
Ācārya Jayadeva, the mathematician ∗

1 Introduction

The object of the present paper is to invite attention of historians of science to
an important Hindu algebraist, Ācārya Jayadeva, who lived and wrote in the
early 11th century of the Christian era (or earlier). His name and quotations
from his work on algebra are found to occur in the Sundarī, which is the name
of Śrīmad Udayadivākara’s commentary on the Laghubhāskarīya of Bhāskara I
(629 ad). The Sundarī has not yet seen the light of day but manuscript
copies of that work are preserved in H. H. the Maharajah’s Palace Library,
Trivandrum, and in the Curator’s Office Library, Trivandrum. A transcript
copy of that work has been very recently procured for our use from the former
by the Tagore Library of the Lucknow University. The extracts from Ācārya
Jayadeva’s work, which have been quoted and explained with illustrations by
the commentator, relate to the solution of the indeterminate equation of the
second degree of the type Nx2+1 = y2. These extracts, it may be pointed out,
are of immense historical interest as they include rules giving the well known
cyclic method of finding the integral solution of the above-mentioned equation.
The credit of the first inception of that ingenious method was hitherto given
to the twelfth century mathematician Bhāskara II (1150 ad) who himself not
only did not claim originality for that method but also ascribed it to earlier
writers. The discovery of that method in an anterior work definitely proves
that the cyclic method was invented in India much earlier. Jayadeva may or
may not have been its inventor but quotations from his work in the Sundarī
are the earliest sources of our information regarding that method. Another
noteworthy feature of the references from Ācārya Jayadeva’s composition is
the solution of the equation Nx2 + C = y2, C being positive or negative.
This method, though not superior to that suggested by Brahmagupta (628
ad), Bhāskara II, and Nārāyaṇa (1356 ad), is nevertheless different from the
known methods. Incidentally we have also given Udayadivākara’s method
for the solution of the multiple equations, x + y = a square, x − y = a
square, xy + 1 = a square. This method, though inferior to those given
by Brahmagupta and Nārāyaṇa, deserves attention because of the ingenuity
displayed by the author. It also shows that Udayadivākara knew full well how
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134 Ācārya Jayadeva, the mathematician

to tackle and solve the general indeterminate equation of the second degree
of the type ax2 + bx + c = y2. Equations of that type were hitherto found
treated in the Bījagaṇita of Bhāskara II, though some of his examples relating
to such equations prove his indebtedness to ancient authors.1

2 The Sundarī

The transcript of the Sundarī, which is available to us, is written in Devanāgarī
characters on paper in foolscap size. It is scribed in good hand but there are
the usual imperfections and omissions. The manuscript is practically complete
and extends to 252 leaves written on one side only. There are 21 lines to a
page and about 24 letters to a line. The beginning and end of the Sundarī
are as follows:

Beginning

॥Ψीः॥
लघुभा࠭रࢧयʹ।

उदयࣅदवाकर΢णीतया सुڤयЂ҃या ा҃याߢ समेतʹ।
नؘा सम࠼जगतामࣉधपं मुरािर-
माचायϳमायϳभटमࣉܙभवێ भѕा ।
य٣ा࠭रेण गुϋणा Θहतۆमुнं
लһࡆ ततरЀृ࠼वࣆ तंࣆववृࣆ ेࡆवधाࣆ ॥
तΝ तावदाचायϳः ΢थममेव भा࠭रࢧयं नाम Θहकमϳࣄनबڥनं ΢ࣆतपा٦ तदवे पुनः संंܒ̶࣊
येڢ٥ҷोपशाࣉ࠼षुϳࢩचकࣉ भगवते भा࠭राय ΢णाममा߻٦ोकेनाचेࠋ—
भा࠭राय …

Colophon

इࣆत ԷोࣆतࣆषकभրΨीमϘदयࣅदवाकरࣆवरࣉचतायЀ लघुभा࠭रࢧयࣆववृतौ सुڤयЂࣉभधा-
नायЀ मڌगࣆतः ΢थमोऽڌायः।

End

एवं पुनः पुनभЂवनयानीतԷेࠌमूलेनैवाڬौ राशी त।ࣆमࣆाताࡆ

Colophon

इࣆत लघुभा࠭रࢧयࣆववृतौ सुڤयЂࣉभधानायЀ न̶ΝΠुवΘहयोगाڌायोऽࠋमः।
1See Datta, B., and Singh, A. N., History of Hindu Mathematics, Part II, p. 181.
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From the colophons at the ends of the chapters it is clear that the Sundarī is
a commentary on the Laghubhāskarīya and that the name of the commentator
is Bhaṭṭa Udayadivākara. The former conclusion is confirmed by the contents
of the work.
In the commentary there is no reference to the time of birth of the commen-

tator or of writing the commentary. But at one place in the commentary2 the
commentator cites an example where he states the ahargaṇa (i.e., the number
of days elapsed since the beginning of Kaliyuga) for Friday, the 10th lunar
date, Vaiśākha, bright fortnight, Śaka year 995. This epoch corresponds to
Friday, April 19, ad 1073. It is usual to give the ahargaṇa for the current day.
So we infer that the Sundarī was written in the year 1073 of the Christian
era.
As regards the authenticity of the Sundarī there is little doubt. Refer-

ence to that work has been made by Nīlakaṇṭha (1500 ad) who in his com-
mentary on the Āryabhaṭīya3 of Āryabhaṭa I (499 ad) mentions the name
Laghubhāskarīya-vyākhyā Sundarī and quotes two stanzas from that work.
Both of those stanzas are found to occur in the transcript of the Sundarī
available to us. Moreover, five manuscripts of that work which seems to be
derived from different sources are preserved in H. H. the Maharajah’s Palace
Library, Trivandrum4 and two in the Curator’s Office Library, Trivandrum.5

3 Reference to Ācārya Jayadeva

Reference to Ācārya Jayadeva is made in the Sundarī in connection with the
solution of the indeterminate equation of the second degree, viz.

Nx2 + 1 = y2,

which in Hindu mathematics is called by the name varga-prakṛti (square-
nature).
In verse 18 of the eighth chapter of the Laghubhāskarīya there is an astro-

nomical problem whose solution depends upon the solution of the simultane-
ous equations

8x+ 1 = y2 (1)
7y2 + 1 = z2. (2)

As regards the solution of these equations, Udayadivākara tells us that the
value of y should be determined from equation (2) by solving it by the method

2Comm. on ii. 29.
3ii. 17 (ii).
4See Descriptive Catalogue, Vol. IV, MSS. Nos. 942, 943, 944, 945, and 977.
5See Descriptive Catalogue, Vol. V, MSS. Nos. 761 and 762.
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applicable to the varga-prakṛti; and then the value of the unknown quantity x

should be determined from equation (1) by the method of inversion. In order
to give a detailed working of the process, Udayadivākara mentions Ācārya
Jayadeva and his rules. He writes:

In order to demonstrate this (working), we here set forth with
exposition and illustration the rules for the varga-prakṛti, which
were composed by Ācārya Śrī Jayadeva.6

4 Quotations from Ācārya Jayadeva’s work

Quotations from Ācārya Jayadeva’s work comprise 20 stanzas. Below we
translate and explain those stanzas.

4.1 Stanza 1. Origin of the name varga-prakṛti

इࠋकृࣆतिरࠋगु࣊णताऽभीेࠋन युता ाࠋधतेࣉवशोࣆ वा ।
वगϳࡆ यतः ΢कृࣆतवϳगϳ΢कृࣆत࠼तोऽࣉभࣅहता ॥१॥
As (in an equation of the type Nx2 ± C = y2) the square of
an optional number multiplied by a given number and then the
product increased or decreased by another given number is of the
nature of a square, so (such an equation) is called varga-prakṛti
(square-nature).

This proves the significance of the name varga-prakṛti.

4.2 Stanza 2. Technical terms explained

यࡆाभीेࠋन कृࣆतࣆवϳहڬते तࣄ׽नࠌमूलं ाͫࡆ ।
̶ेपयुताΟࣅहता٥ा मूलԷेंࠌ भवࣆत तूګलʹ ॥२॥
The number whose square is multiplied by the given number is
called the lesser root; that product having been increased or de-
creased by the interpolator (kṣepa), the square root thereof is
called the greater root.

That is to say, in the equation Nx2 ±C = y2, x is the lesser root and y the
greater root. N is called prakṛti and C the interpolator.
We will see presently that Ācārya Jayadeva calls the lesser and greater roots

by the names first root and last root also.

6तسदशϳनायाचायϳजयदवेࣆवरࣉचतवगϳ΢कृࣆतकरणसूΝा࣊ण सࣆववरणाڬाࣈल҃ेڢ।
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4.3 Stanza 3. Writing down an auxiliary equation

ईܞ࣒तराशेवϳगϸ चोࣅदतगुणकारताࣅडते ʹۅचࣉ ।
युнेन कृࣆतः (कयताࣅ) ٥युнेनࣉकयࣅ वेࣆत धयाࣉ ॥३॥
The square of an optionally chosen number having been multiplied
by the given multiplier, think out how much be added to or sub-
tracted from that product that it may become a perfect square.

That is, first choose an arbitrary number α for x. Then find out a number
k, positive or negative, such that Nα2 + k may become a perfect square, say
β2. Then

Nα2 + k = β2

is an auxiliary equation. We will see how this equation is helpful in finding a
solution of

Nx2 + 1 = y2.

4.4 Stanza 4. Bhāvanā

अशेषकरणߢाࣅप भावनाकरणं ٥धाࣉ ।
त؛मासࣆवशेषाݫЀ तु޼ातु޼तयाࣅप च ॥४॥
The process of bhāvanā, which pervades all mathematical opera-
tions (dealing with the varga-prakṛti), is twofold—samāsa-bhāvanā
and viśeṣa-bhāvanā, or tulya-bhāvanā and atulya-bhāvanā.

The word bhāvanā is a technical term. According to Udayadivākara, bhā-
vanā is multiplication.7 According to B. Datta and A. N. Singh, it means
lemma or composition. At any rate the process called bhāvanākaraṇa is a spe-
cial mathematical operation in which multiplication is inherent. The process
is described in the next two stanzas.

4.4.1 Stanza 5. Samāsa-bhāvanā

वΛाݫाससमासाͫ ΢थमं ΢थमाहࣆतः ΢कृࣆतघाताͫ ।
अۅपदाݫासयुताࣅदतरूګलं हࣆतः योःܒ̶࣊ ॥५॥
Summing up the cross products (of the first and last roots) is
obtained a (new) first root; multiplying the product of the first
roots by the prakṛti and then increasing that by the product of
the last roots is obtained a (new) last root; and the product of the
interpolators (is the corresponding new interpolator).

7Compare the term bhāvita, which is the name given to an equation of the type xy = c

(involving the product of two unknown quantities).
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That is to say, if

Nα2 + k = β2, (3)
Nα2

1 + k1 = β2
1 , (4)

then
N(αβ1 + α1β)

2 + kk1 = (Nαα1 + ββ1)
2.

Proof

The auxiliary equations (3) and (4) may be written as

Nα2 − β2 = −k,

Nα2
1 − β2

1 = −k1.

Multiplying these equations side by side, we get

N2α2α2
1 + β2β2

1 −N(α2β2
1 + α2

1β
2) = kk1,

which is the same as

N(αβ1 + α1β)
2 + kk1 = (Nαα1 + ββ1)

2.

Actual working explained

Using 4.3 (ed. i.e. Section 4.3) we write down two auxiliary equations, say

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 .

Now we set down the prakṛti and then the lesser roots, the greater roots,
and the interpolators corresponding to the two auxiliary equations one under
the other as follows:

Prakṛti Lesser root Greater root Interpolator
N α β k

α1 β1 k1

Now we find out the cross products of the lesser and greater roots and put
down their sum underneath the lesser root. Thereafter we obtain the products
of the prakṛti and the lesser roots and of the greater roots and put down their
sum underneath the greater root. And then we write down the product of the
interpolators underneath the interpolator. Thus, we get

Prakṛti Lesser root Greater root Interpolator
N α β k

α1 β1 k1
αβ1 + α1β Nαα1 + ββ1 kk1
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In this way we obtain another auxiliary equation, viz.

N(αβ1 + α1β)
2 + kk1 = (Nαα1 + ββ1)

2.

Repeating the above process over and over again, any number of auxiliary
equations can be found out.

Note

The above process is called samāsa-bhāvanā. Also since the operation has
been made on two different auxiliary equations, this may be called atulya-
bhāvanā (or atulya-samāsa-bhāvanā). If everywhere in the above process, α1

be replaced by α, β1 by β, and k1 by k, the above process will be called
tulya-bhāvanā.

The result of tulya-samāsa-bhāvanā may be stated as follows:

If Nα2 + k = β2,

then N(2αβ)2 + k2 = (Nα2 + β2)2.

Thus we see that the tulya-bhāvanā is a particular case of the atulya-bhāvanā.

4.4.2 Stanza 6. Viśeṣa-bhāvanā

वΛाݫासࣆवशेषादाࣅदममा٦ाहࣆतः ΢कृࣆतघाताͫ ।
अۅपदाݫासेन च ंۅलमूګषताࣆवशेࣆ ाͫࡆ ॥६॥
Taking the difference of the cross products (of the first and the
last roots), we get a (fresh) first root; multiplying the product of
the first roots by the prakṛti and then taking the difference of that
and the product of the last roots, we get a (fresh) last root. (The
corresponding interpolator is the product of the interpolators).

That is to say, if

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 ,

then
N(αβ1 − α1β)

2 + kk1 = (Nαα1 − ββ1)
2.

The proof and working are as in the previous case.
The rules stated in stanzas 5 and 6 are known as Brahmagupta’s lemmas.

They occur for the first time in the Brāhmasphuṭasiddhānta of Brahmagupta.
In Europe they were rediscovered by Euler in 1764 and by Lagrange in 1768.
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4.5 Stanza 7. Rational solution of Nx2 + 1 = y2

΢̶ेपकसंवगЇ वगϳ߱ेदࡆ वगϳमूलेन ।
मूले भाԷे त٣ावने च όपं भवेͫ ̶ेपः ॥७॥
When (in the above process) the product of the interpolators be-
comes a perfect square, by the square root thereof divide the
(lesser and greater) roots: then they correspond to the interpo-
lator unity and so they continue to be even when the process of
the (tulya)bhāvanā is applied thereafter.

From what has been said above, if

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 ,

then
N(αβ1 + α1β)

2 + kk1 = (Nαα1 + ββ1)
2.

If kk1 = K2, then

N(αβ1 + α1β)
2 +K2 = (Nαα1 + ββ1)

2,

i.e., N

(
αβ1 + α1β

K

)2

+ 1 =

(
Nαα1 + ββ1

K

)2

.

In other words, if

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 ,

and kk1 = K2, then

x =
(αβ1 + α1β)

K
,

y =
(Nαα1 + ββ1)

K

is a solution of Nx2 + 1 = y2. In particular, if

Nα2 + k = β2,

then

x =
2αβ

k
,

y =
(Nα2 + β2)

k
,

is a solution of Nx2 + 1 = y2.
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Illustration

Solve 7x2 + 1 = y2.
Let the auxiliary equation be

7(1)2 + 2 = 32.

Then applying the process of tulya-bhāvanā, we have

Prakṛti Lesser root Greater root Interpolator
7 1 3 2

1 3 2
6 16 4

Thus

7(6)2 + 4 = 162,

or 7(3)2 + 1 = 82.

Hence x = 3, y = 8 is a solution of the given equation. To get another solution,
we treat the equation

7(3)2 + 1 = 82

as the auxiliary equation. Then applying the process of tulya-bhāvanā, we
have

7 3 8 1
3 8 1
48 127 1

Hence x = 48, y = 127 is another solution of the same equation. To obtain
still another solution, we treat the equations

7(3)2 + 1 = 82,

7(48)2 + 1 = 1272,

as auxiliary equations. Then applying samāsa-bhāvanā, we have

7 3 8 1
48 127 1
765 2024 1

Hence x = 765, y = 2024 is another solution of the same equation. Proceeding
like this, we can get any number of solutions.
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4.6 Stanzas 8–15. Integral solution of Nx2 + 1 = y2. The Cakravāla
or the Cyclic Method

ΪࡈԷेे̶ࠌपाͯ ΢ࣆतराߺ ̶ेपभнयोः ̶ेपाͫ ।
कुրाकारे च कृते कयٚणुंࣅ ̶ेपकं ाܣ̶࣊ ॥८॥
तावृ׽तेः ΢कृؖा हीने ΢̶ेपकेण संभнे।
ःܒࣆतरावा޷ࡈ लतोऽपरःࣈदؖाकࣅाࡆ ̶ेपः ॥९॥
΢ܒ̶࣊΢̶ेपककुրाकारे कࣄनࠌमूलहते ।
सԷेࠌपदे ΢̶ेप(के)ण लंݎ कࣄनࠌपदʹ ॥१०॥
ʹमूलहतࠌनࣄ׽ाࡅ،णता࣊पककुրागुे̶ܒ̶࣊ ।
पा߱ाؖं ΢̶ेपं ڌवशोࣆ शेषं महूګलʹ ॥११॥
कुयЂͫ कुրाकारं पुनरनयोः ̶ेपभнयोः पदयोः ।
तࠋे؛हत̶ेपे सϊशगुणेऽͯࡅ࣒ ΢कृࣆतहीने ॥१२॥
΢̶ेपः ̶ेपाेܒ ΢े̶ܒ̶࣊पकाԎ गुणकाराͫ ।
अ޷ҷाͫ सԷेࠌाͫ ̶ेपावांܒ कࣄनࠌपदʹ ॥१३॥
एत࣓े̶ܒآपककुրकघातादनڢर̶ेपʹ ।
हतं޷हؘाࣅ शेषं Էेंࠌ ते߱ݫ गुणकाࣅद ॥१४॥
कुयЂ،ाव٦ावͫ षסामेक٥ࣉचतुणЃ पतࣆत ।
इࣆत चΖवालकरणेऽवसर΢ाܒाࣄन योԷाࣄन ॥१५॥
Set down the lesser root, the greater root, and the interpolator at
two places. (At one place divide the lesser and greater roots by
the interpolator. Treating the remainder of the lesser root as the
dividend, the remainder of the greater root as the addend, and
the interpolator as the divisor of an indeterminate equation of the
first degree (kuṭṭākāra), solve that equation.) The kuṭṭākāra8 hav-
ing been (thus) determined from those (lesser and greater roots)
divided out by the interpolator and the interpolator, ascertain how
many times the interpolator be added to it so that the square of
that sum being diminished by the prakṛti and then divided by the
interpolator may yield the least value. The least value thus ob-
tained is the new interpolator. The kuṭṭākāra as increased by (the
chosen multiple of) the interpolator when multiplied by the lesser
root, then increased by the greater root, and then divided by the
interpolator, the quotient is the new lesser root. That (new lesser
root) should be multiplied by the kuṭṭākāra as increased by (the
chosen multiple of) the interpolator and from the product should
be subtracted the new interpolator as multiplied by the lesser root;
the remainder (thus obtained) is the new greater root.

From these (new lesser and greater) roots divided out by the

8In the indeterminate equation of the first degree (ax+c)
b

= y, a is called the dividend, b
the divisor, c the addend, and x the kuṭṭākāra.
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(new) interpolator again find out the kuṭṭākāra (as before). In-
crease it by the proper multiple of the interpolator: the square
of that (sum) being diminished by the prakṛti and then divided
by the interpolator, the quotient is the (fresh) interpolator. The
kuṭṭākāra (guṇakāra) increased by the chosen multiple of the inter-
polator being multiplied by the lesser root and increased by the
greater root and then divided by the interpolator, the quotient
is the fresh lesser root. This (fresh lesser root) being multiplied
by the kuṭṭākāra, to which the chosen multiple of the interpolator
has been added, and the product being diminished by the product
of the fresh interpolator and the lesser root, the remainder is the
fresh greater root.

From them again calculate the kuṭṭākāra etc. and continue the
process till the interpolator comes out to be one of the six numbers
±1, ±2, and ±4.

(One of these numbers having been obtained as the interpolator) in
the (above) cyclic process (cakravāla), necessary operations should
be made (to get the integral solution for unit interpolator).

Lemma of the Cyclic Method

The above method is based on the following lemma:

If Nα2 + k = b2,

where a, b, k are integers, k being positive or negative, then

N

(
at+ b

k

)2

+
t2 −N

k
=

[
t

(
at+ b

k

)
− a

(
t2 −N

k

)]2
.

Proof

Treating

Nα2 + k = b2,

and N(1)2 + (t2 −N) = t2,

as auxiliary equations, and applying the process of samāsa-bhāvanā, we have

N a b k

1 t t2 −N

at+ b Na+ bt k(t2 −N)
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Therefore,

N(at+ b)2 + k(t2 −N) = (Na+ bt)2

or N

(
at+ b

k

)2

+
t2 −N

k
=

(
Na+ bt

k

)2

,

which is the same as

N

(
at+ b

k

)2

+
t2 −N

k
=

[
t

(
at+ b

k

)
− a

(
t2 −N

k

)]2
.

The Cyclic Process explained

Suppose that an auxiliary equation is

Na2 + k = b2,

where a, b, and k are integers, k being positive or negative. Then, from the
above lemma,

N

(
at+ b

k

)2

+
t2 −N

k
=

[
t

(
at+ b

k

)
− a

(
t2 −N

k

)]2
. (5)

Now we choose t such that at+b
k is a whole number, and

∣∣∣ (t2−N)
k

∣∣∣ is as small
as possible. Let that value be T . Then let

a1 =
aT + b

k
,

b1 = T

(
aT + b

k

)
− a

(
T 2 −N

k

)
,

k1 =
T 2 −N

k
.

The numbers a1, b1, k1 are all integral.9 The equation (5) then becomes

Na21 + k1 = b21. (6)
9From the form of b1 it is clear that it will be an integer provided a1 and k1 are integers.
But a1 is an integer by assumption. So we have only to show that k1 is an integer. Now
if we eliminate b between

a1 =
aT + b

k
, and b1 =

bT +Na

k
,

we get
k

a
(a1T − b1) = T 2 −N.

Since the right side is integral, therefore the left side is also so. But k and a are prime to
each other. Therefore, a1T − b1 must be perfectly divisible by a. Hence

a1T − b1

a
=

T 2 −N

k
= k1 = an integer.
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Now treating this as the auxiliary equation, and proceeding as above, we
derive from (6) a new equation of the same kind

Na22 + k2 = b22,

where again a2, b2, k2 are whole numbers. Successive repetition of this process
would, according to Ācārya Jayadeva, lead us to an equation in which the
interpolator k is ±1, ±2, ±4, and in which a, b are integers. And by the
process of samāsa-bhāvanā such an equation easily leads us to an equation of
the type

Nα2 + 1 = β2,

where α, β are integers.10 Thus we get x = α, y = β as an integral solution
of Nx2 + 1 = y2.

Illustration

Find an integral solution of 7x2 + 1 = y2.

Let the auxiliary equation be

7(1)2 − 3 = 22.

The process of tulya-bhāvanā does not lead to an integral solution. So we
apply the Cyclic Process.
From the auxiliary equation

lesser root = 1,

greater root = 2,

interpolator = −3.

Therefore solving the equation
(t+ 2)

−3
= a whole number,

we get t = −3λ + 1. Putting λ = 0, we get t = 1 which gives to
∣∣∣ (t2−7)

−3

∣∣∣ the
smallest value 2. Therefore,

new interpolator = 2,

new lesser root = −1,

new greater root = −3.

Since the new interpolator is 2, therefore the cyclic process stops here. Ap-
plying the tulya-bhāvanā, we have
10This fact was known to Brahmagupta. For details see Datta, B., Singh, A. N., History

of Hindu Mathematics, Part II, pp. 157 ff.
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7 -1 -3 2
-1 -3 2
6 16 4

or 3 8 1

Hence one integral solution of the given equation is

x = 3, y = 8.

4.7 Stanzas 16–20. Solution of Nx2 + C = y2, C being positive or
negative

΢कृतौ तावٟ٦ाͭ यावࣆत वगЇ भवेͫ ̶ेपाͫ ।
तावͭ वगϳः शोڌो यथाकृतयथोнयोरनयोः ॥१६॥
Ѐݫपशोधनाे̶ࡈ वΛाहࣆतयोगतोऽࣅप वगϳः ाͫࡆ ।
एवं मूलं कुयЂͫ स̶ेप΢कृࣆतमूलेन ॥१७॥
शोधनमूलगुणेनोनाࣉधकता तत߱ शेषाݫाʹ ।
΢कृࣆत̶ेपेणाेܒ मूले लघुनी भवेतЀ ٥े ॥१८॥
संयुࣆतगुणमूलहते ΢ࣆतरा࣊श तयो࠼योः पेϝने̶࣊ ।
̶ेपकशोधनमूलं धकतःࣉवशोधयेदࣆ Ζमशः ॥१९॥
मूले महती ातामतोࡆ महीयЀसमायोԷʹ ।
΢कࣅटतमࣆतगहनࣆमदं मϋࣆतमुखे म̶࣊काकरणʹ ॥२०॥
Add such a number to the prakṛti as makes the sum a perfect
square. Then from the interpolator subtract a square number
which is chosen in such a way that when the prakṛti and the inter-
polator, as obtained after the said addition and subtraction or as
they are stated, are cross multiplied by the additive and the sub-
tractive quantities, the sum of the cross products is again a square
number. Then extract the square root of that (square number).
Then by the product of the square root of the increased prakṛti
and the square root of the subtractive (square number) (severally)
decrease and increase that square root. The two numbers (thus ob-
tained) being divided by the number added to the prakṛti become
the two lesser roots. Set them down at two places and multiply
both of them by the square-root of the increased prakṛti. Then
respectively add the square-root of the number subtracted from
the interpolator to the lesser one and subtract the same from the
greater one. Then they become the two greater roots. A large
number of lesser and greater roots may then be determined.

Thus we have revealed a determination which is as difficult as
setting a fly against the wind.
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Exposition

In order to solve the equation Nx2 + C = y2, choose a number a such that
N + a may become a perfect square. Then choose a number b such that the
sum of the cross products of

N + a c− b2 N c

or
a b2 a b2

i.e., (N + a)b2+(c− b2)a or Nb2+Ca also may become a perfect square. Let

N + a = P 2,

and Nb2 + Ca = Q2.

Then according to the rule the two lesser roots are

(Q− Pb)

a
and (Q+ Pb)

a
;

and the corresponding greater roots are

P (Q− Pb)

a
+ b and P (Q+ Pb)

a
− b.

That is to say, the two solutions of Nx2 + C = y2 are

x =
(Q− Pb)

a

y =
P (Q− Pb)

a
+ b

 ,
x =

(Q+ Pb)

a

y =
P (Q+ Pb)

a
− b

 .

Rationale

Let N + a be equal to P 2. Then

Nx2 + C ≡ (N + a)x2 + (C − b2 − ax2) + b2

≡ (Px)2 + (C − b2 − ax2) + b2. (7)

Therefore, let
Nx2 + C = (Px± b)2. (8)

Then from (7) and (8), we have

(Px± b)2 = (Px)2 + (C − b2 − ax2) + b2

or ax2 ± 2Pbx = (C − b2)

or (ax)2 ± 2Pbax = a(C − b2).



148 Ācārya Jayadeva, the mathematician

Adding (Pb)2 to both the sides, we have

(ax± Pb)2 = a(C − b2) + (Pb)2

= a(C − b2) + (N + a)b2

= Nb2 + Ca

= Q2, say.
∴ ax± Pb = Q

or x =
(Q− Pb)

a
or (Q+ Pb)

a
.

Consequently,

y = Px+ b or Px− b respectively

=
P (Q− Pb)

a
+ b or P (Q+ Pb)

a
− b.

Hence the rule.

Alternative rationale

Let

N(1)2 + a = P 2,

N(b)2 + Ca = Q2.

Now treating these as auxiliary equations and applying the process of
samāsa-bhāvanā, we have

N 1 P a

b Q Ca

Q+ Pb Nb+ PQ Ca2

or
(
Q+ Pb

a

) (
Nb+ PQ

a

)
C

Therefore, one solution of Nx2 + C = y2 is

x =
Q+ Pb

a

y =
(Nb+ PQ)

a
i.e., P (Q+ Pb)

a
− b,

Similarly, applying the process of viśeṣa-bhāvanā, we get

x =
(Q− Pb)

a
,

y =
P (Q− Pb)

a
+ b,

as another solution of the same equation.
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Illustration

If you know (the method for solving) the vargaprakṛti, say what
is that number whose square being multiplied by 60 and then
increased by 8 times 20 is again a perfect square.

Here we have to solve the equation

60x2 + 160 = y2.

Obviously, a is 4, so that P = 8. Now b is to be chosen in such a way that
Nb2 + Ca i.e., 60b2 + 640 may be a perfect square. By trial, we get b = 4, so
that Q = 40.
Hence two solutions of the above equation are

x = 2, y = 20; x = 18, y = 140.

To get another solution, we may proceed as follows. Taking

60(18)2 + 160 = 1402

as an auxiliary equation and applying the process of samāsa-bhāvanā, we have

60 18 140 160
18 140 160

5040 39040 25600
or 63

2 244 1

Now taking

60(18)2 + 160 = 1402, and 60

(
63

2

)2

+ 1 = 2442

as auxiliary equations, and applying the process of samāsa-bhāvanā we have

60 18 140 160
63/2 244 1
8802 68180 160

Therefore, x = 8802, y = 68180 is another solution of the same equation.
Similarly, any number of solutions may be written down.
N. B.—The solution x = 18, y = 140 may also be derived from x = 2,

y = 20 in the same way as x = 8802, y = 68180 has been derived from x = 18,
y = 140.
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5 Udayadivākara’s procedure for solving the multiple
equations

x+ y = a perfect square,
x− y = a perfect square,
xy + 1 = a perfect square.

[Udayadivākara works out these equations because their solution is required
in a problem set in the Laghubhāskarīya (viii. 17). His method does not give
the general solution of the problem but it certainly throws light on the tech-
nique employed by early Hindu astronomers in solving algebraical equations.
Udayadivākara’s method under consideration deserves mention here because
it is based on a previous rule of Ācārya Jayadeva.]
To begin with, Udayadivākara assumes that

xy + 1 = (2y + 1)2,

so that he gets
x = 4y + 4.

Thus
x− y = 3y + 4.

Udayadivākara, now assumes that

3y + 4 = (3z + 2)2.

Thus he gets

y = 3z2 + 4z,

making x = 12z2 + 16z + 4.

Therefore,
x+ y = 15z2 + 20z + 4.

To make x+ y a perfect square, Udayadivākara puts

15z2 + 20z + 4 = u2

which, after multiplication and transposition, he writes as

900z2 + 1200z + 400 = 60u2 + 160

or (30z + 20)2 = 60u2 + 160.
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This equation can be written as a pair of equations

60u2 + 160 = λ2, (9)
30z + 20 = λ. (10)

Udayadivākara solves equation (9) in the same way as we have solved it under
Section 4.7 above. He gets the solutions

u = 2, λ = 20

u = 18, λ = 140

u = 8802, λ = 68180.

Making use of the values λ = 140 and λ = 68180, he gets z = 4, and
z = 2272. Likewise he obtains

x = 64, y = 260

x = 15495040, y = 61980164

as two solutions of the proposed multiple equations.

6 Conclusion

The most interesting feature of the stanzas discussed above is the cyclic
method of finding the integral solution of the equation Nx2 + 1 = y2. That
method has been called cakravāla and is the same as given by Bhāskara II11

and Nārāyaṇa12 (1356). As regards the cyclic method, H. Hankel has re-
marked:

It is above all praise; it is certainly the finest thing which was
achieved in the theory of numbers before Lagrange.13

As already mentioned the cyclic method was hitherto found to occur for the
first time in the Bījagaṇita of Bhāskara II, so the credit of that method was
attributed to him. But Bhāskara II ascribed the name cakravāla to previous
writers14 which shows that the cyclic method was not actually devised by
him. The discovery of that method in a work written about a century earlier
confirms his admissions and takes away the credit of that method from him.
But who is to be given the credit of that method? In this connection we must
quote the following stanza which occurs at the end of Bhāskara II’s Bījagaṇita.
11Cf. Bījagaṇita, cakravāla, 1–4.
12Cf. Gaṇitakaumudī, vargaprakṛti, 8–11; Bījagaṇita, I, Rule 79–82.
13Cf. Zur Geschichte der Math. in Altertum und Mittelalter, Leipzig, 1874, pp. 203–204.
14The original text is “चΖवालࣆमदं जगुः”. The commentator Kṛṣṇa explains: “अाचायЂ एतٚ࣊णतं
चΖवालࣆमࣆत जगुः” i.e., “the learned professors call this method of calculation the cakravāla”.
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As the works on algebra of Brahmagupta, Śrīdhara, and Pad-
manābha are very extensive, so for the satisfaction of the students
I have taken the essence of those works and compiled this small
work with demonstrations.

This stanza shows that the Bījagaṇita of Bhāskara II was drawn mostly
from the works on algebra of Brahmagupta, Śrīdhara, and Padmanābha. The
cyclic method does not occur in the works of Brahmagupta: it is likely that
the work of Śrīdhara or Padmanābha or both contained that method.15 There
is no doubt that Bhāskara II got that method from some earlier work. If that
was Jayadeva’s work, Bhāskara II must have mentioned his name along with
the other names mentioned by him. But he has not made even a single refer-
ence to Jayadeva. At the same time it cannot be said definitely whether the
algebraical works of Śrīdhara and Padmanābha contained the cyclic method.
In fact, we have absolutely no information about them. It is simply by chance
that we have come across the name of and quotations from Ācārya Jayadeva
who is otherwise unknown to us. Under these circumstances the question
of this invention cannot be decided until we receive some more light in this
direction.

15P. C. Sengupta (1944) expressed the hope
that further researches may show that this achievement is to be ascribed to
Padmanābha, if his work be ever brought to light.

See the Presidential Address delivered by him at the Technical Sciences Section of the
Twelfth All India Oriental Conference held at Banaras, 1944. I fail to understand why
Sri Sengupta has shown special favour to Padmanābha against Śrīdhara whose claims are
equally good if not greater.
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