
On Śrīdhara’s rational solution of Nx2 + 1 = y2 ∗

1 Introduction

Śrīdhara is remembered as one of the greatest Hindu Mathematicians.1 Un-
fortunately there is no definite evidence to show when and where he lived.
Even his works are not all available. His very extensive (ativistṛta) treatise on
algebra, which has been mentioned and quoted by the celebrated astronomer-
mathematician Bhāskara II2 (1150), is known only by name. Probably it is
lost. Of his two works on arithmetic, known to us, the smaller one, known as
Pāṭīgaṇitasāra, was edited by Sudhakara Dvivedi (1899) and published under
the title of Triśatikā.3 An English translation, with notes and introduction,
of the rules occurring in this work has also appeared in the Bibliotheca Math-
ematica4 under the joint authorship of N Ramanujacharia and G. R. Kaye.
The bigger work on arithmetic, known as Śrīdhara’s Pāṭīgaṇita, has not yet
appeared in print. This work has been called Navaśatī and has been quoted by
Makkibhaṭṭa in his commentary on the Siddhāntaśekhara of Śrīpati5 (1039).
An incomplete MS of this work is preserved in the Raghunatha Temple Library
of His Highness the Maharaja of Jammu and Kashmir. It is a copy of an older
MS, is written in modern Kashmīrī script and extends to 157 leaves with 9
lines to a page and about 44 letters to a line. Starting from the very begin-
ning, it runs up to about the middle of the kṣetra-vyavahāra and is furnished
with a commentary. The name of the commentator does not occur anywhere

* K. S. Shukla, Ganita, Vol. 1, No. 2 (1950), pp. 53–64.
1The following stanza, which occurs with the colophon at the end of Śrīdhara’s Pāṭīgaṇita-
sāra in certain manuscripts, gives an idea of the highest position which Śrīdhara occupied
in his time as a mathematician:

उ रतः सुर नलयं द णतो मलयपवतं याव ।
ागपरोद धम े नो गणकः ीधराद ः ॥

Up to the abode of the gods (i.e., the Himālayas) towards the north and up
to the Malaya mountains towards the south and between the eastern and
the western oceans, there is no mathematician (worth the name) except
Śrīdhara.

2Cf. Bhāskara II’s Bījagaṇita, conclusion. Also see madhyamāharaṇa, 1–3 (comm.).
3Triśatikā or Triśatī is another name of Śrīdhara’s Pāṭīgaṇitasāra.
4Vol. XIII (1912–13), p. 203–217.
5Cf. Siddhāntaśekhara, i. 26 (comm.).
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in the MS. A transcript copy of this, in Devanāgarī characters, exists in the
Lucknow University Library.
This MS contains a rule for the rational solution of the equation

Nx2 + 1 = y2,

based on the rational solution of the equation x2 + y2 = z2 and is fundamen-
tally different from those given by Brahmagupta (628), Śrīpati (1039), and
other Hindu mathematicians. The object of the present paper is to explain
and illustrate Śrīdhara’s method of obtaining this rule and to give analogous
rules for the rational solution of certain other equations of a similar nature.

2 Śrīdhara’s lemma

Śrīdhara starts with a lemma stating how to construct a rational rectangle
(or right triangle). It runs:

भुज कृ तिर भ ोने ेन त ल ।
को टिर ा धका कण तुर ायत ते ॥6

The square of the base (bhuja), chosen at pleasure, when divided
and diminished by an arbitrary number and then halved gives the
perpendicular (koṭi), and that increased by the (same) arbitrary
number gives the hypotenuse (karṇa)—all of them of a rectangle.7

That is, if a number b be chosen for the base and ε for the arbitrary number,
then there corresponds a rectangle of base b having the rational numbers

1

2

{
b2

ε
− ε

}
and 1

2

{
b2

ε
− ε

}
+ ε

for its perpendicular and hypotenuse (or diagonal) respectively.
For example, choose 3 for the base and 1 for the arbitrary number. Then

there corresponds a rectangle whose base is 3, perpendicular 1
2

{
32

1 − 1
}

i.e.,
4, and hypotenuse 5. Similarly, choosing 10 for the base and 2 for the arbitrary
number, we obtain a rectangle whose base is 10, perpendicular 1

2

{
102

2 − 2
}

i.e., 24, and hypotenuse 26; and so on.
6Pāṭīgaṇita, kṣetra-vyavahāra.
7This rule occurs elsewhere also. For example, see Brāhmasphuṭasiddhānta xii. 35;
Siddhāntaśekhara, xiii. 41; Gaṇitasārasaṅgraha, vii. 97 1

2
; Līlāvatī, kṣetra-vyavahāra, rule

5. The text of the above passage closely resembles that of the Brāhmasphuṭasiddhānta,
xii. 35.
The rationale of this is as follows: Let b, k, and h be the base, perpendicular, and

hypotenuse of a rectangle. Then
b2 = h2 − k2 = (h− k)(h+ k).

Let h− k = ε. Then k = 1
2

{
b2

ε
− ε

}
and h = 1

2

{
b2

ε
− ε

}
+ ε.
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3 The equation Nx2 + 1 = y2

This equation has been called vargaprakṛti (square-nature) by Hindu mathe-
maticians. The number N is called prakṛti or guṇaka (i.e., the co-efficient or
multiplier of the square); x is called ādyapada (i.e., the first root) or kaniṣṭha-
pada (i.e., the lesser root); y is called anyapada (i.e., the other root) or jyeṣṭha-
pada (i.e., the greater root); and the absolute term 1 is called kṣepa (additive)
or śodhya (subtractive) according as it is positive or negative.

4 Rational solution of Nx2 + 1 = y2

For the rational solution of Nx2 + 1 = y2, Śrīdhara gives the following rule,
making use of the above lemma:8

गुणके वगयोम े त दाधो भुज ुती ।
के च ा थते त व केणाहती तयोः ॥
अ र कृ तः ेपः त ो टः थमं पद ।
ऋजुह रं े ं प ेपेऽ रो तृे ॥ 9

The multiplier (guṇaka) having been expressed as a difference of
two squares (set down their square-roots in the ascending order of
magnitude and) below those square-roots set down any (set of the)
base and hypotenuse stated there (in the lemma) before. Then ob-
tain their cross-products. The square of the difference between
those (cross-products) gives the additive (kṣepa); the perpendicu-
lar of that (above set) denotes the first square-root (corresponding
to that additive) and the difference between their direct (vertical)
products denotes the greater square-root. When these (first and
greater square-roots) are divided by the difference (between the
above cross-products), they correspond to the additive unity.

Let the multiplier N be expressed as the difference A2−B2 (A > B) of two
squares10 and let the base, perpendicular, and hypotenuse determined from
the above lemma be b, k, and h respectively. Then setting down B and A in
the ascending order of magnitude, we have

B A

8In fact, he gives this rule as an application of the above lemma.
9Pāṭīgaṇita, l. c.

10Making use of Śrīdhara’s lemma, N can always be expressed as{
1

2

(
N

c
+ c

)}2

−
{
1

2

(
N

c
− c

)}2

.
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and below them writing down the base b and the hypotenuse h respectively,
we have

B A

b h

Multiplying them across, we obtain

Bh and Ab;

and multiplying them directly, we have

Bb and Ah.

The square of the difference between the cross-products i.e., (Bh ∼ Ab)2,
then, denotes the so called additive (kṣepa); and the perpendicular k and the
difference Ah − Bb of the direct products respectively denote the first and
greater roots corresponding to that additive. These first and greater roots
when divided by the difference (Bh ∼ Ab) of the cross-products give the
corresponding quantities for additive unity.
In other words, Śrīdhara’s rule amounts to saying that if

A2 −B2 = N (1)

and
h2 − b2 = k2 (2)

then
Nk2 + (Bh ∼ Ab)2 = (Ah−Bb)2, 11

whence

N

{
k

Bh ∼ Ab

}2

+ 1 =

{
Ah−Bb

Bh ∼ Ab

}2

.

That is

x =
k

Bh ∼ Ab
, y =

Ah−Bb

Bh ∼ Ab

is the rational solution of
Nx2 + 1 = y2.

11This result is easily obtained by multiplying (1) and (2) side by side and bringing the
resulting product to the requisite form.
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4.1 Illustration

The following example will illustrate the above rule.

Example What is that number whose square-root when multiplied by 55 and
then increased by 1 becomes capable of yielding a square-root?

The resulting equation is

55x2 + 1 = y2.

One solution

We have

82 − 32 = 55,

and 52 − 32 = 42.

Therefore, setting down 3 and 8 and below them 3 and 5 respectively, we
have12

3 8

3 5

The difference between the cross-products is 9, the perpendicular is 4, and
the difference between the direct products is 31. Therefore,

55(4)2 + (9)2 = (31)2,

whence 55

(
4

9

)2

+ 1 =

(
31

9

)2

.

Hence x = 4
9 , y = 31

9 is a rational solution of the above equation. Thus the
required number is 4

9 .

Another solution

Again we have

82 − 32 = 55,

and 102 − 82 = 62.

Therefore, setting down 3 and 8 and below them 8 and 10 respectively, we
have

3 8

8 10

12The Hindu way of writing is 3 8
3 5
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The difference between the cross-products is 34, the perpendicular is 6, and
difference between the direct products is 56. Therefore,

55(6)2 + (34)2 = (56)2,

or 55

(
6

34

)2

+ 1 =

(
56

34

)2

.

Hence x = 3
17 , y = 28

17 is another rational solution of the above equation. This
gives the required number to be 3

17 .

Other solutions

Other rational solutions of the same equation will be obtained by altering the
sides of the rational right triangle for every new solution.

5 Another form of rational solution of Nx2 + 1 = y2

It will be easily seen that when

A2 −B2 = N

and h2 − b2 = k2,

then Nk2 + (Bh
+∼ Ab)2 = (Ah±Bb)2

or N

{
k

Bh
+∼ Ab

}2

+ 1 =

{
Ah±Bb

Bh
+∼ Ab

}2

.

That is, both

x =
k

Bh+Ab

y =
Ah+Bb

Bh+Ab

 and
x =

k

Bh ∼ Ab

y =
Ah−Bb

Bh ∼ Ab


are the rational solutions of Nx2 + 1 = y2.

In the foregoing rule, Śrīdhara gives the solution in the latter form.
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5.1 Other forms

Putting

k =
1

2

{
b2

ε
− ε

}
,

h =
1

2

{
b2

ε
+ ε

}
,

B =
1

2

{
N

c
− c

}
,

and A =
1

2

{
N

c
+ c

}
,

Śrīdhara’s solution may be stated as

x =
2c(b2 − ε2)

N(b− ε)2 ∼ c2(b+ ε)2

y =
N(b− ϵ)2 + c2(b+ ε)2

N(b− ε)2 ∼ c2(b+ ε)2

where b, ε, and c are any numbers.
This may be set in the form

x =
4pq

4p2N ∼ q2

y =
4p2N + q2

4p2N ∼ q2

in which it was discovered in Europe by John Wallis13 (1657).
Further, putting q

2p = r, this may be written as

x =
2r

N ∼ r2

y =
N + r2

N ∼ r2

in which form it was given by Śrīpati14 (1039), Bhāskara II15 (1150), Nārā-
yaṇa16 (1356), Jñānarāja, and Kamalākara17 (1658), and in Europe by W.
Brouncker18 (1657).
13Cf. Oeuvres de Fermat, III, (1896), Lettre ix; John Wallis A Kenelm Digby, p. 417 ff.
Also Cf. Dickson, L. E., History of the Theory of Numbers, II, p. 351.

14Cf. Siddhāntaśekhara, xiv. 33.
15Cf. His Bījagaṇita, vargaprakṛti, rule 6.
16Cf. His Bījagaṇita, I, rule 77 f.
17Cf. His Siddhāntatattvaviveka, xiii. 216.
18Cf. Oeuvres de Fermat, III, (1896), Lettre ix; John Wallis A Kenelm Digby, p. 417 ff.
Also Cf. Dickson, L. E.,History of the Theory of Numbers, II, p. 351.
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6 Rational solution of other equations

Śrīdhara has given simply the rational solution of Nx2 + 1 = y2. But the
method used by him can be easily applied to the determination of the rational
solutions of Nx2 − 1 = y2, 1−Nx2 = y2, or the general forms Nx2 ±C = y2

and C −Nx2 = y2. In what follows, we propose to give the rational solutions
of these equations in accordance with his method.

6.1 Rational solution of Nx2 − 1 = y2

In this case the rule may be stated as follows:
Rule—Express the multiplier (N) as a sum of two squares.19 Set down

the square-roots of those squares and underneath them the base and the per-
pendicular of any rectangle (determined form the lemma). Multiplying them
across and directly, obtain the sum and the difference of the cross-products
and of the direct products. Then corresponding to the square of the sum
(or difference) of the cross-products as the subtractive, the hypotenuse of the
rectangle (chosen above) is the first square-root and the difference (or sum) of
the direct products is the other square-root; and corresponding to the square
of the sum (or difference) of the direct products as the subtractive, the hy-
potenuse of the rectangle is the first square-root and the difference (or sum) of
the cross-products is the other square-root. These first and other square-roots
when divided by the square-roots of the corresponding subtractives give the
first and other square-roots for the subtractive unity.
In other words, if

A2 +B2 = N

and b2 + k2 = h2,

then Nh2 − (Ak
+∼ Bb)2 = (Ab +̃ Bk)2

and Nh2 − (Ab
+∼ Bk)2 = (Ak +̃ Bb)2.

Or,

N

{
h

Ak
+∼ Bb

}2

− 1 =

{
Ab +̃ Bk

Ak
+∼ Bb

}2

and N

{
h

Ab
+∼ Bk

}2

− 1 =

{
Ak +̃ Bb

Ab
+∼ Bk

}2

.

19“When unity is the subtractive the solution of the problem is impossible unless the mul-
tiplier is the sum of two squares.” (Bhāskara II).
“In the case of unity as the subtractive the multiplier must be the sum of two squares.

Otherwise, the solution is impossible.” (Nārāyaṇa).
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That is,

x =
h

Ak +Bb

y =
Ab ∼ Bk

Ak +Bb

 ,
x =

h

Ak ∼ Bb

y =
Ab+Bk

Ak ∼ Bb

 ,
x =

h

Ab+Bk

y =
Ak ∼ Bb

Ab+Bk

 , and
x =

h

Ab ∼ Bk

y =
Ak +Bb

Ab ∼ Bk


are the rational solutions of Nx2 − 1 = y2.

6.1.1 A particular solution

Choosing 1 for the base (b) and also 1 for the arbitrary number (ε) and
applying Śrīdhara’s lemma, we have

b = 1, k = 0, and h = 1.

Substituting these values of b, k, and h in the above rational solutions of
Nx2 − 1 = y2, we obtain

x =
1

B

y =
A

B

 and
x =

1

A

y =
B

A


as the particular rational solutions of Nx2 − 1 = y2.
These particular solutions were mentioned by Bhāskara II20 (1150).

6.2 Rational solution of 1−Nx2 = y2

In this case the rule may be stated as follows:
Rule—Express the multiplier (N) as a difference of two squares. Set down

the square roots of those squares in the descending order of magnitude and
below those square-roots set down the base and hypotenuse of any rectangle
(determined from the lemma), in order. Next obtain the cross-products and
the direct products. The perpendicular of the rectangle (chosen above) divided
by the sum (or difference) of the cross-products, then, denotes the first square-
root and the sum (or difference) of the direct products divided by the sum (or
difference) of the cross-products denotes the other square-root.
In other words, if

A2 −B2 = N

and h2 − b2 = k2,

then (Ah±Bb)2 −Nk2 = (Ab
+∼ Bh)2

or 1−N

{
k

Ah±Bb

}2

=

{
Ab

+∼ Bh

Ah±Bb

}2

.

20Bījagaṇita, cakravāla, 5(ii)–6.
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That is, both

x =
k

Ah+Bb

y =
Ab+Bh

Ah+Bb

 and
x =

k

Ah−Bb

y =
Ab ∼ Bh

Ah−Bb


are the rational solutions of 1−Nx2 = y2.

6.3 Rational solution of Nx2 ± C = y2 and C −Nx2 = y2

These are the general forms of the equations considered above. When N

and C are both non-square integers, Śrīdhara’s method is not applicable to
their solution. When, however, at least N or C is a perfect square, Śrīdhara’s
method may be used to obtain the rational solutions of the above forms. When
C is a perfect square, the above forms easily reduce to the forms discussed
above. It is sufficient, therefore, to consider only the two forms viz.

(i) a2x2 ± C = y2

and (ii) C − a2x2 = y2.

6.3.1 Rational Solution of a2x2 ± C = y2

Rule—Express the additive or subtractive as a difference of two squares. Set
down the square-roots of these squares in the ascending or descending order
of magnitude according as the kṣepa is additive or subtractive and below
them set down the base and the hypotenuse of any rational rectangle in order.
Obtain the cross-products and the direct products. The sum or difference of
the cross-products divided by the product of the square-root of the multiplier
and the perpendicular of the rectangle, then, gives the first square-root and
the sum or difference of the direct products divided by the perpendicular of
the rectangle gives the other square-root.
In other words, if

A2 −B2 = C

and h2 − b2 = k2,

then a2

{
Bh

+∼ Ab

ak

}2

+ C =

{
Bb

+∼ Ah

k

}2

and a2
{
Ah±Bb

ak

}2

− C =

{
b

+∼ h

k

}2

.
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That is
x =

Bh+Ab

ak

y =
Bb+Ah

k

 and
x =

Bh ∼ Ab

ak

y =
Bb ∼ Ah

k


are the rational solutions of a2x2 + C = y2; and

x =
Ah+Bb

ak

y =
Ab+Bh

k

 and
x =

Ah−Bb

ak

y =
Ab ∼ Bh

k


are the rational solutions of a2x2 − C = y2.

Another form

If

A2 −B2 = ±C

and h2 − b2 = k2,

then, as shown above

x =
Ab+Bh

ak

y =
Ah+Bb

k

 and
x =

Ab ∼ Bh

ak

y =
Ah−Bb

k


are the rational solutions of a2x2 ± C = y2.
Choosing

A =
±C + 1

2

B =
±C − 1

2

and putting

k =
1

2

{
b2

ε
− ε

}
h =

1

2

{
b2

ε
+ ε

}
in one of these solutions, say in the first, we have

x =
1

2a

{
±C(b+ ε)

b− ε
− b− ε

b+ ε

}
y =

1

2

{
±C(b+ ε)

b− ε
+

b− ε

b+ ε

}
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or, on setting b−ε
b+ε = λ,

x =
1

2a

{
±C

λ
− λ

}
y =

1

2

{
±C

λ
+ λ

}
 , 21

which is another form of the rational solution of a2x2±C = y. This was given
by Brahmagupta22 (628), Bhāskara II23 (1150), and Nārāyaṇa24 (1356).

6.3.2 Rational solution of C − a2x2 = y2

A rational solution of this equation is possible by the above method if C is
capable of being expressed as a sum of two squares. In that case, we are led
to the following rule for the rational solution of the above equation:

Rule—Express C as a sum of two squares, set down their square-roots
and below them the base and the perpendicular of any rational rectangle.
Obtain their cross-products and direct products. The sum or difference of
the cross-products (or of the direct products) divided by the product of the
square-root of the multiplier and the hypotenuse of the rectangle, then, gives
the first square-root and the sum or difference of the direct products (or of
the cross-products) divided by the hypotenuse of the rectangle gives the other
square-root.
In other words, if

A2 +B2 = C

and b2 + k2 = h2,

then C − a2

{
Ak

+∼ Bb

ah

}2

=

{
b

+∼ Bk

h

}

and C − a2

{
Ab

+∼ Bk

ah

}2

=

{
Ak

+∼ Bb

h

}2

.

21This solution can be easily derived from Śrīdhara’s lemma. For, ±C, (ax)2, and (y)2 may
be algebraically treated as the squares of the base, perpendicular, and hypotenuse of a
rectangle; so that, choosing an arbitrary number λ and making use of Śrīdhara’s lemma
we have

x =
1

2a

{
±C

λ
− λ

}
, y =

1

2

{
±C

λ
− λ

}
.

22Cf. Brāhmasphuṭasiddhānta, xviii. 69.
23Cf. His Bījagaṇita, cakravāla, rule 8.
24Cf. His Bījagaṇita, I, rule 85.
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That is,

x =
Ak +Bb

ah

y =
Ab+Bk

h

 ,
x =

Ak ∼ Bb

ah

y =
Ah ∼ Bk

h

 ,
x =

Ab+Bk

ah

y =
Ak +Bb

h

 , and
x =

Ab ∼ Bk

h

y =
Ak ∼ Bb

h


are the rational solutions of C − a2x2 = y2.

7 Conclusion

The rectangular method discussed above seems to be Śrīdhara’s own contri-
bution to the subject. This method occurs exclusively in Śrīdhara’s Pāṭī-
gaṇita. It is not found in any other Hindu mathematical work so far known
nor has it been included among the various solutions of the equations of the
form Nx2 + 1 = y2 surveyed by L. E. Dickson (1920) in his History of the
Theory of Numbers, Vol. II. It is fundamentally different from the tentative
method stated by Datta and Singh (1938) in their History of Hindu Mathe-
matics, Part II, and from the method given by Śrīpati (1039) and followed
by Bhāskara II (1150), Nārāyaṇa (1356), Jñānarāja (1503), and Kamalākara
(1658).

Śrīdhara’s method is extremely general. It is applicable to the equations
of the forms Nx2 +∼ C = y2 for obtaining their rational solutions. These
solutions, it may be added, are most general. In the above discussion we have
shown that the rational solutions given by Brahmagupta (628), Śrīpati (1039),
Bhāskara II (1150), Nārāyaṇa (1356), Jñānārāja (1503), and Kamalākara
(1658), as also those given by John Wallis and W. Brouncker (1657) are de-
ducible from the rational solutions obtained from Śrīdhara’s method.
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