
Use of calculus in Hindu mathematics ∗

1 Differential calculus

1.1 A controversy

Attention was first drawn to the occurrence of the differential formula

∂(sin θ) = cos θ ∂θ

in Bhāskara II’s (1150) Siddhāntaśiromaṇi by Pandit Bapu Deva Sastri1 in
1858. The Pandit published a summarised translation of the passages which
involve the use of the above formula. His summary was defective in so far
as it did not bring into prominence the idea of the infinitesimal increment
which underlies Bhāskara’s analysis. Without making clear to his readers,
the full significance of Bhāskara’s result, the Pandit made the mistake of
asserting—what was plain to him—that Bhāskara was fully acquainted with
the principles of the differential calculus.
The Pandit was adversely criticised by Spotiswoode,2 who without consult-

ing the original on which the Pandit based his conclusions, remarked (1) that
Bapu Deva Sastri had overstated his case in saying that Bhāskarācārya was
fully acquainted with the principles of the differential calculus, (2) that there
was no allusion to the most essential feature of the differential calculus, viz. the
infinitesimal magnitudes of the intervals of time and space therein employed,
and (3) that the approximative character of the result was not realised.
Since the above controversy took place no serious investigation of the subject

seems to have been made by any scholar.3 In order that the reader may be
better able to judge the merit of the Hindu claim to the invention of the
differential calculus, it is desirable that the problems which required the use
of the above differential formula be stated first.
* Bhibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 19, No. 2 (1984), pp. 95–104.

1JASB (= Journal of the Asiatic of Bengal), Vol. 27, 1858, pp. 213–6.
2JARS, Vol. 17, 1860, pp. 21–2.
3Except for a paper by P. C. Sen Gupta in the Journal of the Department of Letters,
Calcutta University, Vol. XXII (1931). Recently A. K. Bag has included this topic in his
book “Mathematics in Ancient and Medieval India”, Chaukhambha Orientalia, Varanasi,
1979.
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346 Use of calculus in Hindu mathematics

1.2 Problems in astronomy

The calculation of eclipses is one of the most important problems of astronomy.
In ancient days this problem was probably more important than it is now,
because the exact time and duration of the eclipses could not be foretold
on account of lack of the necessary mathematical equipment on the part of
the astronomer. In India, the Hindus observed fast and performed various
other religious rites on the occasion of eclipses. Thus their calculation was a
matter of national importance. It afforded the Hindu astronomer a means of
demonstrating the accuracy of his science and his own ability to the public
who patronised him. The problem of the calculation of conjunction of planets
and occultation of stars was equally important both from scientific as well as
religious view points.
In problems of the above nature it is essential to determine the true in-

stantaneous motion of a planet or star at any particular instant. This in-
stantaneous motion was called by the Hindu astronomers tātkālika-gati. The
formula giving the tātkālika-gati (instantaneous motion) is given by Āryabhaṭa
and Brahmagupta in the following form:

u′ − u = v′ − v ± e(sinw′ − sinw) (1)

where u, v, w are the true longitude, mean longitude, mean anomaly re-
spectively at any particular time and u′, v′, w′ the values of the respective
quantities at a subsequent instant; and e is the eccentricity or the sine of
the greatest equation of the orbit. The tātkālika-gati is the difference u′ − u

between the true longitudes at the two positions under consideration. Ārya-
bhaṭa and Brahmagupta used the sine table to find the value of (sinw′−sinw).
The sine table used by them was tabulated at intervals of 3◦45′ and thus was
entirely unsuited for the purpose. To get the values of sines of angles not
occurring in the table, recourse was taken to interpolation formulae, which
were incorrect because the law of variation of the difference was not known.

1.3 A differential formula

Mañjula (932) was the first Hindu astronomer to state that the difference of
the sines,

sinw′ − sinw = (w′ − w) cosw,
where (w′ − w) is small.

He says:

True motion in minutes4 is equal to the cosine (of the mean ano-
maly) multiplied by the difference (of the mean anomalies) and

4This clearly shows that the formula is intended for use when difference is small, the result
being expressible in minutes.
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divided by the cheda,5 added or subtracted contrarily (to the mean
motion).6

Thus according to Mañjula formula (1) becomes

u′ − u = v′ − v ± e(w′ − w) cosw, (2)

which, in the language of the differential calculus, may be written as

∂u = ∂v ± e cos θ ∂θ.

We cannot say exactly what was the method employed by Mañjula to obtain
formula (2). The formula occurs also in the works of Āryabhaṭa II (950),7
Bhāskara II (1150),8 and later writers. Bhāskara II indicates the method of
obtaining the differential of sine θ, His method is probably the same as that
employed by his predecessors.

1.4 Proof of the differential formula

Let a point P (See Figure 1) move on a circle. Let its position at two successive
intervals be denoted by P and Q. Now, if P and Q are taken very near each
other, the direction of motion in the interval PQ is the same as that of the
tangent at P. Let PT be measured along the tangent at P equal to the arc
PQ. Then PT would be the motion of the point P if its velocity at P had not
changed direction.
Discussing the motion of planets, Bhāskarācārya says:

The difference between the longitudes of a planet found at any
time on a certain day and at the same time on the following day
is called its (sphuṭa)gati (true rate of motion) for that interval of
time.
This is indeed rough motion (sthūlagati). I now describe the fine
(sūkṣma) instantaneous (tātkālika) motion.9 The tātkālika-gati (in-
stantaneous motion) of a planet is the motion which it would have,
had its velocity during any given interval of time remained uni-
form.

During the course of the above statement, Bhāskara II observes that the
tātkālika-gati is sūkṣma (“fine” as opposed to rough), and for that the interval

5Here cheda (divisor) = 1
e
. According to Hindu astronomers 1

e
= 360

P
, where P is the

periphery of the epicycle.
6Laghumānasa, ii. 7.
7MSi (=Mahā-siddhānta), iii. 15f.
8SiŚi (=Siddhāntaśiromaṇi), Gaṇitādhyāya, Spaṣṭādhikāra, 36–7.
9SiŚi (=Siddhāntaśiromaṇi), Gaṇitādhyāya, Spaṣṭādhikāra, 36 (c–d).
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must be taken to be very small, so that the motion would be very small.
This small interval of time has been said to be equivalent to a kṣaṇa10 which
according to the Hindus is an infinitesimal interval of time (immeasurably
small).11 It will be apparent from the above that Bhāskara did really employ
the notion of the infinitesimal in his definition of tātkālika-gati.
But in actual practice, the intervals that are considered are not infinitesimal.

How are we, then, to apply the notion of tātkālika-gati to actual problems?
The answer to the above question is given by Bhāskara II as follows:

In equation (1) we have to consider the sine-difference (sinw′ − sinw). Let
an arc of 90◦ be divided into n parts each equal to A, and let us consider the
sine differences R(sinA − sinO), R(sin 2A − sinA), R(sin 3A − sin 2A), etc.
These differences are termed bhogya-khaṇḍa. Bhāskara II says:

These are not equal to each other but gradually decrease, and
consequently while the increase of the arc is uniform, the increment
of the sine varies—on account of deflection of the arc.

In the figure given above, let the arc PQ = A. Then

R(sin∠BOQ− sin∠BOP ) = QN − PM = Qn

which is the bhogya-khaṇḍa. Bhāskara introduces the notion of tātkālika
bhogya-khaṇḍa (instantaneous sine difference) in order to find the variation
10The smallest unit of time, according to Bhāskara II is a truṭi (SiŚi, Gaṇita, Madhyamā-

dhikāra, Kālamānādhyāya, 6), which is equivalent to 1
33750

of a second. The kṣaṇa is
smaller, in fact the smallest interval of time that can be imagined.

11These remarks are made with reference to the motion of the moon. As the motion of the
moon is comparatively quicker, so the tātkālika-gati will not give correct result unless the
time interval is taken small enough.
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of the sine at P . According to him if the arc BP instead of being deflected to-
wards Q, be increased in the direction of the tangent, so that PT = PQ = A,
then TS − PM = Tr is the tātkālika bhogya-khaṇḍa of the sine PT , i.e. the
“instantaneous sine difference”. By having recourse to this artifice Bhāskara II
avoids the use of the infinitesimal in his analysis. It should be borne in mind
that the “instantaneous sine difference” for a finite arc PQ, is a purely arti-
ficial quantity created with a special end in view, and is different from the
actual “sine difference” R(sinBOQ− sinBOP ).
Now from the similar triangles PTr and PMO, we at once derive the pro-

portion12

R : PT :: R cosw : Tr. (3)

Therefore Tr = PT cosw. But

Tr = R(sinw′ − sinw) and PT = R(w′ − w).

Therefore
(sinw′ − sinw) = (w′ − w) cos w.

Thus the tātkālika bhogya-khaṇḍa (the instantaneous sine difference) in mod-
ern notation is

∂(sin θ) = cos θ ∂θ.

This formula has been used by Bhāskara to calculate the ayana-valana
(“angle of position”).13

If the above were the only result occurring in Bhāskara II’s work, one
would be justified in not accepting the conclusions of Pandit Bapu Deva Sastri.
There is however other evidence in Bhāskara II’s work to show that he did ac-
tually know the principles of the differential calculus. This evidence consists
partly in the occurrence of the two most important results of the differential
calculus:

(i) He has shown that when a variable attains the maximum value its dif-
ferential vanishes.

(ii) He shows that when a planet is either in apogee or in perigee the equa-
tion of the centre vanishes. Hence he concludes that for some intermedi-
ate position the increment of the equation of centre (i.e. the differential)
also vanishes.14

12It should be noted that for the purpose of the following proof, it is immaterial, whether
we take PQ small or not, because it is PT that we are considering and not PQ. Bhāskara
actually takes the ∠POQ =

(
3 3
4

)◦
= 225′ for exhibiting equation (3). The notion of the

infinitesimal is here involved in the definition of tātkālika bhogya-khaṇḍa.
13SiŚi, Golādhyāya, Grahaṇa, Grahaṇa-vāsanā; see also Sen Gupta, l.c., p. 11 ff.
14These results occur in the Golādhyāya, Spaṣṭādhikāra vāsanā of the Siddhāntaśiromaṇi,
and were first noted by Sudhakara Dvivedi.
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The second of the above results is the celebrated Rolle’s Theorem, the mean
value theorem of the differential calculus.

1.5 Remarks

The use of a formula involving differentials in the works of ancient Hindu
mathematicians has been established beyond the possibility of any doubt.
That the notion of instantaneous variation of motion entered into the Hindu
idea of differentials as found in works of Mañjula, Āryabhaṭa II, and Bhās-
kara II is apparent from the epithet tātkālika (instantaneous) gati (motion) to
denote these differentials. The main contribution of Bhāskara II to the theory
of these differentials, which were already worked out by his predecessors, seems
to be his proof of the formula by the rule of proportion without actually using
the infinitesimal or varying quantities. He has, however, made it quite clear
that the differentials give true results only when very small variations are
concerned.

1.6 Nīlakaṇṭha’s result

Nīlakaṇṭha (c. 1500) in his commentary on the Āryabhaṭīya has given proofs,
on the theory of proportion (similar triangles) of the following results:

(i) The sine-difference sin(θ+ ∂θ)− sin θ varies as the cosine and decreases
as θ increases.

(ii) The cosine-difference cos(θ+∂θ)−cos θ varies as the sine negatively and
numerically increases as θ increases.

He has obtained the following formulae:

(i) sin(θ + ∂θ)− sin θ = 2 sin ∂θ
2 cos

(
θ + ∂θ

2

)
(ii) cos(θ + ∂θ)− cos θ = −2 sin ∂θ

2 sin
(
θ + ∂θ

2

)
.

The above results are true for all values of ∂θ whether big or small. There
is nothing new in the above results. They are simply expressions as products
of sine and cosine differences.
But what is important in Nīlakaṇṭha’s work is his study of the second

differences. These are studied geometrically by the help of the property of
the circle and of similar triangles. Denoting by ∆2(sin θ), and ∆2(cosθ), the
second differences of these functions, Nīlakaṇṭha’s results may be stated as
follows:

(i) The difference of the sine-difference varies as the sine negatively and
increases (numerically) with the angle.
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(ii) The difference of the cosine-difference varies as the cosine negatively and
decreases (numerically) with the angle.

For ∆2(sin θ), Nīlakaṇṭha15 has obtained the following formula:

∆2(sin θ) = − sin θ
(
2 sin ∆θ

2

)2

.

Besides the above, Nīlakaṇṭha, has made use of a result involving the differ-
ential of an inverse sine function.16 This result, expressed in modern notation,
is

∂(sin−1 e sinw) = e cosw√
1− e2 sin2 w

∂w.

In the writings of Acyuta (1550–1621 ad) we find use of the differential of
a quotient17 also

∂

[
e sinw

1± cosw

]
=

e cosw ± [(e sinw)2/(1± e cosw)]
1± e cosw ∂w.

2 Method of infinitesimal-integration

2.1 Surface of the sphere

For calculating the area of the surface of a sphere Bhāskara II (1150) describes
two methods which are almost the same as we usually employ now for the same
purpose.

First method

Make a spherical ball of clay or of wood. On it take a (vertical)
circumference circle and divide this into 21600 parts. Mark a point
on the top of it. With that point as the centre and with the radius
equal to the 96th part of the circumference, i.e. to 225′, describe a
circle. Again with same point as the centre with twice that arc as
radius describe another circle; with thrice that another circle; and
so on up to 24 times. Thus there will be 24 circles in all. The radii
of these circles will be the jyā 225′ (= R sin 225′), etc. From them
the lengths of the circles can be determined by proportion. Now
the length of the extreme circle is 21600′ and its radius is 3438′.
Multiplying the Rsines (of 225′, 450′, etc.) by 21600 and dividing
by 3438, we shall obtain the lengths of the circles. Between two

15This together with the results given above are proved by Nīlakaṇṭha in the commentary
on the Āryabhaṭīya, ii. 12.

16Cf. Tantrasaṅgraha, ii. 53–4.
17Cf. Sphuṭa-nirṇaya-tantra, iii, 19–20; Karaṇottama, ii. 7.
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of these circles there lie annular strips and there are altogether 24
such. They will be many more in case of many Rsines being taken
into consideration (bāhujyā-pakṣe-bahūni syuḥ). In each annulus
considering the larger circle at the lower end as the base and the
smaller circle at the top as the face and 225′ as the altitude (of
the trapezium), find its area by means of the rule ‘half the sum of
the base and the face multiplied by the altitude etc.’18 Similarly
the areas of all the annular figures severally can be found. The
sum of all these areas is equal to the area of the surface of half of
the sphere. So twice that is the area of the surface of the whole
sphere. And that is equal to the product of the diameter and the
circumference.19

In other words, if Tn denotes the nth jyā (or Rsine), Cn the circumference
of the corresponding circle, An the area of the nth annulus, and S the area of
the surface of the sphere, then we shall have

Cn =
21600

3438
× Tn

An =
Cn + Cn−1

2
× 225

=
225× 21600

2× 3438
(Tn + Tn+1).

Therefore,
1

2
S =

∑
An =

225× 21600

2× 3438

∑
(Tn + Tn+1)

the summation being taken so as to include all the Rsines in a quadrant of the
circle. Since there are ordinarily 24 Rsines in a Hindu trigonometrical table,
we have

1

2
S =

225× 21600

3438

∑
(T1 + T2 + · · ·+ T23 +

1

2
T24)

=
21600× 225× 52513

3438

= 21600× 3436.7 . . .

Hence approximately
S = 21600× 2× 3437.

Bhāskara II states:

Area of the surface = circumference× diameter.
18The rule quoted here for finding the area of a trapezium is that given by Śrīdhara (Triś,
R. 42). Bhāskara II’s rule is defined slightly differently (vide L, p. 44).

19SiŚi, Gola, Bhuvanakośa, verses 55–7 (gloss).
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Second method

Suppose the (horizontal) circumference-circle on the surface of the
sphere to be divided into parts as many as four times the number
of Rsines (in a quadrant). As the surface of an emblic myrobalan
is seen divided into vapras (i.e. lunes) by lines passing through
its face (or top) and bottom, so the surface of the sphere should
be divided into lunes by vertical circles as many as the parts of
the above mentioned (horizontal) circumference-circle. Then the
area of each lune should be determined by (breaking it up into)
parts. And this area of a lune is equal to the sum of all the
Rsines diminished by half the radius and divided by the semi-
radius. Since that is again equal to the diameter of the sphere, so
it has been said that the area of the surface of a sphere is equal to
the product of its circumference and diameter.20

The method has been further elucidated by him in his gloss thus:

As many as are Rsines in the table of any particular work se-
lected, take four times that number, and suppose the (horizontal)
circumference-circle on the sphere is to be divided into, as many
parts. Like the natural lines seen on the surface of a round em-
blic myrobalan passing through its face and base and thus divid-
ing it into lunes, draw circles on the surface of the given sphere,
passing through its top and bottom and thereby dividing it into
lunes as many as the number of parts into which the (horizon-
tal) circumference-circle is divided. Next the area of each lune
has to be determined. It can be done thus: For instance in the
Dhīvrddhida,21 there are 24 Rsines. So suppose the (horizontal)
circumference-circle measures 96 cubits. On drawing the vertical
circles through every cubit, there will be as many lunes. Then
the upper half of any one lune on drawing the transverse arcs at
distances of every cubit, will be divided into portions equal to the
number of Rsines, that is, 24. The lengths of these transverse lines
will be obtained by dividing the Rsines severally by the radius. Of
these the lowest line measures one cubit; but the upper and upper
ones are a little smaller and smaller according to the Rsines. But
the altitude is all along one cubit in length. Now by finding the
area of each portion in accordance with the rule, “half the sum of
the top and the base multiplied by the altitude etc.” they should
be added together. This sum gives the area of half a lune; twice

20Ibid, verses 58–61.
21That is Śiṣyadhīvṛddhida of Lalla.
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that is the area of a lune. For the determination of that the rule
is, “the sum of all the Rsines minus half the radius etc.” Now the
sum of all the Rsines, 225 etc., is 54233.22 This diminished by the
semi-radius becomes 52514. Dividing the result by the semi-radius
we get the area of each lune as 30;33. Now 30;33 is equal to the
diameter of a circle whose circumference measures 96. And as the
number of lunes is equal to the number of portions of the circum-
ference it is consequently proved that the area of the surface of a
sphere is equal to the product of its circumference and diameter.

If ln denotes the length of the nth transverse arc, we have

ln =
Tn × 1

R
.

Therefore,

area of a lune = 2×
∑ 1

2
(ln + ln+1)× 1

= 2
∑ 1

2R
(Tn + Tn+1)

the summation being taken so as to include all the Rsines. Hence

area of a lune = 2× 1

R
(T1 + T2 + · · ·+ T23 +

1

2
T24)

=
1

R/2

(
T1 + T2 + · · ·+ T24 −

R

2

)
= 30; 32, 94 . . .

Now
96× 1250

3927
= 30; 33, 46 . . .

Hence the area of a lune is numerically equal to the diameter of the sphere.
As the number of lunes is equal to the number of parts of the circumference
of the sphere, we get

Area of the surface = circumference× diameter.

2.2 Volume of the sphere

To find the volume of a sphere Bhāskara II states the following method:

Consider on the surface of the sphere pyramidal excavations, each
of a base of a unit area having unit sides and of a depth equal to

22According to Lalla the sum of the Rsines is 54233.
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the radius, as many as the number of units of area in the surface.
The apices of these pyramids meet at the centre of the sphere. The
sum of the volumes of the pyramids is equal to the volume of the
sphere. So it is proved (that the volume of a sphere is equal to the
sixth part of the product of the surface area and diameter).23

The above results are the nearest approach to the method of the integral
calculus in Hindu Mathematics. It will be observed that the modern idea of
the “limit of a sum” is not present. This idea, however, is of comparatively
recent origin so that credit must be given to Bhāskara II for having used the
same method as that of the integral calculus, although in a crude form.

23SiŚi, Gola, Bhuvanakośa, verses 58–61, (gloss).
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