
Hindu geometry ∗

1 General survey

1.1 Origin of Hindu geometry

The Hindu Geometry originated in a very remote age in connection with the
construction of the altars for the Vedic sacrifices. The sacrifices, as described
in the Vedic literature of the Hindus, were of various kinds. The performance
of some of them was obligatory upon every Vedic Hindu, and hence they were
known as nitya (or “obligatory”, “indispensable”). Other sacrifices were to be
performed each with the purpose of achieving some special object. Those who
did not aim at the attainment of any such object had no need to perform any
of them. These sacrifices were classed as kāmya (or “optional”, “intentional”).
According to the strict injunctions of the Hindu scriptures, each sacrifice must
be made in an altar of prescribed shape and size. It was emphasised that even
a slight irregularity and variation in the form and size of the altar would nullify
the object of the whole ritual and might even lead to an adverse effect. So
the greatest care had to be taken to secure the right shape and size of the
altar. In this way there arose in ancient India problems of geometry and also
of arithmetic and algebra. There were multitudes of altars. Let us take for
instance the three primary ones, viz. the Gārhapatya, Āhavanīya and Dakṣiṇa,
in which every Vedic Hindu had to offer sacrifices daily. The Gārhapatya altar
was prescribed to be of the form of a square, according to one school, and of
a circle according to another. The Āhavanīya altar had always to be square
and the Dakṣiṇa altar semi-circular. But the area of each had to be the same
and equal to one square vyāma.1 So the construction of these three altars
involved three geometrical operations: (i) to construct a square on a given
straight line; (ii) to circle a square and vice versa; and (iii) to double a circle.
The last problem is the same as the evaluation of the surd

√
2. Or it may be

considered as a case of doubling a square and then circling it. There were altars
of the shape of a falcon with straight or bent wings, of a square, an equilateral
triangle, an isosceles trapezium, a circle, a wheel (with or without spokes), a
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190 Hindu geometry

tortoise, a trough and of other complex forms all having the same area. Again
at the second and each subsequent construction of an altar, it was necessary
to increase its size by a specified amount, usually one square puruṣa,2 but the
shape was always kept similar to that of the first construction. Thus there
arose problems of equivalent areas and transformation of areas. The Vedic
geometers also treated problems of ‘application of areas’.

1.2 Different early schools of geometry

In the course of time, Hindu geometry grew beyond its original sacrificial
purpose or the bounds of practical utility and began to be cultivated as a
science for its own sake. This happened in the Vedic age when different
schools of geometry were founded. More notable ones amongst them were the
schools of Baudhāyana, Āpastamba and Kātyāyana. Though the geometrical
propositions treated in all of them were almost the same, and there were many
things common in the methods of their solution, still there were other things
to distinguish one school from another. Even in the solution of elementary
propositions such as the construction of a square, rectangle or an isosceles
trapezium, different schools had preferential liking for differential methods.
The difference appears most marked in the solution of the problems of the
division of figures. The large altars, of which the fundamental one was of the
shape of a falcon, had to be built with 200 bricks. Geometrically, it was a
case of division of a figure into 200 parts. We have described before how the
different Vedic Schools of Geometry did this in different ways.

1.3 Intuitive and demonstrative geometry

Early Hindu geometers did not describe proofs of the propositions discovered
by them. Only the bare results were recorded and those too in a language
as concise as possible, sometimes even to the fault of ellipticity. This was, of
course, in keeping with the characteristic of the Hindu race and was manifested
in all their early works. Indeed the character of all the sciences of all the early
nations is found to be more or less intuitive. Still the Vedic Geometry, as
found in the manuals of the Śulba, was not wholly intuitional without any
semblance of demonstration. In fact we find a kind of proof in case of certain
propositions of the Śulba. For instance, how to find the area of a trapezium,
has been demonstrated by Āpastamba in the course of the mensuration of the
Mahāvedi which is of the shape of an isosceles trapezium whose altitude, face
and base are respectively 36, 24 and 30 padas (or prakramas). He says:

The Mahāvedi measures (in area) one thousand less twenty-eight
(square) padas. Draw a straight line from the south-eastern corner

21 puruṣa = 120 aṅgulis = 2 1
2
yards.
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of the vedi to a point 12 padas towards the south-western corner.
Place the portion thus cut off on the other (i.e. the northern) side
of the vedi after inverting it. It (the Mahāvedi) will then become
a rectangle. After that construction the area will be apparent.3

Figure 1

After the general enunciation of the theorem of the square of the diagonal,
the so-called Pythagorean theorem, Baudhāyana observes that the truth of it
will be “realised” in case of certain rational rectangles enumerated. This is an
attempt for a kind of demonstration. After describing the constructions neces-
sary in a proposition, the early Hindu geometers are found to have remarked
sa samādhiḥ (or “This is the construction”). The significance of such an ob-
servation is obvious. It emphasises that the construction which was required
to be made, has thus been actually made, and indeed corresponds to the ex-
pression Quod Erat Faciendum (or “what was required to do”) occurring at
the end of a proposition of Euclid’s Elements. Further it discloses a rational
and demonstrative attitude of the mind of the early Hindu geometers.4

1.4 Post-vedic geometry

The Hindu geometry which started in a brilliant way not only by going much in
advance of the ancient Egyptian or Chinese geometry but also by anticipating
some of the notable discoveries of the posterior Greek geometry, did not make
much progress in the post-Vedic period as it ought to have done. In this
period there was renaissance of Hindu Mathematics.5 But compared with
arithmetic and algebra, geometry seems to have received little impetus for
further development. It will not be true to think that the study of geometry
was completely neglected by the Hindus of the early renaissance period. On
the other hand, it is found to have become widespread and came to be regarded
as a part of general education of the people. In an early Jaina canonical

3Āpastamba Śulba, v. 7.
4See Datta, B., The Science of the Śulba, pp. 50f.
5See Datta, Bibhutibhusan, “The Scope and Development of the Hindu Gaṇita”, Ind. His.
Quart., V, (1929), pp. 479 ff. We have drawn here heavily on this article.
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work, composed circa 300 bc we find the remark, “Geometry is the lotus in
Mathematics, … and the rest is inferior.”6 But it appears strange that we
do not find evidence of much progress and improvement in geometry. The
notable contributions of this period to geometry are, however, the discovery
of the ellipse, elliptic cylinder, the value π =

√
10 and certain formulae for the

mensuration of the segment of a circle. The value π =
√
10, though not a fairly

accurate one, is an improvement upon the Śulba value. It occurs as early as
in the Sūryaprajñapti (c. 500 bc).7 The ellipse is called viṣama-cakravāla, in
contradistinction to cakravāla, meaning “circle” in the Sūryaprajñapti,8 and
parimaṇḍala in the Dhammasaṅgani (before 350 bc)9 and Bhagavatī-sūtra
(c. 300 bc).10 In the last mentioned work its form has been described as
the yavamadhya-vṛttasaṃsthāna or “the circular figure resembling the middle
(longitudinal section) of a barley corn.”11 It seems to have been known that
the ellipse is symmetrical about its either axis.12 The mention of the elliptic
cylinder, called ghana-parimaṇḍala (or “solid ellipse”) in contradistinction to
pratara-parimaṇḍala (“plane ellipse”) occurs in the Bhagavatī-sūtra.13

1.5 Later Hindu geometry

Later Hindu geometry consists mainly of some mensuration formulae and
solution of certain rectilinear figures such as triangles and quadrilaterals of
different varieties. In some of these the Hindus undoubtedly showed consid-
erable proficiency and indeed they obtained some remarkable results, e.g. a
new proof of the Pythagorean theorem, formulae for the area and diagonals of
an inscribed convex quadrilateral and rational solution of triangles and cyclic
quadrilaterals. But on the whole their geometry remained empirical. There
were no definitions, no postulates, no axioms, no proofs of theorems, in short,
no scientific treatment of the subject. It is perhaps noteworthy that the later
Hindus included geometry in their treatises of arithmetic (pāṭīgaṇita) more
particularly in the sections on kṣetra (“plane figures”), khāta (“excavations”),
citi (“piles of bricks”), rāśi (“maunds of grain”) and krākacika (“saw”). The
last four topics are pertaining to solid figures.

6Sūtrakṛtāṅga-sūtra, 2nd Śrutaskanda, ch. 1, verse 154.
7Sūtra 20.
8Sūtra 19, 25, 100. See Weber, Indische Studien, X, p. 274.
9Sec. 617.

10Sūtra 726–7.
11Bhagavatī-sūtra, Sūtra 725. Bhuddhaghosa (350) describes it as kukkuṭāṇda-saṃsthāna
(or “a figure of the shape of an egg of a hen”) and the Petavattu commentary as the
āyatavṛtta (or “the elongated circle”).

12Compare Bhagavatī-sūtra, Sūtra 726.
13Sūtra 726.
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1.6 Euclid’s Elements in India

Though Hindu geometry is not connected with Euclid’s Elements in any way,
whether directly or indirectly, it will be interesting to know when and how it
came to India. The earliest attempt, as far as known, to introduce Euclid’s
Elements into India, in the garb of Sanskrit verses, was made by the eminent
Persian mathematician and traveller, Al-Bīrūnī (b. 973). But that attempt
did not succeed. With the establishment of Muhammadan supremacy in India
towards the close of the twelfth century of the Christian era, Arabic and
Persian works on mathematics began to be brought into this country. There
were very likely amongst them Arabic versions of the Elements. King Firuz
Shah Bahmani (1397–1422), we are informed by Ferishta, was used to hear
on three days in a week, lectures on botany, geometry and logic.14 A son of
Daud Shah was very fond of Taḥrīr-u-Uqlidas (Euclid’s Elements) and used to
teach it regularly to his students.15 Akbar (1575) included it into the course of
study for the school boys.16 In his Ain-i-Akbari, Abul Fazl (1590) has referred
to a few propositions of the Elements in a way which shows his thorough
acquaintance with the work. The work, however, remained confined to the
circle of Moslem schools in India. We do not find any trace of its influence
in any work of a Hindu writer before the middle of the seventeenth century.
In 1658 ad Kamalākara, the court-astronomer of the Emperor Jahangir of
Delhi, wrote a voluminous treatise on astronomy entitled Siddhānta-tattva-
viveka. Certain passages in this work can be easily recognised to have been
adapted from Euclid’s Elements.17 The first complete translation of the work
in Sanskrit was made in 1718 ad under the title Rekhāgaṇita (“Mathematics of
lines”) by Samrāṭa Jagannātha, by the order of his patron King Jaya Siṃha of
Jaipur. Another Sanskrit version is known as the Siddhānta-Cūḍāmaṇi. The
author of this version is still unknown.

2 Hindu names for geometry

The Hindu name for the science of geometry has varied from time to time.18

The earliest name was śulba. It is at least as old as the Śrautasūtra of Āpas-
tamba (c. 1000 bc). Geometry was then sometimes also called rajju, as is
evident from the opening aphorism of the Śulba of Kātyāyana, “I shall speak
of the collection of (rules regarding) the rajju”. In the Mānava Śulba and
14Law, N. N., Promotion of Learning in India during Muhammadan Rule (by Muham-
madans), 1916, p. 84.

15Ibid, p. 81, footnote 1.
16Abul Fazl’s Ain-i-Akbari, English translation by Blockmann, p. 279.
17See Siddhānta-tattva-viveka, iii. 22 ff.
18Datta, Bibhutibhusan, “Origin and history of the Hindu names for Geometry”, Quellen

und. Studien z. Gesh. d. Math., Ab. B; Bd, I, pp. 113–9.
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Maitrāyaṇīya Śulba we get the name Śulba-vijñāna (“The Science of the Śulba”)
for the science of geometry. In the early canonical works of the Jainas (500–
300 bc) the more common name for geometry is found to be rajju.

The Sanskrit words śulba and rajju have the identical significance, which
is ordinarily “a rope”, “a cord”. The word śulba (or śulva) is derived from
the root śulb (or śulv) meaning “to measure” and hence its etymological sig-
nificance is “measuring” or “act of measurement”. From that it came to de-
note “a thing measured” and consequently “ a line (or surface)” as well as
“an instrument of measurement” or “the unit of measurement”. Thus the
terms śulba and rajju have four meanings: (i) mensuration—the act and pro-
cess of measuring; (ii) line (or surface)—the result obtained by measuring;
(iii) a measure—the instrument of measuring; and (iv) geometry—the science
of measurement. Mention of a linear measure, called rajju is found in the
Āpastamba-śulba, Mānava-śulba, Arthaśāstra of Kauṭilya and later on in the
Śilpa-śāstra. In fact in ancient India, there were three kinds of measures—
linear, superficial and voluminal—having the same epithet rajju. In the Jaina
canonical works they are sometimes distinguished as sūcī-rajju (“needle-like
or linear rajju”), pratara-rajju (“superficial rajju”) and ghana-rajju (“cubic
rajju”). In the Arthaśāstra of Kauṭilya the superficial unit of rajju is called
parideśa and the cubical unit nivartana. In the works on the Śulba, we find
the use of the word rajju in the sense of a measuring tape as also of a line.
In later times, geometry was called by the Hindus kṣetra-gaṇita (“Math-

ematics of the kṣetra”). This term appears in the Gaṇita-sāra-saṃgraha of
Mahāvīra (850). In this work the term kṣetra denotes a plane figure. In the
mathematical treatises of Brahmagupta (628), Śrīdhara (900) and Bhāskara II
(1150), the section devoted to the treatment of plane figures is called kṣetra-
vyavahāra (“Treatment of plane figures”). The epithet kṣetra-gaṇita occurs
as early as the works of Siddhasena Gaṇi (550). There the term kṣetra has
a wider connotation so as to include both areas and volumes. In the same
significance it appears in the title of the Jaina cosmographical works called
kṣetra-samāsa. We think that the term kṣetra-gaṇita had a wider connotation
in the beginning so as to include the geometry of plane as well as solid figures.
But in later times, when the two branches of geometry began to be treated
separately, the old name was reserved only for the geometry of plane figures.
Jagannātha (1718) called his version of Euclid’s Elements the Rekhāgaṇita

(“Mathematics of lines”). Bāpūdeva Śāstri preferred the name kṣetra-miti
(“Measurement of areas and volumes”). He seems to have intended an accurate
translation of the Greek name, but it is less scientific. For the Greek science
is indeed the geometry of lines, but not the geometry of areas and volumes.
Jagannātha’s epithet is more in keeping with the spirit of the Greek geometry.
He had probably discarded the Greek epithet intentionally as it is a misnomer.
In some of the modern vernacular tongues of India, geometry is now more
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commonly known as kṣetra-tattva (“Principles of areas and volumes”) or jyā-
miti. This latter term is highly interesting because it is very alike the Greek
term “geometry”, not only phonetically but also in significance, and at the
same time it is not a hinduised Greek word. The word jyāmiti is a compound
of pure Sanskrit origin derived from jyā, meaning ‘earth’ and miti, meaning
“measure”. Hence its literal significance is “earth-measurement”. It is thus
clearly a translation of the Greek name.
One who was well versed in the science of geometry was called in ancient

India as saṃkhyājña (‘the expert in numbers’), parimāṇajña (‘the expert in
measuring’), sama-sūtra-nirañchaka (‘uniform-rope-stretcher’), śulba-vid (‘the
expert in the śulba’) and śulba-paripṛcchaka (‘the inquirer into the śulba’).
In the Śilpa-śāstra, he is spoken of as the sūtra-grāhī or sūtra-dhāra (‘rope-
holder’) and he is further described as an expert in alignment (rekhājña, lit.
‘one who knows the line’). In the early Pāli literature we find the terms rajjuka
and rajju-grāhaka (‘rope-holder’) for the king’s land-surveyor. The first of
these terms appears copiously in its various case-endings, in the inscriptions
of the Emperor Aśoka (250 bc).

3 Technical terms

3.1 Line

The history of a few technical terms of Hindu geometry will be considered
here. There is no attempt to define those terms in any early work. Only
in a work of the seventeenth century, Siddhānta-tattva-viveka of Kamalākara
(1658), we come across some definitions but, as already stated, it was influ-
enced by Euclid’s Elements. The line is called in the śulba, rekhā or lekhā,
both the terms being identical as, according to the rules of Sanskrit grammar,
the letters r and l can replace each other. In posterior geometry we, however,
commonly meet with the term rekhā only. A straight line is distinguished
with the help of the qualifying adjective ṛju or sarala, meaning “straight”.

3.2 Rectilinear figures

In Hindu geometry, we find two different systems of nomenclature for the
rectilinear geometrical figures.19 In one system the naming is according to
the number of sides of the figures and the names are formed by juxtaposition
of the number names with bhuja, meaning “arm”, “side”; e.g. tribhuja (‘tri-
lateral’), catur-bhuja (‘quadrilateral’), pañca-bhuja (‘pentalateral’), ṣaḍ-bhuja
(‘hexa-lateral’). In the other, the naming is based on the number of angles
19The subject has been treated fully in an article of Datta, B. JASB (new series), Vol. XXVI
(1930), pp. 283–299; see also his Śulba, pp. 221–6.
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and corners in the figures, and the names are compounds of number names
with karṇa or koṇa. The Sanskrit word karṇa means the ear. Applied to geo-
metrical figures, it implies, the angle.20 In the Katyāyana Śulba21 (c. 500 bc),
we find the terms trikarṇa (‘triangle’), pañca-karṇa (‘pentangle’). The word
karṇa degenerated into koṇa in the Prākṛta languages.22 So in the Ardha-
Māgadhī work, Sūryaprajñapti23 (c. 500 bc), we get tri-koṇa (‘trigonon’),
catuṣkoṇa (‘tetragonon’), pañca-koṇa (‘pentagon’), etc. These terms are, how-
ever, accepted in posterior Sanskrit literature.24 The oldest Hindu compound
name for rectilinear figures ending with srakti meaning the angle or corner, is
catuḥsrakti (‘quadrangle’) which occurs in the Saṃhitās and the Brāhmaṇas
(c. 2000 bc). In the time of the Śrauta-sūtra (c. 2000–1500 bc), was introduced
another kind of name consisting of compounds of number names with aśra or
asra, e.g. tryasra, caturasra, etc. Though these words aśra and asra, ordinarily
mean “corner” or “angle”, in compound names for rectilinear figures, they are
sometimes found to denote “side”. It is perhaps noteworthy that like the early
Hindus, the early Greeks also followed the usage of naming the rectilinear
figures according to the number of sides as well as of angles.25 But while with
the Hindus the angle-nomenclature is older than the side-nomenclature, with
the Greeks quite the contrary is the case.26

Triangles are classified according to the sides: sama-tribhuja (‘equilateral
triangle’), dvisama-tribhuja (‘isosceles triangle’) and viṣama-tribhuja (‘scalene
triangle’). The classification according to the angles is not found here. Only
the right-angled triangle is called by the name jātya-tribhuja by Brahmagupta
and others.27 The oblique triangles are grouped according as the perpendicu-
lar (lamba) from the vertex on the base falls inside or outside the figure, viz.
antarlamba (‘in-perpendicular’) and bahir-lamba (‘out-perpendicular’). In the
Taittirīya Saṃhitā (c. 3000 bc), the Brāhmaṇa (c. 2000 bc) and the Śulba, an
isosceles triangle is called prauga, derived probably from pra + yuga, mean-
ing “the fore part of the shafts of a chariot”. A rhombus is similarly called

20The term karṇa is used to denote the hypotenuse of a right-angled triangle (vide infra).
21iv. 7–8.
22Some writers are of opinion that the word koṇa is derived from Greek sources, but we do
not think so.

23Sūtra 19, 25.
24See for instance, Pariśiṣṭas of the Atharva-Veda, xxiii. 1; 5; xxv, 1, 3, 6, 7, etc.; Artha-

śāstra of Kauṭilya, ii. 11, 29.
25Tropfke, J. Geschichte der Elementar-Mathematik, (1923), Bd. IV. pp. 60–1.
26The conjecture of S. Gandz that “the observation of the corners and angles and the
classification according to their number seem to be distinctly Greek, a specific invention
of the Greek science, based upon the introduction of angle-geometry” is erroneous. Vide
his article on “The origin of angle-geometry” in Isis, XII, pp. 452–481; more particularly
p. 473.

27The Sanskrit word jātya means “noble”, “well-born”, “genuine”. The name jātya-tribhuja
for the right-angled triangle seems to imply that all other triangles are derived from it.
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ubhayataḥ prauga (‘prauga on both sides’).28

In the Śulba29 the diagonal of a rectilinear figure is called the akṣṇa or
akṣṇayā (‘that which goes across or transversely’, i.e. ‘the cross line’); also
karṇa, meaning ‘the line going across the karṇa or angle’, or ‘the line going
across from corner to corner’. Referring to the instrument of measurement, it
is sometimes termed the akṣṇayā-veṇu (‘diagonal bamboo-rod’) or akṣṇayā-
rajju (‘diagonal cord’). Out of all these only the term karṇa has survived,
others have become obsolete.
The classification of quadrilaterals according to the sides as well as the an-

gles is found as early as the Sūryaprajñapti. There are generally distinguished
five kinds of quadrilaterals; sama-caturbhuja (‘square’), āyata-caturbuja (‘rect-
angle’), dvisama-caturbhuja (‘isosceles trapzium’), trisama-caturbhuja (‘equi-
trilateral trapezium’), and viṣama-caturbhuja (‘quadrilateral of unequal sides’).
Similarly we have the sama-caturasra, āyata-caturasra, dvisama-caturasra and
viṣama-caturasra for those figures (caturbhuja = caturasra = quadrilateral.)
In the Śulba, the square is generally called sama-caturasra and the rectangle
dīrgha-caturasra (‘longish quadrilateral’).

3.3 Circle

In early geometry, the circle was termed maṇḍala (‘round’) or pari-maṇḍala
(‘round on all sides’); the circumference, pariṇāha (‘surrounding boundary
line’); the diameter, viṣkambha or vyāsa (‘breadth’); and the centre, madhya
(‘middle’). The last term had, however, wider use so as to denote the middle
most point of a square, rectangle or line. So also the terms viṣkambha and
vyāsa. In Prākṛta works of the fourth century before the Christian era, the
term pari-maṇḍala is used to denote the ellipse.30 In later geometry, the
term for the circle is vṛtta31 and for the centre kendra.32 The significance
of the terms vyāsa and viṣkambha has now become fixed for the diameter of
a circle. The radius is called vyāsārdha or viṣkambhārdha (‘semi-diameter’).
These terms occur as early as the works of Umāsvāti (c. 150).33 Still earlier
in the Āpastamba Śulba, we find the term ardha-vyāyāma, having the identical
significance.

28Datta, Śulba, pp. 223f.
29Ibid, pp. 224f.
30Dhammasaṅgani 617; Bhagavatī-sūtra, Sūtra 724–6. See Datta, Hindu Contribution to

Mathematics, p. 8.
31See Bhagavatī-sūtra, Sūtra 724–6.
32In Hindu astronomy the term kendra is used to signify the anomaly.
33See his Tattvārthādhigama-sūtra-bhāṣya, iv. 14; Jambūdvīpa-samāsa, ch. iv.
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3.4 Surface and area

In the early Hindu geometry, a plane surface bounded by a figure was called
by the term kṣetra and its area by bhūmi. Occasionally, however, the term
kṣetra was employed also to signify area. In the canonical works of the Jainas
(500–300 bc), a plane surface is termed pratara (‘expanse’), and it is defined as
that which is obtained by multiplying line by line. In posterior geometry, the
bhūmi, together with its synonyms bhū, mahī, etc., signifying earth, denotes
the ground or base of a plane figure; the area is called kṣetraphala, kṣetra-
gaṇita or simply phala, or gaṇita. These terms carry the concept of specific
operations of mensuration by breaking up the figure into smaller portions and
calculating them so that the area is what is obtained as the result (phala) of
such calculation (gaṇanā). Another term is more explicit. It is sama-koṣṭha-
miti (‘the measure of like compartments’ or ‘the measure of the number of
equal squares’). A curved surface or surface of a solid is called its pṛṣṭha
(‘back’), from dharā-pṛṣṭha (or ‘the back of the earth’) which is rounded. The
term for the superficial area of a solid is pṛṣṭha-phala.

4 Typical propositions of early geometry34

The Śulba-sūtras, which form a part of the Vedic literature of the Hindus,
deal with the construction of fire altars for sacrificial purposes. At present
we know of seven Śulba-sūtras, although it is quite likely that many more
such works existed in ancient times. According to European scholars, these
Sūtras were composed in the period 800 to 500 bc, but they are probably
much older. The vedīs (‘altars’) dealt with in these sūtras are of various
forms. Their construction requires a knowledge of the properties of the square,
the rectangle, the rhombus, the trapezium, the triangle and the circle. The
geometrical propositions involved in the constructions are the following.

4.1 Constructions

1. To divide a line into any number of equal parts.35

2. To divide a circle into any number of equal areas by drawing diameters.36

3. To divide a triangle into a number of equal and similar areas.37

34For details consult Datta, B., The Science of the Śulba, Calcutta, (1932).
35The knowledge of this construction is throughout assumed. It was probably done by
drawing parallels, as in Euclid. The following construction shows this surmise to be
correct.

36BŚl, ii. 73–4; ĀpŚl, vii. 13–14.
37BŚl, iii. 256; See Datta, Śulba, p. 46.
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4. To draw a straight line at right angles to a given line.38

5. To draw a straight line at right angles to a given straight line from a
given point on it.39

6. To construct a square on a given side.40

7. To construct a rectangle of given sides.41

8. To construct an isosceles trapezium of given altitude, face and base.42

9. To construct a parallelogram having given sides at a given inclination.43

10. To construct a square equal to the sum of two different squares.44

11. To construct a square equivalent to two given triangles.45

12. To construct square equivalent to two given pentagons.46

13. To construct a square equal to a given rectangle.47

14. To construct a rectangle having a given side and equivalent to a given
square.48

15. To construct an isosceles trapezium having a given face and equivalent
to a given square or rectangle.49

16. To construct a triangle equivalent to a given square.50

17. To construct a square equivalent to a given isosceles triangle.51

18. To construct a rhombus equivalent to a given square or rectangle.52

19. To construct a square equivalent to a given rhombus.53

38KŚl, i. 3.
39Ibid.
40ĀpŚl, viii. 8–10; xi. 1; i. 7; i. 2; BŚl, i. 22–28, 29–35, 42–44; iii. 13. TS, v, 2.5.1.; ff. MaiS,
iii. 2.4; KṭS, xx. 3.4; KapS, xxxii. 5.6; ŚBr x. 2.3.8 (2000 bc), etc.

41BŚl, i. 36–40.
42BŚl, i. 41; ĀpŚl, v. 2–5.
43ĀpŚl, xix. 5.
44BŚl, i. 51–52; ĀpŚl, ii. 4–6; KŚl, ii. 22, iii. 1.
45This follows from the above.
46BŚl, iii. 68, 288; KŚl, iv. 8.
47BŚl, i. 58, ĀpŚl, ii. 7; KŚl, iii. 2, 3.
48ĀpŚl, iii. 1, BŚl, i. 53.
49BŚl, i. 55; ŚBr, x. 2.1.4.
50BŚl, i. 56.
51KŚl, iv. 5.
52BŚl, i. 57; ĀpŚl, xii. 9; KŚl, iv. 4.
53KŚl, iv. 6.
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4.2 Theorems

The following theorems are either expressly stated or the results are implied
in the methods of construction of the altars of different shapes and sizes:

1. The diagonals of a rectangle bisect each other. They divide the rectangle
into four parts, two and two (vertically opposite) of which are equal in
all respects.54

2. The diagonals of a rhombus bisect each other at right angles.

3. An isosceles triangle is divided into two equal halves by the line joining
the vertex to the middle point of the base.55

4. The area of a square formed by joining the middle points of the sides of
a square is half that of the original one.

5. A quadrilateral formed by the lines joining the middle points of the sides
of a rectangle is a rhombus whose area is half that of the rectangle.

6. A parallelogram and rectangle on the same base and within the same
parallels have the same area.

7. The square on the hypotenuse of a right angled triangle is equal to the
sum of the squares on the other two sides.

8. If the sum of the squares on two sides of a triangle be equal to the square
on the third side, then the triangle is right-angled.

4.3 The Baudhāyana theorem

Theorem 7 given above has been stated by Baudhāyana (c. 800 bc) in the
following words:

The diagonal of a rectangle produces both areas which its length
and breadth produce separately.56

Āpastamba57 and Kātyāyana58 give the above theorem in almost identical
terms. The theorem is now universally associated with the name of the Greek
Pythagoras (c. 540 bc) though “no really trustworthy proof exists that it was
actually discovered by him”.59 The Chinese knew the numerical relation for
54Implied in BŚl, iii. 168–9, 178.
55BŚl, iii. 256.
56BŚl, i. 48: दीघचतुर ा यार ुः पा मानी तय ानी च य ृथ ूते कु त भयं करो त।
57ĀpŚl, i. 4.
58KŚl, ii. 11.
59Heath, Greek Math., Vol. I, p. 144f.
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the particular case 32 + 42 = 52 probably in the time of Chou-Kong (d. 1105
bc).60 The Kahun Papyrus (c. 2000 bc) contains four similar numerical rela-
tions, all of which can be derived from the above one.61 As for the Hindus,
one instance of that kind, 392 = 362+152, occurs in the Taittirīya Saṃhitā62

(before 2000 bc). It should be noted that this instance is different from that
known to other early nations.
Although particular instances of the theorem are found amongst several

ancient nations, the first enunciation of the theorem in its general form is
found in India. It cannot be said what made Baudhāyana give the theorem
in the general form. It is not improbable that he possessed a proof of the
theorem. But what this proof was will never be known with certainty. Bürk,
Hankel, Thibaut and Datta are of opinion that Baudhāyana knew a proof of
the theorem.63 It is conjectured that this proof may have been one of the
following.

4.4 Hindu proofs

(i) Let ABCD be a given square. Draw the diagonal AC; produce AB and
cut off AE equal to AC (Figure 2). Construct the square AEFG on
AE. Join DE and on it construct the square DHME. Complete the
construction as indicated in Figure 2. Now the square DHME is seen
to be comprised of four right-angled triangles each equal to DAE and
the small square ANPQ. This square will be easily recognised to be
equal to the square CRFS and triangles equal to the rectangles AERD

and ABSG. Therefore, the square DHME is equal to the sum of the
squares ABCD and AEFG. Hence the theorem.
It might be mentioned that constructions like the above are necessary
in the usual course in the Śulba.

(ii) Let ABC be a right-angled triangle (ed. see Figure 3) of which the
angle C is a right-angle. From C draw the perpendicular CD on AB.
Then the triangle ABC, ACD and CBD are similar. Therefore,

AB : AC :: AC : AD,

or AC2 = AB ×AD. Similarly, CB2 = AB ×DB. Adding we get

AC2 + CB2 = AB2.

60Mikami. Y., The Development of Mathematics in China and Japan, Leipzig (1913), p. 7.
61These are 12 +

(
3
4

)2
=

(
1 1
4

)2, 22 +
(
1 1
2

)2
=

(
2 1
2

)2, 82 + 62 = 102, 162 + 122 = 202.
62vi. 2.4.6.; It also occurs in the Śatapatha Brāhmaṇa, x. 2.3.4.
63Datta, The Science of the Śulba, ch. ix.
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This proof is given by Bhāskarācārya,64 and does not occur in the west
until 1693 when it was rediscovered in Europe by Wallis.

(iii) Let a, b, c be the sides of a right-angled triangle. Taking four such
triangles they are arranged as in Figure 4a, inside a square whose side
is equal to the hypotenuse of the given triangle. Obviously then,

c2 = 4

(
ab

2

)
+ (b− a)2 = a2 + b2.

This proof was anticipated by the Chinese by several centuries.65

The technique employed in this proof was used by Āpastamba for the
enlargement of a square. Thus to construct a square whose side will

64Cf. Colebrooke, Algebra with Arithmetic and Mensuration from the Sanscrit of Brahme-
gupta and Bhāscara, London, 1817, pp. 221–2.

65Mikami, l. c., p. 5.
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exceed a side b of a given square by a, add, says Āpastamba, on the two
sides of the given square two rectangles whose lengths are equal to b and
breadths to a; then add on the corner a square whose sides are equal to
the increment a. Thus will be obtained a square with a side equal to
a+ b (Figure 4b). A similar method was taught by Baudhāyana.66

4.5 Particular case

The particular case of the above theorem relating to the diagonal of a square
has been stated thus:

The diagonal of a square produces an area twice as much.

The statement is given in all the Śulbasūtras67 and the theorem has been used
for “doubling the square” at several places. Instances of its use are found in
the Taittirīya (before 2000 bc) and other Saṃhitās, and can be traced back
to the Ṛgveda (before 3000 bc).
Thibaut says:

The authors of the sūtras do not give us any hint as to the way
in which they found their proposition regarding the diagonal of a
square; but we suppose that they, too, were observant of the fact
that the square of the diagonal is divided by its diagonals into four
triangles, one of which is equal to half the first square (Figure 5).
This is at the same time an immediately convincing proof of the

66See Datta, The Science of the Śulba, p. 117.
67BŚl, i. 45; ĀpŚl, i. 5; KŚl, ii. 12; etc.
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Pythagorean proposition as far as squares or equilateral rectangu-
lar triangles are concerned.68

Figure 5

5 Measurement of triangles

5.1 Area of a triangle

The method for finding the area of a triangle that was known in the Śulba69

was
Area =

1

2
(base × altitude),

and that was one of the methods followed in later times. Āryabhaṭa I says:

The area of a triangle is the product of the perpendicular and half
the base.70

According to Brahmagupta:

The product of half the sums of the sides and counter-sides of a
triangle or a quadrilateral is the rough value of its area. Half the
sum of the sides is severally lessened by the three or four sides, the
square-root of the product of the remainders is the exact area.71

That is to say, if a, b, c, d, be the four sides of a quadrilateral taken in

68Thibaut, Śulbasūtras, p. 8.
69See Datta, The Science of the Śulba, p. 96.
70Ā, i. 6.
71BrSpSi, xii. 21.
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order, we have

Area =
c+ d

2
× a+ b

2
, roughly;

Area =
√
(s− a)(s− b)(s− c)(s− d) exactly,

where
s =

1

2
(a+ b+ c+ d).

In case of a triangle d = 0; so that we get

△ =
c

2
× a+ b

2
, roughly;

△ =
√
s(s− a)(s− b)(s− c) exactly.

The second formula was given before by the Greek Heron of Alexandria
(c. 200).72 Pṛthūdakasvāmi calculates by these methods the area of the trian-
gle (14, 15, 13) to be 98 roughly, 84 exactly.
Śridhara says that the exact value of a triangle will be given by the formu-

lae73

△ =
1

2
(base× altitude),

△ =
√
s(s− a)(s− b)(s− c).

Mahāvīra,74 Āryabhaṭa II,75 and Śrīpati76 teach both these accurate meth-
ods as well as the rough one of Brahmagupta. Bhāskara II77 adopts the
formula

△ =
√
s(s− a)(s− b)(s− c).

5.2 Segments and altitudes

Bhāskara I (629) writes:

In a triangle the difference of the squares of the two sides or the
product of their sum and difference is equal to the product of
the sum and difference of the segments of the base. So divide it
by the base or the sum of the segments; add and subtract the
quotient to and from the base and then halve, according to the
rule of concurrence. Thus will be obtained the values of the two

72Heath, History of Greek Mathematics, II, p. 321.
73Triś, R. 43.
74GSS, vii. 7, 50.
75MSi, xv. 66, 69, 78.
76SiŚe, xiii. 30.
77L, p. 41.
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segments. From the segments of the base of a scalene triangle, can
be found its altitude.78

That is to say

a2 − b2 = (a+ b)(a− b) = c21 − c22 = (c1 + c2)(c1 − c2),

also
c1 + c2 = c.

Therefore
c1 − c2 =

a2 − b2

c
.

Hence

c1 =
1

2

(
c+

a2 − b2

c

)
,

c2 =
1

2

(
c− a2 − b2

c

)
,

h =
√

a2 − c21 =
√
b2 − c22.

By means of these formulae Bhāskara I finds the segments (9, 5; 35, 16)
of the bases (14, 51), altitudes (12, 12) and areas (84, 306) of the scalene
triangles (13, 15, 14) and (20, 37, 51).
Brahmagupta (628) gives the same set of formulae. He says:

The difference of the squares of the two sides being divided by
the base, the quotient is added to and subtracted from the base;
the results, divided by two, are the segments of the base. The
square-root of the square of a side as diminished by the square of
the corresponding segment is the altitude.79

Pṛthūdakasvāmi proves these formulae in the same way as Bhāskara I and
also applies them to the latter’s first example (13, 15, 14).
Śrīdhara first finds the area of the triangle by means of the formula

△ =
√
s(s− a)(s− b)(s− c)

and then deduces the segments and perpendicular. His rules are:

Twice the area of the triangle divided by the base is the altitude.
(Then there will be two right-angled triangles of which) the up-
rights are equal to that altitude, bases are the segments and hy-
potenuses, the two sides (of the given triangle).80

78Vide his commentary on Ā, ii. 6.
79BrSpSi, xii. 22.
80Triś, R. 50.
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Mahāvīra says:

Divide the difference between the squares of the two sides by the
base. From this quotient and the base, by the rule of concurrence,
will be obtained the values of the two segments (of the base) of
the triangle; the square-root of the difference of the squares of
a segment and its corresponding side is the altitude: so say the
learned teachers.81

Āryabhaṭa II writes:

In a triangle, divide the product of the sum and difference of the
two sides by the base. Add and subtract the quotient to and
from the base and then halve. The results will be the segments
corresponding to the greater and smaller sides respectively. The
segment corresponding to the smaller side should be considered
negative, if it lies outside the figure. The square-root of the differ-
ence of the squares of a segment and its corresponding side is the
perpendicular.82

Similar rules are given by Śrīpati83 and Bhāskara II.84 The latter gives in
illustration a case of a scalene triangle whose have is 9, and sides 10, and 17.
There the segments are 6 and 15, and perpendicular 8.

5.3 Circumscribed circle

Brahmagupta says:

The product of the two sides of a triangle divided by twice the
altitude is the heart-line (hṛdaya-rajju). Twice it is the diame-
ter of the circle passing through the corners of the triangle and
quadrilateral.85

Pṛthūdakasvāmi proves it substantially as follows:
Let ABC be a scalene triangle (ed. see Figure 6). Draw AD perpendicular

to BC. Produce it to A′ making A′D = AD. Let O be the centre of the circle
circumscribing the triangle ABC. Join OA, OC. Triangles BAA′ and OAC

are similar. Therefore,
AB : OA :: AA′ : AC.

81GSS, vii. 49.
82MSi, xv. 76–7.
83SiŚe, xii. 29.
84L, p. 40.
85BrSpSi, xii. 27.
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Hence,

OA =
AB ×AC

AA′ ,

or,

R =
cb

2h
,

where R denotes the radius of the circumscribed circle.
Mahāvīra writes:

In a triangle, the product of the two sides divided by the altitude
is the diameter of the circumscribed circle.86

Example:87 The circum-diameter of the triangle (14, 13, 15) is 16 1
4 .

Śrīpati states:

Half the product of the two sides divided by the altitude is the
heart-line.88

86GSS, vii. 213 1
2
.

87GSS, vii. 219 1
2
.

88SiŚe, xiii. 31.
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5.4 Inscribed circle

To find the radius of a circle inscribed in a triangle (or quadrilateral, when pos-
sible) whose area as well as perimeter are known, Mahāvīra gives the following
rule:

Divide the precise area of a figure other than a rectangle by one-
fourth of its perimeter; the quotient is stated to be the diameter
of the inscribed circle.89

That is to say, if r denote the radius of the circle inscribed within the triangle
(a, b, c), we shall have

r =
1

s

√
s(s− a)(s− b)(s− c),

where
2s = a+ b+ c.

5.5 Similar triangles

The properties of similar triangles and parallel lines were known to the ancient
Hindus.90 For example, take the case of the Mount Meru or Mandara. It has
been described in the early canonical works of the Jainas as follows:

At the centre of Jambūdvīpa, there is known to be a mountain,
Mandara by name, whose height above (the earth) is 99000 yo-
janas, whose depth below is 1000 yojanas, its diameter at the base
is 10090 10

11 yojanas, at the ground 10000 yojanas. Then (its diam-
eter) diminishes by degrees until at the top it is 1000 yojanas. Its
circumference at the base is 31910 3

11 yojanas, at the ground 31623
yojanas, and at the top a little over 3162 yojanas. It is broader at
the base, contracted at the middle and (still) shorter at the top
and is of the form of a cow’s tail (i.e. a truncated right cone).91

To find the diameter of any other section parallel to the base, Jinabhadra
Gaṇi (c. 560) gives the following rule:

Wherever is wanted the diameter (of the Mandara): the descent
from the top of the Mandara divided by eleven and then added to
a thousand will give the diameter. The ascent from the bottom
should be similarly (divided by eleven) and the quotient subtracted

89GSS, vii. 223 1
2
.

90See Datta, Bibhutibhusan “Geometry in the Jaina Cosmography”, Quellen und Studien
z. Gesch. d. Math., Ab. B, Bd. 1., 1930, pp. 249ff.

91Jambūdvīpa-prajñapti, Sūtra 103.
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from the diameter of the base: what remains will be the diameter
there (i.e. at that height) of that (Mandara).92

It is stated further:

Half the difference of the diameters at the top and the base should
be divided by the height; that (will give) the rate of increase or
decrease on one side; that multiplied by two will be the rate of
increase or decrease on both sides; in going from either end of the
mountain.
Subtract from the diameter of the base of the mountain the diam-
eter at any desired place: what remains when multiplied by the
denominator (meaning eleven) will be the height (of that place).93

All these rules will follow at once from the following general formulae (ed.
see Figure 7):

a =
D − d

2h
x,

δ = a+
D − d

h
x,

y = (D − δ′)
h

D − d
,

b =
D − d

2h
y,

δ′ = D − D − d

h
y.

Rules similar to those stated above and hence the general properties leading
to them, were known to the people long before Jinabhadra Gaṇi. For as early
as the second century before the Christian era (or after) Umāsvāti correctly
observed that in case of the Mount Meru, “for every ascent of 11000 yojanas,
the diameter diminishes by 1000 yojanas.”94

Again, “Half the difference between the breadths at the source and the
mouth being divided by 45000 yojanas, and the quotient multiplied by two
will give the rate of increase (of the breadth) on both sides, in case of rivers.”95

(45000 yojanas is the length of a river).
They are found even in the early canonical works (500–300 bc). Accord-

ing to the Jaina cosmography, the Salt Ocean is annular in shape, having
a breadth of 200000 yojanas. In the undisturbed state its height as well as
92Vṛhat Kṣetra-samāsa, i. 307–8.
93Ibid, i. 309–11.
94Tattvārthādhigama-sūtra-bhāṣya, iii. 9.
95Jambūdvīpa-samāsa, ch, iv.



5 Measurement of triangles 211

D

δ′

δ

d

x

a

y

b

h

Figure 7

depth are said to be varying continuously from its either banks till at distances
of 95000 yojanas from the banks where the height is 16000 yojanas and the
depth 1000 yojanas. The radial section of the Salt Ocean in the calm state
will be represented by Figure 8, where

AE = A′E′ = 95000 yojanas,
CE = C ′E′ = 16000 yojanas,
ED = E′D′ = 1000 yojanas,

and EE′ = 10000 yojanas.

It is described in the Jivābhigama-sūtra that “from either bank of the Salt
Ocean, for proceeding every 95 padas, the height is known to be increased by
16 padas and so on, until on proceeding to 95000 yojanas, the height is known
to be increased to 16000 yojanas”.96

These can be easily verified thus:
From the properties of similar triangles

QR =
ED ×AR

AE
=

1

95
AR,

PR =
EC ×AR

AE
=

16

95
AR.

If AR = 95x, where x is any unit of measurement, then QR = x, PR = 16x.
96Jivābhigama-sūtra, Sūtra 172.
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Again it is stated in the Jambūdvīpa-prajñapti97 that at a height of 500 yo-
janas above the ground the breadth of the Mount Mandara is 9954 6

11 yojanas,
while at 63000 yojanas above it is 4272 8

11 yojanas. These values, as can be
easily verified, tally with the general formulae.

6 Measurement of quadrilaterals

6.1 Area

It should be noted at the outset that four sides alone are not sufficient to
determine the true shape of a quadrilateral and consequently its size. For,
there can be formed various quadrilaterals with the same four sides. Hence in
order to make a quadrilateral determinate we must know, besides the sides,
another element such as a diagonal, the altitude of a corner, or an angle. Thus
Āryabhaṭa II remarks:

The mathematician who wishes to tell of the area or the altitudes
of a quadrilateral without knowing a diagonal, must be a fool or
a blunderer.98

Bhāskara II writes:
97Sūtra 104–5.
98MSi, xii. 70.
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The diagonals of a quadrilateral (whose four sides are given) are
uncertain. How can, then, the area be determinate? The diagonals
as calculated by previous teachers will be true only in case of
quadrilaterals (of a particular kind) contemplated by them, but
not in case of others. For with the same (four) sides, there can
be various other pairs of diagonals and consequently the area also
is manifold. In a quadrilateral, when two opposite corners are
so drawn as to bring the sides contiguous to them inwards, the
diagonal joining them is shortened, while the other two corners
bulge outwards and consequently their diagonal is lengthened. So
it has been stated (just before) that with the same sides there can
be other pairs of diagonals. Without specifying one of the altitudes
or diagonals, how can one ask to find the other of them and also
the area, as these are truly indeterminate? The questioner who
does not know the indeterminate nature of a quadrilateral must
be a blunderer; still more so is he, who answers such a problem.99

6.2 Brahmagupta’s formula

To find the area (A) of an inscribed convex quadrilateral whose sides are a, b,
c, d, Brahmagupta (628) gives the following formula:100

A =
√
(s− a)(s− b)(s− c)(s− d),

where
2s = a+ b+ c+ d.

This formula has been reproduced by Śrīdhara101 (900), Mahāvīra102 (850)
and Śrīpati103 (1039). None of these writers has expressly mentioned the lim-
itation that it holds only for an inscribed figure. Still it seems to have been
implied by them. So this appears from the particular remark of Bhāskara II
that the formula holds only in case of a special kind of quadrilateral contem-
plated by them. Further we find that the examples of quadrilaterals, viz. (4,
13, 14, 13), (25, 25, 39, 25) and (25, 39, 60, 52) given by Śrīdhara104 and
Pṛthūdakasvāmi105 and those, namely (14, 36, 61, 36), (169, 169, 407, 169)

99L. p. 44.
100BrSpSi, xii. 21.
101Triś, R. 43.
102GSS, vii. 50.
103SiŚe, xiii. 28.
104Triś, Ex. 78, 79, 80.
105Vide his commentary on BrSpSi, xii. 21. Elsewhere (xii. 26) he finds the circum-radii of

these quadrilaterals.
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and (125, 195, 300, 260) given by Mahāvīra,106 in illustration of the above
formula, are all of the cyclic variety. Bhāskara II has shown that in the other
cases, the above formula gives only an approximate value of the area of a
quadrilateral.107

6.3 Diagonal, altitude and segment

Āryabhaṭa I says (ed. see Figure 9):

The two sides (severally) multiplied by the altitude and divided
by their sum will give the perpendiculars let fall on them from
the point of intersection of the diagonals. Half the sum of the two
sides multiplied by the altitude should be known as the area.108

h1 =
ah

a+ c
,

h2 =
ch

a+ c
,

Area =
1

2
h(a+ c).

Brahmagupta writes:

In an isosceles trapezium109 the square-root of the sum of the
products of the sides and counter-sides is the diagonal. The square-
root of the square of the diagonal as diminished by the square of
half the sum of the face and base, is the altitude.110

d =
√
ac+ b2, h =

√
d2 −

(
a+ c

2

)2

.

The upper and lower portions of the diagonal or the altitude at
the junction of the two diagonals or of a diagonal and an altitude,
will be given by the corresponding segments of the base divided
by their sum and multiplied again by the diagonal or altitude, as
the case may be.111

106GSS, vii. 57, 58, 59. Compare also vii. 215 1
2
, 216 1

2
, 217 1

2
where it is required to find the

diameters of the circles circumscribing these very quadrilaterals.
107L, p. 41.
108Ā, ii. 8.
109The Sanskrit term is aviṣama-caturasra, meaning literally “the quadrilateral not of un-

equal sides”. Brahmagupta classifies quadrilaterals (caturasra, caturbhuja) into five vari-
eties: sama-caturasra (square), āyata-caturasra (rectangle), dvisama caturasra (isosceles
trapezium), trisama caturasra (trapezium with three equal sides) and viṣama caturasra
(quadrilateral of unequal sides). Hence aviṣama caturasra must mean all except those of
the last class. But here more particularly the isosceles trapezium is meant.

110BrSpSi, xii. 23.
111BrSpSi, xii. 25.
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h3 =
c2h

c1 + c2
, d1 =

c2d

c1 + c2
,

h4 =
c1h

c1 + c2
, d2 =

c1d

c1 + c2
.

For quadrilaterals other than isosceles trapeziums, Brahmagupta gives the
following rules:

Considering two scalene triangles within the quadrilaterals112 by
means of the two diagonals, find separately the segments of the
base in them by the method taught before; and thence the two
altitudes.113

Supposing two scalene triangles within the quadrilateral, with the
diagonals as bases, find in each of them separately the segments
of the base. They will be the portions of the diagonals above
and below their point of intersection. The lower portions of the
diagonals are taken to be the sides of another triangle whose base is
the same as that of the given quadrilateral. Its altitude is the lower
portion of the perpendicular (to the base through the junction
of the diagonals). The upper portions of it will be obtained by
subtracting this portion from half the sum of the two altitudes.114

At the intersection of the diagonals and perpendiculars, the lower
segment of a diagonal and of a perpendicular can be found by
proportion. On subtracting these segments from the whole, the

112The Sanskrit term is viṣama caturasra. As pointed out just before, it denotes “a quadri-
lateral of unequal sides” including a trapezium.

113BrSpSi, xii. 29.
114BrSpSi, xii. 30–31.
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upper portions will be found. Such is (the method) also in the
needle (i.e. the intersection of two opposite sides produced) and
the intersection (of a prolonged side and perpendicular).115

Śrīdhara states:

To find the altitude of a trapezium,116 suppose a triangle whose
base is the difference of the base and face of the trapezium and
whose sides are the same as those at the flanks of the given fig-
ure; (and then proceed as in the case of finding the altitude of a
triangle).117

Mahāvīra’s rule will be clear from the following problem with reference to
which it has been defined (ed. see Figure 10):

AB, CD are two vertical pillars. AE, CF are two strings joining the tops
A and C of the these pillars to points E and F on the ground. PQ is the
perpendicular from the point of intersection of the strings. It has been named
“the inner perpendicular.”

C

A

B D
EF

P

Q

Figure 10

Mahāvīra says:

Divide each pillar by its distance from (the farthest point of contact
of) the string (with the ground), divide again the quotients by their
sum and then multiply by the (whole) base. The results are the
segments (of the base by the inner perpendicular). These being
multiplied by the (first) quotients in the inverse order give the
inner perpendicular.118

115BrSpSi, xii. 32.
116The Sanskrit term is ṛjuvadana-caturbhuja of “the quadrilateral with parallel face.”
117Triś, R. 49.
118GSS, vii. 180 1

2
.



6 Measurement of quadrilaterals 217

That is to say, we have

QF =
AB
BE × FE
AB
BE + CD

DF

=
AB ×DF × FE

AB ×DF + CD ×BE
,

QE =
CD
DF × FE
AB
BE − CD

DF

=
CD ×BE × FE

AB ×DF − CD ×BE
,

PQ =
AB

BE
×QE =

CD

DF
×QF.

Example from Mahāvīra:119 Find the inner perpendicular and the segments
of the base caused by it in the quadrilateral (7, 15, 21, 3).
Śrīpati says:

In an isosceles trapezium, the square-root of the sum of the prod-
ucts of opposite sides is the diagonal. Next I shall speak of quadri-
laterals of unequal sides.120

Bhāskara II gives several rules. Of them we note the following:

In a quadrilateral, assume the value of one diagonal. Then in the
two triangles lying on either sides of this diagonal, it will be the
base and others (i.e. the given sides of the quadrilateral) sides.
Now find the perpendiculars and segments (in these triangles).
Then the square of the difference of the two segments lying on
the same side (i.e. taken from the same corner) being added to the
square of the sum of the perpendiculars, the square-root of the
resulting sum will be the second diagonal in all quadrilaterals.121

Ganeśa has demonstrated the rule substantially as follows (ed. see Fig-
ure 11):
Let ABCD be a quadrilateral whose diagonal AC as well as the sides are

known. Draw BN , DM perpendiculars to AC. Produce BN and draw DP

perpendicular to it. Join DB. Then

DB2 = BP 2 +DP 2,

= (BN +DM)2 + (AN −AM)2.

Suppose a triangle whose base is equal to the difference of the face
and base of a trapezium, and whose sides are the flank sides of the
latter; then as in case of a triangle, find its altitude and segments
of the base. Subtract from the base of the given trapezium one

119GSS, vii. 187 1
2
.

120SiŚe, xiii. 33.
121L, p. 47f.
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of the segments. The square of the remainder being added to
the square of the perpendicular, the square-root of the sum is the
diagonal. In a trapezium, the sum of the base and smaller flank
side is greater than the sum of the face and the other flank.122

Gaṇeśa’s Proof (ed. see Figure 12): Let ABCD be a trapezium. Draw the
perpendiculars AM,BN . Combine the two triangles ADM and BCN into
one triangle A′C ′D′. Then the altitude A′M ′ of the new triangle is equal to
the altitude of the trapezium.
Join AC and BD. Then

AC2 = AM2 +MC2 = A′M ′2 + (DC −D′M ′)2,

BD2 = BN2 +DN2 = A′M ′2 + (DC − C ′M ′)2.

Again
A′D′ −A′C ′ < D′C ′ = DC −AB.

122L. p. 48f.
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Therefore
DC +A′C ′ > AD +AB.

6.4 Circumscribed circle

To find the radius of the circle described round a quadrilateral, Brahmagupta
gives the following rule:

The diagonal of an isosceles trapezium being multiplied by its flank
side and divided by twice its altitude gives its heart line: in case
of a quadrilateral of unequal sides it is half the square-root of the
sum of the squares of the opposite sides.123

Now it has been given by Brahmagupta that

h2 = d2 −
(
a+ c

2

)2

.

Substituting the value of d2 = ac+ b2, we get

h =
√
(s− a)(s− c).

Hence according to the above, the radius of the circle described round the
isosceles trapezium (a, b, c, b) is

1

2
b

√
ac+ b2

(s− a)(s− c)
.

In case of a quadrilateral of unequal sides the circum-radius is

=
1

2

√
a2 + c2 =

1

2

√
b2 + d2.

This formula holds only in that kind of inscribed convex quadrilaterals in
which the diagonals are at right angles.

Mahāvīra says:
In a quadrilateral, the diagonal divided by the perpendicular and
multiplied by the flank side, gives the diameter of the circum-
scribed circle.124

Śrīpati states all the above formulae. He says:
In a quadrilateral, half the product of a diagonal and flank side
divided by the altitude, gives the radius of the circumscribed circle.
In a quadrilateral of unequal sides, half the square-root of the sum
of the squares of the opposite sides is stated to be the radius and
twice it the diameter of the circumscribed circle.125

123BrSpSi, xii. 26.
124GSS, vii. 213 1

2
125SiŚe, xiii. 31–2.
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6.5 Inscribed circle

We have already cited Mahāvīra’s formula for the diameter of the inscribed
circle.

Diameter = Area÷ Perimeter
4

.

6.6 Theorems for diagonals

Brahmagupta (628) gives two remarkable theorems for the lengths of the
diagonals of an inscribed convex quadrilateral. He says (ed. see Figure 13):

Divide mutually the sums of the products of the sides attached to
both the diagonals and then multiply the quotients by the sum of
the products of the opposite sides: the square-roots of the results
are the diagonals of the quadrilateral.126

m =

√
(ab+ cd)(ac+ bd)

(ad+ bc)
,

n =

√
(ad+ bc)(ac+ bd)

(ab+ cd)
.

Mahāvīra (850) writes:
126BrSpSi, xii. 28.
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The two flank sides multiplied by the base are added (respectively)
to those sides (taken reversely) multiplied by the face. Make the
sums (thus obtained respectively) the multiplier and divisor, again
the divisor and multiplier of the sum of the products of the oppo-
site sides. The square-roots of the results are the diagonals.127

Śrīpati’s (1039) enunciation128 of the theorems is nearly the same as that
of Brahmagupta.
It will be noticed that neither Brahmagupta, nor any of the posterior writers

mentioned above, has expressly stated the limitation that the theorems hold
only in case of inscribed convex quadrilaterals. Did they at all know it will
be the question that will be naturally asked. Looking at the context, we
think, it will have to be answered in the affirmative. For in the two rules just
preceding the one in question, Brahmagupta teaches how to find the radii of
the circles circumscribed about a quadrilateral and a triangle respectively. So
in the present rule too he has in view a quadrilateral of the type which can
be circumscribed by a circle. Illustrative examples given by the commentator
Pṛthūdakasvāmi, as also by Mahāvīra, are all of quadrilaterals of that kind.
Further Bhāskara II observed in connection with these theorems that they
hold in case of quadrilaterals contemplated to be of a particular kind by their
author.

7 Squaring the circle

7.1 Origin of the problem

The problem of ‘squaring the circle’, or what was more fundamental in India,
the problem of ‘circling the square’, originated and acquired special impor-
tance in connexion with the Vedic sacrifices, before the earliest hymns of
the Ṛgveda were composed (before 3000 bc). The three primarily essential
sacrificial altars of the Vedic Hindus, namely the Gārhapatya, Āhavanīya and
Dakṣiṇa, were constructed so as to be of the same area, but of different shapes,
square, circular and semi-circular. Again in constructing the fire-altars called
the Rathacakra-citi, Samuhya-citi and Paricāyya-citi, which are mentioned in
the Taittirīya Saṃhitā (c. 3000 bc) and other works, one had to draw in each
case at first a square equal in area to that of the Śyena-citi, viz. 7 1

2 square
puruṣas, and then to transform it into a circle. We find also other instances
in the early Hindu works requiring the solution of the problem of circling the
square and its converse.129

127GSS, vii. 54.
128SiŚe, xiii. 34.
129See Datta, Bibhutibhusan, Śulba, ch. xi, for further informations on the problem.
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7.2 Circling the square

Baudhāyana writes:

If you wish to circle a square, draw half its diagonal about the
centre towards the east-west line; then describe a circle together
with the third part of that which lies outside (the square).130

The same method is taught in different words also by Āpastamba131 and
Kātyāyana.132

Let ABCD be the square which is to be transformed into a circle (ed. see
Figure 14). Let O be the central point of the square. Join OA. With centre
O and radius OA, describe a circle intersecting the east-west line EW at E.
Divide EM at P , such that EP = 2PM . Then with centre O and radius OP

describe a circle. This circle is roughly equal in area to the square ABCD.
Let 2a denote a side of the given square and r the radius of the circle

equivalent to it. Then

OA = a
√
2, ME = (

√
2− 1)a.

130BŚl, i. 58.
131ĀpŚl, iii. 2.
132KŚl. iii. 13.
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Hence
r = a+

a

3

(√
2− 1

)
=

a

3

(
2 +

√
2
)
.

Āpastamba observes that the circle thus constructed will be inexact (anitya).
Now, according to the Śulba,

√
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
.

Therefore
r = a× 1.1380718 . . .

7.3 Squaring the circle

Baudhāyana says:

If you wish to square a circle, divide its diameter into eight parts;
then divide one part into twenty-nine parts and leave out twenty-
eight of these, and also the sixth part (of the preceding sub-division)
less the eighth part (of the last).133

That is to say, if 2a be the side of a square equivalent to a circle of diameter
d, then

2a =
7d

a
+

{
d

a
−
(

28d

8× 29
+

d

8× 29× 6
− d

8× 29× 6× 8

)}
,

or putting d = 2r,

a = r − r

8
+

r

8× 29
− r

8× 29× 6
+

r

8× 29× 6× 8
.

Baudhāyana further teaches a still rough method of squaring the circle:

Or else divide (the diameter) into fifteen parts and remove two
(of them). This is the gross (value of the) side of the (equivalent)
square.134

This method is described also by Āpastambā135 and Kātyāyāna.136 Accord-
ing to it

a = r − 2r

15
.

According to Manu a square of two by two cubits is equivalent to a circle
of radius 1 cubit and 3 aṅgulis.137

133BŚl, i. 59.
134BŚl, i. 60.
135ĀpŚl, iii. 3.
136KŚl, iii. 14.
137MāŚl, i. 27.
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Dvārakānātha’s corrections

Dvārakānātha Yajvā, a commentator of the Baudhāyana Śulba, proposed a
correction to the above formula for the transformation of a square into a
circle. According to him

r =
{
a+

a

3

(√
2− 1

)}
×

{
1− 1

118

}
,

or
r = a× 1.1284272 . . .

Similarly he improves the formula for the reverse operation:

a = r

(
1− 1

8
+

1

8× 29
+

1

8× 29× 6
− 1

8× 29× 6× 8

)(
1 +

1

2
× 3

133

)
.

7.4 Later formulae

In the Jaina cosmography, the earth is supposed to be a flat plane divided
into successive regions of land and water by a system of concentric circles.
The innermost region is one of land and is called Jambūdvīpa. It is a circle
of diameter 100000 yojanas. Its circumference is given as a little over 316227
yojanas 3 gavyūtis 128 dhanus 13 1

2 aṅgulas and its area as 7905694150 yojanas
1 gavyūti 1515 dhanus 60 aṅgulas.138 It will be seen that in calculating these
values of the circumference and area from the assumed value of the diameter,
the following two formulae have been employed:

C =
√
10d2, A =

1

4
Cd,

where d = the diameter of a circle, C = its circumference and A = its area.
Umāsvāti (c. 150 bc or ad) writes:

The square-root of ten times the square of the diameter of a circle
is its circumference. That (circumference) multiplied by a quarter
of the diameter (gives) the area.139

So does also Jinabhadra Gaṇi (529–589).140

Āryabhaṭa I says:
138See Jambūdvīpa-prajñapti, Sūtra 3; Jīvābhigama-sūtra, Sūtra 82, 124; Anuyogadvāra-

sūtra, Sūtra 146. Compare also Sūryaprajñapti, Sūtra 20.
139Tattvārthādhigama-sūtra with the Bhāṣya of Umāsvāti, edited by K. P. Mody, Calcutta,

1903, iii. 11 (gloss); Jambūdvīpa-samāsa, ch. iv. The latter work of Umāsvāti has been
published in the Appendix C of Mody’s edition of the former.

140Vṛhat Kṣetra-samāsa of Jinabhadra Gaṇi, Bhavanagara, 1919, i. 7.
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Half the circumference multiplied by the semi-diameter certainly
gives the area of a circle.141

Brahmagupta:

Three times the diameter and the square of the semi-diameter give
the practical values of the circumference and area (respectively).
The square roots of ten times the squares of them are the neat
values.142

Śrīdhara:

The square-root of the square of the diameter of a circle as multi-
plied by ten is its circumference. The square-root of ten times the
square of the square of the semi-diameter is the area.143

Mahāvīra:

Thrice the diameter is the circumference. Thrice the square of the
semi-diameter is the area … So said the teachers.144

The diameter of a circle multiplied by the square-root of ten, be-
comes the circumference. The circumference multiplied by the
fourth part of the diameter gives the area.145

Āryabhaṭa II:

The square-root of the square of the diameter of a circle as multi-
plied by ten is the circumference. The fourth part of the square of
the diameter being squared and multiplied by ten, the square-root
of the product is the area.146

The diameter multiplied by 22 and divided by 7 will become nearly
equal to the circumference. If the square of the semi-diameter be
so treated, the result will be the value of the area as precise as
that of the circumference.147

Twice the sine of three signs of the zodiac (i.e. 3438) is the diameter
and the circumference is then 21600. Multiply the circumference
by 191 and divide by 600; the quotient is the diameter.148

141A, ii. 7.
142BrSpSi, xii. 40.
143Triś, R. 45.
144GSS, vii. 19.
145GSS, vii. 60.
146MSi, xv. 88.
147MSi, xv. 92f.
148MSi, xvi. 37.
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Śrīpati’s rule is the same as the first one of Āryabhaṭa the Younger. Bhās-
kara II writes:

When the diameter is multiplied by 3927 and divided by 1250, the
result is the nearly precise value of the circumference; but when
multiplied by 22 and divided by 7, it is the gross circumference
which can be adopted for practical purposes.149

In a circle, the one-fourth of the diameter multiplied by the cir-
cumference gives the area.150

The square of the diameter being multiplied by 3927 and divided
by 5000 gives the nearly precise value of the area; or being multi-
plied by 11 and divided by 14 gives the gross area which can be
applied in rough works.151

7.5 Values of π

The formulae of Baudhāyana, noted above, yield the following values of π:

π =
4{

1 + 1
3

(√
2− 1

)}2 = 3.0883 . . .

π = 4

(
1− 1

8
+

1

8× 29
− 1

8× 29× 6
+

1

8× 29× 6× 8

)
= 3.0885 . . .

π = 4

(
1− 2

15

)2

= 3.004.

Baudhāyana has once employed the very rough value, 3. From the rule of
Manu, we get

π = 4

(
8

9

)2

= 3.16049 . . .

With the corrections of Dvārakānātha, we have

π = 3.141109 . . . , 3.157991 . . .

In the early canonical works of the Jainas (500–300 bc) is employed the
value π =

√
10.152 This value has been adopted by Umāsvāti, Varāhamihira

(505), Brahmagupta (628), Śrīdhara (c. 900) and others. It is stated in the
Jīvābhigama-sūtra,153 that for an increment of 100 yojanas in the diameter,

149L, p. 54.
150L, p. 55.
151L, p. 56f.
152See Datta, Bibhutibhusan, “The Jaina School of Mathematics”, BCMS xxi (1929), p. 13;

“Hindu Values of π”, JASB, xxii (1926), pp. 25–43. The latter article given fuller infor-
mation on the subject.

153Sūtra 112.
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the circumference increases by 316 yojanas. Here has been used the value
π = 3.16.
Āryabhaṭa the Elder (499) gives a remarkably accurate value. His rule is:

100 plus 4, multiplied by 8, and added to 62000: this will be the
nearly approximate (āsanna) value of the circumference of a circle
of diameter 20000.154

That is to say, we have

π =
62832

20000
=

3927

1250
= 3.1416.

This value appears in the works of Lalla155 (c. 749), Bhaṭṭotpala156 (966),
Bhāskara II and others. We have it on the authority of a writer of the sixteenth
century who was in possession of the larger treatise of arithmetic by Śrīdhara
that this value of π was adopted there.
The value

π =
21600

6876
=

600

191
= 3.14136 . . .

introduced first by Āryabhaṭa the Younger (950) is undoubtedly derived from
the value of the Elder Āryabhaṭa. For if the circumference of a circle measures
21600, its diameter will be

21600× 1250

3927
= 6875

625

1309
.

Āryabhaṭa takes the value of the diameter to be 6876 in round numbers.157

This relation (21600 : 6876) between the circumference and diameter of a
circle was, however, worked out before by Bhāskara I (629).158 The value
π = 600

191 appears also in the treatises of arithmetic by Gaṇeśa II (c. 1550) and
Munīśvara (1656).
It should be particularly noted that the Greek value, π = 22

7 , is found
in India first in the work of Āryabhaṭa the Younger.159 Bhāskara II (1150)
employs it as a rough approximation suitable for practical purposes.

7.6 Later approximations of π

Later Hindu writers found much closer approximations to the value of π.
Nārāyaṇa, a priest of Travancore, gave in 1426, the following rule to construct
a temple of circular shape having a given perimeter:

154Ā, ii. 10.
155ŚiDVṛ, i. 1, 2; ii. 3; etc.
156See his commentary on Bṛhat Saṃhitā, p. 53.
157MSi, xv. 88.
158Vide his commentary on Ā, ii. 10.
159MSi, xv. 92f
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Divide the given perimeter into 710 parts; with 113 of them as the
radius describe a circle and thus construct the circular temple.160

Hence he has employed π = 355
113 , the Chinese value.

Śaṅkara Vāriyar (c. 1500–60) says:

The value of the given diameter being multiplied by 104348 and
divided by 33215, becomes the accurate value of the circumference.
Again from the circumference can be obtained the correct value of
the diameter by proceeding reversely; that is, by multiplying the
value of the circumference by 33215 and then dividing by 104348,
or by multiplying by 113 and dividing by 355.161

π =
104348

33215
= 3.14159265391 . . .

π =
355

113
= 3.1415929 . . .

The first value is correct up to the ninth place of decimals, the tenth being
too large, and the second up to the sixth place of decimals, the seventh being
too large.
Mādhava (of Saṅgamagrāma) writes:

It has been stated by learned men that the value of the circumfer-
ence of diameter 900000000000 in length is 2827433388233.162

Therefore we have

π =
2827433388233

900000000000
= 3.141592653592 . . .

correct up to the tenth place of decimals, the eleventh being too large.
Putumana Somayājī (c. 1660–1740), the author of the Karaṇa-paddhati,

observes:

When the value of the circumference of a circle is multiplied by
10000000000 and divided by 31415926536, the quotient is the value
of the diameter. Half that is the radius.163

Śaṅkaravarman (1800–38) says:
160Nārāyaṇa, Tantra-samuccaya, edited by T. Ganapati Sastri, Trivandrum Sanskrit Series,

1919, ii. 65.
161Tantra-saṃgraha, (commentary in verse, edited by K. V. Sarma), p. 103, vss. 298–9.
162Quoted by Nīlakaṇṭha (c. 1500) in his commentary on the Āryabhaṭīya (ii. 10) edited by

K. Sambasiva Sastri, Trivandrum Sanskrit Series, 1930.
163Karaṇa-paddhati, vi. 7.
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In this way, if the diameter of a great circle measure one parārdha
(i.e. 1017), its circumference will be 314159265358979324.164

Here we have a value of π, 3.14159265358979324, which is correct up to 17
places of decimals.

7.7 Values in series

Śaṅkara Vāriyar (c. 1500–60) gave certain interesting approximations in series
for the value of the circumference of a circle in terms of its diameter. He says:

Multiply the diameter by four and divide by one; subtract from
and add to the result alternately the successive quotients of four
times the diameter divided severally by the odd numbers 3, 5,
etc. Take the even number next to that odd number on division
by which this operation is stopped; then as before multiply four
times the diameter by the half of that and divide by its square
plus unity. Add the quotient thus obtained to the series in case its
last term is negative; or subtract if the last term be positive. The
result will be very accurate if the division be continued to many
terms.165

That is to say, if C denotes the circumference and d the diameter, then we
shall have

C = 4d− 4d

3
+

4d

5
− 4d

7
+ · · ·+ (−1)n

4d

2n+ 1
− (−1)n

4d(n+ 1)

(2n+ 2)2 + 1
,

where n = 1, 2, 3 . . .

He then continues:

Now I shall write of certain other correction more accurate than
this: In the last term the multiplier should be the square of half
the even number together with one, and the divisor four times
that, added by unity, and then multiplied by half the even number.
After division by the odd numbers 3, 5, etc., the final operation
must be made as just indicated.166

C = 4d− 4d

3
+

4d

5
− 4d

7
+ · · ·+ (−1)n

4d

2n+ 1
− (−1)n

4d(n2 + 2n+ 2)

(n+ 1)(4n2 + 8n+ 9)
.

The author seems to have realised the slow convergence of the above infinite
series; so in order to get a closer approximation to its value after retaining a

164Sadratna-mālā, iv. 2.
165Tantra-saṃgraha, (commentary in verse), p. 101, vss. 271–4. This rule is really that of

Mādhava. See Kriyākramakarī (Śaṅkara Vāriyar’s commentary on Līlāvatī ), p. 379.
166Tantra-saṃgraha, (commentary in verse), p. 103, vss. 295–296.
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sufficient number of terms, modified the next one in the way described above
and then neglected the rest. This series, without the correction in any form,
is found also in the Karaṇa-paddhati, as follows:

Divide four times the diameter many times severally by the odd
numbers 3, 5, 7, etc. Subtract and add successive quotients al-
ternately from and to four times the diameter. The result is an
accurate value of the circumference.167

It was rediscovered in Europe two centuries later by Liebnitz (1673) and
De Lagney (1682).
Śaṅkara Vāriyar (c. 1500–60) says:

The square-root of twelve times the square of the diameter is the
first result. Divide this by three; again the quotient by three;
and so on continuously up to as many times as desired. Then
divide the results successively by the odd numbers 1, 3, etc. Of
the quotients thus obtained the sum of the odd ones (i.e. 1st, 3rd,
etc.) diminished by the sum of the even ones (i.e. 2nd, 4th, etc.)
will be the value of the circumference.168

That is to say, we shall have

C =
√
12d2

(
1− 1

3× 3
+

1

5× 32
− 1

7× 33
+ . . .

)
.

The same series is described in slightly difference words in the Sadratna-
mālā.169 It is also given by Abraham Sharp (c. 1717), who used it for cal-
culating the value of π up to 72 places of decimals.
Śaṅkara Vāriyar writes:

The fifth powers of the odd numbers 1, 3, etc. are increased by four
times their respective roots. Divide sixteen times a given diameter
severally by the sums thus obtained and subtract the sum of the
even quotients from that of the old ones. The remainder will be
the circumference.170

That is

C = 16d

(
1

15 + 4× 1
− 1

35 + 4× 3
+

1

55 + 4× 5
− 1

75 + 4× 7
+ . . .

)
.

167Karaṇa-paddhati, vi. 1.
168Tantra-saṃgraha (commentary in verse), p. 96, vss. 212(c–d)–214(a–b).
169Sadratnamālā, iv. 2.
170Tantra-saṃgraha (commentary in verse), p. 102, vss. 287–8.
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Or divide four times the diameter severally by the cubes of the odd
numbers beginning with 3, after diminishing each by its respective
root; add and subtract the successive quotients alternately to and
from thrice the diameter. Hence deduce the value of the circum-
ference also in this way.171

C = 3d+ 4d

(
1

33 − 3
− 1

53 − 5
+

1

73 − 7
− . . .

)
.

This infinite series is stated also in the Karaṇa-paddhati.172

Or the squares of the even numbers 2, etc. each diminished by
unity, are the several denominators. Add and subtract the quo-
tients alternately to and from twice the diameter. Take the odd
number next to last even number (at which the series is stopped).
The square of it added by two and then multiplied by two should
be taken as the divisor at the end.173

C = 2d+ 4d

{
1

22 − 1
− 1

42 − 1
+ · · ·+ (−1)n−1 1

(2n)2 − 1

−(−1)n−1 1

2(2n+ 1)2 + 2

}
.

Squares of the numbers beginning with two or four and increasing
by four, diminished each by unity, are the several denominators;
and the numerator in each case is eight times the given diameter.
The value of the circumference of the circle is equal in the first
case to the sum of the quotients and in the second to half the
numerator minus the quotients.174

C =

(
8d

22 − 1
+

8d

62 − 1
+

8d

102 − 1
+ . . .

)
,

C = 4d−
(

8d

42 − 1
+

8d

82 − 1
+

8d

122 − 1
+ . . .

)
.

The Karaṇa-paddhati adds a new series. It says:

Or divide six times the diameter by squares of twice the squares
of even numbers minus unity as diminished by the squares of the
respective even numbers. Thrice the diameter added by these
quotients is the value of the circumference.175

171Tantra-saṃgraha (commentary in verse), p. 103, vs. 290.
172Karaṇa-paddhati, vi. 2.
173Tantra-saṃgraha (commentary in verse), p. 103, vs. 292.
174Tantra-saṃgraha (commentary in verse), p. 103, vss. 293–4.
175Karaṇa-paddhati, vi. 4.
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C = 3d+
6d

(2× 22 − 1)2 − 22
+

6d

(2× 42 − 1)2 − 42
+

6d

(2× 62 − 1)2 − 62
+ . . .

Or,

C = 3d+ 6d

(
1

1× 3× 3× 5
+

1

3× 5× 7× 9
+

1

5× 7× 11× 13
+ . . .

)
.

Śaṅkaravarman gives another:

Take the square-root of twelve times the square of the diameter
and also its third part. Divide these continuously by nine. Again
divide the quotients (thus obtained) respectively by twice the odd
numbers 1, etc. (in the former case) and by twice the even num-
bers 2, etc. (in the latter case), each as diminished by unity. The
difference of the two sums of the final quotients is the value of the
circumference of the circle.176

C =
√
12d2

{
1

9(2× 1− 1)
+

1

92(2× 3− 1)
+

1

93(2× 5− 1)
+ . . .

}
−

√
12d2

3

{
1

9(2× 2− 1)
+

1

92(2× 4− 1)
+

1

93(2× 6− 1)
+ . . .

}
.

8 Measurement of segment of circle

8.1 Data in Jaina canonical works

In the early cosmographical works of the Jainas, we find certain interesting
and valuable data relating to the mensuration of a segment of a circle.177

Jainas suppose that Jambūdvīpa, which has been described before to be a
circle of diameter 100000 yojanas; is divided into seven varṣas (“countries”)
by a system of six parallel mountain ranges running due East-to-West. The
southern region of it is called Bhāratavarṣa. Dimensions of this segment, in

176Sadratnamālā, iv. 1.
177See the article of Datta, Bibhutibhusan, on “Geometry in the Jaina Cosmography” in

Quellen und Studien zur Gesch. d. Math. Ab. B, Bd. 1, 1930 pp. 245–254, from which
extracts are here made.
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terms of yojanas, are as follows (ed. see Figure 15):

AB = 1447
6

19
(a little less), ACB = 14528

11

19
,

PQ = 50, GCH = 10743
15

19
,

CD = 526
6

19
, ECJ = 9766

1

19
(a little over),

CP = QD = 238
3

19
, AG = BH = 1892

7

19
+

1

33
,

EJ = 9748
12

19
, EG = JH = 488

16

19
+

1

33
,

GH = 10720
12

19
.

These numerical data will be found to conform to the following formulae
for the mensuration of a segment of a circle:

c =
√
4h(d− h),

d =
c2

4h
+ h,

a =
√
6h2 + c2,

a′ =
1

2
{(bigger arc)− (smaller arc)},

h =
1

2
(d−

√
d2 − c2),

or h =

√
(a2 − c2)

6
,

where d = the diameter of the circle, c = a chord of it, a = an arc cut off
by that chord, h = height of the segment or its arrow and a′ = an arc of the
circle lying between two parallel chords.
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These formulae are not found clearly defined in abstract in any of the early
canonical works, though they state in minute details some of the above nu-
merical data.178

8.2 Umāsvāti’s rules

In his gloss on his own treatise Tattvārthādhigama-sūtra, Umāsvāti (c. 150 bc
or ad) says:

The square-root of four times the product of an arbitrary depth
and the diameter diminished by that depth is the chord. The
square-root of the difference of the squares of the diameter and
chord should be subtracted from the diameter: half of the re-
mainder is the arrow. The square-root of six times the square
of the arrow added to the square of the chord (gives) the arc. The
square of the arrow plus the one-fourth of the square of the chord
is divided by the arrow: the quotient is the diameter. From the
northern (meaning the bigger) arc should be subtracted the south-
ern (meaning the smaller) arc: half of the remainder is the side
(arc).179

All these rules have been restated by Umāsvāti in another work, Jambū-
dvīpa-samāsa by name.180 But there the formula for the arrow is different:

The square-root of one-sixth of the difference between the squares
of the arc and the chord is the arrow.

It is clearly approximate.

8.3 Āryabhaṭa I and Brahmagupta

Āryabhaṭa I writes:

In a circle, the product of the two arrows is the square of the
semi-chord of the two arcs.181

Brahmagupta says:

In a circle, the diameter should be diminished and then multiplied
by the arrow; then the result is multiplied by four: the square
root of the product is the chord. Divide the square of the chord

178For instance see Jambūdvīpa-prajñapti, Sūtra 3, 10–15; Jīvābhigama-sūtra, Sūtra 82, 124;
Sūtrakṛtāṅga-sūtra, Sūtra 12.

179Tattvārthādhigama-sūtra, iii. 11 (gloss).
180Jambūdvīpa-samāsa, ch. iv.
181Ā, ii. 17.
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by four times the arrow and then add the arrow to the quotient:
the result is the diameter. Half the difference of diameter and the
square-root of the difference between the squares of the diameter
and chord, is the smaller arrow.182

8.4 Jinabhadra Gaṇi’s rules

Jinabhadra Gaṇi (529–589) writes:

Multiply by the depth, the diameter as diminished by the depth:
the square-root of four times the product is the chord of the cir-
cle.183

Divide the square of the chord by the arrow multiplied by four;
the quotient together with the arrow should be known certainly
as the diameter of the circle. The square of the arrow multiplied
by six should be added to the square of the chord; the square-root
of the sum should be known to be the arc. Subtract the square
of the chord certainly from the square of the arc; the square-root
of the sixth part of the remainder is the arrow. Subtract from
the diameter the square-root of the difference of the squares of the
diameter and chord; half the remainder should be known to be the
arrow.184

Subtract the smaller arc from the bigger arc; half the remainder
should be known to be the side arc. Or add the square of half the
difference of the two chords to the square of the perpendicular; the
square-root of the sum will be the side arc.185

Jinabhadra Gaṇi next cites two formulae for finding the area of a segment of
a circle cut off by two parallel chords.

For the area of the figure, multiply half the sum of its greater and
smaller chords by its breadth.186

or

Sum up the squares of its greater and smaller chords; the square-
root of the half of that (sum) will be the ‘side’. That multiplied
by the breadth will be its area.187

182BrSpSi, xii. 41f.
183Vṛhat Kṣetra-samāsa of Jinabhadra Gaṇi, i. 36.
184Vṛhat Kṣetra-samāsa, i. 38–41.
185Vṛhat Kṣetra-samāsa, i. 46–7.
186Ibid, i. 64.
187Vṛhat Kṣetra-samāsa, i. 122.
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That is to say, if c1, c2 be the lengths of the two parallel chords and h, the
perpendicular distance between them, then the area of the segment will be
given by

(i) Area =
1

2
(c1 + c2)h,

(ii) Area =

√
1

2
(c21 + c22)× h.

Neither of these formulae, the author thinks, will be available for finding
the area of the Southern Bhāratavarṣa which, as has been described before,
has only a single chord. So he gives a third formula as follows:

In case of the Southern Bhāratavarṣa, multiply the arrow by the
chord and then divide by four; then square and multiply by ten:
the square-root (of the result) will be its area.188

(iii) Area =

√
10

(
ch

4

)2

.

None of the above formulae will give the desired result to a fair degree
of accuracy. Formula (i) indeed gives the area of the isosceles trapezium of
which the two parallel chords form the two parallel sides. The result obtained
by it will therefore be approximately correct only when the breadth is small.
Otherwise as has been observed by the commentator Malayagiri (c. 1200), the
formula will give only a wrong result. Jinabhadra Gaṇi seems to have been
aware of this limitation of the formula. For he has not followed it in practice.
The rationale of formula (ii) which has been followed by our author, cannot
be easily determined. Formula (iii) seems to have been derived by analogy
with the formula for the finding the area of a semi-circle.

8.5 Śrīdhara’s rule

In his smaller treatise or arithmetic, Śrīdhara (c. 900) includes a formula for
finding the area of a segment of a circle. He says:

Multiply half the sum of the chord and arrow by the arrow; multi-
ply the square of the product by ten and then divide by nine. The
square-root of the result will be the area of the segment.189

Area =

√
10

9

{
h

(
c+ h

2

)}2

.

188Ibid., i. 122.
189Triś, R. 47.
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8.6 Mahāvīra’s rules

For the mensuration of a segment of a circle, Mahāvīra (850) gives two sets of
formulae; the first set gives results serving all practical purposes (vyāvahārika
phala), while the second set yields nearly precise results (sūkṣma phala). He
says:

Multiply the sum of the arrow and chord by the half of the arrow:
the product is the area of the segment. The square-root of the
square of the arrow as multiplied by five and added by the square
of the chord is the arc.190

The square-root of the difference between the squares of the arc
and chord, as divided by five, is stated to be the arrow. The
square-root of the square of the arc minus five times the square of
the arrow is the chord.191

Thus the rough formulae are:

Area =
1

2
h(c+ h),

h =

√
a2 − c2

5
,

c =
√
a2 − 5h2,

a =
√
5h2 + c2.

For calculation of nearly precise results his rules are as follow:

In case of a figure of the shape of (the longitudinal section of)
a barley and a segment of a circle, the chord multiplied by one-
fourth the arrow and also by the square-root of ten becomes, it
should be known, the area.192

The square of the arrow is multiplied by six and then added by
the square of the chord; the square-root of the result is the arc.
For finding the arrow and the chord the process is the reverse of
this. The square-root of the difference of the squares of the arc and
chord, as divided by six, is stated to be the arrow. The square-root
of the square of the arc minus six times the square of the arrow is
the chord.193

190GSS, vii. 43.
191GSS, vii. 45.
192GSS, vii. 70 1

2
.

193GSS, vii. 74 1
2
.
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Thus the nearly precise formulae of Mahāvīra are:

Area =

√
10

4
ch,

h =

√
a2 − c2

6
,

a =
√
6h2 + c2,

c =
√
a2 − 6h2.

8.7 Āryabhaṭa II’s rules

Like Mahāvīra, Āryabhaṭa II (950) too gives two sets of formulae, rough
(sthūla) as well as nearly precise (sūkṣma) for the mensuration of a segment
of a circle. But it will be noticed that the rough formulae are the same as
the nearly precise ones of his predecessor: one about the area yields distinctly
better results. Āryabhaṭa II writes:

The product of the arrow and half the sum of the chord and arrow
is multiplied by itself; the square-root of the result increased by
its one-ninth is the rough value of the area of the segment. The
square-root of the square of the arrow multiplied by six and added
by the square of the chord is the arc. The square-root of the
difference of the square of the arc and chord as divided by six, is
the arrow. The square-root of the remainder left on subtracting
six times the square of the arrow from the square of the arc, is the
chord. The half of the arc multiplied by itself is diminished by the
square of the arrow; on dividing the remainder by twice the arrow,
the quotient will be the value of the diameter.194

That is to say, the rough formulae are:

Area =

√(
1 +

1

9

){
h

(
c+ h

2

)}2

,

a =
√
6h2 + c2,

h =

√
a2 − c2

6
,

c =
√
a2 − 6h2,

d =
1

2h

(
1

2
a2 − h2

)
.

Āryabhaṭa II then continues:
194MSi, xv. 89–92.
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On dividing by 21 the product of half the sum of the chord and
arrow, as multiplied by the arrow and again by 22, the quotient will
be the nearly precise value of the area of the segment. The square
of the arrow being multiplied by 288 and divided by 49, is increased
by the square of the chord; the square-root of the result is the near
value of the arc. The square-root of the difference of the squares
of the arc and chord, as multiplied by 49 and divided by 288, is
the arrow. The square-root of what is left on subtracting from the
square of the arc, the square of the arrow multiplied by 288 and
divided by 49 will be the chord. Multiply the square of the arc by
245 and then divide by 484; divide the quotient as diminished by
the square of the arrow, by twice the arrow: the quotient will be
the diameter. Similarly the chord will be the square-root of the
diameter as diminished by the arrow and then multiplied by four
times the arrow. The square-root of the difference of the squares
of the diameter and chord being subtracted from the diameter,
half the remainder is the arrow. The square of the semi-chord
being added with the square of the arrow, the quotient of the sum
divided by the arrow is the diameter.195

Hence

Area =
22

21
h

(
c+ h

2

)
,

a =

√
288

49
h2 + c2,

h =

√
49

288
(a2 − c2),

c =

√
a2 − 288

49
h2,

d =
1

2h

(
245

484
a2 − h2

)
,

e =
√
4h(d− h),

h =
1

2

{
d−

√
d2 − c2

}
,

d =
1

h

{( c

2

)2

+ h2

}
.

It should perhaps be noted that the last three formulae are exact, while
others are approximate.

195MSi, xv. 93–99.
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8.8 Śrīpati’s rules

Śrīpati (c. 1039) states:
The diameter of a circle is diminished by the given arrow and then multi-

plied by it and also by four: the square-root of the result is the chord. In
a circle, the square-root of the difference of the squares of the diameter and
chord being subtracted from the diameter, half the remainder is the arrow. In
a circle, the square of the semi-chord being added to the square of the arrow
and then divided by the arrow, the result is stated to be the diameter . . .

Six times the square of the arrow being added to the square of the chord,
the square-root of the sum is the arc here. The difference of the squares of
the arc and chord being divided by six, the square-root of the quotient is the
value of the arrow. From the square of the arc being subtracted the square of
the arrow as multiplied by six, the square-root of the remainder is the chord.
Twice the square of the arrow being subtracted from the square of the arc,
the remainder divided by four times the arrow, is the diameter.196

8.9 Bhāskara II’s rules

Bhāskara II (1150) does not mention the formulae for the calculation of ap-
proximate results, but gives only the exact ones. He writes:

Find the square-root of the product of the sum and difference of
the diameter and chord, and subtract it from the diameter: half
the remainder is the arrow. The diameter being diminished and
then multiplied by the arrow, twice the square-root of the result is
the chord. In a circle, the square of the semi-chord being divided
and then increased by the arrow, the result is stated to be the
diameter.197

These rules have been reproduced by Munīśvara.198

8.10 Sūryadāsa’s proof

Sūryadāsa (born 1508) proves the formulae for the arrow and diameter as
follows (ed. see Figure 16):
Let AB be a chord of the circle having its centre at O and CH the arrow

of the segment ABC. Join BO and produce it to meet the circumference in

196SiŚe, xiii. 37–40.
197L, p. 58.
198Pāṭīsāra, R. 220–1.
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BA
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Figure 16

P . Draw PSQ parallel to AB. Join BQ. Then clearly

CH =
1

2
(CR−HS),

=
1

2
(CR−BQ),

=
1

2
(CR−

√
BP 2 − PQ2).

Hence
CH =

1

2
(CR−

√
CR2 −AB2).

Again, since
HB2 = CH ×HR,

we get

HR =
HB2

CH
.

Therefore
CR =

HB2

CH
+ CH.

8.11 Other formulae for area

For the area of a segment of a circle, Viṣṇu Paṇḍita (c. 1410) and Keśava II
(1496) gave the formula:

Area =

(
1 +

1

20

){
h

(
h+ c

2

)}
.
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Gaṇeśa (1545) and Rāmakṛṣṇadeva state:

Area = (area of the sector)− (area of the triangle)

=
1

4
ad− 1

2
c

(
1

2
d− h

)
.

8.12 Intersection of two circles

When two circles intersect, the common portion cut off is called the grāsa
(“the erosion”). The origin of the term seems to be connected with the eclipse
of the moon (or the sun) which is narrated in the popular mythology of the
early Hindus as being caused by the dragon Rāhu (earth’s shadow) swallowing
the moon. The portion swallowed up is the grāsa. In fact, the geometrical
theorem, just to be described, had its application in the calculation of the
eclipse. The common portion is also called matsya (fish) as it resembles a fish.
(ed. see Figure 17.)

Āryabhaṭa I writes:

(The diameters of) the two circles being severally diminished and
then multiplied by (the breadth of) the erosion, the products di-
vided severally by the sum of the diameters (each) as diminished
by the erosion, will be the two arrows lying within the erosion.199

This rule is nearly reproduced by Mahāvīra.200

AP × PA′ = PB2 = DP × PD′,

or
(AA′ −A′P ) A′P = (DD′ −D′P )D′P,

or

AA′ ×A′P −DD′ ×D′P = A′P 2 −D′P 2

= (A′P +D′P )(A′P −D′P )

= A′D′(A′P −D′P ),

or
(AA′ −A′D′)A′P = (DD′ −A′D′)D′P.

Hence
A′P

DD′ −A′D′ =
D′P

AA′ −A′D′

=
A′D′

(DD′ −A′D′) + (AA′ −A′D′)
.

199Ā, ii. 18.
200GSS, vii. 231 1

2
.
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B

C

A D
PD′ A′

Figure 17

Therefore

A′P =
A′D′(DD′ −A′D′)

DD′ +AA′ − 2A′D′ ,

D′P =
A′D′(AA′ −A′D′)

DD′ +AA′ − 2A′D′ .

Brahmagupta says:

The erosion being subtracted (severally) from the two diameters,
the remainders, multiplied by the erosion and divided by the sum
of the remainders, are the arrows.201

The square of half the (common) chord being divided severally
by the two given arrows, the quotients added with the respective
arrows give the two diameters. The sum of the two arrows is the
erosion; and that of the quotients is the sum of the diameters
minus the erosion.202

9 Miscellaneous figures

9.1 Miscellaneous figures

Śrīdhara, Mahāvīra and Āryabhaṭa II have treated the mensuration of certain
other plane figures such as of the shape of a barley corn (yava), drum (muraja,
mṛdaṅga), elephant’s tusk (gajadanta), crescent moon (bālendu), felloe (nemi),

201BrSpSi, xii. 42.
202BrSpSi, xii. 43.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 18: (a) barley corn, (b) drum, (c) elephant’s tusk, (d) crescent, (e) fel-
loe, (f) vajra (after Śrīdhara and Āryabhaṭa II) or paṇava (after
Mahāvīra), (g) vajra (after Mahāvīra).

thunder-bolt (vajra) etc. The formulae described in case of most of them are
only roughly approximate and some of them are deduced easily from the
results already obtained. It was probably from the point of view of some
practical utility that all the results have been stated separately.

9.2 Śrīdhara’s rules

Śrīdhara says:

A figure of the shape of an elephant tusk (may be considered) as
a triangle, of a felloe as a quadrilateral, of a crescent moon as two
triangles and of a thunderbolt as two quadrilaterals.203

203Triś, R. 44.



9 Miscellaneous figures 245

A figure of the shape of a drum, should be supposed as consisting
of two segments of a circle with a rectangle intervening; and a
barley corn only of two segments of a circle.204

9.3 Mahāvīra’s rules

For finding the gross value of the areas of above figures Mahāvīra gives the
following rules:

In a figure of the shape of a felloe, the area is the product of the
breadth and half the sum of the two edges. Half that area will be
the area of a crescent moon here.205

The diameter increased by the breadth of the annulus and then
multiplied by three and also by the breadth gives the area of the
outlying annulus. The area of an inlying annulus (will be obtained
in the same way) after subtracting the breadth from the diame-
ter.206

In case of a figure of the shape of a barley corn, drum, paṇava, or
thunderbolt, the area will be equal to half the sum of the extreme
and middle measures multiplied by the length.207

For finding the neat values of the areas of them, Mahāvīra has the following
rules:

The diameter added with the breadth of the annulus being mul-
tiplied by

√
10 and the breadth gives the area of the outlying

annulus. The area of the inlying annulus (will be obtained from
the same operations) after subtracting the breadth from the diam-
eter.208

Find the area by multiplying the face by the length. That added
with the areas of the two segments of the circle associated with
it will give the area of a drum-shaped figure. That diminished by
the areas of the two associated segments of the circle will be the
area in case of a figure of the shape of a paṇava as well as of a
vajra.209

In case of a felloe-shaped figure, the area is equal to the sum of
the outer and inner edges as divided by six and multiplied by the

204Triś, R. 48.
205GSS, vii. 7. The formula for the area of the felloe yields, indeed, the accurate value of it.
206GSS, vii. 28.
207GSS, vii. 32.
208GSS, vii. 67 1

2
.

209GSS, vii. 76 1
2
.
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breadth and
√
10. The area of a crescent moon or elephant’s tusk

is half that.210

9.4 Āryabhaṭa II’s rules

Āryabhaṭa II writes:

In (a figure of the shape of) the crescent moon, there are two
triangles and in an elephant’s tusk only one triangle; a barley corn
may be looked upon as consisting of two segments of a circle or
two triangles.211

In a drum, there are two segments of a circle outside and a rect-
angle inside; in a thunderbolt, are present two segments of two
circles and two quadrilaterals.212

9.5 Polygons

According to Śrīdhara, regular polygons may be treated as being composed
of triangles.213 Mahāvīra says:

One-third of the square of half the perimeter being divided by the
number of sides and multiplied by that number as diminished by
unity will give the (gross) area of all rectilinear figures. One-fourth
of that will be the area of a figure enclosed by circles mutually in
contact.214

That is to say, if 2s denote the perimeter of a polygon of n sides, whether
regular or otherwise, but without a re-entrant angle, then its area will be
roughly given by the formula

Area =
(n− 1)s2

3n
.

Mahāvīra has treated some very particular cases of polygons with re-entrant
angles. He says:

The product of the length and the breadth minus the product
of the length and half the breadth is the area of a di-deficient
figure; by subtracting half the latter (product form the former) is
obtained the area of a uni-deficient figure.215

210GSS, vii. 80 1
2
.

211MSi, xv. 101.
212MSi, xv. 103.
213Triś, R. 48.
214GSS, vii. 39.
215GSS, vii. 37.
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The figures contemplated in this rule are those formed by leaving out two
vertically opposite ones or any one of the four portions into which a rectangle
is divided by its two diagonals. In the first case, the figure is technically
called the ubhaya-niṣedha-kṣetra (“di-deficient figure”) and in the other the
eka-niṣedha-kṣetra (uni-deficient figure).

Mahāvīra further says:

On subtracting the accurate value of the area of one of the circles
from the square of a diameter, will be obtained the (neat) value
of the area of the space lying between four equal circles (touching
each other).216

The accurate value of the area of an equilateral triangle each side
of which is equal to a diameter, being diminished by half the area
of a circle, will yield the area of the space bounded by three equal
circles (touching each other).217

A side of a regular hexagon, its square and its biquadrate being
multiplied respectively by 2, 3, and 3 will give in order the value
of its diagonal, the square of the altitude, and the square of the
area.218

Āryabhaṭa II observes:

A pentagon is composed of a triangle and a trapezium, a hexagon
of two trapeziums; in a lotus-shaped figure there is a central circle
and the rest are triangles.219

9.6 Ellipse

Though the ellipse was known to the Hindus as early as circa 400 bc, we do
not find any formula for its mensuration in any of their works on mathematics,
except the Gaṇita-sāra-saṃgraha of Mahāvīra (850). In the latter again, we
have only roughly approximate results. Mahāvīra says:

The length of an ellipse being added by half its breadth and mul-
tiplied by two, gives the gross value of its circumference. The
circumference multiplied by one-fourth the breadth becomes the
gross value of the area.220

216GSS, vii. 82 1
2
.

217GSS, vii. 84 1
2
.

218GSS, vii. 86 1
2
.

219MSi, xv. 102.
220GSS, vii. 21.
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The square-root of six times the square of the breadth added with
the square of twice the length, will be the neat value of the circum-
ference of an ellipse. That multiplied by one-fourth the breadth
will become the neat value of the area.221

That is to say if 2a be the longer diameter of an ellipse and 2b its shorter
diameter, then, according to Mahāvīra,

Circumference (Gross) = 2(2a+ b),

Circumference (Neat) =
√
16a2 + 24b2,

Area (Gross) = b(2a+ b),

Area (Neat) = 1

2
b
√
16a2 + 24b2.

10 Measurement of volumes

10.1 Solids considered

Things in everyday life of the ancient Vedic Hindus which led them to develop
formulae for the measurement of volumes were fire-altars and excavations.
Amongst the fire-altars described in the extant works on the Śulba, we find that
some are right prisms of various cross-sections, and others are right circular
cylinders. Only in one case, namely, the fire-altar of the shape of the cemetery,
the solid considered resembles a frustum of a pyramid. For the measurement
of the latter, the Hindus developed an approximate formula. Though we meet
with copious descriptions of pits, caves and mountains etc., of the shape of
truncated cones and pyramids, in the early canonical works of the Jainas,
there is nothing to indicate that the mensuration of those solids was known
to them. In later Hindu treatises of arithmetic, solids generally treated are
excavations, mounds of grains and piles of bricks.

10.2 Prism and cylinder

The formula for calculating the volumes of prisms and cylinders is found in
the Śulba.222

Volume of a prism or cylinder = (base)× (height).

The same formula is stated in later works.223

221GSS, vii. 63.
222Datta, Śulba, p. 101. See also Jaina Math., Quel, und Stud. z. Gesch. d. Math. Bd. I.

(1930), p. 253.
223BrSpSi, xii. 44; Triś, R. 53; GSS, viii. 4; etc.
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It may be noted that in later treatises of arithmetic, an excavation (khāta)
whose depth is uniform is called the sama-khāta. The section of the base may
be of any form, as it has not been particularly mentioned. The word sama
(equal) implies that all sections parallel to the face or base are equal.

In the Veda and Saṃhitā, the prisms whose sections are regular polygons,
were named according to the number of edges. Thus in the Ṛgveda (c. 3000
bc), the triangular prism is called trirasri (three-edged solid; tri = three, asri
= edge), a quadrangular prism caturasri (= four edged solid) and so on.224

But these terms do not seem to have been completely standardised. For in
comparatively later times, a cube was called dvādasāsrika (= twelve-edged
solid).

10.3 Cone and pyramid

The Hindus do not always distinguish between a cone and a pyramid. They
include both under a generic name sūcī, which means literally “a needle”, “a
sharp pointed object”, and hence, “a solid of the form of the needle”, “a sharp
pointed solid”. Thus the term generally denotes a pyramid with a base of any
form; as the base may be a circle it includes a cone as well. A triangular
pyramid is, however, distinguished as the ghana-ṣaḍasri or simply ṣaḍasri
(literally, “six-edged solid”).

Āryabhaṭa I says:

Half the product of this area (of the triangular base) and the height
is the volume of the six-edged solid.225

This formula for the volume of the triangular pyramid is wrong. The correct
formula is found in the works of Brahmagupta. He states:

The volume of the uniform excavation divided by three is the vol-
ume of the needle-shaped solid.226

That is to say, we shall have

Volume of a cone or pyramid =
1

3
(base)× (height).

This formula reappears in the works of Āryabhaṭa II,227 Nemicandra,228 Śrī-
pati229 and Bhāskara II.230

224Datta, “On the Hindu names for the rectilinear geometrical figures”, loc. cit, pp. 284f.
225Ā, ii. 6.
226BrSpSi, xii. 44.
227MSi, xv. 105.
228Trilokasāra, Gāthā 19.
229SiŚe, xiii. 44.
230L, p. 62
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For measuring the mounds of grains which approximate to the form of
a right circular cone, the Hindus ordinarily employed a rough formula. In
such cases, they further assume the height of the mound to be equal to the
circumference of the base divided by 9, 10 or 11 according to the kind of grain
of which the mound is composed. Thus Brahmagupta says:

In case of śuki grains one-ninth, in case of course grains one-tenth
and in case of fine grains one-eleventh of the circumference (of the
base) is the height; that multiplied by the square of the sixth part
of the circumference will be the volume.231

Śrīpati writes:

Of a heap of grains standing on the plane surface of the earth,
the square of one-sixth the circumference multiplied by the height
is the volume in terms of Māgadha Khārikā. In case of grains
known as syāmāka, śāli, tila, sarṣapa, etc., the circumference is
nine times the height; in case of godhūma, mudga, yava, dhānyaka,
etc., it is ten times; and in case of vadara, kaṅgu, kulattha, etc.,
eleven times.232

The rough formula was obtained probably thus:

Volume of a cone = 1

3
(base)× (height).

If r denote the radius of the base, we have

Base = πr2 =
2πr × 2πr

4π
=

(circumference)2

4π
.

Hence
Volume of a cone = 1

12π
(circumference)2 × (height).

Now putting π = 3 roughly we get,

Volume =
(
circumference

6

)2

× (height).

This approximate formula is stated also by Srīdhara,233 Āryabhaṭa II,234

Nemicandra235 and Bhāskara II.236 The ancient commentators have observed
that it was intended only for “rough calculation”.

231BrSpSi, xii. 50.
232SiŚe, xiii. 50–1.
233Triś, R. 61.
234MSi, xv. 115.
235Trilokasāra, Gāthā, 22, 23.
236L, pp. 69f.
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10.4 Frustum of a cone

To find the volume of a frustum of a right circular cone, Śrīdhara gives the
following formula:

The square-root of ten times the square of the sum of the squares of
the diameters of the face, base and of their sum, being multiplied
by the height and divided by twenty-four, will be the volume of a
well.237

That is to say, if d, d′ denote the diameters of the upper and lower faces of
the frustum of a right circular cone and h its height, then its volume V will
be given by

V =
h

24

√
10 {d2 + d′2 + (d+ d′)2}2,

or
V =

π

3

(
r2 + r′2 + rr′

)
h,

where r, r′ denote the radii of the upper and lower faces and π =
√
10, the

value adopted by Śrīdhara. Other writers have included the treatment of the
frustum of a cone in that of a more general kind of obelisk.
Example from Śrīdhara:

The diameter of the top of a well is 16 cubits, and of the bottom 4
cubits; its depth is 12 cubits. Find, O learned man, its volume.238

10.5 Obelisk

An approximate formula for calculating the volume of a frustum of a pyramid
on a rectangular base is found as early as the works on the Śulba by Baud-
hāyana (800 bc) and others.239 If (a, b) be the length and breadth of the base
of the solid, (a′, b′) the corresponding sides of the face parallel to it and h the
height, then

Volume of the frustum =

(
a+ a′

2

)(
b+ b′

2

)
× h.

In later treatises of arithmetic we find the accurate formula for the same.
Thus Brahmagupta says:

The area from half the sum of (the edges of) the face and base,
being multiplied by the depth gives vyāvahārika volume; half the
sum of the areas of the face and base being multiplied by the depth

237Triś, R. 54.
238Triś, Ex. 91.
239Datta, Śulba, p. 103.
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will be the autra volume. Subtract the vyāvahārika volume from
the autra volume and divide the remainder by three; the quotient
added with the vyāvahārika volume will become the truly accurate
volume.240

It is noteworthy that Brahmagupta does not specify the shape of the face
and base of the excavation contemplated by him. His text is mukhatalayuti-
dalagaṇitam etc., or “the area from the half the sum of the face and base,” etc.
If we, however, suppose them to be rectangular, then according to the rule,
we shall have,

V ′ =

(
a+ a′

2

)(
b+ b′

2

)
h,

A =
1

2
(ab+ a′b′)h,

V =
1

3
(A− V ′) + V ′,

where V ′, A and V denote respectively the vyāvahārika, autra and accurate
volumes of the obelisk. Substituting the values in the last formula, we get

V =
h

6
{(a+ a′)(b+ b′) + ab+ a′b′} .

If the face and base be circular, and if their radii be r′ and r respectively,
then by the rule

V ′ = π

(
r + r′

2

)2

h =
π

4
(r + r′)2h,

A =

(
πr2 + πr′2

2

)
h.

Hence

V =
h

3

{π

2

(
r2 + r′2

)
− π

4
(r + r′)2

}
+

π

4
(r + r′)2h,

=
1

3
πh

(
r2 + r′2 + rr′

)
.

10.6 Particular cases

(i) Put a′ = 0 = b′; then we get

Volume of a cone or pyramid =
1

3
(base)(height).

240BrSpSi, xii. 45–6.
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(ii) Let b′ = 0;

Volume of a wedge = h

6
(2ab+ a′b).

(iii) Suppose a = b, a′ = b′; then

Volume of a truncated square pyramid =
h

3
(a2 + a′2 + aa′).

Pṛthūdakasvāmi has worked out the following example in illustration of the
above rule of Brahmagupta:

There is a square tank whose each side is 10 cubits long at the face
and 6 cubits long at the base; it is excavated so as to have a depth
of 30 cubits. Tell me its vyāvahārika, autra and truly accurate
volumes.

This example has misled some of the modern historians of mathematics
to presume that Brahmagupta’s rule was meant for the measurement of the
volume of a truncated pyramid on a square base only.241 But, as already
pointed out, there is nothing in the definition of the rule to warrant such a
limited application of it.242

Mahāvīra writes:

Of the outer (i.e. at the ground) and various inner sections (of
the excavation) the sides of the ground section are added by all
the corresponding sides of the other sections and divided (by the
number of sections). Multiply these sides (of the average section)
mutually in accordance with the method of finding the area of a
figure of that shape; the result (thus obtained) multiplied by the
depth will be the karmāntika volume. Find the areas of those
sections (severally), add them together and then divide by the
number of sectional areas; the quotient multiplied by the depth
will be the aundra volume. One third the difference of those two
volumes added with the karmāntika volume will be the truly accu-
rate volume.243

It will be noticed that in finding the average volumes, Mahāvīra takes into
consideration several parallel sections of the solid, instead of only two, the

241Such is the opinion of Cantor, followed by J. Tropfke and D. E. Smith.
242See also the article of Datta, Bibhutibhusan, “On the supposed indebtedness of Brah-

magupta to Chiu-chang Suan-Shu” in the BCMS, xiii (1930), pp. 39–51; more particu-
larly pp. 45 ff.

243GSS, viii. 9–11 1
2
.
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face and base.244 In three of the illustrative examples,245 he actually states
three sections of the solid. If however, we take into consideration only the top
and base, the formula obtained will be the same as that of Brahmagupta.
In illustration of his rule, Mahāvīra gives examples of excavations of vari-

ous kinds, which are indeed inverted cases of truncated pyramids on square,
rectangular, or equilateral triangular bases, and truncated cones. There is an
instance of a truncated wedge:

(In a well with rectangular sections), the lengths at the top, middle
and base are 90, 80 and 70 respectively; and the breadths are 22,
16 and 10. Its depth is 7. (Calculate its volume).246

Āryabhaṭa II says:

Divide the sum of the areas of the face, base and that arising from
the sum of (the dimensions of) them by six; the quotient multiplied
by the height will be the volume of an excavation such as a well
and tank.247

That is to say,

V =
h

6
{(a+ a′) (b+ b′) + ab+ a′b′} .

This formula reappears in the works of Śrīpati and Bhāskara II. The former
says:

The sum of the areas of the face, base and that arising from the
sum of their sides, being divided by six and multiplied by the
depth, will be the truly accurate value of the volume.248

Bhāskara II writes:

The sum of the areas from (the linear dimensions of) the face,
base and their sums, divided by six gives the area of the equiv-
alent prism (samaṃ kṣetraphalam) (of the same height). That
multiplied by the depth is the true volume.249

244Hence Raṅgācārya is wrong in supposing that the rule contemplates only the face and
base.

245GSS, xiii. 16 1
2
–18 1

2
.

246GSS, vii. 16 1
2
. In the printed text 22 is wrongly stated as 32.

247MSi, xv. 106.
248SiŚe, xiii. 49.
249L, p. 65.
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a

b

a′

b′

h

Figure 19

Gaṇeśa’s proof

Gaṇeśa demonstrates this formula substantially as follows:
Suppose (a, b) and (a′, b′) denote the length and breadth of the base and

face of the solid respectively. Let its height be h. Then it is clear from the
figure (ed. see Figure 19) that

Volume of the obelisk = volume of the prism at the centre
+ volumes of four pyramids at the corners
+ volumes of four prisms on four sides.

Now the four pyramids at the corners can be combined into one of base
(a− a′) by (b− b′) and height h. Hence its volume is

h

3
(a− a′)(b− b′).

The four side prisms can be combined into two others: (1) one on a triangle
of base (b − b′) and altitude h, its height being a′; and (2) the other on a
triangle of base (a − a′) and altitude h; its height will be b′. Therefore their
volumes are together equal to

1

2
(b− b′)ha′ +

1

2
(a− a′)hb′.
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Therefore

Volume of the obelisk

= a′b′h+
h

3
(a− a′) (b− b′) +

1

2
(b− b′) ha′ +

1

2
(a− a′) hb′.

=
h

6
(2ab+ 2a′b′ + a′b+ ab′)

=
h

6
{(a+ a′) (b+ b′) + ab+ a′b′} .

Mahāvīra has treated a problem like this : A fort wall of height h and
length l, whose extremities are vertical, has its base b in breadth and face a.
Its upper portion is blown off by cyclone, obliquely. It is required to calculate
the volume of the portion still intact.250

Another problem runs as follows:

The heights (of a certain construction) are 12, 16, and 20 cubits
(at one end, middle and other end respectively); the breadths (at
those points) are respectively 7, 6 and 5 cubits at the base and
4, 3 and 2 cubits at the top; the length is 24 cubits. (Find the
number of bricks employed in the construction.)251

10.7 Surface of a sphere

The earliest reference to a formula for the surface of a sphere occurs, so far as
known, in the treatise on arithmetic by Lalla (c. 749). That work is now lost.
But the relevant passage has survived in a citation by Bhāskara II.252 It is as
follows:

The area of the circle (of a diametral section) multiplied by its
circumference will be equal to the area of the surface of a sphere.

If r be the radius of a sphere, then according to this rule, its surface S will
be

S = πr2 × 2πr = 2π2r3.

This formula is clearly inaccurate. So it has been adversely criticised and
discarded by Bhāskara II.253

Āryabhaṭa II was undoubtedly aware of a formula for the surface of a sphere,
though he has not expressly defined it anywhere. For he says, “the diameter

250GSS, viii. 52 1
2
–54 1

2
.

251GSS, viii. 51 1
2
.

252SiŚi, Gola, iii. 57 (vāsanā).
253SiŚi, Gola, iii. 53.
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of the earth is a little less than 2109; its circumference is 6625; and the area
of its surface is 13971849.”254

Now according to Āryabhaṭa II, π = 21600
6876 . Then

Diameter of earth =
6876

21600
× (circumference of the earth) = 6876

21600
× 6625.

Surface = 6625

(
2109− 1

24

)
= 13971849− 1

24
.

Thus it seems that Āryabhaṭa II employed the formula

Surface of a sphere = (circumference)× (diameter).

This formula is, however, expressly stated by Bhāskara II.255 He further
says:

That (the area of a diametral section) multiplied by four is the
net lying all over a round ball (i.e., the area of the surface of a
sphere).256

S = 4πr2.

Bhāskara II has given a demonstration of this formula by means of the method
of infinitesimals. We shall describe it later on.

10.8 Volume of a sphere

Āryabhaṭa I writes:

That (the area of a diametral section) multiplied by its own square-
root is the exact volume of a sphere.257

That is to say, if r be the radius of a sphere, then according to Āryabhaṭa I,

Volume of a sphere = πr2
√
πr2.

This formula is inaccurate. Śrīdhara says:

Half the cube of the diameter of a sphere, then added with its
eighteenth part, will give the volume.258

Volume = 19× (diameter)3

18× 2
.

Mahāvīra writes:
254MSi, xvi. 35–6.
255SiŚi, Gola, iii. 52, 61.
256L, p. 55.
257Ā, ii. 7.
258Triś, R. 56.
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Nine times the half of the cube of the semi-diameter is the vyā-
vahārika volume of a sphere. Nine-tenth of that will be the very
accurate volume.259

Āryabhaṭa II:

The cube of the diameter of a sphere being halved and then added
with its eighteenth part, will give its volume in cubic cubits: such
is the formula taught (by the ancient teachers).260

This formula was given before by Śridhara. It reappears also in the works
of Śrīpati.261 All the above-mentioned formulae for the volume of a sphere
are more or less approximate. The truly accurate formula is, however, given
by Bhāskara II. He says:

That area of the surface multiplied by the diameter and divided
by six, will be the accurate value of the volume of a sphere.262

That is to say, we shall have

Volume = 1

6
(surface)× (diameter).

Now according to Bhāskara II,

Surface = 4 (area of a diametral section),

Area of a diametral section =
1

4
(circumference)× (diameter),

Circumference = 22

7
(diameter).

Therefore

Volume = 22

42
D3,

=

(
1 +

1

21

)
D3

2
.

Hence Bhāskara II writes:

Half the cube of the diameter being added with its twenty-oneth
part becomes the volume of a sphere.263

He has further observed that the volume of a sphere obtained by this formula
is “rough” (sthūla). This is clearly so because that formula is derived with
the rough value 22

7 of π instead of its accurate value 3927
1250 .

259GSS, viii. 28 1
2
.

260MSi, xvi. 108.
261SiŚe, xiii. 46.
262L, p. 55.
263L, p. 57.
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10.9 Average value

In measuring the volume of an excavation whose length, breadth or depth is
different at different portions, the other two dimensions remaining the same,
the Hindus take for all practical purposes the arithmetic mean of the varying el-
ements. This mean value is technically called sama-rajju (“mean measure”) by
Brahmagupta, samīkaraṇa (“equalising value”) by Mahāvīra, sāmya (“equa-
bility”, i.e. “equivalent value”) by Śrīpati and samamiti (“average value”) by
Bhāskara II.
Brahmagupta says:

In an excavation having the same breadth at the face and bottom,
the aggregates (of the partial products of lengths and depths) di-
vided by the total (length) will be the mean measure (sama-rajju)
of the depth.264

Example from Pṛthūdakasvāmi:

A tank 30 cubits in length and 8 cubits in breadth contains within
it five different excavations which subdivide the length into five
portions of lengths four, five etc. (cubits). The depths (of these
portions) are successively 9, 7, 7, 3 and 2. Tell at once what is the
mean depth of the excavation.

Mean depth =
4× 9 + 5× 7 + 6× 7 + 7× 3 + 8× 2

4 + 5 + 6 + 7 + 8
=

150

30
= 5.

Therefore the volume of the tank = 8× 30× 5 = 1200.
Mahāvīra writes:

Find the half of the top and bottom dimensions; the sum of all
the halves divided by the number of them will be the equivalent
value.265

The sum of the depths (measured at different places) divided by
the number of places will be the average depth.266

According to Bhāskara II,

Calculate the breadth at several places: the sum of them divided
by the number of places is the average value. Do in the same way
in case of the length and depth.267

264BrSpSi, xii. 44.
265GSS, viii. 4.
266GSS, viii. 23 1

2
.

267L, p. 64.
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Figure 20

11 Measurement of heights and distances

11.1 Shadow reckoning

The chāyā, meaning literally “shadow”, but implying truly the measurement
by means of shadow of a gnomon, is a common topic for discussion in the
Hindu treatises of mathematics. It is applied for measurement of time as well
as of heights and distances. We shall, however, notice here only those rules
which are related to its application in this latter aspect.268

Āryabhaṭa I says:

Multiply the distance between the gnomon and the lamp-post269

by the length of the gnomon and divide by the difference between
the lengths of the gnomon and the lamp-post. The result will be
the length of the shadow of the gnomon measured from its base.270

(ed. In Figure 20:)

AB = the lamp-post,
CD = the gnomon,
DE = the shadow of the gnomon,

DE =
BD ×DC

AB − CD
.

268The measurement of time by means of a gnomon is more fully treated in treatises on
astronomy.

269The Sanskrit original is bhuja. Ordinarily the term denotes a side of a triangle (or any
rectilinear figure). All the commentators agree in interpreting it as implying here the
lamp-post. Latter rules are quite explicit.

270Ā, ii. 15.
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Similar rules are given by Brahmagupta,271 Mahāvīra,272 Śrīpati273 and
Bhāskara II.274 Some later writers275 have described separately the formulae
for calculating the height of the lamp from the length of the shadow and the
distance of the gnomon, and the distance from the height of the lamp and the
length of the shadow, though the same follow at once from the formula stated
above.

11.2 Heights and distances

Another and more useful problem is to find the height and distance of a far
off object. By way of illustration of the method employed a high light-post
is generally taken into consideration. Then two gnomons of equal heights or
the same gnomon successively, being set up in two places at a known distance
apart, the two shadows are measured.
Āryabhaṭa I writes:

The distance between the tips of the two shadows being multiplied
by the length of a shadow and divided by the difference between
the lengths of the two shadows gives the koṭi. That koṭi multiplied
by the length of the gnomon and divided by the length of the
shadow corresponding to it will be the height of the lamp-post.276

AB is the lamp-post to be measured (ed. see Figure 21); CD, C ′D′ = the
gnomon in its two positions; and DE, D′E′ = the shadows respectively. Then
the rule says:

BE =
EE′ ×DE

D′E′ −DE
, BE′ =

EE′ ×D′E′

D′E′ −DE
,

AB =
BE × CD

DE
=

BE′ × CD

D′E′ .

These formulae are stated also by Brahmagupta277 and Bhāskara II.278

11.3 Brahmagupta’s rules

The procedure to be adopted in actual practice in measuring the height of a
distant object has been indicated by Brahmagupta as follows:

271BrSpSi, xii. 53.
272GSS, ix. 40 1

2
.

273SiŚe, xiii. 54.
274L, p. 73.
275See GSS, viii. 43, 45; SiŚe, xiii. 55; L, p. 74.
276Ā, ii. 16.
277BrSpSi, xii. 54.
278L, p. 75.
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1. Selecting a plane ground, the gnomon is fixed vertically in the position CD

(ed. see Figure 21). Now the eye is put at the level of the ground at such a
place E that E, C and A are in the same straight line. Then the distance
DE of the eye from the gnomon is measured. It is called as dṛṣṭi (sight)
by Brahmagupta. Similar observations are taken with the gnomon in a
different position C ′D′ and the eye E′. The formulae to be applied then
are the same as those stated above.
Brahmagupta re-describes them as follows:

The displacement (of the eye) multiplied by a dṛṣṭi and divided
by the difference of the two dṛṣṭis will give the distance of the
base. The distance of the base multiplied by the length of the
gnomon and divided by its own dṛṣṭi will give the height.279

2. Observations may also be taken, thinks Brahmagupta, by placing the
gnomon horizontally on the level ground (ed. see Figure 22). In this case a
graduated rod CR is fixed vertically at the extremity C of the gnomon CD

nearer to the object to be measured. Then placing the eye at the other
end D, the graduation P which is in a straight line with the tip of the
object is noted. This gives the altitude CP . Brahmagupta calls it by the
term śalākā (rod). Observations are taken again with the gnomon in the
position C ′D′.
Then Brahmagupta says:

The displacement (of the gnomon) multiplied by the other śalākā
and divided by the difference of the two śalākās will give the

279BrSpSi, xxii. 33.
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distance of the base. The distance of the base multiplied by
the śalākā corresponding to it and divided by the length of the
gnomon will give the height of the house etc.280

BD =
DD′ × C ′P ′

CP − C ′P ′ , BD′ =
DD′ × CP

CP − C ′P ′ ,

AB =
BD × CP

CD
=

BD′ × C ′P ′

CD
.

3. Brahmagupta then gives a different method (ed. see Figure 23): Placing
the eye at E, the gnomon is first directed towards the base B of the object
and then towards its tip A. From the front extremities G, G′ of the gnomon
in the two positions draw the perpendicularsGN , G′N ′ to the ground. Also
draw the perpendicular EM . Measure the distances MN , MN ′.
Now it can be proved easily that

BM =
ME ×MN

ME −GN
,

and
AB = ME +

BM(G′N ′ −ME)

MN ′ in Figure 23a,

or
AB = ME − BM(ME −G′N ′)

MN ′ in Figure 23b.

Hence Brahmagupta says:
The distance between the feet of the altitudes (of the eye and
the front extremity of the gnomon in the first observation) being

280BrSpSi, xxii. 32.
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divided by the difference between the altitudes and multiplied
by the greater (altitude) gives the distance of the base. Multiply
the distance of the base by the difference between the altitudes
(of the eye and the front extremity of the gnomon in the second
observation) and divide by the distance between the feet of these
altitudes. Then subtract the quotient from the altitude of the
eye, if the altitude of the front extremity of the gnomon (in the
second observation) be less than the altitude of the eye; or add,
if greater. The result gives the height of the house. (Thus the
height and distance of an object can be determined) by means
of observations of its base and tip.281

4. Another method of Brahmagupta is as follows: Placing the eye at E, at
an altitude ME over the ground, then fix the gnomon CD in front in such
a position that its lower end D will be in the line of sight of the bottom
of the object AB and its upper end C in the line of sight of the top of
the object (Figure 24). Also note the portion DP ′ of the gnomon below
EP , the horizontal line of sight and the distance EP ′ of the eye from the
gnomon. Then, says Brahmagupta:

The distance of the eye from the gnomon multiplied by the alti-
tude of the eye and divided by the portion of the gnomon below
(the horizontal line of sight) will be the distance of the base. The
distance of the base multiplied by the whole gnomon and divided

281BrSpSi, xxii. 34–5.
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by the distance of the eye from the gnomon will be the height.282

BM =
EP ′ ×ME

DP ′ , AB =
BM × CD

EP ′ .

11.4 Bhāskara II

For measuring the heights and distances of far-off objects, Bhāskara II gives
two methods, one of which is taken from Brahmagupta. He remarks in general
that observations should be made on a plane horizontal ground. Directing
the gnomon towards the distant object perpendiculars are drawn from its two
extremities on the plane of observation. The horizontal distance between them
is the base (bhuja), the difference between them is the upright (koṭi) and the
gnomon itself is the hypotenuse (karṇa) of the triangle of observation, says
Bhāskara.

(a) Thus observing the bottom of the bamboo, multiply the base
(of the triangle of observation) by the altitude of the eye and
divide by the upright: the result is the horizontal distance
between the self and the bamboo. Then observing the top of
the bamboo, multiply the horizontal distance by the upright
the divide by the base; the result added with the altitude of
the eye is the height of the bamboo.283 (Figure 25.)

282BrSpSi, xxii. 36.
283SiŚi, Golādhyāya, Yantrādhyāya, 43–4.
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(b) Observe the top (of the bamboo) first in the standing posture
and then again in the sitting posture. Divide each altitude by
its base. The difference of the altitudes of the eye divided by
the difference of those quotients gives the horizontal distance.
The height of the bamboo can then be determined separately
as before.284

PE =
ME −ME′

G′Q′

E′Q′ − GQ
EQ

,

AB = ME +
PE ×GQ

EQ
= ME′ +

PE ×G′Q′

E′Q′ .

Abbreviations
Ā Āryabhaṭīya MaiS Maitrāyāṇīya Saṃhitā
ĀpŚl Āpastamba Śulba MāŚl Mānava Śulba
BrSpSi Brāhmasphuṭasiddhānta MSi Mahā-siddhānta
BŚl Baudhāyana Śulba ŚBr Śatapatha Brāhmaṇa
GSS Gaṇita-sāra-saṃgraha ŚiDVṛ Śiṣyadhī-vṛddhida
KapS Kapisthala Saṃhitā SiŚe Siddhāntaśekhara
KŚl Kātyāyana Śulba SiŚi Siddhāntaśiromaṇi
KṭS Kāṭhaka Saṃhitā Triś Triśatikā
L Līlāvatī TS Tantrasaṃgraha

284SiŚi, Golādhyāya, Yantrādhyāya, 45–6.
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