression with respect to that of HIFα stabiliza-
tion. Point (b) is affected by HIFα stabilization itself, glucose exhaustion being more 
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efficiently driven in low ppO2 zones than in zones at higher ppO2 where HIFα is not 
stabilized. The role of HIFα in the control of leukemic growth is reviewed in [48].

What summarized above led to define two different nutrient-restricted SCN envi-
ronments, the low O2 and the low O2/glucose, playing distinct roles in the biology 
of leukemias (Fig. 6.1). These two SCN environments can be referred to, respec-
tively, as the “hypoxic” and the “ischemic” SCN zones [41, 49–51]. The term “isch-
emic” sounds as inappropriate as “hypoxic” in the context of SCN.  Indeed, 
“ischemia” refers to in vivo (but not in vitro) pathological occurrences where the 
tissue is damaged as a consequence of nutrient shortage, whereas in the SCN this 
shortage has a precise regulative role. A permanently insufficient glucose diffusion, 
affecting cell viability, has been shown in solid neoplasias [47] and is likely to char-
acterize also the hyperplastic BM of leukemias, CML in particular. A simple model 
drawing the relationship between the two SCN zones predicts the onset of ischemia- 
like conditions within the core of hypoxic SCN [49–51]. In the SCN core, glucose 
would get close to exhaustion due to the combined effects of the high rate of con-
sumption (in the SCN periphery) and the scarce diffusion (higher distance from 
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blood vessels of SCN core than SCN periphery). While HIFα is surely stabilized in 
both the SCN core and SCN periphery, it is most probably the HIFα-dependent 
metabolic reprogramming of the latter which conditions the asset and function of 
SCN core. It is worth pointing out here that the existence of ischemia-like condi-
tions emerged in normal BM from studies of the role of blood perfusion, rather than 
O2 diffusion, in the control of hematopoiesis and in the hierarchical distribution of 
HSC in BM. These studies showed that the most primitive HSC reside in BM zones 
where blood perfusion is lowest, implying that HSC maintenance within the SCN is 
supported by a strongly reduced supply of nutrients as well as of blood-borne solu-
ble factors [52, 53]. The capacity of LSC to nest in HSC niches has been also dem-
onstrated [54, 55].

The dual “hypoxic/ischemic” SCN delineated above impacts LSC modeling in 
CML. As mentioned in the Introduction, Reya et al. summarized two alternative 
models for CSC generation, the cancerization of a normal stem cell or the staminal-
ization of a normal progenitor cell, meaning that cells exhibiting either the stem or 
the progenitor cell phenotype may long-term sustain cancer growth [6]. The identi-
fication of two possible “metabolism-driven” phenotypes for LSC of CML led us to 
propose that, short of being alternative to each other, both models fit with CML 
biology, i.e., that two LSC subsets with different functional roles coexist in CML 
(Fig. 6.2). The “stem cell LSC model” seems indeed adequate to describe a BCR/
Ablprotein-negative LSC subset capable of BCR/Abl-independent self-renewal, while 
the “progenitor cell LSC model” suits an LSC subset where BCR/Ablprotein is 
expressed and self-renewal is sustained by BCR/Abl-dependent signaling [49–51]. 
It is worth reminding here that CML and MEL include an LSC subset capable to 
cycle in the absence of oncogenic signaling (Tanturli et al. unpublished data; [34]). 
It is reasonable to think that this subset cycles more slowly than that where onco-
genic signaling is active, as it is deprived of the growth advantage oncogenic signal-
ing confers. Such an advantage, however, while being useful to maximize clonal 
expansion whenever possible, would be highly detrimental to the long-term mainte-
nance of LSC. The dual CML stem cell compartment described above is well in 
keeping with the view of CML as a stem cell-derived but progenitor cell-driven 
disease [56], if one transposes the concepts of “stem” and “progenitor” cells to the 
two different LSC subsets described above.

6.6  The LSC Niche and the Refractoriness of MRD 
to Treatment in CML

The studies where the response of CML to low O2 was initially characterized also 
addressed the effects of treatment with imatinib mesylate (IM; Gleevec®), the 
inhibitor of the constitutive enzymatic activity of BCR/Abl which is the prototype 
of tyrosine kinase inhibitors (TKi) used for CML therapy. As expected on the basis 
of what explained above, cells where BCR/Ablprotein had been reversibly suppressed 
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following incubation at 0.1% O2 were resistant to treatment, obviously because 
devoid of the molecular target of IM [33, 41]. The crucial aspect of such an outcome 
is that the maintenance of CML stem cell potential was completely insensitive to IM 
(Fig. 6.2). This insensitivity is appropriately referred to as “refractoriness,” while 
the term “primary resistance” should be reserved to genetically determined (and 
therefore irreversible) insensitivity to IM already present before the treatment starts, 
and the term “secondary resistance” to the irreversible insensitivity acquired by a 
cell subset via mutations under treatment pressure. It is worth discussing resistance 
to IM under the light of the SCN model delineated in the previous section.

Metabolic pressure within the SCN controls LSC sensitivity or refractoriness to 
IM as a phenotypical adaptation, rather than a genetically blocked event, depending 
on whether LSC reside within the “hypoxic” or the “ischemic” SCN zones where 
BCR/Ablprotein is expressed or suppressed, respectively (Fig. 6.2). The concept of 
resistance to IM as a phenotypical change is in keeping with the marked phenotypi-
cal heterogeneity of CML cells as for BCR/Abl expression and sensitivity to IM 
[57, 58] and with the fact that relapse of disease upon discontinuation of IM most 
often occurs without signs of development of mutation-driven secondary resistance 
to IM, so that the relapsed patient responds well to the reintroduction of IM [59]. 
Accordingly, the TKi-resistant CML progenitor cells shown to be BCR/Abl-positive 
by FISH or PCR [60–62] are likely to be BCR/AblmRNA-positive/BCR/Ablprotein- 
negative. This is a conceptually simple way to resolve the controversy of whether 
TKi inhibit or not BCR/Abl kinase in LSC [60–63], by concluding that TKi are 
always effective but LSC do not respond due to the lack of the TKi molecular target. 
The presence of BCR/Ablprotein-negative LSC also explains easily the lack of LSC- 
suppressive effects of not only IM but also “second-generation” BCR/Abl-active 
TKi, despite their enhanced action on CML cell bulk [64, 65]. The ineffectiveness 
of IM as well as dasatinib on LSC was confirmed using CML cells, from stabilized 
lines or explanted from patients, kept at 0.1% O2 for incubation times sufficient to 
drive glucose exhaustion from culture medium [66]. In this scenario, it was pre-
dicted that even next generations of BCR/Abl-active TKi will be useless to suppress 
LSC [35, 50, 51].

SCN zones where LSC are capable to cycle slowly and self-renew independently 
of BCR/Abl signaling and are therefore protected from TKi action represent ideal 
sites for the long-term maintenance of treatment-resistant MRD of CML (Fig. 6.2). 
Such an outline facilitates MRD modeling, because it prevents us from restricting 
MRD to quiescent LSC, although there is no doubt that quiescence boosts resistance 
to treatment when drugs generically active against cycling cells are used. What we 
call a “dynamic maintenance” of MRD [49–51] appears indeed better suited than 
LSC quiescence to explain the combination of refractoriness to TKi with liability to 
neoplastic progression. First, the finding that cycling of HSC in low O2 fosters self- 
renewal rather than clonal expansion [29] suggests that the same may apply to 
LSC. A relatively high stem cell potential of the mutated CML subclone stored in 
the SCN before relapse of disease reaches the clinical level may be behind the often 
very rapid and aggressive course of relapse once it is triggered. Second, neoplastic 
progression while disease remains at a subclinical level is best explained if LSC 
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cycle, because cell cycling is necessary to transmit mutations to progeny, which are 
undoubtedly frequent in the genetically unstable CML cells.

The process leading from MRD to relapse of disease in CML can be summarized 
hypothetically as follows: (a) BCR/Abl-independent, IM-insensitive self-renewal 
within the “ischemic” SCN core would maintain (MRD) non-mutated or mutated 
LSC; (b) migration out of the SCN core or (transient?) increase of glucose supply 
therein would make LSC switch to conditions typical of the “hypoxic” SCN periph-
ery, where ppO2 is still very low but glucose concentration is higher, which allow 
the rescue of BCR/Ablprotein expression; (c) BCR/Abl-dependent signaling in the 
SCN periphery would enhance LSC self-renewal and enable commitment to clonal 
expansion; and (d) a move of LSC to better oxygenated BM zones (the “vascular” 
niches) would drive clonal expansion and differentiation (if any), making relapse of 
disease emerge at the clinical level (Fig. 6.2). Of course, from phase (b) on, CML 
growth returns to be TKi-sensitive in the majority of cases, so that there is risk of 
relapse only in the absence of therapy [59]. The majority of relapsed patients indeed 
does not present mutations, or, if it does, the mutations are incapable of conferring 
secondary TKi resistance. It is likely that the shift from chronic to accelerated to 
blast clinical phase of CML is founded on the above biological frame.

6.7  To Exploit the Metabolic Control of LSC Compartment 
for Therapeutic Purposes

The long-standing use for cancer therapy of drugs most of which are cell cycle- 
specific antiblastic agents obviously leads to trace back treatment-resistant MRD to 
quiescence, to quiescent stem cells in particular. Furthermore, especially in the 
hematopoietic field, quiescence is a substantial component within the SCN of the 
mechanisms protecting stem cells from premature commitment to clonal expansion 
and differentiation [14]. Therefore, the combination of treatments capable of induc-
ing (stem) cell exit from quiescence with cycle-specific antiblastic agents has been 
proposed to try to suppress MRD [67]. A more advanced approach to the therapy of 
neoplasias is based on the use, instead of drugs acting generically against cycling 
cells, of selective inhibitors of disease-specific targets, such as BCR/Abl in CML, 
with obvious advantages in terms of reduced toxicity on normal cells (therapeutic 
index). In theory, such an approach should be also active on quiescent cells sustain-
ing MRD, as neoplastic cells may depend on oncogenic signaling not only for pro-
liferation but also survival (oncogene-addicted cells). An opposite, less optimistic 
perspective springs from the SCN model we proposed for CML, which also applies 
to MEL. In these leukemias, the loss of oncogene addiction driven under metabolic 
pressure makes not only survival but also self-renewal independent of oncogenic 
signaling (see above). Thus, the pool of cells resistant to drugs targeting the onco-
genic protein may be larger than the quiescent LSC subset, to include LSC capable 
to cycle in the absence of oncogenic signaling. Therefore, to push LSC to exit from 

6 Tissue “Hypoxia” and the Maintenance of Leukemia Stem Cells



140

quiescence would not be equivalent to make them sensitive to treatment. In this 
case, a possible alternative strategy would be to combine the targeting of the onco-
genic protein with treatments capable to prevent or revert its suppression. In CML, 
either the treatment with specific drugs [68] or the interference with the metabolic 
adaptation of LSC to the SCN (Poteti M et  al., manuscript in preparation) was 
shown to prevent BCR/Ablprotein suppression following incubation at 0.1% O2.

A perhaps more straightforward approach to suppress MRD maintained under 
conditions where oncogenic signaling is suppressed is represented by the targeting 
of mechanisms driving the overall LSC adaptation to these conditions (rather than 
those specifically related to oncogene suppression, discussed in the previous para-
graph). As those conditions are likely to consist of a low O2/glucose environment, 
HIFα appears an obvious potential therapeutic target (see text above and, as exam-
ples, [69–71]), and HIFα targeting was tested. Echinomycin was the first HIFα 
inhibitor to be used to treat leukemias. The drug, capable to block the DNA-binding 
activity of HIFα, was found to target human AML and LSC in particular in a xeno-
geneic model in vivo, reducing leukemia burden and extending mouse survival, as 
well as, more importantly, suppressing disease development following transplanta-
tion into secondary recipients. Equally important is the finding that echinomycin 
does not interfere with HSC self-renewal, thus exhibiting a high therapeutic index 
[72, 73]. In murine APL models driven by both PML-RARα and PLZF-RARα, the 
HIF-1α transcription antagonist EZN-2968 or the HIF-1α inhibitor EZN-2208 
are capable alone of debulking leukemia and prolonging mouse survival and, when 
administered in combination with all-trans retinoic acid, suppressing LSC and erad-
icating leukemia [71, 74]. Furthermore, L-ascorbic acid inhibits HIF-1α transcrip-
tion and reduces growth of APL and CML cell lines [75]. Finally, acriflavine, which 
decreases HIF transcriptional activity by inhibiting α/β dimerization, reduces 
growth and LSC maintenance in cultures incubated at low O2 of CML cell lines and 
cells explanted from a number of patients as well as in BCR/abl-induced mice used 
as a stem cell-driven disease model [66].

An alternative strategy to the block of HIF-dependent LSC adaptation to SCN 
consists of taking advantage of low O2 to activate prodrugs which then target LSC 
already adapted to SCN. TH-302 is a “hypoxia”-activated prodrug that is specifi-
cally cytotoxic in low O2 via multiple mechanisms and is capable to reduce leuke-
mia burden and to prolong recipient survival in murine models of human AML [76]. 
Similar results were obtained by treating acute lymphoblastic leukemia (ALL) cells 
with the “hypoxia”-activated DNA cross-linking agent PR-104; in a phase I/II trial 
study, PR-104 was shown effective in the treatment of AML or ALL patients, even 
refractory to standard therapy or in relapse [77, 78].

As explained above, HIFα is a necessary, but not sufficient, mediator of LSC 
maintenance. Indeed, other critical regulators of stem cell compartment unrelated to 
HIFα signaling, or more in general to the metabolic control of LSC homing within 
the SCN, have been identified as potential therapeutic targets. The product of the 
arachidonate-5-lipoxygenase (5-LO) gene (alox5) is one of these regulators, and 
Zileuton, a specific 5-LO inhibitor, induces depletion of short-term LSC and multi-
potent progenitor cells of CML, likely by blocking the commitment of long-term 
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LSC, in the murine CML model mentioned above [79, 80]. Zileuton also impairs 
stem cell function in polycythemia vera [81]. Likewise, alox15 inhibition by 
PD146176 causes LSC depletion and prevents CML initiation [82]. Omacetaxine 
(formerly homoharringtonine) markedly reduces both LSC and leukemia bulk 
in vitro and in vivo, also when BCR/abl is mutated [83], exemplifying a general 
advantage of non-BCR/Abl-targeting drugs. The hedgehog signaling inhibitors 
cyclopamine or GDC-0449 target LSC in CML [84]. BMS-214662 induces apopto-
sis of both proliferating and quiescent LSC of CML via mechanism not associated 
with the farnesyltransferase-inhibitory activity of the drug [85]. Finally, the inhibi-
tion of MEK5/ERK5 pathway reduces growth and LSC maintenance in cultures 
incubated at low O2 of CML cell lines and cells explanted from a number of patients 
and in the murine CML model mentioned above [86]. Very often, normal HSC were 
found much less sensitive than LSC to these treatments. The vast array of new 
options for leukemia therapy summarized above, once its translatability to clinical 
practice is verified, induces a reasonable hope to succeed in suppressing LSC and 
MRD in patients affected by a number of different leukemias, thus aiming at cure 
rather than care.
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