
The seminal contribution of K. S. Shukla to
our understanding of Indian astronomy and
mathematics ∗

Kripa Shankar Shukla1 was born on June 12, 1918 in Lucknow. He com-
pleted his undergraduate and postgraduate studies in mathematics at Allaha-
bad University. In 1941, he joined the research programme on Indian mathe-
matics at the Department of Mathematics, Lucknow University, to work with
Prof. Avadhesh Narayan Singh (1905–1954). Prof. Singh, the renowned collab-
orator of Bibhutibhusan Datta (1888–1958), had joined Lucknow University
in 1928. He initiated a research programme on the study of Indian astronomy
and mathematics at the University in 1939. He managed to collect a number
of manuscripts of important source-works and also attracted many researchers
to work with him.

Shukla’s first paper, published in 1945, presented a comprehensive survey
of the second correction (due to evection) for the Moon in Indian Astronomy.
In 1955, Shukla was awarded the D.Litt. degree from Lucknow University for
his thesis on “Astronomy in the Seventh Century India: Bhāskara I and His
Works”. Dr. Shukla became the worthy successor of Prof. Singh to lead the
research programme on Indian astronomy and mathematics at Lucknow Uni-
versity. Though he retired as Professor of Mathematics in 1979, he continued
to guide researchers and work relentlessly to publish a number of outstanding
articles and books—which included an edition and translation of Vaṭeśvara-
siddhānta (c. 904), the largest known Indian astronomical work with over
1400 verses, brought out by Indian National Science Academy in two volumes
during 1985–86. Prof. Shukla passed away on June 22, 2007.

* M. D. Srinivas, 2018 (To appear in Gaṇita-Bhāratī ).
1For a detailed biography of Prof. K. S. Shukla along with a list of his publications, see:
R. C. Gupta, “Dr. Kripa Shankar Shukla, Veteran Historian of Hindu Astronomy and
Mathematics”, Gaṇita-Bhāratī, 20 (1998), pp. 1–7. Also, Yukio Ohashi, “Kripa Shankar
Shukla (1918–2007)”, Indian Journal of History of Science, 43 (2008), pp. 475–485.
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1 Publications of K. S. Shukla on Indian astronomy and
mathematics2

Prof. Shukla was famous as a great teacher and expositor of astronomy and
mathematics. In the 1950s he wrote popular textbooks on trigonometry and
algebra and also published a Hindi translation of Part I of the History of
Hindu Mathematics by B. B. Datta and A. N. Singh. It was indeed very
unfortunate that there was no course on History of Mathematics or Indian
Mathematics taught at the Lucknow University, notwithstanding the presence
of a great scholar and teacher such as Prof. Shukla on its faculty.3 However,
Prof. Shukla guided several researchers in their work on Indian astronomy
and mathematics. Amongst those who worked with Shukla for their Ph.D.
Degree, are the well known scholars, Parmanand Singh (who worked on the
Gaṇitakaumudī of Nārāyaṇa Paṇḍita), and the Japanese scholar Yukio Ohashi
(who worked on the history of astronomical instruments in India).

Shukla brought out landmark editions of twelve important source-works
of Indian astronomy and mathematics. Some of them were published from
Lucknow University under the Hindu Astronomical and Mathematical Texts
Series. Following is a list of the source-works published by Shukla.

1. Sūryasiddhānta with commentary of Parameśvara, ed. by K. S. Shukla,
Lucknow University, Lucknow 1957.

2. Pāṭīgaṇita of Śrīdharācārya, ed. and tr. with notes by K. S. Shukla,
Lucknow University, Lucknow 1959.

3. Mahābhāskarīya of Bhāskara I, ed. and tr. with notes by K. S. Shukla,
Lucknow University, Lucknow 1960.

4. Laghubhāskarīya of Bhāskara I, ed. and tr. with notes by K. S. Shukla,
Lucknow University, Lucknow 1963.

5. Dhīkoṭidakaraṇa of Śrīpati, ed. and tr. with notes by K. S. Shukla,
Akhila Bharatiya Sanskrit Parishad, Lucknow 1969.

6. Bījagaṇitāvataṃsa of Nārāyaṇa Paṇḍita, ed. by K. S. Shukla, Akhila
Bharatiya Sanskrit Parishad, Lucknow 1970.

7. Āryabhaṭīya of Āryabhaṭa, ed. and tr. with notes by K. S. Shukla and
K. V. Sarma, Indian National Science Academy, New Delhi 1976.

8. Āryabhaṭīya of Āryabhaṭa with the commentary of Bhāskara I, ed. by
K. S. Shukla, Indian National Science Academy, New Delhi 1976.

2For an insightful overview of the publications of Prof. Shukla on Indian astronomy, see:
Yukio Ohashi, “Prof. K. S. Shukla’s Contribution to the Study of Hindu Astronomy”,
Gaṇita-Bhāratī, 17 (1995), pp. 29–44.

3See R. C. Gupta (1998), p. 3.
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9. Karaṇaratna of Devācārya, ed. and tr. with Notes by K. S. Shukla, Luc-
know University, Lucknow 1979.

10. Vaṭeśvarasiddhānta and Gola of Vaṭeśvara, ed. and tr. with notes by
K. S. Shukla, 2 Volumes, Indian National Science Academy, New Delhi
1985–86.

11. Laghumānasa of Mañjula, ed. and tr. with notes by K. S. Shukla, Indian
National Science Academy, New Delhi 1990.

12. Gaṇitapañcaviṃśī, ed. and tr. by K. S. Shukla, Indian Journal of History
of Science, 52.4 (2017), pp. S1–S22.

As may be seen from the above list, most of these editions also include
lucid English translations and detailed mathematical explanatory notes. This
is indeed one of the greatest contributions of Prof. Shukla, since till the 1960s
there had been very few editions of the classical source-works of Indian as-
tronomy which also included a translation as well as explanatory notes. As
regards the source-works of Indian mathematics, there were the well known
translations, along with explanatory notes, authored by Colebrooke4 and Ran-
gacarya5 of the mathematics chapters of Brāhmasphuṭasiddhānta of Brahma-
gupta, the Līlāvatī and Bījagaṇita of Bhāskarācārya and the Gaṇitasāra-
saṅgraha of Mahāvīra. As regards Indian astronomy, while a number of
source-works were published by Sudhākara Dvivedi and other scholars, the
only texts which were translated into English,6 along with explanatory notes,
were the Sūryasiddhānta by Burgess,7 Pañcasiddhāntikā of Varāhamihira by
Thibaut,8 Āryabhaṭīya by Sengupta9 and Clark,10 and the Khaṇḍakhādyaka
of Brahmagupta by Sengupta.11

The scholarly world is highly indebted to Prof. Shukla for having taken great
pains to publish lucid translations, along with detailed mathematical explana-
tory notes, of some of the most important source-works of Indian astronomy,
including works of all the three categories, namely, Siddhānta, Tantra and

4H. T. Colebrooke, Algebra with Arithmetic and Mensuration from the Sanscrit of Brahme-
gupta and Bhāscara, John Murray, London 1817.

5M. Rangacarya, The Gaṇitasārasaṅgraha of Mahāvīrācārya with English Translation and
Notes, Government Press, Madras 1912.

6There were also translations of Sūryasiddhānta, Āryabhaṭīya, Siddhāntaśiromaṇi of
Bhāskara II and Grahalāghava of Gaṇeśa into various Indian languages, some of which
also included explanatory notes.

7E. Burgess, Translation of the Sūryasiddhānta, The American Oriental Society, New
Haven 1860.

8G. Thibaut and Sudhakar Dvivedi, The Pañcasiddhāntikā, Medical Hall Press, Benares
1889.

9P. C. Sengupta, “The Āryabhaṭīyam”, Journal of Department of Letters of Calcutta
University, 16 (1927), pp. 1–56.

10W. E. Clark, The Āryabhaṭīya of Āryabhaṭa, University of Chicago Press, Chicago 1930.
11P. C. Sengupta, The Khaṇḍakhādyaka, University of Calcutta, Calcutta 1934.
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Karaṇa, and covering the entire classical Siddhāntic period from Āryabhaṭa
(c. 499) to Śrīpati (c. 1039). His explanatory notes often include summaries
of important discussions found in various commentaries, and also detailed ref-
erences to similar results or procedures contained in other important texts.
Shukla’s editions and translations have therefore acquired the status of canon-
ical textbooks which can be profitably used by all those interested in a serious
study of Indian astronomical tradition. In collaboration with the renowned
scholar Samarendra Nath Sen (1918–1992), Prof. Shukla has also edited a
pioneering History of Indian Astronomy in 1985, which continues to be the
standard reference work on the subject.12

Prof. Shukla has also written over 40 important research articles, which
have ushered in an entirely new perspective on the historiography of Indian
astronomy and mathematics. We may here make a mention of just a few of
his seminal contributions:

(i) Clear exposition of various aspects of the Vasiṣṭha, Romaka and Pauliśa
Siddhāntas as summarised in Pañcasiddhāntikā of Varāhamihira.

(ii) Correction of the faulty readings and translations of some of the crucial
verses giving the number of civil days and other parameters of a yuga,
as presented in the 1978 edition of Yavanajātaka by David Pingree.

(iii) Discovery of the verses of Āryabhaṭasiddhānta dealing with yantras (in-
struments).

(iv) Correct explanation of the manda-saṃskāra (equation of centre) in In-
dian astronomy, including the computation of the aviśiṣṭa-mandakarṇa
(iterated manda-hypotenuse) and its significance.

(v) Correct explanation of the second lunar correction (incorporating the
evection correction) as presented by Mañjulācārya.

(vi) Discovery of the verses of Acārya Jayadeva on the cakravāla method for
solving quadratic indeterminate equations.

(vii) Detailed exposition of the study of magic squares in Indian mathematics.

(viii) Publication of a revised and updated version of Part III of the ‘History
of Hindu Mathematics’ by B. B. Datta and A. N. Singh.

In what follows, we shall present some highlights of the seminal contribution
of Prof. Shukla in relation to items iv, ii and viii of the above list (in that
order).

12S. N. Sen and K. S. Shukla, (eds.), History of Indian Astronomy, Indian National Science
Academy, New Delhi 1985 (2nd Revised Edition 2000).
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2 Explaining the correct formulation of the
manda-saṃskāra (equation of centre) in Indian
astronomy

In his landmark translations of Mahābhāskarīya and Laghubhāskarīya, pub-
lished in 1960 and 1963 respectively, Prof. Shukla explained the correct for-
mulation of the manda-saṃskāra or the equation of centre, as expounded by
Bhāskara I (c. 629). This corrected a longstanding misconception, as the
equation of centre in Indian astronomy was totally misconstrued by modern
scholarship for nearly two centuries. In what follows, we shall summarise the
formulation of manda-saṃskāra or the equation of centre, and the computa-
tion of the manda-karṇa or the manda-hypotenuse, as expounded by Bhāskara
in Chapter IV of Mahābhāskarīya, following closely the lucid exposition of
Prof. Shukla. We shall discuss the manda-saṃskāra formulated in terms of
an epicycle model.13

In Figure 1, O is the centre of the earth, P0 the mean planet and U the
mandocca or the manda-apsis. OP0 = R, is the radius of the concentric. P1

is on the epicycle centred at P0, with radius equal to the tabulated epicycle
radius r0,14 such that P0P1 is parallel to OU . P1 is also on the eccentric
circle with O′ as the centre, where O′ is along OU , such that OO′ = r0. The
true radius of the epicycle r is different from the tabulated radius r0. Hence,
P1 is not the manda-sphuṭa or the true manda-corrected planet. Similarly,
OP1 = K0, is only the sakṛt-karṇa or the initial hypotenuse and not the true
hypotenuse.
The manda-sphuṭa or the true manda-corrected planet is at P (along P0P1)

such that P0P = r, which is the true epicycle radius. Correspondingly the
true manda-hypotenuse is given by OP = K. The main feature of this model
is that the true epicycle radius r and the true manda-hypotenuseK are related
by

r =
r0
R
K. (1)

Let θ0 be the longitude of the mean planet P0, θu the longitude of the man-
docca U , and θms the longitude of the manda-sphuṭa or the manda-corrected
13Mahābhāskarīya of Bhāskara I, ed. and tr. with Notes by K. S. Shukla, Lucknow Uni-
versity, Lucknow 1960. The equation of centre for the Sun and the Moon is discussed,
following both the epicycle and eccentric-circle models, on pp. 110–119 and pp. 122–126,
respectively. The equation of centre for the planets is similar and discussed later on
pp. 134–144.

14The values of the manda and śīghra epicycle radii are presented in Chapter VII of Mahāb-
hāskarīya (ibid. pp. 206–7). It is important to note that, except in the case of the Sun and
the Moon, even these tabulated epicycles are not constant, but vary with the anomaly.
Their extreme values are given at the beginning of the odd and even quadrants, and in
between they have a periodic variation. Only in the case of the Sun and the Moon, this
factor does not come into play, and we can treat the tabulated epicycle as a constant.
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Figure 1: Manda-correction and the iterated-manda-hypotenuse.

planet P . Hence, the mean anomaly is given by the angle P0OU = θ0–θu,
and the true anomaly is given by the angle POU = θms–θu, and the angle
P0OP = θ0–θms. From Figure 1, we can easily see that the manda-correction
for the longitude will be

R sin(θms–θ0) = −
( r

K

)
R sin(θ0–θu). (2)

Now, by applying the condition (1), we get the final form of the manda-
correction

R sin(θms–θ0) = −
(r0
R

)
R sin(θ0–θu). (3)

Thus, the manda-correction or the equation of centre (3) involves only the
ratio of the mean epicycle radius r0 and the radius R of the concentric. It
does not involve the initial hypotenuse K0 or even the true hypotenuse K.
The important point to be realised is that the karṇa or hypotenuse does

not appear in the equation of centre in Indian astronomy—unlike in the case
of the śīghra-correction (or the so called equation of conjunction) where the
correction crucially depends on the śīghra-karṇa or the śīghra-hypotenuse—
because the manda-epicycle, in Indian planetary theory, is assumed to be
variable and varies in the same way as karṇa as shown in relation (1). It is for



2 Explaining the correct formulation of the manda-saṃskāra 45

this reason that the karṇa gets replaced by just the radius of the concentric
in the equation of centre—not because of any approximation that the radius
does not differ too much from the hypotenuse in the manda-saṃskāra.
While it may not make its appearance in the equation of centre, the manda-

karṇa is still very important. For instance, it gives the true distance in the
case of the Sun and the Moon. Now, in order to determine both r and K,
Bhāskara presents the following iterative process. To start with, the initial
hypotenuse (sakṛt-karṇa), K0, is computed in the usual way in terms of the
mean anomaly (θ0–θu), using the mean epicycle radius r0:

K0 = OP1 =
√
[R sin(θ0–θu)]2 + [R cos(θ0–θu) + r0]2. (4)

Then the next approximation to the epicycle radius, r1, is computed using

r1 =
r0
R
K0. (5)

From r1 the corresponding hypotenuse K1 is computed using

K1 =
√
[R sin(θ0–θu)]2 + [R cos(θ0–θu) + r1]2. (6)

And, from K1, the next approximation r2 is computed using

r2 =
r0
R
K1. (7)

And so on, till there is no appreciable difference between successive results
(aviśeṣa), which means that, for some m

rm+1 =
r0
R
Km ≈ rm. (8)

Then, it can be seen right away that the iterated radius rm and the associated
hypotenuse Km, are such that

rm =
r0
R
Km. (9)

In other words, they very nearly satisfy the relation (1) that characterises the
true epicycle r and the corresponding true hypotenuse K.
In his explanatory notes to the Mahābhāskarīya, Shukla explains how the

above iteration process actually converges to the true radius r and the true
hypotenuse K, satisfying the relation (1). He also identifies the geometrical
location P of the manda-corrected planet in the following manner. In Figure 1,
let O′ be the point on OU such that OO′ = r0. Let the line O′P1 intersect the
concentric at Q. Then, the P the true or manda-corrected planet is located at
the intersection of the lines OQ and P0P1, extended if necessary. Now, draw
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the line QT parallel to P0P1, where T is located on OP0. From the similar
triangles OQT and OPP0, we get

QT

OQ
=

P0P

OP
. (10)

Since, QT = P0P1 = r0, P0P = r, OQ = R, and OP = K, equation (10)
reduces to relation (1) as required.
Later, in another landmark article published in 1973,15 Shukla explains

how the above formulation of the manda-saṃskāra is the one followed almost
universally by all schools of Indian astronomy, except for a few astronomers
such as Pṛthūdakasvāmi (c. 860) and some seventeenth century astronomers
who had not understood the traditional formulation. Shukla first presents
detailed quotations from the astronomers of the school of Āryabhaṭa (such as
Lalla (c. 750), Govindasvāmi (c. 800), Sūryadevayajvā (c. 1200) and the later
Kerala astronomers Parameśvara (c. 1430), Nīlakaṇṭha Somayājī (c. 1500) and
Putumana Somayājī (c. 1600)) to show that all of them clearly hold the view
that:

(i) The manda-hypotenuse does not appear in the equation of centre be-
cause the radius of the epicycle and the hypotenuse vary according to
the relation (1) mentioned above,

(ii) The true epicycle radius and the true hypotenuse may be found by an
iterative process such as the one discussed in Mahābhāskarīya.

Shukla next presents quotations from Brahmagupta (c. 628), Śrīpati (c.
1039), Bhāskara II (c. 1150) and the Ādityapratāpa-siddhānta to show that
they also subscribe to the same formulation of the manda-saṃskāra as outlined
above. He then refers to the view of Caturveda Pṛthūdakasvāmi (c. 860) the
commentator of Brahmagupta, that the hypotenuse is not used in the manda-
correction because the difference between the radius of the concentric and the
hypotenuse is small so that the latter is approximated by the radius itself.16

अतः रؘाͫڢा޷ࡈ कणЇ मڤकमϳ࣊ण न कायϳः इࣆत।
So, there being little difference in the result, the hypotenuse-pro-
portion should not be used in the manda-saṃskāra.

15K. S. Shukla, “Use of Hypotenuse in the Computation of the Equation of Centre Under the
Epicyclic Theory in the School of Āryabhaṭa???”, Indian Journal of History of Science,
8 (1973), pp. 44–57. The provocative title of the paper is due to the fact that it was
written in response to an erroneous claim made by the renowned scholar T. S. Kuppanna
Shastri (1900–1982) in his article “The School of Āryabhaṭa and the Peculiarities Thereof”
(Indian Journal of History of Science, 4 (1969), pp. 126–134).

16Shukla (1973), p. 52, citing Pṛthūdaka’s commentary on Brāhmasphuṭasiddhānta XXI.29.
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Shukla also discusses the refutation of the above view of Pṛthūdakasvāmi
by Bhāskara II in his Vāsanābhāṣya on Siddhāntaśiromaṇi.17 Shukla then
considers the case of the Sūryasiddhānta and remarks:18

The method prescribed in the Sūryasiddhānta for finding the equa-
tion of the centre is exactly the same as given by the exponents of
the schools of Āryabhaṭa I and Brahmagupta and there is no use
of the hypotenuse-proportion. The author of the Sūryasiddhānta
has not even taken the trouble of finding the manda hypotenuse.
So it may be presumed that the views of the author of the Sūrya-
siddhānta on the omission of the use of the hypotenuse in finding
the equation of the centre were similar to those obtaining in the
schools of Āryabhaṭa and Brahmagupta.

Shukla perhaps forgot to mention in this context the important fact that his
own 1957 edition of the Sūryasiddhānta with the commentary of Parameśvara
has a verse (verse IV.2 of the Chapter IV dealing with lunar eclipse) which
states that the distance of the Sun or the Moon is proportional to the cor-
responding “manda-śravaṇa” or the manda-hypotenuse. And the commenta-
tor Parameśvara glosses manda-śravaṇa as “mandasphuṭasiddhakarṇaḥ”, the
hypotenuse determined by the location of the true manda-corrected planet.
Parameśvara also notes that these distances are used for computing diame-
ters of the Sun and the Moon. Shukla notes that this verse is not found in
other versions of Sūryasiddhānta. All the versions however present an alter-
nate rule for computing the diameters as being inversely proportional to the
sphuṭabhukti or the true velocity.19

In this context, we may also mention that some of the astronomers in North
India in the seventeenth century seem to have failed to comprehend the tra-
ditional formulation of the manda-saṃskāra as expounded by Bhāskara I,
Brahmagupta and others. We can see this for instance in the commentary
Gūḍharthaprakaśaka of Raṅganātha on Sūryasiddhānta which was composed
in the year 1603. While explaining the verse II.39, which merely prescribes
that the radius of the concentric should be the denominator in the expression
for the equation of centre, Raṅganātha seems to be following Pṛthūdakasvāmi
when he argues that:20

मڤकणϳࡆ नेؘڦΝԷासࣆ रेणڢा޷ࡈ काराͫ।ࢨनाӂेؘ޼ΝԷातुࣆ
[The hypotenuse is not used in the manda-saṃskāra] because the

17Ibid. pp. 52–3.
18Ibid. p. 54.
19Sūryasiddhānta with commentary of Parameśvara, ed. by K. S. Shukla, Lucknow Univer-
sity, Lucknow 1957, p. 58.

20Sūryasiddhānta with commentary Gūḍharthaprakaśaka of Raṅganātha, ed. By F. E. Hall
and Bāpū Deva Śāstrin, Baptist Mission Press, Calcutta 1859, pp. 77–8.
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manda-hypotenuse is close to the radius [of the concentric] and
it can be accepted to be the equal to the radius with a slight
difference.

Shukla mentions in his 1973 paper that Munīśvara (c. 1646), the son of
Raṅganātha, and his famous rival Kamalākara (c. 1658) also did not follow the
traditional view on mandasaṃskāra. Instead of considering a variable epicycle,
they seem to have advocated the use of just the tabulated epicycle and also
division by the sakṛt-karṇa or the first hypotenuse (K0 of equation (4)).
In conclusion Shukla notes:21

From what has been said above it is clear that the hypotenuse
has not been used in Hindu astronomy in the computation of the
equation of the centre under the epicyclic theory. It is also obvi-
ous that with the single exception of Caturvedācārya Pṛthūdaka
all the Hindu astronomers are unanimous in their views regarding
the cause of omission of the hypotenuse. According to all of them
the manda epicycles stated in the works on Hindu astronomy cor-
respond to the radius of the planet’s mean orbit and are therefore
false.
Since the manda epicycle stated in the Hindu works corresponded
to the radius of the planet’s mean orbit, the true manda epicycle
corresponding to the planet’s true distance (in the case of the Sun
and the Moon) or true-mean distance (in the case of the planets
Mars, etc.) was obtained by the process of iteration. The planet’s
true or true-mean distance (manda-karṇa) was also like wise ob-
tained by the process of iteration.
Direct methods for obtaining the true manda-karṇa or true manda
epicycle were also known to later astronomers. Mādhava (c. 1340–
1425) is said to have given the following formula for the true
manda-karṇa:22

true manda-karṇa (or iterated manda-karṇa) =
R2√

R2 − (bhujāphala)2 ∼
+ koṭiphala

,

∼ or + sign being taken according as the planet is in the half
orbit beginning with the anomalistic sign Capricorn or in that
sign beginning with the anomalistic sign Cancer.

21Shukla (1973), p. 54.
22The reference is to Nīlakaṇṭha’s commentary on Āryabhaṭīya, III.17–21, and Tantrasaṅ-

graha II.44.
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The exact analytical expression of Mādhava for the iterated-manda-karṇa,
mentioned above by Shukla, can be recast in the form

K =
R2√

R2 − [r0 sin(θ0–θu)]2 − r0 cos(θ0–θu)
. (11)

Here, it may be noted the above result (11) can be easily derived23 by using
the similarity of the triangles OQT and OPP0 in Figure 1. We have, OP =

OQ× OP0

OT , which may be recast in the form:

K =
R2

Rv
, (12)

where, OT = Rv is the so called inverse hypotenuse or viparīta-karṇa, which
can easily be shown to be given by

Rv =
√
R2 − [r0 sin(θ0–θu)]2 − r0 cos(θ0–θu). (13)

Using Mādhava’s exact expression for the iterated-manda-karṇa, we can also
obtain the exact equation satisfied by the orbit of a planet which is moving
on a variable epicycle as specified in the manda-saṃskāra. It is seen that the
orbit is no longer an eccentric circle but a general oval figure.

3 How modern scholarship has misconstrued the
equation of centre in Indian astronomy

Shukla’s detailed explanation of the manda-saṃskāra was indeed path-break-
ing since, for nearly two centuries, modern scholarship had totally misinter-
preted this and other aspects of Indian planetary theory. One of the earliest
accounts of Indian planetary theory was the 1790 article of Samuel Davis
(1760–1819), which was largely based on Sūryasiddhānta and its commentary
Gūḍhārthaprakāśaka of Raṅganātha. While discussing the equation of centre
for the Sun and the Moon, Davis remarks that while the hypotenuse is used
in Indian astronomy for computing the retrogressions of planets (through the
equation of conjunction or śīghra-saṃskāra), they do not do so while comput-
ing the equation of centre. He cites the commentator (Raṅganātha, whom

23For a detailed discussion of Mādhava’s exact expression for the iterated manda-
hypotenuse, see: Tantrasaṅgraha of Nīlakaṇṭha Somayājī, ed. and tr., with notes by K.
Ramasubramanian and M. S. Sriram, Hindustan Book Agency, New Delhi 2011, pp. 96–
107, pp. 496–7. Also, Madhyamānayanaprakāraḥ of Mādhava, ed. and tr. with notes
by U. K. V. Sarma, R. Venketeswara Pai and K. Ramasubramanian, Indian Journal of
History of Science, 46.1 (2011), pp. T1–T29.
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we have cited earlier) as attributing this to the small difference between the
hypotenuse and the radius of the concentric:24

It is, however, only in computing the retrogradations and other
particulars respecting the planets Mercury, Venus, Mars, Jupiter,
and Saturn, where circles greatly excentric are to be considered,
that the Hindus find the length of the carṇa, or hypotenuse . . .;
in other cases, as for the anomalistic equations of the sun and the
moon, they are satisfied to take . . ., their difference, as the com-
mentator on the [Sūrya] Siddhānta observes, being inconsiderable.

The next major discussion on Indian planetary theories is found in the
1816 article of Henry Thomas Colebrooke (1765–1837), who had access to
many more source-works of Indian astronomy. Colebrooke first reiterates
what Davis had noted regarding the equation of centre based on his study of
the Sūryasiddhānta. Colebrooke then notes that Brahmagupta and Bhāskara
II held a different view that the reason why the hypotenuse does not ap-
pear in the equation of centre is not due to any approximation being made,
but because the epicycle itself varies with the hypotenuse. However, at the
same time, Colebrooke also mentions that the commentators of Brahmagupta
(Pṛthūdakasvāmi) and Bhāskara (Munīśvara) do not agree with this view:25

The Hindus, who have not any of Ptolemy’s additions to Hip-
parchus, have introduced a different modification of the hypothe-
sis, for they give an oval form to the excentric or the equivalent
epicycle, as well as to the planet’s proper epicycle. That is they
assume that the axis of the epicycle is greater at the end of the
(sama) even quadrants of anomaly . . ., and least at the end of the
(viśama) odd quadrants . . .

A further difference of theory, though not of practice, occurs among
the Hindu astronomers . . . A reference to Mr. Davis essay . . . will
render intelligible what has been already said and what now re-
mains to be explained. It is there observed . . . that for the anoma-
listic motion of the sun and moon they are satisfied to take . . .

the sine of the mean anomaly reduced to its dimensions in the
epicycle in parts of the radius of the concentric, equal to the sine
of the anomalistic equation. The reason is subjoined: ‘The differ-

24S. Davis “On the Astronomical Computations of the Hindus”, Asiatic researches, 2 (1790),
pp. 225–287. The quotation appears on page 251 and refers to a diagram on page facing
249.

25H. T. Colebrooke, “On the notions of the Hindu Astronomers concerning the Precession of
the Equinoxes and the Motions of the Planets”, Asiatic researches, 16 (1816), pp. 209–250.
The quotation appears on pp. 235–238.
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ence as the commentator on the Sūrya Siddhānta observes being
inconsiderable.’
Most of the commentators on the Sūrya Siddhānta assign that
reason; but some of them adopt Brahmegupta’s explanation. This
astronomer maintains that, the operation of finding the carṇa is
rightly omitted . . . His hypothesis as briefly intimated by himself,
and as explained by Bhāscara, supposes the epicycle, which repre-
sents the excentric, to be augmented in proportion which carṇa (or
the distance of the planet’s place from the earth’s centre) bears to
the radius of the concentric; and it is on this account, and not as a
mere approximation that the finding of the carṇa, with subsequent
operation to which it is applicable is dispensed with.
The scholiast of Brahmegupta objects to his author’s doctrine on
this point, that upon the same principle, the process of finding the
carṇa . . . should in like manner be omitted in the proper epicycle
of the five minor planets; and he concludes therefore, that the
omission of that process has no other ground, but the very incon-
siderable difference of the result in the instance of a small epicycle.
For as remarked by another author ([Munīśvara] in the Marīci26

[commentary on Siddhāntaśiromaṇi]), treating on the same sub-
ject, the equation itself and its sine are very small near the line of
the apsides; and at a distance from that line, the carṇa and the
radius approach to equality.

The first English translation, along with detailed explanation, of an Indian
astronomical text appeared nearly fifty years later. The translation of Sūrya-
siddhānta due to Ebenezer Burgess (1805–1870) (as revised by William Dwight
Whitney (1827–1894)) was published in 1860. This again noted that the
equation of centre in Indian astronomy was based on the approximation that
the hypotenuse was nearly equal to the radius. It also claimed that the manda-
corrected planet was not on any epicycle or eccentric, but was always located
on the concentric itself:27

The world wide difference between the spirit of the Hindu astron-
omy and that of the Greek . . . the one is purely scientific, devising

26The reference is to the following statement in Munīśvara’s commentary Marīci (on Sid-
dhāntasiromaṇi, Golādhyāya, Chedyakādhikara, verses 36–37): “तथा च यΝ परमफलासंڦ
फलं तΝ कणϳࡆ रंڢा޷नाेؘڦΝԷासࣆ यΝ च कणϳࡆ बڢࡴरेण धकؘंࣉΝԷातोऽࣆ नؘंूڬ वा तΝ
फलैࡆवाेؘ޷ना޷ाڢरؘࣆमࣆत भावः।” (Siddhāntaśiromaṇi of Bhāskarācārya, Vāsanābhāṣya and
Marīci by Munīśvara, ed., Dattātreya Viṣṇu Āpaṭe, Volume I, Ānandāśrama Press, Poona
1943, p. 190).

27E. Burgess, Translation of the Sūryasiddhānta, The American Oriental Society, New
Haven 1860, p. 48, pp. 64–5.
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methods for representing and calculating the observed motions
and attempting nothing further; the other is not content without
fabricating a fantastic and absurd theory respecting the superhu-
man powers which occasion the movements with which it is dealing.
The Hindu method has this convenient peculiarity, that it absolves
from all necessity of adapting the disturbing forces to one another,
and making them form one consistent system, capable of geomet-
rical representation and mathematical demonstration; it regards
the planets as actually moving in circular orbits, and the whole ap-
paratus of epicycles . . . as only a device for estimating the amount
of the force and of its resulting motion, exerted at any given point
by the disturbing cause . . .

Now as the dimensions of the epicycle in all cases are small, . . .
may be without any considerable error may be assumed to be
equal to . . .; this assumption is accordingly made and . . . gives the
equation concerned.

Nearly a hundred years later, in 1956, when translations of the Pañca-
siddhāntikā, Āryabhaṭīya and the Khaṇḍakhādyaka had also became available,
the renowned historian of astronomy Otto Neugebauer (1899–1990), presented
an analysis of the “Hindu Planetary Theory”. He noted that:

Ignoring the theory of latitude the model which forms the basis
for the methods followed, e.g., by the Sūryasiddhānta, or in the
Khaṇḍakhādyaka, is an eccentric epicycle. A model of this type
(cf. Figure 2) is determined by the radius r of the epicycle, the
eccentricity e, and the longitude λA of the apogee A′ of the deferent
of radius R.

Neugebauer also discussed the four-step process of combining the manda
and the śīghra-saṃskāras (equations of centre and conjunction) and found
that it was an interesting way of combining these equations—especially when
they were given in the form of tables—which is different from the Ptolemaic
method of interpolation between extreme values. However, as regards the
equation of centre, he repeated what was by then the standard view that it
was an approximation:28

Hindu astronomy, however, operates in the case of the correction
. . . for eccentricity with an approximate formula . . . There is no
reason to treat the effect of the eccentricity with so much less

28O. Neugebauer, “The Transmission of Planetary Theories in Ancient and medieval As-
tronomy”, Scripta Mathematica, 22 (1956), pp. 165–192. The quotations appear on pages
pp. 176–180.
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Figure 2: Eccentric epicycle model of Neugebauer.

accuracy than the effect of the anomaly, except for the fact that
usually e [the eccentricity] is smaller than r [the ratio of the radius
of the śīghra epicycle to that of the concentric]. It may be that
in the course of the historical development of planetary theory
greater emphasis was attached to the phenomena caused by the
anomaly than to those due to the eccentricity, but we know so
little about the history of planetary theories that we hardly have
any choice except to register the facts.

Starting from the late 1950s, David Pingree (1933–2005), another distin-
guished scholar of history of exact sciences and a junior collaborator of Neuge-
bauer (whom he succeeded as Professor of History of mathematics at Brown
University), brought out a number of studies of Indian astrology and astron-
omy. Pingree was a reputed scholar of Sanskrit, Akkadian, Arabic and of
course Greek and Latin. One of Pingree’s main concerns was the transmission
of theories and techniques of exact sciences, especially between Mesopotamia,
Greece and India in ancient times. Hence, even while a large number of source-
works of Indian astronomy—of the classical Siddhāntic period (c. 500–1200)
and of the medieval Kerala School—had become available (including some of
the classic works of Shukla), Pingree, in his studies of Indian planetary theo-
ries, seems to have focussed mainly on ancient texts such as the Paitāmaha-
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siddhānta of Viṣṇudharmottarapurāṇa, Yavanajātaka, Pañcasiddhāntikā and
the Sūryasiddhānta. It is important to keep in mind that, except for the
Sūryasiddhānta (which, in any case, is considered to be a later text), all the
other texts relied upon by Pingree are in the form of brief summaries that too
available only in parts, and the available manuscripts are such that the text
had to be substantially emended at several places.
Amidst the large corpus of writings by Pingree on Indian astronomy, we

shall here focus only on his analysis of the manda-saṃskāra or the equation
of centre and some related issues. In 1971, Pingree wrote a paper “On the
Greek Origin of the Indian Planetary Model Employing a Double Epicycle”.
Here, Pingree claims that the “common Indian model for the motion of the
star planets” was a “double epicycle model”, which “involves two concentric
epicycles” and reaffirms the old view of Burgess and Whitney that the planet
always moved on a concentric or a deferent circle:29

It is my intention here to investigate the Greek background of
the common Indian model for the star planets which involves two
concentric epicycles.
In the Paitāmaha-siddhānta of the Viṣṇudharmottarapurāṇa, which
is our earliest extent exponent of the Indian double epicycle model
(it was probably composed in the first half of the fifty century ad)
the pattern was set for all later texts . . .
These two epicycles must be regarded simply as devices for cal-
culating the amounts of the equations by which the mean planet
on its concentric orbit is displaced to its true position. This in-
terpretation is confirmed by the explanation offered in early texts
of the mechanics of the unequal motions of the planets: demons
stationed at the manda and śighra points on their respective epicy-
cles pull at the planets with chords of wind.30 The computation
of the total effect of these two independent forces upon the mean
planet varies somewhat from one school (pakṣa) of astronomers to
another, or even from astronomer to astronomer within a pakṣa;
but the fundamental concept remains clear: the planet is always
situated on the circumference of a deferent circle concentric with
the centre of the earth while two epicycles (one each for the [case
of] Sun and Moon) revolve about it.

It is not clear whether any geometric model—not to mention a model where
the planets are moving on the concentric—can be inferred at all from the avail-
able Paitāmaha-siddhānta. What is indisputable is that the vast literature on
29D. Pingree, “On the Greek Origin of the Indian Planetary Model Employing a Double
Epicycle”, Journal of History of Astronomy, 2 (1971), pp. 80–85.

30The reference here is to Sūryasiddhānta II.2.
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Siddhāntic astronomy, starting from the Āryabhaṭīya, clearly talks of the true
manda-corrected planet being located on the epicycle or the eccentric. Pin-
gree however thinks that these planetary models were “seldom . . . used in
computation”:31

Āryabhaṭa . . . correctly describes an eccentric-epicyclic model and
indicates the different directions a planet must travel on an epicy-
cle to produce the differing effects of the equation of the anomaly
and the equation of the centre. Though a number of later Indian
astronomers acquainted with the Āryabhaṭīya or derivative texts
of the Āryapakṣa refer to the eccentric model, it seems seldom to
have been used in computation.

Pingree further claims that his version of the Indian double epicycle model
“fits most closely into the attempts of Peripatetics [a group of Greek philoso-
phers owing allegiance to Aristotle] in the late first and second century to
preserve concentricity while explaining some of the phenomena.”32

Pingree also notes that:33

The Indians had to still take into account the problem of the vary-
ing distances of the Sun and the Moon whose computation is essen-
tial for the prediction of eclipse magnitudes. These distances they
made to vary with the true instantaneous velocity of the luminar-
ies.34 Thereby, of course, as was inevitable, strict concentricity is
lost. This fact, however, does not militate against the theory of
the peripatetic origin of the Indian double-epicycle model.

In some of his later review articles also, Pingree has reiterated his concep-
tion of the Indian planetary model being a double epicycle model with two
concentric epicycles (see Figure 3).35 It continues to be cited in the literature
as “the planetary model of the Indian tradition”.36

Following up on his concentric double-epicycle model, Pingree wrote an
article on ‘concentric with equant’ in 1974, where he makes the even more
fantastic claim that the verses IV. 9–12 and IV. 19–21 of Mahābhāskarīya
give the procedure for computing the motion of a body moving along a circle
31Ibid. p. 81.
32Ibid. p. 83.
33Ibid. p. 84.
34The reference here is to Paitāmaha-siddhānta V.3–4.
35See for instance, D. Pingree, “Mathematical Astronomy in India”, in C. G. Gillespie
(ed.), Dictionary of Scientific Biography, Vol. XV, New York 1978, pp. 533–633. Also,
D. Pingree, “Astronomy in India”, in C. Walker (ed.), Astronomy before Telescope, British
Museum Press, London 1996, pp. 123–42.

36See for instance, T. Knudsen, The Siddhāntasundara of Jñanarāja, Johns Hopkins Uni-
versity Press, Baltimore 2014, pp. 184–5.
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Figure 3: Double epicycle model of Pingree.

but executing uniform motion with respect to a point (equant) displaced from
the centre of the circle:37

One purpose of the present article is to point out that a procedure
for solving a concentric with equant is described in . . . the Ma-
hābhāskarīya . . .; its second purpose is to suggest a pre-Ptolemaic,
Peripataetic origin of the model, and therefore of the equant as
well.

In Mahābhāskarīya IV. 19–21, is found the method of computing
the effect of a concenrtric with equant by means of an eccentric
with varying eccentricity. . . .

In IV. 9–12, Bhāskara gives an equivalent solution employing an
epicycle of varying radius.

It was indeed observed by B. L. van der Waerden and I. V. M. Krishna Rav
in the 1950s (whose work has also been cited by Pingree) that the expression
for the equation of centre used in Indian astronomy is the same as what would
37D. Pingree, “Concentric with Equant”, Archives Internationalles d’histoire des Sciences,
24 (1974), pp. 26–28.
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Figure 4: Concentric with equant.

be obtained in the case of a body moving under the hypothesis of ‘motion along
a concentric with equant’.38

In Figure 4, the planet P is moving on the circle with centre O. U is the
ucca or the apsis and E is the equant point on OU such that OE = r0, the
tabulated epicycle radius. If the planet moves uniformly as seen from the
equant point, then the angle PEU is the mean anomaly θ0 − θu, and the
angle POU is the true anomaly θms − θu, and it can easily be seen that the
equation of centre will have the same form as given by equation (3):

R sin(θms − θ0) = −
(r0
R

)
R sin(θ0 − θu).

However, this equivalence is only with respect to the computation of the
longitudes of the planets and not their geocentric orbits which also involves
the variation of their distance from the centre of the earth. In fact, what
Bhāskara is describing in verses IV. 9–12 and IV. 19–21 of Mahābhāskarīya is
an iterative method to compute the varying manda-karṇa or the hypotenuse
38See B. L. van der Waerden, “Tamil Astronomy”, Centaurus, 4 (1956), pp. 221–234, and
the references cited there. The title of the paper is due to the fact that the investigations
of van der Waerden and Krishna Rav were aimed at understanding the vākyas giving
the longitudes of the Sun and Moon. It so happens that the vākya system of South
India had been wrongly characterised as “Tamil Astronomy” by Neugebauer in 1952
(O. Neugebauer, “Tamil Astronomy: A Study in the History of Astronomy in India”,
Osiris, 10 (1952), pp. 252–276).



58 The seminal contribution of K. S. Shukla

drawn from the centre of the concentric to the planet on either an epicycle (of
variable radius) or an eccentric (of variable eccentricity). That manda-karṇa,
as the commentator Govindasvāmi notes, is grahaghanabhūmadhyāntaram,39

the distance between the planet and the centre of the earth. There is thus no
way that the manda-saṃskāra of Indian Astronomy can be conflated with the
‘concentric with equant’ model of planetary motion—irrespective of whether
such a model was known to the Peripatetics (as Pingree suspects) or not.
Pingree, however, has reiterated his claim that, in Mahābhaskarīya, “the

epicyclic and eccentric models are considered and both are used to solve the
concentric with equant model by iteration” in his review article of 1978.40

Again we find this being echoed in the current literature in statements such
as:41

In the early Indian texts the anomalies of the Sun and Moon are
both modelled with concentric equant (the Earth is at the centre
of the deferent). . . .

Bhāskara explains the equivalence of the concentric equant and an
oscillating eccentric model by computing one from the other.

It is indeed unfortunate that such distorted views—concerning the formu-
lation of manda-saṃskāra and the meaning of manda-karṇa—continue to pre-
vail amongst the scholars studying Indian astronomy, notwithstanding the
fact that these issues have been dealt with very clearly and conclusively in
the books and articles of Prof. Shukla.

4 Correcting the verses giving the yuga parameters in
Pingree’s edition of Yavanajātaka

In 1989, Prof. Shukla wrote a seminal article42 where he examined and cor-
rected the text and translation of about ten verses, which presented the basic

39Mahābhaskarīya with Bhāṣya of Govindasvāmi and Siddhāntadīpikā of Parameśvara,
ed. by T. S. Kuppanna Sastri, Government Oriental Manuscripts Library, Madras 1957,
p. 190.

40D. Pingree (1978), p. 593.
41D. Duke, “Were Planetary Models of India Strongly Influenced by Greek Astronomy?” in
J. M. Steele, ed., The Circulation of Astronomical Knowledge in the Ancient World, Brill,
Leiden 2018, pp. 559–575. The quotations appear on pages pp. 562, 570–1. It may also
be noted that in this and some of his earlier articles Duke has shown that the four-step
process used in Indian planetary models gives a better approximation to the Ptolemaic
model with the equant, than is the case with a simple eccentric-epicycle model.

42K. S. Shukla,“The Yuga of the Yavanajātaka: David Pingree’s Text and Translation
Reviewed”, Indian Journal of History of Science, 34 (1989), pp. 211–223.
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parameters of the yuga, in chapter 79 of the famous critical edition and trans-
lation of Yavanajātaka of Sphujidhvaja published by Prof. Pingree in 1978.43

The publication of Yavanajātaka of Sphujidhvaja, was an important mile-
stone that established Prof. Pingree as a leading scholar of history of astrology
and astronomy in the ancient world. In his preface, Pingree recounts the im-
portance of the work, how hard he had to work for getting the manuscript and
editing and translating it over nearly two decades, and about his confidence
that his “main conclusions are unassailable”:44

Sphujidhvaja first attracted my attention over twenty years ago,
when I read the brief account of the Yavanajātaka given by Ma-
hāmahopādhyāya Haraprasād Śāstri . . . I spent the academic year
1957–58 in India . . . In December of 1957, I travelled to Nepal
to attempt to see the manuscript of the Yavanajātaka, but this
privilege was not granted to me. Fortunately, in the spring of
1958, Mahāmahopādhyāya Pandurang Vaman Kane, with the ut-
most kindness and generosity allowed me to copy a transcript that
he had acquired of ff. 2–19 and ff. 98–103. On the basis of this
fragment I recognised both the Greek origin of the treatise which
had been previously surmised from its title, and the Babylonian
character of its planetary theory.

It was not however until 1961 that a microfilm of the complete
manuscript (lacking, however, f. 102) was obtained through the
good offices of my guru Professor Daniel Ingalls of Harvard Uni-
versity, and the then ambassador to India and Nepal from the
United States, Professor John Kenneth Galbraith. . . . During the
years 1961–67, . . . I transcribed the Kathmandu Manuscript, es-
tablished a text, translated it and wrote the commentary; the
work then was completed essentially a decade ago. In the interim
I have tried to keep the commentary up to date, though I have
not been totally successful in this effort. But whatever falsehoods
or misrepresentations may persist, I am confident that the main
conclusions are unassailable: The greater part of the Yavanajā-
taka was directly transmitted (with some necessary adjustments)
from Roman Egypt to Western India, and this text is one of the
principle sources for the long tradition of horoscopic astrology in
India.

In this context, Pingree also referred to the communication he had received
43D. Pingree, The Yavanajātaka of Sphujidhvaja, Vols. I, II, Harvard University Press,
Cambridge 1978.

44Ibid. Vol. I, pp. v–vi.
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from Prof. Shukla mentioning the citations of Yavanajātaka found in the
Āryabhaṭīya-bhāṣya of Bhāskara I:45

As one further evidence of its influence on India science I quote
from a letter written to me by Professor Kripa Shankar Shukla,
dated Lucknow 26 January 1977. He informs me that in his Ārya-
bhaṭīya-bhāṣya written in 629 (of which important work Professor
Shukla is publishing a long-awaited critical edition this year) Bhās-
kara cites from ‘Sphujidhvajayavaneśvara’ verses 55–57 of Chapter
79 and from ‘Yavaneśvara’ pādas a–b of Verse 89 of Chapter 1.

Pingree reiterated some of these points in his introduction also:46

For an estimate of how much the Brāhmaṇas borrowed from the
Greeks and for an evaluation of how they developed what they bor-
rowed, no text is more pertinent than Sphujidhvaja’s Yavanajātaka
(The Horoscopy of the Greeks). Its importance in the history of
ancient science has led me, despite difficulties, to edit here all that
can be recovered of the work and to accompany the edition with a
translation and commentary. . . . What we have in Yavanajātaka,
then is the clearest evidence that has yet come to light of the direct
transmission of scientific knowledge from the ancient world of the
Mediterranean to the ancient world of India.

Pingree also mentions the difficulty that he had in editing the manuscript
and the method he adopted:47

The difficulty of editing and understanding Sphujidhvaja arises
from the fact that for most of the text we have only one very
incorrectly written manuscript to rely on. The errors of [the main
manuscript] N occur, on the average, at least once in every line.
Often the expanded version of Mīnarāja [Vṛddhayavanajātaka] or
some other testimonium comes to our aid; sometimes a knowledge
of Sanskrit grammar or idiom suggests the right reading, although
Sphujidhvaja was not so exact in his use of Sanskrit as to make this
criterion infallible. So we are forced occasionally simply to guess.
And I am aware that I must have missed guesses that will occur to
others, and that in some cases I will have guessed wrongly. Non
omnia possumus omnes [citation from Aeneid of Virgil, meaning
‘we cannot all do everything’].

45Ibid. Vol. I, p. vi.
46Ibid. Vol. I, p. 3.
47Ibid. Vol I, pp. 22–3.
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Pingree’s edition of Yavanajātaka was highly acclaimed for the detailed
critical apparatus and the enormous amount of historical and other data that
he had put together. However, the work was not critically reviewed for its
contents from a technical point of view. The review by Prof. Shukla was
perhaps the first serious review of the book, especially of the 79th chapter
which dealt with mathematical astronomy—an unusual feature in what is
otherwise a work on Jātaka or horoscopy. Shukla notes in the introduction
that:48

The Yavanajātaka written by Sphujidhvaja Yavaneśvara in the
third century ad was edited and translated into English by Prof.
David Pingree in 1978. The last chapter (ch. 79) of this work is
called Horāvidhi and deals with luni-solar astronomy on the basis
of a period of 165 years called yuga and the synodic motion of the
planets. The text is marred by faulty editing, the incorrect read-
ings being adopted and the correct ones given in the apparatus
criticus, with the result that the translation is incorrect at places
and the meaning really intended by the author is lost.
The object of the present paper is to study this chapter so as to
bring out the meaning really intended by the author.

The verses 3–10 of Chapter 79 of Yavanajātaka present the basic relations
characterising the luni-solar yuga49 of 165 years adopted in the text. Based
on his reading and translation of the text, Pingree arrived at the following set
of relations, which he presented in his review article of 1978:50

165 solar years = 1,980 saura months = 2,041 synodic months
= 58,231 risings of the Moon = 61,230 tithis = 60,265 civil days. (14)

One can already notice a problem with the above relations (14)—though it
was not noticed by Pingree—namely, that the sum of the number of synodic
months (2,041) and the risings of the Moon (58,231) is not equal to the number
of civil days (60,265). One of the consequence of (14), that was noted by
Pingree, is that the length of the solar year turns out to be 6, 5; 14, 32 =

365.2424 civil days, which is very close to the tropical year of Hipparchus
and Ptolemy (6,5;14,42 civil days). Pingree also noted that his edition and
translation of the verses 5, 11–13 and 34 led to values of synodic month,
48K. S. Shukla (1989), p. 211.
49A luni-solar yuga, unlike the yuga in Siddhāntic texts, is a number of years for which an
integral number of sidereal revolutions of the Sun and the Moon are specified along with
the number of civil days. The Vedāṅga-jyotiṣa uses a luni-solar yuga of 5 years. The
planetary theory of Yavanajātaka on the other hand is based on relations characterizing
the synodic motions of planets like in the case of Vasiṣṭha-siddhānta of Pañcasiddhāntikā.

50Pingree (1978), p. 538, equation (III.1).
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sidereal month, solar month, etc., which were not consistent with the above
relations (14) characterising the luni-solar yuga.51

While analysing the verses of Chapter 79, Shukla realised that Pingree had
failed to understand the internal logic of the luni-solar yuga of Sphujidhvaja,
as a result of which he had gone about adopting incorrect readings in place
of correct readings found in the manuscript and given as a part of appara-
tus criticus. Shukla also noticed that Pingree had often misunderstood or
misinterpreted various numerical expressions that occurred in the text.
The crucial errors were in the edition and translation of verses 6, 7. The

first half of the verse 6 dealt with the notion of tithi and its importance. The
second half mentioned the number of ‘them’ (‘teṣām’) in a yuga. Pingree chose
to interpret this as a reference to the number of civil days, and after emending
the readings came up with the interpretation that a yuga consisted of 60,265
civil days. Shukla noticed that the verse should be interpreted as giving
the number of tithis and, using the correct readings that were given in the
apparatus, he edited the verse and the translation leading to the interpretation
that the yuga consisted of 60,230 tithis.
The first half of the verse 7 deals with the fact that a dinarātra (nychthe-

meron, civil day) consists of 30 muhūrtas and it begins with sunrise. The
second half gives their (teṣām) number in a yuga. Now, Pingree chose to
interpret this as referring to the number of tithis in a yuga. He emended
the manuscript readings again to arrive at the interpretation that a yuga had
60,230 tithis. Here, Shukla noticed that the verse should be interpreted as
giving the number of civil days and, using the correct readings that were
given in the apparatus, he edited the verse and the translation leading to the
interpretation that the yuga consisted of 60,272 civil days.
After his analysis of verses 6 and 7, Shukla remarks:52

Pingree is aware of the fact that the second half of vs. 6 should
contain the number of tithis in a yuga and the second half of vs. 7
the number of civil days in a yuga, but his text has landed him in
trouble and he remarks: ‘A more logical order might be achieved
by interchanging 6c–d with 7c–d.’ He also complains about Sphuji-
dhvaja Yavaneśvara’s way of expressing numbers in verse: ‘The
extreme clumsiness with which Sphujidhvaja expresses numbers is
a reflection of the fact that a satisfactory and consistent method of
versifying them had not yet been devised in the late third century.’
But these remarks are uncalled for, as it is all due to the faulty
edited text.

51Ibid. p. 538, Tables III.2, III.3.
52Shukla (1989), p. 216.
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The basic relations that characterise the luni-solar yuga of Sphujidhvaja,
according to Shukla, are

165 solar years = 1,980 saura months = 2,041 synodic months
= 58,231 risings of the moon = 61,230 tithis = 60,272 civil days. (15)

Here, we see that these basic parameters are consistent and the sum of the
number of synodic months and the risings of the Moon is indeed equal to the
number of civil days. Equally important is the fact that the solar year now
turns out to be (365 + 47

165 ) = 365.28485 days, fairly close to the standard
sidereal year used in Siddhāntic astronomy.
In Table 1, we have summarised the corrections made by Shukla to the

reading and/or the translation of verses 5, 6, 7, 11, 12, 13, 19, 28, 29 and
34. Shukla noted that they were all consistent with the basic relations (15)
characterising the luni-solar yuga of Sphujidhvaja. He also restored most of
the faulty emendations done by Pingree by readings based on the apparatus,
and carefully corrected the translation of each of these verses. One of the
important corrections made by Shukla was pertaining to the verses 28–29,
which dealt with time measures. Here, Pingree’s emendation had resulted
in the relation 1 Nāḍikā = 30 Kalās, which is not attested anywhere in the
ancient texts. Shukla restored the reading given in the apparatus to arrive
at the correct relation 1 Nāḍikā = 10 Kalās. Shukla noted that this is the
relation given by Parāśara and Suśruta and close to the relation (1 Nāḍikā =

10 1
20 Kalās) found in the Vedāṅga-jyotiṣa. It also makes the values given in

verses 11–13 (where fractions of a day are specified in terms of Kalās etc.)
consistent with the basic yuga relations (15).
Finally, at the end of his paper, Shukla noted that the basic yuga parameters

given by (15) and the values of solar year, synodic month and sidereal year as
corrected by him are indeed close to the values specified in the Sūryasiddhānta.
Following the corrections to the text and translation of the verses giving the

yuga parameters worked out by Shukla in his pioneering article of 1989, Harry
Falk in 2001 pointed out another major flaw in the edition and translation of
the verse 14 of Chapter 79.53 Falk showed that Pingree had wrongly emended
this verse and its meaning to conclude that the epoch of the work was 23
March 144 ce. From the available manuscript reading in the apparatus, Falk
showed that the epoch should be 21 March 22 ce.
A spectacular breakthrough in the study of Yavanajātaka has occurred since

2011 with the discovery of a new Nepalese paper manuscript of the text by
Prof. Michio Yano. Based on this, and also making use of better copies of

53H. Falk, “The Yuga of Sphujidhvaja and the Era of the Kuśanas”, Silk Road Art and
Archaeology, 7 (2001), pp. 121–136.
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the earlier manuscripts, Bill Mak has published a new critical edition of the
Chapter 79 of Yavanajātaka with translation and notes.54

Bill Mak’s new edition and translation has added fresh evidence in support
of all the corrections—to the text as well as translation of the ten verses, and
the corresponding yuga parameters—carried out by Shukla in his pioneering
study of 1989.55 These were indeed remarkable corrections carried out merely
on the basis of the apparatus supplied by Pingree in his edition. Just to
illustrate this, we shall here present a brief extract from the new edition of
the corrected text of verse 6, along with the translations of Mak (M) and
Pingree (P) and the notes provided by Mak:56

Ζमेण च̶ۏयवृ٠࣎लѩः ʹवधानजीवࣆथ߱तुमЂनࣈतࣆ ।
षֈՑकाΘा ٥शतीࣉ सहΩं तेषЀ युगे नࣄयुताٵवࣆ षͦ च ॥
M: The tithi, which is to be defined by the gradual waning or wax-
ing of the Moon, is the soul of the principles of the four (systems
of time-) measurement. Know that there are 60,000 plus 1000 plus
200 and 65 (i.e. 61,230) of them (i.e., tithis) in a yuga.
P: The Moon is to be characterized by waning and waxing in order.
The tithi possesses the seed of the principles of the four (systems
of time-) measurement. There are 60,265 (days) in a yuga.

. . . The main problem of Pingree’s reading of this particular verse
lies on the fact that he assumed the teṣām in pāda d to refer to
dina as opposed to tithi, leading to his suggestion that ‘a more
logical order might be achieved by interchanging 6c–d with 7c–
d’. As Shukla pointed out, the verse concerns entirely the num-
ber of tithis in a yuga and the numbers in pādas c, d require no
emendation. Pingree’s fantastic emendation57 of binduyutāni ṣaṭ
to mean 60 leads also to his audacious and subsequently highly
misleading statement—‘If my restoration . . . is correct, this is the
earliest reference known to the decimal place-value system with
a symbol for zero (bindu) in India. The extreme clumsiness with
which Sphujidhvaja expresses numbers is a reflection of the fact

54B. Mak, “The Last Chapter of Sphujidhvaja’s Yavanajātaka Critically Edited With
Notes”, Sources and Commentaries in Exact Sciences, 13 (2013), pp. 59–148.

55The new edition has also reconfirmed the correction of the epoch of the text carried out
by Falk.

56B. Mak, Ibid. pp. 90–92.
57One of Pingree’s claims has been that the Yavanajātaka presents us with the earliest
evidence of use of bhūtasaṅkhyā and the place value system with a symbol for zero. The
dates 149 ce for Yavaneśvara and 269 ce for Sphujidhvaja and some of the emended
parameters in Chapter 79 were arrived at on the basis of this supposition. The new
edition of Mak shows that, none of this is really attested to in the manuscripts and thus
there is no basis for the claim made by Pingree (Mak, ibid., pp. 68–71).
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that a satisfactory and consistent method of versifying them had
not yet been devised in the late third century.’58 This remark is
problematic because elsewhere the author of this chapter had no
problem expressing himself mathematically without the use of zero
or the explicit reference to a place-value system. Thus as Shukla
pointed out, Pingree’s reading 60,265 is completely wrong and the
correct reading is in fact given in his own apparatus. The last line
should thus read 60,000 (ayutāni ṣaṭ) plus 1,000 (sahasram) plus
200 (dviśatī ) plus 6× 5 (ṣaṭ pañcakāgrā). . . .

Another noteworthy point about this verse is the emphasis on the
tithi as the ‘soul’ (jīva) of the four calculations. The importance
of tithi may be summarized by the words of Sastry in the notes to
his new reading of Pañcasiddhānitkā I.4, where tithi was unwar-
rantedly emended to kṛta by Thibaut/Dvivedi and to stvatha by
Neugebauer/Pingree: “. . . [the tithi] is the chief of the five aṅgas,
viz. tithi, vāra, nakṣatra, yoga and karaṇa . . . [it] is most useful
not only for religious but also civil purposes, . . . [it is] the sine qua
non of all astronomical computation”.59 The number of tithis is
first stated here as the basis of some of the remaining calculations.
The use of tithi is not attested in any Greek work extant and the
importance given to it in this work suggests this formulation of the
‘best of the Greeks’ may be the work of the Greek community long
settled in India with great familiarity with the indigenous systems,
rather than a translation of a ‘lost work composed in Alexandria’
with sporadic Indian flavors as Pingree suggested.

On the basis of his critical study of the new manuscript (and fresh copies of
the older ones), Mak has indeed provided incontrovertible evidence to overturn
many of the claims by Pingree in his edition, claims which have had a major
impact on the historiography of astronomy and astrology in India in relation to
developments in Mesopotamia and Greece.60 His new edition of the Chapter
79 also shows that what may be needed is perhaps a new edition of the entire
text. When, thirty years ago, Prof. Shukla presented his review of a section
of Chapter 79 of Pingree’s edition of Yavanajātaka, indeed few would have
imagined that it would lead to a denouement such as this.

58The reference is to D. Pingree, The Yavanajātaka of Sphujidhvaja, Vol. II, Harvard
University Press, Cambridge (1978), pp. 406–7.

59The reference is to Pañcasiddhāntikā of Varāhamihira, ed. and tr. with notes by T. S. Kup-
panna Sastry and K. V. Sarma, PPST Foundation, Madras 1993, p. 5.

60For further details see B. Mak (2013), cited above. Also, B. Mak, “The Date and Na-
ture of Sphujidhvaja’s Yavanajātaka reconsidered in the light of some newly discovered
materials”, History of Science in South Asia, I (2013), pp. 1–20.
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5 Publication of Part III of “History of Hindu
Mathematics: A Source Book” by Datta and Singh

The two parts of the famous “History of Hindu Mathematics A Source Book”
by Bibhutibhusan Datta (1888–1958) and Avadhesh Narayan Singh (1905–
1954) were published in 1935 and 1938. They dealt with Arithmetic and
Algebra, respectively. In their preface to the first part (dated July 1935), the
authors mention that they had prepared a third part also:61

It has been decided to publish the book in three parts. The first
part deals with the history of numerical notation and arithmetic.
The second is devoted to algebra, a science in which the ancient
Hindus made remarkable progress. The third part contains the
history of geometry, trigonometry, calculus and various other top-
ics such as magic squares, theory of series and permutations and
combinations.

Datta had resigned from the Calcutta University in 1929 itself. He returned
to the University in 1931 to deliver his famous lectures on The Science of
Śulba, which got published in a book form in 1932. He finally retired from
the University in 1933 and took Sanyāsa in 1938 (the year in which the second
part of the Datta and Singh book appeared) and became Swami Vidyāraṇya.
He spent much of his later life at Pushkar.
As regards the Part III, R. C. Gupta mentions the following in his biograph-

ical essay of 1980 on Datta:62

Part III (Geometry, Trigonometry, Calculus, etc.) of the History
of Hindu Mathematics by Datta and A. N. Singh (died 1954) has
never been published although more than 40 years have passed
since the appearance of Part II. The information given by the late
Binod Bihari Dutt [brother of Bibhutibhusan Datta] in a personal
communication dated September 11, 1966 . . . that Part II has been
lost, turned out to be wrong. Manuscripts of Part III exist at
Lucknow with Dr. K. S. Shukla . . . and with the writer (R. C. G.)
of the present article who received it from (and due to kindness of)
Dr. S. N. Singh (son of A. N. Singh). It is unfortunate that the
authors (particularly A. N. S.) could not ensure the publication of
Part III . . ., although they lived long enough after the appearance
of Part II to have perhaps done so. It is also unfortunate that when

61Bibhutibhusan Datta and Avadhesh Narayan Singh, History of Hindu Mathematics: A
Source Book, Part I Motilal Banarsi Das, Lahore 1935, p. ix.

62R. C. Gupta, “Bibhutibhusan Datta (1999–1958), Historian of Indian Mathematics”, His-
toria Mathematica, 7 (1980), pp. 126–133.
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Parts I and II were reprinted [in 1962], no attempt was made to
bring the work up to date. Part III is expected to appear shortly,
in a serialised form, in the Indian Journal of History of Science.

On the history of publication of Part III, Sukomal Dutt notes the following
in his 1988 article on Datta:63

Manuscript of Part III of the book was traced by the writer in 1979,
41 years after Part II in a miraculous way. Though strange and
unbelievable it may sound to others, he was guided by the Holy
Spirit, Swami Vidyaranyaji; after a year’s intensive prayer to him.
Only then, Dr. K. S. Shukla retired professor of mathematics of
Lucknow University, kindly took upon hand its publication serially
in the ‘Indian Journal of History of Science’. According to his
statement Swamiji himself handed over the manuscript to him
after death of Dr. A. N. Singh, which should have been before
1958. He did not take any action on it till the writer found him
out and asked for the mss.

In this context, we may draw attention to the fact that Prof. Shukla himself
has referred to his interaction with Bibhutibhusan Datta (Swami Vidyāraṇya)
in 1954. In the preface to his 1976 edition and translation of Āryabhaṭīya,
Shukla acknowledges the valuable suggestions made by Datta in 1954:64

I wish to express my deep sense of gratitude to my teacher, the
late Dr. A. N. Singh, and to the late Dr. Bibhutibhusan Datta,
who, in 1954, had gone through the English translation and notes
and had offered valuable suggestions for their improvement.

Since A. N. Singh also passed away around the same time, in 1954, that
would have been the occasion when Datta had bequeathed the manuscript of
Part III of their work to Shukla. In the same edition of Āryabhaṭīya, Shukla
also refers to the manuscript of Part III, while citing the translation of Datta
and Singh of Verse 12 of Gaṇitapāda.65 Perhaps he had already made up his
plans to publish a revised version of Part III after his retirement in 1979. This
revised version was published in the form of the following eight articles which
appeared in the Indian Journal of History of Science during 1980–1993:
63Sukomal Dutt, “Bibhuti Bhusan Datta (1888–1958) or Swami Vidyaranya”, Gaṇita-

Bhāratī, 10 (1988), pp. 3–15.
64Āryabhaṭīya 1976, p. lxxvii. It may be noted that in the preface to the 1960 edition
of Mahābhāskarīya, Prof. Shukla makes a similar acknowledgement: “I am also under
great obligation to the late Dr. Bibhutibhusan Datta (alias Swami Vidyaranya) who
kindly went through the whole of this work and gave valuable suggestions and advice”
(Mahābhāskarīya 1960, p. ix).

65Āryabhaṭīya 1976, p. 52.



5 Publication of Part III of “History of Hindu Mathematics” 69

1. “Hindu Geometry”, Indian Journal of History of Science, 15 (1980),
pp. 121–188.

2. “Hindu Trigonometry”, Indian Journal of History of Science, 18 (1982),
pp. 39–108.

3. “Use of Calculus in Hindu Mathematics”, Indian Journal of History of
Science, 19 (1984), pp. 95–104.

4. “Magic Squares in India”, Indian Journal of History of Science, 27
(1992), pp. 51–120.

5. “Use of Permutations and Combinations in India”, Indian Journal of
History of Science, 27 (1992), pp. 231–249.

6. “Use of Series in India”, Indian Journal of History of Science, 28 (1993),
pp. 103–129.

7. “Surds in Hindu Mathematics”, Indian Journal of History of Science,
28 (1993), pp. 253–264.

8. “Approximate values of Surds in Hindu Mathematics”, Indian Journal
of History of Science, 28 (1993), pp. 265–275.

Prof. K. S. Shukla has thus contributed immensely to our current under-
standing of the concepts, techniques and methodology of the Indian tradition
of astronomy and mathematics, including its historical development. He has
also left us with extremely readable books which can be profitably used by
students who are keen to study this vast subject.


	5 The seminal contribution of K. S. Shukla to our understanding of Indian astronomy and mathematics

	1 Publications of K. S. Shukla on Indian astronomy and mathematics

	2 Explaining the correct formulation of the manda-saṃskāra (equation of centre) in Indian
astronomy

	3 How modern scholarship has misconstrued the equation of centre in Indian astronomy
	4 Correcting the verses giving the yuga parameters in
Pingree’s edition of Yavanajātaka

	5 Publication of Part III of “History of Hindu Mathematics: A Source Book” by Datta and Singh




